各検疫所長 殿

厚生労働省医薬食品局食品安全部長 (公印省略)

放射線照射された食品の検知法について

標記については、平成19年7月6日付け食安発第0706002号により通知しているところであるが、今般、試験可能な食品を追加する等、同通知の別添を下記のとおり改め、別添のとおりとするので、御了知の上、適切な運用を図られるようお願いする。

記

1 「3. 試薬・試液など」について

試料皿の項中、「重さ:約 $100mg \pm 0.5$ %、底の厚さ:0.20mm」を「重さ: $107mg \pm 10$ %、底の厚さ: $0.193 \sim 0.200mm$ 」に改める。

2 注について

注の1)中「生姜及びシナモン」を「生姜、カシア、パセリ、ローレル、わさび及びシナモン」に改める。

注の3)から22)までを一つずつ繰り下げ、2)の次に次のように加える。

3) 現在、試料皿は次の仕様のものが入手可能である。

重量: 105.91 ~ 108.11mm、厚さ: 0.193 ~ 0.200mm

放射線照射された食品の検知法(TL 試験法)

1. 対象食品 香辛料¹⁾

2. 装置

熱ルミネセンス測定装置

超音波浴(容量3.3L程度でおよそ100W以上、40kHzの能力を持つもの)

恒温槽(50±5℃で調節できるもの)

遠心分離器

遠沈管攪拌器

セミ・ミクロ天秤(0.01mg 程度まで測定可能なもの)

台秤(200g から 0.5g まで秤量可能なもの)

除電気(秤量するものの静電気を除去するためのもの)2)

3. 試薬・試液など

ポリタングステン酸ナトリウム溶液 (比重 2.0): ポリタングステン酸ナトリウム ($Na_6[HW_{12}O_{40}]x$ H_0O) 250gを水 150mL に溶かす。

1mol/L 塩酸: 調製する場合は、塩酸(35~37%) 8.8mLを水に加え 100mLにする。

1mol/L アンモニア水: 調製する場合は、アンモニア水(28%) 6.8mLを水に加え 100mLにする。

アセトン: 試薬特級

蒸留水又はイオン交換水

鉱物分離用ナイロンメッシュ:目開き 125μm

試料皿 3 :底面が TL 測定装置の加熱板に密着するステンレス製のもの(内径:6mm、高さ:約 2mm、<u>重さ:107mg \pm 10%、底の厚さ:0.193 \sim 0.200mm)。アセトンに浸漬して超音波浴で洗浄し、密閉容器に保存する。</u>

4. 試料の調製4)

- a. 抽出法(鉱物の分離)
 - (1)粒状検体の場合5)

検体約 100g(SLW、g)を 300~1000mL のビーカーに入れ、検体が十分浸る程度の水 200~500mL を加え、超音波浴を用いて 15 分間処理する。

超音波処理後の懸濁液をナイロンメッシュ⁶⁾で濾過し、別の 500~1000mL ビーカーで濾液を受ける。次いで、ナイロンメッシュ上の残渣を蒸留水で洗い、洗液を濾液と合わせる。ナイロンメッシュ上の残渣を廃棄した後、超音波処理を行ったビーカーの器壁に残る付着物を蒸留水で流しながら、ナイロンメッシュで濾過し、さらにナイロンメッシュ上の残渣を蒸留水でよく洗い、先に得ている濾液及び洗液に合わせる。合わせた濾液等を 15 分間静置し、上澄みをデカンテーション⁷⁾で捨て、沈殿物を残す。デカンテーション後の沈殿物を50mLの遠沈管に移し⁸⁾、1000G、2分間遠心分離する。上清を捨て、15mLの遠沈管に沈殿物を移し、さらに1000G、2分間遠心分離した後、可能な限り上清を捨て、沈殿物を残す。次いで、ポリタングステン酸ナトリウム溶液5mL を加え、懸濁させた後、100 0G、2分間遠心分離する。上清を捨て、残った沈殿物を粗試料とする。

(2)粉末検体の場合

検体約2~5g(SLW、g)を50mLの遠沈管に採り、ポリタングステン酸ナトリウム溶液15~30mL加えて軽く撹拌し、溶液中に均一に懸濁させる。さらにポリタングステン酸ナトリウム溶液を加えて、次の遠心操作で用いる他の遠心管とのバランスを取った後、超音波浴を用いて5分間処理する。1000G、2分間遠心分離した後、遠沈管の底からスポイトで一気にポリタングステン酸ナトリウム溶液約5mLとともに沈殿物を吸い取り、これを15mlの遠沈管に移す。沈殿物を取り除いた50mL遠沈管の残渣にポリタングステン酸ナトリウム溶液5~10mL加えて、浮上物を均一に懸濁させ、さらにポリタングステン酸ナトリウム溶液を加えて、次の遠心操作で用いる他の遠心管とのバランスを取った後、超音波浴を用いて5分間処理する。超音波処理した遠心管を前と同様に遠心操作した後、その遠沈管の底からスポイトで一気に沈殿物を吸い取り、先の15mlの遠沈管の懸濁液にあわせる。この懸濁液を1000G、2分間遠心分離する。遠心分離した後、上清をスポイトで取り除く。遠沈管の器壁を洗うように蒸留水2mLを静かに加え、界面に浮いた有機物をスポイトで除去した後、上層の水を除く。次いで、ポリタングステン酸ナトリウム溶液もスポイトで除き、沈殿物を残す。9)。

総量およそ2 mgの沈殿物が得られるまで、(2)の操作を繰り返し $^{10)11)}$ 、これを粗試料とする。

b. 試料の洗浄

粗試料にポリタングステン酸ナトリウム溶液2~5mL を加え、撹拌し、懸濁させた後、100 0G、2分間遠心分離する。ポリタングステン酸ナトリウム溶液をスポイトで除去し、沈殿物を残す⁹⁾。次いで、蒸留水数mL を加え、撹拌した後、さらに蒸留水を加え 10mL にする。これを1000G、2分間遠心分離した後、デカンテーションまたはピペットで水を除き、粗試料の洗浄を行う。この洗浄操作を再度繰り返す。

c. 炭酸塩の除去と洗浄

蒸留水で洗浄した粗試料に 1mol/L 塩酸2mL を加え、撹拌した後、15~20分間静置する。1mol/L アンモニア水約2mL を加え、撹拌して中和した¹²⁾後、蒸留水を加えて 10mL にする。1000G、2分間遠心分離した後、上清を捨て、沈殿物を残す。蒸留水数mLを加え、沈殿物を懸濁し、さらに蒸留水を加え 10mL にする。1000G、2分間遠心分離した後、上清を捨て、沈殿物を残す。さらに、蒸留水による洗浄操作を再度繰り返す。

d. 水分の除去

沈殿物をアセトン3~5mL に懸濁¹³⁾し、1000G、2分間遠心分離した後、アセトンをパスツールピペットを用いて除く。再度アセトン3~5mLを加え、この操作を繰り返す¹⁴⁾。アセトン洗浄が終了した沈殿物はデシケータなど埃が入らない容器に入れ、アセトン臭が無くなるまで、風乾燥する。なお、このとき沈殿物を入れた容器の外壁等に埃などが付着しないように清浄なワイパーなどで拭き取り、乾燥用の容器にこれを収納すること。乾燥後の沈殿物を試料とする。

5. アニーリング¹⁵⁾

遠沈管等に入った試料を 50℃に保った恒温槽に入れ連続して16時間加熱し、アニールする。アニーリングをした後、試料の重量(EW、mg)を測定する。なお、保存するときは、遮光した容器に入れ、15℃以下で冷蔵保存する。

6. 測定試料皿への鉱物の搭載

1試料に付き、1個の試料皿の重量 DW(mg)を測定し、蓋つきの容器 (ペトリ皿等)に入れておく。遠沈管中のアニーリング後の試料に $0.2\sim0.5$ mL のアセトンを加え、懸濁し、1000G、2分間遠心分離した後、パスツールピペット(または $25\sim50\,\mu$ L 分取できるマイクロピペット 16)で、遠沈管の底のわずか上から試料を吸い上げ、試料がピペットの先端に沈下し、集まるのを待って試料皿に $1\sim2$ 滴落とす。試料皿には $1\sim1$. 5mg位鉱物を載せることとし、少ないようであれば、再度試料を吸い上げ、滴下を行う。

アセトンが揮発した後、鉱物を載せた試料皿の重量(G'1W、mg)を測定する。

7. 熱ルミネセンス(TL)測定

a. 第一発光の測定

熱ルミネセンス測定装置の加熱板に試料を載せた試料皿を置き、以下の測定条件で発光を測定する。この発光量を Glow1(G'1, nC)とする。この発光曲線から発光極大の温度 (T1, C)を記録する。さらに、加熱板の温度が50 C以下になってから、直ちに発光を再度 測定し、この発光量 B1(nC) をバックグランドとする。 TL 測定後、試料を載せた試料皿の重量を測定する(B1W, mg)。

測定条件17)

試料室雰囲気:窒素ガス(G3)、流量:2L/分

昇温:開始温度70℃、終了温度490℃

昇温速度:6℃/秒

b. 標準線量の照射

試料を試料皿ごとに試料が飛散しない容器 $^{18)}$ に梱包して、所定の標準線量を照射できる機関 $^{19)}$ に15 $^{\circ}$ $^{\circ}$

c. アニーリング

標準線量を照射した後、遮光して、照射施設あるいは検査機関のいずれかにおいて50℃に保った恒温槽に入れ、連続して16時間加熱してアニーリングを行う。なお、アニーリングは、放射線照射後可及的に速やかに行うこととし、検査機関ごとに放射線照射からアニーリングまでの時間を一定にすることが望ましい。

d. 第二発光の測定

熱ルミネセンス測定装置の加熱板に標準線量を照射した試料を皿ごと置き、第一発光の測定と同じ条件で発光を測定する。この発光量を Glow2(G'2, nC)とする。この発光曲線から発光極大の温度 $(T2, \mathbb{C})$ を記録する。さらに、加熱板の温度が $50\mathbb{C}$ 以下になってから、直ちに発光を再度測定し、この発光量 B2(nC) をバックグランドとする。 TL 測定後、試料を載せた試料皿の重量を測定する $(B2W, mg)^{21}$ 。 この測定は標準線量照射後1週間以内を目途に実行することとする。

e. TL 発光比の計算

次の式により、TL発光比を計算する。

TL 発光比=G1/G2

ただし、G1=(G'1—B1)/(B1W—DW) (nC/mg) G2=(G'2—B2)/(B2W—DW) (nC/mg)

8. 評価方法

1つの検体から2つ以上の試料を用いて、1つ以上の試料において以下の両基準に該当する場合、放射線照射されているものと判断する²²⁾。

これ以外の場合は、放射線照射されているものと確定できない。

- a. 第 1 発光曲線の発光極大温度 (T1) が所定の標準物質を用いて定めた温度 $(X^{\mathbb{C}})$ 以下であること。ただし、X は、0.5 Gy の放射線を照射したTLD100あるいは同等の物質を試料皿に入れ、試料測定と同じ条件下で 10 回測定した時の発光極大の温度の平均値とする 23 。
- b.TL発光比が 0.1以上であること

注

- 1) 厚生労働科学研究事業において、黒胡椒、ウコン、オレガノ、パプリカ、赤唐辛子、フェネグリーク、クミン、セロリシード、オールスパイス、黒胡麻、コリアンダー、生姜、<u>カシア、パセリ、ローレル、わさび及びシナモンから試験に必要な量の鉱物が得られることが確認されている。</u>
- 2) 帯電板の大きさ:150mmx150mm、静電容量:20pF 程度、有効範囲:距離 300mm 及び幅 400mm、使用方法:放電針の前 300mm 位の所に、天秤などを置き1分30秒以上静置する。
- 3) 現在、試料皿は次の仕様のものが入手可能である。 重量:105.91~108.11mg、厚さ:0.193~0.200mm
- 4) 器具類はプラスチック製が望ましい。ただし、ポリスチレン製の遠沈管にアセトンを加えると溶けるので、他の素材ものものを使用すること。ガラス器具には鉱物が付着しやすい。ガラス製のビーカーや遠沈管を再使用する場合は、十分洗浄し、使用前に鉱物が付着していないことをルーペなどで確認する必要がある。ガラス製のピペットを使用する場合も、器壁に鉱物が付着してアセトンや水で洗い流しても取れなくなることがある。鉱物を試料皿に移す場合などは吸い上げる液を少量にし、付着する量を抑える。
- 5) 検体量は鉱物の付着量が多いことがわかっている場合は、鉱物を 1mg 程度分離できる量に 減らすことができる。例えば、セロリシードでは 10gで測定が可能である。
- 6) ナイロンメッシュは試料ごとに毎回取り替える。
- 7) デカンテーションするときはビーカーをゆっくりと傾け、序々に水を捨てる。沈殿物が舞い上がるので、途中で止めずに上清を捨てる。
- 8) ビーカーに沈殿物が残るので、遠沈管の上でビーカーを傾けて蒸留水で洗い流す。一度で集めきらないときは、遠心分離時、上澄みを捨て、残りの沈殿物を集める。
- 9) 遠沈管の器壁についた有機物は、小さく切って湿らせたティッシュで拭き取る。
- 10) 操作を繰り返す場合は、同じ袋からサンプリングする。
- 11) 10g 以上の試料が必要と予想されるときは(1)粒状検体の場合の方法を行うことを考慮する。
- 12) pH 試験紙を用いて中性であることを確認する。
- 13) アセトン懸濁液が白濁した場合は、ポリタングステン酸ナトリウムが除去されていないので、 蒸留水による洗浄を数回行ってからアセトンによる水分の除去の操作を行う。
- 14) 対象食品がターメリック、パプリカの場合は、鉱物に色素が付着しているので、アセトン溶液の着色がなくなるまで、アセトンを用いたd. の操作を繰り返す。
- 15) 過剰なアニーリングは発光強度を極端に弱め、不十分なアニーリングは TL 比が一定に なりにくい。
- 16) 分離した鉱物を試料皿に載せるのにマイクロピペットを使用する場合は、分取量は 25~ $50\,\mu$ L が適当であるが、 $25\sim50\,\mu$ L 用のチップでは鉱物を吸い上げににくく、滴下しにくい。 チップは容量の大きいもの $(250\,\mu$ L 用)を使用する。

- 17) 電源投入後30分以上、暖気運転をすること。各々の測定は加熱板が50℃以下になってから実施する。
- 18) そのまま照射作業やアニーリングできる容器が望ましい。
- 19) 放射線照射は目標線量1.0kGyに対して5%以内の精度があること。また、その吸収線量については、我が国の国家標準あるいは、イギリスの物理研究所、アメリカ合衆国標準研究所等の国際標準機関と直接トレーサブルであること。線量管理はアラニン素子を用い、ファントムなどの容器に入れ、電子平衡、ビルドアップ等の影響を考慮すること。照射ロットごとに吸収線量を測定し、記録するものとする。
- 20) 線源はコバルト $60(\gamma k)$ あるいは10 MeVの電子線を用いる。
- 21) 二回目の TL 測定は GW'2 の量が 0.7mg以上残っていることが望ましい。
- 22) 放射線照射されていない食品の場合、多くは昇温とともに発光量は漸増し、明確な発光極大温度(T1)を示さない場合が多い。T1を有する場合、その温度は 350 度以上であることが多く、人工的に照射された鉱物と容易に識別できる。まれに鉱物によっては250度付近に発光極大が観察されることがあるが、TL 発光比を計算することにより、人工的に照射された鉱物と識別できる。
- 23) TLD100などのアニーリング条件はメーカーの推奨条件で取り扱うものとする。また、発光極大温度既知の標準鉱物などで X を決定することも出来る。なお、国立医薬品食品衛生研究所の調べによると、TLD100を用いた際の X の値は 232. 1℃で標準偏差は 3.4℃であった。 TL 装置が異なること等により、X の値が変化することが知られており、EU の調べでは X の値は 210℃から 313℃まで分布しており、留意が必要である。

その他の留意事項

- 1) 本検知法は試験結果を得るまでに時間を要するため、記載様式を定め、確実に記録を残すこと。
- 2) ポリタングステン酸ナトリウムは有害であるので、廃液は回収することが望ましい。当該薬品は風通しの良いところで扱うか、防塵マスク等の防具を着装して扱うことが望ましい。
- 3) TL 測定装置からの排気は局所排気することが望ましい。(有機物が焦げるにおいの他に、甘いにおいがすることがある。)
- 4) 評価結果に影響を与える装置については、日常の点検及びその結果の記録を怠らないこと。 以下の装置について各々の留意事項を記載する。

a. TL 機器

TL メーカーの点検項目に従い、常に正常な運転状態を保つこと。項目は以下で始業時、およびおよそ10回測定ごとに記録すること。()内は通常値。

温度の校正は精密な熱電対温度計で加熱板の温度を室温付近で測定し、標準温度計の示度で校正するなどTLD測定時の温度の絶対値を確認すること。真値からの誤差は室温付近で5%以内とする。

(サーモ製TLD3500の場合)

- ○PMT ノイズ (200pA 程度)
- ○リファレンス・光の強さ (20nC 位)
- ○PMT 印加電圧(約800V)
- ○PMT 冷却温度(15°C)
- ○バックグランド・ノイズ(十分に小さいこと)

(ナノグレー製TL2000)

- ○ホトマルのノイズ 3mV(3nA相当)
- ○リファレンス光度の強さ 約50mV
- ○ホトマル印加電圧 標準 750V

○ホトマル表面温度 室温

b. 天秤

メーカーの点検項目に従い、常に正常な運転状態を保ち、正しく扱うこと。 100分の1mg まで秤量するので、天秤の安定性、再現性に充分注意を払うこと。 始業時点検は以下のとおり。

- ○暖機運転の実施(暖気運転、120分以上通電)
- ○水平の確認(水平の状態)
- ○秤量皿やその周辺の汚れ、異物の点検(皿の状態)
- ○ゼロ設定後、測定物を載せおろしして、ゼロの戻りを点検する。(再現性)
- ○標準分銅を(1mg)を載せ、指示値を確認する。(指示値)
- ○点検結果の記録。
- ○温度の記録(温度17~27℃)(温度)