医療関係者の皆様へ

1. 早期発見と早期対応および予防のポイント

医薬品による急性腎不全の診断チャートを示す (図 1)。薬剤性腎不全が疑われる場合には、このチャートを参考に原因医薬品を推定し、腎臓の障害部位を診断し、適切な治療を行う必要がある。本マニュアルでは、医薬品による急性腎不全を扱ったため、尿細管間質障害による急性腎不全を主体に記載している (「間質性腎炎」、「横紋筋融解症」については、それぞれのマニュアルを参照のこと)。

急性腎不全の定義は高窒素血症を基準にして行われ、医薬品服用後 1~4 週の間に「血清クレアチニン値が 1 日 0.5 mg/dL、血清尿素窒素が 1 日 10 mg/dL以上上昇する」、「血清クレアチニン値が前値の 150%以上に上昇する」、「クレアチニンクリアランスが投与前にくらべて 15~50%以上低下する」、などの基準がある。まだ確定した定義は存在しないが、「血清クレアチニン値が前値の 150%以上に上昇する」を基本と考えると簡潔である。もちろん、クレアチニン値が上昇傾向にあり、前値の 150%以上に達する可能性が大きい場合も急性腎不全と考えるのが早期診断のポイントである。基本的に血清クレアチニン値で診断するので、定期的に血液検査をする必要があるが、その間隔は医薬品により異なる。造影剤使用時には使用後 12 時間から 24 時間以内に 1 回目を、上昇傾向があればその後連日行う必要がある。アミノグリコシド系抗生物質、シスプラチンなど腎毒性の明らかな医薬品の使用時には週 1 回は最低、できれば週 2 回実施したい。非ステロイド性抗炎症薬(NSAIDs)、アンジオテンシン変換酵素阻害薬(ACEI)、アンジオテンシンII 受容体拮抗薬(ARB)などの使用開始時には 2~4 週間隔が適切と考えられる。

どの医薬品による急性腎不全でも、危険因子として、高齢・もともとの腎機能低下・脱水・発熱などがある。なかでも脱水予防は医療行為によりコントロールできる最大な因子である。NSAIDs、ACEI、ARBによる腎前性急性腎不全は有効循環血液量の減少が大きな危険因子である。有効循環血液量の減少の最も多い原因が脱水である。また腎毒性の医薬品の多くが腎排泄型であり、多くが糸球体ではなく尿細管上皮細胞より排泄される。脱水があると、薬物血中濃度が上昇しやすく、また尿細管上皮に医薬品が高濃度に蓄積され、尿細管上皮細

胞が障害されやすくなる。このことは、造影剤、シスプラチンによる急性腎不全の予防に使用前からの適切な水負荷が大きな役割を示すことより理解される。他の改善できない危険因子、すなわち高齢、慢性の肝腎機能低下時などは、 医薬品の使用量を抑えることが急性腎不全の予防となる。

(1) 早期に認められる症状

腎臓の障害部位および発症機序等により症状は異なるが、乏尿・無尿、 浮腫、倦怠感等および血液検査においてクレアチニン、尿素窒素 (BUN) の 上昇で示される高窒素血症が共通して見られる症状である。

医療関係者は、上記症状のいずれかが認められ、その症状の持続や急激な悪化を認めた場合には早急に入院設備のある専門病院に紹介することが望ましい。

(2) 副作用の好発時期

原因医薬品により異なるが、原因と考えられる医薬品を服用して数時間以内に発症することもあるし、数年経ってから発症することもある。

NSAIDs、高血圧治療薬、造影剤、シスプラチン、アミノグリコシドなどによる急性腎不全は使用開始後数日以内に起こりうる。副作用なく服用していても発熱、脱水、食事摂取量の減少、複数の医薬品の服用、誤って多量服用した場合などの危険因子が途中で加わることにより発症することもある。

(3) 患者側のリスク因子

高齢、基礎疾患に慢性腎不全がある、発熱、脱水、食事摂取量の減少、複数の医薬品の服用、肝不全などがあげられる。リスク因子は原因医薬品により異なるので、各論を参照されたい。

(4)推定原因医薬品

NSAIDs、高血圧治療薬(ACEI、ARB等)、抗生物質(アミノグリコシド系等)、抗菌薬、造影剤、抗がん剤(シスプラチン等)など広範囲にわたり、その他の医薬品によっても発症しうることが報告されている。

(5) 医療関係者の対応のポイント

すべての医薬品は急性腎不全の原因となりうることに留意することが重要である。特にシスプラチン、アミノグリコシド系抗生物質、造影剤などの腎毒性が高い医薬品を使用する際には患者の症状を的確に把握し定期的に検査を行うなど十分な観察を行う必要がある。また、アミノグリコシド系抗生物質などは血中濃度のモニターが可能であり、感染症の治療と腎不全の予防の両面より有用であるから、積極的に測定すべきである。

[早期発見に必要な検査]

- 必須定期検査:血清クレアチニン、尿素窒素、一般検尿
- ・ 腎機能障害・急性腎不全が疑われた時は、「薬剤性急性腎不全の診断 チャート」(図1)を参考に的確な検査をする。

以下、マニュアル中の a) から e) はチャートの a) から f) と共通である。またチャートの g) 尿細管間質性腎症(間質性腎炎) は頻度も高く広範囲な医薬品が原因になりうるので別マニュアルとした。

図 1 薬剤性急性腎不全の診断チャート(薬剤性を疑ったら)

乏尿・無尿 高窒素血症 問診:既往歷、現病歷

脱水・発熱・発疹等の有無

最近の詳細な服薬歴、毒物暴露の有無

【最低限の迅速検査】

生化学(肝・腎機能、CK、電解質)、血糖

検尿(尿蛋白、潜血、沈渣、比重、浸透圧、電解質、NAG、 β 2MG、 α 1-MG血算、末梢血液像、CRP、補体、蛋白分画、動脈血ガス分析

胸部レントゲン写真

腹部超音波検査 ⇒ 尿閉なら → 下後性腎不全

抗癌剤による腫瘍崩壊症候群

その他結晶形成性薬剤

検尿所見少ない

|検尿所見多い 蛋白+~ 潜血+~等

BUN/Cre > 20尿浸透圧 500mOsm/kgH20 他に高比重、FENa1%以下等 脱水・血圧低下等の臨床所見 $BUN/Cre = 10\sim20$ FENa1%以上

腎前性腎不全

該当医薬品: NSAID s a) ACEIb), ARB

- A. 糸球体病変(i~iiiは主として<u>腎生検所見</u>+ 特殊検査所見より診断)
- ① 急速進行性糸球体腎炎
 - i)抗 GBM 抗体陽性:抗糸球体基底膜(GBM)抗体腎炎 該当医薬品 現時点ではなし
 - ii) 免疫複合体陽性(腎組織免疫染色) 急性糸球体腎炎:感染歴、ASO,ASK↑、低補体 ループス腎炎:抗核抗体、低補体、

白血球減少、血小板減少

該当医薬品:D-ペニシラミン、ブシラミン

iii) 蛍光抗体法陰性(腎組織免疫染色)

MPO-ANCA 関連腎炎

該当医薬品:プロピルチオウラシル、

アロプリノール、D-ペニシラミン

② 特殊 溶血性尿毒症症候群:進行性貧血、

血小板減少、破砕赤血球

該当医薬品:シクロスポリン、マイトマイシン C、ペニシリン(AB-PC)

- B. 尿細管·間質病変
 - ① 急性尿細管壊死:腎前性腎不全の該当薬剤
 - ② 尿細管毒性物質

尿中 NAG, β 2-MG, α 1-MG 上昇

該当医薬品:シスプラチンの、アミノグリコシド系抗 生物質 d)、ニューキノロン系抗菌薬 e)、造影剤 f)

③ 薬剤性尿細管間質性腎炎 g) (アレルギー性)

発疹・発熱・好酸球増加

尿沈渣異常(白血球尿·好酸球尿)

 $\overline{\text{RP NAG}}$, β 2-MG, α 1-MG 上昇

該当医薬品: 抗生物質、H2 ブロッカー等多数

④ 特殊

横紋筋融解症: CK, AST, ALT, LDH 上昇

赤血球の少ない尿潜血陽性

血中・尿中ミオグロビン

該当医薬品:

- i)低 K 血症をきたす医薬品 甘草等漢方薬、利尿剤等
- ii) 悪性高熱をきたす医薬品
- iii) 悪性症候群をきたす医薬品
- iv)スタチン系薬剤

高カルシウム血症:血清 Ca 上昇

該当医薬品:活性型ビタミン D 製剤

その他 原因不詳:エダラボン等

検査項目:迅速検査、検査項目:迅速さが困難な場合が多い検査

腎前性腎不全

- a) 非ステロイド系抗炎症薬 (NSAIDs) による急性腎不全
- b) アンジオテンシン変換酵素阻害薬(ACEI) による急性腎不全

1. NSAIDs、ACEI 等による急性腎不全の概要

臨床症状:

(1) 自覚症状

初期には症状が少ないが、進行すると食欲不振、嘔吐、下痢、体重減少、 倦怠感、発熱、全身の紅潮、乏尿、浮腫、手足のむくみ、目が腫れぼったい などの症状が出現する。

(2) 他覚症状

進行すると、乏尿(1 日尿量 400 mL 以下)あるいは無尿(1 日尿量 100 mL 以下)、高K血症、代謝性アシドーシス、体液過剰(肺うっ血、胸水、腹水、浮腫)、循環器症状(不整脈、うっ血性心不全、高血圧)、消化器症状(悪心、嘔吐、食欲不振、消化管出血)、神経症状(意識障害や痙攣)など。

(3) 臨床検査値

血清クレアチニン値の上昇により急性腎不全の存在が確認できる。 急性腎不全に遭遇した場合、尿電解質と尿一般検査を行うことが重要である。

1. 尿検査

Na 排泄分画 fractional excretion of sodium (FENa) および renal failure index (RFI) は、腎前性腎不全と腎性腎不全 (急性尿細管壊死) の鑑別に有用である [FENa=(尿中 Na (mEq/L) × 血清クレアチニン (mg/dL) / 血清 Na (mEq/L) × 尿中クレアチニン (mg/dL)) × 100,RFI=尿中 Na (mEq/L) × 尿中クレアチニン (mg/dL) / 血清クレアチニン (mg/dL)]。腎性腎不全では尿細管障害により Na の再吸収能が低下するため、尿中の Na 濃度が上昇し FENa や RFI が腎前性に比べ高値となる。

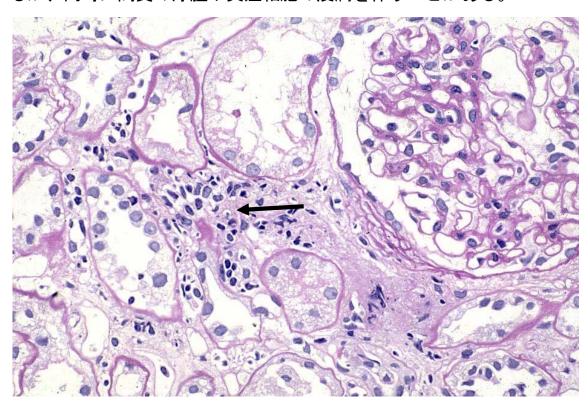
尿中の K 濃度は、腎前性では高度の腎血流量の低下に伴うレニン・アルドステロン系の亢進のため上昇する。

尿一般検査での血尿、蛋白尿、円柱尿は糸球体性の急性腎不全を疑わせる所見であり、赤血球変形率の高い血尿は糸球体由来の可能性が高い。尿中の白血球数の増加や白血球円柱、尿中好酸球の存在は、尿細管・間質性腎炎(主として薬剤性)の存在を疑わせる。尿中の α 1-・ β 2 ミクログロブリンや N-アセチル- β -D-グルコサミニダーゼ(NAG)は、尿細管・間質障害の程度を評価するのに有用である。

2. 血液検査

乏尿期の特徴的所見は、①高窒素血症、②低 Na 血症、③高 K 血症、④代

謝性アシドーシス、⑤高尿酸血症である。


腎前性の場合、尿細管での尿素窒素の再吸収が増加するため血清UN(SUN)/Cr比は20以上となる。

(4) 画像診断所見

超音波検査:尿排泄障害の有無(腎盂・尿管の拡大)や腎の形状・大きさから 慢性腎不全との鑑別が可能である。循環血漿量の低下による腎 前性を疑う場合、下大静脈径の測定が有用である。

(5) 病理組織所見

腎毒性の急性腎不全に比べ、虚血性の急性腎不全では壊死の部位が狭く散在性で、近位尿細管直部(proximal straight tubule; PST)に集中する傾向があるが、まれに曲部(proximal convoluted tubule; PCT)や遠位尿細管にも起こりうる。壊死に陥った尿細管の部位は破綻し tubulorrhexis と称されるが、同時に間質の浮腫や炎症細胞の浸潤を伴うことがある。

図2 NSAIDs 関連腎症

50歳代男性。関節リウマチにてインドメタシンとアスピリンを投与された後、徐々にBUN、血清クレアチニンの上昇と蛋白尿を認め、腎生検となった。近位尿細管上皮の壊死と尿細管基底膜の一部が破壊され、幼若化したリンパ球が基底膜周囲に浸潤している(矢印)。炎症細胞浸潤は小巣状で軽度である。糸球体は、光顕上異常を認めない。(PAS)

※ 急性腎不全のマニュアルの全ての組織写真とその説明は、国立病院機構千葉東病院臨 床研究センター免疫病理研究部長 城謙輔氏提供。

(6) 発生機序

1. 虚血性機序-1:NSAIDs はアラキドン酸代謝経路において、シクロオキシゲナーゼ(COX)を阻害することによりプロスタグランジン(PG)産生を抑制する。PGE2やPGI2などによる腎血管拡張系が低下し、アンジオテンシンIIやノルエピネフリンなどの腎血管収縮系が優位になることにより腎動脈が収縮し腎血流を減少させると考えられている(腎前性急性腎不全)。重症例においては腎組織に虚血性の変化を引き起こす。

原因医薬品:

代表的な医薬品 ジクロフェナクナトリウム その他起こしうる医薬品 ロキソプロフェンナトリウム、インドメタ シン、スルピリン、メフェナム酸など

2. 虚血性機序-2: ACE 阻害薬はアンジオテンシンII の産生を抑制することで輸出細動脈の収縮を抑制し、降圧効果を得る。また、糸球体内圧を下げ尿中アルブミンを減少させると考えられている。腎動脈狭窄や脱水で腎血流量が低下している患者や血清クレアチニンが高い患者に通常量の ACE 阻害薬を投与すると、急激に輸出細動脈の収縮が抑制されるため、腎虚血による腎機能低下を起こすと考えられている。重症例においては腎組織に虚血性の変化を起こす。

原因医薬品:

代表的な医薬品 マレイン酸エナラプリル

その他起こしうる医薬品 リシノプリル、カプトプリル、塩酸イミダプリル、シラザプリル、ペリンドプリルエルブミン、塩酸テモカプリル、トランドプリル、塩酸ベナゼプリルなど

年間推定患者数:

マレイン酸エナラプリル 3 例 リシノプリル 1 例 計 4 例 (2004 年 4 月 1 日~2005 年 3 月厚生労働省報告分) 3. 中毒性機序:NSAIDs、ACE 阻害薬いずれも稀であるが、薬物が腎細胞に

直接作用して用量依存性に細胞機能を障害する場合もある。

予後:一般に投薬中止により3~6週で腎機能は回復する。発見が

遅れた場合や腎機能低下が高度な場合には、腎機能が完全に回復しないことがある。3週以上腎不全状態が続く場合

には、予後不良であることが多い。

2. 副作用の判定基準

医薬品服用後 1~4 週の間に血清クレアチニン値が 1 日 0.5 mg/dL、血清尿素 窒素が 1 日 10 mg/dL 以上上昇するか、血清クレアチニン値が前値の 150%以上 に上昇する場合。

確定診断:腎生検

被疑薬確定法:有り リンパ球刺激試験(DLST)(アレルギー性の場合)

3. 判別が必要な疾患と判別方法

1. 体液の減少:下痢、嘔吐、出血、火傷、利尿薬の過剰投与

2. 有効循環血漿量の減少: 肝硬変、ネフローゼ症候群、膵炎

3. 心拍出量の減少:心筋梗塞、心筋症、心タンポナーデ、不整脈

4. 末梢血管拡張: 敗血症、アナフィラキシー

5. 腎血管収縮: 肝腎症候群

上記を血液検査、画像診断(X線・超音波検査など)を用いて除外する。 また上記疾患はNSAIDs、ACE 阻害薬による急性腎不全の危険因子でもあり、上 記疾患を有する患者にはNSAIDs、ACE 阻害薬の使用を避けるか慎重に使用する。

4. 治療法

予防法:

高齢、循環血漿量低下などのリスク因子のある症例に対しては、慎重に投 与する。投与せざるを得ない時は、脱水状態を作らないようにする。

NSAIDs はクレアチニンクリアランス(Ccr) 60 mL/分以上では常用量投与可能であるが、副作用出現時は直ちに投与中止する。Ccr 60 mL/分未満に対しては投与量を減らすか、投与間隔を延ばすなど慎重に投与する。

ACE 阻害薬はクレアチニンクリアランス(Ccr)30 mL/分以下、または血清ク

レアチニンが 3 mg/dL 以上の場合には、投与量を減らすか、投与間隔を延ばすなど慎重に投与する。

2週から1ヶ月に1回程度の血液検査と尿検査を行う。

治療法:

- 1. 原因医薬品の投与中止
- 2. 水電解質代謝の維持 カリウム制限食、食塩制限食、水分制限など。アシドーシスの補正。
- 3. 栄養管理: 高カロリー(2000 kcal/日)を目標とし、低蛋白食(40 g/日以下)・減塩食(5 g/日以下)、カリウム制限を基本とする。
- 4. 透析療法

上記療法でも状態が進行するときは、透析療法を考慮する。

5-1 典型的症例概要(NSAIDs)

30	歳代、	男性
JU	がく しん	カロ

齲歯痛

ジクロフェナック 25mg 3錠/日

併用医薬品:なし

処方	急性に発症した齲歯痛に対してかかりつけ歯科医にジクロフェナ	ジクロフェナ
	ック 25mg 3錠/日 5日分処方された。	ック 25mg 3
		錠/日内服開
		始
3 日後	金曜日の服用開始後3日間は齲歯痛のため、摂食が通常より1/3	ジクロフェナ
	以下に減少。また水分摂取も著しく減少。月曜日になり全身倦怠	ック内服中止
	感強く、尿量が著しく減少していることを主訴として、患者(検	
	査技師)の勤めている病院の腎臓内科受診。顔面蒼白、血圧 120/70	
	mmHg 、経過よりジクロフェナックによる急性腎不全を疑われ	
	る。緊急検査にて血清クレアチニン 2.30mg/dL (酵素法)、	
	BUN56mg/dL、血清 K5.2 mEq/L。一般尿検査で蛋白(±)であった	
	が、円柱はみられなかった。FENa は 0.5 であった。1 ヶ月前の検	
	査では、血清クレアチニン 0.76mg/dL、BUN16mg/dL と正常であっ	
	<i>t</i> =.	
	さいわい、齲歯痛は治まり水分摂取が可能であったことより、	
	生食 500mL を外来にて点滴静注し、水分・食事摂取を十分にする	
	ことを指示し自宅療養とした。2 日後には自覚症状は消失し、検	
	査では、血清クレアチニン 1.30mg/dL、BUN20mg/dL、血清 K4.0 mEq/L	

	と改善した。尿所見も異常なし。	
投与中止 1 週後	血清クレアチニン 0.82mg/dL (酵素法)、BUN16mg/dL と正常にもど	
	り今後の薬剤服用時の飲水等の重要性を再度指導し、終診とした。	

5-2 典型的症例概要(ACEI)

30 歳代、男性。

3歳時、腎腫瘍のため左腎を摘出している。

約4年前から高血圧に対し降圧剤の内服による治療を行ったが血圧は 172/94 mmHg であったため、近医で塩酸エナラプリル 10 mgの処方を開始した。

投与開始	塩酸エナラプリル服用開始	
投与後 14 日	全身倦怠感持続するため内服を中断	
投与後 25 日	近医受診。血清尿素窒素 135 mg/dL、血清クレアチニン 15.9 mg/dL、血清カリウム 6.7 mEq/L と腎不全の状態であり入院	塩酸エナラプリル 中止 輸液開始 血液透析施行
投与後 40 日	計6回の血液透析施行後、血清尿素窒素 28 mg/dL、血清クレアチニン 1.6 mg/dL まで改善し透析離脱	m/(x/22-1/1 //IST)
投与後 52 日	レノグラムにて排泄遅延あり、腎動脈造影で右腎動脈狭窄を 認めたため、経皮経管的腎動脈形成術(PTRA)およびステント 留置施行	
投与後 65 日	血清クレアチニン 1.2 mg/dL と改善し、血圧は 126/78 mmHg まで低下した	

症例報告参考文献

1) 鈴木勝雄, 小原史生 他: ACEI および ARB の投与により急性腎不全を来した 1 例. 日本腎臓学会誌 45(6), 2003, 542

尿細管上皮細胞障害性医薬品による急性腎不全

- c)シスプラチン等の白金製剤
- d)アミノグリコシド系抗生物質
- e)ニューキノロン系抗菌薬
- f)ヨード造影剤

1. 尿細管上皮細胞障害性医薬品による急性腎不全の概要

臨床症状:

(1) 自覚症状

初期には、自覚症状には乏しいのが一般的で尿量も変わらないことが多い(非乏尿性腎不全)。尿細管障害の程度が著しい場合には、尿量が減少し、頭痛、悪心、嘔吐、食欲不振、倦怠感などの尿毒症症状が出現する。稀に尿細管障害により、多尿を伴い、尿中への電解質喪失による電解質異常、アミノ酸尿などを呈することがある。また中毒性でなくアレルギー性機序により発症した場合には発熱、発疹、関節痛などの症状が見られる(間質性腎炎のマニュアルを参照)

(2) 他覚症状

進行すると、尿量減少、乏尿(一日尿量 400 mL 以下)(非乏尿性も多い)、無尿(一日尿量 100 mL 以下)、高 K 血症、代謝性アシドーシス、体液過剰(肺うっ血、胸水、腹水、浮腫)、循環器症状(不整脈、うっ血性心不全、高血圧)、消化器症状(悪心、嘔吐、食欲不振、消化管出血)、神経症状(意識障害や痙攣)、血尿、体重変動などが見られる。

(3) 臨床検査値

血清クレアチニン値の上昇により急性腎不全の存在が確認できる。 急性腎不全に遭遇した場合、尿電解質と尿一般検査を行うことが重要である。

① 尿検査

Na 排泄分画 fractional excretion of sodium(FENa) および renal failure index(RFI)は、腎前性腎不全と腎性腎不全(急性尿細管壊死)の鑑別に有用である[FENa=(尿中 Na(mEq/L)×血清クレアチニン(mg/dL))/血清 Na(mEq/L)×尿中クレアチニン(mg/dL))×100, RFI=尿中 Na(mEq/L)×尿中クレアチニン(mg/dL)]。腎性腎不全では尿ークレアチニン(mg/dL) が腎臓性によび高値となる。

尿一般検査では血尿、強い蛋白尿は認めない場合が多い。尿中の白血球数の増加や白血球円柱、尿中好酸球の存在は、アレルギー性の間質性腎炎 (主として薬剤性)の存在を疑わせる。中毒性の尿細管上皮細胞障害性医薬品による急性腎不全の場合には白血球数の増加や白血球円柱は一般には認めない。尿中の α_1 -・ β_2 -ミクログロブリンや β -アセチル- β -D-グルコサミニダーゼ(NAG)は、尿細管・間質障害の程度を評価するのに有用であ

る。

② 血液検査

乏尿期の特徴的所見は、①高窒素血症、②低 Na 血症、③高 K 血症、④ 代謝性アシドーシス、⑤高尿酸血症である。

尿細管上皮細胞障害性医薬品による急性腎不全の場合、血清 UN (SUN) / Cr 比は 20 以下となる場合が多い。

[早期発見に必要な検査]

血液検査 血清クレアチニン、尿酸、尿素窒素、血清シスタチン C、Na, K, Cl などの電解質検査、血中薬物濃度 (トラフ値、ピーク値)

尿検査 一般定性検査、尿沈渣、尿中電解質、

尿中 β_2 -ミクログロブリン、 α_1 -ミクログロブリン、ライソザイム、NAG、クレアチニンクリアランス

腎生検 (可能なら)

(4) 画像検査所見

特徴的な画像所見はないが、慢性腎不全、あるいは腎後性腎不全との鑑別のために腹部超音波検査、腹部単純 CT 検査などが有意義である。アレルギー性間質性腎炎と鑑別する補助診断としては ⁶⁷Ga シンチグラムが有用である。腎臓に集積を認める場合はアレルギー性間質性腎炎の大きな診断根拠となる。造影剤を使用する検査は腎障害を増悪させる可能性があり、診断的意義も低い。腎機能低下が高度で、尿毒症の合併が疑われる場合には、胸部 X線にて、うっ血性心不全などの心肺病変を確認することが必要となる。

(5) 病理組織所見

尿細管上皮細胞障害性医薬品の使用歴、臨床症状から腎不全の発生機序が 推測可能であり、全身状態等を勘案し通常腎生検は実施されない場合が多い。 実施される場合は、腎障害が遷延する場合、副腎皮質ステロイド剤が治療の 適応となるアレルギー性の間質腎炎との鑑別を要する場合などである。

各医薬品による病理所見を以下に示す。

① シスプラチン

近位尿細管の直部(S3 部位)中心に尿細管上皮細胞障害が認められる。 散在性に障害された近位尿細管上皮の核が大型化し、異型(bizzare)な 形態を呈する、シスプラチン腎症特異的といってよい。

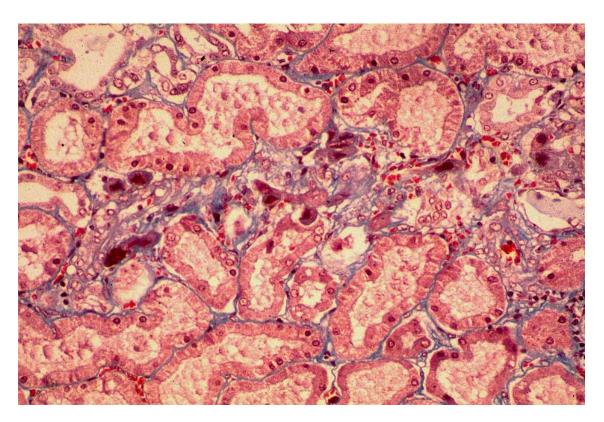


図3 シスプラチン腎症(剖検例)

40歳代女性。直腸癌に対して、シスプラチンと 5-FU を投与して、急性腎不全に進展した。散在性に障害された近位尿細管上皮の核が大型化し、異型(bizzare)な形態を呈し、一部は間質内にも同様な細胞が散見される(Masson 染色)。

② アミノグリコシド

発症から生検までの時期により異なるが、腎生検では、尿細管上皮に対する直接障害と虚血性変化に対する障害がみられる。障害の程度は薬物量によって異なるが、1)尿細管障害の膨化、2)近位尿細管の刷子縁・基底陥入の消失、頂側の水泡形成、3)上皮細胞の封入体(巨大ミトコンドリアを含む)4)広範な尿細管壊死、5)脱落細胞による壊死組織片と円柱による閉塞、6)尿細管腔の拡張、7)尿管腔への穿破などがみられる。炎症性細胞浸潤は乏しいのが一般的である。電顕ではミエリン小体といわれる電子密度の高い同心円状の膜用構造物がライソゾーム内にみられ、特徴的所見とされる。長期化した薬剤性腎障害では、間質の線維化が目立つようになる。

a b

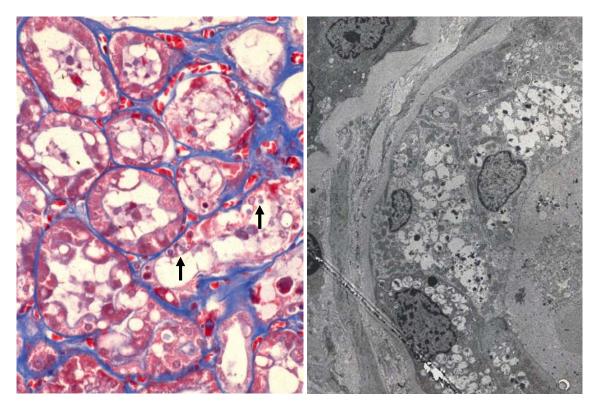


図4 60歳代 アミノグリコシド腎症(剖検例)

感染症に対してゲンタマイシン、ペニシリン(SBPC)、セフェム系抗生物質(CEZ)を併用し、量依存的尿細管障害に進展した。近位尿細管の膨化と空胞化がみられ、刷子縁が尿腔内に脱落している。間質内炎症細胞浸潤は目立たない。壊死した尿細管細胞の胞体内に小球状物(おそらく拡大したライソゾーム)を認める(矢印)(a. Masson 染色)。電顕像では、拡大したライソゾーム内にリン脂質が蓄積している(b. 電顕像、x4800)。

③ ニューキノロン系抗菌薬

間質性腎炎の形をとるものが多い。間質は斑状あるいはびまん性の浮腫と炎症細胞の浸潤を認める。炎症細胞は単核球優位である。しばしば好酸球の浸潤が塊状にみられる。慢性となると線維化を伴った変化がみられる。尿細管は刷子縁の消失や水胞形成をみとめ上皮は脱落する。尿細管上皮にも単核球を主体とした炎症細胞浸潤が認められる。糸球体は基本的には障害されない。

4) 造影剤

腎生検が行われた報告がほとんどなく、行われていても腎障害が遷延しているものがほとんどである。尿細管上皮細胞の空胞変性、刷子縁の消失、ライソゾーム顆粒の増加、細胞の扁平化、尿細管基底膜からの剥離などを

呈する。

2. 判別が必要な疾患と判別方法

腎前性急性腎不全(体液量の減少、心拍出量の低下、末梢血管拡張)、腎性 急性腎不全(糸球体障害、腎動脈障害、急性尿細管壊死、間質障害、尿細管閉 塞)、腎後性腎不全(尿路系、周囲からの圧排)を来たす原因となるすべての 急性腎不全の鑑別を行うには、臨床経過、身体所見、尿、血液、血液ガス分析、 腹部エコーなどの画像検査などが有用である。また腎前性と腎性の鑑別には尿 浸透圧、尿 Na 濃度、FENa、FEUA、腹部エコー下大静脈径などが役に立つ。

3. 原因医薬品別の発症機序、予防・治療・予後

(1) シスプラチン

推定原因医薬品:

シスプラチン等の白金製剤 シスプラチン、カルボプラチン、ネダプラチン

発症機序:

シスプラチンによる腎障害は急性腎不全、慢性腎不全、低マグネシウム 血症、および多尿という形で臨床的には発現する。薬物動態をみるとシス プラチンの生体内よりの排泄は主として腎臓より排泄される。投与後24時 間以内に約20%が尿中に排泄されるが、血中濃度は2相性でβ相半減期は 100 時間と長い。腎臓におけるシスプラチン濃度は血中および他組織の濃度 に比較して数倍あり、その多くは皮質に存在する。さらに、近位尿細管の S3 部位により多く存在し、同部位の尿細管上皮細胞が最も障害を受けやす い。細胞障害は同剤が DNA に直接結合してその変性を促すことが主たる原 因と考えられるが、同時にミトコンドリアに作用してラジカル産生を促し 間接的にDNA を損傷させるという機序も無視できない。ラットの実験にて、 シスプラチン1回投与による急性腎不全を惹起させると、3日目より GFR が 低下し、それと同時に尿量が増加すると供に腎臓内の DNA 合成が著しく増 加する現象が見られる。S3 部の尿細管を中心に再生による細胞増殖が惹起 されることによると考えられるが、この増殖の際に細胞より出される各種 サイトカインや増殖因子が血管平滑筋や他の尿細管上皮細胞等に作用し腎 血管抵抗を増加、GFRの低下、水・電解質(特にマグネシウム)の再吸収障害 などを導くことが推測される。また、同時に慢性炎症を惹起することも考 えられる。

予防·治療·予後等:

予防が最も大切である。現在、最も現実的な予防法は生理食塩水を中心とした水負荷である。投与 12 時間前より投与終了後 24 時間までの間、最低 1.5 mL/kg/hr の生食を点滴し、必要に応じてフロセミド、マンニトールなどの利尿剤を使用する。水負荷は経過によっては数日間行う。もちろん、脱水状態の患者には決して投与しないこと。また、忘れてならないことは腎毒性の強いアミノグリコシド等抗生物質やNSAIDs などの併用は極力避けることである。元々、腎機能が低下している患者には、カルボプラチンを始め他の抗癌剤の使用を考慮すべきであるが、使用する場合には腎機能に合わせた投与量を設定すべきである。また生食ではなく、高浸透圧性の食塩水の点滴も考慮する必要がある。

投与中および投与後は心機能、体重、水の出納等を十分に観察し、嘔吐があった場合には輸液量を増加させる必要がある。血清クレアチニン、電解質を測定しクレアチニンが投与前より 20%以上上昇した場合には輸液を持続しより頻繁にかつ精密に腎機能の測定を行う。以上の予防的処置にもかかわらず腎不全をきたした場合には、低蛋白・高カロリー食、血圧の管理、高尿酸血症の改善、脱水の予防、日常生活の指導など一般の保存期慢性腎不全の治療に準じた治療を行う。血清クレアチニン上昇が 2 mg/dL 前後でおさえられると予後は比較的良い。

(2) アミノグリコシド系抗生物質

推定原因医薬品:

硫酸ゲンタマイシン、硫酸ジベカシン、硫酸ストレプトマイシン、トブラマイシン、硫酸アルベカシン、硫酸アミカシン、硫酸イセパマイシン、硫酸ネチルマイシン、硫酸ベカナマイシン、硫酸ミクロマイシン、硫酸アストロマイシン等

発症機序:

アミノグリコシドは水溶性のため組織移行性は不良であるが、例外的に皮質内濃度は血清濃度の 10~20 倍に達する。尿中に排泄されたアミノグリコシドは、メガリンという受容体を介してエンドサイトーシスにより近位尿細管細胞内に取り込まれ、最終的に細胞内のライソゾームに蓄積され、ライソゾームの障害から水解酵素の放出を惹起し、その結果細胞は壊死に陥り、崩壊して、病理組織学的に尿細管壊死の像を呈する。より早期にはNa-K-ATPase 活性の阻害、Na 依存性グルコース再吸収の阻止、および ADHによるアデニル酸シクラーゼ刺激作用の阻止等により、Fanconi 症候群に近

似する尿細管障害、腎性 K、Mg 喪失、が見られることもある。尿細管障害により再吸収能が低下しているため、乏尿になることが少ない、と考えられている。

まれに、アレルギー性の間質性腎炎の形を取ることもある。

予防·治療·予後等:

発症早期には症状がないことが多く、身体症候から診断することは困難で あるから、可能なかぎり腎障害の発症を防ぐ治療計画を立てることが必要で ある。アミノグリコシドの腎への蓄積を防ぐには、1)漫然と長期投与をし ない(アミカシンなら2週間以内)、2)少量頻回投与よりも1日1回投与 を行う、3) もともと腎機能が低下している場合にはさらに投与量を減ずる か、投与間隔をあけて使用する、4)血中濃度、特にトラフレベルを測定し、 これが一定以上を超えないようにする、などの点に注意することが必要であ る。血中濃度は、単回測定なら投与3日目のトラフ値、ピーク値の測定が推 奨されるが、週2回測定すると腎障害の早期発見に有用であるという報告が ある。また、下記薬剤併用時には、腎機能障害の頻度が高くなる危険性があ るので特に注意が必要である。①血液代用剤(デキストラン、ヒドロキシエ チルデンプン等)②ループ利尿剤(エタクリン酸、フロセミド、アゾセミド 等) ③バンコマイシン、アムホテリシンB等の抗生物質④白金含有抗悪性腫 瘍剤(シスプラチン、カルボプラチン、ネダプラチン)等、4分その他、シク ロスポリン、アンジオテンシン変換酵素阻害剤、ステロイド系抗炎症剤など。 投与開始直後から血液・尿検査を実施して、明らかな腎障害が確認される か、薬剤のトラフレベルが上限の2倍を超えたら、薬剤投与を中止する。中 止後2週間以内にクレアチニンレベルの改善が見られるのが一般的であるが、 腎機能低下がさらに進行する場合、あるいは発見時すでに高度の腎機能障害 が認められる場合には、血液透析の必要性も考え、腎臓専門医にコンサルト し、自院内に透析施設がない場合には適切な施設に紹介することも考慮する。

表薬物血中濃度の目安

薬物名	有効治療濃度	最大ピーク時	最大トラフ値	
	μg∕mL	μg∕mL	μg∕mL	
アミカシン	15–25	35	5	
アルベカシン	9–12	12	2	
イセパマイシン	20-40	30	5	
カナマイシン	15–30	30-35	5	
ゲンタマイシン	6–10	10	2	

ジベカシン	6–10	12	2
ストレプトマシン	20-30	20-25	3–5
トブラマイシン	4–10	10	2
ネチルマイシン	6–12	18	2

医薬品ごとの特徴:

ラットによる動物実験の結果では腎毒性の強さはネオマシン>ゲンタマイシン>シソマイシン、アミカシン、カナマイシン>トブラマイシン、アルベカシン、ジベカシン>ネチルマイシン>ストレプトマイシンと報告されており、ミクロマイシン、イセパマイシン、アストロマイシンの腎毒性もトブラマイシンより低いと考えられている。臨床的に薬剤間の差について検討した報告の中には、ゲンタマイシンは14%、トブラマイシンは12.9%、ネチルマイシンは8.7%、アミカシンは9.4%と薬剤間で差があったとする報告もみられるが、薬剤の使用量の問題もあり、腎毒性に関する個々の薬剤間の差について正確に論ずるのは難しいとする報告もある。

副作用発現頻度:

腎障害の基準が報告により一定せず、また医薬品による差もあるため、報告された発症頻度は数%から 50%以上まで報告はさまざまであるが、Prospevetive で randamized された報告では 5~10%というのが一般的である。腎障害の年間発生率は不明であるが、2216 人の入院患者のうち、血清クレアチニンが 0.5 mg/dL 以上の上昇をみたのは 4.95%で、アミノグリコシドによるものはそのうち 7 症例だったとする報告がある。

典型的症例概要:

60歳代、男性 (被疑薬) アミノグリコシド

ネフローゼ症候群(膜性腎症)にて外来通院治療中。少量ステロイド治療(プレドニゾロン 10 mg)投与を受けていた。蛋白尿は 0.3~0.5 g/日程度で安定したが、クレアチニンは軽度上昇(1.4 mg/dL)していた。発熱、咳嗽が出現。胸部 X 線上、急性肺炎と診断され、入院。セフェム系抗生剤が投与され、一度は解熱し、胸部 X 線上も改善がみられたが、入院後 2 週後から再び発熱し、胸部 X 線上も新たな肺炎像が出現。喀痰培養の結果 MRSA が検出され、MRSA 肺炎と診断された。セフェム系抗生剤に加えて、硫酸アルベカシンを追加。発症 3 日後より本剤を 1 回 200 mg、1 日 2 回(1 日量 400 mg)点滴静注し、投与 15 日目に本剤の投与量を通常の投与量(1 日量 200 mg)

	投与1日目	5日目	15日目	44日目	60日目
BUN (mg/dL)	35	38	71	35	32
クレアチニ	1. 6	2. 1	3. 7	2. 2	1. 7
ン(mg/dL)					

(3) ニューキノロン系抗菌薬

推定原因医薬品:

ニューキノロン系抗菌薬

ノルフロキサシン、エノキサシン、オフロキサシン、レボフロキサシン、 塩酸シプロフロキサシン、塩酸ロメフロキサシン、トシル酸トスフロキ サシン、フレロキサシン、スパルフロキサシン、メシル酸パズフロキサ シン、プルリフロキサシン等

ニューキノロン系抗菌薬での腎障害はアレルギー性の急性腎炎によるものと尿細管腔の閉塞障害によるものとの報告がある。閉塞障害では尿の pH がアルカリでは溶解性が悪く結晶析出による閉塞障害が問題となる。また横紋筋融解症による急性腎不全の報告もあるが横紋筋融解については「横紋筋融解症」のマニュアルを参照のこと。

医薬品ごとの特徴:

医薬品ごとの明らかな特徴はなく詳細は不明である。

副作用発現頻度:

不明。パズフロキサシン注射薬の市販後調査の結果によると 2002 年 9 月から 6 ヶ月間に 4320 の医療機関で使用されたもののうち 2 件に急性腎不全が認められた(日本化学療法学会誌 53:151,2005)。レボフロキサシン市販後調査 (1993-2004) によると 45 例 (推定投与例数約 1 億例) に腎機能障害。シプロフロキサシン市販後調査によると錠剤 1 例/13143 例、注射 16 例/3160 例に腎機能障害。

典型的症例:

80歳代、男性 (被疑薬)塩酸シプロフロキサシン

発熱、腹痛を生じ、WBC 9400/ μ L、CRP3.6 mg/dL で急性胃腸炎の診断のため塩酸シプロフロキサシン 600 mg (200 mg×3) 内服開始。2 日後の採血にてBUN35.3 mg/dL、 Cr1.7 mg/dL (投与前は 0.9 mg/dL) と上昇。尿量は 800 mL であった。発熱、腹痛は軽快、CRP 1.4mg/dL と改善。塩酸シプロフロキサシンを 200 mg×2/日に減量。3 日目乏尿となったため利尿薬を静注したが 1 日尿量 510 mL/日と反応は乏しかった。4 日目塩酸シプロフロキサシンを中止。その後、5 日目より利尿が得られ尿量 2400 mL/日となったが血清 Cr2.9 mg/dL、BUN47 mg/dL であった。6 日目尿量 3800 mL となり補液を開始。Cr3.3 mg/dL、BUN46.6 mg/dL であった。7 日目尿量 4200 mL、Cr2.6 mg/dL、BUN40.0 mg/dLと改善。塩酸シプロフロキサシン中止 7 日後に BUN 14.5 mg/dL、Cr1.0 mg/dLと改善。塩酸シプロフロキサシン中止 7 日後に BUN 14.5 mg/dL、Cr1.0 mg/dLと正常化した。

(4) ヨード造影剤

推定原因医薬品:

造影剤

イオン性:アミドトリゾ酸ナトリウムメグルミン、イオキサグル酸、イ オタラム酸ナトリウム、イオタラム酸メグルミン、イオトロ クス酸メグルミン

非イオン性:イオキシラン、イオジキサノール、イオトロラン、イオパミドール、イオプロミド、イオヘキソール、イオベルソール、イオメプロール

発症機序:

血管内に投与された造影剤は約99%が尿中へ排泄されるため投与方法や投与量にかかわらず腎臓に何らかの負荷がかかる。直接的な尿細管上皮細胞への毒性と腎髄質虚血の相互作用の結果として起こると考えられている。造影剤による尿細管の障害は主として髄質の尿細管に起こるとされている。造影剤の高浸透圧性や尿細管腔へ流出した近位尿細管由来の酵素が直接、尿細管上皮細胞を障害すると考えられ、加えて造影剤による尿酸、シュウ酸の分泌亢進による尿細管の閉塞が原因となる。造影剤の投与直後には数秒間、一過性に腎血流が増加し続く数分後に腎血流は急速に低下し始める。

その後、腎血流の低下は長時間持続する。この腎血流低下には造影剤自体の高浸透圧性だけではなく様々なmediatorが関与しており血管内皮細胞から放出されるエンドセリンやアデノシンなどの血管収縮因子の分泌増加や一酸化窒素(NO)、プロスタグランジンなどの血管拡張因子の減少が考えられている。腎髄質は酸素分圧が低いことより酸素摂取率が高くなり酸素予備能が小さいことが知られている。つまり、造影剤使用に伴う血流低下によりさらに酸素分圧が低下した結果、腎髄質虚血により尿細管壊死が誘導され腎機能が低下すると考えられている。

予防・治療・予後等:

• 具体的予防法

不要な造影剤検査は行わない。用量依存的に急性腎不全の発症頻度が 上昇し、最も高いリスクファクターは既存の腎機能低下であるので、造 影剤使用前には必ず腎機能評価を行う。

既存の腎疾患を有する患者、腎機能障害、糖尿病、重症心不全、多発性骨髄腫、腎毒性医薬品併用、高齢者はリスクファクターとなるので留意しておく。

イオン性造影剤と非イオン性造影剤を使用した場合にイオン性造影剤を使用した場合の方が急性腎不全の発症が多かったとする報告もあり(Kidney Int 47:254,1995)、リスクファクターを有する患者ではイオン性造影剤の使用は出きる限り避け非イオン性等浸透圧造影剤を使用すべきとしている(N Engl J Med 348:491, 2003)。

造影剤の前後に充分に補液を行うことが有意に発症を抑制することが知られており推奨される(Arch Intern Med 162:329,2002)。生理的食塩水を1 mL/kg/hrの速度で前後12時間持続投与する方法が一般的である。その際に炭酸水素ナトリウムを造影剤使用前 3 mL/hr、使用後 6 時間 1 mL/hr 投与することにより等張液以上に効果を示すという報告もある(JAMA 291:2328,2004)。生理的食塩水にフロセミドやマンニトールを併用すると逆に血清クレアチニンが上昇するので使用を避ける(N Engl J Med 331:1416,1994)。

アセチルシステインの抗酸化作用が予防法として有用であるとする報告(N Engl J Med343:180,2000、Kidney Int.62:2002,2002、JAMA 289:553,2003))もある。またメタ解析において慢性腎不全患者における造影剤腎症の相対的リスクが輸液療法にアセチルシステインを加えると輸液療法のみよりリスクが低下したとしている(Lancet 362:598,2003)。しかし最近否定的な報告もあり(J Am Soc Nephrol 15:761,2004)有用性は確立されておらず、我が国において保険適応はない。cAMP のアナログ

(dibutyryl-cAMP) やプロスタサイクリンのアナログであるベラプロストナトリウムが保護作用を示すことが報告されている(Kidney Int. 64:2052, 2003、Kidney Int. 65:1654, 2004) が実用化はされていない。造影剤投与後の血液透析については $60 \sim 90\%$ 造影剤が除去される (Nephron70:430, 1995) とのことから有効であると考えられたが予防効果が認められないとする報告が多い (Nephrol Dial Transplant 13:358, 1998)。造影剤投与後 20 分以内に腎障害が発症するとのことから造影検査前から検査後 24 時間まで予防的に持続血液濾過を行い有効であったとする報告もある (N Engl J Med 349:1333) が有効ではなかったという報告もある (Am J Med 111:692, 2001)。予防的血液濾過透析は現実的ではなく我が国では行われていない。

• 具体的治療法

造影剤腎症に対して特殊な治療法はなく一般的な急性腎不全の治療を 行う以外にない。多くは補液を行い、体液、電解質バランスを調整し腎 機能の回復を待つが乏尿や電解質異常、代謝性アシドーシスがみられる ような重症の場合は血液透析療法を考慮する。急性腎不全の回復期には 利尿期がおとずれるため体液、電解質バランスに留意する。

造影剤による急性腎不全の予防には造影剤投与前後の生理的食塩水輸液が信頼しうる方法でありかつ治療法となる。

典型的症例:

60 歳代、女性 (被疑薬)造影剤

40 歳頃関節リウマチが発症しステロイド、ペニシラミン、NSAIDs にて加療開始され、その後症状は軽減し血清学的にもリウマチ因子は落ち着いたため、ステロイドは減量されペニシラミンと頓用の NSAIDs で経過観察されていた。55 歳頃から尿蛋白 1+程度が出現し持続していたが腎機能は血清クレアチニン 0.8 mg/dL 程度と変化はみられなかった。最近尿潜血が出現しはじめたため、結石や腫瘍の鑑別のため静脈性尿路撮影を行った。検査一週間後下腿に軽度の浮腫をみとめたため外来受診し、血液検査上、血清クレアチニン値 3.5 mg/dL と上昇がみられ、急性腎不全の診断にて入院となった。尿量は一日 500 mL と乏尿傾向にあり、FENa 1.8 で腎性急性腎不全であった。補液、利尿薬にても利尿は得られず乏尿が続き、造影剤使用 10 日後に血清クレアチニン値 7.3 mg/dL、高カリウム血症、代謝性アシドーシスがみられたため血液透析を導入した。血液透析 3 回施行後より一日 2000 mL 以上の尿量が得られるようになり、造影剤使用 25 日目に血清クレアチニン値の正常化を認めたため退院

とした。

4. その他、早期発見・早期対応に必要な事項

(1) 早期発見に最低限必要な検査項目と初回検査実施時期と実施周期 検査項目:

最重要項目:血清尿素窒素、血清クレアチニン、電解質、尿所見

その他必要項目: R中 α -・ β - ミクログロブリン、R中 NAG、FENa、血清

シスタチンC、胸部X線検査

検査異常発見後に至急に実施すべき特殊検査:血液ガス検査、心電図

初回検査時期:投与後2週間検査周期:2週から1ヶ月

(2) その他

NSAIDs は両側腎動脈狭窄、片腎、多発性骨髄腫、脱水では投与を避ける。ACEIは両側腎動脈狭窄、片腎、多発性骨髄腫、脱水では投与を避ける。