

USN Diving Manual Revision 6Critical Changes that Affect You

Dr. Ed Flynn
CAPT John Murray MC USN

Naval Sea Systems Command 25 June 2009

Major Changes

- New Air Decompression Tables with In-Water Oxygen Decompression Capability
- Seamless Air/MK 16 Repetitive Diving
- Elimination of Air Surface Decompression Procedures
- Revised Flying After Diving Limits
- New Rules for Chamber Deployment
- New Rules for Multi-Day Oxygen Exposure

New Air Tables

- Why did we revise the 1957 tables?
- What algorithm did we use?
- What do the new tables look like?
- How do they compare to other tables?
- How did we test the tables?

Why Revise 1957 Tables?

Safety

- Widespread criticism by government and industry over many years
- Ad hoc schedule jumping common in USN
- Modification of tables common in industry
- Newer tables prescribe longer decompression
- Risk of DCS increases with increasing depth and bottom time.

Why Revise 1957 Tables?

Capability

- SurDO₂ limited to 170 fsw for 40 min
- No repetitive group designators for SurDO₂
- No capability for in-water O₂ decompression
- No capability to change decompression mode on the fly
- Air and MK 16 repetitive group designators not compatible

DCS Incidence with Standard Air Table 1971-96 (38,172 dives, 207 cases)

Decompression Stress Level

Safety Concerns Example Standard Air at 150 fsw

- o Circles -experimental dives with no DCS
- Δ Triangles-dives with DCS
- Black Triangles-dives with DCS > 2% with 95% certainty
- Standard Air does not provide enough decompression time

120/60

TWA 800 SurDO2 Experience 120-130 fsw

Prescribed Schedule	5/34	14.7 %
Schedule + 1 Jump	1/56	1.8 %
Schedule + 2 Jumps	0/303	0.0 %
Schedule + 3 Jumps	2/290	0.7 %

RCC Oxygen Time (min)

No Jump 3 Jumps Canada VVal-18
32 51 53 60

8

VVal-18 Algorithm

- Developed by CAPT Ed Thalmann in 1983
- Features
 - Nine tissue compartments
 - Exponential uptake, linear washout of inert gas
 - Ascent controlled by VVal-18 M-value matrix
- Basis of
 - USN MK 16 constant PO₂ tables
 - Navy Decompression Computer

VVal-18 vs. USN 57

VVal-18 Algorithm Modified

- For air decompression
 - Increase bubble overpressure (PBOVP) from
 0 fsw to 10 fsw to shorten air stop times
- For oxygen decompression
 - Keep bubble overpressure at 10 fsw
 - Reduce sat/desat ratio from 1 to 0.7 to relengthen oxygen stop times.
 - Consistent with reduced tissue blood flow on O₂
- Modifications do not affect no-stop times

VVal-18 Mod Vs Experimental Data at 150 fsw

VVal-18M vs. USN 57 120 fsw

Reduction of TST with In-Water Oxygen—150 fsw

VVal-18M vs. Experimental Oxygen Decompression Data

DCS Risk with Air and O_2 120 fsw

Bottom	Air		Air	/O2
<u>Time</u>	<u>TDT</u>	Pdcs	<u>TDT</u>	Pdcs
25	12	2.20	8	1.96
30	28	2.62	17	2.17
40	55	4.18	31	2.71
50	99	5.81	47	3.28
60	173	7.17	62	3.74

ORCA II

New Air Table Set

- Air Decompression Table which gives the decompression schedules and repetitive group designators.
- No-Decompression Table which gives the nodecompression limits and repetitive group designators for no-decompression dives.
- Surface Interval Credit Table
- Residual Nitrogen Time Table
- Flying After Diving Table

Air Decompression Table

- Contains schedules for 3 modes of ascent
 - Air decompression in water
 - Air/O₂ decompression in water
 - SurDO₂
- Upon completion of 40 fsw stop
 - Complete decompression on air at 30/20 fsw
 - Complete decompression on O₂ at 30/20 fsw
 - Surface and complete decompression on O₂ in RCC

Surface Decompression on Oxygen

- Rules identical to Surface-Supplied Heliox
 - Surface upon completion of 40 fsw stop
 - Surface interval not to exceed 5 min
 - Recompress to 50 fsw. Breathe O₂ for 15 min
 - Ascend to 40 fsw. Complete remaining chamber O₂ time at 40 fsw
- Air Decompression Table gives number of O₂ periods required
 - Each O₂ period 30 min long
 - − 5 min air break after each O₂ period

20 fsw Last Stop

- Choice based on operational considerations
- Animal evidence supports superiority over 10 fsw during decompression on air
 - Hills BA, J. Appl Physiol., 1968
 - Hills BA, Clinical Science, 1970
- Inherently superior to 10 fsw during oxygen decompression
- Standard for all tables in Manual except MK 16 MOD 0, where it is optional.
- Tables can be recomputed for 10 fsw

Air Decompression Table 150 fsw

150 fsw

Bottom Time(min)	Gas Mix	80	70	Decomp	ression Sto 50	os (fsw) 40	30	20	Total Ascent Time (M:S)	Chamber O2 Periods	Repetitive Group
5	Air Air/O2							0 0	5.00 5.00	0	С
10	Air Air/O2							1 4	6.00 9.00	0.5	F
15	Air Air/O2							3 5	8.00 10.00	0.5	Н
20	Air Air/O2							13 10	18.00 15.00	0.5	К
25	Air Air/O2							34 21	39.00 26.00	1	М
30	Air Air/O2						3 5	50 26	58.00 36.00	1.5	0
35	Air Air/O2						11 9	70 30	86.00 49.00	1.5	Z
40	Air Air/O2					4 4	17 13	99 32	125.00 59.00	2	Z

Table Selection

VVal-18M vs. USN 57 150 fsw Air Dive

Comparison with Other Air Tables

In-Water Oxygen Times

Chamber Oxygen Time 120 fsw Sur D O₂ Dive

Testing

No formal laboratory testing

- Schedules felt to be inherently safer than existing USN 57 schedules
- Safety of in-water oxygen validated in Canada

Field testing

- Ulithi Atoll (USS Mississinewa oil removal)
- Apra Harbor, Guam
- La Maddalena, Italy (Emory S. Land cleanup)

2003 SurDO2 Testing U.S.S. MISSISSINEWA

DEPTH	BOTTOM TIME	E OUTCOME
(fsw)	(min)	
83-90	46-99	0/78
91-100	44-108	0/22
104-110	41-74	0/16
112-114	32-53	0/6
	•	Total 0/122

2007 Field Test Results USS Emory S. Land Cleanup

Mode	Depth	Bottom Time	<u>Outcome</u>
Air	60-120	25-80	0/26
Air/O ₂	55-120	25-110	0/133
SurDO ₂	60-130	20-90	0/291
		Tot	al 0/450

VVal-18 vs. USN 57 Shallow No-D Limits (min)

<u>Depth</u>	<u>USN 57</u>	<u>VVal-18</u>
25 fsw	595	1103
30 fsw	405	372
35 fsw	310	232
40 fsw	200	164
50 fsw	100	92
60 fsw	60	63

Experience with 40 fsw 200 min No-D Limit

- NMRI Study (103 subjects, 3 cases of DCS)
 - Auditory/cerebral DCS, residual memory loss after multiple treatments
 - Cutis marmorata, scintillating scotoma
 - Elbow pain
- Seaward Marine CVN hull cleaning ops
 - 11 cases of DCS, 9 Type II over 20 years
 - Dizziness, blurred vision, confusion, weakness
 - 200 min no-d dives restricted to depth of 37 fsw

VVal-18 vs. USN 57 No Decompression Time

Repetitive Dive Clean Time

Repet Group	Hr:Min
-------------	--------

A 2:20

D 5:23

G 8:00

J 10:36

L 12:21

N 14:05

Z 15:50

Allowable No-D Time at 80 fsw after 80 /40 No-D dive

CNS Oxygen Toxicity Risk

Ascent Rate and Stop Time

- 30 fsw/min standard for all tables in Manual
- Ascent time between decompression stops included in the subsequent stop time
 - Standard for all tables in Manual
 - Required re-computation of MK 16 Nitrogen-Oxygen and Helium-Oxygen Tables for Revision 6.

Recompression Chamber Requirements

Figure 9-23 - Air Diving Recompression Chamber Requirements, 90 - 190 Feet.

Required Surface Interval Before Flying to 8,000 Feet

Repet Group	Old Time	New Time
C	0:00	0:00
D	3.28	1:45
G	12:05	9:13
J	17:35	14:13
M	21:37	18:00
Z	24:00	21:01

Multi-day Oxygen Exposure Limits

- For MK 16 MOD 1 (PO2 = 1.3 atm)
 - Maximum of 4 hours dive time per day
 - Maximum of 16 hours dive time per week
 - If pulmonary or visual symptoms develop, stop diving until symptom free for 24 hours
- Limits for other PO2 exposures not yet established

New USN Air Tables -Advantages-

- Improves safety compared with current tables
- Provides SurDO₂ capability to 190 fsw
- Provides repetitive dive capability after SurDO₂
- Provides in-water O₂ decompression
 - Alternative to SurD for contaminated water
 - Reduces water time to acceptable level
- Allows repetitive diving between all modes of air and nitrox diving
- Repetitive group designator allows interface with VVal-18 based computers

New Air Tables -Disadvantages-

- Long decompression times on air force greater use in-water O₂ or SurD O₂ options
- Logistic burden correspondingly increased
- Small but finite risk of CNS oxygen toxicity exists with in-water oxygen decompression
- Oxygen cleanliness rules must be followed
- Shorter 35-40 fsw No-D times will impact ship husbandry dives unless computers used
- Repetitive dive rules less permissive; some clean times greater than 12 hours

Summary A new way of diving air

- Emphasis on use of oxygen for all but the shortest decompression dives
 - Either in-water oxygen decompression or SurDO₂
 - Allows a increase in safety without an increase in in-water decompression time

Acknowledgements

Wayne Gerth **David Doolette** Keith Gault David Southerland Hugh Van Liew Dick Vann Chris Lambertsen MDV Brian Pratschner

Shallow versus Deep Stops

Gerth et al., 2008

170 fsw/30 min Air Dive, TDT = 174 min Decompression profile

<u>70 60 50 40 30 20 10</u>

Shallow Stops: 0 0 0 9 20 52 93

Deep Stops: 12 17 15 18 23 17 72

Outcome

Shallow Pattern: 3 hits in 192 dives

Deep Pattern: 11 hits in 198 dives

Dive Frequency at 120 fsw 1979-1996

Bottom Time	No. Dives
20	539
25	571
30	390
40	295
50	91
60	10

Oxygen Hazard Mitigation

Material Selection Evaluation

-Metals (Evaluate IAW ASTM G94)

-Non-Metals (Evaluate IAW ASTM G63)

-System Design (Evaluate IAW ASTM G88)

System Cleanliness

-MIL-STD-1330 (Navy Use)

-ASTM G93 Practice for Cleaning Methods and Cleanliness Levels for Material and Equipment Used in Oxygen-Enriched Environments

Training of Personnel

-Maintaining System Cleanliness-Dangers of Oxygen Systems-Oxygen System Operation Guidelines

Any questions regarding oxygen safety and hazard mitigation can be addressed to Mr. Ryan Webb following this presentation.

In-water Oxygen Times

2007 SurDO₂ Dive Frequency 120 fsw

Why not 50/50 nitrox?

Advantages

- Minimal risk of CNS O₂ toxicity in the water
- No risk of making a mistake on composition

Disadvantages

- Did not provide enough reduction of decompression times to satisfy operators
- More difficult to obtain in remote areas
- Mixing and oxygen analysis required

Recompression Chamber Requirements

Figure 9-22 - Air Diving Recompression Chamber Requirements, 0 - 190 Feet.