Current FDA Considerations on Pathogen Reduction

Jaro Vostal, MD, PhD Jay Epstein, MD Center for Biologics Evaluation and Research U.S. Food and Drug Administration (FDA)

September 2010

Merits of the Current Approach of Donor Screening and Testing

Advantages

- No toxicity issues for recipients of products
- Detection is specific for particular agents
- New methods can be developed for novel and emerging pathogens

Disadvantages

- For certain pathogens detection is not 100% successful
 - Bacteria
 - Protozoa
 - Viral (window period)
- Development of detection methods for novel and emerging pathogens would be delayed due to lack of knowledge about the pathogen
- Additional tests for emerging pathogens increase cost

Merits of Pathogen Reduction Technology as an Alternative to Donor Screening and Testing

Advantages

- Shown effective against many organisms including some emerging pathogens
- May prevent GVHD and other wbc related adverse events

Disadvantages

- May not be effective against all organisms
- May not be 100% effective even against sensitive pathogens
- Current technologies are not applicable to all types of transfusion products
- May have toxicity due to residual compounds
- May damage the transfusion product
- May lead to alloimmunization by neoantigens
- May cause unexpected adverse events

Recommendation of the HHS Advisory Committee on Blood Safety and Availability (ACBSA) Regarding Pathogen Reduction

• At a meeting in January 2008 the ACBSA recommended that the Department should:

"Adopt as a high priority the urgent development of safe and effective pathogen reduction technologies for all blood transfusion products and implementation as they become available"

• FDA fully supports the ACBSA recommendation through its evaluation of Pathogen Reduction Technologies

Benefits of Pathogen Reduced Products Should Outweigh the Risks

Tolerable Risk

Toxicity, adverse events should be much less than the expected benefits << 1/86,000

Benefit =				
Reduction of	f Current risks:			
HTLV	1/2,993,000			
•HIV	1/2,135,000			
■HCV	1/ 1,930,000			
■WNV	1/ 350,000			
■HBV	1/ 277,000			
Sepsis	1/ 86,000 ¹			
Reduction of	future risks:			
 Emerging part 	thogens 1/?????			

1) Eder, A. F. et al. Transfusion 2009, 49:1554-1563

Determination of the Risks Associated with Pathogen Reduced Components

- Pre-clinical evaluation
- Clinical trials in healthy volunteers
- Pivotal evaluation of efficacy and safety through clinical trials in transfused patients
 - Prospective, randomized, blinded clinical trials of PR treated vs. conventional transfusion products
 - Platelets
 - Red cells
 - Plasma

Phase III Clinical Trials of Pathogen Reduced Red Cell Products

Cerus S303 and Vitex pen 110

- Patients developed antibodies to treated red cells
- Both sponsors voluntarily halted their trials

Benjamin, R.J., ISBT Science Series (2006) 1, 222-226

Clinical Endpoints that Reflect Efficacy and Safety of a Platelet Transfusion Product

- Efficacy
 - Transfusion response (corrected count increment, (CCI)
 - Transfusion frequency
 - Bleeding Frequency (Grades 2-4)
- Safety
 - Adverse events
 - Alloimmunization

Clinical Trials of PR Platelets in Thrombocytopenic Patients

- Prospective studies
 - Sprint and Eurosprite trials (Cerus)
 - Hovon 86 (Dutch Blood Service)
 - Mirasol trial (Caridian)
- Surveillance studies on routine use of PR platelets
 France and Belgium

Pathogen Reduced Platelets Have Lower Corrected Count Increments (CCI)

Clinical Trial	Patients in study	% of plasma stored platelets CCI at 1 hr	P value
SPRINT ^{1, a}	645	-31%	< 0.001
HOVON ^{1, b}	184	-31%	<0.0001
MIRASOL ^{2, c}	118	-31%	<0.0001

1 = UVA/psoralen 2 = UVB/riboflavin

a = McCullough, J et al Blood. 2004 Sep 1;104(5):1534-41. b = Kerkhoffs JL et al. Br J Haematol. 2010 Jul;150(2):209-17 c = Goodrich et al. Transfusion, May 2010

Hemostatic Efficacy for UV A/psoralen (Intercept) Treated Platelets

SPRINT study	Control platelets	Pathogen reduced platelets	р
Proportion of pts with Grade 2 bleeding	58.5%	57.5%	NS for inferiority
Days of Grade 2 bleeding	2.5	3.2	0.023
% patients with Grade 2-4 bleeding	34	43	0.02

HOVON study	Control platelets	Pathogen reduced platelets	р
% of patients with Grade 1-3 bleeding	19	32	0.034

Hemostatic Efficacy for UVB/riboflavin (Mirasol) Treated Platelets

MIRASOL study	Control platelets	Pathogen reduced platelets	р
% of patients with Grade 2-4 bleeding	15	30	NS

Adverse Events Reported in the SPRINT Study

- 898 adverse event types were reported by blinded observers
- 11 adverse event types were different with statistical significance....all went against the treatment arm
- 4 of the 11 were clinically significant Grade 3 and 4 events:
 - Hypocalcemia, Syncope, Pneumonitis, Acute Respiratory Distress Syndrome (ARDS)

Snyder E et al. Transfusion. 2005 Dec;45(12):1864-75

ARDS Rates in the Treatment vs. Control Arms of the SPRINT Study

Snyder E et al. Transfusion. 2005 Dec;45(12):1864-75

Prospective and blinded evaluations during the clinical trial

	Intersol (PR) platelets	Control platelets	p value
Patients (N)	318	327	
ARDS	5	0	0.03

Retrospective review of medical charts by a blinded expert panel

	Intersol (PR) platelets	· · · · ·	
Patients (N)	78	70	
Total Acute Lung Injury (ALI)	19 (6.0%)	16 (4.9 %)	0.60
ARDS	12 (3.8%)	5 (1.5%)	0.09
ALI, non-ARDS	7 (2.2%)	11 (3.4%)	0.48

Can adverse event signals captured in a prospective, randomized, controlled and blinded study be evaluated through a passive adverse reporting study?

- France and Belgium have been using pathogen reduced platelets for several years
- Adverse events on transfused patients are reported through a passive hemovigilance reporting system
- Frequency of reporting of adverse events is much lower than what was reported in SPRINT trial
- There is no active control group to identify events specifically related to PR platelets

Comparison of Adverse Event Reporting in the SPRINT Trial vs. European Hemovigilance Studies

	SPRINT Phase 3 US study		Osselar et al. Transfusion 2008 Cerus plts 2005- 2007 Hemovigilance		Osselar et al. Vox Sang 2008 Cerus plts 2003- 2005 Hemovigilance	
	Per transfusion	Per patient	Per transfusion	Per patient	Per transfusion	Per patient
N	2678	318	5106	651	7437	1400
% stem cell transplant patients		78		7.2		8.6
% of pts with any reaction		99.7	1.1	6.4	0.9	3.2
% of plt related reactions	3.0	26.0	0.8	4.9	0.7	2.8
% of plt with serious reactions		27.0	0.1	0.15	0	0

Summary and Conclusion

- Pathogen Reduction of labile blood products could improve blood product safety, especially for platelets, but should not add greater risks
 - Clinical trials with Pathogen Reduced red cells have demonstrated antibody generation
 - Clinical trials with Pathogen Reduced platelets have demonstrated decreased efficacy and associated adverse events including acute lung injury in the SPRINT trial.
 - These reports raise concern that the benefits of current pathogen reduction technologies may not outweigh the risks
- Further clinical trials of current technologies are needed to resolve FDA's concerns over decreased efficacy and increased adverse events seen with Pathogen Reduced platelets