the results of testing for the D (Rh<sub>o</sub>) red cell antigen. The D (Rh<sub>o</sub>) type shall be determined with anti-D (anti-Rh<sub>o</sub>) reagents. With the high-strength antisera and sensitive techniques now available, it is usually considered unnecessary to use the D<sup>u</sup> test if the cells are found to be D-negative in routine testing. #### 7.4 Red cells Whole blood for the preparation of all components shall be collected as described in Part A, section 5, and tested as described in Part B, section 7.2. Red cells shall be processed under aseptic conditions and whenever possible in a closed system. The sterility of all components shall be maintained during processing by the use of aseptic techniques and sterile pyrogen-free equipment. The methods shall be approved by the national control authority, and a written description of the procedures shall be prepared for each product, covering each step in production and testing. Proposals for any procedural modifications shall be submitted to the national control authority for approval before they are implemented. The following may be prepared for the rapeutic purposes (see pages 40-41 for definitions): - · red cells; - · red cells suspended in additive solution; - modified red cells: - red cells, leukocyte-depleted; - red cells, leukocyte-poor; - red cells, washed; - red cells, frozen; - red cells, deglycerolized. ## 7.4.1 Methods and timing of separation Red cells shall be prepared from whole blood collected in plastic bags or in glass bottles. Multiple-plastic-bag systems with sterile docking devices are preferable because they minimize the risk of microbial contamination by providing completely closed systems. They are easy to handle and are disposable. The use of glass bottles is cheaper but has the disadvantage that the system is then an open or vented one, so that separation must be carried out under strictly aseptic conditions in sterile rooms or laminar-flow cabinets and microbiological monitoring is necessary. The same conditions also apply to the separation procedure when plasma is transferred from disposable single plastic bags to separate containers. All surfaces that come into contact with the blood cells shall be sterile, biocompatible and pyrogen-free. If an open plastic-bag system is used, i.e. the transfer container is not integrally attached to the blood container and the blood container is opened after blood collection, the plasma shall be separated from the cells under conditions such that the original container is kept under positive pressure until it has been sealed. If the separation procedure involves a vented system, i.e. if an airway is inserted into the container for withdrawal of the plasma, the airway and vent shall be sterile and constructed so as to exclude microorganisms. In some countries, the sterility of products prepared in open systems is monitored by testing a sample of at least 2% of the units. The national control authority should approve the system used. The final containers for red cells (but not necessarily modified red cells) shall be the containers in which the blood was originally collected or satellite containers attached in an integral manner. If pilot samples are detached from the blood container during removal of any component, such samples shall be reattached to the container of red cells. The removal and reattachment of the pilot samples shall be recorded conspicuously (with a signature) on the label of the unit. The final containers for all other components shall meet the requirements for blood containers given in Part A, section 5.2. If the final container differs from the container in which the blood was originally collected, it shall be given a number or other symbol to identify the donor(s) of the source blood. Whenever appropriate, the secondary final container shall be similarly labelled while attached to the primary final container. The timing and the method of separation (centrifugation, undisturbed sedimentation or a combination of the two) will depend on the components to be prepared from the donation. When platelets and coagulation factors are being prepared from the same donation, the components shall be separated as soon as possible after withdrawal of the blood from the donor. Separation should preferably be effected within 8 h of blood donation. When platelets and coagulation factors are to be prepared, it is especially important that the venepuncture be performed in such a way as to cause minimal tissue damage so as to prevent the initiation of coagulation. The blood should flow freely without interruption and as rapidly as possible, and be mixed thoroughly with the anticoagulant. If platelets are to be prepared from a unit of whole blood, the blood shall be kept at a temperature of 20-24 °C for up to 8 h until the platelet-rich plasma has been separated from the red blood cells. Red cells may be prepared either by centrifugation or by undisturbed sedimentation before the expiry date of the original whole blood. Blood cells shall be separated by centrifugation in a manner that will not increase the temperature of the blood. Sedimentation is the least expensive method for separation of red blood cells and does not require special equipment. Repeated washing with saline and centrifugation and filtration are used to reduce the number of leukocytes and platelets and the volume of trapped plasma in red cells. Frozen red cells after thawing are also repeatedly washed with special solutions to remove cryoprotective agents while also preventing haemolysis. ## 7.4.2 Expiry date The expiry date of whole blood and red cells prepared in a closed system from blood collected in acid-citrate-glucose or citrate-phosphate-glucose is generally 21 days after collection. The time of removal of plasma is not relevant to the expiry date of the red cells when the integrity of the container is not compromised. The shelf-life of stored blood has been extended to 35 days by collecting the blood in acid-citrate-giucose supplemented with 0.5 mmol/l adenine or in a mixture of 0.5 mmol/l adenine and 0.25 mmol/l guanosine with extra glucose, and to 42 days by adding a solution containing adenine, glucose and mannitol. Recent studies indicate that it may also be possible to extend the shelf-life of stored blood to 35 days by collecting it in citrate-phosphate-glucose supplemented with 0.25 mmol/l adenine and extra glucose. When red cells are prepared with very high erythrocyte volume fractions, an expiry date 14 days after collection is recommended in some countries because the cells may become glucose-deficient after this time. The erythrocyte volume fraction of red cells collected in citrate-phosphate-glucose-adenine should not exceed 0.9 if the expiry date is more than 21 days; after collection. The usefulness of acid-citrate-glucose is limited by the significant reduction in cell viability when the volume of cells collected is small, which is unavoidable for some donations. Provided that sterility is maintained, the shelf-life of red cells is not influenced by the method of separation used. However, if an open system is used that does not maintain sterility, the expiry date shall be 24 h after separation and the cells should be used as soon as possible. Red cells and whole blood should be stored at $5\pm3$ °C and transported with wet ice in insulated boxes at $5\pm3$ °C. Care should be taken not to place containers directly on ice. Refrigerated whole blood and red cells will warm up rapidly when placed at room temperature. Every effort should be made to limit the periods during which the products are handled at ambient temperatures in order to prevent the temperature from rising above 10 °C until they are used. #### 7.4.3 Modified red cells Red cells, leukocyte-depleted and red cells, leukocyte-poor. Because of the possibility of reactions, some countries require that red cells contain less than 2% of the leukocytes of the original whole blood. Leukocyte depletion may be achieved by buffy-coat removal, freezing and washing, or by washing alone. Leukocyte-poor red-cell concentrates are prepared by filtration. Red cells, washed. Red cells can be washed by means of interrupted or continuous-flow centrifugation. If the first of these methods is used, the washing procedure shall be repeated three times. Centrifugation should be carried out in refrigerated centrifuges. If such equipment is not available, the washing solution should have a temperature of $5\pm3$ °C. Red cells can also be washed by means of reversible agglomeration and sedimentation using sugar solutions. Washed red cells should be transfused as soon as possible and in any case not later than 24 h after processing if prepared in an open system that does not maintain sterility, unless the national control authority has specified a longer shelf-life. They should be stored at all times at $5\pm3\,^{\circ}\text{C}$ . Requirements for pilot samples, labels and storage and transport temperatures are the same as those for unmodified red cells. Red cells, frozen and red cells, deglycerolized. Red cells less than six days old are usually selected for freezing in order to minimize loss of yield due to haemolysis during processing. Frozen red cells are red cells that have been stored continuously at low temperatures (-65 °C or below) in the presence of a cryoprotective agent. The red cells must be washed to remove the cryoprotective agent before use for transfusion. The methods of preparation, storage, thawing and washing used should be such as to ensure that at least 70% of the transfused cells are viable 24 h after transfusion. Storage at temperatures below -65 °C is usually necessary to achieve 70% recovery. The cryoprotective agent in most common use is glycerol. The temperature of storage should be between -65 °C and -160 °C, depending on the glycerol concentration used. The shelf-life of frozen cells below -65 °C is at least three years and may be much longer under certain circumstances, but the reconstituted (thawed and washed) red cells should be used as soon as possible and not later than 24 h after thawing unless a closed system is used. Frozen cells are usually shipped in solid carbon dioxide ("dry ice") or liquid nitrogen, depending upon the glycerol concentration used. Deglycerolized red cells should be stored at a temperature of $1-6\,^{\circ}\text{C}$ and shipped at $5\pm3\,^{\circ}\text{C}$ . Requirements for pilot samples and labels are the same as those for unmodified red cells. #### 7.5 Plasma Single-donor plasma shall be obtained by plasmapheresis or from units of whole blood that comply with the requirements of Part A, section 5, and Part B, section 7.2. Fresh-frozen plasma and frozen plasma should be stored in carefully monitored freezers equipped with recording thermometers and audio and visual alarms to give warning of mechanical or electrical failure. If refrigeration is interrupted for longer than 72 h and the temperature rises above -5 °C, the product may no longer be considered as fresh-frozen plasma, although testing may indicate that reasonable amounts of factor VIII remain if the plasma has not become liquid. Repeated thawing and freezing may cause denaturation of plasma constituents and cause prekallikrein activation. #### 7.5.1 Plasma, fresh-frozen Fresh-frozen plasma shall be prepared by separating plasma from whole blood and freezing it rapidly within 8 h of collection. Ideally, fresh-frozen plasma should be prepared by rapid freezing using a combination of solid carbon dioxide and an organic solvent such as ethanol. If this procedure is used, it should have been shown that the container cannot be penetrated by the solvent or substances leached from the container into the contents. Fresh-frozen plasma should be stored at or below -20 °C, and below -30 °C if to be used for transfusion purposes. Before use for infusion, fresh-frozen plasma should be thawed rapidly at 30–37 °C. Agitation of the container and/or circulation of water at a temperature of 37 °C during the thaw cycle will speed thawing. Once thawed, fresh-frozen plasma must not be refrozen. It can be stored at ambient temperature and should be used within 2 h of completion of thawing. Fresh-frozen plasma shall have an expiry date one year from the date of collection. Before its expiry date, fresh-frozen plasma may be used for preparing cryoprecipitated factor VIII. It may be used for the preparation of other pooled plasma fractions (e.g. factors I, II, VIII, VIII, IX and X) at any time, even after its expiry date. ## 7.5.2 Plasma, frozen Frozen plasma is, by definition, a plasma separated from whole blood more than 8 h after the latter has been collected, but the delay should be as short as possible. Frozen plasma may be used directly for transfusion or fractionation, or it may be freeze-dried as single-donor units. Plasma may be combined in small pools before freezing if it is to be used to prepare freeze-dried plasma. The national control authority should determine the specific requirements for frozen plasma. If frozen or freeze-dried plasma is intended to be used directly in patients without further processing, the blood shall be collected in such a manner and in containers of such a type as to allow aseptic handling, e.g. by means of closed systems. In some countries, frozen plasma is given an expiry date five years from the date of collection. Whenever the container of frozen plasma is opened in an open procedure, the method of handling shall avoid microbial contamination; as an additional precaution, sterile rooms or laminar-flow cabinets can be used. Delay in processing shall be avoided, and the ambient conditions shall be regulated so as to minimize the risk of contamination. Plasma may be pooled at any time after collection. ## 7.5.3 Plasma, freeze-dried Freeze-dried plasma shall be made from single units or small pools of fresh-frozen plasma or frozen plasma. The storage conditions and expiry dates of different forms of freeze-dried plasma shall be approved by the national control authority. The product normally has a shelf-life of five years when stored at $5\pm3$ °C, but this will depend on the source material, storage conditions and residual moisture in the product. Pooled freeze-dried plasma has a significant potential for the transmission of infectious diseases. This is likely to be substantially diminished by the introduction of viral inactivation procedures applicable to plasma. ## 7.5.4 Plasma, recovered Recovered plasma intended to be pooled for fractionation shall not be used directly for transfusion; a preservative shall not be added. Plasma may be separated from whole blood at any time up to five days after the expiry date of the blood. The method used for separation shall avoid microbial contamination. As an additional precaution, sterile rooms or laminar-flow cabinets can be used. If the plasma has been pooled, it shall be stored and transported frozen at or below -20 °C. ## 7.5.5 Plasma, platelet-rich Platelet-rich plasma is a preparation containing at least 70% of the platelets of the original whole blood. The preparation shall be separated by centrifugation, preferably within 8 h of collection of the whole blood. The temperature and time of processing and storage shall be consistent with platelet survival and maintenance of function. To achieve the desired haemostatic effect, platelet-rich plasma shall be transfused as soon as possible after collection, and not later than 72 h afterwards, unless stored at $22 \pm 2$ °C in containers approved for a longer storage period. #### 7.6 Platelets Platelets shall be obtained by cytapheresis or from whole blood, buffy coat or platelet-rich plasma that complies with the requirements of Part A, section 5, and Part B, section 7.2. Aspirin ingestion within the previous three days precludes a donor from serving as a source of platelets. Whole blood or platelet-rich plasma from which platelets are derived shall be maintained at 22±2 °C until the platelets have been separated. The separation shall preferably be performed within 8 h of collection of the whole blood. Blood shall be obtained from the donor by means of a single venepuncture giving an uninterrupted flow of blood with minimum damage to the tissue. It must have been demonstrated that the time and speed of centrifugation used to separate the platelets will produce a suspension without visible aggregation or haemolysis. The national control authority shall determine the minimum acceptable number of platelets that should be present in the products prepared (e.g. $5.5 \times 10^{10}$ ). A pH of 6.5-7.4 shall be maintained throughout storage of platelets. The volume of plasma used to resuspend platelets will be governed by the required pH of the platelet suspension at the end of its shelf-life, but shall be no less than $50 \pm 10$ ml. Licensed artificial suspension media may be used to replace plasma. Platelets stored at 5 °C are inferior to the same product stored at 22±2 °C. Cold storage should be avoided where possible. When stored at $22\pm2$ °C, platelet products shall be gently agitated throughout the storage period. Platelet products with high platelet counts that are stored at $22\pm2\,^{\circ}\text{C}$ may need to contain as much as 70 ml of plasma or more if the pH is to be maintained above 6.5 throughout the storage period. This period may be as long as seven days for containers made of certain special plastics, but it is prudent to restrict platelet storage to five days because of the risk of bacterial contaminants. The product should be ABO typed and, in countries where D ( $Rh_o$ ) is polymorphic, D ( $Rh_o$ ) typed; it may also be desirable to know the HLA type. The material of which the final container used for platelets is made shall not interact with the contents under normal conditions of storage in such a manner as to have an adverse effect on the product. The requirements for labelling the final container are given in section 7.9. In addition to the customary data, the label shall bear: (a) the recommended storage temperature; (b) the statement that, when stored at $22\pm2$ °C, the platelets should be gently agitated throughout storage to obtain maximum haemostatic effectiveness; and (c) a statement to the effect that the contents should be used as soon as possible, and preferably within 4 h once the containers have been opened for pooling. ## 7.6.1 Monitoring the quality of platelets Units randomly selected at the end of their shelf-life shall be tested on a regular basis. They shall be shown to have: (a) plasma volumes appropriate to the storage temperature; and (b) a pH between 6.5 and 7.4. The number of units and of platelets to be tested shall be specified by the national control authority. Some countries require there to be no visible contamination by red cells. #### 7.6.2 Expiry date The expiry date of platelets processed in a closed system shall be 72 h after the original whole blood was collected, unless they are stored in a plastic container approved by the national control authority for a longer storage period. Platelets prepared in an open system should be used within 4 h of preparation if stored at 22±2 °C, unless the procedure used has been shown to allow a longer storage period. Single-donor platelet concentrates may be pooled for one recipient under aseptic conditions before issue. Such small pools should be used as soon as possible, and within 4 h of preparation if stored at room temperature. ## 7.7 Leukocyteś Leukocytes are obtained by the separation of whole blood or by apheresis, and may contain a large number of platelets and red blood cells, depending on the method of preparation. When leukocytes are obtained from units of whole blood, such units shall comply with the requirements of Part A, section 5, and Part B, section 7.2. The methods used to process leukocytes shall comply with the requirements and recommendations given in section 7.4.1 for the separation of red cells. The label on the final container shall bear, in addition to customary data, instructions to use the leukocytes as soon as possible and in any case not more than 4 h after the container has been opened for pooling. The temperature of storage and transport shall be $22 \pm 2$ °C. Leukocytes can be separated from blood by centrifugation, sedimentation or leukapheresis. To obtain a sufficient number, the leukocytes from units obtained from several healthy donors may have to be pooled. Leukapheresis by continuous-flow filtration or centrifugation is the most efficient way of obtaining leukocytes, since it gives large numbers of high-quality cells from a single donor. If centrifugation of whole blood is used, 30-60% of the leukocytes present in the original whole blood may be recovered. Approximately 90% of the leukocytes present in the original whole blood can be separated by sedimentation of the red cells, accelerated by the addition of suitable substances with high relative molecular mass. Leukocytes should be negative for cytomegalovirus. The product should be ABO typed and, in countries where D (Rh<sub>o</sub>) is polymorphic, D (Rh<sub>o</sub>) typed; it may also be desirable to determine the HLA type. If not HLA typed, leukocytes should be irradiated. The large number of red cells present in products prepared by some methods makes compatibility testing before transfusion necessary. ## 7.7.1 Testing of leukocytes The number of units to be tested and the leukocyte yield (number) required shall be specified by the national control authority. ## 7.7.2 Expiry date The expiry date of leukocytes shall be 24 h after collection of the original whole blood. ## 7.8 Cryoprecipitated factor VIII Cryoprecipitated factor VIII is a crude preparation of factor VIII. It shall be obtained from single units or small pools of plasma derived either from units of whole blood that comply with the requirements of Part A, section 5, and Part B, section 7.2, or by plasmapheresis. The product may be prepared as a pool from a small number of donations, usually four to six but not exceeding ten. It may be freeze-dried. However, preparations of cryoprecipitated factor VIII carry the risk of viral transmission unless they have undergone specific virucidal procedures during manufacture. The method of thawing and harvesting the cryoprecipitate shall have been shown to yield a product containing an adequate activity of factor VIII (see section 7.8.1). In procuring source material for coagulation factors, the following technical considerations should be borne in mind: - In order to prevent coagulation, venepuncture should performed in such a way that tissue damage is minimal. The blood should flow freely without interruption, and be mixed thoroughly with anticoagulant during collection. - Microbial contamination should be avoided during separation of the plasma by using multiple-plastic-bag closed systems or laminar-flow cabinets if an open procedure is used. - The recovery of factor VIII depends on the interval between venepuncture and freezing of the plasma, the temperature at which the plasma is held and the freezing method. While a useful product may be obtained with plasma frozen as late as 18-24 h after phlebotomy, freezing the plasma as early and as rapidly as possible is strongly recommended. - Ideally, fresh-frozen plasma should be prepared by rapid freezing using a combination of solid carbon dioxide and an organic solvent such as ethanol. Fresh-frozen plasma should be stored at or below -20 °C. Contamination of the plasma by the solvent or leaching of substances from the container into the plasma should be avoided. - If the temperature of the thawed plasma exceeds 2 °C, a high proportion of the factor VIII is lost in the supernatant. During thawing or separation of the supernatant plasma, therefore, the temperature should not be allowed to exceed 2 °C. The plasma may be separated while there is still a small quantity of the ice present in the plasma container. Increasing the speed of thawing by circulating air or water at a temperature of 0 °C is believed to increase the yield of factor VIII. ## 7.8.1 Testing of cryoprecipitated factor VIII Randomly selected units shall be tested for potency and sterility on a regular basis. The number of units to be tested shall be specified by the national control authority. The freeze-dried preparation shall dissolve without any signs of precipitation in the solvent recommended by the manufacturer within 30 min when held at a temperature not exceeding 37 °C. The potency of cryoprecipitated factor VIII shall be compared with that of an appropriate plasma or intermediate-purity standard, by measuring its ability to correct the prolonged activated partial thromboplastin time of haemophilia A plasma or by another suitable method. When cryoprecipitated factor VIII is produced from fresh-frozen plasma (frozen within 8 h of donation), the yield should be greater than 400 IU/I of starting plasma. Plasma frozen after this time will yield less cryoprecipitated factor VIII. In many laboratories, the average yield of factor VIII is 400 IU/I of starting plasma. The average yield of factor VIII as freeze-dried cryoprecipitate is then at least 300 IU/I of starting plasma. Whether this yield can be obtained elsewhere will depend on local technical possibilities. In some countries, the yields will be much lower, and the national control authority should decide as to the yield that is acceptable. ## 7.8.2 Expiry date The frozen product shall be stored at or below $-20\,^{\circ}\text{C}$ (if possible below $-30\,^{\circ}\text{C}$ ) and shall have an expiry date one year from the date of collection. The freeze-dried product shall be stored at $5\pm3\,^{\circ}\text{C}$ and shall also have an expiry date one year from the date of collection. After thawing or reconstitution, cryoprecipitated factor VIII should be kept at $20-24\,^{\circ}\text{C}$ . It shall be used as soon as possible and in any case not more than 4 h after its container has been opened for pooling or reconstitution. #### 7.9 Labelling After having been tested and before being issued for transfusion, units of single-donor and small-pool products shall be identified by means of container labels that clearly state at least the following information: - the proper name of the product; - the unique number or symbol identifying the donor(s); - the expiry date, and when appropriate, the expiry time after reconstitution; - any special storage conditions or handling precautions that are necessary; - a reference to a package insert containing instructions for use, warnings and precautions; - the name and address of the blood donor centre and, where applicable, the manufacturer and distributor: - the average content in International Units of activity, where appropriate. The results of red cell grouping shall be stated on the label of whole blood, red cells, fresh-frozen plasma (for clinical use), platelets and leukocytes but not necessarily on that of cryoprecipitated factor VIII. # Part C. Requirements for large-pool products #### 8. Introduction A number of requirements common to albumin, plasma protein fraction, immunoglobulin preparations and coagulation-factor concentrates are given in Parts A and B, sections 3-7. However, for clarity, it has proved convenient to bring together in Part C certain specific requirements applicable to these products when manufactured on a large scale. The source material for the large-scale preparation of blood products should comply with the relevant provisions of Parts A and B. ## 9. Buildings The buildings used for the fractionation of plasma shall be of suitable size, construction and location to facilitate their proper operation, cleaning and maintenance in accordance with the requirements of Good Manufacturing Practices for Pharmaceutical (7) and Biological (8) Products. They shall comply with the Guidelines for National Authorities on Quality Assurance for Biological Products (6) and in addition provide adequate space, lighting and ventilation for the activities listed below. Each of listed activities is an important integral part of the production procedure, and countries wishing to start manufacturing large-pool blood products and related substances should not do so unless adequate provision can be made for all of them. ## 9.1 Storage of whole blood and plasma Whole human blood and plasma shall be stored frozen or refrigerated in separate facilities that are used only for this purpose. The source materials shall remain in quarantine until the results of testing show that they are suitable for introduction into the fractionation premises. ## 9.2 Separation of cells and fractionation of plasma Cells shall be separated and plasma fractionated in a building isolated from those where non-human proteins or microbiological materials, such as vaccines, are manufactured or processed and separate from the animal house. In some countries, cell constituents are separated in an area separate from that where plasma is fractionated. ## 9.3 Supply and recovery of ancillary materials Adequate facilities shall be provided for the supply of ancillary materials, such as ethanol, water, salts and polyethylene glycol. Facilities for the recovery of organic solvents used in fractionation may also be provided. #### 9.4 Viral inactivation A separate area shall be provided for all processing subsequent to the completion of viral inactivation procedures when these are carried out at a stage in production before aseptic dispensing and filling (see section 9.5). ## 9.5 Freeze-drying, filling, packaging, labelling and storage Separate facilities shall be used for the freeze-drying, filling, labelling and packaging of containers. A separate area shall be provided for the storage of labels, package inserts and packages. Another separate area shall be used for the storage of final containers before dispatch. ## 9.6 Keeping of records Adequate provision shall be made for keeping records of all donors, materials, fractionation steps, quality-control procedures and results, of the distribution of the final products and of the disposal of potentially infectious materials. Records should be retained for at least two years beyond the expiry date of the products to which they relate. Some manufacturers might wish to extend this period to cover any future legal disputes. ## 9.7 Quality control Separate facilities shall be provided for quality control, including haematological, biochemical, physicochemical, microbiological, pyrogen and safety testing. #### 9.8 Disposal of infective material Provision shall be made for the suitable disposal of potentially infectious materials by autoclaving or incineration according to good manufacturing practices. The disposal of these materials should comply with local legislation. ## 10. Equipment Equipment used for the collection, processing, storage and distribution of source materials and large-pool blood products shall comply with the requirements of Good Manufacturing Practices for Pharmaceutical (7) and Biological (8) Products. - 74 Particular attention shall be paid to: - The maintenance, monitoring and recording of the operation of continuously operating equipment, the validation of its reliability and the provision of stand-by equipment. - The suitability and compatibility of the surfaces of all materials (e.g. filter medium, glass, stainless steel, plastic and rubber) that come into contact with the products. Metal surfaces that come into contact with proteins should be resistant to scratching. The surfaces of some materials can denature certain proteins or activate certain coagulation factors. The ease and efficiency with which equipment can be cleaned and, where necessary, sterilized. Any bactericidal agent used shall be capable of being completely eliminated before the equipment is used. Caution should be exercised in the use of detergents because of their possible effects on the final product; tests should be made to ensure that they do not have any adverse effect on it. The provision of suitable facilities for decontamination and for the disposal of potentially infective materials and equipment. ## 11. Provision of support services A number of support services are essential for the fractionation of source materials. ## 11.1 Water supply An adequate supply of suitable pyrogen-free water shall be provided for use during the fractionation process and for the reconstitution and/or dilution of the plasma fractions before filling and freeze-drying. The two most commonly used types of water are pyrogen-free distilled water and pyrogen-free deionized water, each of which should be maintained at 80°C. Water preparation and delivery systems should be tested at regular intervals for endotoxin content and conductance. The water system should be a continuously circulating one and should have no dead ends. Water for injections is generally used for the preparation of final products (14). ## 11.2 Steam supply An adequate supply of steam shall be provided for the operation of sterilizing and cleaning equipment. The steam shall be clean and have the quality of water for injections. #### 11.3 Other support facilities Other support facilities required are: A supply of electrical and thermal energy. - · A means of refrigeration for: - storing various source materials and fractions; - keeping the various fractionation areas at the correct temperature; - keeping the process equipment at the correct temperature; - storing final products under test; - storing final products awaiting dispatch. - A system of ventilation providing the following two grades of filtered air: - air filtered to remove particles of 5 μm or greater in diameter, which shall be supplied to the entire work area; and - air passed through a filter with a retention capacity of more than 99.95% for particles greater than 0.5 μm in diameter, which shall be supplied at a positive pressure to areas where aseptic dispensing is to take place. Other support facilities may include solvent recovery and a sewage disposal service. Sewage disposal must be carried out in accordance with the sanitary standards of the competent health authority. Proteinaceous sewage from a plasma processing plant is highly nitrogenous and has a high biological oxygen demand; it should therefore not be discharged untreated. These support facilities shall be located separately from the main process areas and in a place where the conditions (light, physical access, etc.) are conducive to the establishment of effective and routine preventive maintenance programmes. The equipment shall incorporate devices capable of monitoring and recording its operation so as to ensure the safety both of the material being processed and of the process operators. In this way a proper record of the operations of support facilities can be kept and, where necessary, entered into the process record of the product batches. The equipment should be such as to ensure that both the fractionation process and the proteins are protected if the support services are interrupted. To this end, adequate spare equipment and emergency reserve systems should be available, serviced by engineering staff skilled in the maintenance and repair of such equipment. #### 2. Personnel The plasma fractionation plant shall be under the direction of a designated qualified person who shall be responsible for ensuring that all operations are carried out properly and competently. The director shall have a good working knowledge of the scientific principles involved and shall be responsible for ensuring that employees are adequately trained, have adequate practical experience and are aware that accepted good practices should be applied in their work. The personnel involved in quality-control functions shall be separate from those involved in production. The head of the quality-control department shall be responsible only to the director. Where appropriate, personnel shall wear gowns, masks, boots, gloves and eye protectors. Personnel should be medically examined at regular intervals. Those known to be carriers of specific pathogenic organisms that may adversely affect the product shall be excluded from the production area. Vaccination against hepatitis B is strongly recommended for employees routinely exposed to blood or blood products. ## 13. Production control #### 13.1 Fractionation of source materials The general conditions for the large-scale fractionation of source materials to prepare prophylactic or therapeutic blood products shall comply with Good Manufacturing Practices for Pharmaceutical (7) and Biological (8) Products and shall be approved by the national control authority. Most physical and chemical techniques of protein separation may be used for the preparation of plasma fractions, provided that they yield protein preparations that have previously been shown to be safe and effective. The fractionation procedures used shall give a good yield of products meeting the quality requirements of international or national authorities. Fractionation shall be carried out in such a manner that the risk of microbiological contamination and protein denaturation is minimized. The safety of fractionation steps may be increased by using protected or closed systems. Reproducibility may be increased by the use of automation. The biological characteristics of the products (such as antibody activity, biological half-life and *in vivo* recovery of the proteins) should not be affected by the fractionation procedures to the extent that they are unacceptable for clinical use. Methods shall be used that exclude or inactivate pathogenic organisms, in particular hepatitis viruses and human retroviruses, from the final products intended for clinical use. Manufacturers shall validate the ability of their manufacturing processes to inactivate and/or remove potential contaminating viruses by the use of relevant model viruses. There is increasing evidence that certain manufacturing procedures, coupled with strict control to ensure that the final product complies with precise specifications, result in a product free from HIV, hepatitis B and hepatitis C infectivity. For coagulation products, viral inactivation and removal methods such as chromatography or treatment with dry heat, wet heat, steam under pressure, heated organic solvents or solvents/detergents shall be used, in combination with other methods that have been shown to be successful in reducing or eliminating the risk of HIV and hepatitis virus transmission. Donor screening and viral inactivation procedures used in manufacturing plasma coagulation concentrates have significantly improved the safety of these products. Fibrinogen prepared from plasma pools continues to carry a risk of infection unless it is treated to remove or inactivate viruses. Where large-pool, virally inactivated fibrinogen concentrates are not available, cryoprecipitated factor VIII prepared from individual units or small pools of plasma is preferred as a source of fibrinogen. Approximately 150 mg of fibrinogen is contained in the cryoprecipitate from one unit of plasma (200 ml) frozen within 8 h of collection from the donor. The operating manual for the fractionation procedure shall specify the times of sampling of the products and the volumes to be taken at each stage of the process as well as the tests to be made on the samples. Where appropriate, all materials used for fractionation shall be tested for microbiological contamination, identity, purity, endotoxin content and toxicity in accordance with *The international pharmacopoeia* (14, 15) or national pharmacopoeia. Certain procedures, equipment and materials may introduce contaminants into the final product that can induce allergenic or immunogenic responses in recipients. The quantities of such contaminants in the final product shall be minimized. For example, where monoclonal antibodies are used for product purification, the residual concentration in the final product must be below clinically reactive levels. It is advisable to use air filtration under positive pressure during fractionation, to exclude airborne allergenic dust. ## 13.1.1 Preservatives and stabilizers No preservatives shall be added to albumin, plasma protein fraction, intravenous immunoglobulin or coagulation-factor concentrates either during fractionation or at the stage of the final bulk solution. Antibiotics shall not be used as preservatives or for any other purpose in the fractionation of plasma. To prevent protein denaturation, stabilizers may be added. Such substances shall have been shown to the satisfaction of the national control authority not to have any deleterious effect on the final product in the amounts present and to cause no untoward reactions in humans. Stable solutions of immunoglobulins may be prepared in approximately 0.3 mol/l glycine or 0.15 mol/l sodium chloride. In some countries, thiomersal and sodium timerfonate are not permitted as preservatives in intramuscular immunoglobulins. ## 13.2 Storage and control of source materials At all stages of the manufacturing process, the source materials and resulting fractions shall be stored at temperatures and under conditions shown to prevent further contamination and the growth of microorganisms, to protect the identity and the integrity of the proteins and to preserve the biological activity and safety of the products. If similar materials are stored together, the places allocated to them shall be clearly demarcated. All source materials and resulting fractions shall be fully identified at all times; such identification shall include the batch number of all in-process fractions and final containers awaiting labelling. ## 13.2.1 In-process control Source materials are subject to biological variability and the products resulting from protein separation will contain various amounts of other protein components of plasma. It is essential, therefore, to establish a monitoring system such that the safe operating limits of each process are maintained. The main information collected is on variations in physical conditions (temperature, pH, ionic strength, timing, etc.) and in the number and species of contaminating organisms. Owing to the numerous and interdependent factors involved, there are no universally accepted specifications for such in-process quality-assurance systems. For this reason, the information collected should be combined with data from previous experience with the same manufacturing process to ensure production control appropriate to the quality requirements of the final product. #### 13.2.2 Record-keeping Records shall be kept of the performance of all steps in the manufacture, quality control and distribution of large-pool blood products and related substances (7, 8). ## These records shall: - be original (not a transcription), indelible, legible and dated; - be made at the time that the specific operations and tests are performed; - identify the person recording the data as well as the person checking them or authorizing the continuation of processing; - be detailed enough to allow all the relevant procedures performed to be clearly reconstructed and understood; - permit the tracing of all successive steps and identify the relationships between dependent procedures, products and waste materials; - be maintained in an orderly fashion that will permit the retrieval of data for a period consistent with shelf-lives and the legal requirements of the national control authority and, if necessary, allow a prompt and complete recall of any particular lot; - show the lot numbers of the materials used for specified lots of products; - indicate that processing and testing were carried out in accordance with procedures established and approved by the designated responsible authority. ## 14. Control of albumin and plasma protein fraction Source materials should be processed in such a manner that the albumin in the solutions manufactured will be changed as little as possible and will not cause undesirable reactions in the recipients. Source materials may contain either vasoactive substances or substances capable of generating or releasing endogenous vasoactive substances. Such substances may also be formed in the course of fractionation, and consequently contaminate the albumin and plasma protein fraction. To guard against this possibility, adequate in-process controls and the testing before release for prekallikrein activator activity are mandatory for albumin solutions of purity less than 95% (such as plasma protein fraction) containing 35-50 g of protein per litre. Such testing is also recommended for highly purified albumin products (purity greater than 95%). Within 24 h of the start of filling, albumin and plasma protein fraction in solution shall be heated in the final container to $60 \pm 0.5$ °C and maintained at that temperature for not less than 10 h but not more than 11 h by a method that ensures uniform heat distribution throughout the batch. Although pasteurization at the final bulk stage may be possible, this approach requires careful validation before use. Special attention should be given to microbial contamination of source material and intermediates, since soluble microbial substances, especially endotoxins, may accumulate in the finished albumin solution. In addition, it is possible that small amounts of endotoxin, present even in products for which satisfactory results have been obtained in tests for pyrogens, may have a cumulative effect in recipients receiving large product volumes in relatively short periods of time, as, for example, in therapeutic plasma exchange. In some countries, information is being collected about the usefulness of quantitative *Limulus* assays for the presence of endotoxin. The in-process controls should be capable of detecting contamination with bacteria and moulds. In addition, care should be taken to ensure, by a method that shall be validated, that all equipment and reagents used in the manufacturing process are scrupulously clean and free from toxic materials. #### 14.1 Stability of albumin solutions The stability of solutions of albumin and plasma protein fraction (that have been heated for 10-11 h at 60 °C) shall be tested by heating adequate samples at 57 °C for 50 h. The test solutions shall remain visually unchanged when compared to control samples that have been heated for only 10-11 h at 60 °C. The thermal stability of albumin solutions shall be taken into consideration by the national control authority in determining the expiry dates. The physicochemical quality of stored albumin solutions, as measured by the formation of dimers and particularly polymers, is influenced by: - the quality of the starting plasma; - the quality of the fractionation, particularly with respect to the degree of purity achieved and the number of reprecipitation and reheating procedures involved; and - the storage conditions with respect not only to temperature and time but also to the physical state and concentration of the solutions. With regard to the thermal stability of albumin solutions, the following general statements may be made: - The addition of stabilizing chemicals is necessary. Commonly used products are sodium octanoate and sodium acetyltryptophanate. - Albumin prepared from aged liquid or dried plasma is less stable than albumin made from fresh-frozen plasma. - Reprocessing steps, such as reprecipitation and reheating, may reduce the stability of albumin solutions. - On long-term storage, albumin solutions are more stable at 5±3°C than at 32–35°C. Long-term storage above 30°C should be avoided. #### 14.2 Control of bulk material #### 14.2.1 Tests on bulk material Tests on the bulk powder or solution shall be made if the manufacturer sends the material to another institution for further processing. Samples for these tests shall be taken under conditions that do not impair the quality of the bulk material. Tests shall be carried out on a specially dissolved sample processed to a stage equivalent to the final product, after sterilization by filtration. The tests shall be those listed in sections 14.3.2 to 14.3.7 inclusive. ## 14.2.2 Storage The bulk material shall be stored as liquid or powder in sealed containers under conditions that minimize denaturation and the multiplication of microbial agents. ## 14.3 Control of the final bulk solution ## 14.3.1 Preparation The final bulk solution shall be prepared from bulk powder or by the dilution of concentrates by a method approved by the national control authority. It shall meet all of the requirements of sections 14.3.2 to 14.3.7 inclusive. ## 14.3.2 Concentration and purity The albumin concentration in final bulk albumin solutions shall be between 35 and 265 g/l. Not less than 95% of the proteins present shall be albumin, as determined by a suitable electrophoretic method after the sample has been heated for 10-11 h at 60 °C. The protein concentration in final bulk solutions of plasma protein fraction shall be at least 35 g/l. Plasma protein fraction shall contain at least 83% albumin and not more than 17% globulins. Not more than 1% of the protein in plasma protein fraction shall be $\gamma$ -globulin. ## 14,3.3 Hydrogen ion concentration The final bulk solution, diluted with 0.15 mol/l sodium chloride to give a protein concentration of 10 g/l, shall, when measured at a temperature of 20-27 °C, have a pH of $6.9\pm0.5$ (albumin) or $7.0\pm0.3$ (plasma protein fraction). In some countries, different ranges of pH values and temperatures are permitted. ## 14.3.4 Sterility and safety The final bulk shall be sterile. If required by the national control authority, it shall be tested for sterility; samples shall be taken for such testing in a manner that does not compromise the sterility of the bulk material. Part A, section 5, of the revised Requirements for Biological Substances No. 6 (General Requirements for the Sterility of Biological Substances) (9, p. 48) shall apply. ## 14.3.5 Sodium content The final bulk solutions of albumin and plasma protein fraction shall have a maximum sodium concentration of 160 mmol/l. ## 14.3.6 Potassium content The final bulk solutions of albumin and plasma protein fraction shall have a maximum potassium concentration of 2.0 mmol/l. ## 14.3.7 Aluminium content The final bulk solutions of albumin and plasma protein fraction shall have a maximum aluminium concentration of 7.5 µmol/l (200 µg/l). ## 14.4 Filling and containers The requiremens concerning filling and containers given in Good Manufacturing Practices for Biological Products (8) shall apply. Special attention shall be paid to the requirement that solutions of albumin and plasma protein fraction in the closed final containers shall be heated to inactivate any infectious agents that may be present (see section 14, paragraph 2). In order to prevent protein denaturation, a stabilizer shall be added to albumin solution before heating (see section 13.1.1). In some countries, the national control authority may authorize an interval longer than 24 h between filling and heating to 60 °C. ## 14.5 Control tests on the final product The tests specified below shall be performed on representative samples from every filling lot. If the product is processed further after filling, e.g. by freeze-drying, the tests shall be performed on samples from each drying chamber. ## 14.5.1 Identity test An identity test shall be performed on at least one labelled container from each filling lot to verify that the preparation is of human origin. The test shall be one approved by the national control authority. Additional tests shall be made to determine that the protein is predominantly albumin or plasma protein fraction as appropriate. The tests mentioned in section 14.3.2 shall be used. ## 14.5.2 Protein concentration and purity The protein concentration and purity of each filling lot shall be within the limits prescribed in section 14.3.2. Tests to determine the concentration of additives (such as polyethylene glycol, porcine enzymes and reducing and alkylating agents) used during production shall be carried out if required by the national control authority. #### 14.5.3 Sterility test Each filling lot shall be tested for sterility. Part A, section 5, of the revised Requirements for Biological Substances No. 6 (General Requirements for the Sterility of Biological Substances) (9, p.48) shall apply. Samples for sterility testing shall be taken from final containers selected at random after heating at 60 °C for 10-11 h. In one country, the sterility test is carried out at least 10 days after heating at $60\,^{\circ}\text{C}$ for 10 h. In some countries, the sterility test is carried out both before and after heating at $60\,^{\circ}\text{C}$ for 10 h. #### 14.5.4 General safety test In some countries a general safety test may be required, whereby each filling lot is tested for extraneous toxic contaminants by appropriate tests involving injection into mice and guinea-pigs. The injection shall cause neither significant untoward reactions nor death within an observation period of seven days. The tests shall be approved by the national control authority. The tests generally used are the intraperitoneal injection of 0.5 ml into each of at least two mice weighing approximately 20 g and the injection of 5.0 ml into each of at least two guinea-pigs weighing approximately 350 g. In some countries, if one of the animals dies or shows signs of ill-health, such as weight loss, during a specified period, the test is repeated. The substance passes the test if none of the animals of the second group dies or shows signs of ill-health, such as weight loss, during that period. 14.5.5 Freedom from pyrogenicity. Each filling lot shall be tested for pyrogenicity by the intravenous injection of the test dose into three or more rabbits that have not previously received blood products. In general, the dose shall be at least equivalent proportionally, on a rabbit body-weight basis, to the maximum single human dose recommended, but not more than 10 ml/kg of body weight. For albumin at concentrations of 200 g/l and 250 g/l, the test dose for each rabbit shall be at least 3 ml/kg of body weight, and for albumin at concentrations of 35 g/l and 50 g/l and plasma protein fraction, 10 ml/kg of body weight. A filling lot shall pass the test if it satisfies the requirements specified by the national control authority. #### 14.5.6 Moisture content The residual moisture content shall, where appropriate, be determined by a method approved by the national control authority. The methods in use are: (a) drying over phosphorus pentoxide for at least 24 h at a pressure not exceeding 2.7 Pa (0.02 mmHg); and (b) the Karl Fischer method. The acceptable moisture content shall be determined by the national control authority. ## 14.5.7 Prekallikrein activator An assay shall be performed for prekallikrein activator. The product shall contain not more than 35 IU of prekallikrein activator per ml. ## 14.5.8 Hydrogen ion concentration The final product, reconstituted if necessary and diluted with 0.15 mol/l sodium chloride to give a protein concentration of 10 g/l, shall, when measured at a temperature of 20-27 °C, have a pH of $6.9\pm0.5$ (albumin) or $7.0\pm0.3$ (plasma protein fraction). In some countries, different ranges of pH values are permitted. #### 14.5.9 Absorbance A sample taken from the final solutions of albumin and plasma protein fraction, when diluted with water to a concentration of 10 g/l of protein and placed in a cell with a 1-cm light path, shall have an absorbance not exceeding 0.25 when measured in a spectrophotometer set at 403 nm. ## 14.5.10 Inspection of filled containers All final containers shall be inspected for abnormalities, such as non-uniform colour, turbidity, microbial contamination and the presence of atypical particles, after storage at 20–35 °C for at least 14 days following heat treatment at 60 °C for 10 h. Containers showing abnormalities shall not be distributed. The normal colour of albumin solutions may range from colourless to yellow or green to brown. When turbidity or non-uniform colour raises the possibility of microbial contamination, testing should be done to isolate and identify the microorganisms. ## 14.6 Records The requirements of Good Manufacturing Practices for Biological Products (8, pages 27-28) shall apply. #### 14.7 Samples The requirements of Good Manufacturing Practices for Biological Products (8, page 29, paragraph 9.5) shall apply. ## 14.8 Labelling The requirements of Good Manufacturing Practices for Biological Products (8, pages 26-27) and the national control authority's requirements for parenteral solutions shall apply. In addition, the label on the container should state: - the type of source material, - the protein concentration, - the oncotic equivalent in terms of plasma, - that preservatives are absent - the warning "Do not use if turbid", - the sodium and potassium concentrations. ## 14.9 Distribution and shipping The requirements of Good Manufacturing Practices for Biological Products (8) shall apply. ## 14.10 Storage and shelf-life The requirements of Good Manufacturing Practices for Biological Products (8, pages 26-27) shall apply. Final containers of albumin solution shall have a maximum shelf-life of three years if they are stored at or below $30 \,^{\circ}$ C, and of five years if they are stored at $5 \pm 3 \,^{\circ}$ C. Other storage conditions and shelf-lives may be approved by the national control authority. Final containers of plasma protein fraction solution shall have a maximum shelf-life of three years if they are stored at or below 30 °C, and of five years if they are stored at $5 \pm 3$ °C. Other storage conditions and shelf-lives may be approved by the national control authority. ## 15. Control of immunoglobulins The final bulk solution of normal immunoglobulin shall be made from material from at least 1000 donors. If normal immunoglobulin is to be used for preventing or treating a particular infection, the titre of specific antibody should be measured. For normal immunoglobulins, a large number of donors are needed if the final product is to contain adequate amounts of the various desired antibodies. For specific immunoglobulins, whether intended for intravenous or intramuscular injection, the number of donors represented is less important because the requirement for specific antibody in the final product will be defined. The immunoglobulin concentration in the final bulk of normal and specific immunoglobulin preparations for intramuscular use shall be 100-180 g/l. Concentrations lower than 100 g/l shall require the approval of the national control authority. The immunoglobulin concentration in the final bulk of intravenous immunoglobulin shall be at least 30 g/l. If, in a specific immunoglobulin preparation, the concentration is lower than 30 g/l, it shall require the approval of the national control authority. The immunoglobulin preparation shall be composed of not less than 90% of immunoglobulin, as determined by a method approved by the national control authority. Tests shall be conducted on each filling lot of immunoglobulin solution to determine the proportion of aggregated and fragmented immunoglobulin. The recommended distribution shall be that at least 90% of the protein, other than proteins added as stabilizers to intravenous immunoglobulins, shall have the molecular size of immunoglobulin monomer and dimer. Not more than 10% shall consist of split products together with aggregates (oligomers of relative molecular mass equal to or greater than that of immunoglobulin trimer). This requirement shall not apply to products deliberately fragmented. The tests and limits shall be approved by the national control authority. Of the material having the molecular size of immunoglobulin monomer and dimer, most will consist of monomer. If a minimum level of monomer per se is to be established, the time and temperature at which samples must be incubated before analysis shall be specified. Gel-permeation chromatography and high-performance exclusion chromatography are useful techniques for determining molecular size distribution and can be standardized for making these measurements. For intravenous immunoglobulin, the following tests shall be performed on a sample from each filling lot: A test for hypotensive activity. An appropriate test is that for prekallikrein activator content. In some countries the kallikrein test is also used. ## A test for anticomplement activity. Several methods are available. The test method used and the maximum level of anticomplement activity permitted should be approved by the national control authority. ## A test for haemagglutinins by the antiglobulin (Coombs) technique. In such tests, group OD(Rh<sub>o</sub>)-positive cells should be used to test for anti-D (anti-Rh<sub>o</sub>); group A and group B D(Rh<sub>o</sub>)-negative cells should be used for anti-A and anti-B, respectively. The purpose of the test is to ensure that the use of the product will not give rise to haemolytic reactions. The upper limit of activity should be specified by the national control authority. ## 15.1 Potency of normal immunoglobulins A 160 g/l solution of normal immunoglobulin shall be prepared from final bulk solution by a method that has been shown to be capable of concentrating, by a factor of 10 from source material, at least two different antibodies, one viral and one bacterial, for which an international standard or reference preparation is available (16) (e.g. antibodies against poliomyelitis virus, measles virus, streptolysin O, diphtheria toxin, tetanus toxin, staphylococcal $\alpha$ -toxin). For immunoglobulins formulated at an immunoglobulin concentration lower than 16%, the concentrating factor for antibodies from source material may be proportionally lower. The immunoglobulin solution shall be tested for potency at the concentration at which it will be present in the final container. Since preparations of normal immunoglobulins produced in different countries can be expected to differ in their content of various antibodies, depending upon the antigenic stimulation to which the general population has been subjected (either by natural infection or by deliberate immunization), at least two antibodies should be chosen for the potency test by the national control authority. The final product passes the test if it contains at least the minimum antibody levels required by the national control authority. ## 15.2 Potency of specific immunoglobulins The potency of each final lot of specific immunoglobulin shall be tested with respect to the particular antibody that the preparation has been specified to contain. For intramuscular immunoglobulins, the following levels shall apply: - For tetanus immunoglobulin, at least 100 IU/ml of tetanus antitoxin, as determined by a neutralization protection test in animals or by a method shown to be equivalent. - For rabies immunoglobulin, at least 100 IU/ml of anti-rabies antibody, as determined by an appropriate neutralization test in animals or by a method shown to be equivalent. - For hepatitis B immunoglobulin, at least 100 IU/ml of anti-hepatitis antibody. - For varicella zoster immunoglobulin, at least 100 IU/ml of antivaricella zoster antibody, as measured by a comparative enzymelinked immunosorbent assay or by a method shown to be equivalent. - For anti-D (anti-Rh<sub>o</sub>) immunoglobulin, the estimated potency shall be expressed in International Units and shall be not less than 90% and not more than 120% of the stated potency, and the fiducial limits of error shall be within 80% and 125% of the estimated potency. The national control authority shall specify the antibody limits for other immunoglobulins. After the potency tests, a test for immunoglobulin subclass may be performed. Different manufacturing steps have been shown to reduce the concentration of specific immunoglobulin subclasses (e.g. IgG1, IgG2, IgG3 and IgG4) in immunoglobulin preparations. The distribution of the four subclasses of IgG may be a factor in the efficacy of intravenous immunoglobulin preparations, since specific antibodies belonging to particular subclasses have been identified as being important in several infectious diseases. In some countries the distribution of IgG subclasses has been measured by radial immunodiffusion. Enzyme-linked immunosorbent assays have also been described, and may be used if properly validated. Assays should be calibrated against the appropriate international reference materials. ## 15.3 Sterility and safety Each filling lot shall be tested for sterility. Part A, section 5, of the revised Requirements for Biological Substances No. 6 (General Requirements for the Sterility of Biological Substances) (9, p.48) shall apply. In some countries a general safety test may be required, whereby each filling lot is tested for extraneous toxic contaminants by appropriate tests involving injection into mice and guinea-pigs. The injection shall cause neither significant toxic reactions nor death within an observation period of seven days. The tests shall be approved by the national control authority. The tests generally used are the intraperitoneal injection of 0.5 ml into each of at least two mice weighing approximately 20 g and the injection of 5.0 ml into each of at least two guinea-pigs weighing approximately 350 g. In some countries, if one of the animals dies or shows signs of ill-health, such as weight loss, during a specified period, the test is repeated. The substance passes the test if none of the animals of the second group dies or shows signs of ill-health, such as weight loss, during that period. #### 15.4 Identity test An identity test shall be performed on at least one labelled container from each filling lot to verify that the preparation is of human origin. The test shall be one approved by the national control authority. Additional tests shall be made to determine that the protein is predominantly immunoglobulin. The methods in most common use are radial immunodiffusion and electrophoresis. ## 15.5 Freedom from pyrogenicity Each filling lot shall be tested for pyrogenicity by the intravenous injection of the test dose into three or more rabbits that have not previously received blood products. In general, the dose shall be at least equivalent proportionally, on a rabbit body-weight basis, to the maximum single human dose recommended, but not more than 10 ml/kg of body weight. The recommended test doses are 1 ml/kg and 10 ml/kg of body weight for intramuscular and intravenous preparations, respectively. A filling lot shall pass the test if it satisfies the requirements specified by the national control authority. #### 15.6 Moisture content The residual moisture content of a sample from each filling lot shall, where appropriate, be determined by a method approved by the national control authority. The methods in use are: (a) drying over phosphorus pentoxide for at least 24 h at a pressure not exceeding 2.7 Pa (0.02 mmHg); and (b) the Karl Fischer method. The acceptable moisture content shall be determined by the national control authority. ## 15.7 Hydrogen ion concentration The final product, reconstituted if necessary and diluted with 0.15 mol/l sodium chloride to give a protein concentration of 10 g/l, should, when measured at a temperature of 20-27 °C, have a pH of $6.9 \pm 0.5$ . In some countries, a different range of pH values is permitted for intravenous immunoglobulins. #### 15.8 Stability For immunoglobulin solutions, a stability test shall be performed on each filling lot by heating an adequate sample at 37 °C for four weeks. No gelation or flocculation shall occur. Alternatively (or in addition), the molecular size distribution of the immunoglobulin or assays of enzymes such as plasmin (fibrinolysin) may be used, when shown to predict stability reliably and when approved by the national control authority. #### 15.9 Records The requirements of Good Manufacturing Practices for Biological Products (8, pages 27-28) shall apply. ## 15.10 **Samples** The requirements of Good Manufacturing Practices for Biological Products (8, page 29, paragraph 9.5) shall apply. ## 15.11 Labelling The requirements of Good Manufacturing Practices for Biological Products (8, pages 26-27) shall apply. In addition, the label on the container shall state: - the type of source material; - the protein concentration; - the concentration of preservative, if any; - "For intramuscular use only" (if the immunoglobulins are not specially prepared for intravenous use); - "For intravenous use", when appropriate; - for specific immunoglobulin, the content of specific antibody expressed in International Units or equivalent national units; - for freeze-dried preparations, the name and volume of reconstituting liquid to be added. The label on the package or the package insert shall show: - the approximate concentration of electrolytes and excipients and, for intravenous preparations, the approximate osmolality; - the buffering capacity when the pH of the diluted product is lower than that specified in section 15.7; - the concentration of preservative, if any; - the recommended dose for each particular disease or condition; - the warning "Do not use if turbid"; - the sodium and potassium concentrations (if the immunoglobulin is intended for intravenous use). ## 15.12 Distribution and shipping The requirements of Good Manufacturing Practices for Biological Products (8) shall apply. #### 15.13 Storage and shelf-life The requirements of Good Manufacturing Practices for Biological Products (8, pages 26-27) shall apply. Liquid immunoglobulin shall be stored at $5\pm3$ °C and shall have a shelf-life of not more than three years. Freeze-dried preparations shall be stored below 25 °C and shall have a shelf-life of not more than five years. Other storage conditions and shelf-lives may be approved by the national control authority. # 16. Control of preparations of coagulation-factor concentrates (factor VIII, factor IX and fibringen) Factor VIII preparations are available as both frozen products and freeze-dried concentrates. The frozen products are usually derived from a single donation and consist of the cryoprecipitated factor VIII from the donor concerned prepared in a closed separation system. The control of this product and the freeze-dried product from fewer than 10 plasma donations is covered in Part B, section 7.8.1. Generally, the small-pool product undergoes little or no purification and is handled and subdivided in such a way that many control tests are inappropriate. However, freeze-dried factor VIII concentrates prepared from more than 10 donations may be purified. Source material for factor VIII preparations shall meet the general criteria for donor selection and testing for disease markers as specified in Parts A and B. It shall preferably be plasma frozen within 8 h of collection or frozen cryoprecipitate. Such material shall be kept frozen at such a temperature that the activity of the factor VIII is maintained. #### 16.1 Tests on final containers #### 16.1,1 Sterility and safety Each filling lot shall be tested for sterility. Part A, section 5, of the revised Requirements for Biological Substances No. 6 (General Requirements for the Sterility of Biological Substances) (9, p. 48) shall apply. In some countries a general safety test may be required, whereby each filling lot is tested for extraneous toxic contaminants by appropriate tests involving injection into mice and guinea-pigs. The injection shall cause neither significant toxic reactions nor death within an observation period of seven days. The tests shall be approved by the national control authority. The tests generally used are the intraperitoneal injection of 0.5 ml into each of at least two mice weighing approximately 20 g and the injection of 5.0 ml into each of at least two guinea-pigs weighing approximately 350 g. In some countries, if one of the animals dies or shows signs of ill-health, such as weight loss, during a specified period, the test is repeated. The substance passes the test if none of the animals of the second group dies or shows signs of ill-health, such as weight loss, during that period. For factor VIII and factor IX concentrates, the test dose should not exceed 500 IU of the coagulation factor per kg of body weight of the test animal. #### 16.1.2 Freedom from pyrogenicity Each filling lot shall be tested for pyrogenicity by the intravenous injection of the test dose into three or more rabbits that have not previously received blood products. In general, the dose shall be at least equivalent