既存化学物質の生態影響に関する情報

平成21年12月18日 化審法3省合同会議

			J — HJ%
官報公示 整理番号	CAS No.	物質名称	頁
2-139 2-143	1116-76-3	トリ - n - オクチルアミン	1
4-378	117-80-6	2,3-ジクロロ-1,4-ナフトキノン	23
2-798	111-82-0	ドデカン酸メチル	37
2-66 2-68	111-85-3	1 - クロロオクタン	44
2-176 2-185	124-28-7	N , N - ジメチル - n - オクタデシルアミン	57
2-814 2-827 2-2503	93-83-4	N,N-ビス(2-ヒドロキシエチル)-オレアミド	63
2-8	111-65-9	オクタン	70
2-27	112-41-4	1 - ドデセン	81
5-3732	52829-07-9	デカン二酸ビス(2,2,6,6-テトラメチル-4-ピペリジニル)	88

藻類生長阻害試験結果報告書

1.一般的事項

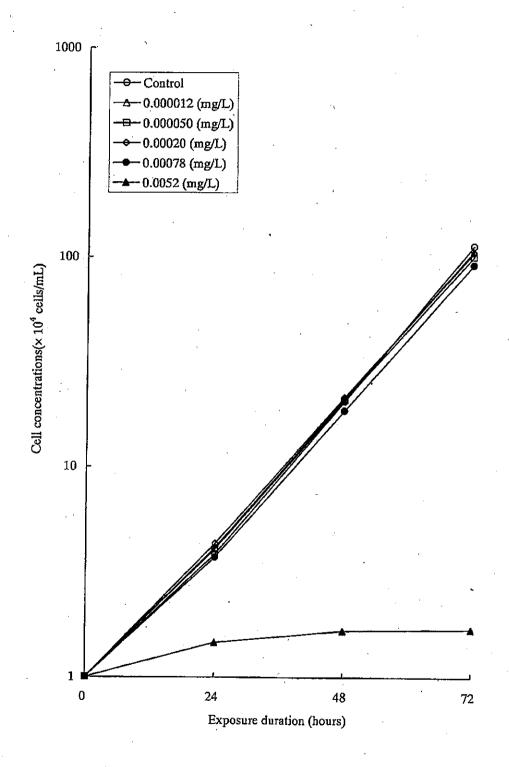
			•
新規化学物質等の名称 (IUPAC 命名法による)	トリーオクチルン	アミン	
別名	_		
C A S 番 号	1116-76-3		
構 造 式 又 は 示 性 式 (いずれも不明な場合 は、その製法の概要)		$ \begin{array}{c} \text{CH}_2 \\ \downarrow \\ \uparrow \\ \uparrow \\ \text{CH}_2 \\ \downarrow \\ \uparrow \\ \uparrow \\ \text{CH}_3 \end{array} $	
			分子式:C₂₄H₅₁N
分 子 量	353.67		
試験に供した新規 化学物質の純度(%)	99.8% (GC)		
試 験 に 供 した 新 規 化学物質のロット番号	PER3605		
不 純 物 の 名 称及 び 含 有 率	不明		
蒸 気 圧			
対 水 溶 解 度	不溶(50 µg/L)	1	
1-オクタノール/水分配係数	log Pow >6.3		
点 点	_		
沸 点	_		
常温における性状	無色澄明液体	•	
安 定 性	安定		
	溶媒	溶解度	溶媒中の安定性
溶媒に対する溶解度等	アルコール	微溶	
	エーテル	易溶	

2.試験溶液の被験物質濃度の分析方法

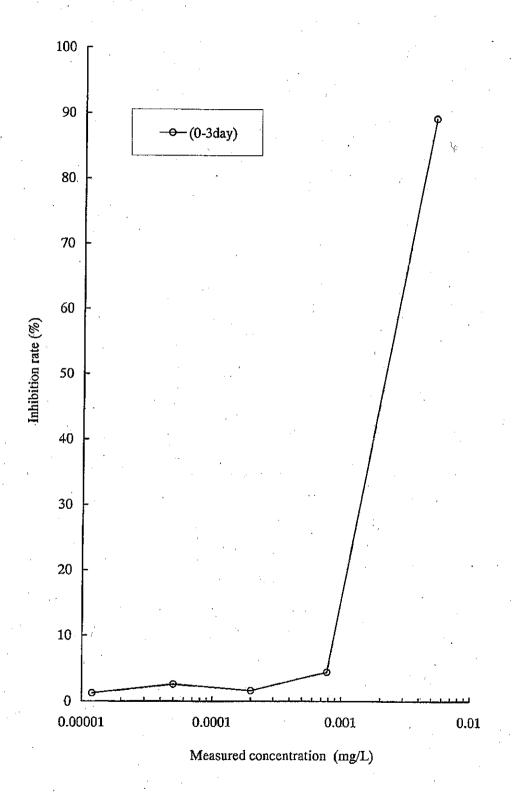
項 目	方 法
分析方法	[分析試料のサンプリング] ・分析実施区:全試験区 ・分析 頻度:暴露開始時、暴露開始後24時間、48時間及び暴露終了時・採取量:約100mL(全試験区) ・採取方法:暴露開始時;調製容器より別途分取した。 暴露開始後24時間及び48時間; 各試験区の分析試料用試験容器からそれぞれ採取後、遠心分離(3000 rpm で10分間)により薬体を除去した。 暴露終了時;各試験区の試験容器からそれぞれ均等量採取し混合後、遠心分離(3000 rpm、10分間)により薬体を除去した。
	[被験物質の定量] ガスクロマトグラフィーー質量分析法(GC-MS)を用い、クロマトグラム上の被験物質のピーク面積と内部標準物質のピーク面積の比より作成した検量線の回帰式に代入して GC-MS 試料中の被験物質 絶対量を求めた。これより試験液中の被験物質濃度を算出した。
前 処 理 法	採取した試験液について、以下のフロースキームにより前処理操作を行い、GC-MS 試料を調製した。 フロースキーム 試験液*1 100 mL ←塩化ナトリウム 30 g (電子上皿天びん) ←酢酸エチル 30 mL (メスシリンダー) ・振とう (10 分間) 水層 酢酸エチル層 ・ビーカーに入れた酢酸エチル層をナスフラスコに移す ・濃縮 約1 mL (ロータリーエパポレーター,約40℃) ←内部標準溶液*2 100 μL (マイクロシリンジ) GC-MS 試料 *1 そのまま若しくは培地で適宜希釈した試験液 *2 10 mg/Lトリヘキシルアミン溶液 (酢酸エチルで調製)

ガスクロマトグラフー質量分析計 ガスクロマトグラフ Agilent Technologies 製 6890 Series Plus* 質量分析計 Agilent Technologies 製 5973N MSD 自動試料注入装置 Agilent Technologies 製 7683 Series ガスクロマトグラフ条件 ラ DB-17 膜厚 0.25 μm (Agilent Technologies 製) 30 m×0.25 mm I.D. フューズドシリカ製 カラム温度 150°C (1 min) →280°C (3 min) 昇温速度 30℃/min キャリアガス ヘリウム 全 流 量 14.7 mL/min 入 量 $1 \mu L$ 導入モード スプリット スプリット比 5.0 定量条件 圧 力 172 kPa 試料導入部温度 280℃ 質量分析計条件 イオン化法 電子イオン化法 (EI) 選択イオンモニタリング (SIM) 検 出 法 測定イオン(m/z) 254 (内部標準物質:198) イオン源温度 230℃ MS 四重極温度 150℃ イオン化エネルギー 69.9 eV トランスファーライン温度 ່ 280℃ 平均回収率:100% 定量下限値:暴露開始時及び終了時;0.0010 mg/L 暴露 24 時間後及び 48 時間後; 0.0011 mg/L

3.試験材料及び方法


	5. 风歇彻怀及0万亿					
	項		3	内 容		
	種(学名・株名)		株名)	Pseudokirchneriella subcapitata (ATCC 22662)		
試験生物	入手名	先		American Type Culture Collection		
	対照物	勿質への感受性		EC ₅₀ (E _r C ₅₀) : 0.80 mg/L		
	(EC ₅₀)		Ang (二クロム酸カリウム		
ļ <u>-</u>	(対照物質名) 前培養の期間			(和光純薬工業製 試薬特級)		
	—		面	3日間		
前 培 養	培地名	<u> </u>		OECD 培地		
	環境系	条件(水温、光強度)	21~24℃(±2℃の変動幅) 60~120 μE/m²/s (平均値±15%の変動幅)		
	試験容器			滅菌した 500 mL容ガラス製三角フラスコ (通気性のシリコセン®付)		
	培地名	3	,	OECD 培地		
	暴露其	朋間		2009年2月24日~2009年2月27日		
	試験獲	試験濃度(設定値)		5 濃度区 [試験原液の含有率が 100、25、 6.3、1.6 及び 0.39% (公比 4.0)]		
	初期細胞濃度		度	約 10 ⁴ cells/mL		
	連数	濃度	区	3連(別途分析用試験容器を24時間用に1容器、48時間用に1容器設けた。)		
	连奴	対照区		6 連(別途分析用試験容器を24 時間用に1 容器、48 時間用に1 容器設けた。)		
試験条件	試験溶	液量		300 mL/試験濃度区 600 mL/対照区 (100 mL/試験容器 別途分析用試験容器を24 時間用に1容器、48時間用に1容器設けた。)		
		助剤の有無		無		
	다.	種類		_		
	助剤	濃度		_		
		助剤対照区の連数		_		
	培養方式(振とう培養、 静置培養、連続培養等) 水温又は培養温度			旋回振とう培養(約 100 回/分)		
			養温度	23.8∼24.0℃		
	照明(照明 (光強度・時間等)		92~95 μE/m²/s 72 時間連続照明		
			EC ₅₀ (E _r C ₅₀)	最小二乗法		
結果の算出方法			NOEC	細胞観察結果及び有意差検定結果 (Bartlett 法、一元配置分散分析、Dunnett の多重比較法) に基づき評価した。		

4.試験結果及び考察


項 目	内容
毒 性 値	EC ₅₀ (E _r C ₅₀): 0.0022 mg/L(95%信賴限界:算出不可) NOEC(生長速度 0-3d): 0.00020 mg/L(参考值)
試験濃度	測定濃度の幾何平均値
	・培地への溶解度 (23±1℃):0.012~0.090 mg/L (予備試験での測定値) ・試験液の調製法:供試試料と培地を100 mg/L (設定) になるように混合し、約48時間撹拌後、約1時間静置して中層液を採取した。採取した中層液をフィルターろ過して調製した試験原液を培地で適宜希釈して試験液を調製した。 ・細胞形状の異常等:無し
考察及び特記事項	試験は被験物質の培地への溶解濃度以下での試験生物に対する影響を求める試験として行った。その結果、ECso(E _r Cso)は0.0022 mg/L、NOECは0.00020 mg/L(参考値)であった。暴露期間中、試験液中の被験物質濃度は低下したが、暴露開始時における試験最高濃度区の測定濃度(0.022 mg/L)は溶解度(0.012~0.090 mg/L)の範囲内であり、溶解濃度付近での評価に問題はないと判断される。また、試験環境条件も適切な範囲内であったことから、試験は試験法に準じたものであったと判断される。 試験の有効性(対照区) ・ 暴露終了時には初期細胞数の110倍以上に増殖・日間の生長速度の平均変動係数:13%・繰り返し間の生長速度の変動係数:0.87%いずれも有効性基準を満たしていた。

5.藻類の生長曲線

図1 藻類の生長曲線

図2 藻類の濃度-生長阻害率曲線(生長速度)

Appendix table 2-1 Measured concentrations of test item in test solutions

Stock solution content	Measured concentration (mg/L) (Compared to concentration at the start %)					
(%)	At the start	24 hours	48 hours	At the end	Geometric mean	
Control	n.d.ª	n.d. ^b	n,d, ^b	n.d.ª		
0.39	n.d.ª	n.d. ^b	n.d. ^b	n.d.ª		
1.6	n,d,ª	n.d. ^b	n.d. ^b	n.d.ª		
6.3	n.d.ª	n.d. ^b	n.d. ^b	n.d.ª		
25	0.0049	n.d. ^b	n.d. ^b	n.d.ª	0.00078°	
100	0.022	0.0087 (40)	0.0048 (22)	n.d.ª	0.0052 ^d	

a n.d.: Not determined (<0.0010 mg/L)

b n.d.: Not determined (<0.0011 mg/L)

The values are expressed as geometric means calculated by the following equation:

antilog
$$\left(\frac{1}{2(t_n-t_1)}\sum_{i=1}^{n-1}\left[\left(\log(conc_i)+\log(conc_{i+1})\right)\cdot\left(t_{i+1}-t_i\right)\right]\right)$$

where

 $t_1 = \text{initial time} < t_2 < \cdots t_n = \text{final time}$ $conc_1 = \text{initial concentration}, conc_2, \cdots, conc_n = \text{final concentration}.$

- c The half of determination limit was substituted for the value at 24, 48 hours and at the end, because the peak was detected on each chromatogram. [It is recommended by OECD guidance document No.23 (2000)]
- d The half of determination limit was substituted for the value at the end, because the peak was detected on the chromatogram. [It is recommended by OECD guidance document No.23 (2000)]

ミジンコ急性遊泳阻害試験結果報告書

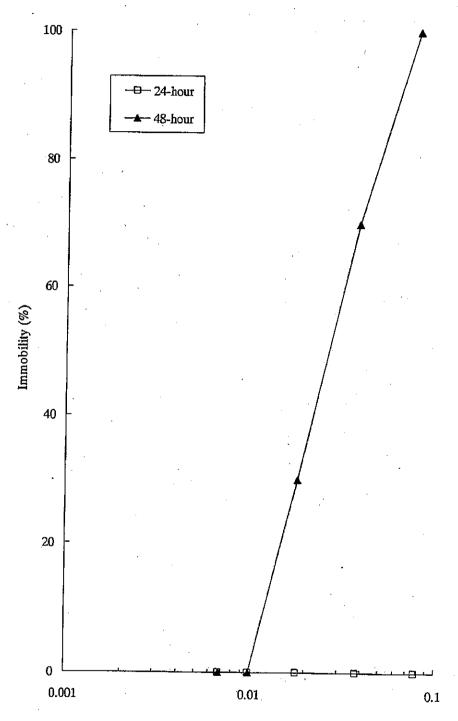
1.一般的事項

新規化学物質等の名称 (IUPAC 命名法による)	トリ-n-オクチルアミン
別名	_
C A S 番 号	1116-76-3
構 造 式 又 は 示 性 式 (いずれも不明な場合 は、その製法の概要)	$\frac{\left(\text{CH}_{2}\right)_{7}\text{CH}_{3}}{\text{H}_{3}\text{C}-\left(\text{CH}_{2}\right)_{7}\text{N}-\left(\text{CH}_{2}\right)_{7}\text{CH}_{3}}$
	分子式:C₂₄H₅₁N
分 子 量	353.67
試験に供した新規化学物質の純度(%)	99.8% (GC)
試 験 に 供 した 新 規 化学物質のロット番号	PER3605
不 純 物 の 名 称 及 び 含 有 率	不明
蒸 気 圧	-
対 水 溶 解 度	不溶(50 µg/L)
1-オクタノール/水分配係数	log Pow >6.3
点点	
沸点	
常温における性状	無色澄明液体
安 定 性	安定
	溶媒 溶解度 溶媒中の安定性
溶媒に対する溶解度等	アルコール 微溶 -
	エーテル 易溶 -

2.試験溶液の被験物質濃度の分析方法

項 目	方法
分析方法	フ 伝 [分析試料のサンプリング] ・分析実施区:全試験区 ・分析頻度:暴露開始時、換水前後及び暴露終了時 ・採 取 量:約100 mL(全試験区) ・採 取 方法:暴露開始時及び換水後;調製容器より別途分取した。 換水前及び暴露終了時;各試験区の試験容器の中層 からそれぞれ均等量採取し、 混合した。
	[被験物質の定量] ガスクロマトグラフィーー質量分析法(GC-MS)を用い、クロマトグラム上の被験物質のピーク面積と内部標準物質のピーク面積の比より作成した検量線の回帰式に代入してGC-MS試料中の被験物質絶対量を求めた。これより試験液中の被験物質濃度を算出した。
	採取した試験液について、以下のフロースキームにより前処理操作を 行い、GC-MS試料を調製した。
	フロースキーム
	試験液*1 100 mL ←塩化ナトリウム 30 g (電子上皿天びん) ←酢酸エチル 30 mL (メスシリンダー) ・振とう (10 分間)
前処理法	水層 酢酸エチル層 ・ビーカーに入れた酢酸エチル層をナスフラスコに移す ・濃縮 約1 mL (ロータリーエバポレーター,約40℃) ←内部標準溶液*2100 μL (マイクロシリンジ)
	#1 そのまま若しくは脱塩素水道水で適宜希釈した試験液 #2 10 mg/Lトリヘキシルアミン溶液 (酢酸エチルで調製)

機 ガスクロマトグラフー質量分析計 ガスクロマトグラフ Agilent Technologies 製 6890 Series Plus⁴ 質量分析計 Agilent Technologies 製 5973N MSD 自動試料注入装置 Agilent Technologies 製 7683 Series <u>ガスクロマトグラフ条件</u> ラ 厶 DB-17 膜厚 0.25 μm (Agilent Technologies 製) 30 m×0.25 mm I.D. フューズドシリカ製 カラム温度 150°C (1 min) →280°C (3 min) 昇温速度 30℃/min キャリアガス ヘリウム 全 流 量 14.7 mL/min 入 $1 \mu L$ 導入モード スプリット 定量条件 スプリット比 5.0 圧 172 kPa 力 試料導入部温度 280℃ 質量分析計条件 イオン化法 電子イオン化法(EI) 検 出 法 選択イオンモニタリング (SIM) 測定イオン(m/z) 254 (内部標準物質:198) イオン源温度 230℃ MS 四重極温度 150℃ イオン化エネルギー 69.9 eV トランスファーライン温度 280℃ 平均回収率:90% 定量下限值: 0.0011 mg/L


3.試験材料及び方法

		目	内容				
	種(学名・株名)		オオミジンコ				
		·	(Daphnia magna Clone A)				
試験生物	入手先		英国 Sheffield 大学 (所在地 Sheffield S10				
. HAN AL 107	対昭物質.	への感受性	2UQ, United Kingdom)				
	(EC _{so})	マジスとは	48hEC ₅₀ : 0.28 mg/L 二クロム酸カリウム				
	(対照物)	質名)	(和光純薬工業製 試薬特級)				
	飼育水の		脱塩素水道水				
飼育	理控タル	(水温、明暗周期)	20±1℃				
· · ·	來現米什	(小鱼、吩唷周期)	16 時間明/8 時間暗(室内灯)				
	試験容器	 -	100 mL ガラスピーカー				
		T	透明な塩化ビニル製の蓋を設置				
		種類	脱塩素水道水				
	試験用水	硬度 (mg/L)	42				
		pH	7.9 (22°C)				
	暴露期間		2009年3月2日~2009年3月4日				
	試験濃度(設定値)		5濃度区[試験原液の含有率が80、40、				
			20、10及び5.0% (公比2.0)]				
	供試数		5 頭/試験容器				
`	連数	試験濃度区	4 連				
試験条件		対照区	4連				
	試験溶液量	,	100 mL/試験容器				
-		助剤の有無	無				
	助剤	種類	_				
	炒月リ	濃度					
		助剤対照区の連数	- '				
Ī	試験方式		半止水式				
. [換水又は流水条件		暴露開始24時間後に試験液の全量を交換				
	水温		20±1℃				
	溶存酸素濃	度(DO)	8.8~8.9 mg/L				
<u>. </u>	明暗周期		16時間明/8時間暗(室内灯)				
結 果 の 算出方法	EC ₅₀		Probit 法				

4.試験結果及び考察

項	· .		内 容
毒	性	値	48hEC ₅₀ : 0.026 mg/L(95%信頼限界:0.022~0.032 mg/L)
試	験	濃 度	測定濃度の幾何平均値
4	祭記		1

5.ミジンコの濃度-遊泳阻害曲線

Measured concentration (mg/L)

Appendix table 2-1 Measured concentrations of test item in test solutions

Stock	Measured concentration (mg/L) (Compared to concentration at each preparation %)					
solution content (%)	At the start	24 hours Before After the the		At the end	Geometric mean	
Control	n.d.	n.d.	n.d.	n.d.		
5.0	0.0082	0.0073 (89)	0.0067	0.0055 (82)	0.0068	
10	0.014	0.011 (80)	0.0088	0.0070 (80)	0.0099	
20	0.026	0.021 (81)	0.015	0.012 (79)	0.018	
40	0.054	0.047 (87)	0.031	0.027	0.038	
80	0.11	0.096 (86)	0.060	0.056 (94)	0.078	

n.d.: <0.0011 mg/L

a At the start or after the renewal

魚類急性毒性試験結果報告書

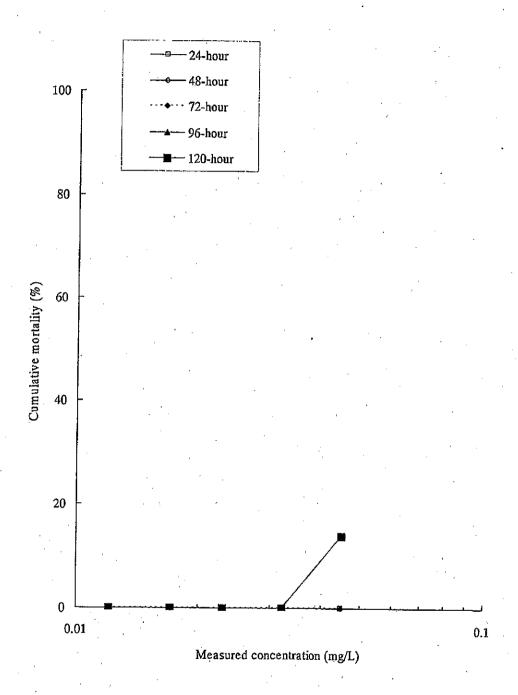
1.一般的事項

	<u> </u>
新規化学物質等の名称 (IUPAC 命名法による)	トリ-n-オクチルアミン
別 名	
C A S 番 号	1116-76-3
構造式又は示性式 (いずれも不明な場合 は、その製法の概要)	(CH2)7 CH3 $H3C -(CH2)7 N -(CH2)7 CH3$
	分子式: C ₂₄ H ₅₁ N
分 子 量	353.67
試験に供した新規化学物質の純度(%)	99.8% (GC)
試 験 に 供 し た 新 規 化学物質のロット番号	PER3605
不 純 物 の 名 称 及 び 含 有 率	不明
蒸 気 圧	
対 水 溶 解 度	不溶(50 µg/L)
1-オクタノール/水分配係数	log Pow >6.3
点	—
沸点	-
常温における性状	無色澄明液体
安 定 性	安定
	溶媒 溶解度 溶媒中の安定性
溶媒に対する溶解度等	アルコール 微溶 -
	エーテル 易溶 -
*	

2.試験溶液の被験物質濃度の分析方法

項目	方 法
	[分析試料のサンプリング]
	· 分析実施区:全試験区
	・分析頻度:暴露開始時、換水前後(暴露 96 時間後換水後は除く)
	·採取量:約100 mL(全試験区)
,	・採取方法:各試験容器の中層から採取した。
分析方法	が なが 14・日間域 存品の下層が 51未収した。
	[被験物質の定量]
	ガスクロマトグラフィー-質量分析法(GC-MS)を用い、クロマト
ŀ	グラム上の被験物質のピーク面積と内部標準物質のピーク面積の比
	より作成した検量線の回帰式に代入して GC-MS 試料中の被験物質
[絶対量を求めた。これより試験液中の被験物質濃度を算出した。
, , , , , , , , , , , , , , , , , , ,	採取した試験液について、以下のフロースキームにより前処理操作を
	行い、GC-MS 試料を調製した。
	フロースキーム
	試験液*1 100 mL
	←塩化ナトリウム 30g(電子上皿天びん)
	←酢酸エチル 30 mL (メスシリンダー)
	・振とう(10 分間)
前処理法	
	水層 酢酸エチル層
•	17.7 HIEL 17.7 17
	・ビーカーに入れた酢酸エチル層をナスフラスコに移す
	・濃縮 約1mL (ロータリーエバポレーター,約40°C)
	←内部標準溶液 ² 100 µL (マイクロシリンジ)
	GC-MS 試料
·	, ,
,	
	*1 そのまま若しくは脱塩素水道水で適宜希釈した試験液
	*2 10 mg/L トリヘキシルアミン溶液 (酢酸エチルで調製)

ガスクロマトグラフー質量分析計 ガスクロマトグラフ Agilent Technologies 製 6890 Series Plus* 質量分析計 Agilent Technologies 製 5973N MSD 自動試料注入装置 Agilent Technologies 製 7683 Series ガスクロマトグラフ条件 ラ DB-17 膜厚 0.25 μm (Agilent Technologies 製) 30 m×0.25 mm I.D. フューズドシリカ製 150°C (1 min) →280°C (3 min) カラム温度 昇温速度 30℃/min キャリアガス ヘリウム 全 流 量 14.7 mL/min 入 $1 \mu L$ 導入モード スプリット 定量条件 スプリット比 5.0 圧 172 kPa 試料導入部温度 280℃ **質量分析計条件** イオン化法 電子イオン化法(EI) 出 法 選択イオンモニタリング(SIM) 測定イオン(m/z) 254 (内部標準物質: 198) イオン源温度 230℃ MS 四重極温度 150℃ イオン化エネルギー 69.9 eV トランスファーライン温度 280℃ 平均回収率:90% 定量下限值: 0.0011 mg/L


3.試験材料及び方法

	項	E	内 容				
	種(和名・	学名・系統)	ヒメダカ (Oryzias latipes)				
	入手先		財団法人化学物質評価研究機構 久留米事業所(〒839-0801 福岡県久 留米市宮ノ陣三丁目2番7号)				
試験生物	大きさ(全	長、体重)・月齢	全長2.5±0.098 cm、体重0.11±0.011 g 月齢2ヶ月齢				
· .	対照物質へ (LC ₅₀) (対照物質名		96hLC ₅₀ : 0.34 mg/L (CuSO ₄ 換算) 硫酸銅 (II) 五水和物 (和光純薬工業製 試薬特級)				
	じゅん化期	間	17日間(2009年2月6日~2月23日)				
	飼育水の種		脱塩素水道水				
	じゅん化前	の薬浴の有無	無				
じゅん化	じゅん化方	式	流水式				
		水温、明暗周期)	24±1℃ 16 時間明/8 時間暗(室内灯)				
	餌料(種類	・量・頻度等)	コイ用配合餌料 (2C) 魚体重の 2%量/日を毎日				
	試験容器		7.8 L 容のガラス製容器 (直径 24 cm、 深さ 28 cm) 透明な塩化ビニル製の蓋を設置				
		種類	脱塩素水道水				
	試験用水	硬度(mg/L)	42				
,		pН	7.9 (22°C)				
	暴露期間		2009年2月23日~2009年2月28日				
	試験濃度(記	设定値)	5 濃度区 [試験原液の含有率が 100、 71、51、36 及び 26% (公比 1.4)]				
試験条件	供試数		7尾/試験区				
叫歌来计	試験溶液量		約 4.9 L/試験区				
		助剤の有無	無				
	助剤	種類					
		濃度	1 -				
	試験方式		半止水式				
	換水又は流7		24 時間毎に試験液の全量を交換				
	水温		24±1℃				
<i>'</i>	溶存酸素濃度	₹(DO)	7.4~7.6 mg/L				
· 1	明暗周期		16 時間明/8 時間暗(室内灯)				
結果の算出方法	LC ₅₀						

4.試験結果及び考察

項		目	内容
毒	性		96hLC ₅₀ : >0.045 mg/L
試	験湯	度	測定濃度の幾何平均値
			試験用水への溶解度 (24±1°C):0.040~0.10 mg/L (予備試験での測定値) 試験液の調製法:100 mg/L (設定) になるように供試試料と試験用水 を混合し、約 24 時間撹拌後中層を採取し、フィル ターろ過して調製した試験原液を試験用水で適宜 希釈して調製 行動や外観の異常:遊泳異常
	察 及記 事		試験は被験物質の試験用水への溶解濃度以下での試験生物に対する LC_{50} を求める試験として行った。その結果、被験物質のヒメダカに対する 96 時間 LC_{50} は >0.045 mg/L であった。試験液中の被験物質濃度は調製時濃度に対する維持率としては $46\sim89\%$ であり、 80% を下回る濃度区もみられた。しかしながら、本試験では 24 時間毎に換水を行う試験設計としており、その他の試験環境条件については適切な範囲内であったことから、本試験は試験法に準じたものであったと判断された。

5.ヒメダカの濃度-累積死亡率曲線

Appendix table 2-1 Measured concentrations of test item in test solutions

(%) "	Measured concentration (mg/L) (Compared to concentration at each preparation %)								
		24 hours		48 hours		72 hours			
	At the start	before the renewal	after the renewal	before the renewal	after the renewal	before the renewal	after the renewal	At the end	Geometric mean
- Control	n.d.	n.d.	n.d.	n.d.	n.đ.	n.d.	n.d.	n.d.	
26	0.019	0.012 (60)	0.010	0.0076 (76)	0.0073	0.0065 (89)	0.031	0.014 (46)	0.012
36	0.026	0.021 (78)	0.015	0.0097 (65)	0.012	0.0079 (65)	0.037	0.023 (64)	0.017
51	0.041	0.032 (77)	0.025	0.015 (59)	0.014	0.0097 (68)	0,044	0.024 (54)	0.023
71	0.051	0.044 (86)	0.034	0.018 (54)	0.024	0.013 (53)	0.057	0.040 (69)	0.032
100	0.074	0.059 (80)	0.039	0.034 (88)	0.031	0.021 (68)	0.077	0.056 (73)	0.045

n.d. : \leq 0.0011 mg/L

a At the start or after the renewal

要 約

試験委託者 : 環境省

表 題 : 2,3-ジクロロ-1,4-ナフトキノンの藻類 (Pseudokirchneriella subcapitata)

に対する生長阻害試験

試験番号: A080332

試 験 方 法 : 本試験は、「新規化学物質等に係る試験の方法についてく藻類生長阻害試験、

ミジンコ急性遊泳阻害試験及び魚類急性毒性試験>」 (平成 15 年 11 月 21 日 薬食発第 1121002 号, 平成 15・11・13 製局第 2 号, 環保企発第 031121002 号,

最終改正: 平成 18 年 11 月 20 日) に準拠して実施した。

1)供試生物:

単細胞緑藻類(Pseudokirchneriella subcapitata)

2)試験用水:

試験ガイドライン推奨培地

3) 暴露期間:

72時間

4)培養方式:

止水式 (開放系),振とう培養 (100 rpm)

5) 初期生物量:

前培養した藻類 5×10³ cells/mL

(指数増殖期の藻類乾燥重量:1.7×10-8 mg/cell、n=8)

6) 試験温度:

22 ℃ (暴露期間中の変動範囲は土2 ℃以内)

7) 照明:

65~75 μ E/m²/s, 白色蛍光灯で連続照明 (液面付近)

8) 試験濃度(設定値):

試験区	濃度 (mg/L)
対照区	-
助剤対照区	-
濃度区1	0. 010
濃度区2	0. 022
濃度区3	0. 048
濃度区4	0. 10
濃度区5	0. 23
濃度区6	0. 50

公比:2.2

助剤: M M-ジメチルホルムアミド、100 μ L/L (濃度一定, ただし対照区は使用せず)

9) 分析法:

高速液体クロマトグラフ (HPLC) 法

結果:

1) 試験液および試験培養液中の被験物質濃度

被験物質濃度は、暴露開始時の試験液において低濃度区側から 0.00996, 0.0219, 0.0461, 0.0904, 0.220, 0.500 mg/L であった。また、暴露開始後 72 時間の試験培養液においては、0.010, 0.022 および 0.048 mg/L 濃度区(濃度区1, 2および3)では、被験物質が検出されず (<0.0005 mg/L), 0.10, 0.23, および 0.50 mg/L 濃度区(濃度区4, 5および6)では 0.00710, 0.0497 および 0.125 mg/L であった。

ヒメダカに対する急性毒性試験(A080334)における追加実験の結果から、被験物質は試験液中で構造が変化していることが推測された。また、一般的にベンゾキノン類は水中で還元されやすく、ヒドロキノンになりやすい。よって、濃度減少の主な原因は、培養条件下での被験物質の変化が考えられた。

2) 生長速度の比較による阻害濃度

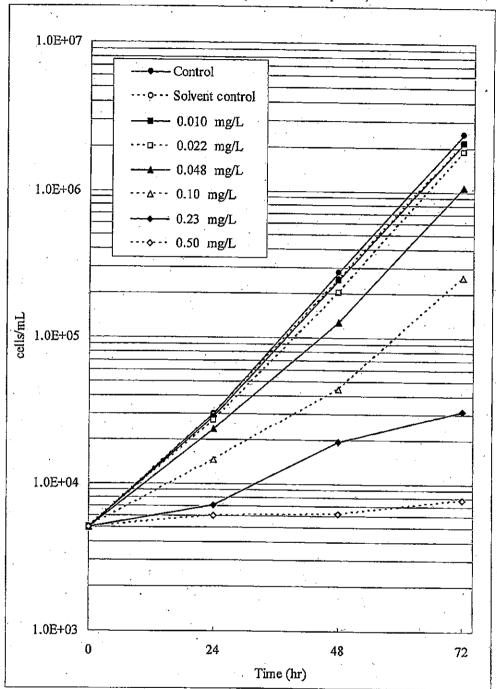
測定値の時間加重平均値より算出した阻害濃度

半数生長阻害濃度 ErC50(0-72h): 0.0724 mg/L (95%信頼区間: 0.0592~0.0885 mg/L)

最大無影響濃度 NOECr(0-72h): 0.00831 mg/L

試験液調製時の測定値より算出した阻害濃度*

半数生長阻害濃度 ErC50(0-72h): 0.131 mg/L(95%信頼区間:0.0980~0.176 mg/L)


最大無影響濃度 NOECr (0-72h): 0.0219 mg/L

* 通常,被験物質濃度が暴露期間中に減少する場合,阻害濃度の算出には測定値の時間加重平均値を用いる。しかしながら、本試験で示された生長阻害が変化物の影響を含んだ結果である可能性も否定できない。また、暴露期間中の被験物質と変化物を併せた濃度が試験液調製時の測定値と同等である可能性が推察されるため、時間加重平均値だけでなく、試験液調製時の測定値を用いた阻害濃度も算出した。

3)藻類の形態観察

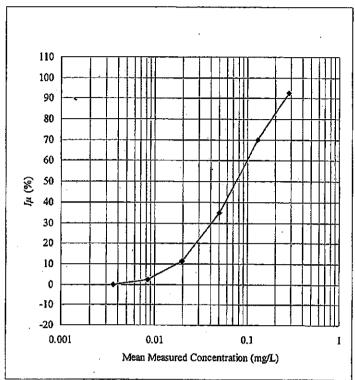

暴露開始後 72時間の顕微鏡下での細胞形態観察の結果, 濃度区5以上の濃度区では, 一部で細胞容積の拡大(膨張)が認められた。濃度区4以下の濃度区では, 細胞形態の変化(収縮, 膨張, 破裂等)や細胞凝集は認められず, また, 対照区および助剤対照区との相違もなかった。

Figure 1 Growth Curve of *Pseudokirchneriella subcapitata*(Mean biomass vs time during the 72-hour exposure)

Values in legend are given in the nominal concentration.

Figure 2 Concentration-Inhibition Curve Based on I_{μ} values Calculated from the Growth Rates 1) Calculated from the Growth Rates and the Time Weighted Mean Measured Concentrations

2) Calculated from the Growth Rates and the Measured Concentrations at the Beginning of Exposure

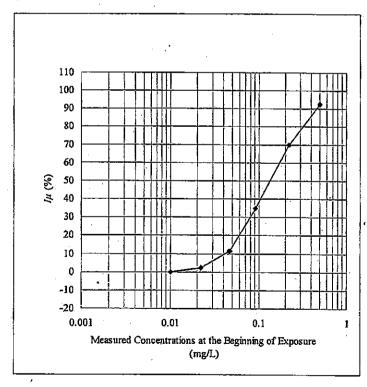


Table 4 Measured Concentration of the Test Substance in Test Cultures

Test Group	Nominal Concentration	Meas	sured Conc (Percent o	Mean ^a Measured Concentration (mg/L)		
	(mg/L)	0 Hour	24 Hours	48 Hours	72 Hours	(Percent of Nominal)
Control		<0.0005	<0.0005	<0.0005	<0.0005	- <u></u>
Solvent control	Pro-	<0.0005	<0.0005	<0.0005	<0.0005	
Conc.1	0.010	0.00996	0.00562	0.000842	<0.0005	0:00359*
***************************************	ernen ippermeeringeringerinderingeringeringerin	(100)	(56)	(8)		(36)
Conc.2	0.022	0.0219	0.0137	0.00221	<0.0005	0.00831*
		(100)	(62)	(10)	2010 2011/11/11/11/11/11/11/11/11/11/11/11/11/	(38)
Conc.3	0,048	0.0461	0.0294	0.0114	<0.0005	0.0199*
	V1VT U	(96)	(61)	(24)	<u>. </u>	(41)
Conc.4	0.10	0.0904	0.0668	0.0393	0.00710	0.0496
		(90)	(67)	(39)	(7)	(50)
Conc.5	0.23	0.220	0.162	0.0966	0.0497	0.129
	V. U J	(96)	(70)	(42)	(22)	(56)
Conc.6	0.50	0.500	0.348	0.209	0.125	0.285
DOMAIG	0.30	(100)	(70)	(42)	(25)	(57)

a: Time weighted mean

^{*:} The value of the detection limit (0.0005 mg/L) was used as value at 72 hours for calculation of the concentration of time weighted mean.

要約

試験委託者: 環境省

表 題: 2,3-ジクロロ-1,4-ナフトキノンのオオミジンコ (Daphnia magna) に対する

急性遊泳阻害試験

試験番号: A080333

試 験 方 法: 本試験は,「新規化学物質等に係る試験の方法について<藻類生長阻害試験,

ミジンコ急性遊泳阻害試験及び魚類急性毒性試験>」 (平成 15 年 11 月 21 日

薬食発第 1121002 号, 平成 15·11·13 製局第 2 号, 環保企発第 031121002 号,

最終改正:平成18年11月20日)に準拠して実施した。

1) 供試生物: オオミジンコ (Daphnia magna)

2) 試験用水: Elendt M4 medium

3) 暴露期間: 48 時間

4) 暴露方式: 半止水式(24 時間後に試験液の全量を交換)

5) 供試生物数: 20 頭/試験区 (5 頭/容器)

6) 試験温度: 20±1℃

7) 照明: 室内光, 16 時間明 (800 lux 以下) /8 時間暗

8) 試験濃度(設定値):

試験区	濃度 (mg/L)
対照区	- '
助剤対照区	_
濃度区1	0.010
濃度区2	0.018
濃度区3	0. 032
濃度区4	0.056
濃度区5	0. 10

公比 1.8

助剤: N N-ジメチルホルムアミド, 9.9 μ L/L (濃度一定, ただし対照区は使用せず)

9) 分析方法: 高速液体クロマトグラフ (HPLC) 法

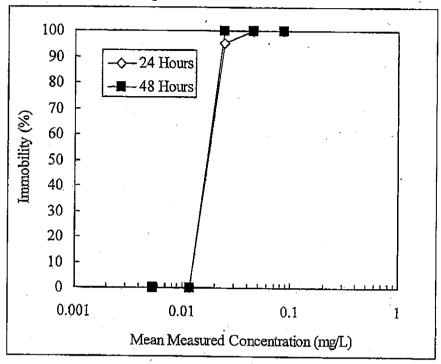
結果:

通常、被験物質濃度が暴露期間中に減少する場合、阻害濃度の算出には測定値の時間加重平均値を用いる。しかしながら、ヒメダカに対する急性毒性試験(A080334)における追加実験の結果から、被験物質は試験液中で構造が変化していることが推測され、また、一般的にベンゾキノン類は水中で還元されやすく、ヒドロキノンになりやすい。よって、本試験で示された遊泳阻害が変化物の影響を含んだ結果である可能性も否定できない。試験液調製時の測定値を被験物質と変化物を併せた濃度とみなすことができるため、時間加重平均値だけでなく、試験液調製時の測定値の算術平均値を用いた阻害濃度も算出した。

測定値の時間加重平均値から算出した阻害濃度

48 時間 EC50:

0.0170 mg/L (95%信頼限界 0.0118~0.0244 mg/L, Binomial 法)


試験液調製時の測定値の算術平均値から算出した阻害濃度

48 時間 EC50:

0.0211 mg/L (95%信頼限界 0.0152~0.0292 mg/L, Binomial 法)

Figure 1 Concentration-Immobility Curve

(1) Calculated from the time-weighted mean

(2) Calculated from the arithmetic mean of New

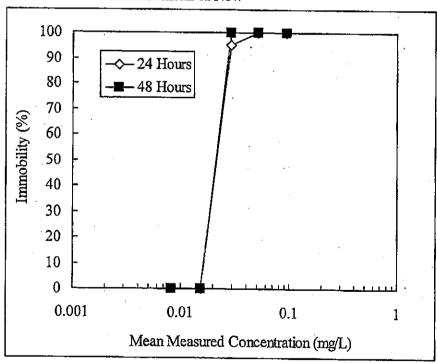


Table 5 Measured Concentrations of the Test Substance in Test Water

(Semi-Static Condition)

Test	Nominal	Measured Concentration (mg/L)						
Group	Concentration	0 Hour	24 Hours	24 Hours	48 Hours		a d h	
		New	Old	New	Old	Mean ^a	Mean ^b	
	(mg/L)		(Percent of Nominal, %)					
Control		<0.0005	<0.0005	<0.0005	<0.0005	·		
Solvent Control		<0.0005	<0.0005	<0.0005	<0.0005			
Cono 1	0.010	0.00819	0.00400	0.00820	0.00271	0.00540	0.00820	
Conc.1		(82)	(40)	(82)	(27)	(54)	(82)	
Conc.2	0.018	0.0146	0.00990	0.0158	0.00822	0:0118	0.0152	
COHU.Z		(81)	(55)	(88)	(46)	(66)	(84)	
Conc.3	0.032	0.0295	0.0210	0.0289	0.0194	0.0244	0.0292	
Conc.5		(92)	(66)	(90)	(61)	(76)	(91)	
Conc.4	0.056	0.0515	0.0403	0.0508	0.0384	0.0450	0.0512	
		(92)	(72)	(91)	(69) ⁻	(80)	(91)	
Conc.5	0.10	0.0961	0.0786	0.0938	0.0743	0.0854	0.0950	
	0.10	(96)	(79)	(94)	(74)	(85)	(95)	

a: Time-weighted mean

b: Arithmetic mean of New

New: New test water freshly prepared

Old: Old test water immediately prior to renewal or at the end of the exposure