Draft - Not for Implementation FDA guidance, "Guidance for Industry: Biological Product Deviation Reporting for Blood and Plasma Establishments," dated October 2006 (Ref. 33). Also, when a complication of blood collection or transfusion (e.g., involving *T. cruzi*) is confirmed to be fatal, you must notify FDA in accordance with 21 CFR 606.170(b). # C. Reporting the Test Implementation - 1. If you are a licensed blood establishment and you begin using a licensed serological test for the detection of antibodies to *T. cruzi* according to the manufacturer's product insert at your facility, then you must notify us of the testing change in your Annual Report (AR), in accordance with 21 CFR 601.12(d). If you already have an approved supplement to your BLA to use a contract laboratory to perform infectious disease testing of blood products, and the contract laboratory will now perform a serological test for antibodies to *T. cruzi*, you must report this change in your AR (21 CFR 601.12(d)). - 2. If you are a licensed blood establishment and you use a new contract laboratory to perform a serological test for antibodies to *T. cruzi* (and the laboratory already performs infectious disease testing for blood products), then you must report this change by submission of a "Changes Being Effected" supplement, in accordance with 21 CFR 601.12(c)(1) and (c)(5). If your contract laboratory has not previously performed infectious disease testing for blood products, then you must report this change as a major change in a prior approval supplement, in accordance with 21 CFR 601.12(b). ## IV. RECOMMENDATIONS FOR DONORS OF HCT/Ps ## A. Donor Screening—Risk Factors or Conditions Under 21 CFR 1271.75(d), you must determine to be ineligible any potential donor who is identified as having a risk factor for or clinical evidence of relevant communicable disease agents or diseases. Ineligible potential donors include those who exhibit one or more of the following conditions or behaviors. - Persons who have had a medical diagnosis of *T. cruzi* infection based on symptoms and/or laboratory results. - Persons who have tested positive or reactive for *T. cruzi* antibodies using an FDA-licensed or investigational *T. cruzi* donor screening test (Ref. 1). Draft - Not for Implementation # B. Donor Testing - 1. You must test blood specimens from all HCT/P donors for antibodies to *T. cruzi* using an FDA-licensed donor screening test (21 CFR 1271.80(c)). - 2. Any HCT/P donor whose specimen tests negative (or non-reactive) for antibodies to *T. cruzi* may be considered to be negative (or non-reactive) for purposes of making a donor eligibility determination. - 3. Any HCT/P donor whose specimen tests positive (or reactive) for antibodies to *T. cruzi* is ineligible to be a donor (21 CFR 1271.80(d)(1)). # Draft - Not for Implementation #### V. REFERENCES - Guidance for Industry: Eligibility Determination for Donors of Human Cells, Tissues, and Cellular and Tissue-Based Products (HCT/Ps), August 2007. http://www.fda.gov/cber/tissue/docs.htm - 2. Dorn, P. L., L. Perniciaro, M. J. Yabsley, D. M. Roellig, G. Balsamo, J. Diaz and D. Wesson (2007). "Autochthonous transmission of *Trypanosoma cruzi*, Louisiana." <u>Emerg Infect Dis</u> 13(4): 605-7. - 3. WHO Expert Committee on the Control of Chagas Disease (2000: Brasilia, Brazil), Control of Chagas Disease: second report of the WHO expert committee, 2002. - 4. Bellotti, G., E. A. Bocchi, A. V. de Moraes, M. L. Higuchi, M. Barbero-Marcial, E. Sosa, A. Esteves-Filho, R. Kalil, R. Weiss, A. Jatene and F. Pileggi (1996). "In vivo detection of *Trypanosoma cruzi* antigens in hearts of patients with chronic Chagas' heart disease." Am Heart J 131(2): 301-7. - 5. Vago, A. R., A. M. Macedo, S. J. Adad, D. D. Reis and R. Correa-Oliveira (1996). "PCR detection of *Trypanosoma cruzi* DNA in oesophageal tissues of patients with chronic digestive Chagas' disease." <u>Lancet</u> 348(9031): 891-2. - 6. Añez, N., H. Carrasco, H. Parada, G. Crisante, A. Rojas, C. Fuenmayor, N. Gonzalez, G. Percoco, R. Borges, P. Guevara and J. L. Ramirez (1999). "Myocardial parasite persistence in chronic chagasic patients." Am J Trop Med Hyg 60(5): 726-32. - 7. Jones, E.M., D. G. Colley, S. Tostes, E. R. Lopes, C. L. Vnencak-Jones, and T. L. McCurley (1993). "Amplification of a *Trypanosoma cruzi* DNA sequence from inflammatory lesions in human chagasic cardiomyopathy." <u>Am J Trop Med Hyg</u> 48(3): 348-357. - 8. Vago, A. R., L. O. Andrade, A. A. Leite, D. d'Avila Reis, A. M. Macedo, S. J. Adad, S. Tostes Jr., M.C. V. Moreira, G. B. Filho, S. D. J. Pena (2000). "Genetic characterization of Trypanosoma cruzi directly from tissues of patients with chronic Chagas disease: Differential distribution of genetic types into diverse organs." American Journal of Pathology 156(5): 1805-1809. - 9. Virreira, M., G. Serrano, L. Maldonado, and M. Svoboda (2006). "Trypanosoma cruzi: Typing of genotype (sub)lineages in megacolon samples from bolivian patients." Acta Tropica 100(3): 252-255. - 10. da Silva Manoel-Caetano, F., C.M. Carareto, A. A. Borim, K. Miyazaki, and A.E. Silva (2008). "kDNA gene signatures of Trypanosoma cruzi in blood and oesophageal mucosa from chronic chagasic patients." <u>Trans R Soc Trop Med Hyg</u> 102(11): 1102-1107. ## Draft - Not for Implementation - 11. Blood Products Advisory Committee, 74th Meeting, September 12, 2002 http://www.fda.gov/ohrms/dockets/ac/02/transcripts/3892t1-03.pdf. - 12. Blood Products Advisory Committee, 89th Meeting, April 26-27, 2007 http://www.fda.gov/ohrms/dockets/ac/07/minutes/2007-4300M.pdf. - Leiby, D. A., R. M. Herron, Jr., E. J. Read, B. A. Lenes and R. J. Stumpf (2002). "Trypanosoma cruzi in Los Angeles and Miami blood donors: impact of evolving donor demographics on seroprevalence and implications for transfusion transmission." Transfusion 42(5): 549-55. - 14. Strong, D. M. and K. Shoos-Lipton (2006). "Information Concerning Implementation of a Licensed Test for Antibodies to *Trypanosoma cruzi*." AABB Bulletin #06-08. - 15. Saulnier Sholler, G. L., S. Kalkunte, C. Greenlaw, K. McCarten and E. Forman (2006). "Antitumor activity of nifurtimox observed in a patient with neuroblastoma." <u>J Pediatr Hematol Oncol</u> 28(10): 693-5. - 16. Young, C., P. Losikoff, A. Chawla, L. Glasser and E. Forman (2007). "Transfusion-acquired *Trypanosoma cruzi* infection." <u>Transfusion</u> 47(3): 540-4. - 17. Cimo, P. L., W. E. Luper and M. A. Scouros (1993). "Transfusion-associated Chagas' disease in Texas: report of a case." <u>Tex Med</u> 89(12): 48-50. - 18. Leiby, D. A., B. A. Lenes, M. A. Tibbals and M. T. Tames-Olmedo (1999). "Prospective evaluation of a patient with *Trypanosoma cruzi* infection transmitted by transfusion." N Engl J Med 341(16): 1237-9. - Lane, D. J., G. Sher, B. Ward, M. Ndao, D. Leiby, B. Hewlett and E. Bow (2000). "Investigation of the second case of transfusion transmitted Chagas disease in Canada." 42nd Annual Meeting of the American Society of Hematology, San Francisco, CA. - CDC. C.F. Zayas, C. Perlino, A. Caliendo, D. Jackson, E. J. Martinez, P. Tso, T. G. Heffron, J. L. Logan, B. L. Herwaldt, et.al. (2002). "Chagas disease after organ transplantation--United States, 2001." MMWR Morb Mortal Wkly Rep 51(10): 210-2. - CDC. L. Mascola, B. Kubak, S. Radhakrishna, T. Mone, R. Hunter, D. A. Leiby, M. Kuehnert, A. Moore, F. Steurer, G. Lawrence and H. Kun (2006). "Chagas disease after organ transplantation--Los Angeles, California, 2006." MMWR Morb Mortal Wkly Rep 55(29): 798-800. - 22. Leiby, D. A., F. J. Rentas, K. E. Nelson, V. A. Stambolis, P. M. Ness, C. Parnis, H. A. McAllister, Jr., D. H. Yawn, R. J. Stumpf and L. V. Kirchhoff (2000). "Evidence of *Trypanosoma cruzi* infection (Chagas' disease) among patients undergoing cardiac surgery." Circulation 102(24): 2978-82. # Draft - Not for Implementation - 23. Leiby, D. A., E. J. Read, B. A. Lenes, A. J. Yund, R. J. Stumpf, L. V. Kirchhoff and R. Y. Dodd (1997). "Seroepidemiology of *Trypanosoma cruzi*, etiologic agent of Chagas' disease, in US blood donors." <u>J Infect Dis</u> 176(4): 1047-52. - 24. Kirchhoff, L. V., P. Paredes, A. Lomelí-Guerrero, M. Paredes-Espinoza, C. S. Ron-Guerrero, M. Delgado-Mejia and J. G. Peña-Muñoz (2006). "Transfusion-associated Chagas disease (American trypanosomiasis) in Mexico: implications for transfusion medicine in the United States." <u>Transfusion</u> 46(2): 298-304. - 25. Schmunis, G. A. (1999). "Prevention of transfusional Trypanosoma cruzi infection in Latin America." Mem Inst Oswaldo Cruz 94 (Suppl 1): 93-101). - 26. Bern, C., S. P. Montgomery, L. Katz, S. Caglioti and S. L. Stramer (2008). "Chagas disease and the US blood supply." <u>Curr Op Infect Dis</u> 21:476–482. - 27. Ben Younès-Chennoufi, A., M. Hontebeyrie-Joskowicz, V. Tricottet, H. Eisen, M. Reynes and G. Said (1988). "Persistence of *Trypanosoma cruzi* antigens in the inflammatory lesions of chronically infected mice." <u>Trans R Soc Trop Med Hyg</u> 82 (1): 77-83. - 28. Buckner, F. S., A. J. Wilson and W. C. Van Voorhis (1999). "Detection of live *Trypanosoma cruzi* in tissues of infected mice by using histochemical stain for β-galactosidase." Infect Immun 67(1): 403-9. - Morocoima, A., M. Rodriguez, L. Herrera and S. Urdaneta-Morales (2006). "Trypanosoma cruzi: experimental parasitism of bone and cartilage." <u>Parasitol Res</u> 99(6): 663-8. - 30. Herrera, L., C. Martínez, H. Carrasco, A. M. Jansen and S. Urdaneta-Morales (2007). "Cornea as a tissue reservoir of *Trypanosoma cruzi*." Parasitol Res 100(6): 1395-9. - 31. Shippey, S. H., 3rd, C. M. Zahn, M. M. Cisar, T. J. Wu and A. J. Satin (2005). "Use of the placental perfusion model to evaluate transplacental passage of *Trypanosoma cruzi*." <u>Am J Obstet Gynecol</u> 192(2): 586-91. - CDC. S. L. Stramer, R. Y. Dodd, D. A. Leiby, R. M. Herron, L. Mascola, L. J. Rosenberg, S. Caglioti, E. Lawaczeck, R. H. Sunenshine, M. J. Kuehnert, S. Montgomery, C. Bern, A. Moore, B. Herwaldt, H. Kun and J. R. Verani (2007). "Blood donor screening for Chagas disease--United States, 2006-2007." MMWR Morb Mortal Wkly Rep 56(7): 141-3. - 33. Guidance for Industry: Biological Product Deviation Reporting for Blood and Plasma Establishments, October 2006, http://www.fda.gov/cber/gdlns/devbld.htm. # 医薬品 研究報告 調査報告書 | <u></u> | · · · · · · · · · · · · · · · · · · · | 区采的 切九和百 | 湖里和白雪 | | | |-------------------------|---|--|---|--|--| | 識別番号・報告回数 | | 報告日 | 第一報入手日 | 新医薬品等の区分 | 総合機構処理欄 | | WANTE OF TALLIES | | | 2009. 4. 15 | 該当なし | | | 一般的名称 | 人赤血球濃厚液 | • | Nóbrega AA, Garcia | | | | 販売名(企業名) | 赤血球濃厚液-LR「日赤」(日本赤十字社)
照射赤血球濃厚液-LR「日赤」(日本赤十字
社) | 研究報告の公表状況 | Obara MT, Costa E,
Araujo WN. Emerg Ir
2009 Apr;15(4):653-5 | fect Dis. | | | 2006年1月~11月
の摂取による経口 | るアサイー果実摂取によるシャーガスが
にブラジルアマゾンのパラー州で、急性
伝播の可能性が判明した。 | ヒシャーガス病合計178症(| | | 使用上の注意記載状況・
その他参考事項等 | | 研 た。輸血歴、臓器
われた会合で同じ | した11例は、血液スメア検体の観察で原移植歴、森林地帯での滞在、サシガメに
込のを食べており、アサイーのペースト | こ刺されたことについては?
やジュースの摂取が共通の | 全員が否定した。11% | 名中5名は、9月15日に行 | | | 報 | るサシガメの排泄物が混入した可能性 | か考えられた。 | | | 血液を介するウイルス、
細菌、原虫等の感染
vCJD等の伝播のリスク | | 概要 | | · | | | | | | | | | : | · | | | | | | | | | | 設告企業の意見 | | 今後の対応 | | 1 | | | ーガス病のアウトブレイクにおいて、ア
経口伝播の可能性が判明したとの報 | 日本赤十字社は、輸血原無を確認し、帰国(入国)ガス病の既往がある場合米出身献血者について保と安定供給のための第等の開発と献血制限に関る。今後も引き続き情報の | 後4週間は献血不適
には献血不適として
ま、厚生労働科学研
行興感染症等に対す
引する研究」班と共同 | iとしている。また、シャー
いる。日本在住の中南
究「献血血の安全性確
る検査スクリーニング法 | | | | | · I IX O J I C III A C I I TAV | 0.2/2(1-2) , 2, 0,0 | | ω) | # Oral Transmission of Chagas Disease by Consumption of Açaí Palm Fruit, Brazil Aglaêr A. Nóbrega, Marcio H. Garcia, Erica Tatto, Marcos T. Obara, Elenild Costa, Jeremy Sobel, and Wildo N. Araujo In 2006, a total of 178 cases of acute Chagas disease were reported from the Amazonian state of Pará, Brazil. Eleven occurred in Barcarena and were confirmed by visualization of parasites on blood smears. Using cohort and case—control studies, we implicated oral transmission by consumption of açaí palm fruit. Chagas disease (American trypanosomiasis) chronically infects ≈10 million persons in Latin America (I). The etiologic agent is *Trypanosoma cruzi*, which is transmitted by bloodsucking triatomine insects. Other modes of transmission are transfusional, congenital, and oral (foodborne) (2). Oral transmission occurs by consumption of foods contaminated with triatomines or their feces or by consumption of raw meat from infected mammalian sylvatic hosts (3). The precise stage of food handling at which contamination occurs is unknown. The first outbreak of orally transmitted Chagas disease in Brazil was reported in 1965 (4). Two outbreaks were associated with consumption of sugar cane juice (5,6). In these outbreaks, the incubation period was ≈22 days, compared with 4–15 days for vectorial transmission and 30–40 days for transfusional transmission (7). Chagas disease has not been considered endemic in the Brazilian Amazon region. The first Amazonian outbreak of acute Chagas disease was reported in 1968; oral transmission was suspected (8). During 1968–2005, a total of 437 cases of acute Chagas disease were reported in this region. Of these cases, 311 were related to 62 outbreaks in which the suspected mode of transmission was consumption of açai (9). Açaí is the fruit of a palm of the family Aracaceae (Figure 1, panel A); it is crushed to produce a paste or beverage. Author affiliations: Brazilian Ministry of Health, Brasilia, Brazil (A.A. Nóbrega, M.H. Garcia, E. Tatto, M.T. Obara, W.N. Araujo); Secretariat of Public Health, Belem, Brazil (E. Costa); Centers for Disease Control and Prevention, Atlanta, Georgia, USA (J. Sobel); and Gonçalo Muniz Institute, Salvador, Brazil (W.N. Araujo) DOI: 10.3201/eid1504.081450 Most of the Amazonian population consumes açaí juice daily. Contamination is believed to be caused by triatomine stools on the fruit or insects inadvertently crushed during processing (10). There are no reports of collection of açaí for laboratory testing during an outbreak of acute Chagas disease. Because outbreaks with high attack rates occur in small groups whose members all consume the same foods, açaí has not been epidemiologically implicated in transmission of this disease. During January-November 2006, a total of 178 cases of acute Chagas disease were reported in Pará State, Brazil, in the Amazon basin (Ministry of Health, unpub. data). Eleven of these cases occurred in Barcarena (population 63,268) (11) (Figure 1, panel B). All patients had symptom onset in September and October. Of the 11 case-patients, 5 were staff members at a health post who shared a meal at a staff meeting on September 15. We attempted to identify risk factors for illness. #### The Study We conducted a retrospective cohort study of staff members at the health post who participated in the meeting on September 15. A case-patient was any person who participated in the meeting and had a positive direct parasitologic examination for T. cruzi or positive serologic results and clinical evidence of acute Chagas disease. A noncase was any person who participated in the meeting and had negative test results for T. cruzi. We also conducted a 1:3 case-control study (11 case-patients and 34 controls matched by sex and age) that included patients with laboratory confirmed cases from Barcarena, A case-patient was any person in whom during September 1-October 15 T. cruzi was found by direct parasitologic examination, irrespective of signs or symptoms of disease, or who had positive serologic results and clinical evidence of disease. This interval was based on date of symptom onset of the first and last case-patient and a reported incubation period of 3-22 days for orally transmitted disease. Controls were age- and sex-matched residents of case-patient neighborhoods who had negative serologic results for T. cruzi. Parasitologic examinations were conducted for casepatients by using quantitative buffy coat test, thick blood smear, or buffy coat test (the latter 2 tests included Giemsa staining). Serologic tests were conducted by using indirect hemagglutination test, ELISA, or indirect immunofluorescent test. An immunoglobulin (Ig) M titer ≥40 was considered positive. Controls had nonreactive IgM and IgG titers. We ruled out leishmaniasis in all persons with positive serologic results for *T. cruzi* by using an immunofluorescent test for IgM to *Leishmania* spp. (12). We conducted an entomologic investigation during December 11-16, 2006, at the homes of 5 case-patients and in forested areas near the homes of 2 case-patients; at