OECD SIDS

1-CHLORO-2-NITROBENZENE

DATE: 26-NOV-2003 SUBSTANCE ID: 88-73-3

Reliability:

(2) valid with restrictions

no information about GLP

25-MAR-2003

(80) (115)

Type:

other: single-strand DNA-breaks

Species:

mouse

Strain: CD-1Route of admin.: i.p.

Exposure period:

single application

Doses: Result: 60 mg/kg bw

positive

Method:

other: 8 mice, 4 h post appl. nuclei were isolated from liver and kidney cells, DNA damage was evaluated by alkaline elution technique was used, coupled with a microfluorometric method

Sex: male

for DNA assay.

Year: GLP: 1982 no data

Test substance:

other TS: no data on purity

Result:

effects: an increased elution rate in alkali of DNA from

liver and kidney was obtained

Reliability:

(2) valid with restrictions

no data on purity and GLP, only 1 dose used

Flag:

Critical study for SIDS endpoint

25-MAR-2003 (19)

5.7 Carcinogenicity

Species: Strain:

rat

Sex: male

Route of administration: oral feed

Exposure period: 18 months Frequency of treatment: daily

Post exposure period:

6 months

other: CD

0, 500, 1000 or 2000 ppm (= ca. 0, 37.5, 75 or 150

mg/kg bw/d) ; see method

Control Group:

yes, concurrent no treatment

Method:

other: s. freetext

Year:

1978

GLP:

no data

Test substance:

other TS: purity: 97-99 %

Method:

25 rats/group,1000 or 2000 ppm for 6 mo., 500 or 1000 ppm for another 12 mo; complete gross necropsy and histology on certain organs (lung, liver, spleen, kidney, adrenal, heart, bladder, stomach, intestines, reproductive organs,

pituitaries), on all grossly abnormal organs and tumour masses, statistical methods: Fisher Exact Test, Bonferroni

correction

Remark:

pathological examination was not performed of animals that

died within the first six months

Result:

no information on body weight gain

multiple tumours at the low dose only and late in life: usually a pituitary adenoma along with either a stomach

papilloma, adrenal tumour, thyroid adenocarcinoma, lymphosarcoma, choliangosarcoma of the liver or

subcutaneous fibroma

incidences: low dose level:7/22, high dose level:1/19, simultaneous control: 1/22, pooled control: 14/111

OECD SIDS 5 TOXICITY 1-CHLORO-2-NITROBENZENE

DATE: 26-NOV-2003

SUBSTANCE ID: 88-73-3

Reliability:

(2) valid with restrictions

study doesn't meet the criteria of today (number of animals

too low, time of duration too short, doses too high),

reported in brief

Flag:

Critical study for SIDS endpoint

16-JUN-2003

(110)

Species:

mouse CD-1

daily

Sex: male/female

Strain: Route of administration: oral feed

Exposure period: 18 months

Frequency of treatment:

Post exposure period:

Doses:

3 months 0, 1500, 3000 or 6000 ppm (= ca.0, 225, 450 or 900

mg/kg bw/d)

· Control Group:

yes, concurrent no treatment

Method:

other: s. freetext

Year: GLP: 1978 no data

Test substance:

other TS: purity: 97-99 %

Method:

25 mice/sex/group, 3000 or 6000 ppm for 8 mo., 1500 or 3000 ppm for another 10 mo; complete gross necropsy, histology on certain organs (lung, liver, spleen, kidney, adrenal, heart, bladder, stomach, intestines, reproductive organs), on all grossly abnormal organs and tumour masses , statistical

methods: Fisher-Exact Test, Bonferroni correction

Remark:

pathological examination was not performed of animals that

died within the first six months

Result:

no information on body weight gain significant increase in hepatocellular carcinomas in

female mice at both dose levels and in male mice at

the low dose level

incidences of hepatocellular carcinomas:

low dose level: 7/17, high dose level: 3/16, simultaneous

control: 3/18, pooled control: 7/99;

female mice:

low dose level: 5/22, high dose level: 5/19, simultaneous

control: 0/20, pooled control: 1/102

Reliability:

(2) valid with restrictions

study doesn't meet the criteria of today (number of animals

too low, time of duration too short, doses too high),

reported in brief

Flag:

Critical study for SIDS endpoint

16-JUN-2003

(110)

5.8.1 Toxicity to Fertility

Type:

Two generation study

Species:

mouse male/female

Sex: Strain:

other: Swiss CD-1

Route of administration:

gavage

Exposure Period:

see type and remarks

Frequency of treatment:

Premating Exposure Period

7 d

daily

male: female:

7d

Duration of test:

34 weeks

90

UNEP PUBLICATIONS

1-CHLORO-2-NITROBENZENE DATE: 26-NOV-2003

SUBSTANCE ID: 88-73-3

Doses:

0, 40, 80 or 160 mg/kg bw/d dissolved in corn oil

Control Group:

yes, concurrent vehicle

NOAEL F1 Offspring: NOAEL F2 Offspring: ca. 160 mg/kg bw ca. 160 mg/kg bw

Method:

other: NTP Continuous Breeding Protocol, see also ME

Year:

1992 yes

GLP: Test substance:

other TS: purity: > 99 %

Method:

NTP Continuous Breeding Protocol: 20 ps/group, 40 ps (contr.), exposure period: F0: 7d prior to cohousing, 98d of continuous breeding. Last litter from F0, control and high dose groups were reared, weaned, and kept until mating. Siblings received the same treatment as their parents. At sexual maturity, 20 non-sibling males and females were cohabited for 7 days and housed singly through delivery, until sacrifice. Exam.: symtoms, bw gain, water consumption;

F0,F1: contr,160 mg-gr.: spleen weight, methb; F0,F1:

fertility indices; F1(m): testes, epididymis, F1(f): vaginal

cytolo

Result:

Conclusion:

In the presence of altered somatic and selected organ weights 2-chloronitrobenzene (2CNB) did not alter

reproductive function in either generation (NOEL 160 mg/kg bw); thus, 2CNB is not a selective reproductive toxicant.

FO mice:

Mortality: 2,2,2,3 control to high dose gr., 160 mg-group: increased terminal bw and spleen weights; 80 mg-gr.(1m), 160

mg-gr.(3m): with hepatocellular degeneration;

160 mg-gr.: methaemoglobinaemic, during the first 10 d mice were slightly inactive post dosing, 3 lactating females were cyanotic for up to 2 weeks; no other signs of clin.l

toxicity

F0-fertility and reproductive parameters were not affected

F1-pups:

in the final litter of the holding period following the continuous breeding phase, F1 pup weight gain dur-

ing suckling was lower in all treated groups;

at weaning, F1 pups in the 160 mg/kg bw/d group weighed

10-13% less than controls, all other fertility and

reproductive parameters were not affected; F1 mice (only control and high dose group): no signs of clin. tox. observed, 160 mg/kg bw/d:

significantly lowered body weights at weaning but sign. heavier than controls at mating and at terminal necropsy; right epididymis, kidney/adrenals(m), spleen and liver weights increased, seminal vesicle-to-body weight ratio was

sign. decreased, sign. methaemoglobinaemia;

none of the fertility and reproductive parameters examined were affected in F1 mice, i.e., epididymal sperm parameters (motility, count and percentage of abnormal sperms) and

estrous cycle length and estrual cyclicity

Reliability: Flag:

(1) valid without restriction Critical study for SIDS endpoint

27-AUG-2001

(20) (76) (80)

Type: Species: other: rat

Sex:
Strain:
Route of administration:

male/female other: F344/N inhalation

UNEP PUBLICATIONS

1-CHLORO-2-NITROBENZENE

SUBSTANCE ID: 88-73-3

DATE: 26-NOV-2003

Exposure Period:

Frequency of treatment:

Doses:

6 h/d, 5 d/w

0, 4.5, 9 or 18 ppm (approx. 0, 28.8, 57.6, 115.2

mg/m3)

13 w

Control Group:

yes, concurrent no treatment

Method:

other: 10 rats/sex/group, reproduct. system evaluation: vaginal cytology, sperm morphology, necropsy body and

reproductive tissue weights, sperematozoal data,

spermatogenesis, oestrous cycle length, percent of cycle spent

in various

Year: GLP: 1993 ves

Test substance:

other TS: purity: 99 %

Remark:

see chapter 5.4.

Result:

Flag:

females: no effects observed

males, 18 ppm: decreases in cauda epididymis weights (6.8%), and in the spermatid count and spermatid heads/testis (ca.

13%)

Reliability:

(1) valid without restriction Critical study for SIDS endpoint

25-MAR-2003

(44) (80)

Type: Species: Sex:

other: rat. male

Strain:

Fischer 344 gavage

Route of administration:

single application

Exposure Period: Frequency of treatment:

once

Doses:

150 mg/kg bw

Control Group:

ves

Method:

other: 5or 6 rats, sacrifice on d1 and d25 post application, evaluation of testes weight, testicular histopathology, sperm production

Year: 1988 GLP: no data

Test substance:

other TS: no data

Result:

no effect on testicular histopathology (at 1 d) or testes

weight and daily sperm production (at 25 d)

Reliability:

(4) not assignable

lack of information

25-MAR-2003

(65)

Type: Species: Sex:

Strain:

other: mouse male/female B6C3F1 inhalation

Route of administration:

13 w

Exposure Period: Frequency of treatment:

6 h/d, 5 d/w

Doses:

0, 4.5, 9 or 18 ppm (approx. 0, 28.8, 57.6, 115.2

mg/m3)

Control Group:

yes, concurrent no treatment

OECD SIDS

1-CHLORO-2-NITROBENZENE

DATE: 26-NOV-2003

5. TOXICITY

SUBSTANCE ID: 88-73-3

Method:

other: 10 rats/sex/group, reproductive system evaluation:

vaginal cytology, sperm morphology, necropsy body and

reproductive tissue weights, spermatocoal data,

spermatogenesis, estrous cycle length, percent of cycle spent

in various

Year:

1993 yes

GLP:

Test substance: other TS: purity: 99 %

Remark:

see chapter 5.4

Result:

male, 4.5, 9, 18 ppm: decreased sperm motility

females: increased terminal body weight; no reproductive

effects observed

Reliability:

(1) valid without restriction Critical study for SIDS endpoint

Sprague-Dawley

Flag: 03-SEP-2001

(20) (44) (80)

5.8.2 Developmental Toxicity/Teratogenicity

Species:

rat

Sex: female

Strain:

Route of administration: gavage

Exposure period:

days 6-15 of gestation

Frequency of treatment:

daily 21 d

Duration of test:
Doses:

0, 25, 75, or 150 mg/kg bw/d dissolved in corn oil

Control Group:

yes, concurrent vehicle

NOAEL Maternal Toxity:

ty: ca. 25 mg/kg bw

Method:

other: 25 females/group, due to severe mat. tox. and mortality the $\,$ 150 mg-level was terminated prior to scheduled sacrifice

Year:

1986

GLP: Test substance: yes other TS: purity: commercial

Result:

mortality:

150 mg-gr.: due to severe toxicity and high mortality rate of the dams, all females were terminated prior to sheduled

sacrifice, 75 mg-group: 1/25;

general toxicity:

75 mg/kg bw/d: gest.-d. 6-10: reduced body weight gain

(slight but not significant) and

reduced food consumption; recovery later in gestation; urinary staining, alopecia; maternal reproductive parameters comparable to controls, mean number of early resorptions and

post implantation loss slightly increased (post implantation

loss in the respective control very low when compared to

historical control; values range: 0-0.9)

25 mg/kg bw/d: no evidence of maternal toxicity

developmental toxicity:

fetal body weight comparable to control

variations: cervical #7 ribs at 25 mg-gr (1.1%) and sign. at 75 mg-gr (2%); 13 full pair of ribs with lumbar #1 rudimentary ribs in controls, at 25 mg-, 75 mg-gr increased,

but not sign.;

12 full pair of ribs with #13 unilateral full rib and/or rudimentary rib(s) in controls and in 25 mg-gr. increased,

but not sign.

Reliability:

(2) valid with restrictions

highest dose was too high

Flag: 25-MAR-2003

Critical study for SIDS endpoint

(67) (105)

OECD SIDS 5. TOXICITY

1-CHLORO-2-NITROBENZENE DATE: 26-NOV-2003

Sex: female

SUBSTANCE ID: 88-73-3

Species: Strain:

rat

Sprague-Dawley

Route of administration: Exposure period:

gavage d6-d15

Frequency of treatment:

daily

Doses:

0, 100 mg/kg bw in corn oil yes, concurrent vehicle

Control Group:

Test substance:

other: NOAEL developmental toxicity:

ca. 100 mg/kg bw

Method:

other: 25 females/group, only one dose

Year:

1984

GLP:

yes other TS: purity: commercial

Remark:

The study was intended to clarify the observations of the

study of Monsanto, 1986

Result:

d6-10: slight maternal body weight loss accompanied by

reduction in food consumption for d6-16, maternal

reproductive parameters were not affected, fetal body weight

comparable to the respective controls; no teratogenic

effects were observed

Reliability:

(2) valid with restrictions

only one dose used

Flaq:

Critical study for SIDS endpoint

25-MAR-2003

(49)

5.8.3 Toxicity to Reproduction, Other Studies

5.9 Specific Investigations

5.10 Exposure Experience

Remark:

based on clinical and laboratory evaluation of cyanosis cases during a 10-year period a number of cyanogenic aromatic nitro compounds were ranked in descending order of relative hazard relating to their cyanogenic potential observed in exposed industrial workers (rank 1 = most potent, rank 13 = least potent): o-chloronitrobenzene was classified in rank 7; laboratory evaluation showed that total oxygenatable haemoglobin in some cases, notably after be expected from methaemoglobin analysis

Flag:

(unspecified route of absorption) Critical study for SIDS endpoint

(59)

Remark:

experience with human exposure: a number of the more important aromatic nitrocompounds were ranked showing their commparative hazard ratings for cyanosis, anaemia and overall toxicity (the degree of hazard ranges from 1 = slight hazard to 6 = severe hazard): for o-chloronitrobenzene, the degree of hazard is 4 concerning cyanosis hazard, 2 concerning anaemia hazard and 3 concerning

over-all toxic hazard (no further data)

(60)

OECD SIDS

1-CHLORO-2-NITROBENZENE

DATE: 26-NOV-2003

SUBSTANCE ID: 88-73-3

Remark:

all 325 records of industrial chemical cyanosis poisoning

in

Britain notified to the inspectorate from 1961 to 1980 were scrutinised: the cases occurred mainly during chemical or dyestuff manufacture; a total of 50 cases of chemical cyanosis syndrome due to chloronitrobenzene were reported; 23 (46 %) cases were "early cases", i.e., the symptoms developed while at work on the same day of exposure, and 27 (54 %) cases were "delayed cases", i.e., the symptoms developed insidiously or some definite time after the "working" day on which the poisoning occurred (the route of

absorption is not described in detail for each test

compound,

the most cases resulted from skin absorption and/or inhalation; in this study, the isomer(s) of chloronitro-

benzene is/are not clearly specified)
Critical study for SIDS endpoint

Flag:

14-Aug-2001 (91)

Remark:

experience with human exposure: in chloronitrobenzene poisoning cardiac complications appear to be more frequent and more serious than in aniline poisoning and gastrointestinal irregularities (anacidity) also appear to be quite common (no further data, isomer(s) of chloronitrobenzene not specified)

(13) (14)

Remark:

experience with human exposure: four workmen were reported

who were hospitalized as the result of exposure to a

mizture

of o- and p-chloronitrobenzene; these cases resulted from two to four days exposure and all were cyanotic; headache

and weakness accompanied the cyanoses

Flag:

Critical study for SIDS endpoint

(84)

Remark:

The exposition against a mixture of 2-chloro- and 4-chloronitrobenzene caused severe intoxications which exceeds the signs of intoxication during repair of a unit

for isolation of the isomers. As symtoms cyanotic

appearance

and collapse were described. Hb-content was decreased up to 65 % of the normal value. During the recovery period the patients suffered from difficulty in breathing and

sensation

of dizziness. Within 7 weeks Hb content increased to 80 $\mbox{\ensuremath{\$}}$

of

the normal value.

Flag: 14-AUG-2001

Critical study for SIDS endpoint

(28)

5.11 Additional Remarks

Type:

other

Remark:

the level of lipid peroxidation, content of vitamine E and its metabolites as well as antioxidative activity in the blood serum, liver and spleen of white rats were studied. Toxicological efects of nitrochlorobenzenes were decreased.

by vitamine ${\tt E}$ (no further information) .

OECD SIDS 5. TOXICITY 1-CHLORO-2-NITROBENZENE

DATE: 26-NOV-2003

SUBSTANCE ID: 88-73-3

23-FEB-1998

(82) (83)

Type:

other: Haematotoxizitaet

Remark:

Ergebnis: 10 mg/kg Kgw. zeigte (2 Katzen): keine Letalitaet, leichte Veraenderungen im weissen Blutbild, leichten Anstieg der Zahl der Heinz'schen Innenkoerper und leichte Methaemoglobinaemie, nach 48 Stunden p.a. weitgehend

reversibel.

Source:

Hoechst AG Frankfurt/Main

Test substance:

technisch rein

(36)

Remark:

an attempt to vaporize o-chloronitrobenzene by passing air (2 l of air/min. for 1 h) through a tower of dust was not successful in that no weighable amounts of the test substance were vaporized; rats and mice in an inhalation chamber were exposed to the generated atmosphere for 1 h: no symptoms of toxicity were observable and no deaths occurred at the end of the exposure period or within an ob-

servation period of 7 d

Remark:

48 h after a single oral administration of 100 mg/kg bw of o-chloronitrobenzene to rabbits, 0.3 % of the administered dose was found in faeces as unabsorbed material which was completely reduced to the chloroaniline; in the urines collected each 24 h for 48 h the following metabolites of o-chloronitrobenzene were detectable (expressed as percentages of the administered dose): ether glucuronide (42 %), ethereal sulphate (24 %), mercapturic acid (7 %), free chloroaniline (9 %) (total accounted for: 82 %)

Flag:

Critical study for SIDS endpoint

(15)

Remark:

metabolism in vitro: radiolabelled (14 C) o-chloronitrobenzene (concentration not specified) was incubated with isolated rat hepatocytes for up to 90 min.: after 90 min., 71 % of the o-chloronitrobenzene had been metabolized; the primary metabolic pathway for o-chloronitrobenzene was reduction to o-chloroaniline (19.2 % of the total radioactivity after 90 min.); o-chloronitrobenzene was also conjugated with glutathione; two other very polar metabolites, com- prising 14.2 % of the total 14 C from

o-chloronitrobenzene, have not been identified

23-FEB-1998 (34) (35)

Remark:

in order to identify the specific enzymes involved in the metabolism of o-chloronitrobenzene by isolated rat hepatocytes, hepatic subcellular fractions were isolated from rats; microsomes incubated with radiolabelled (14 C) o-chloronitrobenzene in the presence of NADPH produced o-chloroaniline under aerobic conditions and SKF 525 A and metyrapone had no effect on the metabolism to o-chloroaniline: these findings suggest that cytochrome P-450 reductase is responsible for o-chloronitrobenzene reduction; radiolabelled o-chloronitrobenzene was also incubated with or without microsomes, cytosol and/or glutathione: o-chloronitrobenzene was converted to S-(2-nitrophenyl)glutathione in the presence of cytosol and glutathione suggesting that cytosolic glutathione transferase is involved in this conjugation (concentration of the test substance un-

1-CHLORO-2-NITROBENZENE DATE: 26-NOV-2003

SUBSTANCE ID: 88-73-3

specified)

Remark:

the effect of o-chloronitrobenzene on heme synthesis was determined in vitro by studying its influence on delta-aminolevulinic acid synthetase (ALAS) and ferrochelatase (FC) activities in rat liver homogenates; at 0.001 mol/l concentration, o-chloronitrobenzene did not significant-

ly affect the enzyme activities

(53)

(34)

Remark:

o-chloronitrobenzene was administered by gavage to adult and geriatric rats at 65 mg/kg bw/d for 11 d; 14 C-o-chloronitrobenzene was administered on days 1, 5 and 9; 14 C was determined in urine and faeces up to 96 h after each 14 C-dose and in tissues at 72 h after the day 9 dose: in adult rats, at all treatment intervals, 71-74 % of each dose was excreted in urine and 20-27 % in faeces and the rates of excretion increased with pretreatment; 5 % of the day 9 dose was in tissues, the highest concentrations were in liver and kidney; 24 urinary metabolites were found; pattern, rate and extent of excretion of 14 C were similar in geriatric and adult rats, except that urinary excretion by unpretreated geriatrics was more extensive (85 %) and the rates of urinary and faecal excretion did not increase with pretreatment; tissue distribution of 14 C was also similar and 8 % of the day 9 dose was in tissues

Flag:

27-AUG-2001 (62)

Critical study for SIDS endpoint

Remark:

14 C-o-chloronitrobenzene was administered by gavage to rats at 2, 20 or 200 mg/kg bw (single administration); radioactivity was determined in urine and faeces up to 72 h and in tissues at 24 and 72 h: at 2 and 20 mg/kg bw 58-60 % of the dose was excreted in urine, 26-28 % in faeces, primarily during the first 24 h, 6 % was in 24-h and 3 % in 72-h tissues; at 200 mg/kg bw 74 % was in urine and only 7 % in faeces and it was excreted more slowly with 21 % in 24-h and 4 % in 72-h tissues; at 2 and 20 mg/kg bw o-chloronitrobenzene equivalent concentrations in tissues

were proportional to dose, whereas at 200 mg/kg bw they were disproportionately higher in all tissues, especially in fat, and disproportionately lower in liver; at all doses the highest concentrations were in liver and kidney and at 200 mg/kg bw in fat; up to 23 metabolites were in urine Critical study for SIDS endpoint

Flag:

27-AUG-2001 (63)

Remark:

After a single non-occlusive, protective dermal application of 14 C-o-chloronitrobenzene at doses of ca. 0.65, 6.5 or 65 mg/kg bw to male rats, 33-40 % of the doses of o-chloronitrobenzene was absorbed from the skin within 72 h; the absorbed 14 C was excreted in urine (21-28 %) and faeces (11-15 %). The extent absorption increased with an increase in dose from 0.65 to 6.5 mg/kg bw but increased only neglibly when the dose was increased to 65 mg/kg bw.

1-CHLORO-2-NITROBENZENE

DATE: 26-NOV-2003

SUBSTANCE ID: 88-73-3

The extent of urinary excretion of radioactivity was not significantly affected by dose over the range studied. The initial rate of urinary excretion was also unaffected by dose. The initial rate of faecal exretion increased with dose over the 0.65 to 6.5 mg/kg range, but decreased notably

at the high dose.

Flag:

Critical study for SIDS endpoint

27-AUG-2001

(66) (79)

Remark:

metabolism of o-chloronitrobenzene by hepatic subcellular fractions from rats: to determine the enzyme systems involved in the metabolism of o-chloronitrobenzene by rat isolated hepatocytes, radiolabelled (14 C) o-chloronitrobenzene (100 uM) was incubated with hepatic microsomes (incubation mixture containing microsomes and NADPH, some incubations also containing UDP-glucuronic acid) or with cytosol (incubation mixture containing GSH and cytosolic protein): reduction of o-chloronitrobensene to o-chloroaniline occurred readily in microsomal incubations; substitution of NADH for NADPH or incubation of microsomes under a carbon monoxide atmosphere significantly inhibited nitroreduction, boiling the microsomes completely abolished reduction of o-chloronitrobenzene; addition of SKF 525-A or metyrapone significantly inhibited the microsomal reduction of o-chloronitrobenzene to o-chloroaniline (the inhibition of nitroreduction by carbon monoxide, SKF 525 A and metyrapone suggests that cytochrome P-450 catalyzes this reaction); incubation of o-chloronitrobenzene with rat hepatic cytosol and glutathione resulted in the formation of S-(2-nitrophenyl)glutathione Critical study for SIDS endpoint

Flag:

(85)

Remark:

in vitro study of metabolism: after 90 min. incubation of isolated rat hepatocytes with radiolabelled (14 C) o-chloronitrobenzene (100 uM final concentration), 46.7 % of the added o-chloronitrobenzene was metabolized; the calculated half-life for disappearance of o-chloronitrobenzene from the incubations was 84 min.; a major metabolic pathway for o-chloronitrobenzene was reduction to ochloroaniline (19.2 % of the total radioactivity after 90 min. incubation); o-chloroaniline was further metabolized to form the N-glucuronide accounting for 14.2 % of the total radioactivity; o-chloronitrobenzene was conjugated with glutathione and S-(2-nitrophenyl)glutathione accounted for 13.3 % of the total radioactivity

Flag:

Critical study for SIDS endpoint

(85)

Remark:

in vitro assay: the reduction of chloronitrobenzenes was investigated in purified milk xanthine oxidasexanthine system: o-chloronitrobenzene was less readily reduced by the enzyme than the corresponding para and meta isomers, indicating the steric hindrance

effect at ortho position

Flag:

Critical study for SIDS endpoint

(100)

OECD SIDS	1-CHLORO-2-NITROBENZENE
5. TOXICITY	DATE: 26-NOV-2003
	SUBSTANCE ID: 88-73-3
Remark:	in an in vivo study, 100 umoles/kg bw (= 15.7 mg/kg bw) of o-chloronitrobenzene was given i.p. to male rats, the animals were killed 5 h after the injection to ex- amine methaemoglobin levels: formation of methaemoglobin was observable (methaemoglobin level: 20.6 %)
Flag:	Critical study for SIDS endpoint
	. (109)
Remark:	in vitro methaemoglobin formation was studied by incubating haemolyzate (obtained from rats and containing 0.1 umole of haemoglobin) with 0.5 umole of o-chloro-nitrobenzene at pH 6.6 and 37 degrees centigrade for 5 h: formation of methaemoglobin (concentration: 4.8 %) was not significantly increased compared with the control
	(109)
Remark:	Single oral administration of 0.1 ml/100 g bw of a 0.5 M tricaprylinsolution of 1-chloro-2-nitrobensene (o-CNB) to female Wistar rats resulted in hemoglobin binding: 2.1 (mmol TS/mol Hb)/(mmol TS/kg bw)
Flag:	Critical study for SIDS endpoint

23-FEB-1998

(89) (90)

DATE: 26-NOV-2003 SUBSTANCE ID: 88-73-3

- (1) Auergesellschaft: AUER Technikum, Ausgabe 12 (1988), p. 195
- (2) Back K.C. et al, Reclassification of materials listed as transportation Health hazard, Report No. TSA 20-72-3, Medical Aerospace Research Laboratory (AFSCS), Wright-Patterson Air Force Base, OHIO, Final Report, August 1972, At the request of Department of Transporation, Washington, D.C., PB214-270
- (3) Bayer AG data, Report No. 12848: o-Nitrochlorbenzol: Salmonella/Mikrosomem-Test zur Untersuchung auf punktmutagene Wirkung, August 9, 1984
- (4) Bayer AG data, Report No. 20209(F): Enzymhistochemisch darstellbare Veränderungen des Kohlenhydratstoffwechsels der Mausleber nach Gabe von o-Chlornitrobenzol, May/6/1991
- (5) Bayer AG data, Report No. 22240: o-Chlornitrobenzol: Subakute Toxizitätsstudie an B6C3F1-Mäusen - Schwerpunkt Leberdiagnostic - (Verabreichung im Futter bis zu 5 Wochen),
 - May/7/1993 (at the request of BG-Chemie, Heidelberg)
- (6) Bayer AG data, Report No. 5800, January 5, 1976
- (7) Bayer AG data: Loeser, E.: o-Nitrochlorbenzol. Untersuchungen zur akuten oralen Toxizitaet an maennlichen Wistar-Ratten, April 2, 1982
- (8) Bayer AG data: Loeser, E.: o-Nitrochlorbenzol. Untersuchungen zur akuten oralen Toxizitaet an weiblichen Wistar-Ratten, April 1, 1982
- (9) Bayer AG, Internal studies: 1. Geschlossener Flaschen-Test (1977), 2. Test on Leuciscus idus (1974), Oxygen consumption inhibition test according to Robra (1983); no records available
- (10) Bayer AG, Internal Study: GLP Final Report: vapor pressure, physical-chemical properties (2001-07-12)
- (11) Bayer AG, Internal study: Identity and Material Balance of o-Chloronitrobenzene (25.08.89)
- (12) Bayer AG: Safety Data Sheet (2001-07-19)
- (13) Bonzanigo, A.: Deut. Z. ges. gerichtl. Med. 16, 242-255, (1931)
- (14) Bonzanigo, A.: Samml. Vergiftungsfaellen 3, A 127-128 (1932)
- (15) Bray, H.G. et al.: Biochem. J. 64, 38-44 (1956)
- (16) BUA Report No. 2, o-Chloronitrobenzene, VCH, Weinheim, October 1985
- (17) Call, D.J. and Geiger, D.L., Subchronic toxicities of industrial and agricultural chemicals to Fathead Minnows (Pimephales promelas) Vol. I, Center for Lake Superior Environmental Studies, Lake Superior Research Institute, University of Wisconsin-Superior, USA (1992)