薬事・食品衛生審議会 食品衛生分科会長 岸 玲子 殿

> 薬事・食品衛生審議会食品衛生分科会 農薬・動物用医薬品部会長 大野 泰雄

薬事・食品衛生審議会食品衛生分科会農薬・動物用医薬品部会報告について

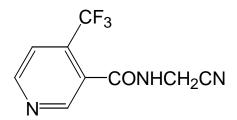
平成25年2月20日付け厚生労働省発食安0220第7号をもって諮問された、食品衛生法(昭和22年法律第233号)第11条第1項の規定に基づくフロニカミドに係る食品規格(食品中の農薬の残留基準)の設定について、当部会で審議を行った結果を別添のとおり取りまとめたので、これを報告する。

フロニカミド

今般の残留基準の検討については、農薬取締法に基づく適用拡大申請に伴う基準値設定 依頼が農林水産省からなされたことに伴い、食品安全委員会において食品健康影響評価が なされたことを踏まえ、農薬・動物用医薬品部会において審議を行い、以下の報告を取り まとめるものである。

1. 概要

(1) 品目名:フロニカミド [Flonicamid(ISO)]


(2) 用途:殺虫剤

ピリジンカルボキシアミド系殺虫剤である。作用機序は不明であるが、アブラムシ類、コナジラミ類等の吸汁害虫の吸汁行動を阻害することにより殺虫効果を発揮するものと考えられている。

(3) 化学名:

N-cyanomethyl-4-(trifluoromethyl)nicotinamide (IUPAC) N-(cyanomethyl)-4-(trifluoromethyl)-3-pyridinecarboxamide (CAS)

(4) 構造式及び物性

分子式 C₉H₆F₃N₃0 分子量 229, 2

水溶解度 5.2 g/L (20℃)

分配係数 log₁₀Pow = 0.3 (29.8℃)

(メーカー提出資料より)

2. 適用の範囲及び使用方法

本剤の適用の範囲及び使用方法は以下のとおり。

作物名となっているものについては、今回農薬取締法(昭和23年法律第82号)に基づく 適用拡大申請がなされたものを示している。

(1) 国内での使用方法

① 10%フロニカミド顆粒水和剤

作物名	適用病害虫名	希釈倍数	使用液量	使用時期	本剤の 使用回数	使用方法	フロニカシド を 含む農薬の 総使用回数
りんご	リンコ゛ワタムシ	2000 倍					
なしもも		2000~4000 倍		収穫 14 日 前まで			
ネクタリン	アブラムシ類	2000 倍	200~				
うめ		2000~4000 倍	700L/10a	収穫7日	o El VIII		0 回 17 中
小粒核果類 (うめを除く)		2000 倍		前まで	2 回以内	- 散布	2 回以内
ぶどう	チャノキイロアサ゛ミウマ	1000 倍		開花前まで			
いちご	アブラムシ類	2000~4000 倍					
V-9C	コナジ・ラミ類	2000 倍					
きゅうり	アブラムシ類	2000~4000 倍					
3 4 7 9	コナジ・ラミ類	2000 倍					
なす	アブラムシ類	2000~4000 倍		収穫前日	3 回以内		3 回以内
トマトミニトマト	コナシ゛ラミ類 ミカンキイロアサ゛ミウマ	2000 倍	100~ 300L/10a	まで			0 ETSVI 1
アスパラガス			000E/ 10a				
レタス 非結球レタス	アブラムシ類	2000 倍					
メロン	2000~4000				2回以床		2 回以内
). L V	コナジ・ラミ類	2000 倍			2 回以内		
ばれいしょ	アブラムシ類	2000~4000 倍		収穫 7 日 前まで			

① 10%フロニカミド顆粒水和剤(つづき)

作物名	適用病害虫名	希釈倍数	使用液量	使用時期	本剤の 使用回数	使用 方法	フロニカミト・を 含む農薬の 総使用回数
ねぎ	ネギアザミウマ	1000~ 2000 倍			3 回以内		3 回以内
すいか		2000~ 4000 倍					
非結球あぶら な科葉菜類		4000 倍		収穫前日 まで			
キャベツ はくさい だいこん ブロッコリー カリフラワー		2000 倍	100∼ 300L/10a	収穫 14 日 前まで			
えだまめ いんげんまめ	· アブラムシ類	2000 倍		収穫7日 前まで	2回以内		2 回以内
みつば		2000~ 4000 倍		収穫3日前 まで ただし、伏せ 込み栽培は 伏せ込み前 まで		散布	
しそ		4000 倍		収穫3日 前まで			
茶	チャノキイロアサ゛ミウマ チャノミト゛リヒメヨコハ゛イ ツマク゛ロアオカスミカメ コミカンアフ゛ラムシ	1000~ 2000 倍 2000 倍	200~ 400L/10a	摘採7日 前まで	1回		1 回
小麦		4000 倍	60~ 150L/10a	収穫7日			
だいず あずき	アブラムシ類	2000 倍	100~ 300L/10a	前まで	2回以内		2 回以内
おうとう	チャノキイロアサ゛ミウマ	2000 倍	200~ 700L/10a	収穫前日 まで			

② 1%フロニカミド粒剤

作物名	適用病害虫名	使用液量	使用時期	本剤の 使用回数	使用方法	フロニカミドを含む農薬 の総使用回数
			生育期			
れんこん	クワイクヒ゛レアフ゛ラムシ	3kg/10a	ただし、収穫	2回以内	湛水散布	2 回以内
			14 日前まで			

③ 14.0%フロニカミドくん煙剤

作物名	適用場所	適 用 病害虫名	使用量	使用時期	本剤の 使用回数	使用方法	フロカミドを含む農薬の総使用回数
メロン	温室、ビニール ハウス等密閉 できる場所	アブラムシ類	くん煙室容積 400 m³(床面積 200 m³×高さ 2m)当たり 50g	収穫前日まで	2 回以内	くん煙	2 回以内

(2) 海外での使用方法

① 50%フロニカミド水溶剤(米国)

作物名	適用病害虫名	使用薬量	使用時期	本剤の 使用回数	使用 方法
ホップ	アブラムシ類	6-10g ai/10a	収穫 10 日前まで		茎葉散布
根菜類			収穫3日前まで		
葉菜類 (アブラナ科野菜)	アブ・ラムシ類	8∼20g/10a	収穫当日まで	3 回以内	#4- 1-
ばれいしょ	カメムシ類 オンシツコナシ゛ラミ	(4∼10g ai/10a)	収穫7日前まで		散布
果菜類 (うり類を除く)			収穫当日まで		

ai:active ingredient (有効成分)

② 10%フロニカミド水和剤 (韓国)

作物名	適用病害虫名	使用薬量	使用時期	本剤の 使用回数	使用 方法
とうがらし	ワタアフ゛ラムシ				
ピーマン (パプリカを含む)	モモアカアフ゛ラムシ	67g/10a (6.7g ai/10a)	収穫2日前まで	3 回以内	散布
きゅうり	ワタアフ゛ラムシ				

3. 作物残留試験

(1) 分析の概要

- ① 分析対象の化合物
 - ・フロニカミド
 - N-(4-トリフルオロメチルニコチノイル)グリシン(以下、代謝物 C という。)
 - 4-トリフルオロメチルニコチンアミド(以下、代謝物 D という。)
 - 4-トリフルオロメチルニコチン酸(以下、代謝物 E という。)

② 分析法の概要

ガスクロマトグラフ法

試料からメタノールで抽出し、多孔性ケイソウ土カラムで精製後、ジアゾメタンを用いてメチル化する。フロリジルカラムで精製し、ガスクロマトグラフ・質量分析計 (GC-MS) で定量する。

または、試料からアセトニトリルで抽出し、ヘキサンで洗浄した後、ジアゾメタンを用いてメチル化し、シリカゲルカラムで精製してガスクロマトグラフ(ECD)で定量する。

高速液体クロマトグラフ法

試料からメタノールで抽出し、スチレンジビニルベンゼン共重合体 (PLS-2) カラム又はジビニルベンゼン-ルビニルピロリドン共重合体 (HLB) カラムで精製した後、液体クロマトグラフ・タンデム型質量分析計 (LC-MS/MS) で定量する。

または、試料からアセトニトリル又はメタノールで抽出し、HLBカラム及びグラファイトカーボンカラムで精製した後、LC-MS/MSで定量する。

あるいは、試料からアセトニトリル・水(1:1)混液で抽出し、酸性にして酢酸エチルに転溶する。LC-MS/MSで定量する。

定量限界 フロニカミド 0.01~0.02 ppm 代謝物C、代謝物D及び代謝物E 0.01~0.05 ppm

以下、代謝物 C、代謝物 D 及び代謝物 E の残留量については、次の換算係数を用いてフロニカミドに換算した値を示す。

代謝物 C: 0.92 代謝物 D: 1.20 代謝物 E: 1.21

(2) 作物残留試験結果


国内で実施された作物残留性試験結果の概要については別紙 1-1、海外で実施された作物残留性試験結果の概要については別紙 1-2 を参照。

4. 畜産物への推定残留量

(1) 分析の概要

① 分析対象の化合物

- ・フロニカミド
- 代謝物 C
- 代謝物 D
- 代謝物 E
- 6-ヒドロキシ-4-トリフルオロメチルニコチンアミド(以下、代謝物」という。)

, ...,

②分析法の概要

筋肉、肝臓及び腎臓は、試料からアセトニトリル・水(1:1)混液で抽出し、メタノールに転溶する。又は、抽出液を遠心分離し、沈殿物に塩酸を加えて加水分解した後上澄液と合わせ、酢酸エチルに転溶する。液体クロマトグラフ・タンデム型質量分析計(LC-MS/MS)を用いて定量する。

脂肪は、試料からアセトニトリル・水(4:1)混液で抽出し、ゲル浸透クロマトグラフ(GPC)用カラムで精製した後、LC-MS/MSを用いて定量する。

乳は、試料にエタノールを加え懸濁化した後、遠心分離する。沈殿物からエタノール・水 (4:1) 混液で抽出し、遠心分離して、上澄液を先の上澄液に合わせる。へキサンで洗浄した後、水・アセトニトリル・トリフルオロ酢酸 (90:10:0.1) 混液を加え、遠心分離及びろ過して LC-MS/MS を用いて定量する。

定量限界:筋肉、肝臓及び腎臓 0.01~0.025ppm 脂肪、乳及び卵 0.01 ppm

(2) 動物飼養試験(家畜残留試験)

① 乳牛における残留試験

乳牛に対して 2.5、6.89、23.69 ppm のフロニカミド及び代謝物 C の 1:1 混合物を含む飼料を 28 日間にわたり摂食させ、乳、筋肉、脂肪、肝臓及び腎臓中のフロニカミド、代謝物 C、D、E 及び J を測定した。また、乳については、投与開始後、1、2、

3、4、5、6、7、8、10、14、17、21、24、27、29 日目に搾乳したものを測定した。 結果については表 1 を参照。

表 1. 組織中の最大残留量 (ppm)

		2.5 ppm 投与群	6.89 ppm 投与群	23.69 ppm 投与群
	フロニカミド	<0.025	<0.025	<0.025
筋肉	代謝物 C	<0.025	<0.025	<0.025
	代謝物 D	<0.025	0. 0296	0. 1052
	代謝物 E	<0.025	<0.025	<0.025
	代謝物 J	<0.025	<0.025	<0.025
	合計値†	0.075	0. 0796	0. 1552
	フロニカミド	<0.01	<0.01	<0.01
	代謝物 C	<0.01	<0.01	<0.01
脂肪	代謝物 D	<0.01	<0.01	0.0210
カロカノノ	代謝物 E	<0.01	<0.01	<0.01
	代謝物 J	<0.01	<0.01	<0.01
	合計値†	0. 03	0. 03	0. 041
	フロニカミド	<0.025/<0.01	<0.025/<0.01	<0.025/<0.01
	代謝物 C	<0.025/<0.01	<0.025/<0.01	<0.025/<0.01
口工口些。十十	代謝物 D	<0.025/<0.01	0.0417/0.0190	0.1242/0.0565
肝臓††	代謝物 E	<0.025/<0.01	<0.025/<0.01	<0.025/<0.01
	代謝物 J	<0.025/<0.01	<0.025/0.0108	0. 0346/0. 0508
	合計値 [†]	0.075	0.0917	0. 1742
	フロニカミド	<0.025/<0.01	<0.025/<0.01	<0.025/<0.01
	代謝物 C	<0.025/<0.01	<0.025/<0.01	<0.025/0.0101
腎臓††	代謝物 D	<0.025/<0.01	0.0338/0.0249	0. 1236/0. 1125
自加	代謝物 E	<0.025/0.0193	0.0467/0.0414	0.1726/0.1656
	代謝物 J	<0.025/<0.01	<0.025/<0.01	0. 0253/0. 0383
	合計値†	0.075	0. 1055	0. 3212
	フロニカミド	<0.01	<0.01	<0.01
	代謝物 C	<0.01	<0.01	<0.01
乳	代謝物 D	<0.01	0.0215	0. 0793
(平均)	代謝物 E	<0.01	<0.01	<0.01
	代謝物 J	<0.01	<0.01	0.0151
	合計値 [†]	0.03	0. 0415	0. 0993

†:フロニカミド、代謝物 D 及び代謝物 E の合計値 † †: 肝臓及び腎臓については、2 種類の分析方法 が実施されたため、2 つの値を示した。

上記の結果に関連して、米国では肉牛及び乳牛における MTDB $^{\pm 1}$ はそれぞれ 1.01ppm 及び 0.5ppm と評価している。

注)最大理論的飼料由来負荷 (Maximum Theoretical Dietary Burden: MTDB): 飼料として用いられる全ての飼料品目に残留基準まで残留していると仮定した場合に、飼料の摂取によって畜産動物が暴露されうる最大量。飼料中残留濃度として表示される。

(参考: Residue Chemistry Test Guidelines OPPTS 860.1480 Meat/Milk/Poultry/Eggs)

② 産卵鶏における残留試験

産卵鶏に対して 0.259、2.514、7.473、25.83ppm のフロニカミド及び代謝物 C の 1: 1混合物を含む飼料を28日間にわたり摂食させ、筋肉、脂肪及び肝臓中フロニカミド、 代謝物 C、D、E 及び J を測定した。また、鶏卵については、投与開始後、1、2、3、4、 5、6、7、8、10、14、17、21、24、27、28 日目に採卵したものを測定した。定量限界 は 0.01 ppm。結果については表 2 を参照。

0. 259 ppm 2. 514 ppm 7. 473 ppm 25. 83 ppm 2							
				= =	25.83 ppm		
tota . I .	1 2 2	投与群	投与群	投与群	投与群		
筋肉	フロニカミド	<0.01	<0.01	<0.01	<0.01		
	代謝物 C	<0.01	<0.01	<0.01	<0.01		
	代謝物 D	<0.01	0.0615	0. 1866	0. 7181		
	代謝物 E	<0.01	<0.01	<0.01	<0.01		
	代謝物 J	<0.01	<0.01	<0.01	0. 0155		
	合計値†	0.03	0. 0815	0. 2066	0. 7381		
脂肪	フロニカミド	<0.01	<0.01	<0.01	<0.01		
	代謝物 C	<0.01	<0.01	<0.01	<0.01		
	代謝物 D	<0.01	0.0311	0.0796	0. 3526		
	代謝物 E	<0.01	<0.01	<0.01	<0.01		
	代謝物 J	<0.01	<0.01	<0.01	<0.01		
	合計値†	0.03	0. 0511	0. 0996	0. 3726		
肝臓	フロニカミド	<0.01	<0.01	<0.01	<0.01		
	代謝物 C	<0.01	<0.01	<0.01	<0.01		
	代謝物 D	<0.01	0.0649	0. 1871	0. 7857		
	代謝物 E	<0.01	<0.01	<0.01	<0.01		
	代謝物 J	<0.01	<0.01	<0.01	<0.01		
	合計値†	0. 03	0. 0849	0. 2071	0. 8057		
鶏卵	フロニカミド	<0.01	<0.01	0. 0242	0. 0926		
	代謝物 C	<0.01	<0.01	<0.01	<0.01		
	代謝物 D	0.0143	0. 1241	0.3702	1. 2137		
	代謝物 E	<0.01	<0.01	<0.01	<0.01		
	代謝物 J	<0.01	<0.01	<0.01	<0.01		
	合計値 [†]	0. 0343	0. 1441	0. 4044	1. 3163		
			†:フロニカミ	ド、代謝物D及	び代謝物 E の合		

表 2. 組織中の最大残留量 (ppm)

†:フロニカミド、代謝物 D 及び代謝物 E の合計値

上記の結果に関連して、米国では鶏における MTDB は 0.2ppm と評価している。

(3) 推定残留量

肉牛、乳牛及び鶏について、飼料中の MTDB と各試験における投与量から、畜産物 中の推定残留濃度を算出した。結果については、フロニカミド、代謝物D及び代謝物 E の合計値で示した。表 3-1 及び表 3-2 にまとめた。

表 3-1 畜産物中の推定残留量;牛

	筋肉	脂肪	肝臓	腎臓	乳
乳牛	0. 015	0.006	0.015	0.015	0.006
肉牛	0.0303	0. 01212	0.0303	0. 0303	
最大値	0. 0303	0. 01212	0.0303	0. 0303	0.006

フロニカミド、代謝物 D 及び代謝物 E の合計値 (ppm)

表 3-2 畜産物中の推定残留量;鶏

	筋肉	脂肪	肝臓	印
鶏	0. 0232	0.0232	0. 0232	0. 0265

フロニカミド、代謝物 D 及び代謝物 E の合計値 (ppm)

5. ADI の評価

食品安全基本法(平成15年法律第48号)第24条第1項第1号の規定に基づき、食品安全 委員会あて意見を求めたフロニカミドに係る食品健康影響評価について、以下のとおり 評価されている。

無毒性量: 7.32 mg/kg 体重/day

(動物種) ラット

(投与方法) 混餌投与

(試験の種類) 慢性毒性/発がん性併合試験

(期間) 2年間

安全係数:100

ADI: 0.073 mg/kg 体重/day

マウスの発がん性試験において、ICRマウスに肺胞終末細気管支上皮腫瘍が増加したことから、肺腫瘍についてのメカニズム試験が実施された。フロニカミドがマウスの肺腫瘍を誘発した明らかな機序を解明することはできなかったが、発生機序は遺伝毒性メカニズムとは考え難く、評価にあたり閾値を設定することは可能であると考えられた。

6. 諸外国における状況

JMPRにおける毒性評価はなされておらず、国際基準も設定されていない。

米国、カナダ、欧州連合(EU)、オーストラリア及びニュージーランドについて調査した結果、米国においてばれいしょ、りんご、ほうれんそう、乳等に、カナダにおいてばれいしょ、りんご、畜産物等に、EUにおいてばれいしょ、トマト、きゅうり、りんご等に基準値が設定されている。

7. 基準値案

(1) 残留の規制対象

農産物にあってはフロニカミド、代謝物 C 及び代謝物 E とし、畜産物にあってはフロニカミド、代謝物 D 及び代謝物 E とする。

一部の作物残留試験において、代謝物 D の分析が行われているが、一部の作物を除き代謝物 D の残留量はフロニカミド、代謝物 C 及び代謝物 E の残留に比較し低いことから、農産物における残留の規制対象には含めないこととする。

なお、食品安全委員会による食品健康影響評価においても、農産物中の暴露評価対象物質としてフロニカミド、代謝物 C 及び代謝物 E、畜産物中の暴露評価対象物質としてフロニカミド、代謝物 D 及び代謝物 E を設定している。

(2) 基準値案

別紙2のとおりである。

(3) 暴露評価

個別の作物残留試験成績等がある食品については推定される平均的な量まで、それ以外の食品については基準値案の上限の量までフロニカミドが残留していると仮定し、国民栄養調査における各食品の平均摂食量に基づき試算される、1日当たり摂取する農薬の量のADIに対する比は、以下のとおりである。詳細な暴露評価は別紙3参照。

なお、本暴露評価は、各食品分類において、加工・調理による残留農薬の増減が全 くないとの仮定の下に行った。

	EDI/ADI(%) ^{注)}
国民平均	22. 3
幼小児(1~6 歳)	40. 9
妊婦	17. 9
高齢者(65 歳以上)	23. 4

注) 個別の作物残留試験成績等がある食品についてはEDI試算、それ以外の食品についてはTMDI試算を行った。

TMDI試算法:基準値案×各食品の平均摂取量

EDI試算法:作物残留試験成績から推定される残留量×各食品の平均摂取量

フロニカミド 作物残留試験一覧表

	試験		試験条件			22.43	各化合物の残留量 (ppm)
農作物	圃場数	 剤型	使用量・使用方法	回数	経過日数	最大残留量 ^{注1)} (ppm)	【フロニカミド/代謝物C/代謝物E】
いんげんまめ	2	100/ 晒炒 水 毛口文	2000倍散布	이터	7 20 25 42 40 56 🗆	圃場A:1.49(2回、35日)	圃場A: 0.03/0.06/1.40
(乾燥子実)	۷	10%顆粒水和剤	150, 200L/10a	2回	<u>7</u> , 28, 35, 42, 49, 56日	圃場B:1.18(2回、28日)	圃場B: <0.01/0.05/1.12
ばれいしょ	2	10%顆粒水和剤	2000倍 散布	<u>2</u> 回	<u>7</u> , 14 日	圃場A:0.03	圃場A: <0.01/<0.01/0.01
(塊茎)		10 /0本東有些/八八百万寸	200L/10a	<u>2</u>	<u>i</u> , 11 H	圃場B:0.05(2回、14日)	圃場B: <0.01/0.02/0.02
ばれいしょ	2	 10%顆粒水和剤	2000倍 散布	<u>2</u> 回	<u>7</u> , 14, 30 日	圃場A:<0.04	圃場A:<0.01/<0.01/<0.02
(塊茎)	_	20 / 0/19(122/31/17/17)	150, 200L/10a		<u>_</u> ,,,	圃場B:0.15(2回、14日)	圃場B: <0.01/0.07/0.07
			2000 (女 #4 士:			圃場A:0.12(2回、14日)	圃場A:<0.01/0.06/0.05
ばれいしょ	4	10%顆粒水和剤	2000倍散布 150~180,	<u>2</u> 回	<u>7</u> , 14, 21, 30 日	圃場B:0.08	圃場B: 0. 02/0. 02/0. 04
(塊茎)			300, 150L/10a			圃場C:0.08 (2回、21日)	圃場C: <0.01/0.02/0.05
.1. ==			4000 (女 #k /)			圃場D:0.05(2回、21日)	圃場D: 0. 01/0. 02/0. 02
小麦 (玄麦)	2	10%顆粒水和剤	4000倍散布 150L/10a	2回	<u>7</u> , 14, 28, 42, 56 日	圃場A:1.83 (2回、28日) 圃場B:1.06 (2回、42日)	圃場A: <0.01/1.60/0.22 圃場B: <0.01/0.99/0.06
大豆			2000倍散布		<u>7</u> , 28, 42, 56, 70, 84日	圃場A:1.14 (2回、56日)	圃場A:0.02/0.26/0.86
(乾燥子実)	2	10%顆粒水和剤	150~170, 197.9L/10a	2回	7, 28, 42, 56, 70, 83日	圃場B:1.53 (2回、56日)	圃場B:0.04/0.22/1.27
小豆			2000倍散布		<u>1, 20, 12, 00, 10, 00 µ</u>	圃場A:1.99(2回、42日)	圃場A:0.02/1.20/0.77
(乾燥子実)	2	10%顆粒水和剤	150~200L/10a	2回	<u>7</u> , 14, 28, 35, 42, 49, 56日	圃場B:2.17 (2回、42日)	圃場B:0.04/1.10/1.03
だいこん			2000倍散布		1 3 7 14 21	圃場A:0.08 (2回、14日)	圃場A: <0.01/<0.01/0.06
(根部)	2	10%顆粒水和剤	150, 200L/10a	2回	<u>1</u> , 3, 7, 14, 21, 28, 35, 42, 49 日	圃場B:0.10 (2回、28日)	圃場B: <0.01/<0.01/0.08
だいこん	_	400/mmth/ 1 = 1:	2000倍散布		<u>1</u> , 3, 7, 14, 21,	圃場A:2.22	圃場A: 2.02/0.10/0.10
(葉部)	2	10%顆粒水和剤	150, 200L/10a	2回	28, 35, 42, 49 日	画場B:1.28	圃場B: 1. 22/0. 04/<0. 02
はくさい	0	100/用式小子工工工	2000倍散布	OF.	1 0 7 14 1	圃場A:0.74	圃場A: 0.66/0.06/<0.02
(茎葉)	2	10%顆粒水和剤	250, 300L/10a	<u>2</u> 回	<u>1</u> , 3, 7, 14日	圃場B:0.25 (2回、7日)	圃場B: 0.07/0.11/0.07
キャベツ	2	100/ 115 42 34 31 文	2000倍散布	21급	1 2 7 14日	圃場A:0.14(2回、3日)	圃場A:0.08/0.04/<0.02
(茎葉)		10%顆粒水和剤	300L/10a	<u>2</u> 回	<u>1</u> , 3, 7, 14日	圃場B:0.47	圃場B:0. 25/0. 15/0. 07
ブロッコリー	2	 10%顆粒水和剤	2000倍散布	<u>2</u> 回	<u>1</u> , 3, 7, 14日	圃場A:1.34	圃場A:1.04/0.29/0.01
(花蕾)		10 /0 /0 /0 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1	300L/10a	<u>2</u> [::]	<u>1,</u> 0, 1, 11 H	圃場B:1.53	圃場B:1.30/0.18/0.05
レタス	2	 10%顆粒水和剤	2000倍散布	<u>2</u> 回	<u>1</u> , 3, 7, 14日	圃場A:0.77	圃場A:0.73/0.02/0.02
(茎葉)		10 / 0/1984 = 2/14/11	250, 300L/10a		<u>_</u> , ₀ , ₁ , ₁ , ₁	圃場B:0.81	圃場B: 0.78/0.01/<0.02
サラダ菜	2	 10%顆粒水和剤	2000倍散布	<u>2</u> 回	<u>1</u> , 3, 7, 14日	圃場A:1.24	圃場A:1.00/0.12/0.12
(茎葉)		, , , , , , , , , , , , , , , , , , , ,	150, 200L/10a			圃場B:2.78(2回、3日)	圃場B: 2.58/0.16/0.04
リーフレタス	2	10%顆粒水和剤	2000倍散布	<u>2</u> 回	<u>1</u> , 3, 7, 14日	圃場A:7.64	圃場A:7.40/0.16/0.08
(茎葉)		a O / Stella Feel .	200, 300L/10a			圃場B:6.30	圃場B: 5.78/0.40/0.12
ねぎ	2	1%粒剤+	6kg/10a 植溝土壌混和	1+3回	1, 3, 7, 14日	圃場A:1.04(1+3回、1日)(#) ^{注2)}	圃場A: 0.96/0.04/0.04(#)
<u>(茎葉)</u> アスパラガス		10%顆粒水和剤	+1000倍散布200L/10a			圃場B:1.01(1+3回、1日)(#) 圃場A:0.49	圃場B: 0.57/0.02/0.42(#) 圃場A: 0.08/0.29/0.12
(若茎)	2	10%顆粒水和剤	2000倍散布 200, 300L/10a	3回	<u>1</u> , 3, 7, 14日	圃場B:0.93 (3回、7日)	圃場B: <0.01/0.75/0.17
カリフラワー			200,300년/108			圃場A:0.39 (2回、21日)	圃場A: <0.01/0.22/0.16
(花蕾)	2	10%顆粒水和剤	200~285,	2回	<u>14</u> , 21, 28, 35, 42 日	圃場B:0.21 (2回、28日)	圃場B: <0.01/0.15/0.05
(11 目)			183~252L/10a 2000倍散布			圃場A:2.71 (2回、7日)	圃場A: 1.74/0.63/0.34
みつば	2	10%顆粒水和剤	300L/10a	2回	<u>3</u> , 7, 14日	圃場B:1.59 (2回、7日)	圃場B: 1. 22/0. 16/0. 21
			4000倍散布			圃場A:6.49	圃場A: 5.97/0.46/0.06
しそ	2	10%顆粒水和剤	300L/10a	<u>2</u> 回	<u>3</u> , 7, 14日	圃場B:3.55	圃場B: 2.95/0.42/0.18
ミニトマト			2000倍散布			圃場A:0.45(3回、35日)	圃場A: 0.12/0.31/<0.02
(茎葉)	2	10%顆粒水和剤	200, 300L/10a	<u>3</u> 回	<u>1</u> , 3, 7, 14, 21, 28, 35, 42 日	圃場B:0.92(3回、28日)	圃場B: 0. 16/0. 72/0. 04
なす		100/ 明本小上 1. オーエー	2000倍散布	o <u></u>	1 0 5 5	圃場A:0.41 (2回、7日)	圃場A:0.05/0.28/0.08
(果実)	2	10%顆粒水和剤	300L/10a	2回	<u>1</u> , 3, 7 日	圃場B:0.29 (2回、3日)	圃場B: 0.16/0.09/0.04
なす	_	100/ 1100	2000倍散布	- -		圃場A:0.96(3回、14日)	圃場A: 0.01/0.61/0.34
(果実)	2	10%顆粒水和剤	200, 101. 1	<u>3</u> 回	<u>1</u> , 3, 7, 14, 21, 28, 35, 42 日	圃場B:1.16(3回、7日)	圃場B: 0.07/0.92/0.17
なす			~199.6L/10a 2g/株植穴土壌混和			圃場A:1.13 (1+3回、7日) (#)	圃場A: 0.06/0.85/0.22(#)
(果実)	2	10%顆粒水和剤	+2000倍散布	1+3回	1, 3, 7, 14, 21, 28 日	圃場B:0.70(1+3回、1日)(#)	圃場B: 0.30/0.28/0.12(#)
		10/0本只个丛/八个山/打门	200, 300L/10a				
きゅうり	2	10%顆粒水和剤	2000倍 散布	<u>3</u> 回	<u>1</u> , 3, 7 日	圃場A:0.35(3回、7日)	圃場A: 0.06/0.17/0.12
半点され			300, 200~250L/10a			圃場B:0.52	圃場B: 0. 15/0. 20/0. 17
きゅうり (里宝)	2	10%顆粒水和剤	2000倍 散布	3回	1, 3, 7, 14, 21, 28, 35, 42 日	圃場A:0.41(3回、7日)	圃場A: 0.06/0.13/0.22
(果実) すいか			300L/10a 2g/株植穴土壌混和		1 7 1/1 91 90 95 🗆	圃場B:0.41 (3回、7日) 圃場A:0.79 (1+2回、14日) (#)	圃場B: 0.06/0.09/0.26 圃場A: 0.02/<0.01/0.76(#)
,	2	1%粒剤+ 10%顆粒水和剤	+2000倍散布 200,50~	1+2回	1,7,14,21,28,35日		
(果実)		10 /0 木只不生/八八个日月刊	200L/10a×2		1, 7, 14, 21, 28, 35, 42日	圃場B:0.44(1+2回、28日)(#)	圃場B: 0.01/0.02/0.41(#)
メロン	2	10%顆粒水和剤	2000倍散布	3回	1, 3, 7 日	圃場A:0.10 (3回、7日) (#)	圃場A: <0.01/0.02/0.07(#)
(果実)			300L/10a			圃場B:0.26(3回、7日)(#)	圃場B: 0.02/0.05/0.19(#)
メロン	2	10%顆粒水和剤		<u>2</u> 回	<u>1</u> , 7, 14, 28, 42 日	圃場A:0.74(2回、28日)	圃場A:0.06/0.13/0.55
(果実)			250, 300L/10a		<u>1</u> , 7, 14, 28, 42, 50 日	圃場B:0.52 (2回、28日)	圃場B: 0. 05/0. 07/0. 40
メロン	2	1%扩充//+	2g/株植穴土壌混和+	1+2回	1, 7, 14, 45, 52, 59日	圃場A:1.21(1+2回、52日)(#)	圃場A: 0.02/0.21/0.98(#)
(果実)		14%くん煙剤	50g/400m ³ 散布	. ,		圃場B:1.05(1+2回、45日)(#)	圃場B: 0.02/0.15/0.88(#)
えだまめ	2	10%顆粒水和剤	2000倍散布	<u>2</u> 回	<u>7</u> , 14, 28, 35, 42, 49 日	圃場A:1.39(2回、28日)	圃場A: 0.09/0.23/1.07
Ja) =)			200L/10a			圃場B:1.91	圃場B: 0. 56/0. 22/1. 13
れんこん (地支)	2	1%粒剤	3kg/10a 全面数据	2回	<u>14</u> , 28, 42, 56日	圃場A:<0.04	圃場A: <0.01/<0.01/<0.02
(塊茎)			全面散布			圃場B:0.05(2回、28日)	圃場B: <0.01/0.02/<0.02

## / / : / / / / / / / / / / / / / / / / / 	試験		試験条件			日上中日沖1)())	各化合物の残留量 (ppm)		
農作物	圃場数	剤型	使用量・使用方法	回数	経過日数	最大残留量 ^{注1)} (ppm)	【フロニカミド/代謝物C/代謝物E】		
おうとう	0	100/ 田五小子 1/ 至 1 文 1	2000倍散布		1 0 7 14 01 🗆	圃場A:0.92	圃場A:0.88/0.02/0.02		
(果実)	2	10%顆粒水和剤	400L/10a	2回	<u>1</u> , 3, 7, 14, 21 日	圃場B:0.63	圃場B:0.60/0.01/<0.02		
りんご	2	100/ 昭弘之 水 壬 文川	2000倍散布	이터	14 91 90 🗆	圃場A:0.15(2回、28日)	圃場A: 0.12/0.01/0.02		
(果実)		10%顆粒水和剤	500,625L/10a	2回	<u>14</u> , 21, 28日	圃場B:0.11	圃場B: 0.05/<0.01/0.05		
りんご	2	10%顆粒水和剤	2000倍散布	이터	14 90 49 🗆	圃場A:0.40	圃場A: 0.36/0.02/0.02		
(果実)	4	10 /0米貝不吐/八个口戶门	300L/10a	2回	<u>14</u> , 28, 42日	圃場B:0.11(2回、28日)	圃場B: 0.08/0.01/0.02		
なし	2	10%顆粒水和剤	2000倍	3回	14 91 99 🗆	圃場A:0.10(3回、28日)(#)	圃場A:0.07/0.01/0.02(#)		
(果実)	Δ	10 70米貝木立/八十日月1	500, 700L/10a	り凹	14, 21, 28日	圃場B:0.17(3回、28日)(#)	圃場B:0.05/0.02/0.10(#)		
なし	2	10%顆粒水和剤	2000倍 散布	2回	14 28 42 56 日	圃場A:0.11(2回、28日)	圃場A:0.05/0.01/0.05		
(果実)	۷	10 /0米貝不吐/八个口戶门	350L/10a	<u> </u>	<u>14</u> , 28, 42, 56日	圃場B:0.11(2回、28日)	圃場B: 0.03/<0.01/0.07		
t t	2	2000倍 散布 10%顆粒水和剤		3回	14, 21, 28日	圃場A:0.46(3回、28日)(#)	圃場A:0.30/0.09/0.07(#)		
(果肉)	۷	10 /0米與不近/八个百月!	700L/10a		14, 21, 20 🖂	圃場B:0.77(3回、14日)(#)	圃場B: 0.62/0.10/0.05(#)		
t t	2	10%顆粒水和剤	2000倍 散布	2回	<u>14</u> , 28, 42 日	圃場A:0.20	圃場A: 0.16/0.02/<0.02		
(果肉)	۷	10 /0末負不近/八十百月1	500L/10a	<u> 7</u> 1E1	12, 27, 40 日	圃場B:0.24(2回、12日)	圃場B: 0.20/0.02/0.02		
ネクタリン	2	10%顆粒水和剤	2000倍散布	<u>2</u> 回	<u>7</u> , 14, 21, 28 日	圃場A:0.42	圃場A: 0.31/0.06/0.05		
(果実)	2	10 /0木貝不匹/八八十百月寸	300L/10a	<u> 7</u> 1년1	<u>1</u> , 14, 21, 20 p	圃場B:0.21(2回、14日)	圃場B: 0.15/0.04/0.02		
すもも	2	 10%顆粒水和剤	2000倍散布	<u>2</u> 回	<u>7</u> , 14, 21, 28 日	圃場A:0.09(2回、28日)	圃場A: 0.01/0.01/0.07		
(果実)	2	10 /0末頁小亚/八十百月小	500L/10a	<u> 7</u> 1년1	<u>1</u> , 14, 21, 20 p	圃場B:0.08(2回、21日)	圃場B: 0.02/0.01/0.05		
うめ	2	 10%顆粒水和剤	2000倍散布	<u>2</u> 回	<u>7</u> , 14, 21 日	圃場A:0.82	圃場A: 0.44/0.06/0.32		
(果実)	2	10 /0末頁不亞/八十百月1	500L/10a	<u> 7</u> 151	<u>r</u> , 14, 21 p	圃場B:0.77(2回、21日)	圃場B: 0.34/0.09/0.34		
うめ	2	 10%顆粒水和剤	2000倍散布	<u>2</u> 回	<u>7</u> , 14, 28, 42 日	圃場A:0.33	圃場A: 0.26/0.01/0.06		
(果実)	2	10 /0末頁不亞/八十百月1	250,500L/10a	<u> 7</u> 151	<u>1</u> , 14, 20, 42 µ	圃場B:0.53(2回、28日)	圃場B: 0.20/0.07/0.26		
いちご	2	 10%顆粒水和剤	2000倍散布	<u>2</u> 回	<u>1</u> , 3, 7 日	圃場A:0.23	圃場A: 0.16/0.02/0.05		
(果実)	۷	10 /0米與不近/八个百月1	200, 250L/10a	<u> 7</u> 1E1	<u>1</u> , 5, 1 🖂	圃場B:0.53(2回、3日)	圃場B: 0.45/0.02/0.06		
ぶどう	2	10%顆粒水和剤	1000倍散布	2回	14, 28, 42, 56日	圃場A:1.56(2回、14日)	圃場A:1.07/0.20/0.29		
(果実)	4	10 /0米與不近/八个百月!	300L/10a	<u> 2</u> <u>11</u>	14, 20, 42, 50 p	圃場B:1.67(2回、28日)	圃場B: 0.78/0.70/0.19		
茶	2	10%顆粒水和剤	1000倍散布	<u>1</u> 回	<u>7</u> , 14, 21 日	圃場A:25.5	圃場A: 22. 2/2. 95/0. 34		
(荒茶)	۷	10 /0 木具个丛/八个山开门	200L/10a	파백	<u>1</u> , 14, 41 H	圃場B:18.7	圃場B:16.7/1.82/0.20		
茶	2	10%顆粒水和剤	1000倍散布	1 [편]	7 14 91 🗆	圃場A:21.1	圃場A:18.2/2.65/0.29		
(湯浸出)		10 /0本只个丛/八个山开门	200L/10a	<u>1</u> 回	<u>7</u> , 14, 21 日	圃場B:16.3	圃場B:14.4/1.66/0.19		

注1) 「最大残留量」欄に記載した残留値は、フロニカミド本体、代謝物Cをフロニカミドに換算したもの及び代謝物Eをフロニカミドに換算したものの和。各化合物の残留量については、「各化合物の 残留量」の欄に示した。

最大残留量:当該農薬の申請の範囲内で最も多量に用い、かつ最終使用から収穫までの期間を最短とした場合の作物残留試験(いわゆる最大使用条件下の作物残留試験)を複数の圃場で実施し、それぞれの試験から得られた残留量。(参考:平成10年8月7日付「残留農薬基準設定における暴露評価の精密化に係る意見具申」)

表中、最大使用条件下の作物残留試験条件に、アンダーラインを付しているが、経時的に測定されたデータがある場合において、収穫までの期間が最短の場合にのみ最大残留量が得られるとは限らないため、最大使用条件以外で最大残留量が得られた場合は、その使用回数及び経過日数について () 内に記載した。

注2) (#): これらの作物残留試験は、申請の範囲内で試験が行われていない。なお、適用範囲内で実施されていない試験条件を斜体で示した。

注3) 今回、新たに提出された作物残留試験成績に網を付けて示している。

	> □.Δ		試験条件			目 [元] [元] [元] [注1]	タル今脚の辞知書 (npm)		
農作物	試験 圃場数	<u></u>	使用量・使用方法	回数	—————————————————————————————————————	最大残留量 ^{注1)} (ppm)	各化合物の残留量(ppm)		
				+	0, 1, 3, 7, 14日	圃場A: 0.104	【フロニカミド/代謝物C/代謝物E/代謝物D】 圃場A: <0.01/0.059/0.033/<0.01		
ばれいしょ (塊茎)	2	50% 水和剤	10.2 g ai/10a散剂 10.0~10.4 g ai/10a散布	<u>3回</u> <u>3回</u>	$0, 1, 3, \underline{7}, 14 \square$ $0, 1, 3, \underline{7}, 14 \square$	圃場B: 0.044	圃場B: <0.01/0.039/0.033/<0.01		
		74 - 117714	10.0° 10.4 g a1/10afX4	<u> 기디</u>	0, 1, 3, <u>1</u> , 14 µ	圃場A: 0.115	圃場A: <0.01/0.068/0.035/<0.01		
						圃場B: 0.050	圃場B: <0.01/<0.01/0.026/<0.01		
						圃場C: 0. 048	圃場C: <0.01/0.014/0.021/<0.01		
						圃場D: 0.047	圃場D: <0.01/0.015/0.019/<0.01		
						圃場E: 0.048	圃場E: <0.01/0.014/0.021/<0.01		
						圃場F: 0.047	圃場F: <0.01/<0.01/0.023/<0.01		
20 2		= 0.0/				圃場G:0.081	圃場G: 0.013/0.01/0.049/<0.01		
ばれいしょ (塊茎)	12	50% 水和剤	10.0~10.5 g ai/10a散布	3回	<u>7</u> 日	圃場H: 0.074	圃場H: <0.01/<0.01/0.046/<0.01		
()61.7		\1 4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				圃場I:0.058	圃場I: <0.01/0.016/0.028/<0.01		
						圃場J:0.058	圃場J: <0.01/0.016/0.028/<0.01		
						圃場K:0.070	圃場K: <0.01/0.020/0.035/<0.01		
						圃場L:0.069	圃場L: <0.01/0.020/0.034/<0.01		
						圃場M:0.047	圃場M: <0.01/<0.01/0.023/<0.01		
						圃場N:0.069	圃場N: <0.01/0.016/0.037/<0.01		
						圃場0:0.088	圃場0:<0.01/0.023/0.047/<0.01		
2.05						囲場A: 0.199 (#)	圃場A: 0. 13/<0. 02/0. 042/<0. 02 (#)		
だいこん (根部)	4	50% 水和剤	9.5~10.3 g ai/10a散布	3回	2日	圃場B: 0.355 (#)	圃場B: 0. 21/0. 056/0. 078/<0. 02 (#)		
(小文中的)		/JV/TH/HI				圃場C: 0.134 (#)	圃場C: 0. 075/<0. 02/0. 034/<0. 02 (#)		
<i>た</i> リンフリ		F00/				圃場D: 0.154 (#)	圃場D: 0. 10/<0. 02/0. 030/<0. 02 (#)		
だいこん (根部)	1	50% 水和剤	10.0~10.4 g ai∕10a散布	3回	4日	圃場A:0.065	圃場A: <0.02/<0.02/0.022/<0.02		
						圃場A:3.345 (#)	圃場A: 3.1/0.20/0.051/0.068 (#)		
だいこん (葉部)	4	50% 水和剤	9.5~10.3 g ai/10a散布	3回	2日	圃場B: 9.336 (#)	圃場B:8.5/0.70/0.16/0.47 (#)		
	$\frac{4}{1}$					圃場C: 6.208 (#)	圃場C: 5.7/0.33/0.17/0.30 (#)		
						圃場D:5.570 (#)	圃場D: 5. 4/0. 12/<0. 050/0. 098 (#)		
だいこん	1	50%	10.0~10.4 g ai/10a散布	3回	4日	圃場A:0.333	圃場A: 0.21/0.069/<0.050/<0.050		
<u>(葉部)</u> にんじん	1	<u>水和剤</u> 50%							
<u>(根部)</u> にんじん	1	<u>水和剤</u> 50%	10.1~10.3 g ai/10a散布	3回	1, <u>3</u> , 6, 13日	圃場A: 0.212(3回, 13日)	圃場A: <0.020/0.070/0.106/<0.050		
(根部)	1	30 % 水和剤	10.0~10.4 g ai/10a散布	3回	1, <u>3</u> , 7, 13 日	圃場A: 0.230 (3回,7日)	圃場A: <0.020/0.163/0.050/<0.050		
		50% 水和剤	9.0~10.6 g ai/10a散布	3回	7日	圃場A:0.135	圃場A: <0.020/0.060/<0.050/<0.020		
にんじん	4					圃場B: 0.186	圃場B: <0.020/<0.050/0.100/<0.05		
(根部)						圃場C: 0.127	圃場C: <0.020<0.050/0.051/<0.050		
						圃場D: 0.137	圃場D: <0.020/<0.050/0.059/<0.050		
にんじん (根部)	1	50% 水和剤	9.9~10.2 g ai/10a散布	3回	6日	圃場A:0.126	圃場A: <0.020/<0.050/<0.050/<0.050		
にんじん (根部)	1	50% 水和剤	9.6~10.4 g ai/10a散布	3回	8日	圃場A:0.152	圃場A: <0.020/<0.050/0.072/<0.050		
(11211)		/J\/TH/H!				圃場A: 0.121	圃場A: 0.062/0.032/<0.025/<0.025		
			9.7~10.3 g ai/10a散布			圃場B: 0. 284	圃場B: 0. 205/0. 053/<0. 025/<0. 025		
		50%			<u>0</u> 日	圃場C: 1. 374	圃場C: 1. 262/0. 089/<0. 025/<0. 025		
キャベツ	6	水和剤		3回		圃場D: 0. 352	圃場D: 0. 288/0. 037/<0. 025/<0. 025		
		117714				圃場E: 0.231	圃場E: <0.025/0.127/0.074/<0.025		
						圃場F: 0. 084	圃場F: <0.025/0.031/<0.025/<0.025		
						圃場A: 0. 529	圃場A: 0. 428/0. 077/<0. 025/<0. 025		
7 7 7 7 7 7 1 1	4	50%	0 0 10 2 : /10 - \ /- /-	이터	οΠ	圃場B: 0.624	圃場B: 0. 462/0. 144/<0. 025/<0. 025		
フ゛ロッコリー	4	水和剤	9.9~10.3 g ai∕10a散布	3回	<u>0</u> 日	圃場C: 0. 552	圃場C: 0. 499/<0. 025/<0. 025/<0. 025		
						圃場D: 0.303	圃場D: 0. 250/<0. 025/<0. 025/<0. 025		
		50%				圃場E: 0.753	圃場E: 0. 553/0. 144/0. 056/<0. 025		
フ゛ロッコリー	1	水和剤	10.3~10.8 g ai/10a散布	3回	<u>0</u> , 1, 3, 7 日	圃場A: 0.503 (3回,1日)	圃場A: 0. 432/0. 045/<0. 025/<0. 025		
トマト	1	50% 水和剤	10.2~10.4 g ai/10a散布	3回	<u>0</u> , 1, 3, 7 日	圃場A:0.052 (3回,1日)	圃場A:0.031/0.010/<0.01/<0.01		
						圃場A:0.099	圃場A:0.069/0.014/0.014/<0.01		
						圃場B: 0.067	圃場B:0.046/0.010/<0.01/<0.01		
						圃場C: 0.114	圃場C:0.093/<0.01/<0.01/<0.01		
						圃場D: 0.080	圃場D: 0.056/0.013/0.010/<0.01		
						圃場E: 0.098	圃場E: 0.077/<0.01/<0.01/<0.01		
トマト	11	50% 水和剤	9.9~10.5 g ai/10a散布	3回	<u>0</u> 日	圃場F: 0.103	圃場F: 0.082/<0.01/<0.01/<0.01		
. ,		/J \ /TH'月リ				圃場G: 0.107	圃場G: 0.086/<0.01/<0.01/<0.01		
						圃場H: 0.167	圃場H:0.143/0.013/<0.01/<0.01		
						圃場I: 0. 238	圃場I: 0. 217/0. 01/<0. 01/<0. 01		
						圃場J: 0.109	圃場J: 0. 088/<0. 01/<0. 01/<0. 01		
	i						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

①米国

農作物	試験		試験条件			最大残留量 ^{注1)}	各化合物の残留量 (ppm)			
辰作物	圃場数	剤型	使用量・使用方法	回数	経過日数	(ppm)	【フロニカミド/代謝物C/代謝物E/代謝物D】			
						圃場A: 0.170	圃場A: 0.058/0.030/0.070/<0.01			
						圃場B: 0.167	圃場B: 0.057/0.031/0.068/<0.01			
ピーマン (bell pepper)	5	50% 水和剤	9.9~10.3 g ai∕10a散布	3回	<u>0</u> 日	圃場C: 0.169	圃場C: 0. 056/0. 031/0. 070/<0. 01			
(Sell peppel)		\1 4 H \ 1				圃場D: 0.192	圃場D: 0.104/0.038/0.044/<0.01			
						圃場E: 0.186	圃場E: 0.107/0.038/0.037/<0.01			
ピーマン (bell pepper)	1	50% 水和剤	9.9~10.3 g ai∕10a散布	3回	<u>0</u> , 1, 3, 7 日	圃場A: 0.261 (3回,3日)	圃場A: 0.099/0.115/0.047/<0.01			
とうがらし			10.1~10.4 g ai/10a散布	3回	<u>0</u> 日	圃場A: 0.290	圃場A: 0. 219/0. 041/0. 028/<0. 01			
(non bell	3	50% 水和剤				圃場B: 0.277	圃場B: 0. 204/0. 040/0. 030/<0. 01			
pepper)		7 1 (4 H) 713				圃場C: 0.277	圃場C: 0. 205/0. 038/0. 031/<0. 01			
.0		50% 水和剤	9.7 g ai/10a		9日	圃場A:3.33(#)	圃場A: 2.85/0.110/0.312/0.177(#)			
ホップ (乾燥実)	3		10.2 g ai/10a	3回		圃場B:1.92(#)	圃場B:1.20/0.204/0.442/0.153(#)			
(13/2/02/07			9.9 g ai/10a		11日	圃場C:1.12	圃場C: 0.565/0.168/0.334/0.038			
からしな	1	50% 水和剤	10.0~10.1 g ai/10a散布	3回	<u>0</u> , 1, 3, 7 日	圃場A:2.678	圃場A: 2. 209/0. 418/0. 070/0. 031			
						圃場A:8.201	圃場A:6.873/0.907/0.411/0.047			
からしな	1	50%	9.7~10.3 g ai/10a散布	인터	0 🖽	圃場B: 9.704	圃場B:8.307/1.341/0.136/0.071			
かりしな	4	水和剤	9. 7 - 10. 5 g al/ 10a fx411	3回	<u>0</u> 日	圃場C: 2. 240	圃場C: 2.037/0.163/0.044/<0.025			
						圃場D: 4.555	圃場D: 3.965/0.401/0.184/0.046			
		500 /		3回	<u>0</u> 日	圃場A:4.861	圃場A:4.401/0.448/0.040/<0.002			
からしな	3	50% 水和剤	9.9~10.0 g ai/10a散布			圃場B: 5.244	圃場B: 4.778/0.416/0.069/<0.002			
						圃場C: 5. 453	圃場C: 4.909/0.482/0.084/<0.002			

② 韓国

農作物	試験		試験条件			最大残留量 ^{注1)}	各化合物の残留量 (ppm)			
長17初	圃場数	剤型	使用量・使用方法	回数	経過日数	(ppm)	【フロニカミド/代謝物C/代謝物E/代謝物D】			
とうがらし	1	10% 水和剤	3000倍散布	3回	1,3,5,7日	圃場A:0.706(#) (3回,1日)	圃場A:0.46/0.15/0.09/-(#) (3検体平均)			
きゅうり	1	10% 水和剤	3000倍散布	3回	1,3,5,7日	圃場A: 0.873(#) (3回,1日)	圃場A:0.56/0.21/0.10/-(#) (3検体平均)			

注1) 「最大残留量」欄に記載した残留値は、フロニカミド本体、代謝物Cをフロニカミドに換算したもの及び代謝物Eをフロニカミドに換算したものの和。各化合物の残留量については、「各化合物

の残留量」の欄に示した。
最大残留量: 当該農薬の申請の範囲内で最も多量に用い、かつ最終使用から収穫までの期間を最短とした場合の作物残留試験(いわゆる最大使用条件下の作物残留試験)を複数の圃場で実施し、それぞれの試験から得られた残留量。(参考:平成10年8月7日付「残留農薬基準設定における暴露評価の精密化に係る意見具申」)
表中、最大使用条件下の作物残留試験条件に、アンダーラインを付しているが、経時的に測定されたデータがある場合において、収穫までの期間が最短の場合にのみ最大残留量が得られるとは限らないため、最大使用条件以外で最大残留量が得られた場合は、その使用回数及び経過日数について()内に記載した。

注2) (#): これらの作物残留試験は、申請の範囲内で試験が行われていない。なお、適用範囲内で実施されていない試験条件を斜体で示した。

					参考基	準値	
A D 4	基準値	基準値	登録	国際		外国	作物残留試験成績等
食品名	案 ppm	現行 ppm	有無	基準 ppm]	基準値 ppm	ppm
小麦	5	* *	申	•			1.83(\$),1.06
大豆 小豆類	5 5	3	申○・申				1.53(\$),1.14 2.17,1.99
ばれいしょ	0.3	0.3	0				0.03,0.05/<0.04,0.15 /0.12,0.08,0.08,0.05 【0.047-0.115(n=17)(ばれい
その他のいも類	0.2	0.2			0.2	アメリカ	しょ)(米国) 】
だいこん類(ラディッシュを含む。)の根	0.6	0.6	0		0.6	アメリカ	【0.065-0.355(#)(n=5)(米 国)】 【0.333-9.336(#)(n=5)(米
だいこん類(ラディッシュを含む。)の葉	16	16	0		16	アメリカ	国)】 【米国にんじん及び
かぶ類の根	0.6	0.6			0.6	アメリカ	だいこん類(根)参照】 【米国にんじん及び
西洋わさび クレソン	0.6 4	0.6 4			0.6	アメリカ	だいこん類(根)参照】
はくさい キャベツ	2 2	2 2	00		1.5	アメリカ	0.74(\$),0.25 【0.084-1.374(n=6)(米国)】 【米国キャベツ及び
芽キャベツ ケール	2 16	2 16	0		1.5 16		ブロッコリー参照】 【米国からしな参照】
こまつな	16	16	00		16	アメリカ	【米国からしな参照】
きょうな チンゲンサイ	16 16	16 16	00		16 16		【米国からしな参照】 【米国からしな参照】
カリフラワー	2	2	0		1.5		【米国キャベツ及び ブロッコリー参照】
ブロッコリー その他のあぶらな科野菜	5 16	5 16	00		16	アメリカ	1.53(\$),1.34 【0.303-0.753(n=5)(米国)】 【米国からしな参照】
ごぼう	0.6	0.6	0		0.6	ア刈カ	【米国にんじん及び だいこん類(根)参照】 【米国にんじん及び
サルシフィー チコリ	0.6	0.6			0.6	アメリカ	だいこん類(根)参照】
エンダイブ	4 4	4					
しゅんぎく レタス(サラダ菜及びちしゃを含む。)	4 15	4 15	0				7.64,6.30(リーフレタス)
その他のきく科野菜	4	4					1.04,0.30(9) 09//)
ねぎ(リーキを含む。) アスパラガス	3 2	3 2	00				1.04(#),1.01(#) 0.93,0.49
にんじん	0.6	0.6			0.6	ア刈カ	【0.126-0.230(n=8)(米国)】
パースニップ パセリ	0.6 4	0.6 4			0.6	アメリカ	【米国にんじん及び だいこん類(根)参照】
セロリ みつば	4 5	4 5	0				2.71,1.59
その他のせり科野菜	4	4)				2.71,1.03
トマト	2 2	2 2	0		2	韓国	0.45,0.92(ミニトマト) 【韓国とうがらし参照】 1.13(#),0.70(#)/0.41,0.29
なす その他のなす科野菜	3 2	3 2	0		2	韓国	/0.96,1.16 【0.706(#)(とうがらし)(韓国)】
きゅうり(ガーキンを含む。)	2	2	0		2	韓国	【0.873(#)(韓国)】
かぼちゃ(スカッシュを含む。)	0.4	0.4				F	(3.310(II)(T4E))
しろうり すいか	0.4	0.4 2	0				0.79(#),0.44(#)
メロン類果実	2	2	0				0.10(#),0.26(#)/0.74,0.52 /1.21(#),1.05(#)
まくわうり その他のうり科野菜	$0.4 \\ 0.4$	$0.4 \\ 0.4$,,
ほうれんそう	9	9					In 059, 0.954(19)(1,1)
							【0.052-0.254(n=12)(トマト) 0.167-0.261(n=6)(ピーマン)
オクラ	0.4	0.4			0.4	アメリカ	0.277-0.290(n=3) (とうがらし)(米国)】
えだまめ	5	5	0				1.91,1.39
その他の野菜	4	4	0				

(別紙2) 農薬名 フロニカミド

	参考基準値						
食品名	基準値 案	基準値 現行	登録 有無	国際 基準		外国 基準値	作物残留試験成績等
	ppm	ppm		ppm		ppm	ppm
りんご 日本なし 西洋なし マルメロ びわ	1 0.5 0.5 0.2 0.2	1 0.5 0.5 0.2 0.2	0				0.15,0.11/0.40(\$),0.11 0.11,0.11/0.10(#),0.17(#) (日本なし参照)
もも ネクタリン あんず(アプリコットを含む。) すもも(プルーンを含む。) うめ おうとう(チェリーを含む。)	1 1 2 0.6 2 2	1 1 2 0.6 2 0.6	〇 〇 〇 〇 〇 〇 申				0.46(#),0.77(#)/0.20,0.24 0.42,0.21 (うめ参照) 0.82,0.77/0.33,0.53 0.92,0.63
いちご	2	2	0				0.23,0.53(\$)
ぶどう	5	5	0				1.56,1.67
その他の果実	0.4	0.4					
綿実	0.5	0.5					
茶 ホップ	40 5	40 5	0		5	アメリカ	25.5(\$),18.7(荒茶) 【1.12-3.33(#)(米国)】
その他のハーブ	16	16	0		16	アメリカ	【2.240-9.704(n=8) (からしな) (米国)】
牛の筋肉 その他の陸棲哺乳類に属する動物の筋肉	0.08 0.08	0.08 0.08			0.08 0.08		推:0.03 【牛の筋肉参照】
牛の脂肪 その他の陸棲哺乳類に属する動物の脂肪	0.03 0.03	0.03 0.03			0.03 0.03		推:0.01 【牛の脂肪参照】
牛の肝臓 その他の陸棲哺乳類に属する動物の肝臓	0.08 0.08	0.08 0.08			0.08 0.08		推:0.03 【牛の肝臓参照】
牛の腎臓 その他の陸棲哺乳類に属する動物の腎臓	0.08 0.08	0.08 0.08			0.08 0.08		推:0.03 【牛の腎臓参照】
牛の食用部分 その他の陸棲哺乳類に属する動物の食用部分	0.08 0.08	0.08 0.08			0.08 0.08	アメリカ アメリカ	【牛の肝臓及び腎臓参照】 【牛の肝臓及び腎臓参照】
乳	0.03	0.03			0.03	アメリカ	推:0.006
鶏の筋肉 その他の家きんの筋肉	0.03 0.03	0.03 0.03			0.03 0.03		推:0.0232 【鶏の筋肉参照】
鶏の脂肪 その他の家きんの脂肪	0.03 0.03	0.03 0.03			0.03 0.03		推:0.0232 【鶏の脂肪参照】
鶏の肝臓 その他の家きんの肝臓	0.03 0.03	0.03 0.03			0.03 0.03		推:0.0232 【鶏の肝臓参照】
鶏の腎臓 その他の家きんの腎臓	0.03 0.03	0.03 0.03			0.03 0.03		【鶏の肝臓参照】 【鶏の肝臓参照】
鶏の食用部分 その他の家きんの食用部分	0.03 0.03	0.03 0.03			0.03 0.03		【鶏の肝臓参照】 【鶏の肝臓参照】
鶏の卵 その他の家きんの卵	0.04 0.04	0.04 0.04			0.04 0.04		推:0.0265 【鶏の卵参照】
トマトピューレー トマトペースト	0.5 2	0.5 2					

[「]登録有無」の欄に「申」の記載があるものは、農薬の登録申請等の基準値設定依頼がなされたものであることを示している。 (#)これらの作物残留試験は、申請の範囲内で試験が行われていない。 (\$)これらの作物残留試験は、試験成績のばらつきを考慮し、この印をつけた残留値を基準値策定の根拠とした。 「作物残留試験」欄に「推」の記載のあるものは、推定残留量であることを示している。

フロニカミド推定摂取量 (単位: μg/人/day)

食品名	基準値案	保護学師に 暴露評価に 用いた数値	国民平均	I 国民平均	ル g/ ノヘ/ 幼小児 (1~6歳)	ク day / 幼小児 (1~6歳)	· 妊婦 I	· 妊婦 I	高齢者 (65歳以上)	高齢者 (65歳以上)
小麦 	(ppm) 5	(ppm) 1.445	TMDI 584.0	EDI 168.8	TMDI	EDI	TMDI 617.0	EDI 178.3	TMDI	EDI
大豆 	5 5	1.3 <u>3</u> 5 2.08	280. <u>5</u> 7. 0							<u>78. 5</u> 5. 6
ばれいしょ その他のいも類	0 <u>.</u> 3 0. 2	0.0 <u>7</u> 5 0.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\frac{1}{0} = \frac{6}{0} \cdot \frac{4}{1}$	$\begin{bmatrix} - & -1.6 \\ 0.1 \end{bmatrix}$	$\frac{1}{0} - \frac{1}{0} = \frac{1}{0}$	0.21	$ \frac{1}{0.1}$	= = = = = = = 2.0 0.1
その他のいも類 だいこん類 (ラディッシュを含む。) の根だいこん類 (ラディッシュを含む。) の葉	$=====$ $=$ $ \frac{6}{16}$	0.1814 4.9584	27. 0 35. 2	$0^{1} = = = = = 8.2$	11.2	$\begin{bmatrix} = = = = \\ -3.4 \\ 2.5 \end{bmatrix}$			<u> 35.</u> 1	$= = = = = 10.6$ $= - \frac{10.6}{16.9}$
かぶ類の根	$\begin{bmatrix} - & - & - & - & - & - & - & - & - & - $		$\frac{1}{0}$	6 1 <u>.</u> 6	0.4	0.4	0.4	$\begin{bmatrix} - & - & 0.4 \\ - & 0.1 \end{bmatrix}$	2.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
クレソン はくさい キャベツ	$\begin{bmatrix} - & - & - & -4 \\ - & - & - & \frac{4}{2} \end{bmatrix}$	0. 495	$\frac{1}{0}$	0.4	$\begin{bmatrix} - & - & \overline{0} & \overline{4} \\ - & - & 20 & \overline{6} \end{bmatrix}$	$\begin{bmatrix} - & - & 0.4 \\ - & 5.1 \end{bmatrix}$	=:	0.4	0.4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
キャベツ 芽キャベツ	$\begin{bmatrix} - & - & - & - \\ - & - & - & \frac{2}{2} \end{bmatrix}$	0.408	58. 8 45. 6 0. 2	$\frac{5}{2}$ $\frac{1}{2}$ $\frac{9.3}{0.2}$		- 4.0 0.2		$ \frac{9.3}{0.2}$		8.1 0.2
ケール	$\begin{bmatrix} - & - & - & - & 16 \\ - & - & - & 16 \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>_ 1</u> . <u>6</u>	$\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{6}{6}$	$-\frac{1}{32} \cdot \frac{6}{0}$	$-\frac{1.6}{32.0}$	$\frac{1}{25}$. $\frac{1}{6}$	$-\frac{1.6}{25.6}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
こまっな きょうな チンゲンサイ	$\begin{bmatrix} - & - & 16 \\ - & 16 \end{bmatrix}$	$\begin{array}{c c} \bullet & \overline{} & \overline{} \\ \bullet & \overline{} & \overline{} & \overline{} \\ \end{array}$	<u>4.</u> 8 22. 4	$\frac{3}{4}$ $\frac{4.8}{22.4}$	$\frac{1}{4.8}$	1.6 4.8	$\frac{1}{16}$. $\frac{6}{0}$	1.6 16.0	$\frac{1}{30.4}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
カリフラワー ブロッコリー	$\begin{bmatrix} - & - & - & - \\ - & - & - & 2 \\ 5 & - & 5 \end{bmatrix}$			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$-\frac{0}{14}$. $\frac{2}{0}$	0.2 $- 4.0$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 <u>.</u> 2 6 <u>.</u> 7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
その他のあぶらな科野菜	$===\frac{16}{0.6}$	$\frac{1}{16}$	= = = 33. 6 2. 7	$\frac{6}{1}$	$\frac{4.8}{1.0}$	= = = 4.8 1.0	$\begin{bmatrix} - & - & - & - & - & - & - & - & - & - $	$=$ $=$ $=$ $\frac{3.2}{1.4}$	= = = 4 <u>9</u> . <u>6</u> 3. 1	= = 4 9.6 3.1
こは2	$\begin{bmatrix} - & - & - & - & - & - & - & - & - & - $	0.6	$\frac{1}{1} - \frac{1}{1} = \frac{1}$	0.1	$\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$	0.1	0.1	0_1		01
ニンダイブ	$\begin{bmatrix} - & - & - & -\frac{4}{4} \\ - & - & -\frac{4}{4} \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{10}$	0.4	0.41	0.4	0.41	0.4	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	0.4
レタス(サラダ菜及びちしゃを含む。)	$\begin{bmatrix} - & - & - & \frac{1}{15} \\ - & - & \frac{1}{4} \end{bmatrix}$	$\frac{1}{6}$ $\frac{1}{97}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42.5	37.5		96. 01	44.6		
その他のきく科野菜 1 1 2 2 3 4 5 6 6 6 6 6 6 6 6 6	= = = = 3 3	1. 0 <u>2</u> 5 0. 71	= = = = 33. <u>9</u> 1. 8	:	$\begin{bmatrix} -13.5 \\ 0.6 \end{bmatrix}$	$=$ $=$ $\frac{4.6}{0.2}$	24.6	= = = = :	=	= = = <u>1</u> 3.8 0.5
<u> </u>	= = = = 0.6 $ = 0.6$	0. 163	$=$ $=$ $=$ $\frac{1}{2}$ $$	= = = = :	$= = \frac{9 \cdot 6}{9 \cdot 8}$ $= -\frac{9 \cdot 8}{0 \cdot 1}$	$===\frac{0.2}{2.7}$	$ = = \underbrace{\frac{9}{5}}_{1} \underbrace{\frac{9}{5}}_{1} $ $ = -\frac{15}{0} \cdot \frac{1}{1} $	$\frac{1}{1} = \frac{3}{1} = \frac{3}$	$=$ $=$ $=$ $=$ $\frac{1}{13}$. $\frac{1}{4}$	1 = 0 = 0.3 $1 = 0.3$ 0.1
パセリーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー	$\begin{vmatrix} - & - & - & - & - & 4 \\ - & - & - & - & 4 \end{vmatrix}$	4	$\frac{1}{1} - \frac{0}{1} \cdot \frac{1}{4}$	$\frac{1}{4} = \frac{0.4}{0.4}$	$-\frac{0.1}{0.4}$	$\begin{bmatrix} - & - & 0.1 \\ - & - & 0.4 \\ 0.4 \end{bmatrix}$	$ \frac{0.1}{0.4}$	$\begin{bmatrix} - & - & 0.1 \\ - & - & 0.4 \\ 1 & 2 \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} - & - & - & 0.1 \\ - & - & 0.4 \\ 1 & 6 \end{bmatrix}$
	$\begin{bmatrix} - & - & - & - & 5 \\ - & - & - & - & 4 \end{bmatrix}$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{4}$	$\frac{1}{0}$	0.4	$\begin{bmatrix} - & - & \frac{0}{0} & \frac{1}{5} \\ - & - & \frac{0}{0} & \frac{5}{4} \end{bmatrix}$	$\begin{bmatrix} - & - & 0.1 \\ - & - & 0.2 \\ 0.4 \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} - & - & -\frac{1}{2} \\ - & - & 0.2 \\ 0.4 \end{vmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} - & - & - & 1 & 0 \\ - & - & - & 0 & 4 \\ 1 & 2 & 1 & 2 \end{bmatrix}$
トマトーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー	 2	0.685	48. 6 8. 8	16.6					$ \frac{37.8}{74}$	$\frac{12.9}{7.4}$
	$\begin{bmatrix} - & - & -\frac{2}{3} \\ - & - & -\frac{3}{2} \end{bmatrix}$	0.775	$\frac{1}{2} - \frac{1}{2} = \frac{3}{2}$		$\begin{bmatrix} - & - & \frac{4}{5} & \frac{6}{5} \\ - & - & \frac{2}{5} & \frac{7}{5} \end{bmatrix}$	$\begin{bmatrix} - & -\frac{4.0}{0.7} \\ - & -\frac{0.7}{0.1} \end{bmatrix}$	$\begin{bmatrix} - & - & \frac{3}{2}, \frac{3}{2} \end{bmatrix}$	· — — — ·	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} - & - & - & - & - & - & - & - & - & - $
その他のなす科野菜 きゅうり (ガーキンを含む。) かぼちゃ (スカッシュを含む。)	= = = = 2 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	= = = = 32.6 32.6 3.8			= = = = = = = 7 <u>.</u> 2				= = = = 14.5 14.5
かぼちゃ (スカッシュを含む。)	$\begin{bmatrix} - & - & 0.4 \\ - & - & 0.4 \end{bmatrix}$	0. 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1	$\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$	0.0	$\overline{}$	0.0	0.3	0.3
メロン類果実	$\begin{bmatrix} - & - & -\frac{2}{2} \\ - & - & -\frac{2}{0} \end{bmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{2}$	3 ¹ 0. 3	0.6	0. 2	0. 20	0.1		. _ :
まくわうり まくわうり その他のうり科野菜 ほうれんそう	$\begin{bmatrix} - & - & 0.4 \\ - & 0.4 \end{bmatrix}$	0.4	0 . 2 <u>0</u> . 2 168. 3	0.2				0.9		0.3
オクラ	$\begin{bmatrix} - & - & -\frac{9}{4} \\ - & - & \frac{9}{5} \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{100.3}{0.1}$	$\frac{1}{6}$: $-\frac{100.3}{0.1}$: $\frac{1}{6}$: $-\frac{0.1}{0.2}$:	$-\frac{90.9}{0.1}$	$-\frac{90.9}{0.1}$	$-\frac{150.0}{0.1}$	$-\frac{156.6}{0.1}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} - & - & 195.3 \\ - & - & 0.1 \end{bmatrix}$
えだまめ えだまめ この他の野菜	= = = = ⁵ 4		= = = 0. 5 50. 4	$\frac{0}{4} = \frac{0.2}{50.4}$	= = = 0.5 38.8	38.8	= = = = = = = = = = = = = = = = = = =	$= = = \frac{0.2}{38.4}$	= = = = = = = = = = = = = = = = = = =	$1 = = = \frac{0.2}{48.8}$
りんご 日本なし 	$\begin{bmatrix} - & - & -1 \\ - & - & 0.5 \end{bmatrix}$	0. 1925 0. 1225	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	61 0 <u>.</u> 6	$\frac{1}{2}, \frac{1}{2}$		$\frac{1}{2}$, $\frac{1}{2}$	0 <u>.</u> 6		0.6
日本なし	0 <u>.</u> 5	• 0. 2	0.05 0.0	0.0	0.01	0.0	0. 01	0.0	0.0	0.0
	= = = 0.2	0. 2 0. 4175	$= = = \frac{0}{0}.\frac{0}{5}$	<u> </u>	<u> </u>	``	<u>4. 0</u>	<u>_</u> 1 <u>.</u> 7	<u>0. 1</u>	0.0
あんず (アプリコットを含む。)	$\begin{bmatrix} - & - & -\frac{1}{2} \\ - & - & -\frac{2}{2} \end{bmatrix}$		$\frac{0}{2}$		0.2	0 <u>.</u> 0 0 <u>.</u> 2	$ \frac{1}{0.2}$		0.2	
すもも(プルーンを含む。)	$\begin{bmatrix} - & - & 0.6 \\ - & - & - & 2 \end{bmatrix}$	0.6125	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{0}{2}$ $\frac{1}{2}$	0. 1	$ \frac{0}{0} \cdot \frac{1}{6}$		$\begin{bmatrix} - & - & 0.8 \\ - & - & 2.8 \end{bmatrix}$	+	$\frac{1}{3}$	0.1
おうとう(チェリーを含む。)	= = = ²	0.775	0. 2 0. 6 29. 0	$\begin{bmatrix} 2 \\ - \end{bmatrix} = \begin{bmatrix} 0.1 \\ - \end{bmatrix} = \begin{bmatrix} 0.1 \\ - \end{bmatrix}$	0. 2 0. 8	= = = 0.1 0.2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0. 1 0. 0	0. 2 0. 2	0. 1 0. 0
	= = = = = 5	1. 6 <u>1</u> 5 0. 4	2 <u>9</u> . 0	$\frac{1}{9} = \frac{1}{9} = \frac{9.4}{1.6}$	$= \frac{22.0}{2.4}$	$= = = \frac{7.1}{2.4}$	= = = = = = = = = = = = = = = = = = =	$= = \frac{2.6}{0.6}$	$=$ $=$ $=$ $=$ $\frac{19}{0}$. $\frac{0}{7}$	= $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$
	= = = 0.5 = = = 40	0.5 22.1	= = = = 0.1 = = = = 120.0	$\begin{bmatrix} 1 & 2 & 2 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 2 \end{bmatrix}$	$\begin{bmatrix} - & - & - & - & - & - & - & - & - & - $		0.1	= = = = 0.1 = = = -	0. 1	= = = = 0.1 = = = = 95.0
本	$\begin{vmatrix} \frac{40}{5} \\ = = -\frac{2}{5} \end{vmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$= \frac{120.0}{0.5}$	$\frac{0!}{5!} - \frac{66.3!}{0.2!}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$= -\frac{30.9}{0.2}$	$= \frac{140.0}{0.5}$ $= = = \frac{1}{5}$	$\frac{1}{1} = -\frac{77.4}{0.21}$ $\frac{1}{1} = -\frac{37.4}{0.21}$	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	0.2
での他のハーフ	= = $\frac{16}{=}$ - $\frac{0.08}{0.03}$	<u> </u>	<u> </u>	$\begin{bmatrix} 3 \\ - \\ 3 \end{bmatrix} = = \begin{bmatrix} 0.5 \\ - \\ 1.7 \end{bmatrix}$	$= = \frac{1.6}{2.6}$	$t = = = \frac{0.5}{1.0}$	$= = \frac{1.6}{4.8}$	= = = 0.5 $= 1.8$	=	
	<u>0.0</u> 3	0.006 0.0232	$\frac{1}{2}$	5 ₁	$\begin{bmatrix} - & - & \overline{0} & \overline{6} \end{bmatrix}$	0_4	<u> </u>	0_4	$\frac{1}{2}$	0. 5
рl	0.04	0. 0265	1.6	867. 2			1689. 1	726. 91		926. 4
ADI比(%) 高齢者については畜産物の摂取量データが			48.8							23. 4

高齢者については畜産物の摂取量データがないため、妊婦については家きんの卵類の摂取量データがないため、国民平均の摂取量を参考とした。 TMDI:理論最大1日摂取量(Theoretical Maximum Daily Intake)

EDI:推定1日摂取量(Estimated Daily Intake)

^{●:}個別の作物残留試験がないことから、暴露評価を行うにあたり基準値(案)の数値を用いた。 なお、グループで基準値が設定されている作物については、根拠となった作物以外についてはTMDI試算を行った。

これまでの経緯

平成16年1	0月2	0 日	農林水産省から厚生労働省へ農薬登録申請に係る連絡及び基準 設定依頼(新規:りんご、きゅうり、ばれいしょ、茶等)
平成16年1	0月2	9 目	厚生労働大臣から食品安全委員会長あてに残留基準設定に係る 食品健康影響評価について要請
平成18年	1月1	9日	食品安全委員会委員長から厚生労働大臣あてに食品健康影響評 価について通知
平成18年1	0月	6 日	残留農薬基準告示
平成18年1	O月	6 日	初回農薬登録
平成20年	1月3	0 目	農林水産省から厚生労働省へ農薬登録申請に係る連絡及び基準 設定依頼(適用拡大:すいか、ぶどう等)
平成20年	2月1	2 日	厚生労働大臣から食品安全委員会長あてに残留基準設定に係る 食品健康影響評価について要請
平成20年	7月	3 日	食品安全委員会委員長から厚生労働大臣あてに食品健康影響評 価について通知
平成21年	7月	2 日	残留農薬基準告示
平成21年1	0月1	6 日	農林水産省から厚生労働省へ農薬登録申請に係る連絡及び基準 設定依頼(適用拡大:非結球レタス及びみつば)
平成21年1	0月2	0 目	インポートトレランス設定の要請(にんじん、キャベツ及び畜 産物等)
平成21年1	0月2	7 日	厚生労働大臣から食品安全委員会長あてに残留基準設定に係る 食品健康影響評価について要請
平成22年	5月1	9日	農林水産省から厚生労働省へ農薬登録申請に係わる連絡及び 基準設定依頼(適用拡大:いんげんまめ、だいこん、ブロッコ リー、アスパラガス及びえだまめ)
平成22年	9月	9日	食品安全委員会委員長から厚生労働大臣あてに食品健康影響評 価について通知
平成24年	6月1	4 日	残留農薬基準告示
平成23年1	2月1	3 目	農林水産省から厚生労働省へ農薬登録申請に係る連絡及び基準 設定依頼(適用拡大:小麦、だいず等)
平成24年	5月	9日	農林水産省から厚生労働省へ農薬登録申請に係る連絡及び 基準設定依頼(適用拡大:おうとう)

平成24年 5月16日 厚生労働大臣から食品安全委員会長あてに残留基準設定に係る

食品健康影響評価について要請

平成24年10月29日 食品安全委員会委員長から厚生労働大臣あてに食品健康影響評価について通知

平成25年 2月20日 薬事・食品衛生審議会食品衛生分科会へ諮問

平成25年 2月27日 薬事・食品衛生審議会食品衛生分科会農薬・動物用医薬品部会

薬事・食品衛生審議会食品衛生分科会農薬・動物用医薬品部会

[委員]

石井 里枝 埼玉県衛生研究所水・食品担当主任研究員 延東 真 東京海洋大学大学院海洋科学技術研究科教授

○大野 泰雄 国立医薬品食品衛生研究所長

尾崎博東京大学大学院農学生命科学研究科獣医薬理学教室教授

斉藤 貢一 星薬科大学薬品分析化学教室准教授

佐藤 清 一般財団法人残留農薬研究所業務執行理事・化学部長

高橋 美幸 農業・食品産業技術総合研究機構動物衛生研究所上席研究員

永山 敏廣 東京都健康安全研究センター食品化学部長

宮井 俊一 一般社団法人日本植物防疫協会技術顧問

山内 明子 日本生活協同組合連合会執行役員組織推進本部長

由田 克士 大阪市立大学大学院生活科学研究科公衆栄養学教授

吉成 浩一 東北大学大学院薬学研究科薬物動態学分野准教授

鰐渕 英機 大阪市立大学大学院医学研究科都市環境病理学教授

(○:部会長)