

Usefulness of the apparent diffusion coefficient (ADC) for predicting the consistency of intracranial meningiomas

Akira Yogi a,⁎, Tomomi Koga a, Kimei Azama a, Daichi Higa a, Kazuhiko Ogawa a,b, Takashi Watanabe c, Shogo Ishiuchi c, Sadayuki Murayama a

a Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Okinawa, Japan
b Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
c Neurosurgery, Graduate School of Medical Science, University of the Ryukyus, Okinawa, Japan

A R T I C L E I N F O

Keywords:
Meningioma
Consistency
DWI
ADC

A B S T R A C T

Meningioma consistency is an important factor for surgical treatment. Tumor cellularity and fibrous tissue contribute to the consistency of tumors, and it is proposed that the minimum apparent diffusion coefficient (ADC) value is significantly correlated with meningioma consistency. Twenty-seven consecutive patients with 28 meningiomas were retrospectively enrolled. Minimum ADC values in meningiomas with a hard consistency were significantly lower than those with a soft consistency. The minimum ADC value might have clinical use as a predictor of meningioma consistency.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Meningiomas are one of the most common intracranial benign neoplasms in adults; they arise from meningotheial cells of the arachnoid layer. The incidence of meningiomas has been increasing [1–3], in part due to technological advancement of radiologic imaging in the ability to detect small meningiomas [1,3,4]. Typical meningiomas are seen as a sharply circumscribed isodense masses that are isodense to cortex on computed tomography (CT) images. On magnetic resonance imaging (MRI), a meningiomas are often isodense to cortex on CT images. On T2-weighted images, a meningiomas isointense or slightly hypointense on T1-weighted images (T1WI), and variably hypointense to hyperintense on T2-weighted images (T2WI). This variability of signal change depends on the amount of tumor calcification, fibrous tissue, necrosis, vascularity, and histological cell types [5]. Marked and relatively homogeneous contrast enhancement with a dural tail sign is also typically seen.

Surgical resection is often the treatment of choice for symptomatic meningiomas. The consistency of meningiomas is an important factor in developing the strategy of surgical resection and predicting the degree of removal; soft tumors are easily curetted by suctioning, whereas hard tumors frequently require a lengthy and tedious dissection. A noninvasive technique that enables surgeons to preoperatively assess the mechanical properties of meningiomas could provide valuable information affecting risk assessment, patient management, and workflow optimization. In the case of hard meningiomas, preoperative transarterial embolization is a useful method to soften tumors and facilitate resection, especially when they are located at a complex site such as cavernous sinus, clivus, cerebellopontine angle, and sellar lesion [4,6]. Though some investigators have employed T1WI and T2WI for this purpose, it remains inaccurate because amount of water is not the only factor affecting tumor consistency [6–9].

Diffusion weighted image (DWI) and the apparent coefficient (ADC) map, derived from DWI, can provide information of water diffusion. Some studies in glioma suggest that ADC value has a strong correlation with tumor cellularity, and therefore it also strongly correlates with World Health Organization (WHO) grade, treatment effect, and prognosis [9,10,13–15]. Furthermore, it has been reported that the ADC value also correlates with the amount of fibrous tissue [16,17]. Both tumor cellularity and the amount of fibrous tissue contribute the consistency of tumors, and it is supposed that the intratumoral ADC value has a significant correlation with the consistency of meningiomas. Nevertheless, to our knowledge, there have been no reports regarding the relationship between the quantitatively measured ADC value and the consistency of meningiomas. Although some studies reported the usefulness of diffusion tensor imaging and MR elastography to predict the consistency of tumor [18–23], these advanced MR techniques require special equipment and software, and are not still commonly used in clinical purpose. In contrast, DWI is now commonly accepted as a part of conventional MR examination in most institutes.
important to investigate the relationship between ADC value and consistency of tumors. Thus, the purpose of the present study is to evaluate the usefulness of ADC value in predicting the consistency of meningiomas.

2. Materials and methods

2.1. Patient selection

The present study protocol was approved by the institutional ethics committee, and written informed consent was waived because of the retrospective nature of the investigation. For this retrospective study, all consecutive patients with intracranial meningiomas who were referred to our institute between October 2009 and August 2010 were included. A total of 27 patients with 28 meningiomas (4 men and 23 women; mean age, 55.1 years; range, 28–74 years) were enrolled in this study. The locations of meningiomas included eight in the convexity, four in the parasagittal region, three in the tuberculum sellae, and two in the petroclival region. Histological subtypes based on World Health Organization (WHO) classification consisted of 27 grade I tumors (meningothelial; 14, transitional; four, angiomatous; four, fibroblastic; three, psammomatous; one, and secretory; one) and one WHO grade II tumors (atypical). Calcification and intratumoral hemorrhage were not confirmed in CT and conventional MRI.

2.2. Magnetic resonance imaging examination

All patients underwent MRI with a 1.5T clinical imager (MAGNETOM Avanto; Siemens, Munich, Germany) and a quadrature head coil. All patients underwent conventional MRI including axial spin-echo T1WI sequence (repetition time (ms)/echo time (ms)=4200/108; section thickness, 5 mm; and matrix size 448×108). DWI was acquired in the axial plane, with diffusion gradients applied along the three principal orthogonal axes, in turn, by using single-shot spin-echo echo-planar (EP) sequences. The following parameters were used: matrix, 232×256; section thickness, 5 mm; intersection gap, 2.5 mm; maximum gradient strength, 33 mT/m; acquisition time, 35s; and b values, 0 and 1000 s/mm². ADC maps were also generated.

2.3. Image analysis

The data of DWI and ADC map were transferred to the workstation (NUMERIS/4 syngoMR B17, Siemens, Munich, Germany). Two neuroradiologists (T.K. and D.H., with ten and three years of experience of brain MRI, respectively) who were blinded to the clinical and pathological details create the regions-of-interests (ROIs) on T2WI by consensus. All ROIs were manually drawn along with the tumor contour. The position of every ROI was therefore brought back on all the other images including ADC map, T1WI, DWI with b values of 0 and 1000 s/mm². Cystic degeneration, flow void, bone, and susceptibility artifacts derived from air and bone were intentionally avoided. ROIs were drawn on all slices where the lesion was visualized and the minimum (ADCmin), maximum (ADCmax), and mean ADC (ADCmean) values were determined.

2.4. Surgery

All patients underwent surgical resection of the meningiomas. A neurosurgeon with sixteen years of experience in brain surgery who was blinded to the analysis of ADC value evaluated the consistency of the tumors, and classified them into two groups: meningiomas with a...
soft consistency (removed by suction probe only) and meningiomas with a “hard” consistency (not removable through suction but excised).

2.5. Statistical analyses

Statistical analysis was achieved by statistical software (GraphPad Prism 6). Mann–Whitney U test and unpaired t test were used for analysis of ADC values between soft and hard groups. Sensitivity and specificity were calculated by receiver operating characteristics (ROC) curve analysis, and the best cut-off value was determined. The area under the curve (AUC) was elevated to assess test accuracy. In addition, all meningiomas were divided into two groups according to whether they occurred at skull base or not. All ADC values were compared between these two location groups using Mann–Whitney U test. A difference with a threshold P value of less than .05 was considered statistically significant.

3. Results

3.1. Surgical findings

At surgery, 17 meningiomas were classified as hard and 11 as soft. The hard group consisted of 10 meningothelial, two fibroblastic, two transitional, one psammomatous, one angiomatous, and one secretory meningioma. The soft group consisted of four meningothelial, three angiomatous, two transitional, one fibroblastic and one atypical. Two meningiomas demonstrated cystic components on MRI and which were confirmed at surgery.

“soft” consistency (removed by suction probe only) and meningiomas with a “hard” consistency (not removable through suction but excised).

3.2. Imaging findings and analyses

All meningiomas were clearly visualized on every MRI sequence and all ROI could be drawn accurately. Cystic degeneration and susceptibility artifacts were successfully avoided.

All ADC values of all cases are shown in Table 1. ADCmin, ADCmax, and ADCmean values of all meningiomas were 0.63±0.24 (range 0.11–1.49), 2.03±0.65 (range 1.08–3.53), and 1.05±0.27 (range 0.77–1.81)×10−3 mm²/s, respectively. For the hard group, these values were 0.52±0.15 (range 0.11–0.70), 1.96±0.63 (range 1.16–3.53), and 1.01±0.26 (range 0.77–1.81)×10−3 mm²/s, respectively (Fig. 1) and for the soft group, these values were 0.79±0.26 (range 0.54–1.49), 2.13±0.71 (range 1.08–3.04), and 1.11±0.29 (range 0.83–1.71)×10−3 mm²/s, respectively (Fig. 2). Statistical analysis indicated that ADCmin value of hard group was significantly lower than that of soft group (P<.001) (Fig. 3). ADCmax and ADCmean values showed no significant difference between two groups though these values of hard group tended to be lower (P=.52 and .21, respectively). According to ADCmin value, the ROC curve revealed 0.64×10−3 mm²/s as the best cut-off value (Fig. 4). According to this cut-off value, sensitivity and specificity were calculated as 88% and 81%, respectively, and the AUC was 0.9.

Nineteen meningiomas were located at skull base; eight in the sphenoid ridge, six in the CPA, two in the tuberculum sella, and two in the petroclival region (meningothelial; 10, fibroblastic; two, transitional; one, angiomatous; one, and atypical; one), and nine meningiomas were located at supratentorial region; five in the convexity and four in the parasagittal region (meningothelial; four, transitional; two, angiomatous; two, and fibroblastic; one). All ADC values of all cases are shown in Table 1. ADCmin, ADCmax, and ADCmean values of all meningiomas were 0.63±0.24 (range 0.11–1.49), 2.03±0.65 (range 1.08–3.53), and 1.05±0.27 (range 0.77–1.81)×10−3 mm²/s, respectively. For the hard group, these values were 0.52±0.15 (range 0.11–0.70), 1.96±0.63 (range 1.16–3.53), and 1.01±0.26 (range 0.77–1.81)×10−3 mm²/s, respectively (Fig. 1) and for the soft group, these values were 0.79±0.26 (range 0.54–1.49), 2.13±0.71 (range 1.08–3.04), and 1.11±0.29 (range 0.83–1.71)×10−3 mm²/s, respectively (Fig. 2). Statistical analysis indicated that ADCmin value of hard group was significantly lower than that of soft group (P<.001) (Fig. 3). ADCmax and ADCmean values showed no significant difference between two groups though these values of hard group tended to be lower (P=.52 and .21, respectively). According to ADCmin value, the ROC curve revealed 0.64×10−3 mm²/s as the best cut-off value (Fig. 4). According to this cut-off value, sensitivity and specificity were calculated as 88% and 81%, respectively, and the AUC was 0.9.

Nineteen meningiomas were located at skull base; eight in the sphenoid ridge, six in the CPA, two in the tuberculum sella, and two in the petroclival region (meningothelial; 10, fibroblastic; two, transitional; one, angiomatous; one, and atypical; one), and nine meningiomas were located at supratentorial region; five in the convexity and four in the parasagittal region (meningothelial; four, transitional; two, angiomatous; two, and fibroblastic; one). All ADC values of all cases are shown in Table 1. ADCmin, ADCmax, and ADCmean values of all meningiomas were 0.63±0.24 (range 0.11–1.49), 2.03±0.65 (range 1.08–3.53), and 1.05±0.27 (range 0.77–1.81)×10−3 mm²/s, respectively. For the hard group, these values were 0.52±0.15 (range 0.11–0.70), 1.96±0.63 (range 1.16–3.53), and 1.01±0.26 (range 0.77–1.81)×10−3 mm²/s, respectively (Fig. 1) and for the soft group, these values were 0.79±0.26 (range 0.54–1.49), 2.13±0.71 (range 1.08–3.04), and 1.11±0.29 (range 0.83–1.71)×10−3 mm²/s, respectively (Fig. 2). Statistical analysis indicated that ADCmin value of hard group was significantly lower than that of soft group (P<.001) (Fig. 3). ADCmax and ADCmean values showed no significant difference between two groups though these values of hard group tended to be lower (P=.52 and .21, respectively). According to ADCmin value, the ROC curve revealed 0.64×10−3 mm²/s as the best cut-off value (Fig. 4). According to this cut-off value, sensitivity and specificity were calculated as 88% and 81%, respectively, and the AUC was 0.9.
values showed no significant difference between these two location groups ($P = .55, .11, \text{and } .75$, respectively).

4. Discussion

It has been reported that there is a significant correlation between MR signal intensity and the consistency of meningiomas. Recently, Hoover et al. and Sithinamsuwan et al. found a strong relationship between the signal intensity of T2WI and the consistency of meningiomas [24,25]. Yamaguchi et al. reported that meningiomas which showed hyperintensity on T2WI and proton density weighted images were soft, and they postulated that the water content of meningiomas is an important factor related to consistency [21]. Maiuri et al. reported that meningiomas with more hyperintensity than the cortex on T2WI were usually soft, more vascular, and more frequently were of the syncytial or angioblastic subtype, whereas meningiomas with more hypointensity than the cortex on T2WI tended to be hard and more frequently of the fibroblastic subtype [8].

These reports concluded that the amount of water or fibrous tissue resulted in a soft or hard consistency, and hyperintensity or hypointensity on T2WI, respectively [8,21,24,25].

However, this correlation has not been consistently demonstrated. Carpeggiani et al. did not find any statistically significant correlation between signal intensity and the consistency of meningioma, although they agreed that hyperintense meningioma on T2WI was unlikely to be fibroblastic or hard [12]. Besides, Kasoff et al. didn’t find any relationship between MRI findings with the consistency and water content of meningiomas [11].

Tumor cellularity and the amount of fibrous tissue are important factors of tumor consistency. Meningioma cells are characterized by interdigitations connected with junctional complexes and extracellular cisterns, and it is supposed that meningiomas with higher cellularity have stronger cell adhesion [21]. Fibrous tissue and high cellularity with a low nucleus-to-cytoplasm ratio reduce the signal intensity on T2WI, whereas extracellular space with interstitial fluid may increase the signal intensity on T2WI. Each of these mechanisms can have a different contribution to signal intensity on T2WI and may therefore limit the diagnostic utility in predicting the consistency. It has been suggested that the ADC value inversely correlates with tumor cellularity and the amount of fibrous tissue within heterogeneous tumors [9,14,15,26]. Thus, it is supposed that tumors, including meningiomas, with low ADC value have a hard consistency. In this study values of ADCmin showed a significant difference between the consistency groups ($P < .001$).
study, the minimum ADC values of hard group showed significantly lower ADC values than those of soft group, which consistent with this theory. Maximum ADC values and mean ADC values, on the other hand, showed no significant difference between hard and soft groups though mean ADC were reported to be related to some histologic subtypes[27]. It is because we divided meningiomas into soft or hard group according to if they were completely resected by suction probe only. In this classification, if a small component of meningioma could not be removed by suction probe only, the meningioma was classified as “hard” group even though most parts were easily removed. Though this division is not directly associated with whole histologic feature, it is useful to determine which surgical devices will be needed for complete resection.

Recently, Hoover et al. reported that T1WI and T2WI predicted the consistency of meningiomas, but DWI and ADC maps were not correlated with tumor consistency [24]. They, however, performed only qualitative analysis and did not measure ADC values of the meningioma. In contrast, we performed a quantitative analysis using ROIs. These ROIs were constructed by contouring the tumor with all slices and avoiding cystic degeneration, flow void, bone, and susceptibility artifacts. Thus, this method can better reflect the entire tumor tissue.

As hemosiderin deposition was not confirmed in present study, it is not common in meningioma unlike pituitary macroadenomas, in which intratumoral hemorrhage often occurs and results in preventing calculating ADC values accurately [17]. Thus, intrinsic susceptibility artifacts were less common in meningiomas, excepting the cases with calcification.

On DWI, abnormal signal change and spatial distortion often occurs by the susceptibility artifacts derived by air, bone, and hemorrhage, which could result in showing inadequate ADC values. Though meningiomas occur in supratentorial region more commonly than in skull base [4] where susceptibility artifacts often exist [28], about two thirds of cases were located at skull base in the present study. Because there was no significant difference in ADC values between these two location groups, it is supposed that potential susceptibility artifacts did not significantly affect the ADC values. Present study has several limitations. The principle limitation of our study is its relatively small number of patients. Second, because there was a lack of direct histopathological correlation with ADC values, we could not clarify which was the main factor accounting for decreasing ADC values, high cellularity or rich fibrous tissue. Third, all ROIs were drawn manually and were susceptible to bias. Two blinded observers, however, drew ROIs by consensus, which should have minimized it. Fourth, all DWI were performed by using EP sequences, which often suffered by susceptibility artifacts at skull base. As mentioned above, we drew ROIs avoiding artifacts, and ADC values showed no significant difference between skull base lesion and supratentorial lesion. Thus, it is supposed that there was little influence that intrinsic susceptibility artifact affected ADC values in this study. Further study using advanced DWI technique including readout-segmented EP imaging [29], periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) DWI [17], and 3D turbo field echo with diffusion-sensitized driven-equilibrium preparation [30], which has higher spatial resolution and fewer susceptibility artifacts, might elucidate the relationship between ADC values and meningioma consistency. Finally, we didn’t confirm prospectively if minimum ADC value would really give surgeon useful information in making decision of management. There is still an overlap of the ADC values between two groups, and it could be misleading in determining consistency. It might be more useful to combine the results of signal intensity of other sequences including T2WI, T1WI, and so on, and further studies are needed.

5. Conclusions

The present study suggests that the minimum ADC value can be a promising tool to predict the consistency of intracranial meningiomas. Meningiomas with low minimum ADC are considered to have a hard consistency. It is very important and beneficial to predict the meningioma consistency for surgical planning and selection of the surgical devices, especially if the tumors are located in complex regions. Because DWI is available in many institutes, the minimum ADC may be a tool for predicting the consistency of meningiomas. Furthermore, with inclusion of more study cases and analysis across modalities, ADC values may help select cases for preoperative embolization in future.

Conflicts of interest

None.

Acknowledgments

We received no acknowledgement of grants, disclosures, or other assistance.

References

Glioblastoma is the most aggressive and lethal malignancy of the CNS, and patients with glioblastoma have an average life expectancy of 1 year after the standard treatment of surgery followed by radiation therapy.26,45 Recently, clinical studies have shown that chemotherapy in addition to radiation therapy could increase patient survival up to 2 years.45 The continuing problems caused by glioblastoma and the failure of conventional therapy for this advanced invasive brain tumor indicate that novel strategies and anticancer drugs are critically needed to improve the prognosis.

Enhanced expression of proapoptotic and autophagic proteins involved in the cell death of glioblastoma induced by synthetic glycans

Laboratory investigation

Ahmad Faried, M.D., Ph.D.,† Muhammad Zafrullah Arifin, M.D., Ph.D.,† Shogo Ishiiichi, M.D., Ph.D.,‡ Hirokui Kuwano, M.D., Ph.D.,‡ and Shin Yawara, Ph.D.3,4

†Department of Neurosurgery, Faculty of Medicine, Universitas Padjadjaran–Dr. Hasan Sadikin Hospital, Bandung, Indonesia; ‡Department of Neurosurgery, Faculty of Clinical Medicine, the University of Ryukyu, Nakagami-gun, Okinawa; †Department of General Surgical Science, Faculty of Medicine, Gunma University, Maebashi; and 4Tokushima Research Institute, Otsuka Pharmaceutical Co. Ltd., Tokushima, Japan

Object. Glioblastoma is the most aggressive malignant brain tumor, and overall patient survival has not been prolonged even by conventional therapies. Previously, the authors found that chemically synthesized glycans could be anticancer agents against growth of a series of cancer cells. In this study, the authors examined the effects of glycans on the growth of glioblastoma cells both in vitro and in vivo.

Methods. The authors investigated not only the occurrence of changes in the cell signaling molecules and expression levels of various proteins related to cell death, but also a mouse model involving the injection of glioblastoma cells following the administration of synthetic glycans.

Results. Synthetic glycans inhibited the growth of glioblastoma cells, induced the apoptosis of the cells with cleaved poly (adenosine diphosphate-ribose) polymerase (PARP) expression and DNA fragmentation, and also caused autophagy, as shown by the detection of autophagosome proteins and monodansylcadaverine staining. Furthermore, tumor growth in the in vivo mouse model was significantly inhibited. A dramatic induction of programmed cell death was found in glioblastoma cells after treatment with synthetic glycans.

Conclusions. These results suggest that synthetic glycans could be a promising novel anticancer agent for performing chemotherapy against glioblastoma.

Key words • synthetic glycan • glioblastoma • apoptosis • autophagy • oncolgy

This article contains some figures that are displayed in color online but in black-and-white in the print edition.
antiapoptotic signals, thereby promoting the proliferation of the tumor cells. Growing evidence is accumulating that glioblastoma cells exploit glutamate for their proliferation and migration ability. The released glutamate may stimulate glioblastoma cell growth and migration through the autocrine and/or paracrine activation of glutamate receptors. In addition, the expression of Rho GTPase family members has been demonstrated in a wide variety of malignancies and in high-grade glioma as a hallmark of cell migration and as a predictor of the clinical prognosis.

Programmed cell death plays an important role during tissue development and homeostasis. Aberrations in this process result in the pathology of numerous disorders, such as malignancy. Apoptosis is the most common form of programmed cell death, but recently, alternative cell death programs have received increased attention, with autophagy proposed as an important nonapoptotic cell death mechanism.

In our previous studies, using chemically synthesized glycans consisting of sugar cholestanols with mono-, di-, and trisaccharides attached to cholestanols, we showed both strong inhibitory activity against the proliferation of a series of mouse and human cancer cells from the digestive system and antitumor effects in a mouse model of peritoneal dissemination. The sugar cholestanols added to the cell culture were rapidly taken up via the lipid rafts/microdomains on the cell surface. The uptake of sugar cholestanols in mitochondria increased gradually and was followed by the activation of apoptotic signals via the caspase cascade, leading to apoptotic cell death.

Furthermore, the examination of sugar cholestanols in a mouse model of peritoneal dissemination showed a dramatic reduction of tumor growth and a prolonged survival time of the mice. The sugar cholestanols described in our previous studies, therefore, appeared to have clinical potential as novel anticancer agents. However, the cell death pathways in malignant glioma cells induced by the same compounds remain an open question. In this study, we investigated the programmed cell death induced by the sugar cholestanols in glioblastoma cells and its anticancer effect on growth in nude mice.

Methods

Cell Lines and Culture Condition

Human glioblastoma cell lines, CGNH-89 and CGNH-NM, were established as described previously. The morphology of CGNH cells is epithelial and adherent type, and their doubling time is 24 hours. CGNH cells were established through resection from the tumor at the right frontal lobe of female patients according to the explant method by Nichols et al. It has been demonstrated that the CGNH cells have glioblastoma morphological characteristics, and they grow very fast (highly cellular) and are relatively monotonous, while some are multinucleated giant cells with slight nuclear pleomorphism, marked atypical nucleus, and brisk mitotic activity. The cells were maintained at 37°C in DMEM (Nissui) supplemented with 10% fetal bovine serum (Invitrogen) and 3% L-glutamine in a humidified atmosphere of 5% CO₂ in air. When they were confluent, the cells were exposed in 0.05% trypsin and subcultured in the same growth medium.

Compounds

N-acetyl-D-glucosamine (GlcNAc) β1,3 d-galactose (Gal) β cholesterol, or GGChol, and GlcNAc β cholestanol, or GChol, were synthesized and prepared as an inclusion complexation with 20% of hydroxypropyl-β-cyclodextrin (HP-β-CD; BICO) and used for the experiment as previously described.

Antibodies and Chemical Reagents

Anti-GluR1 (glutamate receptor 1) and GluR4 (glutamate receptor 4) were obtained from Chemicon. Anti-RhoA, RhoC, Beclin-1, and LC3 were obtained from Santa Cruz Biotech, Inc. Anti-pAkt at ser473, mTOR at ser2448, p53 at ser46, Bcl-2 family, caspase family, and poly (adenosine diphosphate-ribose) polymerase (PARP) were obtained from Cell Signaling. 3-Methyladenine (3-MA; Sigma), was used as an inhibitor of autophagy. 3-MA (30 mg) was dissolved with 1 ml dH₂O to make a 200 mM stock solution and kept at room temperature. Benzylxoycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone (Z-VAD-FMK, or just Z-VAD; BD Biosciences), a general caspase inhibitor, was used to inhibit apoptosis. Z-VAD was dissolved in dimethylsulfoxide for a stock solution. And 1 mM of 3-MA and 10 μM of Z-VAD were diluted separately in DMEM to obtain the desired concentration. The autofluorescent agent monodansylcadaverine (MDC; Sigma) was introduced as a specific autophagolysosome marker to analyze the autophagic process. The fluorescence of MDC has been reported to be a specific marker for autophagic vacuoles. Monodansylcadaverine was dissolved in methanol (10 mg/ml) and used to observe autophagy.

Cell Proliferation Inhibition and Nuclear Fragmentation Assays

Cell proliferation inhibition with each compound was conducted in the presence of serially diluted compounds as described previously. DNA binding dyes, Hoechst 33342 (HO342), in addition to propidium iodidium iodide fluorescence, were used for determination of apoptosis. Cells were exposed to HO342 (10 μM) and propidium iodide (10 μM), and each fluorescence intensity was examined using a fluorescence microscope with ultraviolet excitation at 340–380 nm. The apoptotic index (AI) was calculated as follows:

AI = (apoptotic cell number + necrotic cell number + viable cell number) × 100%

Protein Extraction and Western Blot Analysis

All cells were harvested at approximately 80% confluent growth. Protein concentrations of the cell lysate were determined with a bicinchoninic acid protein assay kit (Pierce) using bovine serum albumin as a standard. Each sample (50 μg protein/line) was run on a 5%–20% ReadyGel (Bio-Rad) and the gel was then electrotransferred to a hybond-enhanced chemiluminescence nitrocellulose.
Cell death of glioblastoma induced by glycans

membrane (Amersham Pharmacia Biotech). Changes in expression levels of corresponding (apoptosis and autophagy) proteins after treatment with sugar cholestanol were analyzed by Western blotting; β-actin was used as a loading control. Bands on the membrane were detected using an enhanced chemiluminescence detection system, and horizontal scanning densitometry was performed using Photoshop software (version 3.0, Adobe), and analyzed by Quantity One software (BioRad).

Analysis of Autophagy

The analysis of autophagy was performed with the aid of MDC and counted as previously described. Auto- phagic vacuoles were labeled with MDC, and the fluorescent images were obtained with an epifluorescence microscope (BX-50, Olympus). The quantification of intracellular MDC accumulation was measured by fluorescence. Cells (2 × 10⁶) were incubated with 0.05 mM MDC in phosphate-buffered saline at 37°C for 10 minutes and collected in 10 mM Tris-HCl, pH 8.0, containing 0.1% Triton X-100. Fluorescence was measured at a 380-nm excitation wavelength with a 530-nm emission filter, using an MTP-600 microplate reader (Corona Electric). Monodansylcadaverine expression was measured using a relative unit to show the ratio of the amount on intensity from fluorescence imaging.

Antitumor Effect of Sugar Cholestanols on Nude Mice Injected With CGNH-89 Cells

The effect of sugar cholestanols on CGNH-89 cell growth was evaluated quantitatively in a subcutaneous tumor. Cell suspensions (2 × 10⁶ cells/200 μl) were injected subcutaneously in the flanks of 5- to 6-week-old nude mice (Clea Laboratories). One hundred microliters of 2 mM of GChol dissolved in HP-β-CD without GChol was conducted as control. The treatment of both cell types with GChol was conducted as control. Treatment volume was calculated as follows: (length × width²)/2.

At the end of each experiment, tumor tissues were subjected to histological analysis. Five mice were used for each group, and the experiment was approved by the Animal Care and Experimentation Committee of Gunma University. Experiments using patient tissues from glioblastoma cells were approved by the Ethical Committee of Gunma University.

Statistical Analysis

Statistical analysis was performed using StatView software (version 5.0, SAS Institute). Differences were considered significant when p was < 0.05.

Results

Cell Proliferation Inhibition of Glioblastoma Cells by Sugar Cholestanols

The effects of sugar cholestanols on the viability of glioblastoma cells were evaluated at various concentrations. Sugar cholestanols such as GGChol and GChol showed considerable inhibiting activities against the proliferation of glioblastoma cells in a dose-dependent manner (Fig. 1). However, βChol itself, without the sugar moiety, showed very low activity only at a high concentration in CGNH cells (data not shown). The minimum concentrations of sugar cholestanols producing 50% cell proliferation inhibition (CPI50) were determined in the glioblastoma cells, and no clear differences were observed (Table 1). The sugar cholestanols clearly induced cell death in glioblastoma cells.

Nuclear Fragmentation

Nuclear fragmentation was clearly observed in CGNH cells treated with GGChol but not in the control cells (Fig. 2 left). Staining of the glioblastoma cells (CGNH-89 and CGNH-NM) with HO342 and propidium iodide indicated that GGChol induced nuclear fragmentation (a hallmark of apoptosis) in approximately 17% and 23% of the total cells, respectively, and were counted as apoptotic (Fig. 2 right).

Western Blot Analysis of Caspase Cascade and PARP Activation

Caspase signaling pathways consisting of a death receptor–dependent extrinsic pathway and death receptor–independent intrinsic pathway were examined in the glioblastoma cells treated with GGChol. The expression levels of active caspase-8 for the extrinsic pathway, caspase-9 for the intrinsic pathway, and caspase-3 were found to increase in the CGNH-89 and CGNH-NM cells in a time-dependent manner (Fig. 3). The expression levels of PARP, one of the best biomarkers of apoptosis, were analyzed in CGNH cells during the 24 hours after the treatment with GGChol. The N-terminal fragment of PARP, possessing an 89-kDa peptide cleaved from the full-sized PARP (116 kDa), was detected as early as 2 hours in the CGNH cells after the treatment with sugar cholestanols (Fig. 3). These results suggested that GGChol induced apoptotic cell death through both extrinsic and intrinsic pathways.

Analysis of Autophagy, Apoptosis, and the Inhibition of Both

We examined the changes in autophagy activity in both CGNH-89 and CGNH-NM cells treated with GGChol. The treatment of both cell types with GGChol induced not only apoptosis but also an autophagic response (Fig. 4). In both cell types, the number of distinct dot-like structures distributed within the cytoplasm or localized in the perinuclear regions was higher than in the control (Fig. 4A and B, left). The level of MDC incorporated into the CGNH-89 and CGNH-NM cells was increased 1.4- and 1.5-fold, respectively, after being treated with GGChol compared with that in the untreated cells (Fig. 4A and B, right). The cell viability of glioblastoma cells was reduced in the presence of GGChol up to 60% but was restored after the addition of 3-MA and Z-VAD to the culture medium (Fig. 4C). Our results showed that 3-MA and Z-VAD can block autophagy and apoptosis from 17%–20% and 38%–41%, respectively. The combination of inhibitors against both autophagy and apoptosis can fully block the cell death induced by GGChol (45%–
48% increase). When 3-MA and Z-VAD were added at the same time to the cell culture, the cell viability in the GGChol-treated cells was as high as that of the untreated control cells. However, no effect was observed when either agent was added individually to the cell culture (Fig. 4C).

Western Blot Analysis of the Bcl-2 Family

The expression levels of Bcl-2 family members, consisting of both proapoptosis and antiapoptosis factors, were then analyzed in the CGNH cells treated with GGChols. A slightly increased expression of Bax (proapoptosis) was detected in the CGNH-89 and CGNH-NM cells in a time-dependent manner, and a slightly decreased expression of Bcl-xL (antiapoptosis) was detected in the same cells (Fig. 5). We also evaluated the expression level of p53 (ser46), one of the initiators that activates Bax and/or downregulates Bcl-xL. Our results showed that glioblastoma cells treated with GGChol increased the expression of p53 (ser46) in a time-dependent manner (Fig. 5).

Western Blot Analysis of Autophagy

Using Western blot analysis and MDC staining, we found that GGChol increased the expression of apoptosis-related proteins and slightly increased the expression of LC3-II and Beclin-1 (Fig. 5). All these results suggest that sugar cholestanols induced both apoptosis and autophage cell death in glioblastoma cells.

Western Blot Analysis of Survival Pathways

The expression of survival signaling proteins was evaluated in glioblastoma cells in response to sugar cholestanols. The treatment of both CGNH cell types with GGChol indicated inhibition of Akt activation and expression of both phosphorylated Akt (ser473) and phosphorylated mTOR (ser2448), the downstream targets of Akt in glioblastoma cells (Fig. 6A). The expression levels of the upstream molecules related to Akt/mTOR were also analyzed in CGNH cells treated with GGChol, and the decreased expression of both GluR1 and GluR4 was detected in CGNH cells treated with GGChol in a time-dependent manner (Fig. 6A). However, the expression levels of RhoA and RhoC in CGNH cells treated with GGChol were revealed to be suppressed in a time-dependent manner (Fig. 6B).

Antitumor Effect of Sugar Cholestanols in a Mouse Model

Nude mice were subcutaneously inoculated with CGNH-89 cells and tumors formed within 2 weeks in all
Cell death of glioblastoma induced by glycans

mice. Tumor formation was significantly suppressed (p < 0.05) in the mice treated with GChol in HP-β-CD intratumorally 3 times at 14, 15, and 16 days after inoculation of tumor cells. However, no significant suppression was observed in the mice treated only with HP-β-CD (Fig. 7). The histological analysis of GChol-treated mice revealed the presence of high degrees of tumor anaplasia including nuclear and cytoplasmic pleomorphism, tumor necrosis, and vascular proliferation. However, in the control mice, large numbers of mitotic cells were observed (data not shown), as hallmarks of the glioblastoma cells.

Discussion

Temozolomide is commonly used in the treatment of primary or recurrent high-grade gliomas, including anaplastic astrocytoma and glioblastoma. To date, the prognosis of patients with malignant gliomas has been poor. It is clear that tumor cells with drug-resistant ability will not respond to chemotherapy treatment. The mechanism by which temozolomide mediates cell death in malignant tumor cells has been characterized, and it was shown to induce autophagy, not apoptosis, in glioblastoma. In the cancer field, autophagy is a new concept for the defense mechanisms of malignant cells, and they are eliminated, in some cases, due to the induction of a nonapoptotic mechanism, also known as autophagic cell death. However, the triggers for the induction of autophagy and apoptosis and their roles remain unclear.

In our previous studies, novel glycans consisting of a series of sugar cholestanols were chemically synthesized and evaluated as anticancer drugs in both in vitro and in vivo experiments. In this study, the expression levels of a series of molecules related to programmed cell death (apoptosis and autophagy) were investigated in glioblastoma cells treated with the same sugar cholestanols. We used CGNH-type glioblastoma cells, cell lines showing epithelial morphology and adhesive capacity. These cell lines possess glial fibrillary acidic protein, vimentin, A2B5, O4, and myelin basic protein. The mRNAs for the glutamate-AMPA receptors (GluR1 and GluR4) were analyzed in CGNH cells using reverse transcriptase–polymerase chain reaction; the cells expressed GluR1 and GluR4. As previously described, these cell lines have the same profile as that of the primary glioblastoma cells de novo.
In glioblastoma cells treated with sugar cholestanols, the activation of the initiator caspases (extrinsic caspase-8 and intrinsic caspase-9) followed by the activation of the executor caspase (caspase-3) occurred in the glioblastoma cells after treatment with sugar cholestanols. Accordingly, the activation of the cascade involving such caspases induced PARP cleavage, resulting in nuclear fragmentation. Furthermore, the induction of the apoptosis signaling pathway in glioblastoma cells treated with sugar cholestanols appeared to suppress the expression of Bcl-xL and to enhance the expression of Bax in antiapoptotic and proapoptotic manners, respectively. Therefore, the induction of apoptosis appeared to be caused by the disruption of a balance between these anti- and proapoptotic molecules, as described previously.

One of the most important survival-signaling pathways is mediated by PI3K and its downstream targets, such as Akt and mTOR. Recently, Akt was reported to play an important role in determining the chemosensitivity of many types of cells. The induction of autophagy requires the activation of Beclin-1 and its interacting partner, Class III PI3K, resulting in the generation of phosphatidylinositol-3-phosphates. This induction is negatively regulated by Class I PI3K via the Akt/mTOR pathway. In contrast, Beclin-1, a mammalian homolog of the yeast autophagy-related gene Atg6, was observed to be

![Figure 4](image-url)
deleted in breast and prostate cancer cells, and its expression was shown to induce autophagy and inhibit tumorigenicity in MCF-7 breast cancer cells.27 Furthermore, the microtubule-associated protein 1 light chain 3, designated as LC3, exists in 2 forms, which are LC3-I and LC3-II, located in the cytosol and autophagosomal membranes, respectively. LC3 is the first protein that was reported to specifically localize to autophagosome membranes and was later designated as LC3-II (16 kDa), the inner limiting membrane of the autophagosome. During the process of autophagy, cleaved LC3-I conjugates with phosphatidylethanolamine to form LC3-II, which is an important step for autophagosome formation.25 Immunofluorescence staining of endogenous LC3 can detect autophagy (Fig. 4). The expression of Beclin-1 in glioblastoma cells was slightly increased after treatment with sugar cholestanols along with the decreased expression of the members of the Akt/mTOR pathway. In addition, LC3-II expression was increased, and this hallmark could be used to estimate the abundance of autophagosomes before they are destroyed via fusion with lysosomes.

Recently, p53 has also been revealed to activate autophagy.22 Several groups have reported the localization of p53 to the outer layer of the mitochondrial membrane and the activation of apoptosis through direct binding to the Bcl-2 family members Bax, Bak, or Bcl-xL.5,30 The overexpression of p53 was also reported to increase Bax expression in several cell types following the induction of apoptosis.31,43 The binding of p53 to p53AIP1, which appears to be important for the apoptotic response, is selectively enhanced by the phosphorylation of ser46.37 We also observed that, in fact, p53 at ser46 was increased in glioblastoma cells after treatment with sugar cholestanols. In addition, the stimulation of cell death controlled by apoptosis and/or at least partially by autophagy was observed in glioblastoma cells treated with sugar cholestanols and cotreated with inhibitors of caspases and autophagy. Therefore, we provided evidence that sugar cholestanols induced apoptosis and autophagic cell death in the same glioblastoma cells. The occurrence of cell death induced by apoptosis was also observed in colorectal cancer cells treated with the same sugar cholestanols (S. Yazawa et al., unpublished observation, 2008).

The mechanism of drug-induced cell death has been accepted to be governed not only by the upregulation of proapoptotic, proautophagic factors or tumor suppressors, but also by the modulation of the survival-signaling pathways.11 As we previously showed, CGNH cells express Ca2+-permeable AMPA receptors assembled mainly from the GluR1 and/or GluR4 subunits, which contribute to the
invasive and aggressive behavior of glioblastoma. Cell growth appeared to be suppressed in cancer cells treated with the sugar cholestanols, particularly through the activation of the Akt/mTOR pathway (A. Faried et al., unpublished observation, 2009). As reported previously, there is an important survival-signaling pathway that is mediated by the Akt/mTOR pathway and its upstream target, the AMPA receptors.

Our results demonstrated that the sugar cholestanols inhibit the activation of the Akt/mTOR pathway, as shown by the downregulation of phosphorylated Akt at ser473 and phosphorylated mTOR at ser2448. Therefore, we analyzed the expression of the glutamate-AMPA receptors as an upstream target of Akt/mTOR in glioblastoma cells. As expected, we found that the sugar cholestanols inhibited the activation of the glutamate-AMPA receptors, GluR1 and GluR4, in both glioblastoma cell types tested. Taken together, our results suggest that the activation of the glutamate-AMPA receptors–Akt/mTOR pathway was downregulated after treatment with sugar cholestanols.

Ca2+-permeable AMPA receptors and Rho GTPase family members facilitate the migration ability of human glioblastomas. In addition, we also evaluated the expression of Rho GTPases (RhoA and RhoC) because they were reported to be related to the degree of malignancy in glioblastoma. Furthermore, the inhibition of Rho GTPase signaling has been reported to decrease glioblastoma cell migration. In this study, we showed that the expression of both RhoA and RhoC was decreased after treatment with the sugar cholestanols in a time-dependent manner. Overall, our results showed that different processes of cell death were induced by the sugar cholestanols and that the survival, proliferation, or metastatic properties of glioblastoma cells were affected by some other oncogenic factors (Fig. 8).

Our in vivo experiment using nude mice showed that the sugar cholestanols suppressed tumor growth of CGNH-89 cells that were injected into subcutaneous tissue, possessing the features of human glioblastomas in terms of histological tissue organization. This experiment may provide a reliable in vivo model for studying the response of human glioblastomas to our potential synthetic.
Cell death of glioblastoma induced by glycans

Glycans (sugar cholestanols). The sugar cholestanol injections reduced the incidence of intratumoral bleeding in the treated mice compared with the untreated mice, accompanied by the suppression of tumor growth and induction of apoptosis. These results indicate that programmed cell death controlled by apoptosis and/or autophagy in CGNH cells was stimulated by treatment with our novel synthetic glycans (sugar cholestanols). It remains to be seen whether the sugar cholestanols could be applicable to an in vivo experiment using an intracranial glioma model to investigate their usefulness in chemotherapy against the expected blood-brain barrier.

Conclusions

The activation of programmed cell death in human malignant brain tumor cells induced by treatment with the sugar cholestanols may be involved in not only apoptosis, as we previously demonstrated in several tumor cell lines, but also autophagy, which was demonstrated here for the first time. The sugar cholestanols represent potential pharmaceutical agents against glioblastoma cells.

Disclosure

This work was supported partly by the 21st Century COE Fig. 7. Line graph showing the anticancer effect of sugar cholestanols on the subcutaneously formed tumors with glioblastoma cells. CGNH-89 cells (2 x 10^7 cells) were subcutaneously injected into nude mice. Injections of 120 μl of GChol or phosphate-buffered saline only (as a control) were administered intratumorally 3 times (at 14, 15, and 16 days). The values of tumor volumes given indicate the mean ± SD of 5 mice in each group.

Fig. 8. The predicted effects of sugar cholestanols on cell death inducing both apoptosis and autophagy in the glioblastoma cells resulting from continuous activations and/or suppressions in the expressions of their related molecules. Molecules flagged with an asterisk were not examined in this study, but their details have been described in our previous studies. 8–10,14,15,21 TNFR = tumor necrosis factor receptor.
References

Cell death of glioblastoma induced by glycans

Manuscript submitted July 16, 2013.
Accepted January 23, 2014.
Please include this information when citing this paper: published online March 28, 2014; DOI: 10.3171/2014.1.JNS131534.
Address correspondence to: Ahmad Faried, M.D., Ph.D., Department of Neurosurgery, Faculty of Medicine, Universitas Padjadjaran–Dr. Hasan Sadikin Hospital, Jl. Pasteur No. 38, Bandung, West Java 40161, Indonesia. email: faried.fkup@gmail.com.
Targeted Molecular Therapy Against the Multiple Akt-mediated Signaling Pathways in Glioblastoma

Takashi Watanabe, MD, PhD, Kenichi Sugawara, MD, PhD
Hideki Nagamine, MD and Shogo Ishiuchi, MD, PhD

Department of Neurosurgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan

ABSTRACT

Glioblastoma multiforme is the most malignant tumor occurring in the central nervous system and is incurable by current therapeutic strategies. The serine/threonine-specific protein kinase, Akt, is frequently dysregulated and affects cell survival and proliferation in many human cancers, including glioblastoma. Inhibition of Akt phosphorylation has demonstrated therapeutic potential against glioblastoma. Many inhibitors of the PI3K-Akt signaling pathway and α-amino-3-hydroxy-5-methyl-4-isoxazolopropionate (AMPA)-Akt signaling pathway are in clinical use and have demonstrated preliminary activity against various tumor types. This review describes the limitations of therapy against glioblastoma targeting single dysregulated pathways because of the presence of diverse signaling pathways that regulate the coactivation of multiple tyrosine kinases in most malignant gliomas, and the requirement for combined approaches targeting the multiple Akt-mediated signaling pathways based on the findings of clinical trials and earlier investigations. Ryukyu Med. J., 33 (1~3) 1~8, 2014

Key words: AMPA, Akt, glioblastoma, PI3K, platelet-derived growth factor
遺伝子であるp53を介してMGMTの発現を抑制する効果を有することが示された。Stupp regimenにおいてNEFβ300万単位を併用投与した臨床試験（INTERTAH study）が本邦において行われ、明らかに有害事象の増加がなく、mOSが17.1ヶ月と延長し、12ヶ月の無増悪生存期間（progression free survival：PFS）が50%と治療効果の改善が示された。

本邦でも、2013年よりBevacizumab（アベラチブ）が悪性神経膠腫に対して保険適応となった。初発神経膠腫に対するbevacizumabの効果を検証する大規模第3相試験（AVA glio試験と、RT0G 0825試験）は、標準治療（Stupp regimen）にBevacizumabを追加投与し、プラセボと比較した二重盲検無作為化比較検討試験である。その結果において、PFSはbevacizumab投与群でAVA glio試験10.6ヶ月、RT0G 0825試験10.7ヶ月であり、プラセボ群と比較して3.4ヶ月延長し、mOSはbevacizumab投与群でAVA glio試験16.8ヶ月、RT0G 0825試験15.7ヶ月であり、どちらもプラセボ群と比べて有意な延命効果は得られてなかった。

以上のよう、現在本邦で、神経膠腫は悪性神経膠腫に対して主に用いられている化学療法薬は、TMZ（IFN-β併用）とBevacizumabであり、これまでの治療法の進歩により、OS、PFSの延長が認められてきたが、mOSは15-17ヶ月程度である。このため、新たな治療法や治療方法の開発が切望されており、その中で分子標的療法は注目されている。複数のシングナル伝達経路の中で、Aktを介するシングナル伝達経路が重要視されており、他の合成薬を併用しての治療法が盛んに開発されている。本稿では、認知性が良好で、様々な悪性腫瘍に対して臨床的に使用可能となっているAktを標的とした分子標的療法の神経膠腫に対する臨床応用について概説する。

Aktを介する分子標的療法

Aktは、Plekstrin Homology（PH）ドメインを有するセリン／スレオニンキナーゼであり、腫瘍細胞の生存、増殖、分化を、血管新生において重要な役割を果たしている。近年の研究から、神経膠腫の生存、増殖、遊走、血管新生において重要な役割を果たしている。近年の研究から、神経膠腫の生存、増殖、遊走、血管新生においてAktの活性化が関与していることが分かっている。Aktは、PI3K-Aktシグナル伝達経路の活性化が認められている。また、神経膠腫にはvascular endothelial growth factor（VEGF）が過剰発現し、腫瘍の血管新生や悪性度、予後に関与しており、VEGFに対する抗体が神経膠腫の腫瘍形成を抑制することが判明している。神経膠腫細胞は、主にGluR1とGluR4サブユニットで構成されるカルシウム透過性α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate（AMPA）型グルタミン酸受容体を発現している。この受容体を介する細胞内カルシウム濃度の上昇によるSer-473でのAktのリン酸化が神経膠腫の増殖、浸潤に関与することが解明され、このシングナル伝達経路は、PI3K-Aktシグナル伝達経路とは独立していることが判明した。Phosphatase and tensin homolog Deleted from Chromosome 10（PTEN）が、神経膠腫は、腫瘍増殖や血管新生に関する複数のシングナル伝達経路を有し、相互に活性化していることが知られており、単剤での抗腫瘍効果が制限される原因と考えられている。このため、複数のシングナル伝達経路を抑制する多剤併用療法が重要視されている。Aktを中心としたシングナル伝達経路も複数存在し、相互に密接に関与しているため、複数のシングナル伝達経路を標的とした多剤併用分子標的療法が必要と考えられる（Fig.1）。近年、これらのシングナル伝達経路を標的とした分子標的薬は次々に開発され、様々な腫瘍に対する臨床試験が行われて実用化されている。認知性が良好である分子標的療法薬は、将来的に神経膠腫に対して有用である可能性があり、これらの効果を検証する研究が重要である。

AMPA受容体拮抗薬

カルシウム透過型AMPA受容体拮抗薬である2,3-dihydroxy-6-nitro-7-sulfinamoylbenzo-F-quinuoxaline（NBQX）は、Ser-473でのAktのリン酸化を抑制し、神経膠腫細胞増殖と遊走を抑制することが判明している。しかし、NBQXは、脳出血を抑えると脳幹細胞を凝縮するため実用的ではない、2,3-dioxyo-(1H-imidazol-1-yl)-6-nitro-1,2,3,4-tetrahydroquinolinin-1-yl-acetic acid monohydrate（YM872）は、経口投与が可能であり、水に溶解性であり、生体に投与するという点では臨床的である。Talampenanは、認知性が良好で、経口投与が可能な、
非競合性のカルシウム透過型AMPK受容体拮抗薬で、中枢神経への移行性も優れている薬剤であり、臨床試験で使用されている。多施設共同研究による第二相臨床試験では、新規神経膠芽腫症例（年齢18歳から70歳）60例に対して、Stupp regimenにタルマプレン（25mg×30日）を6ヶ月、2年生存率41.7%であり、Stupp regimenによる標準治療の結果（mOS 14.6ヶ月、2年生存期間26.5%）と比較して、有害事象を増加させることなく、生存期間を延長させた。しかし、再発性脳腫瘍（神経膠芽腫22例、退形成性神経膠腫8例）に対し、タルマプレン（25-75mg×30日）を6ヶ月单剤投与した第二相臨床試験では、partial responseが腫瘍1例(5%)のみであり、6ヶ月のPFSは、腫瘍4.6%、退形成性神経膠腫0%、median PFSは、腫瘍5.9週、退形成性神経膠腫8.9週であった。副作用は、めまい、錯覚といった有害事象は軽度であったが、有意な抗腫瘍効果を認めなかった。多数のシナプル伝達経路を有する悪性神経膠腫に対する単剤投与での治癒の困難さを示している。

抗VEGF受容体抗体
再発性脳腫瘍に対するbevacizumab単独投与（10mg/kg、2～3週間×3）を行った第二相臨床試験では、Bevacizumab投与により、脳腫瘍の軽減とステロイド投与量の減少が認められた。6ヶ月のPFS:25.42.6%、median PFS:2.7～4.2ヶ月、mOS:6.4～10.5ヶ月であり、Bevacizumabの単独投与の可能性が示唆された。
Fig. 2 Effect of combination therapy targeting the AMPA-Akt signaling pathway and PI3K-Akt signaling pathway in vitro

Human glioblastoma cells were treated with PBS (control; left column), or calcium-permeable AMPA receptor antagonist (YM872 at 20 μM) and PDGF receptor antagonist (AG1296 at 20 μM) (right column). Immunofluorescence staining is shown for phosphorylated Akt in green, for Ki-67 in blue, and for propidium iodine in red.

Fig. 3 Effect of combination therapy targeting the AMPA-Akt signaling pathway and PI3K-Akt signaling pathway in vivo

a-d: Glioblastoma cell suspensions were injected subcutaneously into the flank of nude mice. Inhibition of tumor growth was observed after daily intraperitoneal injection of PBS (control; a), calcium-permeable AMPA receptor antagonist (YM872 at 25 mg/kg; b), PDGF receptor antagonist (AG1296 at 1.25 mg/kg; c), or the combination of both antagonists (d) for 2 weeks.

ea-h: Photomicrographs of sections of tumor tissue taken 36 days after inoculation, treated with PBS (e), 25 mg/kg YM872 (f), 1.25 mg/kg AG1296 (g), and the combination of both agents (h). Extensive necrosis in the tumor tissue was found after treatment with YM872, AG1296, and the combination of both agents. Hematoxylin and eosin stain, original magnification: × 200.

Fig.3
制することが判明した（Fig 2）。In vitro では、この抑制効果には、単独投与と併用投与の間での有意差が認められなかったが、ヒト神経膠芽腫を作製マウスに移植した異種移植モデルを用いた解析では、control と比較し、AG1296 投与群、YM872 投与群、併用群で腫瘍体積の減少、壊死死の増加及び細胞密度の減少が認められた（Fig 3）。また、Ki-67 表示率及び CD34 で標識した腫瘍血管数は、各治療群で有意に減少し、併用投与における相乗効果が認められた。このことから、異種移植モデルにおいて併用投与群の抗腫瘍効果が増強したのは、vascular niche の抑制によるものと考えられた

PDGF 受容体拮抗薬である Imatinib mesylate や AMPA 受容体拮抗薬である Talampain は、単独投与での効果は限定的であるが、併用投与による効果が期待される。また、PTEN が欠失して PI3K シグナル伝達経路が活性化した神経膠芽腫細胞に、経口 PI3K 阻害薬である BMK120（Buparlisib）と Smoothened（Smo）の阻害薬で Sonic Hedgehog (shh) シグナル伝達経路を抑制する LDE225（sonidegib）を併用投与した最近の研究では、神経膠芽腫に対する抑制効果が認められた

PDGF 受容体拮抗薬である Imatinib mesylate や AMPA 受容体拮抗薬である Talampain は、単独投与での効果は限定的であるが、併用投与による効果が期待される。また、PTEN が欠失して PI3K シグナル伝達経路が活性化した神経膠芽腫細胞に、経口 PI3K 阻害薬である BMK120（Buparlisib）と Smoothened（Smo）の阻害薬で Sonic Hedgehog (shh) シグナル伝達経路を抑制する LDE225（sonidegib）を併用投与した最近の研究では、神経膠芽腫に対する抑制効果が認められた

Akt を標的とする分子標的療法が開発され、多くの悪性腫瘍の治療薬として、認知性が良好な治療薬が登場し、臨床応用されるようになってきており、神経膠芽腫への応用が期待される。一方で、神経膠芽腫は、複雑で多様なシグナル伝達経路を有し、単剤投与の限界も確認されてきている。神経膠芽腫に対する治療成績上上のためには、複数のシグナル伝達経路を抑制する多剤併用分子標的療法の効果を検証する preclinical study が重要であると考えられる。

まとめ

Akt を標的とする分子標的療法が開発され、多くの悪性腫瘍の治療薬として、認知性が良好な治療薬が登場し、臨床応用されるようになってきており、神経膠芽腫への応用が期待される。一方で、神経膠芽腫は、複雑で多様なシグナル伝達経路を有し、単剤投与の限界も確認されてきている。神経膠芽腫に対する治療成績上上のためには、複数のシグナル伝達経路を抑制する多剤併用分子標的療法の効果を検証する preclinical study が重要であると考えられる。

謝辞

執筆の機会を与えていただきました前琉球医学会長上里博士に謝意を表します。

REFERENCES

14) Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN. Combined activation of

36) Iwamoto FM, Kreisl TN, Kim L, et al. Phase 2 trial of talampanel, a glutamate receptor

