労災疾病臨床研究事業費補助金

インジウム等レアメタルによる職業性疾患予防および 病態解明のための疫学研究および動物実験研究

平成26年度 総括・分担研究報告書

研究代表者 田中 昭代

平成 27 (2015) 年 3月

目 次

はじめに	1
 I. 総括研究報告 インジウム等レアメタルによる職業性疾患予防および病態解明のための 疫学研究および動物実験研究 田中 昭代 (九州大学大学院医学研究院環境医学分野・講師) 	2
 I. 分担研究報告 1. インジウム曝露者の疫学研究	7
 ラットを用いた水酸化インジウム、ITO、酸化インジウムの肺毒性評価 3 田中 昭代 (九州大学大学院医学研究院環境医学分野・講師) 清原 裕 (九州大学大学院医学研究院環境医学分野・教授) 中津 可道 (九州大学大学院医学研究院基礎放射線医学分野・准教授) 平田 美由紀 (九州大学大学院医学研究院環境医学分野・助教) 米本 孝二 (久留米大学バイオ統計センター・講師) 	35
Ⅲ. 研究成果の刊行に関する一覧表 4	14
Ⅳ. 研究成果の刊行物・別冊 4	16

はじめに

インジウムは希少金属であり、亜鉛精錬の副産物として産出される。薄膜化した際の高い 導電性と透明性により液晶ディスプレイのほか,低融点合金,ボンディング用途,ヒューズ, 歯科用合金,化合物半導体,電池材料,太陽電池など広く用いられ、2013年度のインジウム の国内需要は1990年代後半に比べて約10倍に増大し、インジウムの約90%がインジウム・ス ズ酸化物(Indium tin oxide : IT0)として用いられている。

インジウムの健康影響は1990年代半ばまで毒性情報が極めて少なかったためにインジウム 取り扱い作業者のインジウムの安全性についての配慮は乏しく、インジウムは"安全な金属" として認識されていた。しかし、2001年に世界で初めてITOの吸入に起因すると考えられる間 質性肺炎の死亡例が我が国で発生し、さらに、動物実験では肺障害性や肺発がん性が報告さ れ、インジウムの肺炎惹起性が明らかになってきた。

一方、IGZO等に含まれるレアメタルであるガリウム(Ga)や他のレアメタルの毒性情報は非 常に乏しく、インジウムの例から、化学形態により毒性に大きな差があり、他のレアメタル との複合曝露による毒性の修飾が懸念される。CIGSやIGZOは規制対象物質になっていないた め、事業所ではこれらの物質の毒性情報がないために安全だと認識されており、正しい毒性 情報の発信が喫緊の課題である。これら先端製品材料の毒性を明らかにし、適切な管理を実 施することは、日本の労働衛生研究者・行政職の責務である。さらに、この研究のための労 働者コホートは、世界中で我々のみが維持している。

本研究の目的は(1)インジウム(In)以外のレアメタルによる健康障害を明らかにすること、(2)インジウムによる呼吸器障害についての知見を深めることである。

インジウムによる呼吸器障害に関しては、我々が継続的に実施している世界唯一のインジ ウムコホート研究から、高濃度曝露群では肺気腫性変化が優位に強く進行することが明らか になった。さらに、ITOの動物実験では肺発がん性が証明されたことより、インジウム作業者 での発がんの可能性が危惧される。このため、気腫性変化と肺発がんに至るメカニズムの解 明は重要な課題であり、動物実験や疫学研究によりその一端を明らかにしていく。

日本産業衛生学会は、血清Inの生物学的許容値として3 μg/Lを勧告したが、この値は時 間断面研究に基づく数値で追跡研究が欠落していることから、質的に十分な情報に基づいて いるとはいえず、長期観察による検証が必要である。

安衛法の改正においては、金属インジウム曝露作業者に関する科学的な情報が欠落してい ることから、金属インジウム曝露作業は法規制から外れた。今回、金属インジウム作業者の 健康調査結果により安衛法のなかで対象物質として金属インジウムが追加される可能性があ る。さらに、健康調査とともに作業環境および個人曝露濃度測定を実施することより、管理 濃度策定へ期待できる。

一方、インジウム以外の化合物半導体・太陽電池等先端産業で使用されているレアメタルに 関する健康影響情報は皆無に近く、今般の研究で職業性疾患発生の可能性の有無が明らかに なれば、レアメタルによる未知の職業性疾病の発生の未然防止対策の策定が可能になり、イ ンジウムでの失敗を繰り返さないことが期待できる。

研究代表者 田中 昭代

厚生労働省 労災疾病臨床研究事業費補助金事業 インジウム等レアメタルによる職業性疾患予防および病態解明のための 疫学研究および動物実験研究

総括研究報告書

研究代表者 田中昭代

(九州大学大学院医学研究院環境医学分野・講師)

研究要旨

平成26年度は疫学調査、環境調査を実施し、動物実験では種々の化学形態のインジウム化 合物の肺障害について検討を行った。

疫学調査ではインジウム製造工場、リサイクル工場および金属インジウム合金製造工場に 勤務する作業者に健康調査を施行した。インジウム製造工場1か所では作業環境測定調査を 施行した。本年度の調査では、肺がんを含む発がん疾患は認めなかった。疫学調査の結果か ら血清インジウム濃度や間質性肺炎のバイオマーカーであるKL-6値は低下してきているが、 依然として量影響関係は示している。一方、肺機能検査の拘束性/閉塞性障害の所見や血清イ ンジウム濃度高値者の胸部 CT 所見の改善は乏しい。過去に曝露した難溶性化合物の ITO は今 も肺内に残存し、肺内炎症は持続している可能性や血清インジウム濃度高値者の不可逆性の 変化が示唆されるため、今後の継続健診で経過観察する必要がある。また、高温溶解作業の 金属インジウム曝露者は、ITO 等のインジウム化合物と同様の影響を認めたため、健康影響 に定期的に評価する必要がある。

作業環境調査では、就業期間1年以内の新規作業者では血清インジウム濃度高値を認める 作業者もあり、更なる作業環境管理上の工学的な対策を行うとともに、作業管理として作業 のやり方・姿勢、使用工具の見直しなどの対策も行い、個人曝露濃度を下げる改善が必要で ある。電動ファン付き呼吸用保護具の使用により肺へのインジウム取り込み量はかなり減少 していることが示唆された。

動物実験においては、ITO ターゲット廃材の粉砕から酸化インジウム製造のリサイクル 工程で精製される水酸化インジウムとITO ターゲット研削粉(ITO)、酸化インジウム(In₂0₃) の肺障害についてラットを用いて比較検討を行った。その結果、水酸化インジウム粒子の 反復経気道投与によって、ITO 粒子や In₂0₃粒子に比べて肺障害は強く発現した。ITO や In₂0₃ 粒子に加えて水酸化インジウム粒子の投与によっても肺障害が引き起こされるこ とが明らかになった。インジウムの化学形態による肺障害の差はあるものの、各インジ ウム化合物は肺障害を引き起こすため、インジウム化合物の曝露や取り扱いには十分注 意を払う必要がある。

研究分担者:

清原	裕	(九州大学大学院医学研究院 環境医学分野・教授)
中津	可道	(九州大学大学院医学研究院 基礎放射線医学分野・准教授)
平田	美由紀	(九州大学大学院医学研究院 環境医学分野・助教)
米本	孝二	(久留米大学 バイオ統計センター・講師)

A. 研究目的

レアメタルであるインジウムの曝露によ る死亡事例が2001年に世界で初めてわが国 で発生し、その後の疫学研究によりインジ ウム化合物吸入と肺障害の因果関係を確立 した。一方、主要なインジウム化合物であ るITOの動物発がん実験より肺発がん性が 明らかになり、今後のインジウム作業者で の肺がん発生が非常に危惧される。さらに、 これらのインジウム作業者の一部は、IGZO 等の化合物半導体、CIGS等の非シリコン系太 陽電池等の新素材の開発や生産を行ってい るため、種々のレアメタルに複合曝露されて おり、早急にレアメタルの安全性評価が必 要である。

本年は疫学調査では、インジウム労働者コ ホートのインジウム製造工場、リサイクル工 場および金属インジウム合金製造工場に勤 務する作業者に健康調査を施行し、インジウ ム製造工場1か所では作業環境測定調査を施 行した。さらに、動物実験ではインジウムの ライフサイクルで製造されるIT0ターゲット 材の研削粉、酸化インジウム(In₂0₃)、水酸 化インジウムをラットの気管内に反復投与 し、肺障害について比較検討を行った。

B. 研究方法

I 疫学調査

ITO 等インジウム化合物製造工場 3 工場(A 工場、B 工場、C 工場)とリサイクル工場(D 工場)、11の金属インジウム合金製造工場 作業者の健康調査を実施した。

曝露指標として血清インジウム濃度 (In-S)測定および曝露歴、影響指標として 呼吸器系自覚症状、胸部高分解能 CT (HRCT) 撮影、スパイロメトリー、一酸化炭素肺拡 散能試験、肺間質性肺炎マーカーである KL-6、SP-D 等を測定した。また、健康調査 票にて年齢、性別、身長、喫煙歴を調査し た。HRCT 撮影は、A 工場、B 工場のみ施行し た。

Ⅱ IT0等インジウム化合物製造工場の作 業環境測定

インジウムを対象とした作業環境測定、 粒径を考慮したインジウム定点濃度測定、 作業中における防じんマスク内側とマスク 外側(個人曝露濃度測定)のインジウム濃度 測定、マスクの漏れ率測定等を実施した。 作業環境中のインジウム濃度測定は「イン ジウム・スズ酸化物等の取扱い作業による 健康障害防止に関する技術指針 平成 22 年 12 月 22 日」に定められている「空気中の ITO 等の濃度の測定方法について」に従い実 施した。

Ⅲ 動物実験

被験物質として ITO 研削粉(ITO) 酸 化インジウム (In₂O₃) 水酸化インジウ ム (In(OH)₃) の 3 物質を用い、実験動物 としてWistar rat (乙、8週齡)を用いた。 実験群は ITO 群、酸化インジウム (In₂O₂) 群、水酸化インジウム(In(OH)))群、対 照群(蒸留水)の4群、各群36匹で構成 し、合計 144 匹のラットを用いた。各被 験物質を蒸留水に懸濁し、週2回、計5 回、2週間にわたって反復投与した。各群 最終投与日の翌日(0週)、1週、2週、3 週目にラットを各群9匹ずつ安楽死させ た。各評価時点のラットの肺、血液中の インジウム測定、肺の病理学的変化につ いて評価した。

C. 研究成果

I 疫学調査

A 工場の結果

健診受診者のうち4名が In-S≧3µg/Lの 高値であった。2014 年度と比して大きな変 化はなかった。KL-6 は、4 名が高値(> 500U/ml)であった、そのうち3名は、In-S も高値であった。肺機能検査結果は、2014 年と比べて、大きな変化はなかった。

B 工場の結果

In-S は、健診者全員が $1 \mu g/L$ 未満、かつ 間質性肺炎マーカー(KL-6、SP-D)も全員 正常範囲だった。過去の In-S 高値者は、ゆ るやかに低下傾向で、KL-6 も In-S< $3 \mu g/1$ になる前にすでに低下し、現在は正常範囲 内で安定していた。肺機能検査(努力性肺 活量、一秒率ともに)も全員正常範囲で、 かつ変化を認めなかった。胸部 CT の結果は、 多くの者が異常を認めなかった。胸部 CT の 有所見者も 2008 年と比べて変化がなかった。 C 工場の結果

In-S は、ゆるやかに低下傾向だった。間 質性肺炎マーカー(KL-6、SP-D)も、緩や かに低下傾向だった。KL-6 および SP-D の有 所見者 1 名を除いて、すべてが正常範囲だ った。肺機能検査(努力性肺活量、一秒率 とも)は、全員正常範囲だった。肺拡散能 は、多くの者が変化なしで、1 名は低値でゆ るやかに低下傾向であった。胸部 CT の結果 は、初回検査 In-S \geq 10 μ g/L の作業者でブ ラがやや増悪していたり、間質性変化は陳 旧化しつつも陰影は改善を認めなかったり した。

D 工場の結果

曝露者の In-S は、平均値、および In-S ≥3µg/L の高値者の値も低下していたが、 2011 年より上昇している作業者もいた。非 曝露者は、全員≤0.1µg/Lであった。就業期 間1年の作業者では In-S 高値者がおり、作 業環境、作業環境管理(マスク着用・管理 なども)を再度確認する必要があった。In-S 高値継続の作業者は、肺内のインジウムの クリアランスが遅いため、経過観察が必要 であった。間質性肺炎マーカー(KL-6、SP-D) は、曝露者の全体の平均、および高値者(1-2 名を除き)の値は、低下していた。間質性 肺炎マーカー高値、かつ In-S 高値の作業者 は、インジウムの肺からのクリアランスが 遅いため、経過観察が必要だった。肺機能 検査結果は、全員正常範囲内であった。肺 拡散能検査 (DLCO) 結果は、%DLCO の低値者 が2名いた。その2名の%DLCO/VA(肺胞面 積)はすべて正常範囲内であった。

金属インジウム合金製造工場の結果

高温溶解工程(1000 度以上の高温で溶解 を行っている工程)における高濃度曝露者 では ITO 製造工場作業者と同様の影響を認めた。

Ⅱ IT0等インジウム化合物製造工場の作 業環境測定

E工場での作業環境中のインジウム濃度測 定を行った。その結果、午前のITO研削作業 場の幾何平均値:1.88 μ g/m³、第1評価値: 12.32 μ g/m³、午後の幾何平均値:5.31 μ g/m³、 第1評価値:25.00 μ g/m³であり、午前に比べ て午後の濃度が高い値を示した。

電動ファン付き呼吸用保護具による曝露 状態のインジウム濃度測定(マスク内イン ジウム濃度)では、マスク内部のインジウ ム濃度は許容される濃度0.3 µg/m³より低 い値であることが確認された。

Ⅲ 動物実験

In(OH)。群では投与期間中から観察期間 中体重増加が著しく抑制され、ITO群、In₂0。 群および対照群に比べて有意に減少した。 肺の相対重量は、各時点の各インジウム 投与群で対照群と比べて有意に増加した。 各時点の ITO 群および In₂0₃群の相対肺重量 は、対照群の約2倍で推移した。一方、 In (OH)₃群では、ITO 群および In₂O₃群に比べ て有意に増加し、経時的に増加していた。 血液中インジウム濃度は In(OH)。群では約 1000 µ g/L であり、他のインジウム群に比 べて 70 倍~200 倍の高値であった。肺イン ジウム量は緩やかに経時的に減少した。肺 の病理学的評価では、ITO 群、In₂0₃群、 In(OH)。群で肺の炎症性変化を主体とする 病変が観察され、特に、In(OH)。群では肺 病変の程度が ITO 群および In203 群に比べて 重度であった。

D. 考察

健康影響調査の結果に関しては、作業環 境管理・作業管理が改善されたため、作業 環境中のインジウム濃度が低下し、作業者 の血清インジウム濃度が低下してきている。 その結果、これまでの影響指標として明瞭 な量反応関係、量影響関係を示していた間 質性肺炎のバイオマーカーの KL-6 値も同時 に低下してきているが、依然として量影響 関係は示している。一方、肺機能検査の拘 東性/閉塞性障害の所見や In-S 高値者の胸 部 CT 所見の改善は乏しい。これらの結果は、 これまでに曝露した難溶性化合物の ITO は 今も肺内に残存し、肺内炎症は持続してい る可能性や血清インジウム濃度高値者の不 可逆性の変化が示唆される。今後の継続健 診で経過観察する必要がある。また、就業 期間1年以内の新規作業者では血清インジ ウム濃度高値を認める作業者もあり、特に マスク着用などの作業環境管理を定期的に 確認する必要がある。

作業環境測定結果では、作業環境中インジ ウム濃度は、午前より午後の測定時の方が 高い結果であった。午前中にインジウムに 曝露される作業が多く行われたことに因る と推測される。作業環境管理上の工学的な 対策の他、作業のやり方や姿勢、使用工具 の見直しなど作業管理上の対策も行い、曝 露濃度を下げる改善が必要である。

電動ファン付き呼吸用保護具による曝露 状態の濃度測定(マスク内インジウム濃度) 結果について概ね、マスク内部のインジウ ム濃度は許容される濃度 0.3 µ g/m³より 低い値であることが確認された。電動ファ ン付き呼吸用保護具の使用により肺へのイ ンジウム取り込み量はかなり減少している ことを示唆するものと考えられる。また、 マスクフィッティングテスターによる大気 中の粉じんを用いたマスク面体の漏れ率測 定結果では、全て1%以下と良好な装着を示した。このような電動ファン付き呼吸用保護具を適正に装着することにより健康影響の未然防止が期待できる。

しかし、マスクの面体と顔面との接触面 におけるインジウムの付着量は、ブランク である午前の作業前にも 1.13~2.75µg が 検出されたものの、午前の作業終了時は 8.92~13.68µg、午後の作業終了時は 10.73 ~19.74µg と作業後には付着量が増加する ことが確認された。マスク面体について、 毎使用時の確実な清拭が重要と考えられる。

ラットを用いた気管内投与によって、 ITOやIn₂O₂ だけでなく、In(OH)₂におい ても肺障害が引き起こされ、さらに ITO やIn₂0。に比べて肺障害性は著しく強い ことが明らかになった。今回、ITO、In₂O₃ および In(OH)₃は同じモル濃度のインジ ウム化合物を投与したにも係わらず、 In(OH)。群で毒性は強く発現した。毒性 発現の強さは血液中インジウム濃度およ び粒子径に関連している可能性があり、 高濃度の血液中インジウム濃度が観察さ れた理由の一つとしては ITOや In₂O₃に比 べて In(OH)。の粒子径が非常に微細であ ることが考えられる。アメリカ NTP のイ ンジウムリンの吸入曝露および日本にお ける ITO 研削粉の吸入曝露実験において 肺の発がん性が認められていることより、 インジウムが発がん性に寄与していると 推測され、他のインジウム化合物の発が ん性の可能性は否定できない。今後、水 酸化インジウムを含めたインジウム化合 物の発がん性の評価が必要であると考え る。

本年度の健康調査では、肺がんを含む発 がん疾患は認めなかった。しかし、血清イ ンジウム濃度やKL-6値は低下してきている が、依然として量影響関係は示し、さらに、 肺機能検査の拘束性/閉塞性障害の所見や 血清インジウム濃度高値者の胸部 CT 所見の 改善は乏しいため、さらに継続した経過観 察をする必要がある。さらに、高温溶解作 業の金属インジウム曝露者は、ITO 等インジ ウム化合物と同様の呼吸器影響を認めたた め、健康影響に定期的に評価する必要があ る。インジウム化合物の動物実験結果より In(OH)₃の急性肺障害が認められたため、ITO や In₂O₃に加えて、In(OH)₃の健康影響に注意 を払う必要があると考える。

F.健康危険情報

- 追跡調査の結果から、インジウム作業者の血清 KL-6 は低下しているが、依然として量影響関係を示した。
- 高温溶解作業の金属インジウム曝露者 は、血清インジウム濃度と KL-6 が上昇 した。
- 肺機能検査の拘束性/閉塞性障害の所見
 や血清中のインジウム濃度高値者の胸
 部 CT 所見の改善は乏しい。
- 就業期間1年未満の新規就業者において血清中のインジウム濃度が高値である作業者が認められる。
- 水酸化インジウムの吸入により急性肺 障害が惹起される。

G. 知的所有の取得状況

- 1. 特許取得 なし
- 2. 実用新案登録 なし

E. 結論

インジウム曝露者の疫学研究

研究代表者 田中昭代

(九州大学大学院医学研究院 環境医学分野・講師)

研究分担者

平田 美由紀

(九州大学大学院医学研究院 環境医学分野・助教)

研究協力者:

田中 茂

(十文字学園女子大学・教授)

宮内博幸

((財) 産業保健協会·研究開発部長)

研究要旨

本研究期間中に 4 つのインジウム製造工場およびリサイクル工場に勤務する作 業者に健康調査を施行した。1 つインジウム製造工場で作業環境測定調査を施行 した。本年度の調査では、肺がんを含む発がん疾患は認めなかった。追跡調査 では、作業環境管理・作業管理が改善され、インジウムの曝露濃度が改善され てきていることから、これまでの影響指標として明瞭な量反応関係、量影響関 係を示していた間質性肺炎のバイオマーカーである KL-6 値も同時に低下してき ているが、いまなお量影響関係は示している。一方、肺機能検査の拘束性/閉塞 性障害の所見や血清中のインジウム濃度(In-S)高値者の胸部 CT 所見の改善は 乏しい。それは、これまでに曝露した難溶性化合物のインジウム・スズ酸化物 (ITO) は今も肺内に残存し、肺内炎症は持続している可能性や In-S 高値者の 不可逆性の変化が示唆される。今後の継続健診で経過観察する必要がある。新 規作業者(就業期間1年)で、In-S高値を認める作業者もあり、更なる、作業 環境管理上の工学的な対策を行うとともに、作業管理として作業のやり方・姿 勢、使用工具の見直しなどの対策も行い、個人曝露濃度を下げる改善が必要で ある。電動ファン付き呼吸用保護具の使用により肺へのインジウム取り込み量 はかなり減少していることが示唆された。また、高温溶解作業の金属インジウ ム曝露者は、金属インジウム以外のインジウム化合物と同様の影響を認めたた め、健康影響に定期的に評価する必要がある。

A. 研究目的

インジウム肺は、2010 年 12 月に 厚生労働省から「インジウム・スズ酸 化物(IT0)等の取扱い作業による健 康障害防止に関する技術指針」により 間質性肺炎や続発性慢性閉塞性肺疾 患の発症防止目的の健診施行を通達 された新しい職業性肺疾患である。

その背景は、1998年に間質性肺炎 を発症し、2001年にその間質性肺炎に 併発した両側性気胸を発症し死亡し た症例は、インジウムに起因する間質 性肺炎として世界で初めてわが国で 発生し、日本産業衛生学会英文誌 Journal of Occupational Health (Homma et al. 2003) に公表された。 我々はこの症例発生の情報を得た後、 日本の主要 ITO 製造工場の3社4工場 で実施した断面疫学調査をおこない、 血清中のインジウム濃度(In-S)を曝 露指標とし、血清中の間質性肺炎のバ イオマーカーである KL-6 等を影響指 標とし、非常に明確な量・影響関係、 量・反応関係を示した(Hamaguchi et al. 2007)。その後、3社4工場以外の インジウム取扱工場で疫学調査を実 施し、3社4工場での観察結果は再現 し、インジウムによる間質性肺障害の 因果関連を世界で初めて確立し

(Nakano *et al.*2009)、現在もそのフ ィールドを維持継続している。

さらには、ITOの長期曝露動物実験 では肺発がん性が証明されたこと (Nagano *et al.* 2011)より、インジウ ム作業者での発がんの可能性が危惧 される。観察開始からまだ10年余り のために評価できていない、肺がんを 含む未知の慢性健康影響などの評価 は重要な課題である。

また、金属インジウム曝露作業者 は、科学的な情報が欠落していること から、安衛法の改正においては、法規 制から外れた。

- IT0等インジウム化合物製造・リサ イクル作業者の慢性影響の評価
- ② 金属インジウム取扱作業者の健康 影響の評価

B. 研究方法

- IT0等インジウム化合物製造・リサ イクル作業者の疫学調査
- ITO等インジウム化合物製造に関 わる作業者 A工場:平成27年1月29日実施 B工場:平成27年2月6日実施 C工場:平成27年2月6日実施
- 2. リサイクル業務に関わる作業者 D工場:平成26年12月12日実施

疫学調査は、曝露指標として血清 In 濃度(In-S)測定および曝露歴、影響指 標として呼吸器系自覚症状、胸部高分 解能 CT (HRCT)撮影、スパイロメトリ ー、一酸化炭素肺拡散能試験、KL-6、 SP-D等を測定した。また、健康調査票 にて年齢、性別、身長、喫煙歴を調査 した。HRCT撮影は、A 工場、B 工場の み施行した。

 ② 金属インジウム取扱作業者の疫学 調査
 2011年から2013年に、11の金属イ ンジウム合金製造工場に勤務する 141名に実施した。本年度は、日本 産業衛生学会英文誌Journal of Occupational Healthにその結果が 公表された。(別添)

ITO等インジウム化合物製造工場の作業環境測定
 E工場:平成27年2月17日実施

インジウムを対象とした作業環境測 定、粒径を考慮したインジウム定点濃 度測定、作業中における防じんマスク 内側とマスク外側(個人曝露濃度測 定)等を実施した。

a)インジウム作業環境測定

作業環境中のインジウム濃度測定 を「インジウム・スズ酸化物等の取扱 い作業による健康障害防止に関する 技術指針 平成 22 年 12 月 22 日 | に定 められている「空気中の ITO 等の濃度 の測定方法について」に従い実施した。 測定はミニポンプΣ3(柴田科学社製) へ PM-4 NMPS-254 型分粒装置(柴田科 学社製)を装着して行った。分粒特性 は 50% カット 粒径 4 µm(流量 2.0L/分) で、4µm 以下(吸入性インジウム濃 度:肺に沈着しやすいインジウム濃 度) と 4 µ m 以上の 2 段階に分けて捕 集した。ろ紙は混合セルロース・エス テルメンブレンフィルター No225-1930 25mm(SKC 社製)を使用し た。サンプリング時間は原則として継 続した 30 分間とした。また、評価も 技術指針に因った。すなわち、表1よ

り、作業環境測定のA測定の吸入性インジウム濃度を用いて第1評価値を 計算するとともに、あわせてB測定値 を各々、目標濃度や許容される濃度と 比較した。

作業環境 速やかに作業 0.01 mg/m³超 目標濃度 環境改善に取 測定 との比彰 り組む 0.01 mg/m³以下 作業環境改善 に取り組むこ 3×10⁻⁴ mg/m³超 とが望ましい 許容される濃 度との比較 3×10^{.4} mg/m³以「 作業環境の維

表1 評価基準

作業環境測定結果:第I評価値又は B 測定値

目標濃度 0.01mg/m³=10µg/m³ 許容される濃度 3×10⁻⁴mg/m³=0.3µ g/m³

b)インジウム含有製品の取扱い者に ついてのマスク内側およびマスク外 側(個人曝露濃度測定)のインジウム 濃度測定

作業者襟元に捕集部(分粒装置)、腰 にポンプを装着し、シフト作業中連続 的に捕集し、吸入性インジウム濃度を 測定した。装置は以下を用いた。また マスク内についても同様に測定した。 さらに、午前の作業開始前、作業終了 後、午後の作業終了後に使用していた マスク内側をアルコール綿にて清拭 し、マスク内側へのインジウム付着の 有無を確認した。

・ミニポンプΣ3型 柴田科学社製

・PM4 NMPS-254 型分粒装置 柴田科学 社製

c)マスク漏れ率測定

主な作業者について、マスクフィッ ティングテスター MT-03 型 柴田科学 社製にて、午前の作業開始時、作業終 了時、午後の作業開始時、作業終了時 の面体からのマスク漏れ率測定を実 施した。

インジウム濃度分析方法

a)フィルター

試料は4分の1量を用いた。硝酸4ml および過酸化水素水 1ml を添加して、 マイクロ波試料分解装置 Multiwave3000 (Anton Paar 製)で前処 理を行った。前処理液は PTFE 0.45 μ m フィルター (ADVANTEC 製) でろ過した。 ろ過した前処理液を適当濃度に希釈 して、ICP-MS (Agilent 7500ce) でイン ジウム濃度を測定した。

b) アルコール綿(脱脂綿)

試料は細切した一部を用いた。1 試 料につき2重測定を行い、各約 0.1g を用いた。各試料に硝酸 4ml および過 酸化水素水 1ml を添加して、マイクロ 波試料分解装置 Multiwave3000 (Anton Paar 製)で前処理を行った。前処理液 は PTFE 0.45 μ m フィルター (ADVANTEC 製) でろ過した。ろ過した前処理液を 適当濃度に希釈して、ICP-MS (Agilent 7500ce) でインジウム濃度を測定した。 (倫理面での配慮)

インジウムコホート研究は、「疫学 研究に関する倫理指針」に基づき研究 計画書を作成し、慶應大学医学部倫理 委員会の承認のもとで継続実施した。 本研究は、すべての対象者から同意を 取得したうえで実施した。

C. 研究結果

 IT0等インジウム化合物製造・ リサイクル作業者の疫学調査

A 工場の結果

健診受診者のうち 4 名が $In-S \ge 3 \mu$ g/L の高値であった。2014 年度と比し て大きな変化はなかった。KL-6 は、4 名が高値(>500U/ml)であった、その うち3名は、In-Sも高値であった。肺 機能検査結果は、2014 年と比べて、大 きな変化はなかった。(資料1参照)

B 工場の結果

In-S は、健診者全員が 1µg/L 未満、 かつ KL-6、SP-D も全員正常範囲だっ た。過去の In-S 高値者は、ゆるやか に低下傾向で、KL-6 も In-S<3µg/1 になる前にすでに低下し、現在は正常 範囲内で安定していた。肺機能検査

(努力性肺活量、一秒率ともに)も全 員正常範囲で、かつ変化を認めなかっ た。肺拡散能が著明に低下している者 がいるが、測定不良で参考値であった。 胸部 CT の結果は、多くの者が異常を 認めなかった。胸部 CT の有所見者も 2008 年と比べて変化がなかった。肝腫 瘤疑い(1名)を認めたが、精査にて 肝血管腫と診断された。(資料2参照)

C 工場の結果

In-S は、ゆるやかに低下傾向だった。 間質性肺炎マーカー(KL-6、SP-D)も、 緩やかに低下傾向だった。KL-6 および SP-D の有所見者 1 名を除いて、すべて が正常範囲だった。肺機能検査(努力 性肺活量、一秒率とも)は、全員正常 範囲だった。肺拡散能は、多くの者が 変化なしで、1 名は低値でゆるやかに 低下傾向であった。胸部 CT の結果は、 初回検査 In-S \geq 10 μ g/Lの作業者でブ ラがやや増悪していたり、間質性変化 は陳旧化しつつも陰影は改善を認め なかったりした。(資料3参照)

D 工場の結果

曝露者の In-S は、平均値、および In-S $\geq 3 \mu g/L$ の高値者の値も低下してい たが、2011 年より上昇している作業者 もいた。非曝露者は、全員 $\leq 0.1 \mu g/L$ であった。就業期間 1 年の作業者で、 In-S 高値がおり、作業環境、作業環境 管理(マスク着用・管理なども)を再 度確認する必要があった。In-S 高値継 続の作業者は、肺内のインジウムのク リアランスが遅いため、経過観察が必 要であった。間質性肺炎マーカー

(KL-6、SP-D)は、曝露者の全体の平 均、および高値者(1-2名を除き)の 値は、低下していた。間質性肺炎マー カー高値、かつ In-S 高値の作業者は、 インジウムの肺からのクリアランス が遅いため、経過観察が必要だった。 肺機能検査結果は、全員正常範囲内で あった。肺拡散能検査(DLCO)結果は、%DLCOの低値者が2名いた。その2名の%DLCO/VA(肺胞面積)はすべて正常範囲内であった。(資料4参照)

E 工場の結果

表 2	インジ	ウム作	F業環境測	定結果

승분품료	88.44	697	113.14+431*	作業中の		⊪ λ 姓粉ピム 由
疋品留 つ	开] 9日	1 2%	吸入 E 10 C	TF未内谷	総粉じん中In濃	WCE的C/0平 In/総粉じん中In
			(µ g/m3)	幾何平均値、評価値等	度(µg/m³)	の割合(%)
AI	9:00	11:32	0.27		0.46	59.9
2			0.44	ITO研削作業場	0.51	86.7
3			0.87		1.47	58.9
4			1.79		3.00	59.8
5			2.76		3.82	72.5
6			1.25	幾何平均值:1.88	1.30	96.3
Ø			2.08	幾何標準偏差:3.14	3.46	60.1
8			9.32	第1評価値:12.32	28.80	32.4
9			3.24	参考:第2評価値:3.61)	4.61	70.4
10			3.49	(µ g/m ³)	4.97	70.2
1			3.71		5.12	72.5
12			1.56		1.62	96.4
(13)			1.92		2.53	75.8
14			4.32		6.31	68.5
B①	10:30	10:40	11.15	平面研削盤作業者位置	64.98	17.2
B2)	10:50	11:00	14.02	グラインダー作業者位置	41.20	34.0
AI	13:00	15:00	7.77		12.01	64.7
2			6.57	ITO研削作業場	9.25	71.0
3			7.11		12.60	56.5
4			6.79		8.00	84.8
5			7.08		10.75	65.9
6			9.54	幾何平均值:5.31	10.58	90.2
\overline{O}			24.24	幾何標準偏差:2.57	26.96	89.9
8			3.59	第1評価値:25.00	4.31	83.3
9			3.33	参考:第2評価値:8.27	3.70	90.1
10			3.14	(µg/m ³)	3.49	90.2
1			2.93		3.23	90.8
(12)			3.89		4.49	86.6
(13)			5.42		8.33	65.1
14			1.51		2.13	70.7
B①	13:30	13:40	24.24	平面研削盤作業者位置	835.05	2.9
B2	14:00	14:10	2.31	平面研削盤作業者位置	101.34	2.3
A(1)	10:28	11:28	0.70	インジウム未使用研削作業場	0.76	91.7
2			0.16	幾何平均值:0.35	0.20	83.0
3			0.09	幾何標準偏差:3.16	0.67	14.1
(4)			0.94	第1評価値: 2.34 会去, 第0評価値: 0.00	1.12	83.8
6			0.09	参考:弗∠評1回1世:0.68) (/ 3)	0.26	48.8
0 P(1)	10.25	10.45	0.30	(µg/m°) 亚西珥割般佐業老侍業	0.30	03.U 79.0
DU D	10:30	10:40	0.78	十曲切削篮作未有征追	0.99	/0.9

表 4 マスクの面体と顔面との接触面 におけるインジウム付着量測定結果

測定時	In付着量(µg)	マスクの種類
	1.99	興研製サカエ式電動ファンBL-100U型
午前作業	1.13	重松製作所製 AP-S11PV
27	2.75	興研製サカエ式電動ファンBL-1005型
	8.92	興研製サカエ式電動ファンBL-100U型
午前作業 終了時	13.68	重松製作所製 AP-S11PV
	12.59	興研製サカエ式電動ファンBL-1005型
	10.73	興研製サカエ式電動ファンBL-100U型
午後作業 終了時	19.74	重松製作所製 AP-S11PV
12 3 43	18.03	興研製サカエ式電動ファンBL-1005型

D. 考察
 健康影響の結果について
 作業環境管理・作業管理が改善され、
 インジウムの曝露濃度が改善されて
 きている。その結果、これまでの影響

指標として明瞭な量反応関係、量影響

関係を示していた間質性肺炎のバイ オマーカーである KL-6 値も同時に低 下してきているが、いまなお量影響関 係は示している。

表3 マン	マク内側と外側のイ	ンジウム濃度	度測定およびマ ス	スクの漏れ	、率測定結果
-------	-----------	--------	------------------	-------	--------

作業	使用したマスクの種類		マスク内外のIn濃度測定結果					マスクフィッティングテスターに よるマスク漏れ率測定結果 (%)(括弧内はPAPR停止時)												
内容	PAPR	フィルター 捕集効率	作業時刻	マスク	In濃度	In濃度/許容され Z濃度	内/外	作業開始時	作業終了時											
Ц		(%)			$(\mu \text{ g/m}^3)$	る涙皮	(%)													
	興研製サカエ式電動	00.07	午	外	1.34	4.5	0.75	0.04	0.06											
ITO研磨、	ファンBL-100U型	99.97	前	内	0.01	0.0	0.75	(-)	(2.38)											
切断	興研製サカエ式電動	00.07	午	外	1.41	4.7	0 1 0	0.06	0.05											
	ファンBL-100U型	99.97	99.97	99.97	99.97	99.97	99.9 <i>1</i>	99.9 <i>1</i>	99.97	99.97	99.97	99.97	99.97	後	内	0.03	0.1	2.13	(2.89)	(1.70)
	重松製作所製 AP-	00.0	午	外	6.34	21.1	0.47	0.09	0.04											
研削、グ	S11PV	99.9	33.3	前	内	0.03	0.1	0.47	(-)	(-)										
-	1ンタ - 重松製作所製 AP-	00.0	午	外	3.94	13.1	1 5 2	0.26	0.13											
	S11PV	99.9	99.9	99.9	99.9	99.9	99.9	99.9	99.9	99.9	後	内	0.06	0.2	1.55	(2.89)	(1.70)			
	興研製サカエ式電動	05.0	午	外	276.8	922.6	0.20	0.77	0.19											
研削、研	ファンBL-1005型	95.0	前	内	1.06	3.5	0.30	(-)	(-)											
磨	興研製サカエ式電動	05.0	午	外	38.68	128.9	0 1 2	0.91	0.15											
	ファンBL-1005型	33.0	後	内	0.05	0.2	0.13	(-)	(-)											

一方、肺機能検査の拘束性/閉塞性障 害の所見や In-S 高値者の胸部 CT 所 見の改善は乏しい。それは、これま でに曝露した難溶性化合物の ITO は 今も肺内に残存し、動物実験でも低 濃度慢性曝露で発がん性(肺がん) を認めることから(Nagano *et al.* 2011)、肺内炎症は持続している可能 性や In-S 高値者の不可逆性の変化 が示唆される。今後の継続健診で経 過観察する必要がある。また、新規 作業者には、就業期間 1 年で、In-S 高値を認める作業者もあり、特にマ スク着用などの作業環境管理を定期 的に確認する必要がある。

金属インジウム合金製造工場では、 高温溶解作業は、高濃度曝露で、ITO 製造工場に勤務する作業者と同様影 響を認めた。

作業環境測定結果と個人ばく露濃度 (マスク外の濃度)の測定結果について

1工場の結果では、作業環境測定は、 午前より午後の方がインジウム濃度 が高い結果であった。しかし、2名 の個人曝露濃度は午前中の方が高い 傾向にあった。これはグラインダー 作業等の直接インジウムに曝露する 可能性が高い作業が、午前中の方に 多く行われたことに因ると推測され る。作業環境管理上の工学的な対策 の他、作業のやり方や姿勢、使用工 具の見直しなど作業管理上の対策も 行い、曝露濃度を下げる改善が必要 である。

電動ファン付き呼吸用保護具によ る曝露状態の濃度測定(マスク内イ ンジウム濃度)結果について1名の 午前中以外は、マスク内部のインジ ウム濃度は許容される濃度 0.3 µg/ m³より低い値であることが確認さ れた。電動ファン付き呼吸用保護具 の使用により肺へのインジウム取り 込み量はかなり減少していることを 示唆する。また、マスクフィッティ ングテスターによる大気中の粉じん を用いたマスク面体の漏れ率測定結 果では、全て1%以下と良好な装着を 示した。このような電動ファン付き 呼吸用保護具を適正に装着すること により健康影響を少なくすることが できればと思われる。

しかし、マスクの面体と顔面との 接触面におけるインジウムの付着量 は、ブランクである午前の作業前に も 1.13~2.75 μ g が検出されたもの の、午前の作業終了時は 8.92~13.68 μ g、午後の作業終了時は 10.73~ 19.74 μ g と作業後には付着量が増加 することが確認された。マスク面体 について、毎使用時の確実な清拭が 重要と考えられる。

E. 結論

本年度の調査では、肺がんを含む発 がん疾患は認めなかった。さらに継 続した経過観察をする必要がある。 高温溶解作業の金属インジウム曝露 者は、金属インジウム以外のインジ ウム化合物と同様の影響を認めたた め、健康影響に定期的に評価する必 要がある。

G. 主な発表論文等

[雑誌論文](計2件)

- Nakano M, Tanaka A, Hirata M, Iwasawa S, Omae K. Pulmonary effects in workers exposed to indium metal: a cross-sectional study. J Occup Health. 2015. (in press) (査 読あり)
- ② Nakano M, Omae K, Uchida K, Michikawa T, Yoshioka N, Hirata M, Tanaka A. Five-year cohort study: emphysematous progression of indium-exposed workers. Chest. 2014;146:1166-75. doi: 10.1378/chest.13-2484. (査読 あり) [学会発表]
- 大前和幸、中野真規子、岩澤聡 子、田中昭代、平田美由紀、田 中茂、宮内博幸、東久保一朗、 川澄八重子。インジウム:吸入 性粉塵個人曝露濃度と生物学的 モニタリング指標の関係 許容 濃度は提案可能か? 第42回産

業中毒・生物学的モニタリング 研究会. 2014.10.25-26.長野.

H. 知的所有権の取得状況

- 1. 特許取得 なし
- 2. 実用新案登録 なし

検診日2	015年 1月	329日
	人数	
A工場	9名	新規 O名、欠席 O名 受診者数(2006年)10名 (2010年)16名 (2011年)13名 (2012年)11名 (2013年)10名 (2014年)10名
<u>検診内容</u> ・問診 ・採血血清 間質性肺 ・肺機能検証 肺活量、	インジウム 淡マーカー(努力性肺活動	農度 KL-6,SP-D,SP-A) 量、肺拡散能

資料1

2015年	2月6日 検診概要(12名)
検診年	健診内容/備考
2005年	24名
2008年	26名
2012年	13名
2015年	12名(全員:現在インジウム曝露者) <u>健診内容</u> 健康調査票(自覚/他覚症状,喫煙歴) 血清インジウム濃度(In-S) KL-6, SP-D, 他 肺機能検査(%FVC, FEV ₁ %、肺拡散能) 胸部CT

最後に すべての健診者へ、禁煙をお勧めします. 今後も経過観察が必要です.

2015年	2月6日 検診概要(7名)
検診年	健診内容/備考
2005年	11名
2008年	28名
2012年	7名
2015年	7名(うち6名:過去インジウム曝露者) <u>健診内容</u> 健康調査票(自覚/他覚症状,喫煙歴) 血清インジウム濃度(In-S) KL-6, SP-D, 他 肺機能検査(%FVC, FEV ₁ %、肺拡散能) 胸部CT

最後に
すべての健診者へ、禁煙をお勧めします.
今後も経過観察が必要です。

2014年	12月12日 検診概要(19名)
検診年	健診内容/備考
2005年	4名
2008年	5名
2011年	12名
2014年	19名(うち4名:インジウム曝露なし) <u>健診内容</u> 健康調査票(自覚/他覚症状,喫煙歴) 血清インジウム濃度(In-S) KL-6, SP-D, 他 肺機能検査(%FVC, FEV ₁ %、肺拡散能)

肺機能検査の結果と推移 *:%肺活量(%VC)は、ともに正常範囲					
%FVC (実測値/予測値)	算術 平均	所見者数(所見率)	最小値	最大値	
2014	98.1	0%	84.3	122.7	
2011	89.7	(2名*)16.7%	75.9	106	
FEV _{1.0} /FVC (一秒率/努力性肺活量)	算術 平均	所見者数(所見率)	最小値	最大値	
2014	81.1	0%	73.9	90.5	
2011	81.4	(1名)8.3%	66.2	94.4	
	120		100		
	100 —		80		
	80				
	60		60		
	40 -		40]
		%FVC11 %FVC14	F	EV1%11	FEV1%14 /

最後に
すべての健診者へ、禁煙をお勧めします.
今後も経過観察が必要です.
ラットを用いた水酸化インジウム、ITO、酸化インジウムの肺毒性評価

研究代表者 田中昭代

(九州大学大学院医学研究院 環境医学分野・講師)

研究分担者

清原 裕

(九州大学大学院医学研究院 環境医学分野・教授)

中津 可道

(九州大学大学院医学研究院 基礎放射線医学分野・准教授)

平田 美由紀

(九州大学大学院医学研究院 環境医学分野・助教)

米本 孝二

(久留米大学 バイオ統計センター・講師)

研究要旨

インジウムリサイクル工場では ITO ターゲット廃材の粉砕から酸化インジウム製造のリサ イクル工程で水酸化インジウムが精製される。しかし、経気道性に体内に侵入した水酸化 インジウム(In(OH)。)の肺障害に関する知見は皆無である。そこで、ITO ターゲット研削 粉や酸化インジウムと同様に In(OH)。が肺障害を引き起こすかどうかを検討するために、 In(OH)₃、ITO ターゲット研削粉(ITO)、酸化インジウム(In₂O₃)をラットの気管内に反復 投与を行い、肺毒性の発現につい比較検討した。In(OH)。群では投与期間中から観察期間 中体重増加が著しく抑制され、ITO 群、In₂0,群および対照群に比べて有意に減少した。 肺の相対重量は、各時点の各インジウム投与群で対照群と比べて有意に増加した。各 時点の ITO 群および In₂0₃群の相対肺重量は、対照群の約2倍で推移した。一方、In(OH)₃ 群では、ITO 群および In₂O₃群に比べて有意に増加し、経時的に増加していた。血液中イ ンジウム濃度は In (OH) 。群では約 1000 µ g /L であり、他のインジウム群に比べて 70 倍~ 200 倍の高値であった。肺インジウム量は緩やかに経時的に減少した。肺の病理学的評価 では、ITO 群、In₂0₃群、In(OH)₃群で肺の炎症性変化を主体とする病変が観察され、特 に、In(OH)₃群では肺病変の程度が ITO 群および In₂O₃群に比べて重度であった。以上の結 果から、水酸化インジウム粒子の反復経気道投与によって、ITO 粒子や In₂O₃粒子に比べ て肺障害は顕著に発現した。ITO や In₂0₃粒子だけでなく、水酸化インジウム粒子の投 与によっても肺障害が引き起こされることが明らかになった。インジウムの化学形態に よる肺障害の差はあるものの、各インジウム化合物は肺障害を引き起こすため、インジ ウム化合物の曝露や取り扱いには十分注意を払う必要がある。

インジウム(In)は亜鉛の精錬の副産物と して回収されるレアメタルであり、日本の インジウム需要は世界最大である。国内イ ンジウム需要の約 90%がインジウム・ス ズ酸化物 (Indium tin-oxide; ITO) のタ ーゲット材としてノート型パソコン、液晶 テレビやプラズマテレビのフラットディ スプレイの透明導電膜に用いられている。 ITO は酸化インジウムと酸化スズの焼結 体であり、その需要が拡大しており、ITO の主成分であるインジウムが希少金属で あることから、 日本では ITO ターゲット の廃材を回収して、In として精錬、リサ イクルの割合が増加し、2013 年度ではイ ンジウムの使用量の約 60%がリサイクル によって供給されている。

インジウムは 1990 年代半ばまで毒性情報 が極めて少なかったためにインジウム取 り扱い作業者のインジウムの安全性につ いての配慮は乏しく、インジウムは"安全 な金属"として認識されていた。しかし、 2001 年に世界で初めて ITO の吸入に起因 すると考えられる間質性肺炎の死亡例が 我が国で発生し、さらに、動物実験では肺 障害性や肺発がん性が報告され、インジウ ムの肺炎惹起性が明らかになってきた。

今まで、インジウム吸入による死亡例が ITO ターゲット材の研削作業に携わって いたことから、ITO やその原材料である酸 化インジウムの毒性に着目した動物実験 を行い、ITO 研削粉や酸化インジウムの吸 入によって肺障害が発現することを報告 してきた。一方、インジウム作業者の健康 調査の結果から、インジウムリサイクル工 場作業者の間では短期間で血清中インジ ウムリサイクル工場では ITO ターゲット 廃材の粉砕から酸化インジウム製造のリ サイクル工程で水酸化インジウムが精製 される。現在までに、水酸化インジウムの 生体影響に関する報告はない。そこで、今 回、ITOターゲット研削粉や酸化インジウ ムと同様に水酸化インジウムが肺障害を 引き起こすかどうかを検討するために、 ITOターゲット研削粉、酸化インジウムや 水酸化インジウムをラットの気管内に反 復投与を行い、肺毒性の発現について評価 を行った。

B. 実験方法

 被験物質として ITO 研削粉(ITO) 酸化
 インジウム(In₂0₃) 水酸化インジウム (In(OH)₃) の3物質を用いた。これら
 3物質は水に不溶性である。ITO 研削粉は
 走査電子顕微鏡(SEM)および画像解析装置を用い、In₂0₃および In(OH)₃は BET 比表
 面積から平均粒子径を求めた。

実験動物として Wistar rat (♂、8 週齢) を用いた。実験群は ITO 群、酸化インジウ ム (In₂O₃) 群、水酸化インジウム (In (OH)₃) 群、対照群(蒸留水)の4群、各群36匹 で構成し、合計144匹のラットを用いた。 実験開始時の平均体重は 290.4±1.4(平 均±標準誤差)であり、各群間で有意な差 はなかった。 1回投与量はインジウムと して 10mg /kg (ITO として 13.4mg、In₂O₃ として 12.0mg、In(OH) として 14.4mg) を 用いた。各被験物質を蒸留水に懸濁し、週 2回、計5回、2週間にわたって反復投与 した。各群最終投与日の翌日(0週)、1 週、2週、3週目にラットを各群9匹ずつ 安楽死させた。後大静脈より血液を採取後、 各評価時点のラットの血液中のインジウ ム測定を行った。各時点の肺の病理学的変 化について評価した。肺病変の程度は-か ら3+までの5段階 (-: none, ±:slight, +: mild, 2+:moderate, 3+:severe) で評 価した。

(倫理面への配慮)

本研究は、研究機関等における動物実験等 の実施に関する基本指針、九州大学動物実 験規則および九州大学動物実験規則細則 に基づき、動物実験計画を作成し、九州大 学大学院医学研究院等動物実験委員会の 承認を得て行われた。

C. 結果

各粒子の平均粒子径は ITO; 0.95 μ m、 In₂0₃; 0.14 μ m、In(OH)₃; 0.02 μ m であっ た。各群の総投与量はインジウム量として ITO 群 15.6 ± 0.2 mg(平均±平均誤差)、 In₂0₃ 群 15.6 ± 0.2 mg、In(OH)₃ 群 15.1 ± 0.2 mg であった(Fig.1)。投与期間および 観察期間中 In(OH)₃群ではラットが著しく 衰弱し、観察期間中 2 匹が死亡した。各群 の評価数は In(OH)₃ 群を除いた各群は 36 匹、In(OH)₃群では 2 週目 8 匹、3 週目 8 匹であり、合計 34 匹のラットの評価を行 った。他の群では衰弱や死亡は観察されな かった。

Fig.2 に各群の体重推移を示している In(OH)₃群では投与期間中から観察期間中 著しい体重増加の抑制が観察され、対照群 に比べて有意に低下していた。ITO 群およ び In₂O₃群では観察期間中および観察期間 中は対照群と比べて対照群と有意な差は 認められなかった。

Fig.3 に各群の相対肺重量の推移を示している。各時点の各インジウム投与群の相対肺重量は対照群に比べて有意に増加し、さらに、In(OH)₃群ではITOおよびIn₂O₃群に比べて各評価時点で有意に増加していた。

Fig.4に0週から3週の各時点の血液中 のインジウム濃度を示している。各インジ ウム投与群では経時的にインジウム濃度 が上昇し、In(OH)₃群では ITO 群および In₂O₃群に比べて各時点で有意に増加し、 約70 倍から 200 倍であり、さらに、 In_2O_3 群では ITO 群に比べて各時点で有意に上 昇し、2~4 倍の高値を示した。3週時の 各群の血液中のインジウム濃度は $In(OH)_3$ 群:1137.6±167.8 μ g/L(平均±平均誤差)、 ITO 群: 6.5±1.3 μ g/L, In_2O_3 群: 13.8 ±2.0 μ g/L であり、対照群では定量下限 以下であった。

Fig.5 に肺中のインジウム濃度の推移 を示している。各群とも経時的に肺インジ ウム量は徐々に減少した。投与終了直後の 各群の肺インジウムの沈着率は In(OH)₃ 群:67.8±8.8%(平均±平均誤差)、ITO 群:24.7±3.9%、In₂0₃群:25.0±5.1% であった。

Table1に各群の肺病変の程度を示して いる。肺の炎症性変化、線維性増殖、肺胞 内への壊死片を含む滲出液の沈着などの 病変が発現し(Fig.6)、これらの病変の程 度は In(OH)₃群では ITO および In₂0₃ 群 に比べて重度に発現し、これらの病変は3 週目まで増悪した。

D. 考察

ラットを用いた気管内投与によって、 ITO や In_2O_3 だけでなく、 $In(OH)_3$ におい ても肺障害が引き起こされ、さらに ITO や In_2O_3 に比べて肺障害性は著しく強い ことが明らかになった。

今回、ITO、In₂0₃ および In (OH)₃は同 じモル濃度のインジウム化合物を投与し たにも係わらず、In (OH)₃ 群で毒性は強く 発現した。毒性発現の強さは血液中インジ ウム濃度および粒子径に関連している可 能性があると考えられる。In (OH)₃ 群の血 液中インジウム濃度は約 1000 μ g/L と非 常に高濃度であり、観察期間中に In (OH)₃ 群では 2 匹死亡した。ヒトの死亡例での血 清中インジウム濃度が約 300 μ g/L であっ たことから、短期間での血清中インジウム 濃度の急激な増加が死亡に至るほどの衰 弱を引き起こしたものと考えられる。高濃 度の血液中インジウム濃度が観察された 理由の一つとしては ITO や In203 に比べて In(OH)。の粒子径が非常に微細であること が考えられる。これらインジウム化合物は 不溶性ではあるが、In(OH)₃群の血液中イ ンジウム濃度は ITO および In₂03群の約70 倍から200倍と高濃度であった。金属微粒 子 (MMD=16nm) をラットに曝露した実験で は肺胞I型細胞の細胞質内に金粒子の存 在が確認されたことや肺の炎症時などの 血管透過性が亢進している場合には、明ら かにナノ粒子の肺胞壁通過が起こってい ることから、体内で極わずかに溶解したイ ンジウムと超微細なIn(OH)。粒子が血中に 移行し、高濃度の血液中インジウム濃度に 寄与している可能性が考えられた。

投与終了直後と3週目の血液中インジ ウム濃度は有意な差はないが、3週目で上 昇したことより、血清中インジウム濃度は 少なくても投与終了後3週間までは増加 するものと考えられた。以前の研究では、 インジウムヒ素やインジウムリン投与終 了後 8 週目では投与終了直後に比べて血 清中インジウム濃度が減少していたこと より、インジウム化合物の曝露が無くなっ た後も血中濃度はしばらく上昇し、ある時 点で、減少に転じると考えられる。このこ とは職業性曝露における血清中インジウ ム濃度のモニタリングでは、曝露中止後も 血清中インジウム濃度が上昇する可能性 があることを考慮する必要があると考え られた。

肺相対重量が ITO 群や In_2O_3 群では 3 週目まで横ばいであり、さらに、 $In(OH)_3$ 群では経時的に増加していたことより、肺 の炎症は少なくても 3 週目までは持続し ていると考えられた。 $In(OH)_3$ 群では肺胞 内にマクロファージの壊死片を含む浸出 液の著明な沈着が観察された。このことは 肺胞マクロファージが In (OH)₃の微粒子を 貪食したのちインジウムが肺胞マクロフ ァージに対して障害性が強いために肺胞 マクロファージの細胞質が崩壊し、肺胞内 に沈着したものと推測される。さらに、肺 胞マクロファージか崩壊する際に NO が放 出され、肺胞上皮細胞が持続的に障害され ていた可能性が考えられる。粒子径と肺障 害性に関しては、2 種類の二酸化チタン

(粒子径が 21nm 以下と 250nm)をラット の気管内に投与した場合に粒子径が 21nm 以下の超微細二酸化チタン粒子が粒子径 250nm 粒子に比べて肺の炎症性病変が強 く発現することが報告されている。 この ことより、インジウム化合物の粒子径と肺 障害性には強い関連性があると考えられ た。

今回用いたインジウム化合物は不溶性で あるが、肺や体内組織中での溶解性や体内分 布はほとんど解明されていない。インジウム 化合物の毒性発現の機序の解明には肺を含 む臓器中インジウム濃度を測定することに よるインジウムの代謝についての検討が必 要だと考える。現在までに、種々のインジウ ム化合物の毒性実験が行われ、肺障害性や肺 発がん性が報告されている。発がん性に関し ては化合物半導体であるインジウムリン (InP)と ITO の吸入曝露実験で発がん性が報 告されている。 米国では InP のラットとマウ スを用いた吸入曝露実験が実施され、ラット およびマウスで肺発がん性が報告された。そ の結果を受けて、国際がん研究機関(IARC) では「ヒトに対しておそらく発がん性があ る」とされるグループ 2A と評価した。さら に、日本においては ITO 研削粉のラットとマ ウスを用いた吸入曝露実験が行われ、最低濃 度の 0.1 mg/m³より肺の細気管支・肺胞上皮 腺腫と細気管支・肺胞上皮癌の発生が雌雄の ラットで観察され、悪性・良性腫瘍発生率は 曝露濃度依存性に増加した。一方、マウスで は明らかな肺腫瘍発生の増加は観察されな かった。これらの結果より、ITOの吸入曝露 実験でラットでは肺発がん性が明らかにな った。

アメリカ NTP のインジウムリンの吸入 曝露および日本における ITO 研削粉の吸 入曝露実験において肺の発がん性が認め られていることより、インジウムが発がん 性に寄与していると推測され、他のインジ ウム化合物の発がん性の可能性は否定で きない。今後、水酸化インジウムを含めた インジウム化合物の発がん性の評価が必 要であると考える。

E. 結論

今回の結果より、In(OH)₃の全身性障害 や肺障害は ITO および In₂O₃に比べて非常 に強いことが明らかになった。インジウム のリサイクル工程では In(OH)₃が精製され ることより、In(OH)₃の取り扱いには格段 の注意を払う必要があると考えられた。

F. 研究発表

1. 論文発表

- Tanaka, M. Hirata, N. Matsumura, Y. Kiyohara, Tissue distribution of indium after repeated intratrachal instillations of indium-tin oxide into the lungs of hamsters, J Occup Health, 57, 189-192, 2015.
- 2. Akiyo Tanaka, Miyuki Hirata, Nagisa Matsumura, Kazunori Koga, Masaharu Shiratani and Yutaka Kiyohara, Comparative study on the pulmonary toxicity of indium hydroxide, indium-tin oxide, and indium oxide following intratracheal instillations into the lungs of rats.

MRS Sympodium Proceedings/MRS
Online Proceeding Library, Vol 1723,
2015 CAMBRIDGE UNIVERSITY PRESS
DOI:http://dx.doi.org/10.155
7/opl./2015.21

- 2. 学会発表
- A. Tanaka, M. Hirata, K. Koga, M. Shiratani, M. Nakano, K. Omae, Y. Kiyohara, Adverse Health Effects of Indium Tin Oxide and Copper Indium Gallium Diselenide, The 6th World Conference on Photovoltaic Energy Conversion, Nov, 23-27, 2014, Kyoto, Japan
- 2. Akiyo TANAKA, Miyuki HIRATA, Nagisa MATSUMURA, Kazunori KOGA, Masaharu SHIRATANI, Yutaka KIYOHARA, Pulmonary Toxicity of Indium-Tin Oxide, Indium Oxide and Indium Hydroxide Following Intratracheal Instillations into the Lung of Rats, 2014 MRS Fall Meeting &Exhibits Nov. 30-Dec. 5 2014, Boston, Massachusetts
- 古閑一憲,天野孝昭,平田美由紀,田 中昭代,白谷正治, ラットに皮下投与 したInナノ粒子の体内輸送、第62回応用 物理学会春季学術講演会、2015年3月12 日、東海大学(平塚市)
- 田中昭代、平田美由紀、松村 渚、清原 裕、インジウム化合物吸入ラットにおけ る肺影響指標SP-Dの肺障害マーカーの 有効性、第85回日本衛生学会、2015年3 月26日~28日、和歌山市。

G. 知的所有権の取得状況

- 1. 特許取得 なし
- 2. 実用新案登録 なし

Fig.1 Scanning electron micrographs of In(OH)₃, ITO and In₂O₃ particles

Fig.2 Changes in body weight gain during instillation and observation period. The results shown are mean \pm SE. Significant differences are indicated by a (P<0.05).

a:Significantly different from the control group at each time point.

Fig.3 Changes in relative lung weights from the final instillation. The results shown are mean±SD of rats euthanized at each time point

a: Significantly different from the control group(P<0.05)

b: Significantly different from the ITO or the In₂O₃ group(P<0.05)

Fig.4 Change in blood indium concentration from the final instillation of $In(OH)_3$, ITO and In_2O_3 .

- a: Significantly different from the control group (P<0.05)
- b: Significantly different from the ITO or the In_2O_3 group (P<0.05)

Fig.5 Change of indium content in the lungs after final instillation of In(OH)3, ITO and $\rm In_2O_3$.

Fig.6 Pathological changes in the lung in the $In(OH)_3$, ITO and In_2O_3 groups.

Dethelesisel changes	Croup	Weeks a	fter final i	nstillatior	ר (W)
Pathological changes	Group	0	1	2	3
Inflammatory response with	ITO	+	+	+	+
diffuse hyperplasia of	In_2O_3	+	+	+	+
bronchiolo-alveolar	In(OH) ₃	3+	3 +	3 +	3 +
	Control	±	±	±	土
Interstitial fibrotic proliferation	ITO	-	-	-	-
	In_2O_3	-	-	-	-
	In(OH) ₃	+	2 +	2+	3 +
	Control	-	-	-	-
	ITO	±	2 +	+	+
Exudation	In_2O_3	±	±	+	+
Exudation	In(OH) ₃	2 +	3+	3+	3+
	Control	_	_	_	_

Table 1 Pathological changes in the rats lung after intratracheal instillation of $In(OH)_3$, ITO, In_2O_3 .

The severity of the lung lesions was evaluated by five grades:

-, negative; ±, slight; +, mild; 2+, moderate; 3+, severe

研究成果の刊行に関する一覧表

書籍

著者氏名	論文タイトル名	書籍全体の 編集者名	書	籍	名	出版社名	出版地	出版年	ページ
特になし									

雑誌

発表者氏名	論文タイトル名	発表誌名	卷号	ページ	出版年
Nakano M, Omae K, Uchida K, Michikawa T, Yoshioka N, Hirata M, Tanaka A	Five-year cohort study : emphysematous progression of indium-exposed workers	Chest	146	1166-1175	2014
Tanaka A, Hirata M, Matsumura N, Kiyohara Y	Tissue distribution of indium after repeated intratracheal instillations of indium-tin oxide into the lungs of hamsters	J Occup Health	57	189-192	2015
Tanaka A, Hirata M, Matsumura N, Koga K, Shiratani M, Kiyohara Y	Comparative study on the pulmonary toxicity of indium hydroxide, indium-tin oxide, and indium oxide following intratracheal instillations into the lungs of rats.	MRS Sympodium Proceedings /MRS Online Proceeding Library, CAMBRID GE UNIVERSI TY PRESS	Vol 1723	DOI:http:// dx.doi.org/ 10.1557/op 1.2015.21	2015
Nakano M, Tanaka A, Hirata M, Iwasawa S, Omae K	Pulmonary effects in workers exposed to indium metal: a cross-sectional study	J Occup Health	in press		
Amano T, Sarinont T, Koga K, Hirata M, Tanaka A, Shiratani M	Synthesis of indium-containing nanoparticles in aqueous suspension using plasmas in water for evaluating their kinetics in living body	Journal of nanoscience and nanotechnol ogy	in press		

Iwasawa S, Nakano M, Miyauchi H, Tanaka S, Kawasumi Y, Higashikubo I, Tanaka A, Hirata M, Omao K	Personal indium exposure concentration in respirable dusts and serum indium level	J Occup Health	in press	
Omae K				

Five-Year Cohort Study Emphysematous Progression of Indium-Exposed Workers

Makiko Nakano, MD, PhD; Kazuyuki Omae, MD, PhD; Kazuhiko Uchida, MD, PhD; Takehiro Michikawa, MD, PhD; Noriyuki Yoshioka, DVM; Miyuki Hirata, PhD; and Akiyo Tanaka, DVM, PhD

BACKGROUND: Dose-dependent adverse lung effects due to indium exposure have been reported in a cross-sectional study. This is a 5-year longitudinal cohort study of indium-exposed and unexposed workers, assessing indium exposure levels and its clinical lung effects.

METHODS: From 2008 to 2011, a 5-year follow-up study was conducted on 40 unexposed and 240 workers formerly or currently exposed to indium at 11 factories. Indium exposure was assessed by serum indium (In-S) (μ g/L). Lung effects were assessed by subjective symptoms, serum biomarkers, spirometry, and chest high-resolution CT scan. Effect biomarkers used were Krebs von den Lungen and surfactant protein D.

RESULTS: Mean values of In-S, Krebs von den Lungen, and surfactant protein D among the workers exposed to indium at baseline declined during the 5-year follow-up by 29.8%, 27.2%, and 27.5%, respectively. Of the exposed subjects with In-S levels $> 20 \ \mu g/L$, 26.3% experienced emphysematous progression on high-resolution CT scan. Ninety percent (18 of 20) of workers with emphysematous progression during follow-up were current smokers at baseline, and a trend of increasing incidence of emphysematous progression at higher In-S levels was observed among the smokers (P = .005). Emphysematous changes among subjects with In-S levels $> 20 \ \mu g/L$ were likely to progress, after adjusting for age, mean duration since initial indium exposure, and smoking history (OR = 10.49, 95% CI = 1.54-71.36).

Manuscript received October 18, 2013; revision accepted May 22, 2014; originally published Online First June 19, 2014.

ABBREVIATIONS: HRCT = high-resolution CT; In-S = serum indium; ITO = indium-tin oxide; KL-6 = Krebs von den Lungen; SP-D = surfactant protein D

FUNDING/SUPPORT: This study was supported by Grants-in-aid for Scientific Research (Project Nos. 15390191, 17390179, 20249039, and

1166 Original Research

AFFILIATIONS: From the Department of Preventive Medicine and Public Health (Drs Nakano, Omae, Uchida, Michikawa, and Yoshioka), School of Medicine, Keio University, Tokyo; Environmental Epidemiology Section (Dr Michikawa), Center for Environmental Health Sciences, National Institute for Environmental Studies, Tsukuba; and Environmental Medicine (Drs Hirata and Tanaka), Graduate School of Medical Science, Kyushu University, Fukuoka, Japan.

²³²⁴⁹⁰³³⁾ from the Ministry of Education, Culture, Sports, Science and Technology of Japan [2003-4, 2005-6, 2008-10, and 2011] and in part by donations for research in preventive and environmental medicine from two of the surveyed companies.

CORRESPONDENCE TO: Makiko Nakano, MD, PhD, Department of Preventive Medicine and Public Health, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 1608582, Japan; e-mail: nakano.makiko@z8.keio.jp

^{© 2014} AMERICAN COLLEGE OF CHEST PHYSICIANS. Reproduction of this article is prohibited without written permission from the American College of Chest Physicians. See online for more details. DOI: 10.1378/chest.13-2484

Indium is a rare metal used in the form of indium-tin oxide (ITO) as the electrode in flat panel displays. Japan is the largest consumer of indium accounting for 85% of global demand.1 To our knowledge, the first (and fatal) case of indium-related lung disease (indium lung) was reported in Japan in 2003.² As of 2011,³ seven more cases have been reported in Japan,^{4,5} two in the United States,⁶ and one in China.⁷ In Japan, a study of indium-exposed workers was conducted at the ITO-processing factory where, to our knowledge, the first case was reported,8 as well as a multicenter study of indium-exposed and unexposed workers in other ITO-processing and ITOrecycling plants.9 The multicenter cross-sectional cohort study was later expanded and found dose-dependent adverse lung effects due to indium exposure.¹⁰ The

harmful effect of indium was further brought to light by a 2-year ITO inhalation experiment, revealing ITO as a lung carcinogen in rats.¹¹ Based on these findings, in 2010, the Japanese Ministry of Health, Labor and Welfare established a prevention guideline for ITOprocessing workers¹² and, in 2013, added indium to the list of substances regulated by the Ordinance on Prevention of Hazards due to Specified Chemical Substances.^{13,14}

The long-term effects of indium exposure on the lungs remain largely unknown. This is a 5-year follow-up study of the largest cohort of indium-exposed and unexposed workers. Our objective is to assess the association between exposure levels of indium and its clinical effects on the lungs.

Materials and Methods

This study was approved by the ethical committee of the School of Medicine at Keio University (approval numbers 15-46 and 20110268). Written informed consent was obtained from all subjects.

Study Design and Subjects

In comparison with the multicenter baseline study conducted at 12 factories and one research laboratory between 2003 and 2006,¹⁰ this longitudinal study added workers from an additional factory and removed cohort members from three factories due to logistics. The resulting dataset covered 11 plants, including 383 exposed and 159 unexposed workers. Approximately 5 years after the baseline study (2003-2006), we conducted a follow-up study at these 11 plants between 2008 and 2011, involving 247 exposed and 63 unexposed workers (follow-up rates 64.5% and 39.6%). Among the subjects with high baseline serum indium (In-S) levels ($\geq 20 \ \mu g/L$), the follow-up rate was 82.6% (Fig 1).

At the 5-year follow-up, in accordance with the baseline study, a medical interview, questionnaire, blood test, spirometry, and high-resolution CT (HRCT) scan examination of the lungs were all conducted on 240 exposed and 40 unexposed subjects, excluding seven subjects with undetermined exposure duration and 23 unexposed workers exposed during follow-up. One unexposed and 10 exposed workers were excluded from final analysis of the lung function test results due to inadequate test maneuvers or a medical history of surgical lung resection. Of the 280 subjects, baseline HRCT scans for 207 workers were obtained, allowing direct comparison with the follow-up scans. Thirty-five unexposed and 172 exposed workers had HRCTs from both the baseline and follow-up.

Categorization of exposed workers into currently or formerly exposed groups was based on their exposure status at baseline. Job history was based on the job records at the plants, or if unavailable, based on physician's interview about occupational history.

Exposure Indexes

In-S (µg/L) was measured by inductively coupled plasma mass spectrometry at the Center of Advanced Instrumental Analysis, Kyushu University.⁹ In-S below the detection limit (0.1 µg/L) was ascribed an arbitrary value of 0.05 µg/L for statistical analysis.

Effect Indexes and Confounding Factors

Medical examinations conducted at the 5-year follow-up were the same as those at the baseline study. Serum Krebs von den Lungen-6 (KL-6) (EIDIA Co, Ltd)^{15,16} and serum surfactant protein D (SP-D) (Yamasa Corporation)¹⁷ were used as biomarkers for interstitial changes in the lungs and evaluated at a major commercial clinical laboratory (Special Reference Laboratory).

Spirometry was performed using electronic spirometers (HI-701 or HI-801; CHEST M.I. Inc) based on American Thoracic Society guidelines. Age and height-adjusted predicted values of FVC and FEV₁ were determined by sex, using the regression formula recommended by the Japanese Respiratory Society¹⁸; and percentages of predicted FVC and FEV₁ were calculated.

At nine of the plants, HRCT scanning was performed in a specially assembled vehicle, using the same multislice CT scanner as the baseline study¹⁰ at 120 kV, 200 mA, and a slice thickness of 1 mm. For the other two plants, HRCT scanning was performed at nearby hospitals with a helical or multislice CT scanner. All HRCT scans were carried out at three lung levels (the upper, middle, and lower lung fields) as recommended by the Japanese Respiratory Society. The same technique was used in the baseline study.¹⁰

In accordance with the Japanese Respiratory Society guideline for the diagnosis and management of COPD,¹⁹ interstitial changes, including interlobular septal thickening, ground-glass appearance, and nodular infiltrate, as well as emphysematous changes in the upper, middle, and lower bilateral lung fields²⁰ were jointly assessed by a Japan Radiologic Society-certified radiologist and a Japanese Respiratory Society-certified pulmonologist. The two experts assessed all the scans together, comparing side by side the clearly defined lung fields on the baseline and follow-up HRCT scans for each subject. Emphysematous change was defined as an emergence of a new or enlarged low attenuation area on any one of the six HRCT scan slices. Worsening of the follow-up CT scan compared with the baseline CT scan was labeled "progression of interstitial changes," and an improvement or no change was labeled "no progression."

Using the Japanese version²¹ of the American Thoracic Society-Division of Lung Disease questionnaire²² and supplementary questions, the following were investigated: respiratory symptoms, smoking history, and confounding factors including sex, age, medical history, and history of exposure to other materials.

Statistical Analysis

Nonnormally distributed data were transformed to an approximately normal distribution before analysis. The Student *t* test or the Mann-Whitney *U* test was used to compare continuous variables between exposed and unexposed groups. The χ^2 test or Fisher exact method was used to compare proportions, prevalence, or incidence.

Figure 1 – Study population. The flow of the subjects. aNakano et al.¹⁰

Based on the classification criteria of In-S adopted in our baseline study,¹⁰ the exposed subjects were stratified into six In-S categories: In-S level < 1.0 µg/L, 1.0 to 2.9 µg/L, 3.0 to 4.9 µg/L, 5.0 to 9.9 µg/L, 10.0 to 19.9 µg/L, and > 20.0 µg/L. These six categories were used to assess the risk of indium exposure on the effect variables, as well as their dose-response relationship.

Mean values of 5-year differences in biomarkers and lung functions among the exposed subjects were stratified by the aforementioned six In-S categories and compared with the unexposed subjects using the Dunnett test. Incidence of abnormalities (change from normal to abnormal values) by exposure group for the biomarkers, lung function, and HRCT scan progression was analyzed, using the following cutoff for abnor-

Results

Table 1 shows the characteristics of the study subjects and the pulmonary effects of indium at baseline and at 5-year follow-up. The mean duration since first indium exposure was 5.5 years for the currently exposed group at baseline and 12.1 years for the formerly exposed. The currently exposed subjects were younger than the unexposed workers (P < .05). No difference in the proportion of male subjects and smoking history was observed between the exposed and unexposed subjects.

At baseline, the mean values for KL-6, SP-D, and pulmonary symptoms in the exposed group were significantly higher than in the unexposed group. For the mean values of pulmonary function test results, no difference was observed between the two groups. mal values: KL-6 \geq 500 U/mL, SP-D \geq 110 ng/mL, FEV₁/FVC < 70%, %FVC < 80%, and %FEV₁ < 80%. Test for trend in the In-S categories was performed using the Cochran-Armitage test for categorical data.

Based on the test for trend in the In-S categories, as well as the analysis of exposure and effect indexes with respect to HRCT scan progression, the relationship between In-S and HRCT scan progression was further analyzed, using a logistic regression model. Adjusted variables were age, mean duration since initial indium exposure, and smoking.

Statistical significance was assessed by two-tailed analysis with P < .05. All statistical analyses were performed using SPSS, version 19 (IBM) and JMP, version 10.0.2 (SAS Institute Inc).

At follow-up, the mean values of In-S, KL-6, and SP-D among the currently exposed workers declined from baseline by 29.8%, 27.2%, and 27.5%; those among the formerly exposed declined by 39.4%, 24.7%, and 21.9%, respectively. The significant difference observed at baseline in KL-6 between the unexposed and the exposed groups disappeared at follow-up. Mean values of FEV₁/FVC, %FVC, and %FEV₁ in the exposed group slightly decreased during follow-up.

Table 2 shows the 5-year differences and incidence of abnormal values in serum biomarkers and lung function, stratified by In-S levels. Those with baseline In-S levels above 3 µg/L displayed a notable 5-year decline in In-S. With increasing baseline In-S levels,

Follow-up						5
		Baseline Study			Follow-up Study	
Characteristics	Unexposed (n = 40)	Currently Exposed $(n = 207)$	Formerly Exposed (n = 33)	Unexposed (n = 40)	Currently Exposed (n = 207)	Formerly Exposed (n = 33)
Age (SD), y	44.5 (10.5)	36.8ª (10.5)	40.4 (8.8)	49.9 (10.6)	41.9ª (11.9)	45.2 (8.4)
Male, %	90.0	90.8	97.0	:	:	:
In-S (range), μg/L	0.4 (<0.1, 1.5)	10.4^{a} (< 0.1, 117)	17.5 ^a (<0.1, 83.3)	0.1 (<0.1, 0.5)	7.3ª (<0.1, 132)	10.6^{a} (<0.1, 64.4)
Mean duration (SD), y						
Since initial indium exposure	:	5.5 (0.1, 38.6)	12.1ª (0.6, 23.8)	:	10.5 (3.8, 44.3)	16.8^{a} (5.5, 27.7)
Since exposure cessation	:	:	5.2 (0.2, 16.8)	:	3.7 (0.3, 13.1)	9.7ª (0.3, 20.9)
Smoking, No. (%)						
Never smokers	13 (32.5)	65 (31.4)	7 (21.2)	12 (30.0)	60 (29.0)	5 (15.2)
Ex-smokers	11 (27.5)	24 (11.6)	6 (18.2)	15 (37.5)	50 (24.2)	10 (30.3)
Current smokers	16 (40.0)	118 (57.0)	20 (60.6)	13 (32.5)	97 (46.9)	18 (54.5)
Exposure status at follow-up, No. (%)						
Currently exposed	:	:	:	:	158 (76.3)	6 (18.2)
Formerly exposed	:	:	:	:	49 (23.7)	27 (81.8)
Cough or sputum, No./total (%)	6/40 (15.0)	69/206 (33.5)	10/32 (31.3)	5/40 (12.5)	21/202 (10.4)	3/32 (9.4)
Biomarkers of effect, geometric mean (geometric SD)						
KL-6, U/mL	245.8 (1.5)	382.4ª (2.1)	373.9 ^b (2.2)	229 (1.5)	278.2 (1.7)	281.7 (1.7)
SP-D, ng/mL	42.4 (1.7)	62.9ª (2.0)	80.7ª (2.3)	39.9 (1.8)	45.6 (2.0)	63.0ª (2.0)
Lung function, % (SD)						
FEV ₁ /FVC	80.7 (6.7)	82.8 (6.0)	82.2 (5.0)	80.3 (6.2)	82.0 (6.2)	80.9 (5.2)
%FVC	100.1 (12.8)	100.0 (12.3)	99.3 (12.5)	100.5 (12.7)	99.2 (11.8)	98.2 (10.6)
%FEV1	93.7 (12.9)	94.5 (11.8)	93.9 (11.4)	94.9 (12.8)	94.1 (12.3)	92.3 (10.5)
In-S = serum indium; KL-6 = Krebs von den Lu ^{a}P < .05 by Student <i>t</i> test, χ^{2} test, or Fisher ex ^{b}P < .01 by Student t test, χ^{2} test, or Fisher ex	ingen; SP-D = surfactant pri act method with respect to act method with respect to	otein D. unexposed subjects. unexposed subjects.				

TABLE 1 Characteristics, Exposure Levels, Biomarkers of Effect, and Lung Function of Unexposed and Indium-Exposed Subjects at Baseline and at 5-Year

Downloaded From: http://journal.publications.chestnet.org/ by a Keio University User on 05/24/2015

1169

1				Exposed Workers b	y In-S Categories (N = 2,	40)		0.107.0
Findings	Unexposed (n = 40)	<1.0 (n = 70)	1.0-2.9 (n = 43)	3.0-4.9 (n = 20)	5.0-9.9 (n = 34)	10.0-19.9 (n = 35)	≥ 20.0 (n = 38)	for Trend
In-S								
Mean difference (range), µg/L	-0.28 (-1.5, 0.2)	0.26 (-0.5, 5.6)	0.50 (-1.8, 8.3)	-0.86 (-4.0, 5.6)	-2.12 (-7.6, 8.0)	5.66 (-15.0, 4.9)	16.38ª (-78.9, 32.4)	:
KL-6								
Mean difference (SD), U/mL	-19.2 (84.3)	-36.7 (152.5)	-28.5 (269.6)	-105.4 (126.7)	-169.5 (213.7)	–300.7 ^b (396.5)	-747.3ª (1036.3)	:
Incidence of abnormal values, ^c No. (%)	1/40 (2.5)	0/70 (0.0)	2/43 (4.7)	0/20 (0.0)	0/34 (0.0)	2/35 (5.7)	0/38 (0.0)	606.
Currently exposed at baseline	:	0/65 (0.0)	2/36 (5.6)	0/19 (0.0)	0/29 (0.0)	2/28 (7.1)	0/30 (0.0)	.781
Formerly exposed at baseline	:	0/5 (0.0)	0/7 (0.0)	0/1 (0.0)	0/5 (0.0)	0/7 (0.0)	0/8 (0.0)	.444
SP-D								
Mean difference, ng/mL (SD)	-0.42 (20.1)	-8.14 (18.5)	-14.13 (31.2)	-19.53 (21.2)	-19.69 (19.4)	-25.17ª (37.4)	–54.92ª (63.6)	:
Incidence of abnormal values, ^c No. (%)	2/40 (5.0)	0/70 (0.0)	0/43 (0.0)	0/20 (0.0)	1/34 (2.9)	0/35 (0.0)	0/38 (0.0)	.246
Currently exposed at baseline	:	0/65 (0.0)	0/36 (0.0)	0/19 (0.0)	1/29 (3.4)	0/28 (0.0)	0/30 (0.0)	.296
Formerly exposed at baseline	:	0/5 (0.0)	0/7 (0.0)	0/1 (0.0)	0/5 (0.0)	0/7 (0.0)	0/8 (0.0)	.276
FEV ₁ /FVC								
Mean difference, % (SD)	-0.37 (2.93)	-0.69 (3.65)	-0.18 (3.70)	-0.82 (2.42)	-1.06 (2.95)	-0.56 (3.93)	-2.26 (5.07)	:
Incidence of abnormal values, ^c No. (%)	1/39 (2.6)	1/69 (1.4)	0/42 (0.0)	0/20 (0.0)	2/33 (6.1)	0/33 (0.0)	4/33 (12.1)	.034
%FVC								
Mean difference (SD), %	0.39 (6.73)	-0.41 (7.96)	-1.65 (5.82)	-0.28 (6.89)	-3.58 ^b (5.52)	-0.84 (5.22)	1.81 (4.77)	:
Incidence of abnormal values, ^c No. (%)	0/39 (0.0)	0/69 (0.0)	1/42 (2.4)	0/20 (0.0)	1/33 (3.0)	0/33 (0.0)	0/33 (0.0)	.796

TABLE 2] Five-Year Differences and Incidence of Abnormal Values in Biomarkers and Lung Function, Stratified by In-S Categories

Γ

146#5 CHEST NOVEMBER 2014

(Continued)

				Exposed Workers b	y In-S Categories ($N = 2$	40)		PValue
Findings	Unexposed (n = 40)	<1.0 (n = 70)	1.0-2.9 (n = 43)	3.0-4.9 (n = 20)	5.0-9.9 (n = 34)	10.0-19.9 (n = 35)	≥ 20.0 (n = 38)	for Trend
%FEV1								
Mean difference (SD), %	1.11 (5.69)	0.46 (6.39)	-0.82 (5.58)	-0.27 (6.40)	-3.63 a (4.68)	-0.37 (4.81)	0.17 (6.92)	:
Incidence of abnormal values, ^c No. (%)	0/39 (0.0)	0/69 (0.0)	1/42 (2.4)	0/20 (0.0)	1/33 (3.0)	2/33 (6.1)	2/33 (6.1)	.012
see Table 1 legend for expansion of a	abbreviations.							

aP<.05 by Dunnett test (for categorized In-S) with respect to unexposed subjects.

°P<.01 by Dunnett test (for categorized In-S) with respect to unexposed subjects. •Cutoff for abnormal values: KL-6 ≥ 500 U/mL, SP-D≥ 110 ng/mL, FEV₄/FVC < 70%, %FV< 80%, %FEV₁ < 80%. increasing incidence of abnormal lung functions (FEV₁/FVC and %FEV₁) was observed (P < .05).

Table 3 shows the incidence of progression on HRCT scan findings during 5-year follow-up stratified by In-S categories. Incidences of emphysematous progression in unexposed and exposed workers were two of 35 (5.7%) and 20 of 172 (11.6%). Dose-dependent increase of the incidence was observed (P for trend = .002). Among the exposed subjects with In-S levels above 20 µg/L, 26.3% experienced emphysematous progression, and the crude OR was 5.89 (95% CI = 1.19-29.17). Of 20 exposed workers with emphysematous progression, 18 were ex- or current smokers at baseline. A statistically significant trend of increasing incidence was observed for smokers (P = .005). When exposed to high levels of indium $(In-S \ge 20 \ \mu g/L)$, nine of 31 smokers (29.0%) experienced emphysematous progression, compared with one of seven (14.3%) never smokers. Meanwhile, incidence of interstitial progression was two of 35 (5.7%) among the unexposed and 10 of 172 (5.8%) among the exposed workers. No statistically significant trend was observed.

Table 4 compares, within the exposed workers, the baseline indium exposure levels, serum biomarkers, and lung functions between those with and without HRCT scan progression. Compared with those without an emphysematous deterioration, those who experienced emphysematous progression exhibited significantly higher In-S levels, were older in age, had higher KL-6 levels, and lower %FEV₁. Regarding those with and without progression in interstitial changes, there was no statistical difference in In-S and in KL-6, while those with interstitial changes had statistically higher SP-D levels (P < .01) and lower FEV₁/FVC (P < .05).

Discussion

The 5-year follow-up study of indium-exposed and unexposed workers revealed a long-term effect of indium on the lungs in the form of HRCT scan progression in emphysematous changes, despite a significant decline in In-S likely due to the workplace improvements enforced after our baseline study. The dose-response trend between In-S levels and incidence of emphysematous progression indicated that indium inhalation is a serious risk factor for emphysematous progression, especially among the highly exposed workers (In-S \geq 20 µg/L). Due to the very slow clearance of hardly soluble indium particles from the lungs,^{11,23,24} both the currently and formerly exposed workers were

TABLE 2] (continued)

TABLE 3] Incidence of Progression of HRCT Scan Findings During 5-Year Follow-up, Stratified by In-S Categories

	nevnored		Expo	sed Workers by I	In-S Categories (N =	: 172)		oule// d
Findings	(n = 35)	<1.0 (n=27)	1.0-2.9 (n = 36)	3.0-4.9 (n = 16)	5.0-9.9 (n = 23)	10.0-19.9 (n = 32)	≥ 20.0 (n = 38)	for Trend
Emphysematous progression, incidence rate (%)								
All subjects, No./total (%)	2/35 (5.7)	2/27 (7.4)	1/36 (2.8)	0/16 (0.0)	3/23 (13.0)	4/32 (12.5)	10/38 (26.3)	.002
Crude OR (95% CI)	1	1.32 (0.17, 10.03)	0.47 (0.04, 5.45)	1.37 (0.3	22, 8.75)	2.36 (0.40, 13.85)	5.89 (1.19, 29.17)	:
Adjusted OR (95% CI)	1	1.65 (0.20, 13.96)	0.78 (0.06, 10.13)	1.86 (0.3	24, 14.45)	3.48 (0.48, 25.08)	10.49 (1.54, 71.36)	÷
Currently exposed at baseline	:	2/23 (8.7)	1/29 (3.4)	0/15 (0.0)	2/18 (11.1)	4/25 (16.0)	10/30 (33.3)	<.001
Formerly exposed at baseline	:	0/4 (0.0)	0/7 (0.0)	0/1 (0.0)	1/5 (20.0)	0/2 (0.0)	0/8 (0.0)	.690
Ex-/current smokers at baseline	2/24 (8.3)	1/16 (6.3)	1/23 (4.3)	0/16 (0.0)	3/18 (16.7)	4/24 (16.7)	9/31 (29.0)	.005
Never smokers at baseline	0/11 (0.0)	1/11 (9.1)	0/13 (0.0)	0/0 (0.0)	0/5 (0.0)	0/8 (0.0)	1/7 (14.3)	.506
Interstitial progression, incidence rate (%)								
All subjects, No./total (%)	2/35 (5.7)	2/27 (7.4)	3/36 (8.3)	0/16 (0.0)	0/23 (0.0)	3/32 (9.4)	2/38 (5.3)	.852
Crude OR (95%CI)	1	1.32 (0.17, 10.03)	1.50 (0.24, 9.57)		0.73 (0.12, 4.	57)	0.92 (0.12, 6.88)	:
Adjusted OR (95% CI)	1	1.20 (0.13, 10.72)	2.09 (0.25, 17.14)		1.68 (0.20, 1	4.27)	2.58 (0.24, 27.90)	:
Currently exposed at baseline	:	2/23 (8.7)	2/29 (6.9)	0/15 (0.0)	0/18 (0.0)	2/25 (8.0)	2/30 (6.7)	.911
Formerly exposed at baseline	:	0/4 (0.0)	1/7 (14.3)	0/1 (0.0)	0/5 (0.0)	1/7 (14.3)	0/8 (0.0)	.928
Ex-/current smokers at baseline	1/24 (4.2)	1/16 (6.3)	0/23 (0.0)	0/16 (0.0)	0/18 (0.0)	2/24 (8.3)	2/31 (6.5)	.465
Never smokers at baseline	1/11 (9.1)	1/11 (9.1)	3/13 (23.1)	0/0 (0.0)	0/5 (0.0)	1/8 (12.5)	0/7 (0.0)	.516
Adjusted OR: adjusted variables a	re age, mean dura	ation since initial indium exp	osure, and smoking history	/ at baseline. In-9	S categories with ze	ro incidence were combined	d to assess the ORs using log	istic

1172 Original Research

52

[146#5 CHEST NOVEMBER 2014]

regression models. See Table 1 legend for expansion of abbreviation.

	Emphysemat	cous Changes	Interstitia	l Changes
Characteristics	Progressed	No Progression	Progressed	No Progression
Total subjects, No.	20	152	10	162
In-S (SD), μg/L	34.4ª (36.0)	12.4 (17.0)	13.3 (16.6)	15.0 (21.5)
Mean duration since initial indium exposure (SD), γ	9.0 (5.8)	6.8 (6.3)	7.0 (4.9)	7.1 (6.3)
Age (SD), y	45.1ª (11.7)	37.8 (12.0)	52.7 ^b (11.7)	37.8 (11.6)
Smoking status, No. (%)				
Never smokers	2 (10.0)	42 (27.6)	5 (50.0)	39 (24.1)
Smokers	18 (90.0)	110 (72.4)	5 (50.0)	123 (75.9)
Ex-smokers	2 (10.0)	21 (13.8)	2 (20.0)	21 (13.0)
Current smokers	16 (80.0)	89 (58.6)	3 (30.0)	102 (63.0)
Cough or sputum, No./total (%)	4/20 (20.0)	50/150 (33.3)	1/10 (10.0)	53/160 (33.1)
Biomarkers, geometric mean (geometric SD)				
KL-6, U/mL	651.6 ^b (2.3)	405.4 (2.1)	518.3 (1.6)	423.4 (2.2)
SP-D, ng/mL	100.0 (1.9)	73.0 (2.0)	132.4 ^b (1.8)	73.2 (2.0)
Lung function, mean (SD)				
FEV ₁ /FVC	79.0 (6.8)	82.4 (5.2)	78.1ª (7.8)	82.3 (5.2)
%FVC	94.5 (10.5)	99.8 (11.7)	94.6 (9.5)	99.6 (11.7)
%FEV ₁	86.6ª (9.7)	94.5 (11.9)	87.0 (10.1)	94.0 (11.9)

TABLE 4] Exposure and Effect Indexes at Baseline Among Exposed Workers With or Without Progression of HRCT Scan Findings During Follow-up Period

See Table 1 legend for expansion of abbreviations.

P < .05 by Student *t* test, Mann-Whitney *U* test, χ^2 test, or Fisher exact method, with respect to subjects with no progression.

 ^{b}P <.01 by Student t test, Mann-Whitney U test, χ^{2} test, or Fisher exact method, with respect to subjects with no progression.

being continually exposed to indium by the particles in their lungs, even after the reduction of occupational exposures to indium. Indium particles in the lungs perpetuated the phagocytosis and phagolysosomal acidification²⁵ cycle by the alveolar macrophages. The proteases released by the macrophages and the cytotoxicity of indium may have promoted macrophage-mediated elastolysis, which is known to cause inflammation and destruction of the lung parenchyma,²⁶ leading to emphysematous deterioration.

Smoking is a major risk factor of COPD,²⁷ and the current study showed that smoking is also an important effect modifier of the risk of emphysematous progression among indium-exposed workers. Due to the small number of emphysematous progression in the unexposed workers, we could not assess the interaction between indium exposure and smoking using the logistic regression model. However, in addition to the statistically significant dose-response trend of the incidence among smokers, the incidence ratio of emphysematous progression between smokers and nonsmokers among the highly exposed workers (In-S \geq 20) was 2.03 (95% CI = 0.31-13.5) (data not shown).

In contrast to the emphysematous progression, the incidence rate of progression in interstitial changes was not detected, although a causal relationship between indium exposure and interstitial changes has been previously identified.¹⁰ KL-6 is known to increase in the active phase of interstitial pneumonia and decrease in the inactive phase.¹⁶ In the current study, KL-6 among the indium-exposed subjects declined by 25% after the baseline study and subsequent intervention. These results imply that once indium exposure is eliminated or drastically reduced, KL-6 may significantly decline, although not to the level of the unexposed. Despite no statistically significant exposure-response relationship for interstitial changes across the categories of In-S, 10 exposed workers did have progression of interstitial change, of which four also experienced emphysematous progression. When restricted to In-S \ge 10 μ g/L, three of five had both interstitial and emphysematous progression. This raises the concern that interstitial changes and emphysematous changes coexist among highly exposed workers with interstitial progression.

The response rate of the unexposed group was low (40 of 159, 25.2%). Of the 119 workers who contribute to the low response rate, 23 were removed from the analysis because they switched to an exposed environment during follow-up. The remaining 96 unexposed workers lost to follow-up were due to the decision made by a few factories that further follow-up of the unexposed workers was unnecessary. This suggests that self-selection on ill health was unlikely, but the implication of selection bias remains a substantial limitation of the study.

The 5-year follow-up rate was also low at 57.2%. Subanalysis showed that the baseline mean In-S of the subjects lost to follow-up was significantly lower than that of the workers retained at follow-up (2.6 μ g/L vs 9.1 μ g/L). Additionally, 73 of the 280 followed-up subjects had no baseline HRCT scans. It is not possible to conclude whether including those lost to follow-up and those without baseline scans would have lowered or increased the risk reported in the current study.

Some of the unexposed workers exhibited measurable In-S up to 1.5 μ g/L at baseline. The possibility of contamination of unexposed subjects' workplace and exposure misclassification remains.

While a 5-year assessment is insufficient to predict clinical outcomes after longer periods, the current

study results provide significant rationale to immediately remove highly exposed workers (In-S \ge 20 µg/L) from indium exposure. The increased prevalence of progression was also evident at lower In-S levels and suggest that an In-S level between 5 µg/L and 19.9 µg/L is a warning sign for action. A larger sample size may have provided the statistical power to lower the preventive recommendation below 20 µg/L. Additionally, high levels of biomarker and abnormal lung function warrant attention as potential predictors of emphysematous changes.

The agenda for future research includes monitoring new clinical cases of indium lung, following further progression of emphysematous and interstitial changes in the current cohort, and studying the occurrence of lung cancer.

Conclusions

This 5-year cohort study of indium workers suggests that In-S burden is a risk factor for progression of emphysematous changes, particularly in smokers, and persists after In-S decreases. The study results provide the basis to immediately remove indium workers with In-S above 20 μ g/L from indium exposure and monitor their lung conditions, as well as to consider In-S levels between 5 μ g/L and 19.9 μ g/L as a warning sign for action.

Acknowledgments

Author contributions: M. N. takes responsibility for the integrity and accuracy of the data and manuscript, had primary responsibility for the design of the study and drafting of the article, and contributed to fieldwork management, acquisition, analysis, and interpretation of data, and critical revision of the manuscript. K. O. had primary responsibility for the conception and design of the study and contributed to fieldwork management; K. U. contributed to analysis and interpretation of data; T. M. contributed to data acquisition; N. Y. contributed to data acquisition; M. H. assisted in the study design and contributed to acquisition, analysis, and interpretation of data; and A. T. assisted in the study design and contributed to fieldwork management and acquisition, analysis, and interpretation of data.

Financial/nonfinancial disclosures: The authors have reported to *CHEST* that no potential conflicts of interest exist with any companies/organizations whose products or services may be discussed in this article.

Role of sponsors: The sponsor had no role in the design of the study, the collection and analysis of the data, or the preparation of the manuscript.

Other contributions: We thank the staff members and participants at all factories for their helpful and cordial cooperation. We also thank Mutsuko Yamada, PhD, for assistance with critical revision of the manuscript.

References

- 1. Minami H. Demand, Supply, and Price Trend of Indium and Gallium [in Japanese]. Tokyo, Japan: Japan Oil, Gas and Metals National Corporation; 2010.
- Homma T, Ueno T, Sekizawa K, Tanaka A, Hirata M. Interstitial pneumonia developed in a worker dealing with particles containing indium-tin oxide. *J Occup Health*. 2003;45(3):137-139.
- Omae K, Nakano M, Tanaka A, Hirata M, Hamaguchi T, Chonan T. Indium lung—case reports and epidemiology. *Int Arch Occup Environ Health.* 2011; 84(5):471-477.
- Cummings KJ, Nakano M, Omae K, et al. Indium lung disease. *Chest*. 2012;141(6):1512-1521.

- Chonan T, Amano A, Modera H, Kanehara A, Honma K. Interstitial pneumonitis due to an inhalation of indium compounds [in Japanese]. *Japanese J Chest Dis.* 2010;69(9):851-855.
- Cummings KJ, Donat WE, Ettensohn DB, Roggli VL, Ingram P, Kreiss K. Pulmonary alveolar proteinosis in workers at an indium processing facility. *Am J Respir Crit Care Med.* 2010;181(5): 458-464.
- Xiao YL, Cai HR, Wang YH, Meng FQ, Zhang DP. Pulmonary alveolar proteinosis in an indium-processing worker. *Chin Med J (Engl)*. 2010;123(10):1347-1350.
- Chonan T, Taguchi O, Omae K. Interstitial pulmonary disorders in indium-processing workers. *Eur Respir J.* 2007;29(2):317-324.
- Hamaguchi T, Omae K, Takebayashi T, et al. Exposure to hardly soluble indium compounds in ITO production and recycling plants is a new risk for interstitial lung damage. *Occup Environ Med.* 2008;65(1):51-55.
- Nakano M, Omae K, Tanaka A, et al. Causal relationship between indium compound inhalation and effects on the lungs. *J Occup Health*. 2009;51(6): 513-521.
- Nagano K, Nishizawa T, Umeda Y, et al. Inhalation carcinogenicity and chronic toxicity of indium-tin oxide in rats and mice. J Occup Health. 2011;53(3): 175-187.
- Ministry of Health, Labor, and Welfare. Technical Guideline for Preventing Health Impairment of Workers Engaged in the Indium Tin Oxide Handling Processes [in Japanese]. Tokyo, Japan: Government of Japan; 2010.
- Ministry of Health, Labor, and Welfare. Amendment to Ordinance on Industrial Safety and Health Law and to Ordinance on Prevention of Hazards due to Specified Chemical Substances [in Japanese]. Tokyo, Japan: Government of Japan; 2013.
- 14. Sakurai H. Occupational safety and health in Japan: current situations and the future. *Ind Health*. 2012;50(4):253-260.
- Kobayashi J, Kitamura S. KL-6: a serum marker for interstitial pneumonia. *Chest*. 1995;108(2):311-315.
- Ohnishi H, Yokoyama A, Kondo K, et al. Comparative study of KL-6, surfactant protein-A, surfactant protein-D, and monocyte chemoattractant protein-1 as serum markers for interstitial lung

diseases. Am J Respir Crit Care Med. 2002;165(3):378-381.

- Honda Y, Kuroki Y, Matsuura E, et al. Pulmonary surfactant protein D in sera and bronchoalveolar lavage fluids. *Am J Respir Crit Care Med.* 1995;152(6 pt 1): 1860-1866.
- The Clinical Pulmonary Functions Committee. Standard criteria for spirography and arterial blood gas partial pressure measurement in Japanese [in Japanese]. J Jap Respir Soc. 2001;39(5): 383-399.
- The Japanese Respiratory Society. Guidelines for the Diagnosis and Treatment of COPD. 2nd ed. Tokyo, Japan: Medical Review; 2004.
- Goddard PR, Nicholson EM, Laszlo G, Watt I. Computed tomography in pulmonary emphysema. *Clin Radiol.* 1982;33(4):379-387.
- Japan Public Health Association. Research on Method Of Measuring Influence On Health Due To Air Pollution [in Japanese]. Tokyo, Japan: Japan Public Health Association; 1979.
- Ferris BG. Epidemiology Standardization Project (American Thoracic Society). Am Rev Respir Dis. 1978;118(6 pt 2):1-120.
- National Toxicology Program. Toxicology and carcinogenesis studies of indium phosphide (CAS No. 22398-90-7) in F344/N rats and B6C3F1 mice (inhalation studies). *Natl Toxicol Program Tech Rep* Ser. 2001;(499):7-340.
- 24. Tanaka A, Hirata M, Homma T, Kiyohara Y. Chronic pulmonary toxicity study of indium-tin oxide and indium oxide following intratracheal instillations into the lungs of hamsters. J Occup Health. 2010;52(1):14-22.
- Gwinn WM, Qu W, Shines CJ, et al. Macrophage solubilization and cytotoxicity of indium-containing particles in vitro. *Toxicol Sci.* 2013;135(2):414-424.
- Russell RE, Thorley A, Culpitt SV, et al. Alveolar macrophage-mediated elastolysis: roles of matrix metalloproteinases, cysteine, and serine proteases. *Am J Physiol Lung Cell Mol Physiol.* 2002;283(4):L867-L873.
- Vestbo J, Hurd SS, Agustí AG, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2013;187(4):347-365.

Brief Report

Tissue distribution of indium after repeated intratracheal instillations of indium-tin oxide into the lungs of hamsters

Akiyo TANAKA¹, Miyuki HIRATA¹, Nagisa MATSUMURA¹ and Yutaka KIYOHARA¹

¹Department of Environmental Medicine, Graduate School of Medical Sciences, Kyushu University, Japan

Abstract: Tissue distribution of indium after repeated intratracheal instillations of indium-tin oxide into the lungs of hamsters: Akiyo TANAKA, et al. Department of Environmental Medicine, Graduate School of Medical Sciences, Kyushu University-Objectives: The aim of this study was to analyze the tissue distribution of indium after intratracheally instilling indium-tin oxide (ITO) into the lungs of hamsters. Methods: Male Syrian hamsters received an intratracheal dose of 3 mg/kg or 6 mg/kg of ITO particles containing 2.2 mg/kg or 4.5 mg/kg of indium, twice weekly for 8 weeks. In parallel, control hamsters received only an intratracheal dose of distilled water. A subset of hamsters was euthanized periodically throughout the study from 8 up to 78 weeks after the final instillation. The distribution of indium in the lungs, liver, kidneys and spleen, as well as pathological changes in the liver, kidneys, and spleen, was determined. Results: The contents of indium in the lungs in the two ITO groups gradually decreased over the 78-week observation period, with elimination half-lives of approximately 142 weeks for the 3 mg/kg ITO group and 124 weeks for the 6 mg/kg ITO. The indium concentrations in the liver, kidneys, and spleen gradually increased throughout the observation period. Although foci of the lesions were observed histopathologically in the extrapulmonary organs among the two ITO groups, the control group showed similar lesions. Conclusions: The results clearly demonstrate that the clearance of indium from the body is extremely slow after intratracheal instillation in hamsters. (J Occup Health 2015; 57: 189-192)

Key words: Hamsters, Indium, Indium-tin oxide, Intratracheal instillation, Lung clearance, Tissue indium concentration

Indium is an essential rare metal that is commonly

Received May 29, 2014; Accepted Nov 4, 2014

Published online in J-STAGE Jan 10, 2015

used in the electronics industry; the use of indium compounds, most notably indium-tin oxide (ITO), has risen sharply since the 1990s¹⁾. Several case reports and epidemiological studies of workers exposed to ITO have heightened awareness of the potential hazards of occupational exposure to this metal²⁻⁴). Although evidence of pulmonary lesions has been reported after respiratory ITO exposure in animals and humans²⁻⁷⁾, it is not clear whether indium can further distribute throughout the body. In our previous study, pulmonary toxicity in hamsters was demonstrated over a four-month period of repeated intratracheal instillation of 3 mg/kg or 6 mg/kg doses of ITO (2.2 mg/kg or 4.5 mg/kg as indium, respectively)⁶⁾. The serum indium concentrations among the two test groups gradually increased throughout the observation period, and the severity of pulmonary pathologies increased over time. The present study evaluated the long-term peripheral organ distribution of indium from 8 to 78 weeks after repeated intratracheal instillation of ITO into the lungs of hamsters as reported in our previous study⁶⁾.

Materials and Methods

ITO particles were prepared as previously reported⁶ and were obtained by donation from a corporate source. All animal studies were conducted in accordance with the Guidelines for Animal Experiments in the Graduate School of Medical Sciences, Kyushu University, and in compliance with Law No. 105 and Notification No. 6 of the Government of Japan. Eighty-seven 6-week-old male Syrian hamsters were purchased from the colony of Japan SLC Inc. (Shizuoka, Japan) to be used in this study. The animals were housed in a specific pathogen-free environment at the Laboratory of Animal Experiments in the Graduate School of Medical Sciences, Kyushu University. The lighting, food supply and drinking water were maintained under the same conditions as described previously⁶). Intratracheal instillation of ITO began after a 2-week acclimatization period when

Correspondence to: A. Tanaka, Department of Environmental Medicine, Graduate School of Medical Sciences, Kyushu University, EC Bldg 2F, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan (e-mail: atanaka@envmed.med.kyushu-u.ac.jp)

the animals were 8 weeks old.

The hamsters were randomly divided into 3 groups: a control group (n=29), a 3 mg/kg ITO treatment group (2.2 mg/kg as indium; n=29) and a 6 mg/kg ITO treatment group (4.5 mg/kg as indium; n=29). There was no significant difference in body weight among the groups at the start of the study. A vehicle or test agent was instilled into the trachea of ether-anesthetized hamsters twice weekly over 8 weeks for a total of 16 doses. The control group received 1.0 ml/kg of distilled water. Six to eight surviving hamsters in each group were euthanized using carbon dioxide gas and autopsied at 8, 16, 40 or 78 weeks after their final dose. The indium concentrations were measured in the organs of the ITO-treated hamsters, as were the total organ weights, and histopathological examination of the liver, kidneys and spleen was also completed for all hamsters. To measure lung indium content, one apical lobe was soaked in 10 ml of 68% ultrapure nitric acid (TAMAPURE-AA-100, Tama Chemicals Co., Ltd., Kawasaki, Kanagawa, Japan) overnight, and 0.1 ml of lung soak solution, 0.02 g of liver tissue, 0.1 g of kidney, 0.1 g of spleen tissue or 1 ml of serum was digested with 6 ml of 68% ultrapure nitric acid (TAMAPURE-AA-100, Tama Chemicals Co., Ltd., Kawasaki, Kanagawa, Japan) and 0.5 ml of 35% ultrapure hydrogen peroxide (TAMAPURE-AA-100, Tama Chemicals Co., Ltd., Kawasaki, Kanagawa, Japan) using a microwave digestion apparatus (Multiwave 3000, PerkinElmer, Yokohama, Japan). Digested samples were then diluted into ultrapure water for a total volume of 20 ml and injected into an inductively coupled plasma mass spectrometer (ICP-MS, Agilent 7500ce, Agilent Technologies, Tokyo, Japan) at the Center of Advanced Instrumental Analysis, Kyushu University. Rhodium was used as an internal standard for indium measurements. The lower limit of quantitative detection for indium was $0.04 \mu g/g$ for the lungs, $0.005 \,\mu g/g$ for the liver, $0.001 \,\mu g/g$ for the kidneys and $0.001 \,\mu g/g$ for the spleen. In the cases where the indium concentrations were below the limit of detection, a value equal to one-half of the limit of detection was used for statistical calculations. The distribution of indium in the lungs was calculated as the concentration of indium in lung tissue.

Samples of the liver, kidneys and spleen were fixed in 10% neutral buffered formalin and processed in paraffin for histopathological examination, which included an evaluation of the severity of lesions as reported in a previous study⁶). Briefly, histopathological findings in these organs were scored as present or absent; if they were absent, findings were expressed as 0. In the case of lesions, the severity of each of the lesions was graded on a 4-point scale ranging from slight to severe. Slight lesions were expressed as 1, mild lesions were expressed as 2, moderate lesions were expressed as 3, and severe lesions were expressed as 4.

For the statistical analyses of organ weights and indium content in the lung, indium concentrations in the liver, kidneys and spleen and score of the severity of the lesions, one-way analysis of variance followed by a Fischer's least significant difference test was applied. In all the statistical comparisons, a p value of <0.05 was considered to represent a significant difference.

Results

Over the course of 8 weeks, hamsters received mean indium doses of 4.8 ± 0.4 mg (mean \pm SD) and 9.5 ± 0.9 mg per animal in the 3 mg/kg and 6 mg/kg ITO treatment groups, respectively. The data collected in the course of the study for body weight, lung weight, mortality, serum indium concentration and lung lesions were presented in our previous study⁶). The liver, kidney and spleen weights were not significantly different throughout the course of the study among the two ITO-treated groups and the control group. The indium content in the lungs decreased slowly from 8 to 78 weeks in both ITO-treated groups (Table 1). Although the concentrations of indium in the lung for the 6 mg/kg ITO group were slightly higher at 78 weeks than at 40 weeks, the clearance of indium from the lungs fit a biphasic exponential rate

Orrean	Crown		Weeks after final i	nstillation (weeks)	
Organ	Group	8	16	40	78
In (mg/whole lung)	ITO 3 mg/kg	$3.850 \pm 1.425 \ (8)^{a}$	3.183 ± 0.709 (8)	3.219 ± 0.440 (7)	2.587 ± 0.443 (6)
	ITO 6 mg/kg	$6.633 \pm 1.595 \ (8)^{b}$	4.404 ± 1.750 (7)	3.690 ± 1.040 (7)	4.078 ± 0.636 (7) ^b
% of In dose	ITO 3 mg/kg	82.6 ± 30.5	69.8 ± 18.1	66.5 ± 7.7	56.3 ± 8.3
	ITO 6 mg/kg	64.5 ± 17.1	49.7 ± 18.9	39.4 ± 11.3 ^b	44.6 ± 7.3^{b}

Table 1. Indium content in the lungs after the final instillation of ITO

The results are shown as means \pm SD. a: The number of hamsters examined. b: Statistically different between the ITO 3 mg/kg group and the ITO 6 mg/kg group.

model for both ITO-treated groups. The elimination half-life of indium from the lungs was 142 weeks in the 3 mg/kg ITO group and 124 weeks in the 6 mg/kg ITO group. Indium was not detected in the lungs of the control group hamsters at any time during the observation period.

The indium concentrations in the serum, which were reported in our previous study⁶, liver, kidneys and spleen gradually increased during the observation period, with the concentrations at least 7-fold higher at 78 weeks than at 8 weeks for both ITO treatment groups. However, the accumulation ratio of indium in the liver, kidneys and spleen for the total dose instilled was very low; that is, it was less than 2% at 78 weeks (Table 2). No indium was detected in the organs of control group hamsters at any point during the observation period. There was one renal adenocarcinoma in the ITO 3 mg/kg group at 16 weeks and one cavernous hemangioma of the liver in the ITO 6 mg/kg group at 78 weeks. The pathological evaluations revealed some lesions in the organs that increased in severity as the study progressed. There were no significant differences between the ITO-treated groups and the control group (data not shown).

Discussion

In this study, the long-term tissue distribution of indium was assessed after repeated intratracheal administration of ITO in hamsters. This is the first study of long-term indium distribution following respiratory exposure. Indium was found to be absorbed and retained in the lungs for a long time. The halflife of indium elimination from the lungs was more than two years and was similar for the two different levels of ITO dosing. Although the indium accumulation ratio in the liver, kidneys and spleen for the total instillation dose was very low and quantity of indium excretion in feces and urine was not clear, indium accumulation in these organs indicated that translocation from the lungs occurred, but there was no gradual elimination from these organs during the observation period. These results are consistent with our previous study in which it was reported that ITO-induced lung lesions and that serum indium levels increased significantly after exposure⁶. It may be that the low solubility of ITO particles leads to long-term deposition in the lungs.

To date, a few studies have assessed lung indium levels among workers who handle indium or its derivatives occupationally. These studies have reported indium levels of up to $31.2 \,\mu$ g/g among recycling workers⁸⁾ or 29.3 μ g/g in an ITO-handling worker⁹⁾. Furthermore, although there is some data assessing indium levels in peripheral organs at a single point in time7, 10), the data do not clarify whether there was long-term absorption of indium in tissue. In the present study, it was demonstrated that indium was significantly absorbed in peripheral organs after respiratory exposure and that the absorption continued to increase long after ITO instillation. Interestingly, Yamazaki et al.11) reported a gradual decrease in serum indium concentrations after the cessation of dosing with indium arsenide (InAs) or indium phosphide (InP). It may be that serum and peripheral organ absorption depend upon the species of indium compound to which the animals are exposed. Further clarification will be needed to elucidate a trend between absorption or excretion and the properties of various indium compounds.

Table 2. Indium concentrations in the liver, kidneys and spleen after the final instillation of ITO

Oraca	Crown		Weeks after final	instillation (weeks)	
Organ	Group	8	16	40	78
Liver	ITO 3 mg/kg	$0.538 \pm 0.163 (8)^{a}$	1.055 ± 0.455 (7)	3.094 ± 1.222 (7)	8.370 ± 2.504 (6)
(µg In/g)	ITO 6 mg/kg	$1.130 \pm 0.573 (8)^{b}$	1.293 ± 0.869 (7)	7.181 ± 5.165 (7)	14.420 ± 3.199 (7) ^b
Kidney	ITO 3 mg/kg	1.435 ± 0.177 (8)	1.423 ± 0.249 (7)	4.684 ± 0.949 (7)	9.362 ± 3.879 (6)
(µg In/g)	ITO 6 mg/kg	2.210 ± 1.110 (8)	3.177 ± 0.997 (7) ^b	6.639 ± 2.419 (7)	17.773 ± 7.236 (7) ^b
Spleen	ITO 3 mg/kg	0.612 ± 0.260 (8)	0.822 ± 0.382 (7)	1.617 ± 0.337 (7)	2.910 ± 1.217 (6)
(µg In/g)	ITO 6 mg/kg	1.067 ± 0.477 (8) ^b	1.083 ± 0.792 (7)	2.071 ± 0.397 (7) ^b	5.682 ± 3.832 (7)
Serum ^c	ITO 3 mg/kg	0.060 ± 0.019 (8)	0.070 ± 0.029 (8)	0.184 ± 0.062 (7)	0.237 ± 0.127 (6)
(µg In/ml)	ITO 6 mg/kg	0.080 ± 0.022 (8)	0.087 ± 0.018 (8)	0.213 ± 0.089 (7)	0.436 ± 0.149 (7) ^b
% of In dose in the liver,	ITO 3 mg/kg	0.1 ± 0.0	0.2 ± 0.1	0.7 ± 0.2	1.7 ± 0.4
kidneys, and spleen	ITO 6 mg/kg	0.1 ± 0.0	0.1 ± 0.1	0.7 ± 0.5	1.4 ± 0.3

The results are shown as means \pm SD. a: The number of hamsters examined. b: Statistically different between the ITO 3 mg/kg group and the ITO 6 mg/kg group. c: Data from this study were shown as a part of our previous study⁶.

The degree of lesions observed in the liver, kidneys or spleen was not significantly different between the two dose levels of ITO and was similar to that of lesions observed in the same organs of the control animals in this study. This finding is consistent with a previous report that no exposure-related organ lesions were observed outside the lungs in mice and rats⁷). It is conceivable that the toxic effect on extra-pulmonary tissues is relatively weak with the instillation doses delivered herein.

In conclusion, the present study presents the first real evidence that indium is eliminated from the lungs very slowly and does accumulate in extrapulmonary organs over a long period of time after respiratory exposure to ITO.

Acknowledgments: This study was funded in part by a Grant-in-Aid for Scientific Research on Innovative Areas (24108009) and Grants-in-Aid for Scientific Research (B) (23390164) and (A) (23249033) from the Ministry of Education, Culture, Sports, Science and Technology of Japan and the New Energy and Industrial Technology Development Organization (NEDO) Incorporated Administrative Agency under the Ministry of Economy, Trade and Industry (METI).

References

- Tolcin AC. Indium. In: 2011 Minerals year book. US. Geological Survey, US. Department of the Interior. [Online]. 2013 [cited 2014 Jan 22]; Available from: URL:http://minerals.usgs.gov./minerals/pubs/commodity/indium/myb1-2011-indiu.pdf
- 2) Omae K, Nakano M, Tanaka A, Hirata M, Hamaguchi T, Chonan T. Indium lung-case reports

and epidemiology. Int Arch Occup Environ Health 2011; 84: 471-7.

- Choi S, Won YL, Kim D, Yi GY, Park JS, Kim EA. Subclinical interstitial lung damage in workers exposed to indium compounds. Ann Occup Environ Med 2013; 25: 24–30.
- Cummings KJ, Suarthana E, Edwards N, et al. Serial evaluations at an indium-tin oxide production facility. Am J Ind Med 2013; 56: 300–7.
- 5) Tanaka A, Miyuki H, Kiyohara Y, et al. K. Review of pulmonary toxicity of indium compounds to animals and humans. Thin Solid Films 2010; 518: 2934–6.
- 6) Tanaka A, Hirata M, Homma T, Kiyohara Y. Chronic pulmonary toxicity study of indium-tin oxide and indium oxide following intratracheal instillations into the lungs of hamsters. J Occup Health 2010; 52: 14–22.
- Nagano K, Nishizawa T, Umeda Y, et al. Inhalation carcinogenicity and chronic toxicity of indium-tin oxide in rats and mice. J Occup Health 2011; 53: 175–87.
- Nogami H, Shimoda T, Shoji S, Nishima S. Pulmonary disorders in indium-processing workers. J JPN Respir Soc 2008; 46: 60–4 (in Japanese).
- Cummings KJ, Donat WE, Ettensohn DB, Roggli VL, Ingram P, Kreiss K. Pulmonary alveolar proteinosis in workers at an indium processing facility. Am J Respir Crit Care Med 2010; 181: 458–64.
- 10) Hoet P, Graef ED, Swennen B, et al. Occupational exposure to indium: what does biomonitoring tell us? Toxicol Lett 2012; 213: 122–8.
- 11) Yamazaki K, Tanaka A, Hirata M, et al. Long term pulmonary toxicity of indium arsenide and indium phosphide instilled intratracheally in hamsters. J Occup Health 2000; 42: 169–78.

Comparative Study on the Pulmonary Toxicity of Indium Hydroxide, Indium-Tin Oxide, and Indium Oxide Following Intratracheal Instillations into the Lungs of Rats

Akiyo Tanaka¹, Miyuki Hirata¹, Nagisa Matsumura¹, Kazunori Koga², Masaharu Shiratani², and Yutaka Kiyohara¹

Department of Environmental Medicine, Graduate School of Medical Sciences, Kyushu
 University, EC Building 2F, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
 Department of Electronics, Graduate School of Information Science and Electrical Engineering,
 Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

ABSTRACT

We studied the pulmonary toxicity of indium hydroxide $(In(OH)_3)$, which is produced during a recycling process of indium-tin oxide (ITO), in comparison with that of ITO or indium oxide (In₂O₃), two raw materials of flat panel displays. One hundred and forty-four male Wistar rats were intratracheally given equivalent doses of 10 mg/kg indium as In(OH)₃, ITO, or In₂O₃ particles, twice a week, for a total of 5 times for 2 weeks. Control rats were given distilled water as a vehicle. After 3 weeks, these rats were serially euthanized, and toxicological effects were determined. Body weight gain was significantly suppressed in the In(OH)₃-treated rats compared to that in the control group, but not in the ITO- or In₂O₃-treated rats. Relative lung weights in all the indium-treated groups significantly increased compared to those in the control group throughout the observation period. Furthermore, lung weights in the In(OH)₃ group were significantly higher than those in either the ITO or In_2O_3 group. Blood indium levels in the In(OH)₃-treated rats were much higher, 70- to 200-fold, than those in the In₂O₃- or ITO-treated rats at each time point. Although the lung indium content decreased gradually during the observation periods, the content in the In(OH)₃ group was significantly higher than that in either the ITO or In₂O₃ group. A histopathological analysis revealed foci indicating a slight to severe pulmonary inflammatory response, including exudation to alveolar spaces, were present in all the indium-treated groups. Interstitial fibrotic proliferation was seen only in the In(OH)₃-treated rats. The severity of these lesions in the In(OH)₃-treated rats was greater than that in either the ITOor In₂O₃-treated rats.

The results of our study clearly demonstrated that $In(OH)_3$ particles caused severe pulmonary toxicity when repeated intratracheal instillations were performed in rats. Furthermore, the toxic potency of $In(OH)_3$ in the lung was much higher than that of ITO and In_2O_3 . Accordingly, the toxicity of $In(OH)_3$ particles should be considered in addition to that of ITO and In₂O₃ particles when indium exposure occurs.

INTRODUCTION

Indium hydroxide is produced during the recycling process of indium-tin oxide (ITO) target, which is a sintered alloy containing a large portion of indium oxide (In_2O_3) and a small portion of tin oxide, and is mostly used for thin-film coatings of liquid-crystal displays (LCDs) or mobile phone displays. In 2013, the indium demand for ITO was reported to have been 90% of the total indium demand in Japan, and ITO production is expected to increase significantly owing to the increasing need for its use in electronic devices, such as LCDs [1]. Due to this increased production of ITO, recovery of indium from ITO may increase.

Since the mid-1990s, data have become available indicating that indium compounds can be toxic to animals [2]. In 2003, the first case of interstitial pneumonia caused by occupational exposure to ITO was reported [3]. In our previous study, which has been the only study regarding the chronic toxicity of ITO or In_2O_3 , we demonstrated chronic lung toxicity of ITO or In_2O_3 particles in hamsters after repeated intratracheal instillations [4].

On the other hand, indium is recovered from the ITO target remainder by sputtering to a thin-film coating. About 60% of the indium consumed in 2013 was supplied by recycling of waste ITO target or other indium products in Japan [1]. Indium hydroxide is an intermediate product of the recycling process, and In_2O_3 , which is a raw material of ITO, is generated in the next step of the recycling process. In this study, we evaluated the comparative lung toxicity of $In(OH)_3$, ITO, and In_2O_3 when administered repeatedly into the trachea of rats. These indium compounds were administered at the equivalent dose of 10 mg/kg of indium.

MATERIALS AND METHODS

Test materials: $In(OH)_3$ and ITO particles were obtained from a company. ITO contained 74.4% (wt%) indium and 7.8% tin, with the remainder being oxygen, and $In(OH)_3$ was 99.9% pure. Indium oxide, over 99.99% pure, was purchased from Katayama Chemicals, Osaka, Japan. The mean diameters of $In(OH)_3$, ITO, and In_2O_3 particles were 0.04, 0.56, and 0.14 µm, respectively. **Animals**: One hundred forty-four male Wistar rats aged 6 weeks were purchased from the colony of Kyudo Co. (Tosu, Japan) and housed within a conventional laboratory room at the Graduate School of Medical Sciences, Kyushu University. Intratracheal instillations were started once the rats reached the age of 8 weeks.

Intratracheal instillation of materials: Each material was suspended in 1.0 mL/kg body weight

distilled water and instilled into the trachea of rats anesthetized with ether, twice a week, for a total of 5 times during for 2 weeks. Each instillation per animal performed at a dose of 10 mg/kg body weight indium. The control rats received 1.0 mL/kg body weight distilled water only. All the rats were randomized into 4 groups, with each group consisting of 36 rats.

Toxicological evaluations: All the surviving rats in each group were euthanized by exposure to carbon dioxide gas at 0, 1, 2, or 3 weeks after the final instillation and were then autopsied. Although blood indium concentrations were measured in all the rats, lung indium concentrations were measured in 5 rats and pulmonary pathological evaluation was performed in 4 rats of each group. Indium concentrations in digested lung or blood samples were measured using an inductively coupled plasma mass spectrometer (ICP-MS, Agilent 7500ce, Agilent Technologies, Tokyo, Japan) at the Center of Advanced Instrumental Analysis, Kyushu University. Lung indium content was determined as the concentration of indium in lung tissue.

Histopathological findings in the lungs were scored as present or absent; a score of 0 was recorded if findings were absent. In the case of lesions, the severity of each of the lesion was graded as slight to severe on a 4-item scale.

These experiments were conducted according to the Guidelines for Animal Experiments at the Graduate School of Medical Sciences, Kyushu University and under the Law (No. 105) and Notification (No. 6) of the Government of Japan.

RESULTS

The mean total indium dosage per animal (mean \pm S.E.) was 15.1 \pm 0.2 mg in the In(OH)₃ group, 15.6 \pm 0.2 mg in the ITO group, and 15.6 \pm 0.2 mg in the In₂O₃ group. No rats died during the observation period, except 2 that died due to emaciation in the In(OH)₃ group.

Finally, 36 animals in the ITO, In_2O_3 , and the control groups and 34 animals in the $In(OH)_3$ group were examined. Changes in the body weights of the surviving rats in each group at each time point during the instillation and observation periods are shown in Fig. 1. The body weight of the $In(OH)_3$ group did not increase from the start of the instillation period and was extremely suppressed during the observation period. Trends in body weight of the angle were significantly different (P < 0.05).

change were significantly different (P < 0.05) between the $In(OH)_3$ group and the ITO- or In_2O_3

group, or the control group between weeks 0 and 3 after the final instillation. In the ITO and In_2O_3 groups, the trend in body weight change was similar to that observed in the control group throughout the observation period.

Changes in lung weight during the observation period are shown in Fig. 2. The lung weights in the $In(OH)_3$ -, ITO and In_2O_3 groups were significantly greater than that in the control group at each corresponding time point. Moreover, the $In(OH)_3$ group showed significantly greater lung weight than that shown by the ITO and In_2O_3 groups at each corresponding time point.

Blood indium concentrations during the observation period are shown in Fig. 3. The blood indium concentration gradually increased from week 0 to 3 following the final instillation

in all the indium-treated groups. Furthermore, blood indium levels in the $In(OH)_3$ group were 70- or 200-fold higher than those in the In_2O_3 or ITO group, respectively, throughout the observation period. At the end of the observation period, blood indium levels were 1137.6 ± 167.8 ng/g (mean \pm SE) in the $In(OH)_3$ group, 6.5 ± 1.3 ng/g in the ITO group, and 13.8 ± 2.0 ng/g in the In_2O_3 group. The differences in

a: Significantly different from the ITO group.b: Significantly different from the In₂O₃ group.

the blood indium levels between the $In(OH)_3$, ITO, and In_2O_3 groups at each time point were significant. Indium was not detected in the blood of the animals in the control group at any time point.

The indium content in the lungs during the observation period is shown in Fig. 4. Although the lung indium content for the In_2O_3 group was higher at week 1 or 3 than that at week 0, it gradually decreased from week 0 to 3 in both the $In(OH)_3$ and ITO groups. Indium was not detected in the lungs from the control group at any time during the observation period.

Weeks After the Final Instillation (week) $Means \pm SE$ Fig.4 Change of indium content in the lungs after the final instillation of In(OH)₃, ITO and In₂O₃.

The severity of the pathologic change in the lungs is shown in Table 1. Diffuse foci of slight to severe inflammation were present in all indium-treated rats during the observation

periods. Slight to severe exudation was seen within the alveolar spaces in the indium-treated groups. Mild to moderate interstitial fibrotic proliferation was apparent from weeks 0 to 3 in the In(OH)₃ group. Although a slight inflammatory response was observed in the control group, neither interstitial fibrosis nor exudation was evident.

instillation of $In(OH_{)3}$, II	O and $\ln_2 O$	J_{3} .			
Dathalagical Changes	Cassia	Weeks afte	r final instill	ation(Wk)	
Pathological Changes	Group	0	1	2	3
	In(OH)3	3+	3+	3+	3+
	ITO	+	+	+	+
Inflammatory response	In_2O_3	+	+	+	+
	Control	±	±	±	±
Terrentified Character and Merceler	In(OH) ₃	+	2+	3+	3+
	ITO	-	-	-	-
interstitial fibrotic promeration	In_2O_3	-	-	-	-
	Control	-	-	-	-
	In(OH)3	2+	3+	3+	3+
Exudation	ITO	±	2+	+	+
Exudation	In_2O_3	±	±	+	+
	Control	-	-	-	-

Table 1 Pathological changes in the rats lung after intratracheal instillation of In(OH₂₂, ITO and In₂O₂,

The severity of the lung lesions was evaluated by five grades: -:negative; ±: slight; +: mild; 2+: moderate; 3+: severe

DISCUSSION

In this study, the acute toxic effect of $In(OH)_3$ was assessed after repeated intratracheal instillation in rats. This is the first study of acute pulmonary toxicity of In(OH)₃ following respiratory exposure. Of the three indium compounds evaluated in this study, In(OH)₃ had the greatest degree of systemic toxicity, causing significant decreases in body weight and 2 deaths during the instillation period. In(OH)₃ was also the most toxic compound for the lung, causing significant increases in lung weight and severe manifestation of lung lesions. On the other hand, when the same indium dosage as that of $In(OH)_3$ ITO, or In_2O_3 was instilled, the blood indium level in the $In(OH)_3$ -treated rats was much higher than that in either the ITO- or In_2O_3 -treated rats. A high concentration of blood indium in the In(OH)₃-treated rats may be correlated with the severe toxicological damage in In(OH)₃-treated rats. Furthermore, it was thought that the fact that $In(OH)_3$ particles had the smallest diameter might contribute to a more severe toxic profile among the three indium compounds. Although there was no additional exposure to these indium compounds after the final instillation, blood indium levels of three indium-treated rats gradually increased up to the end of the observation period. This finding was consistent with the results of Tanaka et al.[4] who reported that serum indium levels among ITO- or In_2O_3 -treated hamsters increased gradually until week 78 week following the final instillation. Since $In(OH)_3$ ITO, or In₂O₃ particles are insoluble in water [5], these findings would seem to be related to the low solubility of these particles within the lung. Due to the slow clearance of these indium compound particles from the lung, it is suspected that the long-term persistence of these particles within the lung resulted in continuous damage to the alveolar epithelial cells. On the other hands, it is thought that the pulmonary indium content was not stable at early observation periods because

inhaled indium compounds might be removed by mucociliary transport from the trachea and swallowed into the stomach just after intratracheal instillations of indium compounds. Further clarification is needed regarding the pulmonary clearance of these particles and the influence of particle size on the development of lung damage.

To date, the evidence of lung disorders has been reported after respiratory ITO exposure in animals and humans [2,6]. Although a few studies have reported pulmonary disorders among indium recycling workers [7,8], it is not clear whether these recycling workers inhaled $In(OH)_3$ particles, or if they were exposed to several kinds of indium compounds.

In conclusion, the acute pulmonary toxicity of $In(OH)_3$ particles was confirmed when repeated intratracheal instillations of $In(OH)_3$ were performed in rats, and the toxic potency of $In(OH)_3$ was much higher than that of either ITO or In_2O_3 . These findings suggest a need to pay much greater attention to the danger of human exposure to indium compounds.

ACKNOWLEDGMENTS

This study was funded in part by a Grant-in-Aid for Scientific Research on Innovative Areas (24108009) from MEXT, and Grants-in-Aid for Scientific Research (B) (23390164) and (A) (23249033) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

REFERENCES

- 1. Arumu Publishing Co. Indium: In: Industrial rare metals, No. 130, Tokyo, Arumu Publishing Co., 2014; p. 122-123 (in Japanese).
- 2. A. Tanaka, M. Hirata, Y. Kiyohara, M. Nakano, K. Omae, M. Shiratani, K. Koga, *Thin Solid Films* **518**, 2934 (2010).
- 3. T. Homma, T. Ueno, K. Sekizawa, A. Tanaka, M. Hirata, J. Occup. Health 45, 137 (2003).
- 4. A. Tanaka, M. Hirata, T. Homma, Y. Kiyohara, J. Occup. Health 52, 14 (2010).
- Indium Oxide. In: Budavari S. editor. The Merk Index. 12th Edition. Merk & Co., Inc., Whitehouse Station, NJ. 850 (1996).
- 6. K. Omae, M. Nakano, A. Tanak, M. Hirata, T. Hamaguchi, T. Chonan. *Int Arch Occup Environ Health* **84**, 471 (2010).
- 7. H. Nogami, T. Shimoda, S. Shoji, S. Nishima, J. Jpn. Respir. Soc. 46, 60 (2008) (in Japanese).
- 8. K.J. Cummings, W.E. Donat, D.B. Ettensohn, V.L. Roggli, P. Ingram, K. Kreiss, *Am. J. Respir. Crit. Care Med.* **181**, 458 (2010).

Advance Publication Journal of Occupational Health

Accepted for Publication: Mar 14, 2015 J-STAGE Advance Published Date: May 8, 2015

- 1 Word count: 2489/4000 (text), 250/250 (abstract)
- 2 Article type: Original
- 3 **Title:** Pulmonary effects in workers exposed to indium metal: a cross-sectional study
- 4 **Running title:** Pulmonary effects of indium metal

5 Authors:

- 6 Makiko Nakano, MD, PhD¹, Akiyo Tanaka, PhD², Miyuki Hirata, PhD², Satoko Iwasawa,
- 7 MD, PhD¹, and Kazuyuki Omae, MD, PhD¹
- ⁸ ¹Department of Preventive Medicine and Public Health, Keio University School of Medicine,
- 9 Tokyo, Japan
- 10 ²Environmental Medicine, Graduate School of Medical Sciences, Kyushu University,
- 11 Fukuoka, Japan
- 12 Correspondence: Makiko Nakano, MD, PhD
- 13 Department of Preventive Medicine and Public Health
- 14 School of Medicine
- 15 Keio University
- 16 35 Shinanomachi, Shinjuku-ku, Tokyo 1608582, Japan
- 17 **Tel:** +81-3-5363-3758
- 18 **Fax:** +81-3-3359-3686
- 19 **E-mail:** nakano.makiko@keio.jp

20	Funding: This study was supported by Grants-in-Aid for Scientific Research (Project No.'s
21	23249033 and 24590758) from the Ministry of Education, Culture, Sports, Science and
22	Technology of Japan (2011-13 and 2012-13), and in part by donations for research in
23	preventive and environmental medicine from one of the surveyed companies.
24	Conflicts of interests: None of the authors have any conflicts of interest to disclose.

26 Abstract

Objectives: Indium was added to the list of substances regulated by the Ordinance on Prevention of Hazards due to Specified Chemical Substances (OPHSCS) in 2013. Indium metal (IM), however, is not regulated by the OPHSCS due to insufficient information on pulmonary effects following exposure.

Methods: From 2011 to 2013, a cross-sectional study was conducted on 141 IM-exposed workers at 11 factories. Subjective symptoms were assessed, including levels of serum biomarkers, spirometry readings and total and diffuse lung capacity. Krebs von den Lungen-6 (KL-6) and surfactant protein D (SP-D) were selected as biomarkers of interstitial pneumonia. Indium serum concentration (In-S) and personal air sampling data were used to estimate exposure. Subjects were categorized into 5 groups based on occupation and type of exposure: smelting, soldering, dental technician, bonding and other.

Results: The highest level of In-S was 25.4 μ g/l, and the mean In-S level was significantly higher in the smelting group than in other groups. In the smelting group, the prevalence of increased In-S levels was 9.1%, while that of abnormal KL-6 was 15.2%. A significant dose-effect relationship was observed between the In-S and KL-6 levels. No marked differences were observed between any of the groups in SP-D values, pulmonary symptoms, or pulmonary function test results. A total of 31% of the subjects worked in an environment with IM levels exceeding 0.3 μ g/m³, which requires a protective mask to be worn.

⁶⁹

Conclusions: For workers exposed to IM, work environments should be monitored,
46 appropriate protective masks should be worn, and medical monitoring should be conducted
47 according to the OPHSCS.
49 Key words

50 Indium metal, Indium concentration, KL-6, SP-D, Interstitial pneumonia, Cross-sectional

51 study

52

53

- 55 IM, indium metal
- 56 In-S, serum indium concentration

57 ITO, indium-tin oxide

- 58 In-A, 8-hour time-weighted average personal indium concentration in respirable dust fractions
- 59 KL-6, Krebs von den Lungen-6
- 60 SP-D, surfactant protein D
- 61 OPHSCS, Ordinance on Prevention of Hazards due to Specified Chemical Substances

64 Introduction

Indium lung disease is a newly described occupational lung disease that affects workers 6566 exposed to indium compounds, such as indium tin oxide (ITO), which is used to manufacture electrodes to produce flat-panel displays, and indium oxide, indium hydroxide, and indium 67chloride, which are involved in the production or reclamation of ITO. The Japanese Society 68 of Occupational Health recommended an exposure limit for indium and indium compounds 69of 3.0 μ g/l¹⁾ based on monitoring of the dose-effect relationship between the level of serum 7071indium (In-S; exposure index) and the serum biomarker of interstitial pneumonia (Krebs von den Lungen, KL-6) associated with adverse pulmonary effects²⁻⁴⁾ in 2007. An inhalation 72experiment conducted in rats over 2 years identified ITO with an indium concentration of 73 0.01 mg/m^3 as a lung carcinogen⁵⁾. Based on these findings, the Japanese Ministry of Health, 74Labour and Welfare established prevention guidelines for workers exposed to ITO and other 75indium compounds in 2010⁶⁾. In addition, indium compounds were added to the list of 76substances regulated by the Ordinance on Prevention of Hazards due to Specified Chemical 77Substances (OPHSCS) in 2013^{7, 8)}. Under the OPHSCS, employers at indium-processing 7879factories are required to measure indium concentrations in the respirable dust fraction at their sites and to conduct health checks twice a year. These health checks consisted of a review of 80 job career and working conditions; a review of past medical history, including pulmonary 81 symptoms of coughing, sputum, dyspnea, cyanosis and clubbed fingers; evaluation of current 82

83	pulmonary symptoms, including coughing, sputum, dyspnea, cyanosis, and clubbed fingers;
84	and measurement of In-S and KL-6 values of workers. In addition, X-Ray or computed
85	tomography of the chest was conducted at the start and end of employment. However, due to
86	insufficient information on the pulmonary effects of indium metal (IM) exposure, IM and
87	indium alloys are not listed in the OPHSCS. To our knowledge, no studies have been
88	conducted in IM-processing factories.
89	Here, we determined whether or not IM exposure induces adverse pulmonary effects
90	similar to the effects of non-IM indium compounds. We measured In-S and pulmonary effects
91	of IM exposure and evaluated the relationship between IM exposure and markers of
92	pulmonary effects at IM-processing factories.

96 Methods

97 This study was approved by the Ethics Committee of the School of Medicine at Keio
98 University (approval number 20110268). Written informed consent was obtained from all
99 subjects.

100

101 Study design and subjects

This multicenter study was conducted at 11 IM-processing factories, including 2 dental 102103technician shops, 1 electric contact plant, 1 indium alloy target manufacturing plant, 3 lead-free solder manufacturing plants using an alloy containing less than 10% indium, 3 104dental manufacturing plants using an alloy containing less than 25% indium, and 1 105indium-free target plate bonding plant using 100% indium as an adhesive material. This study 106 was conducted from 2011 to 2013. There were 142 subjects, and the proportions of subjects 107 108enrolled were dependent on the size of each factory and ranged from 2 to 41. One of the 109 subjects was excluded from the statistical analysis due to a history of exposure to non-IM indium compounds. 110

Study subjects were categorized into five groups, as follows: high-temperature
(≥1000°C) alloy smelting workers (smelting workers), soldering workers, dental technicians,
bonding workers and other workers.

114

All subjects underwent a health check, which consisted of a medical interview,

115	questionnaire, blood test, spirometry examination and evaluation of total lung capacity (TLC)
116	and diffuse lung capacity for carbon monoxide (DLCO). To investigate the relationship
117	between the levels of In-S and serum biomarkers of interstitial pneumonia (KL-6 or
118	surfactant protein D [SP-D]), subjects were divided into currently and formerly exposed
119	workers according to their exposure status. Job history was based on records at the plants or,
120	if unavailable, on findings from the interview regarding occupational history.

122 Exposure indices

In-S (μ g/L) was measured by inductively coupled plasma mass spectrometry (ICP-MS) at the Center of Advanced Instrumental Analysis, Kyushu University^{3, 6)} or the Japan Industrial Safety and Health Association⁶⁾. In-S below the detection limit (0.1 μ g/l) was ascribed an arbitrary value of 0.05 μ g/l for statistical analysis.

127

128 *Effect indices and confounding factors*

129 KL-6 (EIDIA Co., Ltd., Tokyo, Japan)^{9, 10)} and SP-D (Yamasa Corporation, Tokyo, Japan)¹¹⁾

- 130 were used as biomarkers for assessing interstitial changes in the lungs and were evaluated at a
- 131 major commercial clinical laboratory (Special Reference Laboratory, Tokyo, Japan). SP-D
- 132 levels were not measured in 26 subjects due to logistics.
- 133 Spirometry was performed using an electronic spirometer (HI-801; Chest MI, Tokyo,

134	Japan) based on the standards of the Japanese Respiratory Society ¹²⁾ . TLC was determined by
135	helium dilution lung volume tests, and DLCO was determined by single breath diffusing
136	capacity tests performed using a portable compact machine (EasyOne Pro®, ndd Medical
137	Technologies, Zurich, Switzerland) based on the standards of the American Thoracic
138	Society/European Respiratory Society ¹³⁾ . TLC and DLCO were not measured in 12 workers
139	due to rib fractures (n=1) or lack of measurement at the factory due to logistics (n=11).
140	Spirometry was not evaluated in 5 workers due to rib fracture (n=1) or lack of measurement
141	at the factory due to logistics (n=4). Age- and height-adjusted predicted values of vital
142	capacity (VC), forced vital capacity (FVC), and forced expiratory volume in one second
143	(FEV _{1.0}) were determined by sex, using the regression formula recommended by the Japanese
144	Respiratory Society ¹⁴⁾ . TLC was determined by sex, using reference values generated from
145	the third National Health and Nutrition Examination Survey (NHANES III) ¹⁵⁾ . DLCO and
146	DLCO/VA were determined by sex, using the regression formula of Nishida for Japanese
147	subjects ¹⁶⁾ . Predictions were calculated for VC, FVC, FEV _{1.0} , TLC, DLCO and DLCO/VA.
148	Respiratory symptoms, smoking history and confounding factors of sex, age, medical
149	history and history of exposure to indium metal and other materials were investigated using
150	the Japanese version ¹⁷⁾ of the American Thoracic Society Division of Lung Disease
151	questionnaire ¹⁸⁾ and supplementary questions.

1 20	יו יו		, ,•	•	· 11	1 ,	<i>c</i> .•
153	Porsonal indium	ornosuro	concentration	in roy	snirahle	dust	traction
100		CAPOSHIC	concentration	III ICL	spiradic	unsi	ματισπ

154	Eight-hour time-weighted average personal indium concentrations in respirable dust fractions
155	(In-A) were measured in 35 study subjects using respirable dust samplers (GS-3 Respirable
156	Dust Cyclone; SKC Inc., Eighty Four, PA, USA) and ICP-MS (Agilent 7500i; Agilent
157	Technologies, Santa Clara, CA, USA) by the Japan Industrial Safety and Health Association
158	according to guidelines ⁶⁾ at approximately the same time as the health checks. An In-A level
159	below the detection limit (0.006 $\mu g/m^3)$ was ascribed an arbitrary value of 0.006 $\mu g/m^3$ for
160	statistical analysis.

162 Statistical analysis

163Non-normally distributed data for KL-6 and SP-D were log-transformed to an approximately 164normal distribution before analysis. In-S and values of lung function were not log-transformed before analysis. Differences between occupational groups were assessed 165using one-way analysis of variance (ANOVA) for KL-6, SP-D, and values of lung function or 166 the Kruskal-Wallis test (non-normal distribution) for age, exposure duration, time since last 167exposure and In-S. The Chi-square test was used to compare the proportion and prevalence of 168sex, smoking habits, exposure status, pulmonary symptoms, increased In-S levels and 169abnormal KL-6 and SP-D levels. A single regression model was used to evaluate the 170dose-effect relationship between In-S and KL-6 or SP-D levels by exposure status and 171

172 between In-A and KL-6 or S-D levels.

Based on the adopted reference value of In-S⁴, subjects were classified as either In-S ($3.0 \ \mu g/l \ or \ge 3.0 \ \mu g/l$). In-S $\ge 3.0 \ \mu g/l$ was used to assess the risk of indium exposure on the effect variables. The prevalence of abnormalities for biomarkers and lung function was analyzed using the following cutoffs for abnormal values: KL-6 $\ge 500 \ U/ml$, SP-D ≥ 110 ng/ml, FEV_{1.0}/FVC <70%, %VC <80%, %FVC <80%, %FEV_{1.0} <80%, %TLC <80%, %DLCO <70% and %DLCO/VA <70%.

The reference value of In-A was set as 10 μ g/m³ based on the target indium concentration in respirable dust for immediately improved workplace environments or as $\geq 0.3 \ \mu$ g/m³ based on the acceptable exposure limits calculated according to the exposure concentration found to be potentially carcinogenic in rats, as established in the technical guidelines of the Japanese Ministry of Health, Labour and Welfare⁶.

184 Statistical significance was assessed by two-tailed analysis, with P < 0.05. All statistical 185 analyses were performed using SPSS version 19 (IBM Corp., Armonk, NY, USA).

186

188 **Results**

Tables 1 and 2 show the characteristics of study subjects and the pulmonary effects for each 189190group. The mean age of the subjects was 40.9 years, and 88.7% were male. The mean 191 duration from the start to end of indium exposure for all workers was 7.5 years. For currently 192exposed workers, the duration of indium exposure was calculated from the start to the time of 193the health check. The proportion of formerly exposed workers who were no longer experiencing indium exposure at the time of the health check was 24.2% in the smelting 194 195group, 31.3% in the bonding group, 40.0% in the "other" group and 0% in the remaining two 196 groups. No marked differences in smoking history or age were observed among groups. The highest level of In-S in the smelting group was 25.4 µg/l, and the highest level of In-S among 197 all other groups, excluding the smelting group, was less than 1.0 µg/l, with In-S levels below 198 the detection limit being found in 82% of workers (89/108). The In-S level in the smelting 199200group was significantly higher than that in all other groups (P < 0.001). The KL-6 level in the smelting group was also significantly higher than that in the other groups (P < 0.001). 201However, no marked differences were observed in the SP-D level, pulmonary symptoms or 202203pulmonary function test results among all groups.

For each group, the respective proportions of subjects with abnormal levels of In-S, KL-6 and SP-D stratified by occupation type were as follows: 9.1%, 15.2% and 21.2% (smelting); 0.0%, 0.0%, and 0.0% (soldering); 0.0%, 0.0%, and 0.0% (dental technicians);

207 0.0%, 0.0%, and 6.7% (bonding); and 0.0%, 4.0%, and 6.3% (other). The proportion of 208 increased In-S and abnormal KL-6 levels were significantly higher in the smelting group than 209 in the other groups (P=0.040 and P=0.034, respectively).

Figure 1 shows a scattergram comparing the levels of In-S and KL-6 or SP-D by exposure status (currently and formerly exposed workers). In currently exposed workers, significant increases in KL-6 levels were observed with increasing In-S levels (P < 0.001). Dose-effect relationships between In-S and SP-D levels in currently and formerly exposed workers (P=0.018 and 0.014, respectively) were also observed. However, in formerly exposed workers, no significant dose-effect relationship between In-S and KL-6 levels was observed (P=0.192).

The Mean In-A level (n=35) was 15.93 μ g/m³, with values ranging from <0.006 217(undetectable) to 510.28 μ g/m³ and differing significantly between groups (*P*=0.006). In-A in 218the smelting group (mean, 68.36 μ g/m³; standard deviation, 178.75 μ g/m³; range, 219 $0.12-510.28 \ \mu g/m^3$) represented the highest level of exposure to respirable indium dust 220among groups. The proportions of workers with In-A levels exceeding 10 $\mu\text{g/m}^3$ (target 221indium concentration criteria requiring immediate improvement of work environments) in 222each group were as follows: 25% (smelting), 0% (soldering), 0% (dental technicians), 0% 223(bonding) and 0% (other). The proportions of workers with In-A levels exceeding 0.3 μ g/m³ 224(acceptable exposure concentration limit not requiring an appropriate mask) in each group 225

226	were as follows: 63% (smelting), 14% (soldering), 20% (dental technicians), 17% (bonding),
227	and 33% (other).

228	Figure 2 shows a scattergram comparing In-A and KL-6 or SP-D levels by occupation
229	groups in currently exposed workers. Although increasing In-A levels were associated with
230	increasing KL-6 and SP-D levels, the relationships between these parameters were not
231	significant (P=0.687 and P=0.657, respectively).

234 **Discussion**

In currently exposed workers, a dose-effect relationship between the levels of In-S and KL-6 235236was observed. In particular, in the smelting group, the level of In-S increased to over 20 μ g/l, which is a risk factor for interstitial pneumonia and progression of emphysematous 237changes^{2-4, 19)}. Workers in the smelting group were involved in constructing indium alloys 238with palladium, gold, silver and other metals. Although the melting point of indium is 157°C, 239the dissolution temperature in the melting process is dependent on the other mixed metals in 240241the alloy and exceeds 1000°C. Although exposure to indium metal at room temperature is generally not harmful to workers, indium melts at 157°C, and indium vapor is generated at 242higher temperature²⁰⁾. The vapor is cooled down in air and ultimately becomes airborne 243respirable particles. These respirable particles might contribute to increases in In-A and In-S 244levels. 245

In the smelting group, 25% of workers required immediate improvement to their work environment according to prevention guidelines⁶. In addition, regardless of occupational group, approximately 31% of workers exposed to IM exceeding 0.3 μ g/m³ were required to wear a protective mask according to prevention guidelines⁶. Based on these results, for workers exposed to IM, periodical monitoring of the work environment including monitoring of whether or not they wear an appropriate protective mask and medical monitoring is required.

253	In this study, IM-exposed workers who were working without improvement of the
254	workplace environment or use of a protective mask were investigated. The level of exposure
255	to respirable indium dust might be directly reflected in the amount of dust inhaled in the
256	lungs. Although an increase in In-A levels resulted in an increase in KL-6 and SP-D levels,
257	this change was not significant. The In-A levels were considered to be low, with only a small
258	proportion of subjects having levels in excess of 10 μ g/m ³ . A metric of cumulative exposure
259	might have a preference for In-S levels over In-A levels.
260	Although hamsters exposed to indium oxide ²¹⁾ and workers formerly exposed to indium
261	compounds have been found to have elevated In-S levels for a prolonged period of time, ^{4, 19)}
262	the dose-effect relationship between In-S and KL-6 levels was not significant in the formerly
263	exposed workers in the present study. Clearance of the indium burden on the lungs may be
264	more rapid following the inhalation of mist containing indium oxide ²²⁾ than that of dust
265	containing ITO or indium oxide at room temperature. In addition, the amount of indium
266	inhaled into the lungs by IM-exposed workers in this study might be lower than that by
267	ITO-exposed workers observed in previous studies ^{4, 19)} .
268	Full evaluation with high-resolution computed tomography (HRCT) of the chest was

not conducted in the present study. However, one IM-exposed worker with high In-S levels ($\geq 20 \ \mu g/l$) visited a hospital and underwent chest HRCT, which showed interlobular septal thickening and a mild reticular shadow. IM-exposed workers with high In-S levels might

272	therefore suffer adverse effects that are similar to those of workers with noted exposure to
273	indium compounds at ITO-processing factories ²⁻⁴⁾ .
274	Due to the cross-sectional nature of our study, a longitudinal observational study is also
275	required. We recommend that future studies monitor the lung conditions of workers following
276	the reduction of occupational exposure to IM.
277	
278	Conclusions
279	We observed a dose-effect relationship between In-S and KL-6 levels in workers currently

exposed to IM. The results of this study indicate that workers exposed to IM require monitoring of their work environment, appropriate protective masks and ongoing medical

282 checks according to the OPHSCS to prevent indium lung disease.

Acknowledgments

We thank the staff members and participants at all factories for their cooperation. We also thank Dr. Mutsuko Yamada, PhD, for her assistance and communication with ndd Medical Technologies.

References

- Recommendation of occupational exposure limits (2007-2008). J Occup Health 2007; 49: 328-344.
- 2. Chonan T, Taguchi O, Omae K. Interstitial pulmonary disorders in indium-processing workers. Eur Respir J 2007; 29: 317-324.
- 3. Hamaguchi T, Omae K, Takebayashi T, et al. Exposure to hardly soluble indium compounds in ITO production and recycling plants is a new risk for interstitial lung damage. Occup Environ Med 2008; 65: 51-55.
- 4. Nakano M, Omae K, Tanaka A, et al. Causal relationship between indium compound inhalation and effects on the lungs. J Occup Health 2009; 51: 513-521.
- 5. Nagano K, Nishizawa T, Umeda Y, et al. Inhalation carcinogenicity and chronic toxicity of indium-tin oxide in rats and mice. J Occup Health 2011; 53: 175-187.
- 6. Ministry of Health, Labor, and Welfare. Technical guideline for preventing health impairment of workers engaged in the indium tin oxide handling processes. Tokyo, Japan: Government of Japan; 2010 [cited 2014 Nov 17]; Available from: URL: http://www.mhlw.go.jp/bunya/roudoukijun/anzeneisei42/dl/03.pdf.
- 7. Sakurai H. Occupational safety and health in Japan: current situations and the future. Ind Health 2012; 50: 253-260.
- 8. Ministry of Health, Labor, and Welfare. Amendment to Ordinance on Industrial Safety and Health Law and to Ordinance on Prevention of Hazards due to Specified Chemical Substances. Tokyo: Government of Japan; 2013 [cited 2014 Nov 17]; Available from: URL:http://www.mhlw.go.jp/bunya/roudoukijun/anzeneisei48/dl/anzeneisei48-01.pdf

(in Japanese)

- 9. Kobayashi J, Kitamura S. KL-6: a serum marker for interstitial pneumonia. Chest 1995; 108: 311-315.
- 10. Ohnishi H, Yokoyama A, Kondo K, et al. Comparative study of KL-6, surfactant protein-A, surfactant protein-D, and monocyte chemoattractant protein-1 as serum markers for interstitial lung diseases. Am J Respir Crit Care Med 2002; 165: 378-381.
- Honda Y, Kuroki Y, Matsuura E, et al. Pulmonary surfactant protein D in sera and bronchoalveolar lavage fluids. Am J Respir Crit Care Med 1995; 152(6 Pt 1): 1860-1866.
- 12. The Japanese Respiratory Society. Guidelines for pulmonary function testing. Tokyo, Japan: Medical Review; 2004.(in Japanese)
- Macintyre N, Crapo RO, Viegi G, et al. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur Respir J. 2005; 26: 720-735.
- 14. The Clinical Pulmonary Functions Committee. Standard criteria of spirography and

arterial blood gas partial pressure measurement in Japanese. J Jap Respir Soc 2001; 39: 383-399.

- 15. Department of Health and Human Services (DHHS). 1996. National Center for Health Statistics. Third National Health and Nutrition Examination urvey, 1988–1994, NHANES III Adult and Examination Data Files (CD-ROM). Public Use Data File Documentation Number 76200. Hyattsville, MD: Centers for Disease Control and Prevention.
- 16. Nishida O. A clinical study of the carbon monoxide diffusing capacity. The 3rd reports. Medical journal of Hiroshima University. 1970; 18(3.4): 223-233.(in Japanese)
- Japan Public Health Association. Research on Method Of Measuring Influence On Health Due To Air Pollution. Tokyo, Japan: Japan Public Health Association; 1979.(in Japanese)
- Ferris BG. Epidemiology Standardization Project (American Thoracic Society). Am Rev Respir Dis. 1978; 118(6 Pt 2): 1-120.
- 19. Nakano M, Omae K, Uchida K, et al. Five-year cohort study: emphysematous progression of indium-exposed workers. Chest 2014; 146: 1166-75.
- 20. Iida et al. Steam pressure. Physical Constants New Edition; Tokyo, Japan: Asakura Publishing Co., Ltd; 1978. P. 133 (in Japanese).
- Tanaka A, Hirata M, Homma T, et al. Chronic pulmonary toxicity study of indium-tin oxide and indium oxide following intratracheal instillations into the lungs of hamsters. J Occup Health 2010; 52: 14-22.
- 22. Indium Oxide. Patty's toxicology Fifth Edition; New York, USA: John Wiley & Sons, Inc; 2001. p. 471-475.

Table 1. Study subjects by occupational group

Prev, prevalence; SD, standard deviation; In-S, serum indium; yr, year; exposure duration,

duration from start to end of indium exposure or to time of health check

P-value by one-way analysis of variance, Kruskal-Wallis test or chi-square test among all

groups

Table 2. Effective markers by occupational group

Prev, prevalence; SD, standard deviation; KL-6, Krebs von den Lungen-6; SP-D, surfactant protein D; VC, vital capacity; FVC, forced vital capacity; FEV_{1.0}, forced expiratory volume in one second; TLC, total lung capacity; DLCO, diffusing lung capacity for carbon monoxide; VA, alveolar volume. *P*-value by one-way analysis of variance, Kruskal-Wallis test or chi-square test among all groups. %VC, %FVC, %FEV_{1.0} and FEV_{1.0}/FVC measured in the smelting (n=32), soldering (n=37), dental technician (n=5), bonding (n=14) and other groups (n=48) (total, n=136). %TLC, %DLCO and %DLCO/VA measured in the smelting (n=37), dental technician (n=5), bonding (n=10) and other groups (n=45) (total, n=129).

⁸⁹

Figure 1. Dose-effect relationships between In-S and biomarkers by exposure status

1a) and 1b) Scattergrams between In-S and KL-6 or SP-D in currently exposed workers. 1c) and 1d) Scattergrams between In-S and KL-6 or SP-D in formerly exposed workers. Cut-off values: KL-6, 500 U/ml, and SP-D, 110 U/ml. A single regression model was used to evaluate the dose-effect relationship between In-S and KL-6 or SP-D levels.

Figure 2. Dose-effect relationships between In-A and biomarkers by occupational group 2a) Scattergram between In-A and KL-6 levels in currently exposed workers. 2b) Scattergram between In-A and SP-D levels in currently exposed workers. Target concentration for indium according to prevention guidelines: $10 \ \mu g/m^3$. Acceptable exposure limit for concentration of indium according to prevention guidelines: $0.3 \ \mu g/m^3$. A single regression model was used to evaluate the dose-effect relationship between In-A and KL-6 or S-D levels.

Occurational around	Smelting	Soldering	Dental technician	Bonding	Other	đ
Occupational group	(n=33)	(n=37)	(n=5)	(n=16)	(n=50)	L,
Age (yr), mean (SD)	39.5 (14.5)	38.7 (11.3)	41.6 (15.7)	39.5 (13.1)	43.9 (11.5)	0.334
Male, n (%)	33 (100.0)	29 (78.4)	2 (40.0)	16 (100.0)	45 (90.0)	<0.001
Exposure duration (yr), mean (range)	7.9 (0.08-33.2)	10.2 (0.83-34.8)	16.1 (0.75-32.7)	5.4 (0.25-17.8)	4.9 (0.33-36.2)	0.001
Time since last exposure (yr), mean (range)	6.6 (0.83-29.6)	ı	ı	9.7 (4.67-22.7)	6.4 (1.17-12.6)	0.122
In-S (µg/l), mean (range)	2.2 (0.1>-25.4)	0.1 (0.1>-0.4)	0.1 (0.1>-0.5)	0.1 (0.1>-0.5)	0.1 (0.1>-0.9)	<0.001
Smoking habit, n (%)						0.438
Nonsmokers	10 (30.3)	16 (43.2)	2 (40.0)	3 (18.8)	15 (30.0)	
Ex-smokers	10 (30.3)	6 (16.2)	2 (40.0)	8 (50.0)	15 (30.0)	
Current smokers	13 (39.4)	15 (40.5)	1 (20.0)	5 (31.3)	20 (40.0)	
Exposure status, n (%)						<0.001
Currently exposed	25 (75.8)	37 (100.0)	5 (100.0)	11 (68.8)	30 (60.0)	
Formerly exposed	8 (24.2)	0 (0.0)	0 (0.0)	5 (31.3)	20 (40.0)	
Prev, prevalence; SD, standard deviatic	on; In-S, serum indiu	m; yr, year; exposur	e duration, duration fro	om start to end of ind	lium exposure or to t	ime of

Table 1. Study subjects by occupational group

P-value by one-way analysis of variance, Kruskal-Wallis test, or chi-square test among all groups. health check.

Occupational group	Smelting (n=33)	Soldering (n=37)	Dental technician (n=5)	Bonding (n=16)	Other (n=50)	Ρ
In-S $\geq 3.0 \ \mu g/l, n \ (\%)$	3/33 (9.1)	0/37 (0.0)	0/5 (0.0)	0/16 (0.0)	0/50 (0.0)	0.040
Cough or sputum, n (%)	2/33 (6.1)	3/37 (8.1)	0/5 (0.0)	0/15 (0.0)	3/50 (6.0)	0.805
Biomarkers						
KL-6 (U/ml), GM (GSD)	322.0 (1.7)	216.5 (1.3)	181.0 (1.2)	237.6 (1.4)	261.8 (1.4)	<0.001
KL-6 ≥500 U/ml, n (%)	5/33 (15.2)	0/37 (0.0)	0/5 (0.0)	0/16 (0.0)	2/50 (4.0)	0.034
SP-D (ng/ml), GM (GSD)	55.7 (2.2)	38.1 (1.8)	28.4 (1.5)	43.0 (2.0)	41.5 (1.7)	0.105
SP-D ≥110 ng/ml, n (%)	7/33 (21.2)	0/14 (0.0)	0/5 (0.0)	1/15 (6.7)	3/48 (6.3)	0.094
Lung function, mean (SD)						
%VC	104.8 (12.5)	109.7 (11.3)	105.8 (13.0)	111.1 (12.7)	105.1 (12.2)	0.224
%FVC	101.8 (11.5)	108.3 (11.8)	103.4 (12.0)	107.9 (9.9)	103.0 (11.9)	0.112
$\% \mathrm{FEV}_{1.0}$	97.0 (12.8)	103.0 (12.6)	99.5 (19.0)	103.0 (10.4)	99.7 (11.6)	0.314
FEV _{1.0} /FVC	82.7 (5.8)	82.4 (5.4)	82.4 (11.3)	82.8 (4.6)	83.5 (7.0)	0.951
%TLC	94.8 (8.8)	94.2 (8.6)	94.3 (7.9)	98.6 (9.7)	94.2 (10.1)	0.743
%DTCO	96.9 (13.4)	89.9 (12.8)	95.8 (11.6)	94.9 (11.4)	91.5 (15.2)	0.260
%DLCO/VA	93.6 (9.5)	87.0 (14.1)	91.2 (13.5)	87.3 (12.0)	90.6 (14.2)	0.294

Table 2. Effective markers by occupational group

 28

forced vital capacity; FEV_{1.0}, forced expiratory volume in one second; TLC, total lung capacity; DLCO, diffusing lung capacity for Prev, prevalence; SD, standard deviation; KL-6, Krebs von den Lungen-6; SP-D, surfactant protein D; VC, vital capacity; FVC, carbon monoxide; VA, alveolar volume.

FEV_{1.0}/FVC measured in the smelting (n=32), soldering (n=37), dental technician (n=5), bonding (n=14) and other groups (n=48) P-value by one-way analysis of variance, Kruskal-Wallis test, or chi-square test among all groups. % VC, % FEV1.0 and (total, n=136). % TLC, % DLCO and % DLCO/VA measured in the smelting (n=32), soldering (n=37), dental technician (n=5), bonding (n=10) and other groups (n=45) (total, n=129).

Figure 1. Dose-effect relationships between In-S and biomarkers by exposure status

1a) and 1b) Scattergrams between In-S and KL-6, or SP-D in currently exposed worekrs. 1c) and 1d) Scattergrams
between In-S and KL-6, or SP-D in formerly exposed workers. Cut-off values: KL-6, 500 U/ml and SP-D, 110
U/ml. A single regression model was used to evaluate the dose-effect relationship between In-S and KL-6 or SP-D levels.

Figure 2. Dose-effect relationships between In-A and biomarkers by occupational group

2a) Scattergram between In-A and KL-6 levels in currently exposed workers. 2b) Scattergram between In-A and SP-D levels in currently exposed workers. Target concentration for indium according to prevention guidelines: $10 \ \mu g/m^3$. Acceptable exposure limit for concentration of indium according to prevention guidelines: $0.3 \ \mu g/m^3$. A single regression model was used to evaluate the dose-effect relationship between In-A and KL-6 or S-D levels.

Synthesis of indium-containing nanoparticles in aqueous suspension using plasmas in water for evaluating their kinetics in living body

Takaaki Amano¹*, Thapanut Sarinont¹, Kazunori Koga¹,

Miyuki Hirata², Akiyo Tanaka², and Masaharu Shiratani¹

 ¹Faculty of Information Science and Electrical Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
 ²Faculty of Medical Science, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan

Nanoparticles have great potential for medical applications such as cancer therapy, whereas their toxic effects on human body are pointed out. To study kinetics and toxicity of nanoparticles in living body, we synthesized indium-containing nanoparticles in aqueous suspension using pulsed electrical discharge plasmas in water, because no indium compounds exist in the living body in the normal situation and hence indium-containing nanoparticles are useful tracer materials for analyzing kinetics of nanoparticles in living body. The mean size of synthesized primary nanoparticles is 7 nm, whereas the mean size of secondary nanoparticles is 315 nm. EDX and XRD analysis reveal that nanoparticles are indium crystalline and indium hydroxide crystalline with the mass ratio of 8:2. Premliminary subcutaneous administration of nanoparticles to mice shows that indium is transported from subcutaneous to blood. These results show that synthesized indium-containing nanoparticles are useful for analyzing kinetics of nanoparticles in living body.

Keywords: nanoparticles, indium, indium hydroxide, discharge plasma in water, nanotoxicology *E-mail: t.amano@plasma.ed.kyushu-u.ac.jp , tel: +81-92-802-3723, fax: +81-92-802-3723

1. INTRODUCTION

In recent years, nanoparticles have attracted much attention because of their great potential for applications in medical fields.¹⁻⁴ For cancer therapy, nanoparticles enable us to detect cancer cells and to treat cancer cells by delivering drugs or generating heat.^{5, 6} However, toxic effects of nanoparticles on human body are pointed out.⁷ For instance, we have found that CIGS nanoparticles cause subacute pulmonary toxicity by installing into lung.^{8, 9} It is important to study kinetics and toxicity of nanoparticles in living body to prepare safety guidelines of nanoparticle applications in medical fields. Although several studies of kinetics and toxity of nanomaterials such as carbon nanotube, ¹⁰ TiO₂ nanoparticles, ¹¹ and gold nanoparticles ¹²⁻¹⁴ have been reported, very limited nanomaterials are employed for the studies. Sicne the specific physico-chemical properties at the nanoscale are expected to result in increased reactivity with biological systems, kinetics and toxity of various nanomaterials should be examined.

There are various methods for producing nanoparticles. The methods are categorized into three : condensation from gas, ¹⁵⁻²¹ chemical synthesis in liquid phase, ^{22, 23} and solid-state processes such as milling and attrition. ²⁴ The condensation and chemical synthesis are bottom-up processes, whereas solid-state processes are top-down ones. Synthesis of nanoparticles using electrical discharge plasmas in water is a condensation method which has drawn great attention for various technological applications because of a simplicity of apparatus, no need for vacuum equipment, environmental safety, high-throughput and cost-effective procedure to generate high yield of nanoparticles. ^{25, 26} Synthesis of nanoparticles using electrical discharge plasmas in water offers a simple way to prepare nanoparticles in aqueous suspension, being useful for their administration to animals.

Here we report on synthesis of indium-containing nanoparticles in aqueous suspension using pulsed electrical discharge plasmas in water, because 1) indium and its compunds are widely employed in electronic applications such as tranparent conducting oxcides, 2) there is little infomration of kinetics and toxcity of in indium-containing nanoparticles, and 3) no indium compounds exist in living body and hence indium-containing nanoparticles are useful tracer materials for analysis of kinetics of nanoparticles in living body.

2. EXPERIMENTAL DETAILS

Synthesis of indium-containing nanoparticles using pulsed electrical discharge plasmas in deionized (DI) water was carried out with a device shown in Fig. 1. An indium rod electrode of 3 mm in diameter and an indium plate electrode of 1 mm in thickness were immersed into DI water. The discharges were generated between these electrodes by applying an AC high voltage with a high voltage source (Logy Electoric, LHV-10AC). The discharge voltage and the discharge current were measured with a high voltage probe (Tektronix, P0615A) and a Rogowski coil (U_RD, CTL-28-S90-05Z-1R1-CL1), respectively. The frequency of the applied voltage was 7.6 kHz, and its peak to peak voltage was 15.2 kV. The discharge power density was 5.1 W deduced from voltage/charge Lissajous plots. Optical emissions from the plasma were collected with an optical fiber and were measured with a spectroscope of spectral resolution of 0.38 nm (Ocean Optics, USB2000+). We deduced electron density of the discharge plasmas from the Stark broadening of H_β line. The generation rate of nanoparticles was 42 mg/min. The color of water gradually became brown with the discharges. The large particles were precipitated quickly just after the discharges.

After 3 min discharge, we sampled supernatant of the solution with a pipette and collected nanoparticles desiccating the solution on TEM-meshes and Si substrates. Nanoparticles collected on TEM-meshes and Si substrates were observed by TEM (JEOL, JEM-2010) and SEM/EDX (Hitachi High-Technologies, SU8000), respectively. Size destribution of secondary nanoparticles was measured by the dynamic light scattering method (Otsuka Electronics, ELSZ-0S).^{27, 28} To obtain chemical and structural information of nanoparticles, we measured x-ray diffraction (XRD) spectra (Bruker, D8 DISCOVER-KU/I 3kw) of nanoparticles collected on Si substrates.

Synthesized nanoparticles were administrated towards mice for a preliminary examination of kinetics of nanoparticles in living body. Solution of nanoparticles was condensed at the concentration of 10 mg/ml by vaporizing water with heat. Subcutaneous administration was carried out to 13-week-old mice (Crlj:ICR) after 7 weeks acclimation. The dose of administration was 1 mg/10gBW per each mouse. We collected the blood of the mice 10 days after the administration. The collected blood was wet-ashed with nitric acid, and indium content in the blood was measured by ICP-MS (Agilent 7500c).

3. RESULTS AND DISCUSSION

Figure 2 shows an optical emission spectra of plasmas with an exposure time of 0.1 s. Atomic emission lines of indium (325.8 nm, 410.2 nm, and 451.1 nm), ²⁹ oxygen (777 nm), and hydrogen (H_{α} 656.3 nm and H_{β} 486.1 nm) exist in the spectra. There also exit weak molecular emission bands in the wavelength ranges of 390-550 nm and 540-588 nm referred to radiation of H₂O and H₂ molecules, respectively. Apart from the Stark broadening, any emission line spontaneously emitted by plasma can be broadened by other mechanisms, and the total broadening of the line profile is due to the combined contribution of all causes. ³⁰ Each mechanism can produce a shift in the energy levels of the emitter atoms and the relative importance of these broadening depends on the plasma conditions. In our case, for plasmas at atmospheric pressure with moderate electron density and temperature, the important sources of broadening of the H_{β} line are the Stark effect with FWHM of about 7.37 nm, the Doppler effect with FWHM of about 0.006 nm, and the van der Waals broadening with FWHM of about 0.06 nm.³⁰ The broadenings due to other less important effects are neglected, such as the natural broadening and the resonant broadening. The instrumental broadening has a FWHM of about 1.33 nm and it is an external cause of line broadening. The electron density deduced from the Stark broadening of the H_{β} line is 2.2×10^{17} cm⁻³.^{30, 31}

Figure 3. (a) shows a typical TEM image of the synthesized nanoparticles and the size destribution of primary nanoparticles. The size destribution is the Gaussian one and the mean size of the primary nanoparticles is 7 nm. The morhporogy of nanoparticles are mostly spherical or distorted spherical. Figure 3. (b) shows the size destribution of secondary nanoparticles. The size destribution is the log-normal one and the mean size of secondary nanoparticles is 315 nm. EDX spectra of the nanoparticles is shown in Fig. 4. The peaks of Indium and oxygen were observed from the spectra, showing that the synthesized nanoparticles contain indium and oxygen.

Further chemical and structural information of the synthesized nanoparticles is obtained from Fig. 5. This figure shows an XRD pattern of the synthesized nanoparticles. The presence of sharp peaks on the XRD patterns is usually connected with a crystal structure in the samples. The peaks of In (JCPDS card No. 85-1409), and In(OH)₃ are observed in the XRD pattern. ^{32, 33} These results indicate that the nanoparticles are indium crystalline (In) and indium hydroxide

(In(OH)₃) crystalline. The mass ratio of indium nanoparticles to indium hydroxide nanoparticles is 8:2, deduced from the XRD pattern using the normalized relative intensity ratio method.^{34, 35}

Although up to now no direct experimental evidence has been obtained indicating a specific mechanism for the formation of nanoparticles in pulsed electrical discharge plasmas in DI water, we can hypothesize that the following processes take place during the discharges.

During the discharge, the indium electrodes are heated, melted at the indium melting point of 156 $^{\circ}$ C, and vaporized. Near the electrodes, the water is also vaporized as a result of exposure to high temperature. Due to this vaporization of water, we observed many bubbles near the electrodes during the discharges. The discharge plasmas take place in a gas mixture consisting of the water vapor and indium, with a temperature gradient from a high temperature region near the electrodes to the boiling point of the liquid at the gas mixture-liquid boundary. The gas mixture can contain indium, H₂O, O₂ and H₂. Moreover, H₂O, O₂ and H₂ can be dissociated into OH, O, and H by electron impact in discharge plasmas and thermal decomposition.

Nanoparticles are formed in the gas mixture as a result of the sequential change from nucleation to growth to coalescence to aggregation. The growth of nanoparticles stops as a result of interaction with the cold water surrounding the discharge zone. We measured temperature rise of water during discharges with an electrical themometer. The temperature increases from 25 $^{\circ}$ C to 38 $^{\circ}$ C after 5 min. discharge. Therefore, the average temperature of water surrounding the discharge zone is in this range. Some molecules and atoms originated from water vapor in the gas mixture react with indium and lead to nanoparticles of indium hydroxide (In(OH)₃).

Synthesized nanoparticles were administrated towards mice for a preliminary examination of kinetics of nanoparticles in living body. The subcutaneous administration was well tolerated and no adverse effects were observed during the 10 days observation period. The preliminary examination shows that indium of 1.2-1.6 ng/ml is transported from subcutanious to blood in 10 days. These results show that synthesized nanoparticles are useful for analyzing kinetics of nanoparticles in living body.

4. CONCLUSION

We synthesized indium-containing nanoparticles in aqueous suspension using pulsed electrical discharge plasmas in DI water. We obtained the following conclusions.

- 1) Nanoparticles of 7 nm in primary nanoparticle size and 315 nm in secondary nanoparticle size are produced using pulsed electrical discharge plasmas in water with the indium plate electrode and the indium rod electrode.
- 2) EDX, and XRD analysis indicate that the synthesized nanoparticles are indium (In) crystalline and indium hydroxide (In(OH)₃) crystalline with the mass ratio of 8:2.
- 3) Synthesized nanoparticles are useful for analyzing kinetics of nanoparticles in living body.

The remaining issues are to reveal the mechanisms of synthesis of nanoparticles using pulsed electrical discharge plasmas in water in detail, and to carry out further experiments to reveal kinetics and toxicity of nanoparticles as a parameter of size of primary and secondary nanoparticles.

Acknowledgments: This study was partly supported by JSPS KAKENHI Grant Numbers 24340143 and 24108009.

References and Notes

- 1. N. Komatsu, J. Surf. Sci. Soc. Jpn. 30, 273 (2009). (in Japanese)
- 2. O. V. Salata, J. Nanobiotechnol 2, 3 (2004).
- **3.** L. Zhang, F. X. Gu, J. M. Chan, A. Z. Wang, R.S. Langer, O.C. Farokhzad, *Clin. Pharmacol. Ther.* 83, 761 (**2008**).
- 4. M. Sivasankar, *IJRPBS* 1, 41 (2010).
- 5. I. Brigger, C.Dubernet, P. Couvreur, Adv. Drug Deliv. Rev. 54, 631 (2005).
- 6. A. Jordan, R. Scholz, P. Wust, H. Fähling, R. Felix, J. Magn. Magn. Mater. 201, 413 (1999).
- 7. K. Iwai, J. Jpn. Soc. Atmos. Environ. 35, 321 (2000). (in Japanese)
- 8. A. Tanaka, M. Hirata, M. Shiratani, K. Koga, Y. Kiyohara, J. Occup. Health 54, 187 (2012).
- 9. A. Tanaka, M. Hirata, Y. Kiyohara, M. Nakano, K. Omae, M. Shiratani, K. Koga, *Thin Solid Films*, 2934, 518 (2010).
- 10. C. W. Lam, J. T. James, R. McCluskey, R. L. Hunter, Toxicol. Sci. 77, 126 (2004).
- 11. J. Wu, W. Liu, C. Xue, S. Zhou, F. Lan, L. Bi, H. Xu, X. Yang, F. D. Zeng, *Toxicol Lett.* 191, 1 (2009).
- 12. G. Sonavane, K. Tomoda, A. Sano, H. Ohshima, H. Terada, K. Makino, *Colloids Surf. B: Biointerf.* 65, 1 (2008).
- 13. G. Sonavane, K. Tomoda, K. Makino, Colloids Surf. B: Biointerf. 66, 274 (2008).
- 14. W. H. De Jong, W. I. Hagens, P. Krystek, M. C. Burger, A.J.A.M. Sips, R. E. Geertsma, *Biomater.* 29, 1912 (2008).
- 15. Y. Watanabe, M. Shiratani, Y. Kubo, I. Ogawa, S. Ogi, Appl. Phys. Lett. 53, 1263 (1988).
- 16. M. Shiratani, S. Maeda, K. Koga, Y. Watanabe, Jpn. J. Appl. Phys. 39, 287 (2000).
- 17. K. Koga, Y. Matsuoka, T. Tanaka, M. Shiratani, Y. Watanabe, *Appl. Phys. Lett.* 77, 196 (2000).
- 18. H.Kawasaki, J. Kida, K. Sakamoto, T. Fukuzawa, M. Shiratani, Y. Watanabe, J. Appl. Phys. 83, 5665 (1998).
- 19. S. Nunomura, K. Koga, M. Shiratani, Y. Watanabe, Y. Morisada, N. Matsuki, S. Ikeda, *Jpn. J. Appl. Phys.* 44, L1509 (2005).
- **20.** S. Nunomura, M. Shiratani, K. Koga, M. Kondo, Y. Watanabe, *Phys. Plasma* 15, 080703 (2008).
- **21.** T. Suzuki, K. Okazaki, S. Suzuki, T. Shibayama, S. Kuwabata, T. Torimoto, Chem. Mater. 22, 5209 (**2010**).
- 22. X. Yang, H. Konishi, H. Xu, M. Wu, Eur. J. Inorg. Chem. 11, 2229 (2006).
- 23. I. Capek, Adv. Coll. Interf. Sci. 110, 49 (2004).
- 24. S. K. Bux, R. G. Blair, P. K. Gogna, H. Lee, G. Chen, M. S. Dresselhaus, R. B. Kaner, and J. P. Fleurial, *Adv. Funct. Mater.* 19, 2445 (2009).
- 25. V. Burakov, A. Butsen, V. Hamisch, P. Misakov, E. Nevar, M. Rosenbaum, N. Savastenko, N.V. Tarasenko, J. Nanopart. Res. 10, 881 (2008).
- 26. M. Mardaniana, A. A. Nevar, M. Nedel'ko, N. V. Tarasenko, Eur. Phys. J. D 67, 208 (2013).
- 27. R. Pecora, J. Nanopart. Res.2, 123 (2000).
- **28.** R. C. Murdock, L. Braydich-Stolle, A. M. Schrand, J. J. Schlager, S. M. Hussain, *Toxicol. Sci.* 101, 239 (**2008**).
- 29. A. K. Shuaibov, A. I. Dashchenko, I. V. Shevera, Techn. Phys. Lett. 26, 832 (2000).
- 30. N. Balcon, A. Aanesland, R.Boswell, Plasma Sources Sci. Technol. 16, 217 (2007).
- **31.** J. Torres, J. M. Palomares, A. Sola, J. J. A. M. van der Mullen, A. Gamero, *J. Phys. D: Appl. Phys.* 40, 5929 (**2007**).

- 32. Y. Zhao, J. Zhang, H. Dang, J. Phys. Chem. B 107, 7574 (2003).
- **33.** W. Yin, J. Su, M. Cao, C. Ni, S. G. Cloutler, Z. Huang, X. Ma, L. Ren, C. Hu, B. Wei, *J. Phys. Chem. C* 113, 19493 (2009).
- 34. F. H. Chung, J. Appl. Cryst. 8, 17 (1975).
- 35. C. Shifu, Y. Xiaoling, Z. Huaye, L. Wei, J. Hazard. Mater. 180, 735 (2010).

Fig. 1. Schematic of experimental setup for synthesis of indium-containing nanoparticles using pulsed electrical discharge plasmas in DI water.

Fig. 2. Optical emission spectrum of pulsed electrical discharge plasma in DI water.

Fig. 3. (a) TEM image of indium-containing nanoparticles and size distribution of primary nanoparticles, and (b) size distribution of secondary nanoparticles.

Fig. 4. EDX spectrum of synthesized nanoparticles.

Fig. 5. XRD pattern of synthesized nanoparticles.

In press

Personal indium exposure concentration in respirable dusts and serum indium level

Satoko Iwasawa¹, Makiko Nakano¹, Hiroyuki Miyauchi², Shigeru Tanaka³, Yaeko Kawasumi⁴, Ichiro Higashikubo⁴, Akiyo Tanaka⁵, Miyuki Hirata⁵ and Kazuyuki Omae¹

¹Department of Preventive Medicine and Public Health, School of Medicine, Keio University, Japan

²The Association of Industrial Health, Japan,

³Department of Public Health, Graduate School of Human Life Science, Jumonji University, Japan,

⁴Occupational Health Research and Development Center, Japan Industrial Safety and Health Association, Japan,

⁵Department of Environmental Medicine, Graduate School of Medical Sciences, Kyushu University, Japan,

Correspondence: Satoko Iwasawa, Department of Preventive Medicine and Public Health, School of Medicine, Keio University, Japan Telephone: 81-3-5363-3758. Fax: 81-3-3359-3686. E-mail: iwasawa@keio.jp

Type of contribution: Brief report

Running title: no more than 60 letters Personal indium exposure concentration and serum indium level (54 letters)

Number of words in the text: 942 words Number of words in the abstract: 186 words Number of tables: 0 Number of figures: 1

Funding: This study was supported by Grants-in-aid for Scientific Research (Project No 24590758) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (2012-13).

Conflict of interests: None of the authors has any conflict of interest to disclose.

• Abstract:

OBJECTIVE: Due to very slow clearance rate of indium (In) accumulated in the lungs, it is not easy to estimate the relationship between personal In exposure concentration and In in serum (In-S) reflecting both In in recent exposure and in the lungs. The aim of this study was to clarify the relationship between personal In exposure concentration in respirable dust fraction (In-E) and In-S in workers probably with small amount of In in the lungs.

METHODS: A number of workers studied were 40 from 11 factories. They wore no or ineffective respiratory protective devices, In concentrations in their workplaces were low, and their working environments have not been improved over the past few years. Respirable dust fraction was sampled using a personal respirable dust cyclone. In-E and In-S were measured by ICP-MS.

RESULTS: In-E ranged from $0.039 - 24.0 \ \mu g/m^3$, and In-S ranged from $0.11 - 8.50 \ \mu g/L$, respectively. Linear regression equation between In-E and In-S was In-S = $0.291 \times \text{In-E} + 0.456$, and correlation coefficient was $0.86 \ (p < 0.001)$.

CONCLUSION: According to the calculations, In-E corresponding to In-S of $3\mu g/L$ is calculated to be $8.74\mu g/m^3$.

(186 word)

• Keywords: no more than 6 keywords should be described. Keywords: indium, indium exposure concentration, indium in serum Text:

Introduction

Recent epidemiological studies in Japan revealed that inhalation of hardly soluble indium (In) compounds caused interstitial and emphysematous lung diseases¹⁻⁶). Indium tin oxide and indium phosphide induced lung cancer on rats and/or mice^{7, 11}).

Based on these findings²⁻³⁾, in 2007, the Japan Society for Occupational Health (JSOH) recommended an occupational exposure limit based on biological monitoring (OEL-B) of indium as $3\mu g/L$ of indium in serum (In-S).

However, JSOH could not propose occupational exposure limit-mean (OEL-M) in the workplace due to the lack of information about exposure-effect and exposure-response relationships between indium exposure and its effects on the lungs. In this case, there are several reasons. First, there was few information about indium concentration from both personal air sampling and area sampling data in occupational setting. Second, due to very slow clearance rate of In accumulated in the lungs⁷, ¹¹, ¹²), it has been difficult to estimate the relationship between indium concentration from personal air sampling recently measured and In-S reflecting both In level accumulated in the lungs and recent exposure levels. In any case, it is necessary to elucidate the relation between indium concentration from personal air sampling and indium in serum.

The aim of this study was to clarify the relationship between personal indium exposure concentration in respirable dust fraction (In-E) and In-S in 40 workers in 11 factories.

Subjects

Be based on precedence knowledge, we selected this study group which exposed low and was low-accumulated level. Additionally, this study group also wore no or ineffective respiratory protective devices.

Therefore, we measured In-E at 14 plants involving 54 exposed workers. Unfortunately, we could measure In-S only at 11 plants, including 41 exposed workers. We excluded 23 workers whose In-S below the detection limit ($0.1\mu g/L$), because they exposed too small. And we excluded one outlier (In-S: 14.9 $\mu g/L$, In-E: 2.56 $\mu g/m^3$), because the In-E was too low to measure exactly. The resulting dataset covered 11 plants, including 40 exposed workers. Exposed workers were exposed to multiple indium compound dusts such as indium metal, ITO, indium oxide.

We informed all study candidates about the health risks of indium exposure and the purpose of the epidemiological study, about obtained their informed consent before they participated. The study was approved by the Ethical Committee, School of Medicine, Keio University (approval number 20110268).

The subjects were 16 male workers. The mean length of indium exposed 112 mo (range: 12-415). 8 workers were current smoker.

<u>Methods</u>

Respirable fraction of the indium dust in the breathing zone were collected by a personal sampling device (GS-3 Respirable Dust Cyclone • SKC inc) at a flow rate of 2.75liters/min or by a Total and Respirable Dust Sampler (PM4 NWPS-254, Sibata Scientific Technology Ltd.) coupled with a minipump (MP- Σ 3,Sibata Scientific Technology Ltd.) at a flow rate of 2liters/min. Due to sampling time ranging from 251 to 483min, we converted the concentration to a conventional 8-hour time-weighted average.

Indium exposure concentration in respirable dust fraction (In-E, $\mu g/m^3$) was measured by inductively coupled plasma mass spectrometry (ICP-MS) at the Center of Advanced Instrumental Analysis, Kyushu University and the Japan Industrial Safety and Health Association^{3, 10}). Serum indium (In-S, $\mu g/L$) was measured by ICP-MS at the Center of Advanced Instrumental Analysis, Kyushu University³).

<u>Results</u>

In-E ranged from 0.039 to 24.0 μ g/m³, and In-S ranged from 0.11 to 8.50 μ g/L, respectively. Figure 1 shows scatter gram about In-E and In-S. In-E on the abscissa is plotted against the In-S on the ordinate. Distribution seems to be linear. Linear regression equation was In-S = 0.291 × In-E + 0.456, and correlation coefficient was 0.86 (p < 0.001). In-E corresponding to In-S of 3 μ g/L is calculated to be 8.74 μ g/m³ (95%CI: 6.41-12.5).

Figure1. Scatter gram about In-E and In-S.

Discussion:

This study clarifies the relationship between personal indium exposure concentration in respirable dust fraction (In-E) and In-S. In-E corresponding to In-S of $3\mu g/L$ is calculated to be 8.74 $\mu g/m^3$ (95%CI: 6.41–12.5). We might recommend an occupational exposure limit-mean (OEL-M) of indium as $10\mu g/L$ of indium in respirable dust fraction (In-E).

This study subjects has several strength as following reasons.

First, company had not already taken actions to improve the work environment. Second, this study group also wore no or ineffective respiratory protective devices. Finally, this study group which exposed low and was low-accumulated level. From animal data, accumulated In was very slow clearance rate. In-S was a biological marker of indium as both current and former exposure. Then our study subject clears these problems. Accordingly, we could discuss about current In-E and current In-S.

However, this study has also some limitations.

First, this study was not assessed day-to-day sampling variation of the In-E. This might pose a limitation of the present study. However, amounts of indium consumption were small in each plant and day-to-day variations of workers' task were small. Consequently, the In-S levels in the present study seem to reflect the daily In-E.

Second, In-E corresponding to In-S of $3\mu g/L$ is only calculated to be $8.74\mu g/m^3$. However, respirable fraction dust concentration (In-E) on the abscissa is plotted against the In in serum (In-S) on the ordinate. Distribution seems to be linear.

And, In-E was pulled to high 1 example (In-S: 8.5µg/L, In-E: 24.0µg/m³). However, we can resolve this when samples are collected.

Most importantly, according precedence knowledge, In-S seems to be a currently representative value in terms of slow clearance rate of In. Without knowing this, it's dangerous. OELs should be applied by individuals well-trained and experienced in occupational health¹³). Because OELs do not represent a definitive borderline between safe and hazardous conditions, it is not correct to conclude that working environments above OEL are the direct and sole cause of health impairment in workers, or vice versa¹³).

(942words)

Acknowledgments:

The authors thank the staff members and participants at all factories for their helpful and cordial cooperation.

References: not exceed 15

1) Homma T, Ueno T, Sekizawa K, Tanaka A, Hirata M. Interstitial pneumonia developed in a worker dealing with particles containing indium-tin oxide. J Occup Health 2003; 45: 137–9.

2) Chonan T, Taguchi O, Omae K. Interstitial pulmonary disorders in indium-processing workers. Eur Respir J 2007; 29: 317–24.

3) Hamaguchi T, Omae K, Takebayashi T, et al. Exposure to hardly soluble indium compounds in ITO production and recycling plants is a new risk for interstitial lung damage. Occup Environ Med 2008; 65: 513–21.

4) Nakano M, Omae K, Tanaka A, et al. Causal relationship between indium compound inhalation and effects on the lungs. J Occup Health 2009; 51: 513–21.

5) Chonan T, Amano A, Modera H, et al. Interstitial pneumonitis due to an inhalation of indium compounds. The Japanese Journal of Chest Diseases. 2010; 69:851-855 [in Japanese].

6) Nakano M, Omae K, Uchida K, et al. Five-year cohort study: emphysematous progression of indium-exposed workers. Chest 2014; 146: 1166-75.

7) Nagano K, Nishizawa T, Umeda Y, et al. Inhalation carcinogenicity and chronic toxicity of indium-tin oxide in rats and mice. J Occup Health 2011; 53: 175–87.

10) Miyauchi H, Minozoe A, Tanaka S, et al. Assessment of workplace air concentrations of indium dust in an indium-recycling plant. J Occup Health. 2012; 54:103-11.

11) National Toxicology Program. Toxicology and carcinogenesis studies of indium phosphide (CAS No. 22398-80-7) in F344/N rats and B6C3F1 mice (inhalation studies). Natl Toxicol Program Tech Rep Ser. 2001; 499: 7-340.

12) Tanaka A, Hirata M, Homma T, et al. Chronic pulmonary toxicity study of indium-tin oxide and indium oxide following intratracheal instillations into the lungs of hamsters. J Occup Health. 2010; 52: 14-22.

13) The Japan Society for Occupational Health Recommendation of Occupational Exposure Limits(2014–2015). J Occup Health, 2014; 56: 401–420.