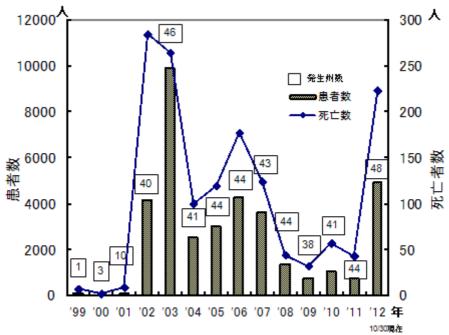
# 衛生動物に関する最近の動向とIPM

平成25年度生活衛生関係技術担当者研修会

一般財団法人日本環境衛生センター 環境生物部 武藤 敦彦

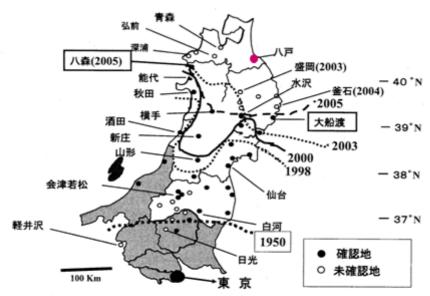
衛生動物に関する近年の話題


# 我が国で発生している 主なねずみ・害虫媒介性感染症(2010年)

- ・つつが虫病・・・・407名 (ツツガムシ)
- ・日本紅斑熱・・・・132名(マダニ)
- ・ライム病・・・・・11名( ")
- ・日本脳炎・・・・・・4名(蚊)
- ・レプトスピラ症・・・22名(ネズミ)
- [·腸管出血性大腸菌感染症
  - ・・・4,134名(ハエも関与?)〕

輸入症例 マラリア・・・・70名(蚊)

デング熱・・・・244名(蚊)


チクングニア熱・・ 3名(蚊)

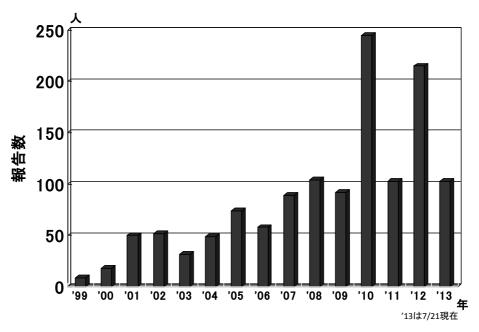


アメリカ合衆国におけるウエストナイル熱患者数と死亡者数





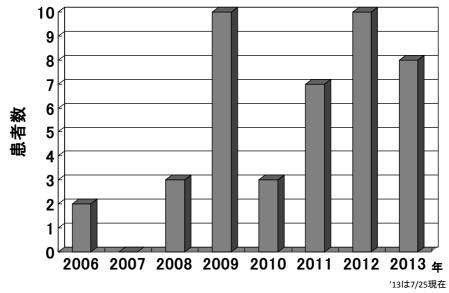



東北地方へのヒトスシシマカの分布拡大状況(1998-2005)

(小林二瓶:2006より転写:改)

2011年は青春(八戸)までへの侵入が確認されている

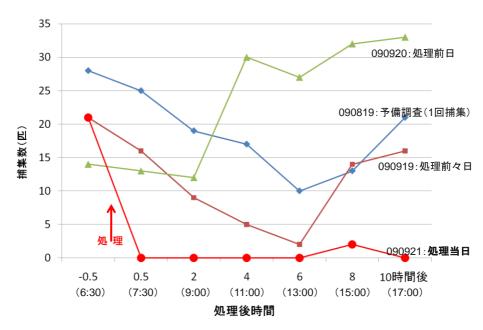
# デング熱について


- 熱帯、亜熱帯の多くの国に存在し、年間1億人の患者が発生している。重篤な場合は死亡率の高い出血熱となる。
- ネッタイシマカおよびヒトスジシマカ(我が国にも普通に見られる)が媒介する。
- ワクチンはない。
- 日本でも戦後数万人規模の流行があった。
- ・ <u>ハワイ諸島</u>では、タヒチで感染して帰国した住民から、ヒトスジシマカの媒介によって、2001~2002年にかけて<u>117</u> 名の患者が発生した(60年ぶりの発生)。2010年には、フランスでも国内感染が起こった。
- <u>台湾</u>においても2002~2003年に<u>15000人以上</u>の患者が 発生し、現在も続いている(侵淫地拡大の可能性)。



我が国におけるデング熱の輸入症例

# チクングニア熱について


- 従来からアフリカやアジアの一部で流行が知られていたが、 2005年にコモロ諸島などで大規模な流行が起こり、大西洋 島嶼国に広がった。レユニオン島では人口77万人のうち約 1/3に当たる24万人以上が感染した。
- 現在、東南アジア諸国にも広がり、インド、スリランカ、マレーシア、インドネシア、シンガポール、タイなどでも数百人~数万人規模で発生している。
- ・ ネッタイシマカおよびヒトスジシマカ(我が国にも普通に見られる)が媒介する。
- ワクチンはない。
- <u>イタリア北部</u>では、インド?で感染して帰国した住民から、ヒトスジシマカの媒介によって、2007年に204名の感染が確認された。フランスでも2010年に国内発生が確認された。



我が国におけるチクングニア熱の輸入症例

| ヒトスジシマカの飛っ   | <b>k</b> 状況 |
|--------------|-------------|
| (神奈川県の一般民家の庭 | 090819)     |

|        | 0<br>(6:45) | <b>1</b><br>(7:45) | <b>2</b><br>(8:45) | <b>4</b> (10:45) | 6<br>(12:45) | 8<br>(14:45) | 10時間後<br>(16:45) |
|--------|-------------|--------------------|--------------------|------------------|--------------|--------------|------------------|
| 우      | 23          | 22                 | 17                 | 13               | 8            | 10           | 18               |
| ď      | 5           | 3                  | 2                  | 4                | 2            | 3            | 3                |
| 計      | 28          | 25                 | 19                 | 17               | 10           | 13           | 21               |
| 気温(°C) | 26. 3       | 26. 1              | 28. 2              | 29. 3            | 33. 8        | 32. 3        | 27. 3            |
| 天候     | 曇           | 曇                  | うす曇                | 曇                | 晴            | うす曇          | うす曇              |
| 風      | 無風          | 無風                 | 無風                 | 微風               | 微風           | 弱風           | 微風               |
|        |             |                    |                    |                  | 8分間ス         | イーピング        | 法による             |



**液化炭酸ガス製剤(有効成分:フェノトリン A.I 0.01g/㎡)処理の効果** (8分間スイーピング×2回(090819除く)による捕集数)



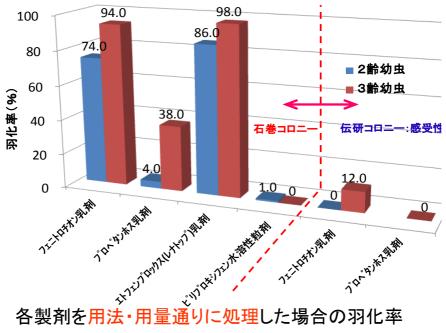




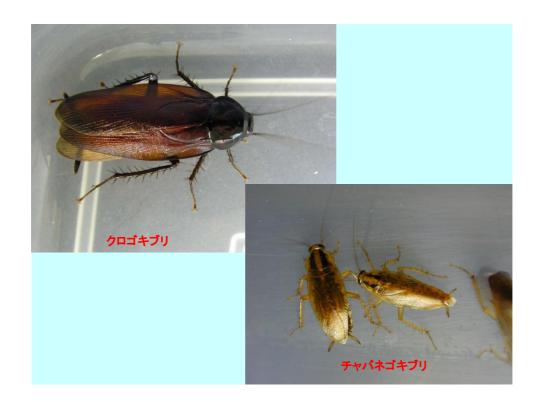
#### 避難所内外に設置したトラップでのハエ類の捕獲数

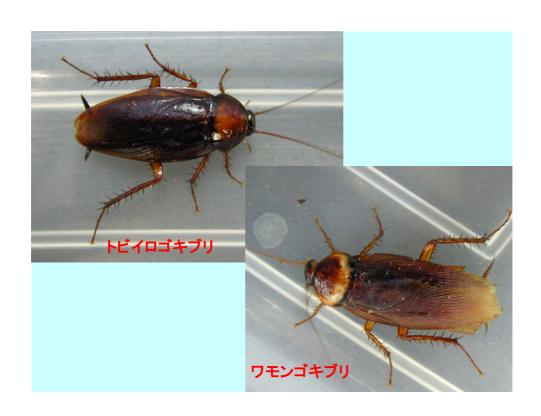
2011.6.8~17(9日間)

| トラップ | 設置<br>場所 | イエバエ・<br>オオイエバエ | クロバエ・<br>キンバエ | コバエ | イソハナ<br>バエ | 計   |
|------|----------|-----------------|---------------|-----|------------|-----|
| 1    | 外        | 290 (64.4%)     | 101           | 24  | 35         | 450 |
| 2    | 内        | 85 (95.5%)      | 0             | 3   | 1          | 89  |
| 3    | 内        | 29 (100%)       | 0             | 0   | 0          | 29  |
| 4    | 内        | 423 (98.1%)     | 2             | 6   | 0          | 431 |
| 5    | 外        | 129 (65.8%)     | 50            | 7   | 10         | 196 |


2011.6.17~24(7日間)

| トラップ | 設置<br>場所 | イエバエ・<br>オオイエバエ | クロバエ・<br>キンバエ | コバエ | イソハナ<br>バエ | 計     |
|------|----------|-----------------|---------------|-----|------------|-------|
| 1    | 外        | 801 (71.0%)     | 239           | 12  | 76         | 1,128 |
| 2    | 内        | 529 (97.8%)     | 6             | 6   | 0          | 541   |
| 3    | 内        | 261 (92.9%)     | 13            | 4   | 3          | 281   |
| 4    | 内        | 954(95.1%)      | 33            | 16  | 0          | 1,003 |
| 5    | 外        | 350(62.2%)      | 178           | 23  | 12         | 563   |

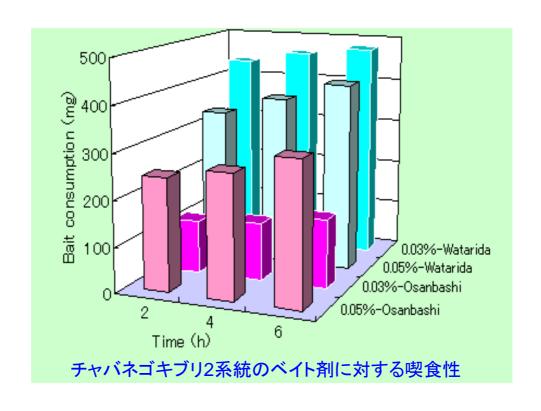

## 津波被災地で採集したイエバエ成虫の薬剤感受性 (雌成虫に対する<mark>微量滴下試験</mark>による)


| 薬剤         | 採集地  | LD <sub>50</sub> (95%信頼限界)<br>(με/辛) | 抵抗性比 |
|------------|------|--------------------------------------|------|
|            | 石巻-1 | 0.846 (0.687 - 1.04)                 | 13.0 |
| フェニトロチオン   | 石巻-2 | 1.58 (1.33 – 1.88)                   | 24.3 |
|            | 気仙沼  | 1.04 (0.90 – 1.20)                   | 16.0 |
|            | 石巻一1 | 0.392 (0.284 - 0.542)                | 8.9  |
| ペルメトリン     | 石巻-2 | 0.259 (0.201 - 0.331)                | 5.8  |
|            | 気仙沼  | 0.117 (0.096 - 0.142)                | 2.7  |
|            | 石巻一1 | -                                    | -    |
| エトフェンプロックス | 石巻-2 | 0.402 (0.316 - 0.506)                | 6.1  |
|            | 気仙沼  | 0.486 (0.401 - 0.585)                | 7.4  |

・石巻-2および気仙沼は国立感染症研究所昆虫医科学部による試験データ・抵抗性比:感受性系統である伝研または高槻系のLD50値を基に算出



各製剤を用法 処理した場合の羽化率 (培地混入試験による)



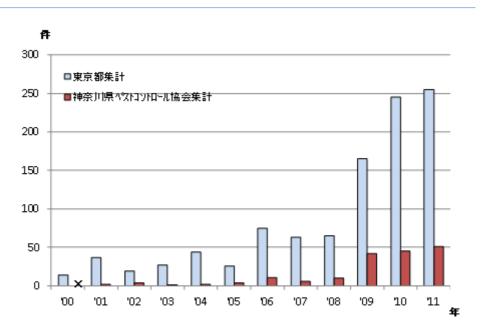



# 抵抗性チャバネゴキブリの 殺虫剤感受性

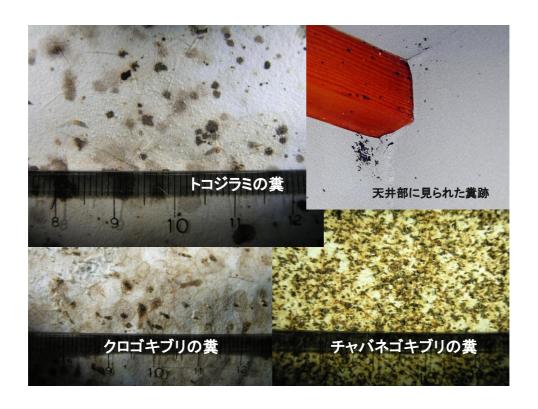
微量滴下試験による(µg/♀)

| 薬剤       | 渡 田<br>(感受性) | 関 内<br>(抵抗性) |
|----------|--------------|--------------|
| フェニトロチオン | 0.39(1.11)   | 3.80(8.69)   |
| ジクロルボス   | 0.23(0.79)   | 1.00(2.00)   |
| ペルメトリン   | 0.48(1.62)   | 41.4(144.2)  |
|          |              | ID (ID )     |














トコジラミに関する相談件数の推移



# トコジラミに対する微量滴下試験結果

| 薬剤           | コロニー         | LD <sub>50</sub> (μg) | LD <sub>90</sub> (µg) |  |
|--------------|--------------|-----------------------|-----------------------|--|
| Fenitrothion | 帝京大<br>(感受性) | 0.0104                | 0.0684                |  |
| Fenitrothion | 千 葉<br>(抵抗性) | 0.0684                | 0.400                 |  |
| Permethrin   | 帝京大<br>(感受性) | 0.00234               | 0.0684                |  |
| - ciniculiii | 千 葉<br>(抵抗性) | 2,110                 | _                     |  |

#### フェニトロチオン乳剤を用いた強制接触試験 24時間接触 AI:500mg/m²

| <b>⊐</b> □= | KT50(分) | KT90(分) | 3日後の致死率(%) |
|-------------|---------|---------|------------|
| 帝京大         | 79. 6   | 109     | 100        |
| 富山          | 73. 7   | 90. 3   | 100        |
| 千葉          | 130     | 168     | 100        |
| 滋賀          | 196     | 359     | 100        |
| 成田          | 83. 4   | 117     | 100        |
| 大阪          | 184     | 259     | 100        |
| 大分          | 80. 6   | 139     | 100        |
| 京都          | 348     | >480    | 100        |
| 浜名湖         | 375     | >480    | 100        |
| 防府          | >480    | >480    | 15. 0      |

# 「トコジラミの効果的な防除法並びに調査法の開発に関する研究」

平成25年度厚生労働科学研究費補助金 (厚生労働科学特別研究事業)

## による成果

#### 実施内容

- ・薬剤感受性に関する基礎的評価
- ・各種薬剤を用いた実地試験
- ・産卵数や孵化率に対する温度の影響
- ・各種トラップの捕獲性能
- ・洗濯による致死効果
- ・ 忌避剤の吸血阻止効果
- ・一般向けリーフレットの原案作成 など

| W. C. S. C. C. L. | Z##                    |       |      | 処理  | 薬量   |        | 供試原体              | 系統          | 処理薬量 |            |        |
|-------------------|------------------------|-------|------|-----|------|--------|-------------------|-------------|------|------------|--------|
| 供試原体              | 系統                     | 0.0   | 1 0  | .1  | 1.0  | 10(μg) | Det the Table Adv | Me in r     | 0.1  | 1.0        | 10(μg) |
|                   | 帝京大                    | 80.   | 0 10 | 00  | -    | -      |                   | 帝京大         | 100  | 100        | -      |
|                   | 千葉                     | -     | 85   | 5.0 | 100  | -      |                   | 千葉          | 100  | 100        | -      |
|                   | 大阪                     | -     | 80   | 0.0 | 100  | -      |                   | 大阪          | 75.0 | 100        | -      |
|                   | 川崎                     | -     | 80   | 0.0 | 100  | -      |                   | 川崎          | 70.0 | 85.0       | -      |
| フェニトロチ            | コチ 成田 - 75.0 100 - ジノテ | 成田    | 85.0 | 100 | -    |        |                   |             |      |            |        |
| オン                | 京都                     | -     | 40   | 0.0 | 95.0 | -      | フラン               | 京都          | 80.0 | 95.0       | -      |
|                   | 大分                     | -     | 20   | 0.0 | 85.0 | -      |                   | 大分          | 95.0 | 95.0       | -      |
|                   | 滋賀                     | -     | 10   | 0.0 | 90.0 | -      |                   | 滋賀          | 30.0 | 90.0       | -      |
|                   | 浜名沽                    | -     | 5    | .0  | 80.0 | -      |                   | 浜名湖         | 60.0 | 80.0       | -      |
|                   | 防府                     | -     |      | -   | 5.0  | 90.0   |                   | 防府          | 75.0 | 80.0       | 100    |
| 供試原体              | 系統                     |       | 処理薬量 |     |      |        | 供試原体              | 系統          | 処理   | <b>里薬量</b> |        |
| では以外や             | 対で表現                   | 0.001 | 0.01 | 0.1 | 1.0  | 10(μg) | <b>光</b> 與原体 未    | <b>अरका</b> | 1.0  | 10(μg)     |        |
|                   | 帝京大                    | 45.0  | 100  | -   | -    | -      |                   | 帝京大         | -    | -          |        |
|                   | 千葉                     | -     | -    | -   | 25.0 | 45.0   |                   | 千葉          | -    | -          |        |
|                   | 大阪                     | -     | -    | -   | 0    | 10.0   |                   | 大阪          | 10.0 | 15.0       |        |
|                   | 川崎                     | -     | -    | -   | 0    | 5.0    |                   | 川崎          | -    | -          |        |
| ペルメ               | 成田                     | -     | -    | -   | 100  | 100    | イミプロ              | 成田          | -    | -          |        |
| トリン               | 京都                     | -     | -    | -   | 25.0 | 50.0   | トリン               | 京都          | 0    | 15.0       |        |
|                   | 大分                     | -     | -    | -   | 0    | 10.0   |                   | 大分          | -    | -          |        |
|                   | X/J                    |       |      |     |      | 0      |                   | 滋賀          | 0    | 10.0       |        |
|                   | 滋賀                     | -     | -    | -   | 0    | U      |                   |             |      |            |        |
|                   |                        | -     | -    | -   | 0    | 15.0   |                   | 浜名湖         | 15.0 | 50.0       |        |

# 実地試験結果

|実施場所:川崎市内の簡易宿舎(前スライドの川崎コロニーの生息場所)

| 処理薬剤 (有効成分)               | 結 果          |
|---------------------------|--------------|
| エアゾール剤(イミプロトリン+メトキサジアソ゚ン) | 3週後に駆除率 100% |
| エアゾール剤(プロポクスル)            | 1週後に駆除率 100% |
| マイクロカプセル剤(フェニトロチオン)       | 3週後に駆除率 100% |
| 水性乳剤(プロペタンホス)             | 3週後に駆除率 100% |

# その他の結果

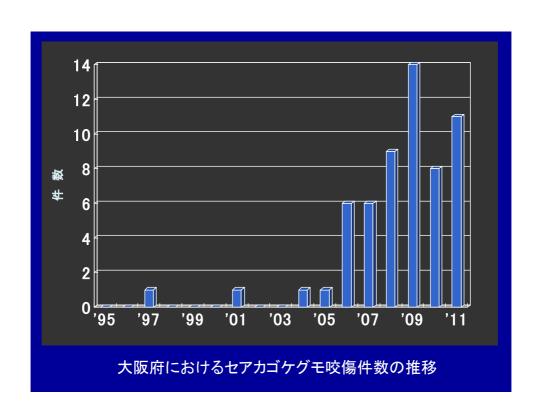
- 1. 産卵数や孵化率に対する温度の影響
- →産卵数は15~30°Cの間で温度依存的に増加したが、産卵数は9~14個と大きな差ではなかった。孵化率は18°C以上で90%以上であったが、15°Cでは孵化しなかった。
- 2. 各種トラップの捕獲性能
  - →市販のトラップ5種類について検討した結果、その捕獲数 に差が認められた。
- 3. 洗濯(洗濯洗剤)の致死効果
  - →通常の洗濯に用いる程度の洗剤濃度で完全に致死させる ためには、6時間以上を要した。
- 4. 忌避剤の効果
  - →ディートを有効成分とする吸血昆虫用の忌避剤は、トコジラミに対してもある程度の効果を示すことが確認された。









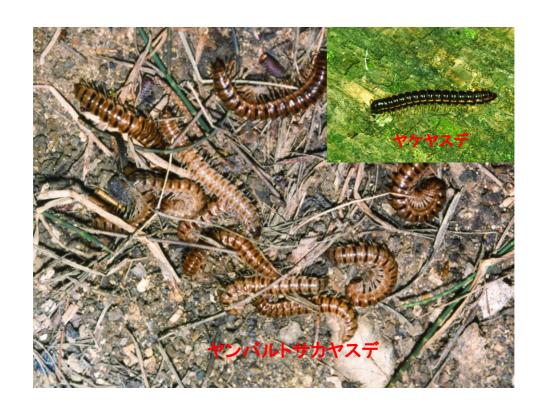











# アレルゲン害虫

| 種類       | 陽性率(%) |
|----------|--------|
| セスジュスリカ  | 23. 5  |
| オオユスリカ   | 19. 6  |
| クロゴキブリ   | 17. 6  |
| チャバネゴキブリ | 29. 4  |
| ワモンゴキブリ  | 19. 6  |
| カイコガ翅    | 39. 2  |
| アミメカゲロウ  | 49. 0  |
| ヒラタチャタテ  | 23. 5  |









# ヤンバルトサカヤスデ

原産地:台湾

侵入•拡大状況:

1980年代:沖縄県 1991~2000年

: 徳之島、奄美大島、与論島、沖永良部島

2000年:薩摩半島

2002年:八丈島

2003年:静岡市、神奈川県葉山町

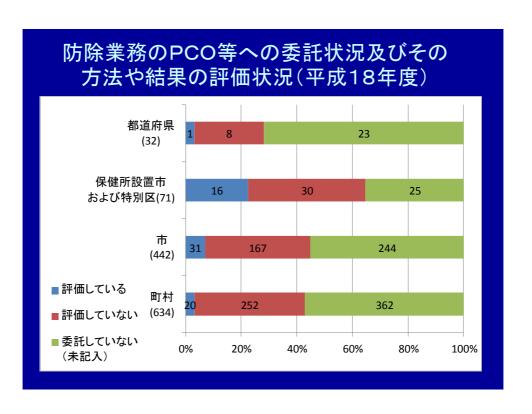
2005年:横須賀市

その他、徳島県や埼玉県からも報告あり



# アルゼンチンアリ(特定外来生物)




# アルゼンチンアリ

- 世界的に問題になっている アリ(世界の侵略的外来種 ワースト100選定種)
- 日本では生態系に大きな影響を 及ぼすことにより外来生物法で 特定外来生物に指定。
- 1993年に広島県廿日市市で 発見。広島市、呉市、山口県 岩国市などの周辺地域でも定 着を確認。
- その後、神戸市、愛知県田原市、岐阜県各務原市、 横浜市、東京都などでも生息が確認される。



# 害虫・獣に対応する上での問題点

- 研究者・専門家の減少
- ・ 自治体における担当者の減少
- 防除技術の評価能力の低下
- 薬剤使用量(生産量)の減少
- 発生状況調査体制の不備、情報不足



## 地方自治体の衛生研究所(試験所)等の 衛生動物関係部署の設置状況

|      |    | 害虫等に関する部署の有無         |                            |                             |    |  |  |
|------|----|----------------------|----------------------------|-----------------------------|----|--|--|
|      | 総計 | 衛生動物<br>学会の会<br>員がいる | 他の生物<br>関連学会<br>の会員が<br>いる | 直接の関<br>連する部<br>署の設置<br>がない | 不明 |  |  |
| 都道府県 | 47 | 12                   | 9                          | 25                          | 1  |  |  |
| 区∙市  | 29 | 6                    | 3                          | 20                          | 0  |  |  |

(2007, 金山)

地方自治体では、半数以上の組織で知識を備え た担当者がいなくなってしまった。

# I P M

(総合的有害生物管理)

## なぜ、IPMが必要か

- ◆対策を本来の姿に戻す必要がある。
  - ▶発生源対策が軽視されてきた
  - ▶調査や評価を行うことが少なかった
- ◆人や環境に配慮した対策をする。
  - ▶薬剤などによる影響を減少させる

#### IPM計画で取り入れ(考え)なければなら ないこと

- · 対策の結果が、人や環境への影響の軽減に結びつく ようにする。
- ・ 発生予防に努め、発生源対策に重点を置く(管理者の 義務)。
- ・ 防除水準(管理目標)を定めて、対策を実施する。
- ・調査は必ず実施し、調査結果に基づいて対応する。
- ・器具、薬剤等の使用も含め、総合的な対策を図る。
- ・ 対策の評価(効果判定)を実施する。
- ・継続的な目標維持をはかる。

## IPMの進め方(例: PCOの場合)

#### 以下のように段階に分けて実行する

第1段階:害虫管理方針(目的・意義等)の策定

第2段階: 顧客への方針や手順の伝達

第3段階:それぞれの役割分担の作成(組織・体制作り)

第4段階:モニタリングなど調査・同定の実施

第5段階:管理水準(防除の目標)の設定

第6段階: 防除戦略の策定

第7段階:作戦の展開

第8段階:効果判定と報告

# IPM施工とその評価に必要な能力は?

- 情報収集能力
  - ➤ 害虫等に関する発生状況や被害状況、新しい知識などについて国内外を問わず収集できること。
- 現場で調べる能力
  - > 害虫や破片、証跡等の観察、発見、捕獲する能力などがあること。
  - ▶ 捕獲したサンプルの同定や、関連情報を調べられること。
- 対策能力
  - ▶ 現場の状況に応じて的確な対策法が選択できること。
- 説明する能力
  - > 調査結果の内容や問題点を的確に相手に伝えられること。
  - ▶ 相手が聞いてくる情報について、正しく説明できること。
- まとめる能力
  - ▶ 技術的内容の報告書を作成できること。

# 日本でIPMが定着する鍵 (PCOとして)

- 1. "調査は無料"という考え方を変えさせられるか
- 2. ゼロではない維持管理基準が普及するか
- 3. IPM施工計画を構築できるか

# 日本でIPMが定着する鍵 (顧客として)

- 1. "調査は無料"という考え方が変えられるか
- 2. ゼロではない維持管理基準を認めるか
- 3. 業者のIPM施工の技術力を評価できるか

# IPMで必要なこと

- ⇒実施のための技術者教育と養成
- ⇒オーナー・管理権原者・管理者等の 意識改革(意識教育)
- ⇒普及・展開、評価のための官民組織 づくり
- ⇒調査の有料化と品質で評価する制 度