

10億個(109/g)のノロウイルスの量とは

1グラムあたり10億個のノロウイルス を含むふん便が0.1g汚染すると?

10~100個で感染成立:わずかな汚染で 大規模食中毒、感染症を引き起こす (約1,000個/mm³)

Health Sciences

12

国立医薬品食品衛生研究所

ノロウイルスの保有率と不顕性感染率

対象	結果	陽性率	検査法	文献
食品調理従事者 29名から毎月 1(~2)回採取	1/1,498	0.07%	RT-PCR	1
一般健康者 0歳~55歳	0/399	0%	RT-nested PCR	2
給食従事者 2000年4月~2001年3月 1999年6月~2000年2月	9/190 10/180	4.7% 5.6%	RT-PCR	3,4
調理従事者	66/6,441 (GII/4,GII/12)	1.02%	リアルタイムPCR RT-Nested PCR	5
非発症者(事例発生時) 調理従事者(事例発生時)	116/561 64/675	20.7% 9.5%		6

1: 微生物:愛知県衛生研究所年報、33、30(2004)

2: Marshall JA et al: Public Hwalth, 118, 230-233 (2004)

3:小野哲郎他: 大分県環境研究センター年報、27、21-25(1999)

4: 小野哲郎他: 大分県環境研究センター年報、28、21-23(2000)

5: Jeong AY et al: JCM, 51, 598-600(2013)

6:平田一郎:月刊HACCP、8月号、86-(2000)

気づかないうちにウイル スを排出している

回復した(症状が消えた)後も長期間ウイルスの排泄が続く

病日	1日	8日	15日	22日	検出法	備考	文献
検出率	約80%	約45%	約35%	28%	RT-PCR	1歳未満:34名 1-4歳:33名 5-11歳:16名 12歳以上:6名	1

病日	1-10日	11-20日	21-30日	30-37日	検出法	備考	文献
	100%	30%	10%	• , •		患者:6名	
検出率	100%	90%	60%	25%	RT-リアル タイムPCR	調理従事者:3 名 赤ちゃん:1名	2

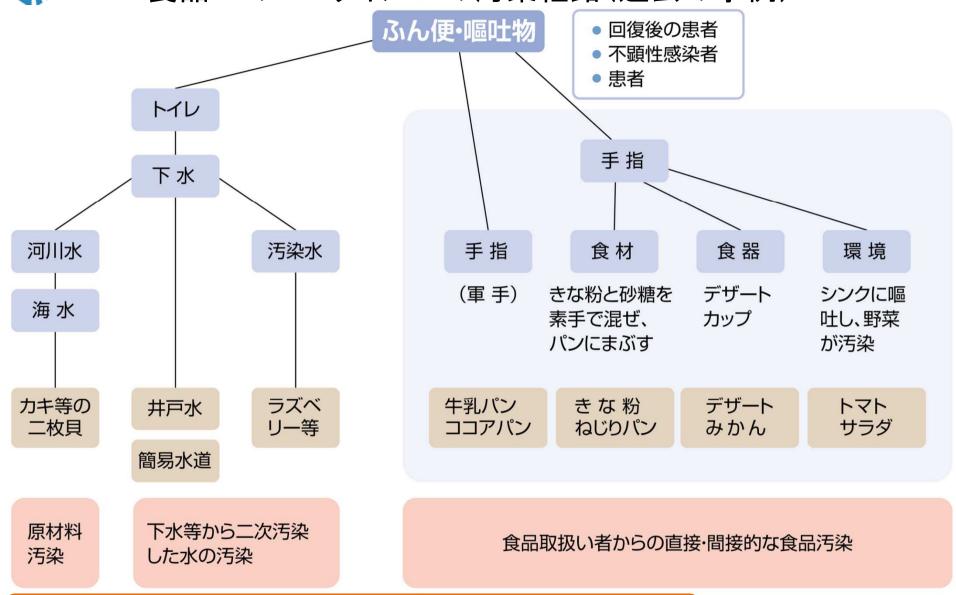
排出期間は思っているより長い

出典

文献1: Rockx B et al: Clin Infect Dis, 35, 246-253(2002)

文献2:岩切 章 他:宮崎県衛生環境研究所年報、16、41-44(2004)

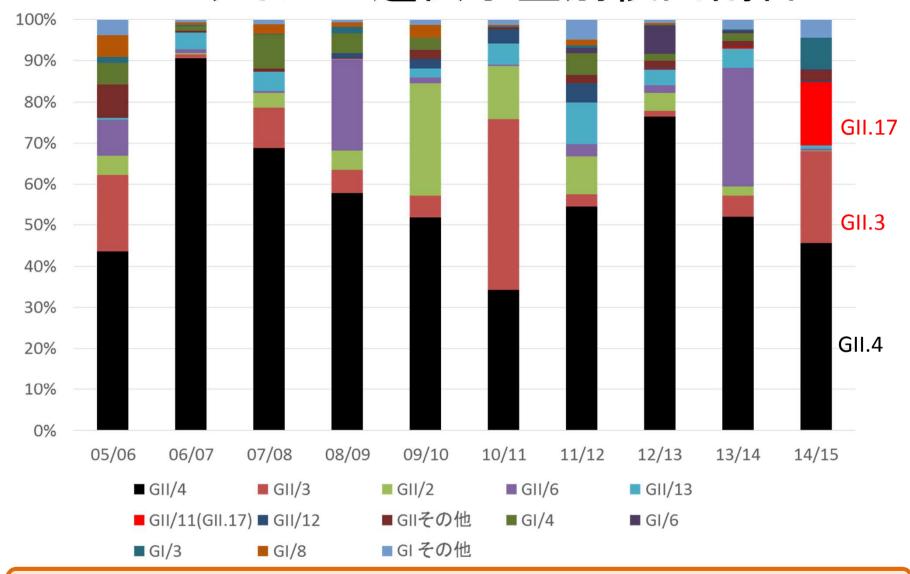
物理化学的抵抗性


条件	性状
рН	酸に強いので、胃を通過する。 (pH2.7、3時間で感染性保持)
消毒	アルコールが効きにくい (75%エタノール、30秒で約1/10)
加熱	60°C、30分で感染性保持
温度	低いほど安定
乾燥	室温で20日以上感染性を保持
凍結	死滅しない

代替えウイルスの結果を含む。生存性は、ウイルスの種類、温度、環境等によって大きく左右される。

消毒がやっかい 環境中での生存性が強い

食品へのノロウイルスの汚染経路(過去の事例)



多彩な食品汚染経路がある

Iealth Sciences

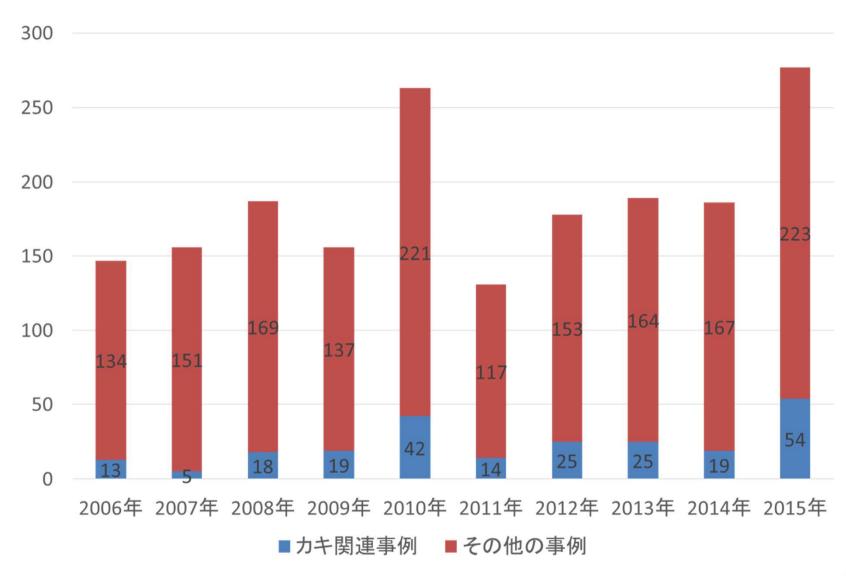
ノロウイルス遺伝子型別検出割合

多種類の遺伝子型が存在し、流行型が変わる

病原微生物検出情報(国立感染症研究所)を基に作図【2015/10/24現在】

国立医薬品食品衛生研究所

NIHS


ノロウイルス食中事件の発生状況

変異株が出現すると、流行拡大につながる場合がある。

1月~3月のノロウイルス食中毒事件数

◆動理従事者からの食品汚染防止が困難な理由

ウイルス粒子は小さく、除去が難しい

糞便や嘔吐物の中に大量にウイルス粒子が排泄される 回復した(症状が消えた)後も長期間ウイルスの排泄が続く 感染しても症状が出ない場合(不顕性感染)がある 不顕性感染でも糞便中にウイルス粒子を排出する 感染力が強く、10個~100個程度で感染・発病する →多彩な汚染経路

環境中で感染性を長期間維持し、なかなか不活化されない エタノールが効きにくい 多種類の遺伝子型が存在し、流行ウイルスが変わる 変異しやすく免疫が効きにくい

食品取扱者による食中毒事件、集団感染の制御がなかなか困難

◆ ノロウイルス食中毒を予防するための4原則

食中毒予防3原則

食中毒菌を

- 1 つけない 清潔に調理
- 2 増やさない 冷却して保存。迅速に調理
- 3 加熱する 加熱して、菌を死滅させる

ノロウイルス食中毒予防4原則

- 1 持ち込まない 調理施設に持ち込まない
- 2 拡げない 調理施設を汚染させない
- 3 加熱する 加熱して、死滅させる
- 4 つけない 食品に汚染させない

持ち込まない

加熱する

rvational institute of Flearth Sciences

ノロウイルスを持ち込まない

従事者

ノロウイルスに感染しないための対策 (手洗いなど)

- 感染したら仕事を休む
- ●入室前の手洗い
- ·健康状態の把握·管理

利用者



飲食店

- 利用者専用トイレの設置など施設の改善
- ●利用者に対する注意喚起

食品

