感染症等の検査

問診と採血基準の検査を経て採血された血液は、血液 製剤としての安全性を確保するため、感染症等のための 検査が行われます。ここで不適とされた血液は、製剤と して用いられることはありません。

表3-4は、現在実施されている検査項目です。このうち、医薬品医療機器等法に基づく「生物由来原料基準」で定められている項目については、国内で採血された血液だけでなく、海外で採血され、国内に輸入されている原料血漿及び製剤についても適用されます。

抗原・抗体検査とは、体内に侵入した病原体(抗原)や、病原体を攻撃するために作られたタンパク質(抗体)を検出するものであり、NATとは、病原体の遺伝子を構成する核酸の一部を人工的に増やし、病原体の有無を検出する方法です。抗原抗体検査は従来の凝集法からより感度の高い CLEIA(Chemiluminescent Enzyme Immunoassay, 化学発光酵素免疫測定法)に、NAT

についてもより感度の高い機器・試薬に変更しました。

いずれも、病原体による感染のリスクを減らすために効果のある検査法です。例えば、輸血後肝炎は、献血への移行、原因となるウイルスの発見に続く、図3-5のような検査法の開発・導入・改良によって、発症率が著しく減少しました。

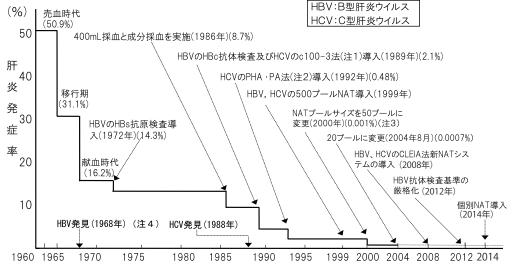

しかしながら、いずれの検査にも検出限界があるため、病原体に感染して間もない頃(初期)には、感染性はあるのですが、病原体がごく微量しか検体に含まれていないため、検査を行っても、抗体や病原体を検出できない場合があります。こうした期間を「ウインドウ期」といいます(「ウインドウ期」については、31ページ参照)。現行の検査法では、この「ウインドウ期」をかなり短縮することができましたが、未だに存在するために、輸血による感染症の発症率をゼロにすることはできません。

表3-4 安全性に関する検査項目一覧

検査項目	検査法	根 拠 法 令		
血液型	ABO及び Rh検査	医薬品医療機器等法·生物由来 原料基準(輸血用血液製剤のみ)		
B型肝炎ウイルス (HBV)	抗原検査、抗体 検査、NAT	医薬品医療機器等法· 生物由来原料基準		
C型肝炎ウイルス (HCV)	抗体検査、NAT	医薬品医療機器等法· 生物由来原料基準		
ヒト免疫不全ウイ ルス(HIV)	抗体検査、NAT	医薬品医療機器等法· 生物由来原料基準		

検査項目	検査法	根拠法令			
ヒトTリンパ球向 性ウイルス1型 (HTLV-1)	抗体検査	医薬品医療機器等法·生物由来 原料基準(輸血用血液製剤のみ)			
梅毒	抗体検査	医薬品医療機器等法:生物由来 原料基準(輸血用血液製剤のみ)			
肝機能(ALT)	酵素値の測定	各社の自主基準			
ヒトパルボウイル スB19(PVB19)	抗原検査、NAT (分画の一部)	各社の自主基準			

輸血後肝炎発症率の年次別推移

- 注1)c100-3法:C型肝炎ウイルス発見後早期に開発されたC型肝炎ウイルス抗体検査(第1世代検査法)
- 注2)PHA·PA法:特異性·感度が改善されたC型肝炎ウイルス抗体検査(第2世代検査法)
- 注3)全国の推定輸血患者数のうち、保管検体による個別NATなど、詳細な検査で感染の可能性が高いと判断された件数で試算
- 注4)1963年にBlumbergは、オーストラリア原住民の一人の血清が、たびたび輸血を受けている患者の血清と寒天ゲル内で沈降反応を起こす ことを発見し、オーストラリア抗原と名付けた。1968年には、Prince、大河内がそれぞれ独立して血清肝炎と密接な関係のある抗原を 発見し、それがオーストラリア抗原と同じであることが確認されたため、HBs抗原として統一された。

※「日本赤十字社輸血後肝炎の防止に関する特別研究班」研究報告書(1993.4~1996.3)一部改変を基に厚生労働省作成

図3-5 日本における輸血後肝炎発症率の推移

表 3-5 及び表 3-6 に、日本及び諸外国において 実施されている感染症等の検査項目を示しました。次ページの表 3-7 と表 3-8 は、各検査項目の解説であ り、表 3-9 は、各検査の導入時期の一覧です。

これらによると、先進国では抗原・抗体検査や NAT をほぼ同時期に導入しているものの、検査項目や NAT のプール検体数には若干の差異があります。

表3-6には、各国において公表されている輸血による感染症の感染リスクの推計値又は各国における感染者数を示しました。それによると、輸血後にHBV、HCV、HIVに感染する危険性(残存リスク)は、いずれの国においても、HBVは十万分の一(0.001%)以

下、HCV 及び HIV は数百万分の一(0.0001%)以下 です。

感染症マーカー検査が導入されていない時期は、例えば米国赤十字社の調査でも、1971年から1983年までの輸血によるHCV(当時はウイルスが発見されていなかったため「非A非B型肝炎」と呼ばれていた)の感染率は10.3%とされていました。それに比べると、高精度検査の導入以後、輸血後感染症のリスクは著しく減少したといえます。

しかしながら、諸外国においても、「ウインドウ期」 の存在のため、輸血による感染のリスクをゼロにすることはできません。

表3-5 日本及び諸外国における輸血用血液製剤に関する抗原・抗体検査項目比較表

	抗原·抗体検査項目							
運営主体	梅毒抗体	HIV-1,2 抗体	HTLV-1 抗体	HTLV-2 抗体	HBs抗原	HBc抗体	HCV抗体	PVB19 抗原
日本赤十字社	\circ	0	0	_	0	0	0	0
アメリカ赤十字社	0	0	0	0	0	0	0	_
英国血液サービス	0	0	0	0	0	0*	0	_
オーストラリア赤十字血液サービス	0	0	0	0	0	_	0	_
カナダ血液サービス	0	0	0	0	0	0	0	_
ドイツ赤十字社	0	0	_	_	0	0	0	_
EFS (フランス)	0	0	0	0	0	0	0	_

- 注1) 「PVB19」とは、ヒトパルボウイルスB19を指す。以下表3-6、表3-7、表3-8においても同じ。
- 注2) アメリカ赤十字社、英国血液サービス、EFS(フランス)では、Trypanosoma Cruzi抗体検査を実施。但し、英国、フランスは中南米出身者等に実施。
- ※ 入れ墨、ボディピアス、針治療をした供血者に実施

表3-6 日本及び諸外国における輸血用血液製剤に関するNAT検査項目と輸血後感染の残存リスク(推定)

運営主体			NAT 7°-1/	NAT 7° -N					
理 呂 土 仲	HBV	HCV	HIV	WNV	PVB19	検体数	HBV	HCV	HIV
日本赤十字社	0	0	0	_	_	1	1:130,000 % 1	※ 2	* 2
アメリカ赤十字社他	0	0	0	0	_	16	1:765,000— 1,006,000 ^{*3}	1:1,149,000*3	1:1,467,000*3
英国血液サービス	0	0	0	0	_	24(WNV:6)	1:2,127,660*4	1:1,000,000*4	1:16,666,667**4
オーストラリア赤十字血液サービス	0	0	0	_	_	1	< 1:1,000,000*5	< 1:1,000,000*5	< 1:1,000,000*5
カナダ血液サービス	0	0	0	0	_	6	1:1,700,000*6	1:6,700,000*6	1:8,000,000*6
ドイツ赤十字社	○ *7	0	0	_	_	96	1:360,000**	1:10,880,000**8	1:4,300,000**
フランス血液機構	0	0	0	_	_	1	1:6,400,000*9	1:33,000,000*9	1:3,000,000*9

- ※1 輸血情報(0506-89)から引用。注:平成26年8月より個別NATによるスクリーニングを開始。残存リスクは未確定。
- ※2 50プールNAT導入期間(2000年2月~2004年7月)に輸血後HCV感染は2例、輸血後HIV感染は1例確認され、20プールNAT 導入(2004年8月)以降については輸血後HCV感染が4例、輸血後HIV感染が1例確認されている。注:平成26年8月より個別 NATによるスクリーニングを開始。残存リスクは未確定。
- ※3 A Compendium of Transfusion Practice Guidelines Third Edition 2017 (アメリカ赤十字社)
- ※4 WNV検査は渡航歴のある供血者に実施。Safe Supplies: Supplementary data tables and figures: 2016: NHS Blood and Transplant/Public Health England Epidemiology Unit (英国血液サービス・英国保健省)
- ※5 Transfusion-transmissible infections in Australia: 2016 Surveillance Report (オーストラリア赤十字血液サービス)
- *6 O' Brien SF, et. al. Current incidence and residual risk of HIV, HBV and HCV at Canadian Blood Services. Vox Sang 2012; 83-86
- ※7 実施率は約75% The Collection, Testing and Use of Blood and Blood Components in Europe, 2013 report (欧州評議会)
- **8 Hourfar MP, et. al. for the German Red Cross NAT Study Group. Experience of German Red Cross blood donor services with nucleic acid testing: results of screening more than 30 million blood donations for human immunodeficiency virus-1, hepatitis C virus, and hepatitis B virus. TRANSFUSION 2008;48:1558-1566
- ※9 Surveillance épidémiologique des donneurs de sang en France 1992-2014 (フランス衛生監視研究所)

表3-7 検査項目の解説(抗原・抗体検査)

検査項目	意味
梅毒抗体	梅毒トレポネーマに感染後、3週間ほどで血中に生じる抗体を調べる。
HIV-1, 2抗体	HIV-1及びHIV-2に感染後6~8週後に血中に生じる抗体を調べる。
HTLV-1 抗体	HTLV-1に感染した後に血中に生じる抗体を調べる。
HTLV-2抗体	HTLV-2に感染した後に血中に生じる抗体を調べる。
HBs抗原	HBVの外殻部分(HBs抗原)の有無を調べる。陽性であれば、一過性感染の急性期か、又はHBVのキャリア状態である。
HB c 抗体	HBVの感染後に血中に生じる抗体を調べる。陽性であれば、HBVに感染したことがあることを示す。 現在の感染ウイルスの有無については、別途確認検査が必要である。
HCV抗体	HCVの感染後 1 ~ 3 ヶ月後に血中に生じる抗体を調べる。陽性であれば、HCVに感染したことがあることを示す。現在の感染ウイルスの有無については、別途確認検査が必要である。
PVB19抗原	パルボウイルスB19の抗原の有無を調べる。なお、このウイルスに関しては、我が国では、成人の約50%が感染したことがあり、抗体をもっている。

(出所) 吉澤浩司、飯野四郎共著「第2版 ウイルス肝炎 診断/予防/治療」(文光堂, 2002)

「IDWR 感染症週報」(厚生労働省/国立感染症研究所)(第3巻第31号及び第49号,2001)(第4巻第38号、第39号、第 40号, 2002) (第6巻第12号, 2004)

「Current Blood Safety Measures」(カナダ血友病協会ホームページ)

表3-8 検査項目の解説 (NAT)

検査項目	意味
HBV-DNA	それぞれのウイルスについて、血液中に存在するウイルスを構成する核酸(DNAあるいはRNA)の
HCV-RNA	一部を人工的に多量に増幅して、ウイルスの有無を直接的に検出する方法である。 ウイルスの感染性の有無を判定することはできない。また、出現頻度は低いが、NAT陰性で抗体陽
HIV-1,2-RNA	性であっても、感染性を示す場合があるため、抗原抗体検査を完全に代替することはできない。
WNV-RNA	※WNVはウエストナイルウイルスの略である。 ※WNVの抗原抗体検査については、日本脳炎血清型群に属するウイルス間での交差反応がある
PVB19-DNA	ため、直接抗原を測定する方法が有効である。

[IDWR 感染症週報] (厚生労働省/国立感染症研究所) (第3巻第31号, 2001) (第4巻第27号, 2002) (出所) [Nucleatic Acid Amplification Testing(NAT) for Hepatitis C Frequently Asked Questions, 2005] (カナダ血液サー ビスホームページ)

表3-9 各検査が全国的に実施され始めた時期

国名		検	査 項	目	
国 名	HBs抗原	HIV-1抗体	HCV抗体	HTLV-1抗体	HCV-RNA NAT
日本	1972年1月	1986年11月	1989年12月	1986年11月	1999年10月*
アメリカ	1971年	1985年5月	1990年5月	1994年	1999年3月
イギリス	1972年	1985年10月	1991年9月	2002年9月	1999年4月
オーストラリア	1971年7月	1985年5月	1990年2月	1993年1月	2000年6月
カナダ	1972年	1986年3月	1990年6月	1990年	1999年10月
ドイツ	1971年	1985年10月	1990年7月	_	1999年4月
フランス	1972年10月	1985年8月	1990年3月	1991年7月	2001年7月

(出所) 「Submission to Inquiry into Hepatits C and Blood Supply in Australia,2003」(オーストラリア赤十字血液サービス) p.49, Table 8

「hämotherapie(Ausgabe 1/2003)」(ドイツ赤十字社) p.27

「カナダ血液事業調査委員会最終報告」((財)血液製剤調査機構), 1997 p.121 「肝炎対策に関する有識者会議報告書」(厚生労働省)参考資料9, 2001

※ 全国的実施

図3-6は、採血後、日本赤十字社の血清学的検査(抗原・抗体検査)によって不適とされた本数の推移であり、図3-7は、NATによって不適とされた本数の推移を示しています。

HBV、HCV、HIV については、血清学的検査で適とされた後、NATで不適とされたものがあります。これは、抗原・抗体検査よりも「ウインドウ期」を短くすることができる NAT の有効性を示している一方、感染直後に供血している人がいることも示しています。

輸血後肝炎や輸血後 HIV 感染は、献血者が感染した後、NAT のウインドウ期に供血したために発生したと考えられています。また、HIV については HIV 抗体で陽性の場合は、通常の検査とは別に確認検査(ウエスタンブロット(WB)法)を行います。表 3 - 10 のとおり、献血者における HIV 陽性者が一定割合で報告されております。HIV 感染の不安から検査結果が通知されることを期待して供血する者がいることが疑われており、感染初期の検査目的の献血者を惹き付けるマグネット効

果により血液製剤の安全性に支障を来しかねない事態を招くことが懸念されています。

感染の不安のある方は、供血をせず、まず保健所等で 検査を受けることが、血液製剤の安全性を確保するため に必要不可欠です。HIV の検査については、現在、全国 のほとんどの保健所で無料・匿名で受けることができま す。

なお、日本赤十字社は、以下の場合に、希望者に検査 結果を通知し、必要に応じて専門医への受診勧奨を行っ ています。

梅 毒:梅毒抗体陽性

H B V:HBs 抗原陽性

HBc 抗体陽性

NAT(HBV)陽性

H C V:HCV 抗体陽性

NAT(HCV)陽性

HTLV-1: HTLV-1 抗体陽性かつ確認試験 (WB) 陽性

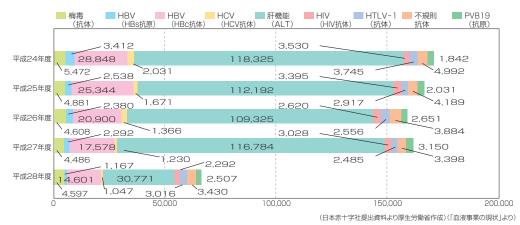


図3-6 日本赤十字社の血清学的検査(抗原・抗体検査)における不適本数(偽陽性を含む。)の推移

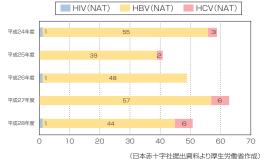


図3-7 日本赤十字社の核酸増幅検査(NAT)における不適本数の推移

表3-10 献血者等におけるHIV陽性件数

年	陽性件数	献血者10万人当たり人数				
平成24年	68	1.29				
平成25年	63	1.21				
平成26年	62	1.24				
平成27年	53	1.08				
平成28年	48	0.991				
(原生労働省エイブ動向委員会						