平成28年6月29日 第31回レセプト情報等の 提供に関する有識者会議

資料1-2

レセプト情報等オンサイトリサーチ センターの試行的利用に関する 中間報告

20160629

松居宏樹1, 佐藤大介2

- 1:東京大学大学院公共健康医学専攻臨床疫学・経済学分野
- 2:東京大学医学部附属病院 企画情報運営部

- 試行的利用に至る経緯および位置づけ
- 試行的利用における検討について
 - 1) BIツールを用いた集計
 - 2) Oracle R Enterpriseを用いた集計
 - 3) SQL Plus を用いた集計
- 試行的利用の検討結果と考察
 - 1) テーブルサイズ、各テーブルに対する検索・抽出パフォーマンス
 - 2) 個人追跡率、死亡追跡率のパフォーマンス
 - 3) その他の課題
- 本格利用に向けて
 - 1)模擬申出研究テーマの実施準備
 - 2) 第三者提供に向けた管理規程および利用規定等の見直し

2016/6/29

室内環境とルール

レセプト情報等オンサイトリサーチセン ター設置場所

東京大学医学部教育研究棟1階

公衆衛生学、行動社会医学、臨床疫学・経済学、医療情報学の医学部4講座 による合同管理

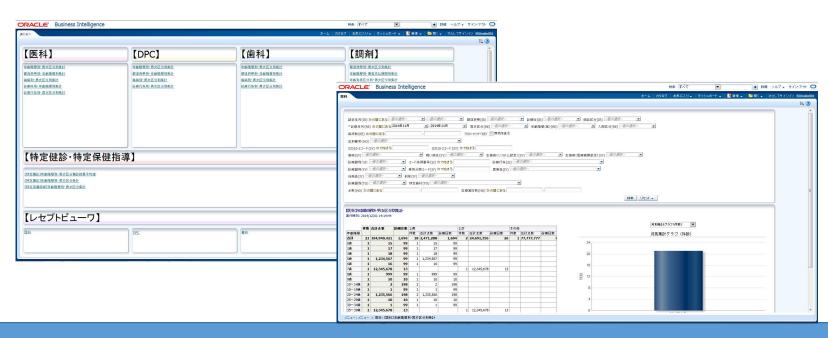
施設管理者:小林 廉毅

(健康医療政策学分野 教授)

2016/6/29 3/38

- ・試行的利用に至る経緯および位置づけ
- 試行的利用における検討について
 - 1) BIツールを用いた集計
 - 2) Oracle R Enterpriseを用いた集計
 - 3) SQL Plus を用いた集計
- 試行的利用の検討結果と考察
 - 1) テーブルサイズ、各テーブルに対する検索・抽出パフォーマンス
 - 2) 個人追跡率、死亡追跡率のパフォーマンス
 - 3) その他の課題
- 本格利用に向けて
 - 1)模擬申出研究テーマの実施準備
 - 2) 第三者提供に向けた管理規程および利用規定等の見直し

2016/6/29


実際の使用感について

BIツール(画面イメージ)

Business Intelligence ツール

汎用的な情報分析ツール

医科・DPC・歯科・調剤・特定健診の定型帳票が約40種類

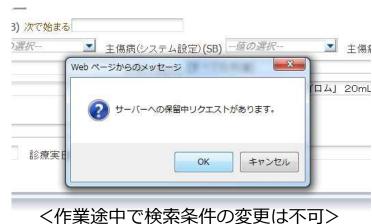
2016/6/29 5/38

実際の使用感について-BIツール

検索画面イメージ

BIツールの標準帳票例

2016/6/29 6/38


実際の使用感について-BIツール

レスポンスについて

請求年月、診療年月、診療行為等の抽出が可能・ただし、複数条件を指定した場合の処理時間は延長した。 (詳細はOracleR使用感参照)

<検索作業中のステータス>

2016/6/29 7/38

Oracle BI の使いどころ

単純なレセプト数カウントなどを行うツール

- 研究者むけのツールではない。
 - 複雑な集計や時系列を追う集計は困難
 - 検索条件を極めて単純にした集計には利用可能
- どちらかといえば、政策担当者向けのツール
 - 単純なレセプトの発生件数を調べることは可能
 - 帳票を自分で作成する自由分析ツールの使用して患者数 を調べることも可能
- ただし、適切な使用方法をしないと数値を読み間違えるため、十分なマニュアル整備が必要。

2016/6/29 8/38

Oracle BI の注意点

利用者の認識と齟齬が生じるので、解決を希望する。

- テーブル間を結合した上で集計する場合
- 本来1件しかないレセプトをn件と返す処理がなされている。
- ・技術的解決手法はすでに富士通より厚労省に報告 済み。

○連結するテーブルで、それぞれ同一レセプトで複数レコードが存在する場合

場所レコート(SB)		診療行為レコード(SI)				結合後	(2)
通番2 通番1 傷病名	通番2	通番1	診療行為		通番2	傷病名	診療行為
abcde12345 00101 脳梗塞	→ abcde12345	00201	初診	1	abcde12345	脳梗塞	初診
	→ abcde12345	00202	手術前医学管理料		abcde12345	脳梗塞	手術前医学管理料
	→ abcde12345	00203	減圧開頭術(その他)		abcde12345	脳梗塞	減圧開頭術(その他)
abcde12345 00102 ラクナ梗塞	→ abcde12345	00201	初診		abcde12345	ラクナ梗塞	初診
_	→ abcde12345	00202	手術前医学管理料		abcde12345	ラクナ梗塞	手術前医学管理料
	→ abcde12345	00203	減圧開頭術(その他)		abcde12345	ラクナ梗塞	,減圧開頭術(その他)

富士通提供資料

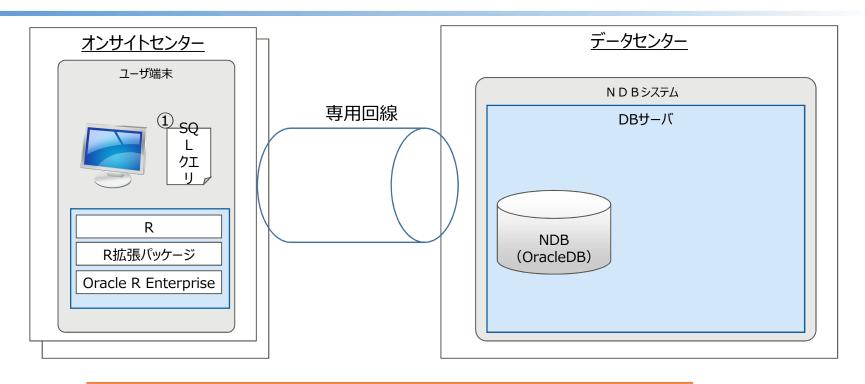
2016/6/29 9/38

- ・試行的利用に至る経緯および位置づけ
- 試行的利用における検討について
 - 1) BIツールを用いた集計
 - 2) Oracle R Enterpriseを用いた集計
 - 3) SQL Plus を用いた集計
- 試行的利用の検討結果と考察
 - 1) テーブルサイズ、各テーブルに対する検索・抽出パフォーマンス
 - 2) 個人追跡率、死亡追跡率のパフォーマンス
 - 3) その他の課題
- 本格利用に向けて
 - 1)模擬申出研究テーマの実施準備
 - 2) 第三者提供に向けた管理規程および利用規定等の見直し

2016/6/29 10/38

ORE を用いた抽出・集計

Oracle R Enterprise


 Oracle R Enterprise (以下ORE)はOracle 社が 提供している、オープン・ソースの統計プログラミング言 語であるRとその環境をエンタープライズ対応およびビッ グ・データ対応にする機能を備えたソフトウェアである。

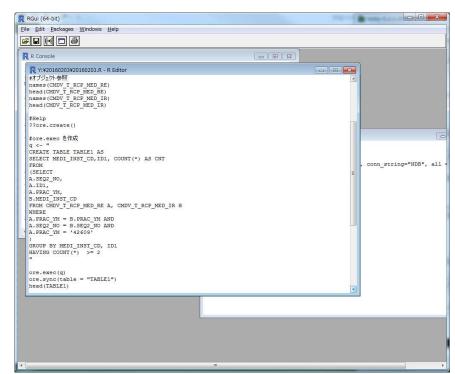
テスト行った処理

- ①オンサイトセンター内にて、SQL のクエリ(データ問い合わせプログラム)を作成
- ②ORE を介してクエリを実行
- ③ORE を介してデータをオンサイトセンター内に移動

2016/6/29 11/38

オンサイトリサーチセンターでのデータ処理

・オンサイトセンター内にて、SQLのクエリを作成した。


2016/6/29 12/38

ORE (SQL クエリを書く)

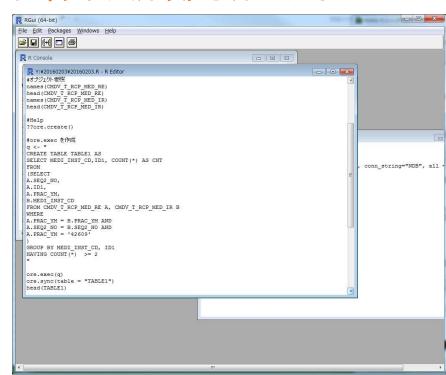
シンタックスハイライト可能なエディタを導入

下記の様なSQL 文(データの問い合わせプログラム)を 組み合わせながら必要となる データ形式へデータを抽出・ 成形するためのクエリを書く

SELECT <カラム名>
FROM <テーブル名>
WHERE <条件>
GROUP BY <集計単位>

実際の開発画面

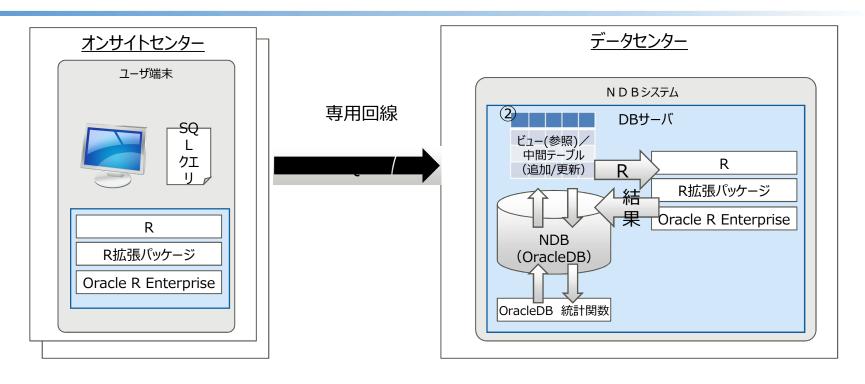
2016/6/29 13/38


ORE (SQL クエリを書く)

エラーがマスクされるのでバグフィックスが難しかった。

オブジェクト参照機能等が ないため、開発に困難が伴 う。

実行時エラーなどがマスクされており、デバッグが困難。


→後述のSQL Plus を利用した開発に移行した。

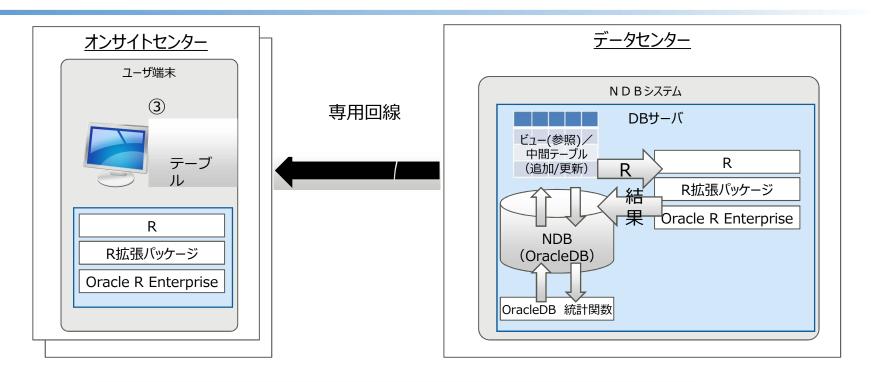
実際の開発画面

2016/6/29 14/38

ORE (SQL クエリを実行)

・ORE を介してクエリを実行した。

2016/6/29 15/38


ORE (SQL クエリを実行)

		処理時間(秒)			
処理	クエリ詳細	C34\$ (400名)	I63\$ (50000名)	I50\$ (90000名)	
処理 1	H26.10 のDPC SBレコードを対象にICD10 コードがC34\$, I63\$, I50\$ のSEQ2_NO(レセプトID)を抽出する。	0.31	6.77	6.81	
処理 2	H26.10 のDPC REレコードを対象に処理1で抽出した SEQ2_NOに紐づくID1(患者ID)を抽出する。	0.41	4.05	2.12	
処理3	H26.10~H27.03 の期間のDPC レセREレコードから、処理2で抽出した ID1 に紐づくSEQ2_NOを抽出する。	13.45	13.81	13.67	
処理4	H26.10~H27.03 の期間の医科 レセREレコードから、処理 2 で抽出した ID1 に紐づくSEQ2_NOを抽出する。	26.6	30.94	39.07	
処理 5	H26.10~H27.03 の期間のDPC レセSBレコードから、処理3で抽出した SEQ2_NO に紐づくレコードを抽出する (Table SB)。	5.23	17.06	15.36	
処理6	H26.10~H27.03 の期間の医科レセSYレコードから、処理4で抽出した SEQ2_NO に紐づくレコードを抽出する (Table_SY)。	79.38	107.74	129.12	

- ・クエリが実行可能であることが確認できた。
- ・今回実行したクエリに対するレスポンスは十分であった。

C34\$:肺癌, I63\$:脳 梗塞, I50\$:心不全

ORE (データをセンター内にDL)

・ORE を介して得たデータをオンサイトセンター内に移動した。

2016/6/29 17/38

ORE (データをセンター内にDL)

	(1	Table_SB 9カラム 126		(1	Table_SY 2カラム 128	
	C34\$	163\$	150\$	C34\$	163\$	150\$
概算行数(行)	16,000	1,000,000	2,300,000	35,000	3,000,000	7,500,000
ダウンロード時間(秒)	0.64	26.35	71.4	1.50	109.2	247.2

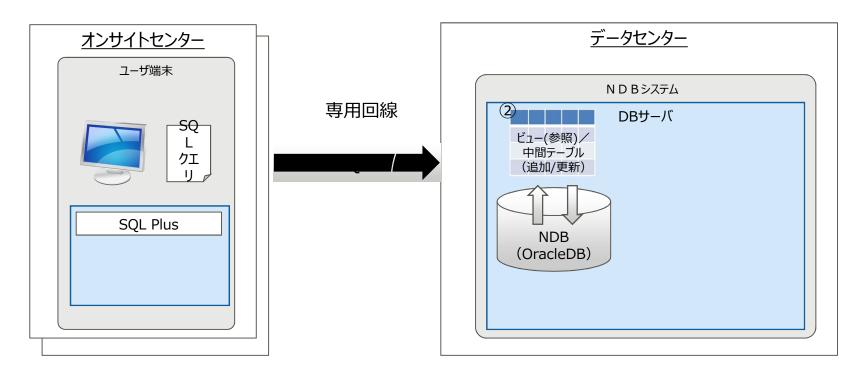
- ・NDB のサーバーからローカル環境(オンサイトセンター内)へのデータのダウンロードが可能であった。
- ・ローカル環境の解析システム(SAS, R等)での解析が可能であることが分かった。
- ・データサイズが大きくなると、ダウンロードに時間がかかるため、課題が残る。

2016/6/29 18/38

ORE の使いどころ

データハンドリングよりもサーバーサイドでの解析実行

- ORE を用いてSQL を書くことは出来るが、エラーなどがラップされてしまい実用的ではない。
- ORE を用いてサーバー側のデータをローカルに持ち込み解析する事は出来るが、通信速度が制約因子になる。
- ORE を用いることでサーバーサイドで解析プログラムを 走らせることが出来るので、解析時に真価を発揮する ものと考えられる。
- さらなる検証が必要。


2016/6/29 19/38

- ・試行的利用に至る経緯および位置づけ
- 試行的利用における検討について
 - 1) BIツールを用いた集計
 - 2) Oracle R Enterpriseを用いた集計
 - 3) SQL Plus を用いた集計
- 試行的利用の検討結果と考察
 - 1) テーブルサイズ、各テーブルに対する検索・抽出パフォーマンス
 - 2) 個人追跡率、死亡追跡率のパフォーマンス
 - 3) その他の課題
- 本格利用に向けて
 - 1)模擬申出研究テーマの実施準備
 - 2) 第三者提供に向けた管理規程および利用規定等の見直し

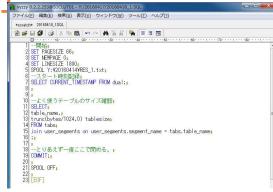
2016/6/29 20/38

実際の使用感について-SQL Plus

SQL クエリを直接実行する。

・SQL Plusを介してクエリを実行した。

2016/6/29 21/38


実際の使用感について-SQL Plus

SQL クエリを書く

エディタで書いてSQL Plusで実行

シンタックスハイライトのつく テキストエディタを用いてクエ リを書く。

- SQL Plus にて実行
- 結果をCommit すれば Oracle R Enterprise からも参照可能
- エラーの内容が表示される。


```
SQL Plus: Release 11.2.0.4.0 Production on 月 4月 18 17:43:09 2016
Copyright (c) 1982, 2013, Oracle. All rights reserved.
ユーザー名を入力してください: UTGOOTBNDB
バスワードを入力してください:
Oracle Database 11s Enterprise Edition Release 11.2.0.4.0 - 64bit Production With the Partitioning, Real Application Clusters, Automatic Storage Management, OLAP, Which Real Application Testing options に接続されました。
```

2016/6/29 22/38

- ・試行的利用に至る経緯および位置づけ
- 試行的利用における検討について
 - 1) BIツールを用いた集計
 - 2) Oracle R Enterpriseを用いた集計
 - 3) SQL Plus を用いた集計
- 試行的利用の検討結果と考察
 - 1) テーブルサイズ、各テーブルに対する検索・抽出パフォーマンス
 - 2) 個人追跡率、死亡追跡率のパフォーマンス
 - 3) その他の課題
- 本格利用に向けて
 - 1)模擬申出研究テーマの実施準備
 - 2) 第三者提供に向けた管理規程および利用規定等の見直し

2016/6/29 23/38

テーブルのサイズ

各テーブルの行数をカウント

RE テーブル	行数(百万行)
医科	6,152
DPC	92
歯科	675
調剤	3,929

IY テーブル	行数(百万行)
医科	10,122
DPC	530
歯科	208
調剤	15,909

sy テーブル	行数(百万行)
医科	32,003
DPC (SY/BU)	81/76
歯科 (HS)	1,330
sı =7*II.	行数(百万行)

SIテーブル	行数(百万行)
医科	61,316
DPC	1,206
歯科 (SI/SS)	35/5,705

RE:レセプト共通, SY:傷病名, IY: 医薬品

SI:診療行為

2016/6/29 24/38

テーブルのサイズ

各テーブルの行数をカウント

то テーブル	行数(百万行)
医科	452
DPC	117
歯科	111
調剤	34

TO:特定器材

2016/6/29 25/38

データのサイズと抽出に必要な時間

ランダムに医科レセプト(MED)から患者を選んで データを抽出するのに必要な時間とデータサイズ

抽出人数	RE	SY	IY	SI	то	合計
686人	4096	2048	1024	5120	64	12MB
(1:00)	(3:44)	(3:44)	(2:09)	(10:1)	(00:08)	(20.7min)
5213人	28672	14336	8192	34816	320	84MB
(1:02)	(3:47)	(3:45)	(2:12)	(10:48)	(00:09)	(21.7min)
22803人	131072	64512	34816	155648	2048	379MB
(1:03)	(3:54)	(3:59)	(2:23)	(11:15)	(00:09)	(22.7min)
178106人	999424	491520	262144	1179648	9216	2873MB
(1:12)	(4:05)	(5:49)	(3:16)	(17:28)	(00:15)	(32.1min)

RE:レセプト共通, SY:傷病名, IY: 医薬品, SI:診療行為, TO:特定器材 ※単位はKB(min:sec)

2016/6/29 26/38

- ・試行的利用に至る経緯および位置づけ
- 試行的利用における検討について
 - 1) BIツールを用いた集計
 - 2) Oracle R Enterpriseを用いた集計
 - 3) SQL Plus を用いた集計
- 試行的利用の検討結果と考察
 - 1) テーブルサイズ、各テーブルに対する検索・抽出パフォーマンス
 - 2) 個人追跡率、死亡追跡率のパフォーマンス
 - 3) その他の課題
- 本格利用に向けて
 - 1)模擬申出研究テーマの実施準備
 - 2) 第三者提供に向けた管理規程および利用規定等の見直し

2016/6/29 27/38

個人追跡率

症例追跡率について

- NDB の個人の追跡はID1,ID2 によって行われる。
- ID1とID2 が同時に変わる事は少ない(寿退社など)と想定されている。
- ID1, ID2を用いた個人の追跡可能期間などは明らかになっていない。
- ID1, ID2 の何れかが一致していれば同一人物として扱い、個人の追跡可能期間とおおよその追跡中断率を検討した。

2016/6/29 28/38

ハンドリング

縦断データの作成

匿名化個人IDリストから、追跡可能な全ての匿名化個人IDリストを抽出するクエリ

匿名化ID1	匿名化ID2	ID3_A	ID3_B	ID3_C	ID3_D
А	1	B_1	A_1	C_2	A_1
В	1	B_1	B_2	C_2	B_1
В	2	C_2	B_2	C_2	B_2
С	2	C_2	C_2	C_2	C_2
D	3	D_3	D_3	D_3	D_3
E	4	E_4	E_4	E_4	E_4

ID3という個人IDを作成するとして、

ID3_AはID2を基準に作成(例:名前が変更されると追跡不能だが、保険者変更を追跡可能)

ID3_BはID1を基準に作成(例:保険者変更を追跡不能だが、名前の変更を追跡可能)

ID3_CはID1 or ID2 を基準に作成(例:保険者の変更・名前の変更を追跡可能だが、同姓同名問題がある。)

ID3_Dは両者を基準に作成(例:性別が同じ双子も判別可能だが、追跡率は落ちる。)

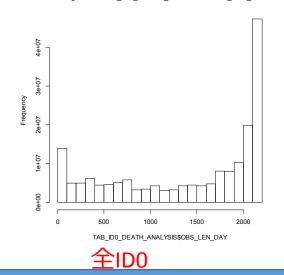
2016/6/29 29/38

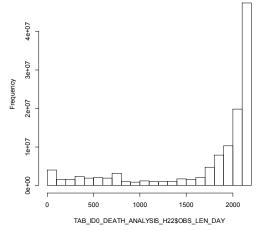
個人追跡率(処理方法)

処理方法

- 診療年月H22.1-H27.12 の医科・DPC・調剤・歯科 のRE レコードからID1, ID2 のペアを重複無しで抽出
- ペアIDを通番としてふる。
- ID1, ID2 基準で見て親となるペアIDを各行に追加
- 再帰クエリを用いて全ての子ID の祖先ID を見つけ、それをIDO (独自ID) とした。

匿名化ID1	匿名化ID2	ペアロ	親ID	祖先ID(ID0)
Α	a	1	-	1
В	a	2	1	1
В	b	3	2	1
С	b	4	3	1
D	С	5	-	5
Е	d	6	-	6


2016/6/29 30/38


個人追跡率 (結果)

- H22.1-H27.12の IDO(独自ID) の総数: 1.78 億件
- H22.1-H22.12 の間に出現したID0:1.20 億件
- 初年度症例の追跡期間は平均4.73±1.7 年

Histogram of TAB ID0 DEATH ANALYSIS\$OBS LEN DAY

Histogram of TAB_ID0_DEATH_ANALYSIS_H22\$OBS_LEN_DAY

H22.1-H22.12 の間に出現したIDO

2016/6/29

死亡アウトカムの取得

NDB では一部症例において死亡転帰が取得できる。

- 医科SY, DPC BU, DPC SY, 歯科 RE, 歯科 HS に転帰区分が含まれる。
- コメントレコードには退院先(死亡)情報が含まれる。
- 今まで、NDB を用いて死亡転帰をどの程度補足できているか検証したデータはない。
- 現在、死亡アウトカムの妥当性と悉皆性の調査を 行っている。

2016/6/29 32/38

- ・試行的利用に至る経緯および位置づけ
- 試行的利用における検討について
 - 1) BIツールを用いた集計
 - 2) Oracle R Enterpriseを用いた集計
 - 3) SQL Plus を用いた集計
- 試行的利用の検討結果と考察
 - 1) テーブルサイズ、各テーブルに対する検索・抽出パフォーマンス
 - 2) 個人追跡率、死亡追跡率のパフォーマンス
 - 3) その他の課題
- 本格利用に向けて
 - 1)模擬申出研究テーマの実施準備
 - 2) 第三者提供に向けた管理規程および利用規定等の見直し

2016/6/29 33/38

データと経験から得られた考察

その他課題

- データ追加時期
 - 毎月わずかにデータが追加されるため、抽出結果の再現性を確保するには、抽出時期をあらかじめ指定するなど工夫が必要となる。
- データの更新
 - 一部データは更新が行われるため、結果の再現ができない場合がある。これは、他の大規模データベース研究でも問題となっており、研究者側のコンセンサスが必要である。
- アクセス過多の問題

2016/6/29 34/38

想定されるユーザー層

ユーザーに求められるスキルセット

Group 名	統計/機械学習の知識	プログラミン グスキル (主としてR)	ソフト利用(R, SAS, etc)	DB(SQL)	レセプトに関する理 解	解析の中身
Group A	0	0	0	0	0	大規模個票データの 解析
Group B			0	0	0	大規模個票データからのサンプリングデータ・集計データの解析
Group C			0		0	抽出済みデータの解析
Group D					0	集計データのみを利 用

2016/6/29 35/38

- ・試行的利用に至る経緯および位置づけ
- 試行的利用における検討について
 - 1) BIツールを用いた集計
 - 2) Oracle R Enterpriseを用いた集計
 - 3) SQL Plus を用いた集計
- 試行的利用の検討結果と考察
 - 1) テーブルサイズ、各テーブルに対する検索・抽出パフォーマンス
 - 2) 個人追跡率、死亡追跡率のパフォーマンス
 - 3) その他の課題
- 本格利用に向けて
 - 1)模擬申出研究テーマの実施準備
 - 2) 第三者提供に向けた管理規程および利用規定等の見直し

2016/6/29 36/38

模擬申出研究テーマの実施

解析結果の公表を前提とした個別研究

- ・第24回レセプト情報等の提供に関する有識者会 議にて審議
 - 小林廉毅 (東大) 「後発医薬品の普及状況および関連要因に関する研究」
 - 大江和彦 (東大)「レセプト情報等オンサイトリサーチセンターのレセプト情報等を用いた脳血管疾患の実態に関する研究」
 - ・康永秀生 (東大)「周術期口腔機能管理による術後肺炎発症予防の効果」

2016/6/29 37/38

管理規程および利用規程等の見直し

- 本格利用に向け、以下の整備・見直しが必要となる。
 - 第三者提供に係る管理規程
 - 利用規程ならびにガイドラインの策定
 - 厚労省・利用者・オンサイトセンターの責任体制
 - 罰則規程
- 本試用期間で明らかになった課題について、引き続き 有識者会議にて検討をお願いしたい。

2016/6/29 38/38