ジメチルアミノフェニルエチル(3-スルホベンジル)アミノフェニルメチリデンシクロヘキサン-2,5-ジエン-1イリデン)(エチル)(3-スルホナトベンジル)アンモニウムナトリウム塩の測定・分析手法に関する検討結果報告書
1. はじめに...- 3・
2. 文献調査..- 4・
3. 捕集および分析条件..- 4・
4. 抽出溶液...- 5・
5. HPLC・PDA 分析条件 ..- 5・
6. ブランク...- 6・
7. 検量線...- 7・
8. 検出下限および定量下限 ...- 7・
9. 添加回収率（通気試験）...- 7・
10. 保存安定性...- 8・
11. まとめ..- 9・
12. 参考文献...- 9・
Appendix...- 10・
1. はじめに
[4-[(ジメチルアミノ)フェニル][4-[[エチル(3-スルホベンジル)アミノ]フェニル]メチリデン]シクロヘキサン-2,5-ジエン-1-イリデン](エチル)(3-スルホナトベンジル)アンモニウムナトリウム塩（別名：ベンジルバイオレット4B，Benzyl Violet 4B，BV）の物理化学的性状を示した1-3（表1）。

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>1694-09-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>別名</td>
<td>ナトリウム=3-[(N-[(4-{ジメチルアミノ}フェニル)(4-{N-エチル[[3-スルホナトフェニル]メチル]アミノ]フェニル}メチレン]-2,5-シクロヘキサジエン-1-イリデン]-N-エチルアンモニオ)ベンゼンスルホナートベンジルバイオレット4B (Benzyl Violet 4B) アシッドバイオレット49 (Acid Violet 49)</td>
</tr>
<tr>
<td>用途</td>
<td>ウール、ナイロン及び綿（浸染）、ウール及び綿（直接プリント）、インキ、紙、レザー、アルマイト等の着色</td>
</tr>
<tr>
<td>構造式</td>
<td></td>
</tr>
<tr>
<td>化学式</td>
<td>C_{39}H_{40}N_{3}NaO_{5}S_{2}</td>
</tr>
<tr>
<td>分子量</td>
<td>733.88</td>
</tr>
<tr>
<td>物性</td>
<td>比重 データなし</td>
</tr>
<tr>
<td></td>
<td>沸点 データなし</td>
</tr>
<tr>
<td></td>
<td>融点 245－250℃</td>
</tr>
<tr>
<td></td>
<td>蒸気圧 データなし</td>
</tr>
<tr>
<td></td>
<td>形状 細かい黑色粉末</td>
</tr>
<tr>
<td>許容濃度等</td>
<td>日本産業衛生学会 設定されていない</td>
</tr>
<tr>
<td></td>
<td>ACGIH 設定されていない</td>
</tr>
<tr>
<td>発がん性</td>
<td>日本産業衛生学会 2B</td>
</tr>
<tr>
<td></td>
<td>IARC 2B</td>
</tr>
</tbody>
</table>

現在のところ、許容濃度が設定されていないため、今回使用した分析装置の測定可能な範囲における捕集および分析方法について検討を行った。
2. 文献調査
現在のところ、国内外において空気中（作業環境中及び大気中）BVの測定方法は報告されていない。

3. 捕集および分析条件
3-1. 試薬
BV: 東京化成工業株式会社（A0593）
現在市販されている標準品には、複数の類縁体が含まれており、純度が既知の標準品は入手できない。したがって、今回の検討では、使用した標準品の純度を100%として取り扱った。
メタノール: 関東化学株式会社（高速液体クロマトグラフィー用，25183-2B）
アセトニトリル: 関東化学株式会社（高速液体クロマトグラフィー用，01031-2B）
HPLC移動相: 5 mMリン酸二水素アンモニウム+5 mMリン酸水素二ナトリウム（pH: 6.9）
リン酸二水素アンモニウム（和光純薬工業株式会社，特級，012-03305）0.575 gおよびリン酸水素二ナトリウム（和光純薬工業株式会社，特級，197-02865）0.700 gを精製水1 Lに溶解する。
抽出溶液: 精製水/メタノール（7/3）
精製水700 mLとメタノール300 mLを混合する。

3-2. 捕集方法
BVは常温・大気圧下で固体であるため、ろ過捕集方法を採用し、サンプラーとしてガラスファイバーロ紙（AP20，メルクミリポア）を用いた（表2）。

3-3. 分析方法
捕集後のサンプルは、抽出溶液5 mLで抽出し、高速液体クロマトグラフ・フォトダイオードアレイ検出器（HPLC-PDA）で分析した（表2）。

表2 BVの捕集および分析条件

<table>
<thead>
<tr>
<th>捕集方法</th>
<th>分析方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>捕集方法</td>
<td>分析方法</td>
</tr>
<tr>
<td>サンプラー</td>
<td>ガラスファイバーロ紙（AP20, メルクミリポア）を直径37 mmにカットし、フィルターカセット（225-3LF, SKC）の最後部に1枚セットする。</td>
</tr>
<tr>
<td>捕集流量</td>
<td>1 L/min（最大捕集時間：4時間）</td>
</tr>
<tr>
<td>移動相</td>
<td>A: 5 mMリン酸二水素アンモニウム+5 mMリン酸水素二ナトリウム</td>
</tr>
<tr>
<td></td>
<td>B: アセトニトリル</td>
</tr>
<tr>
<td>カラム</td>
<td>InertSustain C18（5 μm, 150×4.6 mm）（ジーエルサイエンス株式会社）</td>
</tr>
<tr>
<td>カラム流量</td>
<td>1.0 mL/min（40℃）</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. 抽出溶液
抽出溶液を決定するために、5種類の溶媒（精製水、アセトン、アセトニトリル、メタノール、エタノール）について検討した。選定方法は、BV 0.2 g を 10 mL の容量で溶解可能な溶媒とした。BV は、5種類の溶媒中、精製水のみに溶解したが（メタノールには微溶）、溶媒溶液は粘性が高く、発泡が見られた。このような溶液を用いて、正確な分析操作を行うことは著しく困難であるため、粘性および発泡を抑えた溶液を得るために、精製水とメタノールの混合溶液について検討した。検討の結果、抽出溶液には精製水/メタノール（7/3）を採用した。

フィルターに BV 溶液（20000 μg/mL）を添加（25 μL）し、15 分間室温放置した後、抽出及び分析を行った。抽出率は 100±0.9% （n = 5）と良好であった。

5. HPLC-PDA 分析条件
BV の分析には HPLC-PDA を用いることとして、いくつかの分析条件を試した結果、ISO 17234 の分析条件が最も良好な結果を示した。実際の作業場では他の色素も多く使用されていると考えられるため、可能な範囲で分離条件を検討しておく必要がある。それゆえ、ISO 17234 の分析条件をベースとして BS EN 71-11 のターゲット色素 16 種類（Appendix）の妨害を調べ、分析条件の最適化を行った。
決定した分析条件を用いて標準液（100 μg/mL）を分析した結果、複数のピークが観察された（図 1）。最も大きなピーク（R.T.：9.7 min）を定量に用いることとして、240－800 nm の吸収スペクトルを測定した結果、極大吸収波長は 592 nm 付近であったため（図 2）、定量波長は、592 nm に決定した。
また、フィルターに BV（25.0 μg）を添加し、1 L/min で 4 時間通気したサンプルのクロマトグラムを以下に示した（図 3－A）。

![図1 BV標準液（100 μg/mL）のクロマトグラム](image-url)
図2 BVの吸収スペクトル

図3 フィルターにBVを添加したサンプル（A）及びサンプラープランク（B）のクロマトグラム

6. ブランク
抽出溶液およびサンプラープランクの確認を行ったところ、BVは検出されなかった（図3－B）。
7. 検量線

BV を抽出溶液で溶解および希釈し、0.0500－100 μg/mL の範囲で標準系列を調製し、検量線の直線性について確認を行った。その結果、実験の範囲で直線性を示した（図4，表3）。

![直線関係の図](image)

図4 BV の検量線

8. 検出下限および定量下限

検量線として調製した BV 標準液の最低濃度（0.0500 μg/mL）を 5 サンプル分析し、得られた測定値の標準偏差（SD）の 3 倍および 10 倍をそれぞれ分析装置の検出下限値（LOD）及び定量下限値（LOQ）とした（抽出溶液量：5 mL）。また、分析装置の LOQ 付近（0.250 μg/sample）の添加回収試験の結果も良好であったため、0.250 μg/sample を測定法の LOQ とし、個人ばく露測定（240 L 採気）の定量下限値は、1 μg/m³ となった（表3）。

<table>
<thead>
<tr>
<th>検量線</th>
<th>直線範囲（μg/mL）</th>
<th>0.0500－100</th>
</tr>
</thead>
<tbody>
<tr>
<td>分析装置</td>
<td>LOD（μg/sample）</td>
<td>0.0460</td>
</tr>
<tr>
<td></td>
<td>LOQ（μg/sample）</td>
<td>0.153</td>
</tr>
<tr>
<td>測定法</td>
<td>LOQ（μg/sample）</td>
<td>0.250</td>
</tr>
<tr>
<td></td>
<td>240 L 採気時の気中濃度（μg/m³）</td>
<td>1</td>
</tr>
</tbody>
</table>

9. 添加回収率（通気試験）

フィルターに BV 標準液（10.0－20000 μg/mL）を添加（25 μL）し、室内空気（19.5－22.9℃，30－49%）を流速 1.0 L/min で 4 時間吸引した後、抽出及び分析を行った。添加回収率は 94－102%と良好であった（表4）。

- 7 -
表 4 添加回収率

<table>
<thead>
<tr>
<th>添加量 (μg)</th>
<th>回収率（%）</th>
<th>Mean</th>
<th>SD</th>
<th>RSD（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.250</td>
<td>94</td>
<td>± 3.8</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>1.25</td>
<td>97</td>
<td>± 1.6</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>100</td>
<td>± 0.6</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>25.0</td>
<td>102</td>
<td>± 0.7</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>100</td>
<td>± 0.9</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>99</td>
<td>± 1.3</td>
<td>1.3</td>
<td></td>
</tr>
</tbody>
</table>

n = 5

表 5 保存安定性

<table>
<thead>
<tr>
<th>添加量 (μg)</th>
<th>保存日数</th>
<th>保存率（%）</th>
<th>Mean</th>
<th>SD</th>
<th>RSD（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.250</td>
<td>0</td>
<td>100</td>
<td>± 4.4</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>103</td>
<td>± 3.6</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>97</td>
<td>± 2.2</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>98</td>
<td>± 2.1</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>1.25</td>
<td>0</td>
<td>100</td>
<td>± 1.2</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>96</td>
<td>± 2.1</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>95</td>
<td>± 1.5</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>97</td>
<td>± 2.6</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>25.0</td>
<td>0</td>
<td>100</td>
<td>± 0.7</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>100</td>
<td>± 0.4</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>100</td>
<td>± 0.5</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>100</td>
<td>± 0.4</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>0</td>
<td>100</td>
<td>± 0.3</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>101</td>
<td>± 0.7</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>100</td>
<td>± 1.5</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>99</td>
<td>± 0.3</td>
<td>0.4</td>
<td></td>
</tr>
</tbody>
</table>

n = 3

10. 保存安定性

フィルターにBV標準液（10.0, 50.0, 1000および20000μg/mL）を添加（25μL）後、室内空気（18.6
-21.8℃, 29％-32％）を流速1.0L/minで4時間吸引した後、速やかに両端にキャップをし、冷蔵保存
（4℃）した。そして、捕集直後を基準として、1, 3, 7日目の保存安定性を確認した。その結果、全
ての添加量において少なくとも7日目まで保存可能であることが確認された（表5）。
１１．まとめ
本法は、個人ばく露濃度測定法（4時間サンプリング）として、1－2083 μg/m³の範囲を測定することが可能である。以上の検討結果を標準測定分析法として別紙にまとめた。

１２．参考文献
1) 厚生労働省, 職場のあんぜんサイト. 製品安全データシート([4 - [[4 - (ジメチルアミノ)フェニル] [4 - [エチル(3 - スルホベンジル)アミノ]フェニル]メチリデン]シクロヘキサン-2, 5 - ジエン - 1 - イリデン](エチル)(3 - スルホナトベンジル)アンモニウムナトリウム塩) 2006.
Appendix

<table>
<thead>
<tr>
<th>Name</th>
<th>CAS No.</th>
<th>検討で使用したメーカー</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.I. Disperse Blue 1</td>
<td>2475-45-8</td>
<td>アルドリッチ</td>
</tr>
<tr>
<td>C.I. Disperse Blue 3</td>
<td>2475-46-9</td>
<td>アルドリッチ</td>
</tr>
<tr>
<td>C.I. Disperse Blue 106</td>
<td>12223-01-7</td>
<td>Fluka</td>
</tr>
<tr>
<td>C.I. Disperse Blue 124</td>
<td>61951-51-7</td>
<td>Fluka</td>
</tr>
<tr>
<td>C.I. Disperse Yellow 3</td>
<td>2832-40-8</td>
<td>アルドリッチ</td>
</tr>
<tr>
<td>C.I. Disperse Orange 3</td>
<td>730-40-5</td>
<td>アルドリッチ</td>
</tr>
<tr>
<td>C.I. Disperse Orange 37</td>
<td>13301-61-6</td>
<td>Fluka</td>
</tr>
<tr>
<td>C.I. Disperse Red 1</td>
<td>2872-52-8</td>
<td>東京化成</td>
</tr>
<tr>
<td>C.I. Solvent Yellow 1</td>
<td>60-09-3</td>
<td>東京化成</td>
</tr>
<tr>
<td>C.I. Solvent Yellow 2</td>
<td>60-11-7</td>
<td>東京化成</td>
</tr>
<tr>
<td>C.I. Solvent Yellow 3</td>
<td>97-56-3</td>
<td>東京化成</td>
</tr>
<tr>
<td>C.I. Basic Red 9</td>
<td>569-61-9</td>
<td>東京化成</td>
</tr>
<tr>
<td>C.I. Basic Violet 1</td>
<td>8004-87-3</td>
<td>東京化成</td>
</tr>
<tr>
<td>C.I. Basic Violet 3</td>
<td>548-62-9</td>
<td>東京化成</td>
</tr>
<tr>
<td>C.I. Acid Red 26</td>
<td>3761-53-3</td>
<td>東京化成</td>
</tr>
<tr>
<td>C.I. Acid Violent 49</td>
<td>1694-09-3</td>
<td>東京化成</td>
</tr>
</tbody>
</table>
ベンジルバイオレット 4 B 標準測定分析法

化学式：C₃₉H₄₀N₃NaO₆S₂
分子量：733.88 CAS No.：1694-09-3

許容濃度等
日本産業衛生学会：設定されていない
ACGIH：設定されていない
発がん性
日本産業衛生学会：2B
IARC：2B

別名：[4－[[4－(ジメチルアミノ)フェニル][4－[エチル(3－スルホベンジル)アミノ]フェニル]メチリデン]シクロヘキサン－2,5－ジエン－1－イリデン] (エチル)3－スルホナトベンジル)アンモニウムナトリウム塩、アシッドバイオレット 49 (Acid Violet 49)

サンプリング
サンプラー：プラスファイバーろ紙（AP20, メルクミリポア）を直径 37 mm にカットし、フィルターカセット（225-3LF, SKC）の最後部に1枚セットする。
サンプリング流量：1 L/min
サンプリング時間：4 時間（240 L）
保存安定性：冷蔵で少なくとも 7 日間までは変化がないことを確認した（添加量：0.250, 1.25, 25.0, 500 μg）。
ブランク：検出されない。

精度
添加回収率（通気試験）：94－102%（添加量：0.250－500 μg（4 時間通気）
検量線：0.0500－100 μg/mL
定量法：絶対検量線法
装置の検出下限値（LOD）と定量下限値（LOQ）：LOD（0.0460 μg/sample）LOQ（0.153 μg/sample）
測定法の定量下限値（LOQ）：0.250 μg/sample
個人ばく露測定 1 μg/m³（4 時間採気）

分析方法：高速液体クロマトグラフ分析法
抽出溶液：精製水/メタノール（7/3）（5 mL）
抽出操作：振とう（5 min）→遠心（3000 rpm, 10 min）→ろ過（DISMIC, 13HP020AN, アドバンテック東洋株式会社）
装置：Prominence UFLC（株式会社島津製作所）
カラム：InertSustain C18（5 μm, 150×4.6 mm）(ジーエルサイエンス株式会社)
カラム温度：40℃
移動相：
<table>
<thead>
<tr>
<th>Time (min)</th>
<th>A (%)</th>
<th>B (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>85</td>
<td>15</td>
</tr>
<tr>
<td>20.00</td>
<td>15</td>
<td>85</td>
</tr>
<tr>
<td>20.01</td>
<td>85</td>
<td>15</td>
</tr>
<tr>
<td>30.00</td>
<td>85</td>
<td>15</td>
</tr>
</tbody>
</table>
流速：1.0 mL/min
R.T.：9.7 min
検出器：フォトダイオードアレイ検出器
（検出波長：240－800 nm, 定量波長：592 nm）
注入量：10 μL

適用：個人ばく露濃度測定法として、1－2083 μg/m³の範囲を測定することが可能である。
妨害：BS EN 71-11 のターゲット色素 16 種類は、妨害とならないことを確認している。

参考文献：

- 11 -

