


# 動物用医薬品評価書

# ロニダゾール

# 2014年7月

# 食品安全委員会

| ,我们就是我们的问题,我们就是我们的问题,我们就是我们的问题,我们就是我们的问题,我们就是我们的问题,我们就是我们的问题,我们就是我们的问题,我们就是我们的问题,<br>———————————————————————————————————— |
|---------------------------------------------------------------------------------------------------------------------------|
| <b>〇審議の経緯</b> ····································                                                                        |
| ○食品安全委員会委員名簿······3                                                                                                       |
| ○食品安全委員会動物用医薬品専門調査会専門委員名簿 ····································                                                            |
| O要約····································                                                                                   |
|                                                                                                                           |
| I. 評価対象動物用医薬品の概要······5                                                                                                   |
| 1. 用途 · · · · · · · · · · · · · · · · · ·                                                                                 |
| 2. 有効成分の一般名                                                                                                               |
| 3. 化学名 ··········· 5                                                                                                      |
| 4. 分子式 ··········· 5                                                                                                      |
| 5. 分子量 ··········· 5                                                                                                      |
| 6. 構造式                                                                                                                    |
| 7. 使用目的及び使用状況                                                                                                             |
|                                                                                                                           |
| II. 安全性に係る知見の概要······6                                                                                                    |
| 1. 薬物動態試験                                                                                                                 |
| (1)薬物動態試験・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                             |
| (2)代謝試験(ラット)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                          |
| (3)代謝試験(豚)8                                                                                                               |
| (4)代謝試験(七面鳥)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                          |
| (5)代謝試験( <i>in vitro</i> )・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                            |
| (6)生物学的利用試験(ラット)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                      |
| 2. 残留試験 · · · · · · · · · · · · · · · · · · ·                                                                             |
| (1)残留試験(豚)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                            |
| (2)残留試験(七面鳥)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                          |
| (3)長期残留物(persistent residue)について・・・・・・・・・・・・・・・・・・14                                                                      |
| 3. 遺伝毒性試験 · · · · · · · · · · · · · · · · · · ·                                                                           |
| (1)ロニダゾ <del>ー</del> ル······16                                                                                            |
| (2)ロニダゾールのタンパク質結合残留物・・・・・・・・・・・・・・・・・・・・・・・・・17                                                                           |
| 4. 急性 <del>毒</del> 性試験 ····································                                                               |
| 5. 亜急性毒性試験···································                                                                             |
| (1)13 週間亜急性毒性試験(ラット) ・・・・・・・・・・・・・・・・・・・・・・・・・・・19                                                                        |
| (2)17 週間亜急性毒性試験(イヌ) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・19                                                                       |
| 6. 慢性毒性及び発がん性試験······20                                                                                                   |
| (1)2年間慢性毒性試験(イヌ) ······20                                                                                                 |
| (2)81週間発がん性試験(マウス)                                                                                                        |
| <ul> <li>(3) 95 週間慢性毒性/発がん性併合試験(ラット) ····································</li></ul>                                       |

目 次

| (4)104 週間慢性毒性/発がん性併合試験(ラット) ・・・・・・・・・・・・・・・・・・・・・2                                  |
|-------------------------------------------------------------------------------------|
| 7. 生殖発生毒性試験······24                                                                 |
| (1)3 世代繁殖試験(ラット) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                               |
| (2)発生毒性試験(マウス)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                  |
| (3)発生毒性試験(ラット)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                  |
| (4)発生毒性試験(ウサギ)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                  |
| III. 食品健康影響評価······2                                                                |
| 1.         国際機関等における評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                          |
| <ul> <li>(1) JECFA における評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・</li></ul>             |
| (2) EMEA における評価······2                                                              |
| 2. 食品健康影響評価······2                                                                  |
| <ul> <li>表 20 JECFA における各種試験の無毒性量等の比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・</li></ul> |
| <ul> <li>別紙1:代謝物/分解物等略称 ····································</li></ul>              |
| • 別紙2:検査値等略称····································                                    |
| ▪参照 ····································                                            |

# <審議の経緯>

2005年11月29日暫定基準告示(参照1)

- 2012年 2月 24日 厚生労働大臣から残留基準設定に係る食品健康影響評価について要請(厚生労働省発食安 0222 第 10 号)、関係資料の接受
- 2012年 3月 1日 第421 回食品安全委員会 (要請事項説明)
- 2014年 4月 11日 第163 回動物用医薬品専門調査会
- 2014年 6月 17日 第518 回食品安全委員会(報告)
- 2014年 6月 18日 から 7月 17日まで 国民からの意見・情報の募集
- 2014年 7月 24日 動物用医薬品専門調査会座長から食品安全委員会委員長へ報告
- 2014年 7月 29日 第524 回食品安全委員会

(同日付で厚生労働大臣に通知)

# <食品安全委員会委員名簿>

(9019年10日1日かど)

| (2012 年 6 月 30 日まで)   | (2012年7月1日から) |
|-----------------------|---------------|
| 小泉 直子(委員長)            | 熊谷 進 (委員長)    |
| 熊谷 進 (委員長代理*)         | 佐藤 洋 (委員長代理)  |
| 長尾 拓                  | 山添 康 (委員長代理)  |
| 野村 一正                 | 三森 国敏(委員長代理)  |
| 畑江 敬子                 | 石井 克枝         |
| 廣瀬 雅雄                 | 上安平 洌子        |
| 村田 容常                 | 村田 容常         |
| * : 2011 年 1 月 13 日から |               |

# <食品安全委員会動物用医薬品専門調査会専門委員名簿>

| (2013年10月1日から) |       |                 |
|----------------|-------|-----------------|
| 山手 丈至(座長*)     | 川治 聡子 | 松尾 三郎           |
| 小川 久美子(座長代理*)  | 須永 藤子 | 宮田 昌明           |
| 青木 博史          | 辻 尚利  | 山崎 浩史           |
| 青山 博昭          | 寺岡 宏樹 | 吉田 和生           |
| 石川 さと子         | 能美 健彦 | 吉田 敏則           |
| 石川 整           | 舞田 正志 | 渡邊 敏明           |
|                |       | *:2013年10月22日から |

寄生虫駆除剤・抗原虫剤である「ロニダゾール」(CAS No. 7681-76-7) について、JECFA 及び EMEA の評価書等を用いて食品健康影響評価を実施した。

評価に用いた試験成績等は、薬物動態(ラット、豚及び七面鳥)、残留(豚及び七面鳥)、 遺伝毒性、急性毒性(マウス、ラット及びウサギ)、亜急性毒性(ラット及びイヌ)、慢 性毒性及び発がん性(マウス、ラット及びイヌ)、生殖発生毒性(マウス、ラット及びウ サギ)等の試験成績である。

各種遺伝毒性試験の結果、ロニダゾールは *in vitro*の細菌を用いた復帰突然変異試験及 び fluctuation test で陽性であった。これは供試微生物自身のニトロ還元酵素活性による 可能性が示唆されたが、この可能性については証明されていない。また、*in vivo*のマウス を用いた優性致死試験及び小核試験の結果は陰性であったが、キイロショウジョウバエを 用いた伴性劣性致死試験で陽性であり、マウスの骨髄細胞染色体異常試験で染色体異常誘 発作用が報告されるなど相反した結果であった。マウスを用いた小核試験と染色体異常試 験の結果が相反しているため、ロニダゾールの生体にとって問題となる遺伝毒性について は判断できなかった。

また、マウス及びラットを用いた発がん性試験が3試験実施されている。マウスを用い た発がん性試験では、良性及び悪性の肺腫瘍及び癌がそれぞれ10及び20 mg/kg体重/日 以上、ラットを用いた発がん性試験2試験では、乳腺腫瘍が10 mg/kg体重/日以上の雌で 有意に増加し、ロニダゾールの発がん性が示唆された。なお、発がんメカニズムは解明さ れておらず、遺伝毒性と発がん性の関連性も不明であることから、現時点で評価した知見 からは、ロニダゾールの発がん性に閾値が存在するかどうかについては判断できなかった。

ロニダゾールの遺伝毒性を判断できず、発がん性が示唆されたことから、一日摂取許容量(ADI)を設定すべきでないと判断した。

- I. 評価対象動物用医薬品の概要
- **用途** 寄生虫駆除剤・抗原虫剤
- 2. 有効成分の一般名

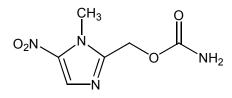
和名:ロニダゾール 英名:Ronidazole

3. 化学名

IUPAC

英名: (1-methyl-5-nitroimidazol-2-yl)methyl carbamate CAS (No. 7681-76-7)

英名:1-Methyl-5-nitroimidazole-2-methanol carbamate (ester)


4. 分子式

 $C_6H_8N_4O_4$ 

5. 分子量

200.15

6. 構造式



(参照2)

# 7. 使用目的及び使用状況

ロニダゾールは、5・ニトロイミダゾール類に属する寄生虫駆除剤・抗原虫剤である。 1990年のJECFAの評価書によれば、海外では動物用医薬品として、七面鳥のヒスト モナス症の予防(混餌濃度0.006~0.009%で7~14日間投与)及び治療(混餌濃度0.012% 又は飲水濃度0.004~0.006%で7~14日間投与)並びに豚赤痢の予防(混餌濃度0.006 ~0.008%で3~5日間)及び治療(混餌濃度0.012%又は飲水濃度0.006%で3~5日間 投与)を目的に使用されると報告されていた。(参照3、4) また、1996年以前のEMEA の評価書によれば、ロニダゾールは、ハトのトリコモナス症及び牛の膣トリコモナス症 の治療にも使用されると報告されていた。(参照5) 現在、EU ではロニダゾールを最 大残留基準値(MRL)が設定できない成分とし、食用動物への使用が禁止されている。

日本では、ヒト用及び動物用医薬品の承認はない。

なお、ポジティブリスト制度導入に際して、食品において「不検出」とされる農薬等 の成分であると規定されている。(参照1)

# II. 安全性に係る知見の概要

本評価書では、JECFA 及び EMEA の評価書等を基に、ロニダゾールの毒性に関する 主な知見を整理した。(参照 3~8)

代謝物/分解物等略称及び検査値等略称を別紙1及び2に示した。

各種代謝及び残留試験で用いられたロニダゾールの放射性標識化合物については、以 下の略称を用いた。

| 略称                       | 標識位置                                  |
|--------------------------|---------------------------------------|
| [N-methyl-14C]ロニダゾール     | 1位のメチル基の炭素を <sup>14</sup> Cで標識したもの    |
| [methylene-14C]ロニダゾール    | 2位のメチレン基の炭素を14Cで標識したもの                |
| [carbonyl-14C]ロニダゾール     | カルボニル基の炭素を14Cで標識したもの                  |
| [ring-2-14C]ロニダゾール       | イミダゾール環の2位の炭素を <sup>14</sup> Cで標識したもの |
| [ring-4,5-14C]ロニダゾール     | イミダゾール環の4位及び5位の炭素を14Cで標識した            |
|                          | もの                                    |
| <sup>14</sup> C 標識ロニダゾール | 標識位置不明のもの                             |

#### 1. 薬物動態試験

# (1) 薬物動態試験

① 吸収

いくつかの動物種における<sup>14</sup>C標識体を用いた多くの試験により、ロニダゾールは 消化管から容易に吸収されることが明らかになった。

また、ラットに <sup>14</sup>C 標識ロニダゾールを経口投与(2 及び 10 mg/kg 体重)したと ころ、投与 24 時間後の血漿中濃度はそれぞれ 0.09 及び 0.5 μg eq/mL であった。(参 照 3)

生物学的利用試験 [II.1.(6)] において、<sup>14</sup>C 標識ロニダゾールの混餌投与後 2 日間の尿、糞、呼気、胃腸管及びカーカスの放射活性が、それぞれ 44.69%、39.12%、 3.31%、1.97%及び 2.24%であったことから、ロニダゾールの経口吸収率は、少なく とも 50%以上と考えられた。(参照 4)

2 分布

<sup>14</sup>C 標識体を用いた試験により、ロニダゾールは動物体に広く分布することが示さ れた。ロニダゾールに関連した放射活性が、脳、脂肪、心臓、腎臓、肝臓、肺、筋肉、 膵臓、皮膚及び脾臓中に存在することが示された。(参照 3)

③ 排泄

ロニダゾールは、主に動物の尿及び糞中に排泄される。二酸化炭素としての呼気中 への排泄は、最大でも投与量の3%であった。ロニダゾールを単回経口投与された動 物は、投与後24時間以内に、投与量の30~36%を尿中に、16~40%を糞中に排泄し た。その後の排泄は遅く、不完全であった。

ラットでは投与初日に尿及び糞中に合わせて 36~40%が排泄されていたが、投与2 日には 2~6%に減少した。(参照 3)

# (2)代謝試験(ラット)

ラット(体重 180~200 g、3 匹/時点)を用いて、<sup>14</sup>C 標識したロニダゾールの単回 強制経口投与(10 mg/kg 体重)による代謝試験が実施された。投与には、4 つの部位 のうち 1 箇所を <sup>14</sup>C で標識したロニダゾール([*N*-methyl-<sup>14</sup>C]、[methylene-<sup>14</sup>C]、 [ring-4,5-<sup>14</sup>C]又は[carbonyl-<sup>14</sup>C]ロニダゾール)を用いた。投与 2、4、7、11 又は 14 日後の各組織中総放射活性が調べられた。

各標識化合物の各組織中総放射活性濃度を表1に示した。

組織中残留物がそれぞれ標識した部位のイミダゾール環を完全に保持する物質のみ である場合には、組織毎の各時点の濃度は同濃度となり、半減期(T<sub>12</sub>)等のパラメ ータが等しくなるはずである。しかし、標識部位が異なるロニダゾールを投与した動 物における組織中放射活性濃度は異なっており、残留物の全てが完全な **N**メチルイミ ダゾール核を含むのではないことが明らかにされた。

総残留物の範囲を確定するためにメチルアミン産生試験を行ったところ、完全なイ ミダゾール環を含む残留物の合計は、投与7及び11日後の筋肉及び肝臓中の総残留 物の10~30%と推測された。これらの結果は、豚で得られた結果[II.1.(3)]と同様 であった。(参照4)

本試験 [II.1.(2)] から、ロニダゾール由来の残留物が組織中に長時間存在し続け られるのは、イミダゾール環が通常のタンパク質合成反応を介して細胞内の高分子に 取り込まれる可能性を有する生体内成分 (endogenous substance) を形成するような 炭素数1又は2の断片へと代謝分解されることに起因するためと考えられた。(参照3)

| 標識部位            | 組織    | 休薬期間(日) |      |      |      |
|-----------------|-------|---------|------|------|------|
| 1示哦百四           | 不且,和我 | 2       | 4    | 7    | 11   |
| [N-methyl-14C]  | 肝臓    | 0.33    | 0.27 | 0.16 | 0.11 |
|                 | 腎臓    | 0.48    | 0.41 | 0.26 | 0.17 |
|                 | 筋肉    | 0.31    | 0.26 | 0.23 | 0.18 |
|                 | 脂肪    | 0.14    | 0.13 | 0.09 | 0.07 |
| [methylene-14C] | 肝臓    | 0.22    | 0.10 | 0.07 | 0.02 |
|                 | 腎臓    | 0.35    | 0.26 | 0.11 | 0.04 |
|                 | 筋肉    | 0.18    | 0.13 | 0.10 | 0.05 |
|                 | 脂肪    | 0.23    | 0.14 | 0.08 | 0.06 |
| [ring-4,5-14C]  | 肝臓    | 0.18    | 0.10 | 0.06 | 0.03 |
|                 | 腎臓    | 0.26    | 0.14 | 0.07 | 0.04 |
|                 | 筋肉    | 0.17    | 0.11 | 0.07 | 0.06 |
|                 | 脂肪    | 0.04    | 0.03 | 0.02 | 0.02 |

表 1 ラットへの<sup>14</sup>C で標識したロニダゾールの単回強制経口投与後に おける各標識化合物の各組織中総放射活性濃度(ug eq/g)

| [carbonyl-14C] | 肝臓 | 0.40 | 0.25 | 0.12 | 0.04 |
|----------------|----|------|------|------|------|
|                | 腎臓 | 0.19 | 0.17 | 0.08 | 0.04 |
|                | 筋肉 | 0.12 | 0.11 | 0.07 | 0.06 |
|                | 脂肪 | 0.07 | 0.11 | 0.07 | 0.05 |

ラットにロニダゾールを投与(10 mg/kg 体重)すると、尿中代謝物としてアセトア ミドが同定されたことに注意を払うべきである。アセトアミドは発がん物質として知 られており、また、メトロニダゾールの分解物である。ロニダゾール及びジメトリダ ゾールからアセトアミドが生成される可能性がある(quite possible)。(参照 4)

# (3)代謝試験(豚)

去勢豚(体重約20kg、10週齡、雄1頭/時点)を用いた[N-methyl-14C]ロニダゾー ルの3日間混餌又は飲水投与(6.7又は9.2 mg/kg体重/日)による代謝試験が実施さ れた。最終投与4及び72時間後の代謝物について検討した。

総放射活性の約70~80%が尿、糞、腸管内容物及び組織中から回収された。残りの 放射活性は呼気を通じて、例えばメチルアミンとして排泄された可能性があると推測 された。

投与動物の筋肉及び肝臓中からの非抽出残留物の量は時間とともに増加した。投与4時間後の肝臓の放射活性の74%及び筋肉の16%は水溶性で、それぞれ28%及び14%は不溶性であった。投与72時間後の肝臓の放射活性の26%及び筋肉の27%は水溶性で、それぞれ71%及び65%は不溶性であった。

また、投与 72 時間後の各組織中の細胞構成物を調べたところ、肝臓中の総放射活性の 53.6%がタンパク質と結合し、核酸及び脂質画分にはそれぞれ約 10%が分布していた。筋肉中では、総放射活性の 58.3%がタンパク質と結合し、核酸及び脂質画分に それぞれ約 6%が分布していた。不溶性残留物の放射活性の割合が増加したことから、14C が、水溶性画分中の低分子の化合物中よりも生物学的半減期が比較的長い高分子の細胞内成分に取り込まれることが考えられた。

尿、筋肉及び肝臓中のロニダゾールの代謝物について、ロニダゾール、1-メチル-2-ヒドロキシメチル-5-ニトロイミダゾール(HMMNI)、イミダゾール及び1-メチル-2-カルバモイルオキシメチル-5-アセトアミドイミダゾールの4種類の化合物が同定さ れた。投与4時間後の筋肉から、ロニダゾール4,500 ng eq/g 及び HMMNI 95 ng eq/g が検出されたが、それ以外の代謝物は、いずれの時点においても筋肉又は肝臓中で5 ng eq/g を超えるものはなかった。尿中にはニトロ基を含む化合物が2種類のみ含ま れ、それらはロニダゾール及び HMMNI であった。(参照4)

豚を用いた残留試験 [11.2.(1)] における総残留物の消失のデータ(表 3)では、 速やかな排泄がみられた(休薬 0~3 日)後、残留物が組織中に最長 42 日間残存する ことが示されている。これらの残存する残留物は、細胞内高分子と結合していると考 えられた。実際に、休薬 7 日後の筋肉中の放射活性の約 60%はタンパク質画分に存在 することが確認された。また、この割合は休薬 42 日後でも大きく変化することはな かった。

単一炭素単位まで分解されなかったロニダゾールの全代謝物は、放射性メチルアミンを産生することから、標識化合物の生体内成分への取り込みに起因しない残留物の 残存量を推測するため、組織試料を酸性条件下で加水分解してメチルアミンを生成させ、メチルアミンの収率を定量した。

休薬 0 日後では、筋肉中の放射活性の約 90%及び肝臓中の放射活性の約 70%が放 射性メチルアミンを遊離した。休薬 3 日後では、筋肉中の放射活性の 30%未満がメチ ルアミンを遊離した。この時点の遊離しているメチルアミン残基の大半はタンパク質 画分に存在していた。休薬 3 日後まで残存する放射活性は、休薬 0 日後の総放射活性 の 8~10%にすぎず、休薬 7 日後でもほとんど変化しなかったことから、物質から生 じるメチルアミンの大半は休薬 3 日以内に排出されることが明らかとなった。

これらのことから、メチルアミンを遊離しない残留物の 70~80%は、<sup>14</sup>C が生体内 成分に取り込まれたことを意味すると考えられた。(参照 4)

# (4)代謝試験(七面鳥)

七面鳥を用いた[ring-2-14C]又は[N-methyl-14C]ロニダゾールの3日間混餌投与(混 餌濃度 0.006%)による代謝試験が実施された。各組織中の代謝物を濾紙電気泳動法 及び薄層クロマトグラフィー(TC)により検討した。

ロニダゾール及びその代謝物である HMMNI は、休薬 0 日後の筋肉からのみ同定 された。ロニダゾール及び HMMNI のグルクロン酸抱合体は筋肉及び尿からは検出 されなかった。肝臓中総放射活性の約 80%を含む肝臓の水溶性抽出物の解析では、 <sup>14</sup>C-*N*メチルグリコールアミド、<sup>14</sup>C-シュウ酸([ring-2-<sup>14</sup>C]ロニダゾールを投与した 七面鳥から)及び<sup>14</sup>C-メチルアミンがみられた。また、投与した七面鳥由来の肝臓抽 出物中に、フマル酸、コハク酸、グリコール酸、リンゴ酸、α-ケトグルタル酸、クエ ン酸等の様々な酸の存在を示す証拠がみられた。さらに、投与した七面鳥由来のプー ル肝臓中では、アミノ酸に結合している放射標識がみられた。

そのため、肝臓における放射活性の大部分は、正常組織に一般的に存在する様々な 単純な既知物質として再分布することが明らかにされ、結果として毒性学的には重要 ではないことが強く主張された。(参照 4)

七面鳥におけるロニダゾールの推定代謝経路を図1に示した。

ロニダゾールは、カルバメート基が加水分解され、HMIMINIを生成する。複数の経路で環開裂が起こる可能性があり、経路1及び2では Nメチルグリコールアミドを生じ、さらにシュウ酸、メチルアミン及び二酸化炭素に代謝されると考えられる。ニトロ基は、その正確な状態が不明であるためRで示した。しかし、ニトロ基はそのまま加水分解されるか又はアミンへ還元され、次に水酸基に加水分解される可能性がある。(参照4)

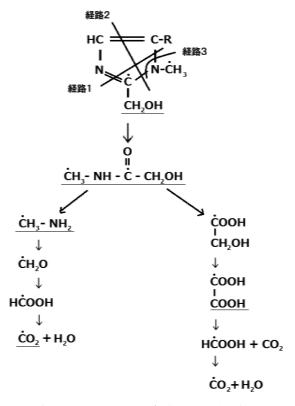



図 1 七面鳥におけるロニダゾールの推定代謝経路

# (5)代謝試験(in vitro)

ラットの肝臓中のロニダゾールのタンパク質結合代謝物への生体内変化が調べられた。ラット肝ミクロソーム分画は、好気性又は嫌気性のいずれの条件下においてもロニダゾール代謝物のNADH及びNADPH依存性のタンパク質との共有結合の両方を触媒することが示された。NADPHはNADHより効率よく、嫌気的条件下においてより結合し、ロニダゾールのタンパク質結合代謝物への代謝が還元経路を通じて起こることが示された。

ラットの精製肝ミクロソーム NADPH-チトクローム P-450 還元酵素は、ロニダゾ ールのタンパク質共有結合代謝物への活性化を触媒する。ラットの肝ミクロソームに よる触媒反応のように、等価物の還元を求める精製還元酵素によるタンパク質のアル キル化は酸素感受性であり、SH 基含有化合物によって阻害され、フラビンモノヌク レオチド又はメチルビオロゲンにより数倍に亢進される。フェノバルビタール及び3-メチルコラントレン誘導性のラットの肝ミクロソームから精製されるチトクローム P-450 はいずれも、結合代謝物の生成には関連していないことが示されており、ラッ トの肝ミクロソームに存在する他のチトクローム P-450 アイソザイムがロニダゾール 活性化に関与する可能性があることを示唆している。(参照3)

# (6) 生物学的利用試験(ラット)

豚に[N-methyl-14C]ロニダゾールを3日間混餌投与し、最終投与7日後の筋肉を4 倍量の水を加えてホモジナイズし凍結乾燥した。凍結乾燥した豚筋肉をラットの飼料 に、4対5の割合で混じた飼料(ロニダゾール16μg eq、以下「投与豚由来筋肉混合 飼料」という。)を作製した。一方、対照飼料を、未投与の豚筋肉の凍結乾燥物及び [*N*methyl<sup>-14</sup>C]ロニダゾール 16 μg eq を混ぜて作製した。ラットにこれらの飼料(18 g)を2日間、夜(late in the day)に混餌投与し、尿、糞、呼気、胃腸管及びカーカ ス(皮膚及び胃腸管を取り除いた残渣)中の放射活性濃度を測定した。測定した放射 活性の回収率を表2に示した。

投与豚由来筋肉混合飼料投与群の放射標識ロニダゾールの全体の回収率は 102.78%、対照飼料投与群では91.33%であった。

投与豚由来筋肉混合飼料投与群のラットにおけるカーカス及び呼気に含まれる放射 活性の百分率は、ロニダゾールを添加した対照飼料投与群のラットよりも高かった。 また、豚の筋肉中のメチルアミン遊離残留物(すなわち、ロニダゾール、**N**メチル基 含有誘導体等の化合物)の92%がラットの尿及び糞中から回収され、0.5%未満がカー カス中から回収された。

組織中の放射活性の残留は、薬物に関連した結合残基の形成によるものよりも、放 射標識が生体内成分へ取り込まれたことを反映していると考えられた。(参照 4)

表 2 [N-methyl-14C]ロニダゾール又は投与豚由来筋肉混合飼料を投与したラット からの放射活性の回収率(%)

| 群               | 尿     | 糞     | 呼気    | 胃腸管   | カーカス  | 総計     |
|-----------------|-------|-------|-------|-------|-------|--------|
| 対照飼料            | 44.69 | 39.12 | 3.31  | 1.97  | 2.24  | 91.33  |
| 投与豚由来筋肉<br>混合飼料 | 26.39 | 25.29 | 11.20 | 18.00 | 21.90 | 102.78 |

対照飼料: [N-methyl-14C]ロニダゾール(16 µg eq)+未投与豚由来筋肉+飼料

投与豚由来筋肉混合飼料: [N-methyl-14C]ロニダゾールを投与した豚由来の筋肉(16 µg eq)+飼料

# 2. 残留試験

# (1)残留試験(豚)

豚(体重 20~30 kg、雄雌混合 3 頭/時点)を用いた[N-methyl-14C]ロニダゾールの 1日1回、3日間混餌投与(7 mg/kg 体重/日、混餌濃度 0.006%に相当)による残留試 験が実施された。休薬期間(0(6 時間)、3、7、14、28 及び 42 日)後の各組織中の 総残留濃度を燃焼法により測定した。

各組織中総残留濃度を表3に示した。(参照4)

表 3 豚への[N-methyl-14C]ロニダゾールの3日間混餌投与後における

休薬期間(日) 組織 0 (6 時間) 3 7 14 2842肝臓 10.63 1.151.53 0.440.10 0.06 腎臓 9.37 1.220.850.270.09 0.05筋肉 6.32 0.49 0.520.250.18 0.13 脂肪 0.30 0.250.150.06 1.46 0.05

各組織中の総残留濃度(µg eq/g)

去勢豚(体重約 20 kg、4 頭)を用いた[*N*-methyl-<sup>14</sup>C]ロニダゾールの3日間混餌投 与(6.7~12 mg/kg 体重/日)による残留試験が実施された。休薬6又は72時間後の 各組織中の総残留濃度を測定した。

各組織中の総残留濃度を表4に示した。(参照4)

表 4 去勢豚への[N-methyl-14C]ロニダゾールの3日間混餌投与後における 各組織中の総残留濃度(μg eq/g)

| 休薬期間 (時間)          | (   | 3    | 7   | 2   |
|--------------------|-----|------|-----|-----|
| 投与量<br>(mg/kg体重/日) | 6.7 | 12   | 9.2 | 12  |
| 肝臓                 | 7.8 | 12.3 | 1.6 | 2.4 |
| 腎臓                 | 7.9 | 11.9 | 1.1 | 2.5 |
| 筋肉                 | 5.0 | 8.6  | 0.5 | 1.1 |
| 脂肪                 | 2.5 | 1.3  | 0.4 | 0.2 |

豚(体重約 120 ポンド(約 265 kg)、雌雄計 3 頭/群)を用いたロニダゾールの 7 日 間飲水投与(濃度 0.012%)による残留試験が実施された。休薬 1 及び 3 日後の各組 織(肝臓、腎臓、筋肉及び脂肪)中のロニダゾール濃度を微分パルスポーラログラフ 法(感度 2 ng/g)により測定した。

ロニダゾールは休薬1日後の筋肉のみで検出され、その濃度は平均24 ng/g であった。(参照4)

豚(体重約75 ポンド(約165 kg)、雌雄計3頭/時点)を用いたロニダゾールの7日 間飲水投与(濃度0.012%)による残留試験が実施された。休薬期間(0、1、3、5、7 又は9日)後の各組織(肝臓、腎臓、筋肉及び脂肪)中のロニダゾール濃度を微分パ ルスポーラログラフ法(感度2ng/g)により測定した。

休薬0及び1日後のみで検出可能な量のロニダゾールが得られたが、その他の時点 ではロニダゾールは検出されなかった(表5)。(参照4)

| 組織   | 休薬期間(日) |    |
|------|---------|----|
| 不且不良 | 0       | 1  |
| 肝臓   | ND      | ND |
| 腎臓   | 14      | ND |
| 筋肉   | 3,010   | 80 |
| 脂肪   | 58      | ND |
|      |         |    |

表 5 豚へのロニダゾールの7日間飲水投与後における 各組織中のロニダゾール濃度 (ng/g)

**ND**:不検出

豚(体重約25 ポンド(約55 kg)、雌雄計3頭/時点)を用いたロニダゾールを7週間 (豚の体重が約75 ポンドになるまで)の混餌投与(混餌濃度0.009%)による残留試 験が実施された。休薬期間(0、1、3、5、7又は9日)後の各組織(肝臓、腎臓、筋 肉及び脂肪)中のロニダゾール濃度を微分パルスポーラログラフ法(感度2 ng/g)に より測定した。

休薬0及び1日後のみで検出可能な量のロニダゾールが得られたが、その他の時点 ではロニダゾールは検出されなかった(表 6)。(参照 4)

表 6 豚へのロニダゾールの7週間混餌投与後における

| 組織     | 休薬期間(日) |     |  |
|--------|---------|-----|--|
| 不且不良   | 0       | 1   |  |
| 肝臓     | ND      | ND  |  |
| 腎臓     | 16      | 6   |  |
| 筋肉     | 612     | 152 |  |
| 脂肪     | 20      | 4   |  |
| ND,不捡出 |         |     |  |

各組織中のロニダゾール濃度 (ng/g)

ND:不検出

豚を用いたロニダゾールの 12 週間(豚の体重が約 175(約 386 kg)ポンドになるま で)の混餌投与(混餌濃度 0.009%)による残留試験が実施された。休薬期間(0、1、

3、5、7又は9日)後の各組織中のロニダゾール濃度を微分パルスポーラログラフ法 (感度2ng/g)により測定した。

休薬0及び1日後のみで検出可能な量のロニダゾールが得られたが、その他の時点 ではロニダゾールは検出されなかった(表7)。(参照4)

| 組織       | 休薬期間(日) |    |  |
|----------|---------|----|--|
| 不且和我     | 0       | 1  |  |
| 肝臓       | ND      | ND |  |
| 腎臓       | 1.3     | ND |  |
| 筋肉       | 409     | 9  |  |
| 脂肪       | 4       | ND |  |
| ND : 不検出 |         |    |  |

表 7 豚へのロニダゾールの 12 週間混餌投与後における 各組織中のロニダゾール濃度 (ng/g)

|     |      | -     |
|-----|------|-------|
| (2) | 残留試験 | (七面鳥) |

七面鳥のヒナ(3 週齢)を用いた[*N*-methyl-<sup>14</sup>C]又は[ring-2-<sup>14</sup>C]ロニダゾールの4 日間混餌投与(混餌濃度 0.006%)による残留試験が実施された。休薬期間(0、2、5、 10、14 又は 21 日)後の総残留濃度を測定した。

各組織中の総残留濃度を表8に示した。組織中の総残留濃度は休薬21日後までに 対照群と同程度になった。ロニダゾールの残留の消失に標識部位による差はなかった。 (参照4)

| _  |      |     |      | 和四次国家人 | <i>\[-8 - 18'</i> |      |      |
|----|------|-----|------|--------|-------------------|------|------|
| 組織 |      |     |      | 休薬期間   | 引(日)              |      |      |
|    | 不且和我 | 0   | 2    | 5      | 10                | 14   | 21   |
|    | 肝臓   | 4.5 | 0.5  | 0.18   | 0.05              | 0    | 0    |
|    | 腎臓   | 4.7 | 0.73 | 0.4    | 0.14              | 0.07 | 0    |
|    | 筋肉   | 3.0 | 0.28 | 0.09   | 0.26              | 0.03 | 0.04 |
|    | 脂肪   |     | 0.37 |        |                   |      |      |

表 8 七面鳥への <sup>14</sup>C で標識したロニダゾールの 4 日間混餌投与後における

各組織中の総残留濃度 (ug eq/g)

- : 詳細不明

七面鳥を用いた[N-methyl-14C]又は[ring-2-14C]ロニダゾールの混餌投与(混餌濃度 0.006%)による残留試験が実施された。休薬期間(0、2 又は3 日)後の各組織中の 総残留物、ロニダゾール及びその代謝物 HMMNIの濃度を測定した。ロニダゾール 及び HMMNI の測定には TC 及び電気泳動法を用いた。

各組織中の総残留物、ロニダゾール及び HMMNI の濃度を表 9 に示した。本試験の結果は、それぞれの休薬期間後の総残留濃度及び各標識ロニダゾールを用いて得られたデータとの同等性の両方の点で上述の試験と同様であった。(参照 4)

表 9 七面鳥への  $^{14}$ C で標識したロニダゾールの 3 日間混餌投与後における各組織中の総産図 ロニダゾール及び HMMNI の濃度 (ug og/g)

| の総残留、          | ロニタン | ール及い HMIN | INI の 底皮(µg | g eq/g) |
|----------------|------|-----------|-------------|---------|
| 標識部位及び休薬期間     | 組織   | 総残留       | ロニダゾール      | HMMNI   |
| [N-methyl-14C] | 肝臓   | 4.15      | < 0.02      | 0.0     |
| 休薬0日           | 腎臓   | 4.00      | < 0.03      | 0.0     |
|                | 筋肉   | 2.58      | 1.5         | 0.1     |
| [ring-2-14C]   | 肝臓   | 3.77      | 0.01        | 0.0     |
| 休薬0日           | 腎臓   | 4.43      | 0.09        | 0.02    |
|                | 筋肉   | 2.05      | 1.6         | 0.03    |
| [ring-2-14C]   | 肝臓   | 0.38      | 0.0         | 0.0     |
| 休薬2日           | 腎臓   | 0.9       | 0.0         | 0.0     |
|                | 筋肉   | 0.15      | 0.007       | < 0.01  |
| [ring-2-14C]   | 肝臓   | 0.13      | 0.0         | 0.0     |
| 休薬3日           | 腎臓   | 0.44      | 0.0         | 0.0     |
|                | 筋肉   | 0.07      | 0.0         | 0.0     |

# (3) 長期残留物 (persistent residue) について

代謝及び残留試験の結果から、ラット、七面鳥及び豚の組織中残留物は長期残留す ることが示唆された。ロニダゾールが *in vivo* で広範囲に代謝されることを示す代謝 試験が実施されているが、総残留物の正確な性質は不確定である。しかし、組織中の 残留放射活性の約 50~60%がタンパク質結合残留物として存在していることがデー タから示されている。この放射活性の大半は生体内成分に起因すると考えられ、その ため毒性学的な懸念はないと考えられるが、一部の放射活性が完全なイミダゾール環 を含むタンパク質結合代謝物である可能性は無視できない。 そのため、結合残留物の性質、その生成のメカニズム及びロニダゾール結合残留物 の毒性学的可能性を明らかにするため、以下の一連の試験が実施された。(参照 4)

① 結合残留物の生成メカニズム試験(*in vitro*)

ラット肝ミクロソームを用いて、*in vitro* における結合残留物生成のメカニズムが 調べられた。a.~f. のとおり重要な所見が得られた。(参照 4)

- a. 最大限の結合には嫌気的条件が必要であり、高濃度の酸素は共有結合を阻害する。 タンパク質は主な結合標的物であり、核酸は非常に弱い競合を示す。また、ロニダ ゾール代謝物の20分子につきわずか1分子(5%)がミクロソームタンパク質をア ルキル化する。
- b. NADPH の存在下で、チトクローム P-450 及び P-450 還元酵素がロニダゾールの 還元活性化を触媒する。
- c. タンパク質の非特異的なアルキル化の主な標的はシステインのチオール基である。
- d. 主要なタンパク質付加体はイミダゾール環を保持していたが、カルバメート基及 び4位の水素を失っていた。
- e. システインのチオール残基への付加は2-メチレン基又は環の4位で生じるが、試験結果から付加体は主に2-メチレン基で生じることが示されている(図2)。
- f. この試験の結果、ロニダゾールの*N*ヒドロキシルアミン誘導体が活性体として共 有結合に関与することが示唆された。

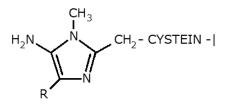



図 2 タンパク質が結合したロニダゾールの付加体の概要構造

# ② ラット及び豚の *in vivo* 試験

ラット及び豚に、異なる部位に標識したロニダゾールを投与し、投与6時間後の肝 臓及び筋肉からタンパク質結合残留物を抽出し、メチルアミン遊離試験、シュウ酸生 成の測定及びクロマトグラフ特性試験が実施された。*in vitro*のラットの肝ミクロソ ーム系由来並びに *in vivo*のラット及び豚由来のタンパク質結合残留物を比較して、 a.~c. が証明された。(参照4)

- a. [methylene<sup>-14</sup>C] ロニダゾールを用いた *in vitro* 及び *in vivo* のタンパク質結合残 留物の酸加水分解物を HPLC で分析すると、ラジオクロマトグラフィーのプロファ イルはほぼ同じであった。
- b. [N-methyl-14C] ロニダゾールを用いた *in vitro* 及び *in vivo*の残留物の酸加水分 解物から生成されたメチルアミンの量は同様であった(*in vitro*のラットの肝ミク ロソームで 97%、*in vivo*のラットで 76%、*in vivo*の豚の肝臓及び筋肉で 94%及び 86%)。また、[ring-4,5-14C] ロニダゾールを用いた試料の酸加水分解で得られたシ

ュウ酸の量も同様であった(*in vitro*のラットの肝ミクロソームで10%、*in vivo*の ラットで8.7%、*in vivo*の豚の肝臓及び筋肉で9%及び6.5%)。

c. 3 種類のタンパク質結合残留物は全て完全なイミダゾール環を保持しているが、4 位の水素を失っていた。

# 3. 遺伝毒性試験

# (1) ロニダゾール

ロニダゾールの *in vitro* 及び *in vivo* の遺伝毒性試験結果を表 10 及び 11 に示した。 (参照 3、7、8)

| 検査項目             | 試験対象                             | 用量                                              | 結果 |
|------------------|----------------------------------|-------------------------------------------------|----|
| 復帰突然変異試験         | Salmonella typhimurium           | 0.03  mmol/L (-S9)                              |    |
|                  | TA1530、TA1532、TA1534、            |                                                 | 陽性 |
|                  | LT2、 <i>hisG46</i>               |                                                 |    |
|                  | S. typhimurium TA1530            | $10{\sim}50 \mu\text{g/plate} \ (\pm\text{S9})$ |    |
|                  | TA1531、TA1532、TA1534、            |                                                 | 陽性 |
|                  | TA1535、TA1536、TA1537、            |                                                 | 物注 |
|                  | TA1538                           |                                                 |    |
|                  | S. typhimurium TA97a             | $0.1 \mu\text{g/mL} \ (\pm \text{S9})$          | 陽性 |
|                  | TA98、TA100、TA102                 |                                                 | 汤住 |
| Luria and        | Klebsiella pneumoniae,           | 0.01 mmol/L                                     |    |
| Delbrück's       | <i>Escherichia coli</i> K12HfrH、 |                                                 | 陽性 |
| fluctuation test | Citrobacter freundii 425         |                                                 |    |

表 10 *in vitro* 試験

表 11 *in vivo* 試験

| 検査項目             | 試験対象                      | 用量                 | 結果    |
|------------------|---------------------------|--------------------|-------|
| 伴性劣性致死試験         | キイロショウジョウバエ               | 10 mmol/L          | 陽性    |
|                  | (Drosophila melanogaster) |                    | 防住    |
| 優性致死試験           | CF1S 雄マウス                 | 50~200 mg/kg 体重/日、 | 陰性    |
|                  |                           | 経口投与               |       |
| 骨髓細胞染色体異         | $CF_1S$ マウス               | 50~200 mg/kg 体重/日、 |       |
| 常試験(Bone         |                           | 単回経口投与(6、24 及      | 陽性 a  |
| marrow cytogenic |                           | び48時間後)又は5日間       | 汤注 "  |
| assay)           |                           | 経口投与               |       |
| 小核試験             | CF1S 雄マウス                 | 50~200 mg/kg 体重/日、 | 陰性    |
|                  |                           | 2又は5日間経口投与         | 医注    |
|                  | Swiss/RIV マウス             | 280 mg/kg 体重/日、単回  | 陰性    |
|                  |                           | 腹腔内投与              | 1云(1) |

a:単回投与 24 時間後の 50 及び 200 mg/kg 体重投与群において染色体形態異常 (abnormal chromosome morphology) 及び染色体再配列 (chromosome rearrangements)、単回投与 48 時間 後の 200 mg/kg 体重投与群において高二倍性 (hyperdiplody) 及び染色体再配列の増加が認められ た。また、5 日間投与では、100 mg/kg 体重/日投与群において染色体形態異常及び染色体再配列、 200 mg/kg 体重/日投与群において染色体形態異常、染色体切断及び染色体再配列の増加が認められ た。

*in vitro* 試験では、細菌を用いた復帰突然変異試験及び fluctuation test の結果は陽 性であった。この陽性結果はジメトリダゾールのように、供試微生物自身のニトロ還 元酵素活性による可能性があったが、この可能性は証明されていない。*in vivo* 試験で は、マウスを用いた優性致死試験及び小核試験の結果は陰性であったが、キイロショ ウジョウバエを用いた伴性劣性致死試験で陽性であり、マウスの骨髄細胞染色体異常 試験で染色体異常誘発作用が報告されるなど相反した結果であった。(参照 5)

以上のことから、食品安全委員会は、マウスを用いた小核試験と染色体異常試験の 結果が相反しているため、ロニダゾールの生体にとって問題となる遺伝毒性について は判断できなかった。

# (2) ロニダゾールのタンパク質結合残留物

ロニダゾールは復帰突然変異試験において変異原性を示したため、ロニダゾール及 びその誘導体を用いた変異原性の体系的な試験が、タンパク質結合残留物の毒性学的 可能性を評価するために論理的方法であると考えられた。遊離の状態及びミクロソー ム結合状態のロニダゾール代謝物並びにタンパク質結合ロニダゾール付加物の分解物 の構造活性相関を立証し、結合残留物に関連した構造的な化合物の活性を評価するた め、復帰突然変異試験が実施された。

ロニダゾール関連化合物の変異原活性を表12に示した。

ロニダゾールのカルバメート基の除去(ジメトリダゾール)により、変異原活性は 1/10に低下した。4位のアルキル基の置換(1,2,4-トリメチル-5-ニトロイミダゾール) により活性はさらに1/10低下した。ニトロ基の還元(1,2-ジメチル-5-アミノイミダゾ ール及び N-アセチルアミノ-1-メチルイミダゾール-2-メタノールカルバメート)によ り変異原活性は完全に失われた。

これらの結果及びモノシステイン-ロニダゾール付加体は変異原活性を持たないという所見に基づき、タンパク質付加体は変異原性を示さないと結論された。(参照4)

| 及共师们口》但对他(中一)                          |                                                                                         |     |
|----------------------------------------|-----------------------------------------------------------------------------------------|-----|
| ロニダゾールの関連物質                            | 構造式                                                                                     | 相対値 |
| ジメトリダゾール                               | $O_2N$ $N$ $CH_3$ $CH_3$ $CH_3$                                                         | 10  |
| モノシステイン-ロニダゾール付加体                      | H <sub>2</sub> N<br>H <sub>2</sub> N<br>HCH <sub>2</sub> S<br>HOOC                      | 0   |
| №アセチルアミノ・1・メチルイミダゾール・<br>2・メタノールカルバメート | $\begin{array}{c} O & CH_3 & O \\ I & I & I \\ CH_3CNH & N & CH_2OCNH_2 \\ \end{array}$ | 0   |

表 12 復帰突然変異試験におけるロニダゾール及びその関連物質の

| 1,2-ジメチル-5-アミノイミダゾール    | $H_2N$ $N$ $CH_3$ $CH_3$ $CH_3$ $CH_3$ | 0 |
|-------------------------|----------------------------------------|---|
| 1,2,4・トリメチル・5・ニトロイミダゾール |                                        | 1 |

ロニダゾールは99%以上が代謝されることから、ラットの肝ミクロソーム、NADPH 生成システム及びシステインを嫌気的条件下で長時間インキュベーションし、ロニダ ゾール残余物、還元された代謝物及びその分解物を含む上清をミクロソームから分離 し、S9 画分の存在下及び非存在下における復帰突然変異試験が実施された。

上清には僅かな変異原活性がみられたが、ロニダゾール残余物に起因するものであった。これらの結果から、還元代謝物及びロニダゾール由来のシステイン付加体は変異原性を示さず、肝臓の酵素による変異原種への活性化は起こらないことが証明された。(参照 4)

*in vitro*のロニダゾールータンパク質残留物から変異原性物質が放出されるかどう かを調べるため、タンパク質分解酵素処理したロニダゾール結合残留物を、感度を向 上させた復帰突然変異試験で調べたが、変異原活性はみられなかった。対照的に、最 大量の加水分解したタンパク質試料を含むアッセイシステムに数 μg のロニダゾール を添加すると変異原活性がみられた。(参照 4)

これらの結合性残留物の変異原活性に関する試験から、結合性残留物はいかなる変 異原作用も持たないことが示されたとして、EMEAはこれらの結合性残留物を、ロニ ダゾール残留物の毒性評価に取り入れなかった。(参照 5)

# 4. 急性毒性試験

各種動物におけるロニダゾールのLD50を表13に示した。(参照3)

| 動物  | 投与経路          | 性別 | LD <sub>50</sub> (mg/kg 体重) |
|-----|---------------|----|-----------------------------|
|     | 経口投与          | 雌  | 2,330、2,440                 |
| マウス | 腹腔内投与         | 雌  | 1,250                       |
|     | 皮下投与          | 雌  | 1,730                       |
| ラット | 経口投与          | 雄  | 2,850                       |
|     |               | 雌  | 3,140                       |
|     | 腹腔内投与<br>皮下投与 | 雄  | 1,140                       |
|     |               | 雌  | 969                         |
|     |               | 雄  | 3,080                       |
|     |               | 雌  | 3,350                       |
| ウサギ | 経口投与          | 雌雄 | 1,250                       |

表 13 ロニダゾールの各種動物における LD50

5. 亜急性毒性試験

(1) 13 週間亜急性毒性試験(ラット)

ラット(FDRL 系アルビノ、雌雄各 15 匹)を用いたロニダゾールの 13 週間強制経 口投与(0、50、100 又は 200 mg/kg 体重/日、週 5 日投与)による亜急性毒性試験が 実施された。毒性所見を表 14 に示した。

全投与群で過度の流涎が認められ、流涎の発現時期は用量に関係しており、200 mg/kg 体重/日投与群では第3週に最も早い出現がみられた。また100 mg/kg 体重/日 以上投与群の一部で過剰な排尿が認められた。100 mg/kg 体重/日以上投与群において、体重増加量の低下がみられた。

投与に起因する眼科的又は血液学的変化はみられなかった。

臓器重量について、200 mg/kg体重/日投与群の雄の肝臓及び脾臓の平均重量が増加 していた。

剖検では、200 mg/kg 体重/日投与群の全例及び 100 mg/kg 体重/日投与群の 11 例の 精巣が、通常の大きさの約半分に縮小していた。対照群及び 50 mg/kg 体重/日投与群 では精巣の大きさに違いはみられなかった。全投与群で盲腸の大きさが増大していた が、病理組織学的に異常な所見はみられなかった。

病理組織学的検査では、200 mg/kg 体重/日投与群に中等度~高度及び 100 mg/kg 体重/日投与群にごく僅か~高度の精細管萎縮がみられた。200 mg/kg 体重/日投与群 では精子又は正常な精子細胞はみられなかった。200 mg/kg 体重/日投与群では、非常 に軽度な肝細胞の肥大が認められた。(参照 3)

食品安全委員会は、本試験において、全投与群に投与量に関係した流涎が認められたことから、無毒性量(NOAEL)を設定できず、最小毒性量(LOAEL)を50 mg/kg体重/日と設定した。

| 投与量<br>(mg/kg 体重/日) | 雄                                                                                                                                | 此隹                                            |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 200                 | <ul> <li>・肝臓及び脾臓の重量増加</li> <li>・精巣サイズの縮小(全例)</li> <li>・肝細胞の肥大(非常に軽度)</li> <li>・精子又は正常な精子細胞の消失</li> <li>・精細管萎縮(中等度~高度)</li> </ul> | ・肝細胞肥大(非常に軽度)                                 |
| 100以上               | <ul> <li>・過剰な排尿</li> <li>・体重増加量の低下</li> <li>・精巣サイズの縮小(11/15 例)</li> <li>・精細管萎縮(ごく僅か~高度)</li> </ul>                               | <ul> <li>・過剰な排尿</li> <li>・体重増加量の低下</li> </ul> |
| 50以上                | ・過度の流涎                                                                                                                           | ・過度の流涎                                        |

表 14 ラットを用いた 13 週間亜急性毒性試験の毒性所見

#### (2) 17 週間亜急性毒性試験(イヌ)

イヌ(ビーグル種、雄雌各 2 匹/群)を用いたロニダゾールの 17 週間経口投与(0、 25、50、100 又は 200 mg/kg 体重/日、週 5 日投与)による亜急性毒性試験が実施さ れた。毒性所見を表 15 に示した。

対照群及び25 mg/kg体重/日投与群では、試験期間を通じて良好な健康状態を維持

した。1週後、200 mg/kg 体重/日投与群の全例を体調不良のため安楽死処置した。こ れらは強直性痙攣を起こし、後弓反張(opisthotonus)、微細振戦(fine tremors)、 運動失調、後躯硬直、口腔内及び歯茎の乾燥、軽度の頻脈並びに呼吸数の低下及び浅 呼吸を示していた。2週後、100 mg/kg 体重/日投与群にも同様の症状がみられ、体調 不良のため安楽死処置した。50 mg/kg 体重/日投与群の4例中3例も、同じ理由から 5及び8週に安楽死処置した。

心電図検査では、投与1週間後の100 mg/kg 体重/日投与群の4例中2例に Q-T 延 長がみられ、200 mg/kg 体重/日投与群の1例のみも同様のパターンを示した。

血液学的及び血液生化学的検査では、100 mg/kg 体重/日以上投与群に血液濃縮が認められた。50 mg/kg 体重/日以上投与群の一部に Glu 及び AST の軽度な増加が認められた。200 mg/kg 体重/日投与群の2例では、血液中の尿素及び ALP が中等度に増加した。

尿検査では、200 mg/kg 体重/日投与群の全例にタンパク尿(albuminurea)及び血 尿がみられた。

剖検及び病理組織学的検査では、精巣低形成が、50 mg/kg 体重/日以上投与群にお ける一般的な所見であった。また、200 mg/kg 体重/日投与群では、心外膜、心筋及び 弁の出血、肝臓、腎臓及び副腎重量の増加、リンパ節の萎縮並びに肝臓及び腎臓の脂 肪浸潤が認められた。(参照 3)

食品安全委員会は、本試験において、50 mg/kg 体重/日以上投与群に体調不良、血清 AST の軽度の増加及び精巣低形成がみられたことから、NOAEL を 25 mg/kg 体重/日と設定した。

| 投与量<br>(mg/kg 体重/日) | 此隹厷隹                               |
|---------------------|------------------------------------|
| 200                 | ・ 強直性痙攣、後弓反張、微細振戦、運動失調等*(1週)       |
|                     | ・Q-T 延長(1 例)                       |
|                     | ・血液尿素及びALPの中等度の増加                  |
|                     | ・タンパク尿                             |
|                     | ・心外膜、心筋及び弁の出血、肝臓、腎臓及び副腎重量の増加、リ     |
|                     | ンパ節萎縮、                             |
|                     | ・肝臓及び腎臓の脂肪浸潤                       |
| 100以上               | ・ 強直性痙攣、後弓反張、微細振戦、運動失調等*(2週)       |
|                     | ・Q-T 延長(2 例)                       |
|                     | <ul> <li>血液濃縮</li> </ul>           |
| 50以上                | ・ 強直性痙攣、後弓反張、微細振戦、運動失調等*(5 又は 8 週) |
|                     | ・Glu、AST の軽度の増加                    |
|                     | ・精巣低形成                             |
| 25                  | 毒性所見なし                             |

表 15 イヌを用いた 17 週間亜急性毒性試験の毒性所見

\*:安楽死処置した個体においてみられた所見

# 6. 慢性毒性及び発がん性試験

(1)2年間慢性毒性試験(イヌ)

イヌ(若年成犬、雌雄各5匹/群)を用いたロニダゾールの2年間経口投与(0、10、

20 又は 40 mg/kg 体重/日、ゼラチンカプセルを使用)による慢性毒性試験が実施された。投与 34 日後、投与継続が困難のため、投与量 40 mg/kg 体重/日を 30 mg/kg 体重 /日に減量した(以下この投与群を「40/30 mg/kg 体重/日」とする)。1 年後の試験終 了時に、剖検及び病理組織学的検査のため雌雄各 2 匹/群を、2 年間の投与後に残りを 安楽死処置した。毒性所見を表 16 に示した。

一般状態については、10 mg/kg 体重/日投与群で、一過性の微細振戦及び軽度の脱 水がみられた。20 mg/kg 体重/日投与群は行動が神経質になり、過敏になった。この 投与群の3例は、試験期間中に死亡・安楽死処置した。40/30 mg/kg 体重/日投与群で は、同様の症状がみられ、より強く、より長かった。また、この投与群では食欲不振、 体重減少、運動失調、間代性及び強直性痙攣を示した。1 年の終了時には、40/30 mg/kg 体重/日投与群の10 例中7 例を死亡又は瀕死状態のため安楽死処置した。

20 mg/kg 体重/日以上投与群では、白血球減少症、赤血球沈降速度の上昇、Hb 及び Ht の減少等の血液学的変化が観察された。

臓器重量については、全投与群で、対照群と比較して精巣の絶対重量が減少した。

剖検では、40/30 mg/kg 体重/日投与群の雄2 例の脳に、視神経交叉 (optic chiasma) 及び淡蒼球 (globus pallidus) 付近の腹側内包に肉眼的病変がみられた。20 mg/kg 体重/日投与群では、軽度の水頭症 (hydrocephalus)、硬膜下血腫 (subdural hemorrhage) 及び脳の淡黄色着色が認められた。20 mg/kg 体重/日以上投与群において、心臓に多発性の出血がみられた。

病理組織学的検査では、20 mg/kg 体重/日以上投与群の脳組織に、小脳の局所出血、 白質軟化症(leukomalacia)、血管内膜増殖を伴う血管新生、神経食現象及び食作用 (phagocytosis)を含む変化がみられた。精巣では、精子形成不全及び精子過少症が 明らかになった。これらの精巣の病変は投与に関連したものであると考えられた。(参 照3)

食品安全委員会は、本試験において、全投与群に中枢神経系の毒性影響として臨床 症状(微細振戦等)がみられたことから、NOAELを設定できず、LOAELを10 mg/kg 体重/日と設定した。

| 投与量<br>(mg/kg 体重/日) | 此准                                                                                                                                                                               |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 40/30               | <ul> <li>・行動過敏、食欲不振、体重減少、運動失調、間代性及び強直性痙</li> <li>攣</li> </ul>                                                                                                                    |
|                     | ・視神経交叉及び淡蒼球付近の腹側内包における病変(雄2例)                                                                                                                                                    |
| 20以上                | <ul> <li>・行動過敏</li> <li>・白血球減少症、赤血球沈降速度の上昇、Hb及びHtの減少等、</li> <li>・水頭症、硬膜下血腫及び脳の淡黄色着色(20のみ)、心臓の多発性出血</li> <li>・小脳局所出血、白質軟化症、血管内膜増殖を伴う血管新生、神経食現象及び食作用を伴う変化、精子形成不全及び精子過少症</li> </ul> |
| 10以上                | ・一過性の微細振戦及び軽度の脱水(10のみ)<br>・精巣絶対重量の減少                                                                                                                                             |

表 16 イヌを用いた2年間慢性毒性試験

\*:安楽死処置した個体においてみられた所見

# (2) 81 週間発がん性試験(マウス)

マウス(Alderly Park 系、雌雄各 60 匹/群)を用いたロニダゾールの 81 週間混餌 投与 (0(2 群)、5、10 又は 20 mg/kg 体重/日) による発がん性試験が実施された。全 被験動物について体重及び摂餌量を毎週測定し、試験終了時には、剖検を行った。病 理組織学的検査を、全被験動物の組織及び肉眼的病変に対して実施した。なお、本試 験は要約のみが提出されており、個々の動物のデータは提出されていない。

試験期間中、全投与群において体重増加量又は摂餌量に影響はみられなかった。ま た、生存及び一般状態にも投与に関連した影響はみられなかった。

剖検では、いずれの群でも投与に起因する肉眼的な病変はみられなかった。しかし、

10 mg/kg 体重/日以上投与群の雌雄に良性及び悪性肺腫瘍を合算した発生率 (combined benign and malignant tumour) に用量依存的な増加が認められた。肺 腺腫/癌の発生の増加は、雌雄とも 20 mg/kg 体重/日で統計学的に有意であった(表 17)。(参照3)

食品安全委員会は、本試験において、非腫瘍性病変に係る詳細な情報が不明である ことから、NOAEL を設定することは適切ではないと判断した。また、20 mg/kg 体 重/日投与群で肺腫瘍の有意な増加がみられたことから、発がん性が示唆された。

| 性別        | 腫瘍の種類 | 投与量(mg/kg 体重/日) |          |            |            |             |  |
|-----------|-------|-----------------|----------|------------|------------|-------------|--|
| 1生万门      |       | 対照群1            | 対照群 2    | 5          | 10         | 20          |  |
|           | 肺腺腫   | 4 (6.7%)        | 3(5%)    | 8 (13.3%)  | 9 (15%)    | 19* (31.7%) |  |
| 雄         | 肺癌    | 3(5%)           | 1 (1.7%) | 2(3.3%)    | 3 (5%)     | 8* (13.3%)  |  |
|           | 合計    | 7 (11.7%)       | 4 (6.7%) | 10 (16.7%) | 12 (20%)   | 27* (45%)   |  |
|           | 肺腺腫   | 1 (1.7%)        | 5 (8.3%) | 3 (5%)     | 8 (13.3%)  | 14* (23.3%) |  |
| 雌         | 肺癌    | 0 (0%)          | 1 (1.7%) | 1 (1.7%)   | 2 (3.3%)   | 6* (10%)    |  |
|           | 合計    | 1 (1.7%)        | 6 (10%)  | 4 (6.7%)   | 10 (16.7%) | 20* (33.3%) |  |
| *: p<0.05 |       |                 |          | n=60       |            |             |  |

表 17 マウスを用いたロニダゾールの 81 週間発がん性試験における 肺腫瘍の発生数(発生率%)

: p<0.05

# (3)95週間慢性毒性/発がん性併合試験(ラット)

ラット(Manor Farm 系アルビノ、雌雄各 42 匹/群)を用いたロニダゾールの 95 週間混餌投与(0、10、20 又は 40 mg/kg 体重/日)による慢性毒性/発がん性併合試験 が実施された。

試験の最初の 52 週間で、ロニダゾールに関連した薬力学又は毒性学的所見はいず れの投与量でも認められなかった。

いずれの投与群の雌雄においても、摂餌量、血液学的検査、血液生化学的検査及び 尿検査に重要な変化はなかった。

40 mg/kg 体重/日投与群で精巣萎縮が観察され、この所見は投与に関連した影響で あると考えられた。

52 週後の 40 mg/kg 体重/日投与群の雄及び全投与群の雌に、良性の乳腺腫瘍の増加

がみられた。また、雌では悪性の乳腺腫瘍が、対照群では 39 例中 0 例であったのに 対し 40 mg/kg 体重/日投与群の雌では 41 例中 5 例、10 mg/kg 体重/日投与群 41 例中 2 例でみられた。このラットの系統における乳腺腫瘍の背景データは提出されず、20 mg/kg 体重/日投与群の雌では乳腺の悪性腫瘍の発生がみられなかったことから、この 悪性乳腺腫瘍の生物学的意義は明確でなかった(表 18)。(参照 3)

食品安全委員会は、本試験において、40 mg/kg 体重/日投与群の雄に精巣萎縮がみられたことから、NOAEL を 20 mg/kg 体重/日と設定した。また、全投与群の雌に良性の乳腺腫瘍の増加がみられたことから、発がん性が示唆された。

表 18 ラットを用いた 95 週間慢性毒性/発がん性併合試験における

| 性別   | 腫瘍の種類     | 投与量(mg/kg 体重/日) |               |               |               |  |
|------|-----------|-----------------|---------------|---------------|---------------|--|
| 卫生力リ | 胆病の理知     | 対照群             | 10            | 20            | 40            |  |
|      | 乳腺腫/乳腺線維腫 | 0/34 a (0%)     | 0/40 (0%)     | 0/40 (0%)     | 5/32 (15.6%)  |  |
| 雄    | 乳腺癌       | 0/34a (0%)      | 0/40 (0%)     | 0/40 (0%)     | 1/32 (3.1%)   |  |
|      | 合計        | 0/34a (0%)      | 0/40 (0%)     | 0/40 (0%)     | 6/32 (18.8%)  |  |
|      | 乳腺腫/乳腺線維腫 | 7/39 a (17.9%)  | 13/41 (31.7%) | 21/41 (51.2%) | 19/41 (46.3%) |  |
| 雌    | 乳腺癌       | 0/39a (0%)      | 2/41 (4.9%)   | 0/41 (0%)     | 5/41 (12.2%)  |  |
|      | 合計 b      | 7/39 a (17.9%)  | 14/41 (34.1%) | 21/41 (51.2%) | 20/41 (48.8%) |  |
|      |           |                 |               |               | n=42          |  |

#### 乳腺腫瘍の発生数(発生率%)

a: 分母は52週後に生存していたラット数。52週以前に死亡したラットに腫瘍はみられなかった。 b: 一部のラットは良性及び悪性腫瘍の両方を有していたため、この欄は乳腺腫/乳腺線維腫及び乳腺癌 の合計ではない。

# (4) 104 週間慢性毒性/発がん性併合試験(ラット)

ラット(SD系、雌雄各 60 匹/群)を用いたロニダゾールの少なくとも 104 週間の 混餌投与(0(2 群)、約5、10 又は 20 mg/kg 体重/日)による慢性毒性/発がん性併合 試験が実施された。また、衛星群(一群雌雄各 15 匹)を設定し、投与 6、13、25、 52 及び 78 週に採血及び尿検査を実施した。投与は、少なくとも 104 週間、剖検が終 了する 108 週まで継続された。病理組織学的検査を、全主試験群の組織に対して実施 した。なお、本試験は要約のみが提出されており、個々の動物のデータは提出されて いない。

試験期間を通じて投与に関連した一般状態の異常はみられなかった。最後の数か月間、20 mg/kg 体重/日投与群で、生存率の有意な低下が認められた。他の投与群における生存率は対照群と同程度であった。試験2年目において10 mg/kg 体重/日以上投与群の雌雄の体重増加量は、対照群と比較して軽度に減少した。

非腫瘍性病変については、20 mg/kg 体重/日投与群において精巣萎縮が増加したのみであった。

腫瘍性病変については、20 mg/kg 体重/日投与群の雄及び 10 mg/kg 体重/日以上投 与群の雌において、乳腺線維腺腫の発生率が有意に増加したのみであった。これらの 腫瘍の発生率を表 19 に示した。(参照 3)

食品安全委員会は、本試験において、10 mg/kg 体重/日以上投与群に体重増加量の

減少がみられたことから、NOAELを5 mg/kg 体重/日と設定した。また、20 mg/kg 体重/日以上投与群の雄及び10 mg/kg体重/日以上投与群の雌に乳腺線維腺腫の増加が 認められたことから、発がん性が示唆された。

| 孔脉脉症脉胆》死生致(无生卒物)   |                 |          |            |             |            |
|--------------------|-----------------|----------|------------|-------------|------------|
| 性別                 | 投与量(mg/kg 体重/日) |          |            |             |            |
| 门主方门               | 対照群1            | 対照群 2    | 5          | 10          | 20         |
| 雄                  | 3 (5%)          | 2 (3.3%) | 3 (5%)     | 6 (10%)     | 8* (13.3%) |
| 雌                  | 45 (75%)        | 42 (70%) | 49 (81.7%) | 53* (88.3%) | 54* (90%)  |
| * · <i>p</i> ≤0.05 |                 |          |            |             | n=60       |

表 19 ラットを用いた 104 週間慢性毒性/発がん性併合試験における 到 胞線維 胞睛の 発生粉 (発生素)()

: p<0.05

JECFA は、イヌを用いた2年間慢性毒性試験[II.6.(1)]及びラットを用いた104 週間慢性毒性/発がん性併合試験 [11.6.(4)] でみられた精巣及び中枢神経系への影 響から、無作用量(NOEL)を 5 mg/kg 体重/日と設定した。また、マウスを用いた 81 週間発がん性試験 [II.6.(2)] 及びラットを用いた 104 週間慢性毒性/発がん性併 合試験 [II.6.(4)] でみられた肺腫瘍及び乳腺腫瘍の増加から、発がん性に対する NOEL を 5 mg/kg 体重/日と設定した。(参照 3)

食品安全委員会は、イヌを用いた2年間慢性毒性試験 [II.6.(1)] 及びラットを用 いた 104 週間慢性毒性/発がん性併合試験 [11.6.(4)] でみられた体重増加量の減少、 精巣及び中枢神経系への影響から、一般毒性に対する NOAEL を 5 mg/kg 体重/日と 設定した。また、マウスを用いた 81 週間発がん性試験 [11.6.(2)] でみられた肺腫 瘍の増加並びにラットを用いた 95 週間及び 104 週間慢性毒性/発がん性併合試験 [11.6.(3) 及び(4)] でみられた乳腺腫瘍の増加から、ロニダゾールには発がん性が示 唆された。

# 7. 生殖発生毒性試験

(1)3世代繁殖試験(ラット)

ラット(SD 系、試験開始時 35 日齢、雄 10 匹及び雌 20 匹/群)を用いたロニダゾ ールの混餌投与(混餌濃度 0、0.02、0.04 又は 0.089% (0、約 25、30 及び 60 mg/kg 体重/日に相当))による3世代(2腹/世代)繁殖試験が実施された。被験物質の投与 を親動物の交配70日前に開始し、3世代に渡って継続した。次世代の親動物は、2産 目の児動物から選択して交配した。1 産目に得られた児動物は、離乳児の検査が終了 した時点で安楽死処置した。

母動物について、行動、外観、体重又は平均摂餌量に変化はみられなかった。投与 に関連した異常は、いずれの投与群の児動物にも認められなかった。3世代に渡る合 計6回の繁殖期のいずれにおいても、受胎能、妊娠期間、生存率及びほ育率といった 指標には、対照群と投与群との間に差はみられなかった。

出生時の児動物の平均体重に影響はみられなかった。0.089%投与群では、対照群又 は 0.02%投与群と比較して、同腹児数が有意に減少した。0.04%投与群でも同腹児数 がやや減少したが、対照群との間で統計学的に有意な差はみられなかった。同腹児数 が少なかったため、離乳児の平均体重は 0.04%以上投与群 <sup>1</sup>でより大きくなった。い ずれの投与群の  $F_{3b}$  児動物にも、関連した肉眼的又は病理組織学的変化はみられなか った。(参照 3)

食品安全委員会は、本試験において、親動物に投与による影響がみられなかったことから、親動物に対する NOAEL を最高用量の 0.089%(60 mg/kg 体重/日に相当)と設定した。また、0.089%投与群で同腹児数が有意に減少したことから、児動物に対する NOAEL を 0.04%(30 mg/kg 体重/日に相当)と設定した。

(2)発生毒性試験(マウス)

妊娠マウス (CF<sub>1</sub>S 系、20 匹/群)の妊娠 6~15 日にロニダゾールを強制経口投与 (0 (2 群)、50、100 又は 200 mg/kg 体重/日)して、発生毒性試験が実施された。

200 mg/kg 体重/日投与群では、対照群と比較して、母動物の平均体重増加量が有意 に低下した。50 及び 100 mg/kg 体重/日投与群における一腹当たりの平均着床数、吸 収数及び生存胎児数並びに一腹当たりの平均胎児体重は、対照群の値とほぼ同じであ った。一腹当たりの平均着床数及び平均生存胎児数は、200 mg/kg 体重/日投与群でや や低下した。

対照群と投与群で得られた全胎児の外表検査では、奇形の誘発は認められなかった。 対照群及び 200 mg/kg 体重/日投与群の内臓及び骨格検査では、奇形の誘発は認めら れなかった。200 mg/kg 体重/日投与群でみられた 4 種類の内臓奇形は同じ胎児でみら れており、自然発生であると考えられた。(参照 3)

食品安全委員会は、本試験において、200 mg/kg 体重/日投与群の母動物に体重増加 量の低下が認められたことから、母動物に対する NOAEL を 100 mg/kg 体重/日と設 定した。一方、胎児には投与による影響はみられなかったことから、胎児に対する NOAEL を最高用量である 200 mg/kg 体重/日と設定した。催奇形性はみられなかっ た。

(3)発生毒性試験(ラット)

妊娠ラット(SD系、20匹/群)の妊娠 6~15日に、試験1では0、50、100及び 200 mg/kg 体重/日、試験2では0、100、150及び200 mg/kg 体重/日の用量でロニダ ゾールを強制経口投与して、発生毒性試験が実施された。

50、100 又は 150 mg/kg 体重/日投与群のいずれにおいても、投与に関連した胚毒性は認められなかった。200 mg/kg 体重/日投与群では、吸収胚数が試験 1 では僅かながら有意に増加したが、このような変化は試験 2 ではみられなかった。

100 mg/kg 体重/日以上投与群では、いずれの試験においても一腹あたりの平均胎児 体重が減少した。100 mg/kg 体重/日投与群では、母動物の平均体重増加量が試験2で 有意に低下した。150 又は200 mg/kg 体重/日投与群では、試験1及び試験2で母動

<sup>&</sup>lt;sup>1</sup> 原文では "40 and 60 mg/kg bw/day" とあるが、高い2 用量を指すと考えられることから、"0.04% 以上投与群"と記載した。

物の平均体重増加量が有意に低下した。

試験1で実施された全群の全胎児の外表検査では、50 mg/kg 体重/日投与群に奇形 は認められなかった。100 mg/kg 体重/日投与群では、重度の水頭症を伴う矮小胎児1 例に小眼球が生じた。200 mg/kg 体重/日投与群では、胎児4例に頭部の奇形がみられ た(小眼球2例、異所性眼球1例、小顎症及び口蓋裂1例)。対照群及び200 mg/kg 体重/日投与群の全胎児並びに100 mg/kg 体重/日投与群で外表奇形がみられた胎児1 例の内臓及び骨格検査では、催奇形性の証拠となるような新たな所見はみられなかっ た。しかし、200 mg/kg 体重/日投与群では、胸骨分節の未骨化、頭頂骨間 (interparietals)、上後頭骨(supraoccipitals)及び頬骨(zygomatics)の不完全骨 化といった骨格変異の発生率が増加した。

試験2で実施された全群の全胎児の外表検査では、奇形の誘発は認められなかった。 対照群の胎児1例に左眼の小眼症が、200 mg/kg体重/日投与群の胎児1例に小顎症を 伴わない頸部の水腫がみられた。二つの対照群と200 mg/kg体重/日投与群で得られ た胎児の約1/3に対する内臓検査では、奇形の誘発は認められなかった。200 mg/kg 体重/日投与群で観察された11種類の奇形は、重度の矮小を含む複数の外表奇形を有 する同一の胎児に観察されたことから、いずれも自然発生奇形と考えられた。200 mg/kg体重/日投与群では、骨格変異及び胸骨分節未骨化の発生率の増加がみられた。 (参照3)

食品安全委員会は、これら2試験において、100 mg/kg 体重/日以上投与群で母動物の体重増加量の低下、100 mg/kg 体重/日以上投与群で胎児体重の減少がみられたことから、母動物及び胎児に対する NOAEL をいずれも 50 mg/kg 体重/日と設定した。催 奇形性はみられなかった。

# (4) 発生毒性試験(ウサギ)

独立した2試験が報告された。

最初の試験では、妊娠ウサギ(New Zealand 種、15匹/群)の妊娠7~15日に、試験1では0、3、10又は30 mg/kg 体重/日、試験2では0、10又は30 mg/kg 体重/日の用量でロニダゾールを強制経口投与して、発生毒性試験が実施された。

3 及び 10 mg/kg 体重/日投与量群では、投与に起因する奇形の誘発、胚毒性又は胎児毒性は観察されなかった。30 mg/kg 体重/日投与群では、母動物の体重増加量及び 胎児の平均体重が有意に低下した。

30 mg/kg 体重/日投与群の胎児に心臓及び大血管の奇形がみられた。ウサギでは、 心大血管系に様々な奇形が自然発生することが知られている。このような奇形を有す る胎児の出現率は、過去7試験の対照群で0.4~2.4%であったのに対して、ロニダゾ ールの2試験では、30 mg/kg 体重/日投与群の胎児における発生率は2.7~2.8%であ った。これらの事実から、ロニダゾールを投与された母動物由来の胎児で観察される 心臓血管奇形は、投与に関連していないと結論づけられた。(参照3)

食品安全委員会は、本試験において、30 mg/kg 体重/日投与群で母動物の体重増加 量及び胎児の平均体重の有意な低下がみられたことから、母動物及び胎児に対する NOAEL を 10 mg/kg 体重/日と設定した。催奇形性はみられなかった。

# III. 食品健康影響評価

# 1. 国際機関等における評価

(1) JECFA における評価

JECFA は、1989 年及び 1994 年の 2 回評価を行っている。

1989年の評価では、慢性毒性試験及び発生毒性試験において、NOELが5 mg/kg 体重/日以上であることが明らかであるとし、NOEL5 mg/kg体重/日及び安全係数200 に基づいて、暫定的な一日摂取許容量(ADI)を0~0.025 mg/kg体重/日と設定した。 安全係数は、ほ乳動物におけるロニダゾールの遺伝毒性試験、発がん性及び他に関連 する毒性影響についての NOELを調べた最近の発がん性試験 2 試験の結果から選定 された。これにはロニダゾールの複数の代謝物に変異原性がないことも影響している。 当時の評価において、JECFA は発がん性試験の個々の動物のデータ提出及び発が んメカニズムを調べた試験成績を1993年までに提出するよう求めた。(参照3) 1994年の評価では求められたデータが提出されなかったため、JECFA は、暫定的

に設定された ADI を延長せず、ADI を設定できないと判断した。(参照 9)

# (2) EMEA における評価

EMEAは、2回評価を行っている。

1回目の評価では、CVMPは、復帰突然変異試験における陽性結果及び最高用量群 のラットの雌における乳腺癌の増殖は除外しても、ロニダゾールを用いた数々の変異 原性試験において得られた曖昧な結果に鑑み、ニトロフラン類においてみられた現実 的な解決方法と同様のものをロニダゾールに採用すること並びにロニダゾール及びニ トロイミダゾール構造を保持した代謝物を含む抽出可能な残留物の暫定の MRL とし て 2 ng/g を容認することを提案し、適用された。(参照 5)

この暫定 MRL は 2 年間という期限が設けられており、マーカー代謝物の特定に関 する更なる情報が求められた。しかし、暫定 MRL の期間満了時に追加情報の提出は なかったため、暫定 MRL の期間は 1994 年の 1 月 1 日に終了し、本剤は MRL が設 定できない成分が掲載される COUNCIL REGULATAION (EEC) No 2377/90 の附属 書 IV<sup>2</sup>に収載され、使用が禁止された。(参照 10)

### 2. 食品健康影響評価

各種遺伝毒性試験より、ロニダゾールは *in vitro*の細菌を用いた復帰突然変異試験及 び fluctuation test で陽性であった。これは供試微生物自身のニトロ還元酵素活性によ る可能性が示唆されたが、この可能性については証明されていない。また、*in vivo*のマ ウスを用いた優性致死試験及び小核試験の結果は陰性であったが、キイロショウジョウ バエを用いた伴性劣性致死試験で陽性であり、マウスの骨髄細胞染色体異常試験で染色 体異常誘発作用が報告されるなど相反した結果であった。マウスを用いた小核試験と染

<sup>&</sup>lt;sup>2</sup> いかなる値においても有害影響の可能性があるため、MRL を設定できない成分が掲載されている。付 属書IVに収載された物質は EU 各国で食用動物への使用が禁止される。(現在の COMMISSION REGULATION (EU) No 37/2010 の Table 2 に該当する。)(参照 6、11)

色体異常試験の結果が相反しているため、ロニダゾールの生体にとって問題となる遺伝 毒性については判断できなかった。

また、マウス及びラットを用いた発がん性試験が3試験実施されている。マウスを用いた発がん性試験では、良性及び悪性の肺腫瘍及び癌がそれぞれ10及び20mg/kg体重/日以上、ラットを用いた発がん性試験2試験では、乳腺腫瘍が10mg/kg体重/日以上の雌で有意に増加し、ロニダゾールの発がん性が示唆された。なお、発がんメカニズムは解明されておらず、遺伝毒性と発がん性の関連性も不明であることから、現時点で評価した知見からは、ロニダゾールの発がん性に閾値が存在するかどうかについては判断できなかった。

ロニダゾールの遺伝毒性を判断できず、発がん性が示唆されたことから、ADIを設定 すべきでないと判断した。

| 動物種        | 試験                        | 投与量<br>(mg/kg 体重/日)                             | 無毒性量等(mg/kg 体重/日)                                |
|------------|---------------------------|-------------------------------------------------|--------------------------------------------------|
| マウス        | 81 週間慢性毒<br>性/発がん性併<br>合  | 0、5、10、20、混餌投<br>与                              | 5<br>良性・悪性肺腫瘍増加                                  |
|            | 発生毒性                      | 0、50、100、200、強<br>制経口投与                         | 100<br>体重増加量減少<br>催奇形性なし                         |
| ラット        | 毒性                        |                                                 | 体重增加量減少、精巣縮小、精細管萎縮                               |
|            | 95週間慢性毒<br>性/発がん性併<br>合   | 0、10、20、40、混餌<br>投与                             | <br>20 雄 : 精巣萎縮                                  |
|            | 104 週間慢性<br>毒性/発がん性<br>併合 | 0、約5、10、20、混餌<br>投与                             | 5<br>体重增加量减少、乳腺腫瘍                                |
|            | 3 世代繁殖毒<br>性              | 0、0.02、0.04、0.89%、<br>混餌投与(0、25、30、<br>60)      |                                                  |
|            | 発生毒性                      | 0、50、100、200、強<br>制経口<br>0、100、150、200、強<br>制経口 | 母動物:100<br>胎児:50<br>母動物の体重増加量減少、胎児体重減少<br>催奇形性なし |
| ウサギ        | 発生毒性                      | 0、3、10、30、強制経<br>口<br>0、10、30、強制経口              |                                                  |
| イヌ         | 17 週間亜急性<br>毒性            | 0、25、50、100、200、<br>経口(週 5 日)                   | 25<br>体調不良、血清 AST 軽度増加、精巣低<br>形成                 |
|            | 2 年間慢性毒<br>性              | 0、10、20、40、経口                                   | <br>10:中枢神経症状                                    |
| ADI        |                           |                                                 | ADI を設定できない                                      |
| ADI 設定根拠資料 |                           |                                                 | NOEL :<br>SF :                                   |

表 20 JECFA における各種試験の無毒性量等の比較

# <別紙1:代謝物/分解物等略称>

| 略称等   | 代謝物/分解物名称                           |
|-------|-------------------------------------|
| HMMNI | 1-メチル-2-ヒドロキシメチル-5-ニトロイミダゾール        |
| —     | 1-メチル-2-カルバモイルオキシメチル-5-アセトアミドイミダゾール |
| —     | 1・メチル・2・カルバモイルメチル・5・アセトアミドイミダゾール    |
| —     | 1-メチル-2-ヒドロキシメチル-5-アセトアミドイミダゾール     |
| _     | イミダゾール                              |

-: 略称なし

<別紙2:検査値等略称>

| 略称等              | 名称                              |
|------------------|---------------------------------|
| ADI              | 一日摂取許容量                         |
| ALP              | アルカリホスファターゼ                     |
| AST              | アスパラギン酸アミノトランスフェラーゼ             |
|                  | [= グルタミン酸オキサロ酢酸トランスアミナーゼ (GOT)] |
| CVMP             | 欧州医薬品審査庁動物用医薬品委員会               |
| EMEA             | 欧州医薬品審査庁                        |
| Glu              | 血清グルコース                         |
| Hb               | ヘモグロビン(血色素)量                    |
| HPLC             | 高速液体クロマトグラフィー                   |
| Ht               | ヘマトクリット値                        |
| JECFA            | FAO/WHO 合同食品添加物専門家会議            |
| $LD_{50}$        | 半数致死量                           |
| LOAEL            | 最小毒性量                           |
| MRL              | 最大残留基準値                         |
| NADH             | ニコチンアミドアデニンジヌクレオチド              |
| NADPH            | ニコチンアミドアデニンジヌクレオチドリン酸           |
| NOAEL            | 無毒性量                            |
| NOEL             | 無作用量                            |
| T <sub>1/2</sub> | 半減期                             |
| TC               | 薄層クロマトグラフィー                     |

# く参照>

- 食品、添加物等の規格基準(昭和 34 年厚生省告示第 370 号)の一部を改正する件(平成 17 年 11 月 29 日付、厚生労働省告示第 499 号)
- 2. The Merck Index, 15<sup>th</sup>, 2013
- 3. JECFA: Ronidazole. Toxicological evaluation of certain veterinary drug residues in food. WHO Food Additives Series, No. 25, 1990, nos 669 on INCHEM.
- 4. JECFA: Ronidazole. Residues of some veterinary drugs in foods and animals, 1989.
- 5. EMEA: Committee for Veterinary Medicinal Products, RONIDAZOLE (1), Summary Report, 1996.
- 6. European Union: COMMISSION REGULATION (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in food stuffs of animal origin.
- 7. M Hite, H Skeggs, J Noveroske, H Peck: Mutagenic Evaluation of Ronidazole. Mutation Research, 1976; 40: 289-304.
- 8. JL Oud, AHH Reutlinger, J Branger: An Investigation into the Cytogenetic Damage Induced By the Coccidiostatic Agents Amprolium, Carbadox, Dimetridazole and Ronidazole. Mutation research, 1979; 68: 179-182.
- 9. JECFA: Ronidazole. Toxicological evaluation of certain veterinary drug residues in food. WHO Food Additives Series, No. 33, 1994, nos 811 on INCHEM.
- 10. EMEA: Committee for Veterinary Medicinal Products, RONIDAZOLE (2), Summary Report, 1996.
- 11. European Union: COUNCIL REGULATION (EEC) No 2377/90 of 26 June 1990 laying down a Community procedure for the establishment of maximum residue limits of veterinary medicinal products in foodstuffs of animal origin.