生体内(in vivo)ゲノム編集の新技術 について ^{第2回遺伝子治療等臨床研究に関する} ^{第2回遺伝子治療等臨床研究に関する} ^{第2回遺伝子治療等臨床研究に関する} ^{第2回遺伝子治療等臨床研究に関する}

© CSLS/The University of Tokyo

資料

3-1

2017年5月15日

第2回遺伝子治療等臨床研究指針の見直しに関する専門委員会 理研 多細胞システム形成研究センター(CDB)

松崎文雄

ゲノム編集:細胞が備えている二本鎖DNA修復機構を利用

ゲノム編集:細胞が備えている二本鎖DNA修復機構を利用

•レポーターの挿入

標的遺伝子配列を特異的に切断する方法

• **Zinc Finger**ヌクレアーゼ

Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S., & Gregory, P. D. (2010) Modified

• TALEN: Transcription Activator-like Effector Nucleases

Joung, J. K., & Sander, J. D. (2013) modified

The CRISPR-Cas9 Nuclease Heterocomplex

• CRISPR/Cas9 system: Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein 9 (Cas9)

CRISPRシステムは元々バクテリアの免疫システムである

Streptococcus pyogenes SF370 type II CRISPR locus

<u>Science.</u> A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.

2012 Aug 17;337(6096):816-21. doi: 10.1126/science.1225829. Epub 2012 Jun 28.

Nature Methods 10, 957-963 (2013)

CRISPRシステムは元々バクテリアの免疫システムである

Streptococcus pyogenes SF370 type II CRISPR locus

CRISPRシステムは特異的DNA配列の切断に応用できる

Jenek et al. Science 2012 Le Cong, et al. *Science 2013*

CRISPR/Cas9システムはどのような動物種のゲノムの配列も切断する。

このシステムを使ったゲノムknock-inにより "ねらったDNA配列を書き換えることが可能である"

The CRISPR-Cas9 Nuclease Heterocomplex

CRISPR/Cas9 systemのguide RNA vectorの工夫

- Spacer RNA \rightarrow guide RNA
- ・Processed tracrRNA とguide RNAを一本につなぐ

Jenek et al. Science 2012

https://www.systembio.com/crispr-cas9-plasmids

DNA修復経路は細胞周期に依存する

問題点: 体の大部分を占める非増殖細胞に対して、ゲノム編集が困難であった!

非相同末端結合 NHEJを利用した遺伝子ノックインにより <mark>非増殖細胞で遺伝子編集</mark>を行う方法 HITIの開発

In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration

Keiichiro Suzuki¹*, Yuji Tsunekawa²*, Reyna Hernandez–Benitez^{1,3}*, Jun Wu^{1,4}*, Jie Zhu^{5,6}, Euiseok J. Kim⁷, Fumiyuki Hatanaka¹, Mako Yamamoto¹, Toshikazu Araoka^{1,4}, Zhe Li⁸, Masakazu Kurita¹, Tomoaki Hishida¹, Mo Li¹, Emi Aizawa¹, Shicheng Guo⁸, Song Chen⁸, April Goebl¹, Rupa Devi Soligalla¹, Jing Qu^{9,10}, Tingshuai Jiang^{6,11}, Xin Fu^{5,6}, Maryam Jafari⁶, Concepcion Rodriguez Esteban¹, W. Travis Berggren¹², Jeronimo Lajara⁴, Estrella Nuñez–Delicado⁴, Pedro Guillen^{4,13}, Josep M. Campistol¹⁴, Fumio Matsuzaki², Guang–Hui Liu^{10,15,16,17}, Pierre Magistretti³, Kun Zhang⁸, Edward M. Callaway⁷, Kang Zhang^{5,6,18,19} & Juan Carlos Izpisua Belmonte¹

Nature 540, 144–149 (01 December 2016) doi:10.1038/nature20565Received 10 February 2016 Accepted 27 October 2016 Published online 16 November 2016

米国ソーク生物学研究所の主要メンバー 左からJun Wu、Reyna Hernandez-Benitez、 鈴木啓一郎、Juan Carlos Izpisua Belmonte

理化学研究所 多細胞システム形成研究センターCDB 非対称細胞分裂研究チーム 恒川雄二 研究員

http://www.riken.jp/pr/press/2016/20161117_1/

HITI法の工夫

- 挿入遺伝子の端に認識配列を逆方向に挿入
 - → Cas9がリクルートされるゲノムの標的付近に開裂した挿入用DNAが濃縮
 - → 挿入DNAが正しい方向に挿入されない限り、限りなく認識配列が再切断され、挿入可能。

<u>Homology-Independent Targeted Integration (HITI)</u>法がNHEJに基づきながらも、効率良くノックインする仕組み

Salk Institute 鈴木啓一郎氏より

様々なgene knock-in 法の効率比較: 増殖するHEK293 細胞を用いた

in vivo(生体)における神経細胞(分裂しない)でのHITI法の検討

Suzuki* Tsunekawa* et al, Nature 2016

アデノ随伴ウイルスを用いたHITIシステムのマウス個体への導入

アデノ随伴ウイルス AAV: ヘルパー依存型でエンベロープを持たない一本鎖DNAウイルス (<u>Helper Free Cell System</u>もある)

特徴:受容体:インテグリン 感染細胞を選ばない 非増殖細胞、増殖細胞の両方に感染 作用期間が長い 免疫原性をほとんど持っていない。 P1レベルの施設でも取扱いが可能

アデノ随伴ウイルスを用いたHITIシステムによるマウス 成体での局所的遺伝子改変

<u>In vivo brain</u>

3.5% / cell 10.6% / infected cell

In vivo muscle

Target: Tubb3

8 weeks old mouse

アデノ随伴ウイルスを用いたHITIシステムによる 成体マウスの全身での遺伝子改変

アデノ随伴ウイルスを用いたHITIシステムによる 成体マウスの全身での遺伝子改変

高力価アデノ随伴ウイルスを用いたHITIシステムによる 成体マウスの全身での遺伝子改変

単一細胞分析: Single cell analysis 感染細胞を個々に調べる

次世代シークエンスを用いたHITIの安全性テスト

Indel (%)

#	Chromosome	Position	Sequence	PAM	% indel (MLE)			
On_Target	chr6		GAGGAACTTCTTAGGGCCCGCGG	CGG	18.9170			
OTS1	chr13	9534141	C AGGAACTTCTTAGG T CCCGTGG	TGG	0.0001	I		
OTS2	chr14	85157555	CGGAAACATCTTAGGGCCCGGGG	GGG	0.0001	I		
OTS3	chr2	74925639	GGAGT ACTTCTTAGGGCCCACAG	CAG	0.1400	I		
OTS4	chr15	69159526	CAGGAACATATTAGGGCCCAGGG	GGG	0.0001	I		
OTS5	chr12	100704049	CAGGAACATGTTAGGGTCCGAGG	AGG	0.2150	I		
OTS6	chrX	91969928	CAGGAACGTGTTCGGGCCCGCGG	CGG	0.0001	I		
OTS7	chrX	92043584	CAGGAACGTGTTCGGGCCCGCGG	CGG	0.0001	I		
OTS8	chr10	17440682	CAGGAACTTCTTAGTGCCCTAAG	AAG	0.0040	I		
OTS9	chr18	25702486	GTGGACCTTTTCAGGGCCCGTGG	TGG	0.7840			
OTS10	chr18	9212447	GAGGCCCCTCTTCGGGCCCCGGAG	GAG	0.3880	1.00		
OTS11	chr14	46862821	GTGGAGCATCTTAGGGCCAGTGG	TGG	0.0001	I		
OTS12	chr12	31652981	GAG <mark>C</mark> AACAACTTAGGGCCTGCAG	CAG	0.1970			

Retinitis pigmentosa (RP) 網膜色素変性症

- 比較的によく見られる遺伝性網膜疾患の一つ で日本人の罹患率は四千から八千分の一と言 われている。
- 進行性に網膜の竿体光受容体細胞と網膜色素
 上皮細胞が障害される。
- 現在までに54個の原因遺伝子が見つかっている (RP1, RP2, MERTK など).

http://www.blindness.org/retinitis-pigmentosa

HITIを用いた網膜色素変性症 モデルラットの治療の試み

mRNA

Cas9+HITI

4 %

**

Protein

Cas9+HITI

HITI法によるの網膜色素変性症。モデルラットの治療ー結果

HITI法によるの網膜色素変性症 モデルラットの治療ー結果

OKN recording (8 weeks rats)

Normal

Retinitis model

Treated by HITI method

HITI法による遺伝子挿入のまとめ

アドバンンテージ

- 非分裂細胞への効率のよい遺伝子ノックインがHITI法によって可能になった。
- 理論上かなり多くの遺伝病が将来治療の対象となる。
- 例:遺伝子活性が存在しないため引き起こされる劣性遺伝の遺伝病 突然変異のため、病原タンパク質が産生されてしまう疾患など
- 全身性のAAV感染を行わない限り、子孫個体に受け継がれることはない。

問題点

● off target効果:標的遺伝子以外の箇所が切断され、ドナー配列の挿入が起 こり得る。

改善策

- off targetの少ないgRNAを選ぶ。
- EspCas9の様にoff target effectが起きにくいCas9を使う。

参考資料

2015年の技術水準における各ヌクレアーゼの比較^[27]

	ZFN	TALEN	Platinum TALEN	CRISPR/Cas9
DNA結合ドメイン	ジンクフィンガー	TALE	TALE(改良型)	ガイドRNA
DNA切断ドメイン	Fokl	Fokl	Fokl	Cas9
部位選択の自由度	限定的	中程度	中程度	ほぼ全部
ヌクレアーゼの構築	困難	中程度	容易	容易
インビボでの試験	困難	困難	困難	容易
ターゲッティング効率	小さい	中程度	大きい	大きい
オフターゲット	小さい	小さい	小さい	大きい
多重化	困難	困難	困難	容易
実験効率	中程度	中程度	大きい	大きい
実験費用	中程度	中程度		低価格