Multi-residue Method II for Agricultural Chemicals by LC-MS (Agricultural Products)

1. Analytes

See Table 4.

2. Instrument

Liquid chromatograph-mass spectrometer (LC-MS)

Liquid chromatograph-tandem mass spectrometer (LC-MS/MS)

3. Reagents

Use the reagents listed in Section 3 of the General Rules except for the following.

Reference standards of agricultural chemicals: Reference standards of known purities for each agricultural chemical.

4. Procedure

1) Extraction

i) Grains, beans, nuts and seeds

Add 20 mL of water to 10.0 g of sample and let stand for 15 minutes.

Add 50 mL of acetonitrile, homogenize, and filter with suction. Add 20 mL of acetonitrile to the residue on the filter paper, homogenize, and filter with suction. Combine the resulting filtrates, and add acetonitrile to make exactly 100 mL.

Take a 20 mL aliquot of the extract, add 10 g of sodium chloride and 20 mL of 0.01 mol/L hydrochloric acid, and shake for 15 minutes. Let stand, and discard the separated aqueous layer.

Add 10 mL of acetonitrile to an octadecylsilanized silica gel cartridge (1,000 mg) and discard the effluent. Transfer the acetonitrile layer to the cartridge, elute with 2 mL of acetonitrile, collect the total eluates, dehydrate with anhydrous sodium sulfate, and filter out the anhydrous sodium sulfate. Concentrate the filtrate at below 40°C and remove the solvent. Dissolve the residue in 2 mL of acetone/triethylamine/*n*-hexane (20:0.5:80, v/v/v).

ii) Fruits, vegetables, herbs, tea and hops

For fruits, vegetables and herbs, weigh 20.0 g of sample. For tea and hops, add 20 mL of water to 5.00 g of sample and let stand for 15 minutes.

Add 50 mL of acetonitrile, homogenize, and filter with suction. Add 20 mL of acetonitrile to the residue on the filter paper, homogenize, and filter with suction. Combine the resulting filtrates, and add acetonitrile to make exactly 100 mL.

Take a 20 mL aliquot of the extract, add 10 g of sodium chloride and 20 mL of 0.01 mol/L hydrochloric acid, and shake. Let stand, and discard the separated aqueous layer.

Dehydrate the acetonitrile layer with anhydrous sodium sulfate, and filter out the anhydrous sodium sulfate. Concentrate the filtrate at below 40°C and remove the solvent. Dissolve the residue in 2 mL of acetone/triethylamine/*n*-hexane (20:0.5:80, v/v/v).

2) Clean-up

Add 5 mL each of methanol and acetone to a silica gel cartridge (500 mg) sequentially, and discard the effluents. Add 10 mL of *n*-hexane and discard the effluents. Transfer the solution obtained in 1) to the cartridge, add acetone/triethylamine/*n*-hexane (20:0.5:80, v/v/v) and discard the effluents. Wash the container which had the solution obtained in 1) with 2 mL of acetone/methanol (1:1, v/v), transfer the washing to the silica gel cartridge, elute with 18 mL of acetone/methanol (1:1, v/v), concentrate the eluate at below 40°C and remove the solvent. Dissolve the residue in methanol to make exactly 4 mL, and use this solution as the test solution.

5. Calibration curve

Prepare standard solutions (acetonitrile) of each agricultural chemical. Mix them, prepare solutions (methanol) of several concentrations. Inject 5 μ L of each standard solution to LC-MS or LC-MS/MS, and make calibration curves by peak-height or peak-area method.

6. Quantification

Inject 5 μ L of the test solution to LC-MS or LC-MS/MS, and calculate the concentration of each agricultural chemical from the calibration curves made in **5**.

7. Confirmation

Confirm using LC-MS or LC-MS/MS.

8. Measurement conditions

Column: Octadecylsilanized silica gel, 2-2.1 mm in inside diameter. 150 mm in length and $3-3.5 \ \mu m$ in particle diameter

Column temperature: 40°C

Mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

Flow rate: 0.2 mL/min

Mobile phase A: 5 mmol/L ammonium acetate solution

Mobile phase B: 5 mmol/L ammonium acetate-methanol solution

Time (min)	Mobile phase A (%)	Mobile phase B (%)
0	85	15
1	60	40
3.5	60	40
6	50	50
8	45	55

17.5	5	95
30	5	95
30	85	15

Ionization mode: ESI

Major monitoring ions (m/z): See Table 4.

Expected retention time: See Table 4.

9. Limit of quantification

See Table 4.

Note that the table shows examples of limits of measurement (ng), not limits of quantification.

10. Explanatory note

1) Outline of analytical method

The method consists of extraction of each agricultural chemical from sample with acetonitrile, salting out under acidic condition, dehydration, clean-up with an octadecylsilanized silica gel cartridge for grains, beans, nuts and seeds, (omit for fruits, vegetables, herbs, tea and hops), clean-up with a silica gel cartridge, and quantification and confirmation using LC-MS or LC-MS/MS.

2) Notes

- i) Table 4 list the analytes for which this method is applicable in the order they appear in the Japanese syllabary. Note that the maximum residue limits (MRLs) defined for some agricultural chemicals include not only the parent compounds, but also their metabolites or other transformation products, which are inapplicable to this method. Isomers with different retention times are listed as separate "Analytes".
- ii) This method does not ensure simultaneous analysis of all of the analytes listed in the Table 4. In advance, confirm that degradation or interference does not occur as the result of interaction between the target analytes.

iii) If the quantity of sodium chloride (10 g) is too large to add to the acetonitrile extract, it may be reduced so long as saturation is achieved. Because the agricultural chemicals have highly polar character, shake the extracts thoroughly to dissolve sodium chloride.

- iv) Concentration and complete removal of the solvent should be performed under a gentle stream of nitrogen.
- v) Because some agricultural chemicals are slightly soluble in acetone/triethylamine/n-hexane (20:0.5:80, v/v/v), wash with eluting solvent, (2 mL of acetone/methanol (1:1, v/v)) after washing operation in clean-up with a silica gel cartridge.
- vi) Depending on the sensitivity of the LC-MS or LC-MS/MS, it may be necessary to dilute the test solution with methanol.

- vii) Because some agricultural chemicals are particularly unstable in methanol, LC-MS/MS analysis should be performed immediately after preparation of a test solution. The standard solutions used to determine the calibration curves should be prepared just prior to use. Do not leave the test solutions in the autosampler rack at room temperature for a long time.
- viii) Matrix-matched calibration or standard addition may be required to obtain accurate measurement results.
- ix) Because the limit of quantification differs depending on the instrument used, the concentration rate of the test solution, and the injection volume, it may be necessary to optimize the conditions.

11. References

None

12. Type

С

	Analytes		Monitoring ions for LC-MS (m/z)_					Monitoring ions for LC/MS/MS (m/z)											Limit of measurem		
Agricultural Chemicals			Positive mode Negative mode							N	(ng)										
		RRT	Quant.	Conf.	Quant.	. Conf.		Precursor		Product (quantification)		Product (confirmation)		Precur sor	Product (quantification)		Product (confirmation)		LC-M S	LC-MS/MS	
2,4-D	2,4-D	0.73			-161		-163							-219	-161		-125		0.025	0.15	
MCPA	MCPA	0.73			-141		-199							-199	-141		-199		0.007	0.118	
MCPB	МСРВ	0.97			-227	-141								-227	-141		-227		0.278	0.012	
Ioxynil	Ioxynil	0.73			-370	-126								-370	-127		-215		0.001	0.003	
Acifluorfen	Acifluorfen	1.04			-360	-316								-360	-316		-195		0.031	0.023	
Azimsulfuron	Azimsulfuron	0.52			-423		-424	425		182		139							0.116	0.005	
Iodosulfuron methyl	Iodosulfuron methyl	0.72	508	509				508		167		508							0.011	0.004	
Imazaquin	Imazaquin	0.54	312	267				312		267	199	128	86						0.001	0.001	
Imazosulfuron	Imazosulfuron	0.54			-411	-413		415		156		78		-411	-229		-154	-153	0.017	0.079	
Ethametsulfuron-methyl	Ethametsulfuron-methyl	0.66	411	412				411		196		168							0.001	0.003	
Ethoxysulfuron	Ethoxysulfuron	0.83	399	400				399		261		218							0.002	0.002	
Clodinafop acid	Clodinafop acid	0.9			-310		-238	312		266		238							0.007	0.016	
Clofencet	Clofencet	0.6	279	261				279		261		166							0.004	0.024	
Cloprop	Cloprop	0.64			-199	-127								-199	-127		-71		0.088	0.023	
Cloransulam-methyl	Cloransulam-methyl	0.81	430	398				430		398	370	153							0.008	0.006	
Chlorimuron-ethyl	Chlorimuron-ethyl	0.8			-413		-415	415		186		83							0.018	0.003	
Chlorsulfuron	Chlorsulfuron	0.55	358	360				358		141		167							0.008	0.005	
4-Chlorophenoxyacetic acid	4-Chlorophenoxyacetic acid	0.55			-185	-127								-185	-127		-185		0.117	0.011	
Cyclanilide	Cyclanilide	0.92			-272	-160								-272	-160		-228		0.005	0.002	
Diclosulam	Diclosulam	0.84	406	161				406		161		378							0.017	0.003	
Cyclosulfamuron	Cyclosulfamuron	0.99	422	444				422		261	139	218	69	-420	-265		-78		0.008	0.002	
Diclomezine	Diclomezine	1.21	255	257				257	255	140	89	158	75	-253	-182		-40		0.255	0.087	
Dichlorprop	Dichlorprop	0.86			-233	-161								-233	-161		-125		0.057	0.012	
Cinosulfuron	Cinosulfuron	0.48	414	436				414		183		157	83	-412	-154		-66		0.011	0.002	
Gibberellin	Gibberellin	0.48			-345	-143								-345	-143		-239	-221	0.066	0.055	
Sulfentrazone	Sulfentrazone	0.85			-387		-385	387		307		146							0.017	0.146	
Sulfosulfuron	Sulfosulfuron	0.59			-469		-470	471		211		261							0.001	0.007	
Thidiazuron	Thidiazuron	0.84			-219	-100		221		102		128		-219	-100				0.002	0.002	
Thifensulfuron-methyl	Thifensulfuron-methyl	0.5	388	167				388		167		126	56						0.013	0.001	
Triasulfuron	Triasulfuron	0.62	402	404				402		167		141							0.008	0.009	
Triclopyr	Triclopyr	0.81			-254	-196								-254	-196		-218		0.132	0.006	
Triflusulfuron-methyl	Triflusulfuron-methyl	0.92	493	264				493		264		96							0.005	0.001	
Trifloxysulfuron	Trifloxysulfuron	0.72			-436		-437	438		182		257							0.007	0.003	
Tribenuron-methyl	Tribenuron-methyl	0.56	396	418				396		181	155	364		-394	-153		-55		0.058	0.003	
Naptalam	Naptalam	0.66			-290	-246		292		144		149		-290	-246		-142		0.02	0.016	
1-Naphthaleneacetic acid	1-Naphthaleneacetic acid	0.63			-185	-141								-185	-141		-185		0.486	0.073	

Table 4. Multi-residue Method II for Agricultural Chemicals by LC-MS (Agricultural Products)

		1	1	I	1	1	T	1	1		1			1	1	1				
Haloxyfop	Haloxyfop	1.08	362	316				362		316		288	91						0.01	0.002
Halosulfuron methyl	Halosulfuron methyl	0.69			-433	-435		435		182		83		-433	-252		-154	-78	0.02	0.005
Pyrazosulfuron-ethyl	Pyrazosulfuron-ethyl	0.66	415	437				415		182	181	139	83	-413	-154		-232		0.029	0.002
Fenhexamid	Fenhexamid	1.18	302	304				302		97	96	55		-300	-264		-249		0.037	0.005
Flazasulfuron	Flazasulfuron	0.54	408	430				408		182	181	227	139	-406	-154		-251		0.011	0.001
Primisulfuron-methyl	Primisulfuron-methyl	0.93			-467			491		264		250		-467	-226	-225	-175	-126	0.009	0.008
Fluazifop-butyl	Fluazifop acid	0.91	328	350				328		283	282	255	254	-326	-254		-206		0.027	0.023
Flumetsulam	Flumetsulam	0.44	326	129				326		129		326	109						0.008	0.005
Fluroxypyr	Fluroxypyr	0.48			-253	-195								-253	-195		-233		0.421	0.116
Prosulfuron	Prosulfuron	0.84			-418			420		167		141		-418	-139		-138	-107	0.009	0.006
Propoxycarbazone-sodium	Propoxycarbazone	0.55	399	416				421	399	180	115	264	134	-397	-156		-113		0.047	0.007
Bromoxynil	Bromoxynil	0.57			-276	-79								-276	-81	-78.8	-276		0.002	0.011
Florasulam	Florasulam	0.55	360	129				360		129		360	82						0.012	0.003
Penoxsulam	Penoxsulam	0.73			-482			484		195		164							0.01	-
Bensulfuron-methyl	Bensulfuron-methyl	0.91	411	433				433	411	179	148	278	181	-409	-154		-254		0.009	0.004
Fomesafen	Fomesafen	1.04			-437	-195								-437	-195		-316	-222	0.008	0.005
Foramsulfuron	Foramsulfuron	0.51	453	475				453		182		254	83	-451	-296		-267		0.068	0.005
Forchlorfenuron	Forchlorfenuron	1	248	129				248		129		93							0.004	0.001
Mecoprop	Mecoprop (MCPP)	0.85			-213	-141								-213	-141		-71		0.028	0.005
F	Mecoprop (MCPP-P)	0.85			-213	-141								-213	-141		-71		_	0.036
Mesosulfuron-methyl	Mesosulfuron-methyl	0.59	504	526				504		182		306	83	-502	-267		-347		0.066	0.003
Metosulam	Metosulam	0.73	418	420				420	418	176	174	189	140	-416	-179		-66		0.017	0.004
Metsulfuron-methyl	Metsulfuron-methyl	0.43	382	404				382		168	167	198	57	-380	-139		-107		0.015	0.047

•The compounds are listed in the order of the Japanese syllabary.

•Relative retention time (RRT) is the relative value when isoxaflutole (retention time: 15-18 min.) is 1. The RRT above shows the average values obtained from two to five measurement environments (which have same measurement conditions such as a type of the column, mobile phase, flow rate, temperature, but different instruments).

•Monitoring ions in bold italic font are for quantification (Quant.); the others are for confirmation (Conf.).

•The limit of measurement is the value at S/N=10 when a standard solution is injected into an LC-MS or LC-MS/MS. The limits of measurement were obtained from one or two laboratories, and the lower value was adopted.

•For the limit of measurement of the agricultural chemicals which show both positive ion and negative ion as a monitoring ion, the lower value is adopted as the limit of measurement.

•When 5µL of a test solution for fruits and vegetables prepared by the described method is injected into an LC-MS(/MS), 0.05 ng corresponds to 0.01 ppm.