Commissioned by the Ministry of Health, Labour and Welfare Project to Enhance the Radiation Exposure Dose Reduction Measures for Works Relating to the Decommissioning of TEPCO's Fukushima Daiichi Nuclear Power Plant

Good Practices in Radiation Exposure Dose Reduction Measures

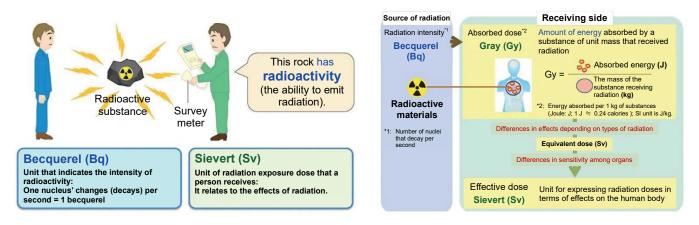
Issued in February 2023

Table of Contents of Good Practices in Radiation Exposure Dose Reduction Measures

Tab	le of Contents	2
1.	Fundamental knowledge on radiation and radioactivity	3
(1)	Units of radiation and radioactivity	3
(2)	Principles for radiation exposure protection	4
2.	1F Site Operation Zone Control	5
	1F site operation zone status	5
3.	Good Practices	7
(1)	Efforts to reduce radiation exposure related to the in-depth investigation inside the Unit 1 primary containment vessel	8
(2)	Analysis of specimens collected during the investigation of the inside of the Unit 2 reactor well using a portable remote laser analyzer (portable LIBS system).	10
(3)	Introduction of an improved anorak for full-face mask	12

Fundamental knowledge on radiation and radioactivity

(1) Units of radiation and radioactivity

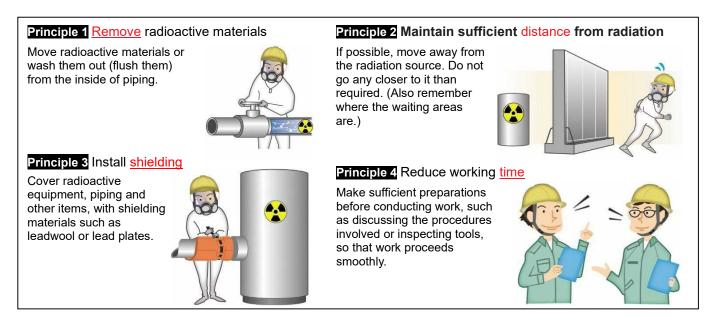

Radioactive substances emit radiation to the surroundings. Radiation includes alpha (α) rays, beta (β) rays, gamma (γ) rays, and others. Gamma rays have strong penetrating power and are the primary cause of external exposure. Alpha rays are known to be helium nuclei composed of two protons and two neutrons, which are ejected at high velocity. Beta rays are electrons emitted from atomic nuclei. Atomic nuclei in an unstable state, with high energy, emit γ -rays immediately after emitting α -rays or beta-rays in order to become stable.

The table below summarizes the units of radiation exposure. Roughly speaking, units of measurement of radiation are divided into two types: the absorbed dose, which represents the energy absorbed by a substance on receiving radiation; and the equivalent dose and effective dose, which represent the effects of radiation on human bodies. Absorbed dose is a physical quantity used for both humans and objects. Effective dose is a unit for expressing stochastic effects, such as human cancer and genetic effects.

		Unit	Definition		
Unit of radioactivity		Becquerel Bq	The number of radioactive decays per second (number/second).		
	Absorbed dose	Gray Gy	The amount of radiation energy absorbed in matter. A dose of 1 Gy corresponds to 1 joule (J) of energy absorbed by 1 kilogram (kg) of matter.		
Unit for measuring	Equivalent dose	Sievert Sv	The dose for each tissue or organ, measured in order to evaluate the effects of radiation exposure on the tissue or organ. Equivalent dose = absorbed dose × radiation weighting factor		
radiation exposure	Effective dose	Sievert Sv	The value obtained by multiplying the equivalent dose of an organ or tissue by the tissue weighting coefficient (due to differences between organs and tissues). Dose for evaluating the stochastic effect of cancer or other diseases on the entire human body: Effective dose = Σ (equivalent dose × tissue weighting factor)		

Radioactivity is the ability of a radionuclide to transform into another nucleus (called disintegration or decay). It is measured in the unit of Becquerel (Bq). Radioactive substances are materials with the power to emit radiation. Radioactivity is an ability. So we can say, "The concentration of radioactivity of substances with a weight of 2 kg and a radioactivity of 100 Becquerels is 50 Bq/kg."

A statement such as, "It was contaminated with <u>radioactivity</u>" or "<u>Radioactivity</u> was released" does not make good sense. The correct representation is that "Radioactive <u>substances</u> were released. The <u>radioactivity</u> of the released <u>substances</u> is 100 Bq."



Material provided by the Ministry of the Environment of Japan; "BOOKLET to Provide Basic Information Regarding Health Effects of Radiation (2020)".

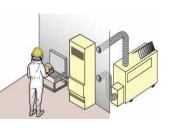
(2) Principles for radiation exposure protection

Reducing external exposure

To reduce external exposure, it is important to understand the following four principles of radiation exposure protection.

Preventing internal exposure

To prevent internal exposure, it is important to wear the required personal protective equipment so that radioactive materials are not taken into the human body. Measures must also be put in place to prevent radioactive materials from being blown around in the air, and to contain (and limit) any contamination and stop it spreading (dispersing).


Principle 1 Clearly outline contamination zones

Clearly outline contamination zones and ensure full control and management of access to the zone. Cover any objects being removed from the contamination zone with a sheet or similar material to prevent spreading (dispersing) contamination.

Principle 3 Use equipment and materials

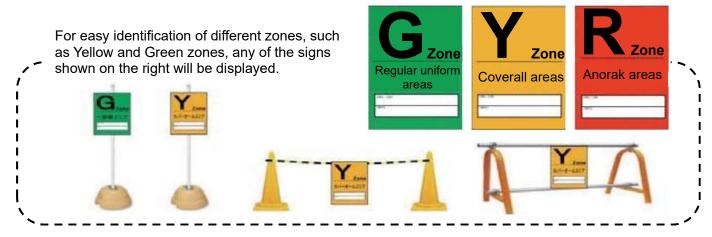
For work in areas where there is a risk of dust being blown around, use temporary shelters or exhaust fans with filters.

Principle 2 Wear protective equipment Wear the required personal protective equipment. Fit the respiratory protective equipment properly, so that there are no leaks.

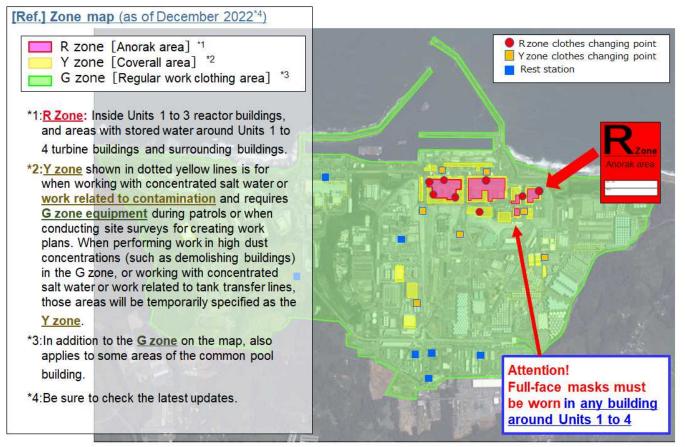
Principle 4 Move to safety

When leaving the working area, check and remove any radioactive contamination on the body. Before removing protective equipment (masks, protective clothing, gloves, etc.), first wipe them off to prevent radioactive substances being taken into the body. Be sure to decontaminate them, and then remove them when undergoing the contamination checks. In the event of injury, move to an uncontaminated area immediately.

1F Site Operation Zone Control

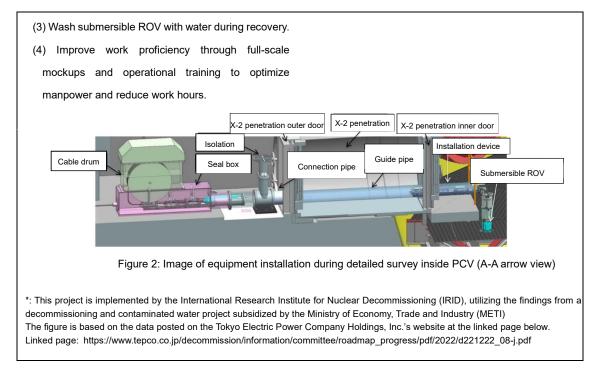

1F site operation zone status

Controlled zones are classified into the following three classes, according to contamination level.


	Zone	Protective Equipment			
Red zone (And • Inside Units 1 to 3 • Peripheral areas v		 Full-face mask Anorak Work boots (for R zone) Helmet (for R zone) Cotton gloves + rubber gloves 			
Yellow zone (Coverall	 Inside buildings that include water treatment facilities (such as desalination units, multi-nuclide removal facilities) Work in areas around tanks that contain concentrated salt water or strontium-treated water*¹, and work that involves the handling of transport lines to tanks. 	 Full-face mask Coverall Work boots (for Y zone) Helmet (for Y zone) Cotton gloves + rubber gloves 			
areas)	 Around Units 1 to 4 buildings Specified as required to suit work environment (such as inside Units 5 and 6 buildings, parts of storage areas for high- radiation exposure dose rubble) 	 Half-face mask Coverall Work boots (for Y zone) Helmet (for Y zone) Cotton gloves + rubber gloves 			
Areas except the ab March 30, 2017.	egular uniform areas) bove: changed from Y to G on and after rea of Units 1 to 4 buildings and slope faces	 DS2 mask Site clothing, regular work clothing*² Work boots (for G zone) Helmet (for G zone) Cotton gloves + rubber gloves, or work gloves 			
Inside important a	nti-seismic buildings and inside rest area				

*1: Excluding work that does not involve the handling of concentrated salt water, tank patrolling, field surveys during work planning, observation visits, etc.

*2: Certain light work (such as patrolling, monitoring, and transportation of items brought in from outside the premises) (Taken from the website of Tokyo Electric Power Company Holdings, Incorporated.)


(Material provided by Tokyo Electric Power Company Holdings, Incorporated.)

(Material provided by Tokyo Electric Power Company Holdings, Incorporated, in December 2022.)

Good Practices

Location		Category							
Inside reactor building	RB			1	Time				
Inside turbine building	тв			2	Distance	Good F	Practice	es in Radiation	
R ZONE	R			3	Shielding	-		se Reduction	
					Removing			sures	
Y ZONE	Y	RB	5	4	radiation source		mout		
G ZONE	G			U	5	Remote- control, robot			
	Ŭ			Ľ	operation				
	_			6	Preventing spread of				
Other	Z			7	contamination Other	No.		4- (1)	
		Effecte to a					inventionet	ion incide the Unit 4 minors	
Title					on exposure relat	led to the in-depth	investiga	ion inside the Unit 1 primary	
		containme							
Work locat	ion							primary containment vessel)	
Overviev	v						-	nvestigation of the inside of	
		the prima	y contain	imen	t vessel using a	submersible ROV.		After	
						Implemen	-	Implementation	
Assessme					Population radiation	16.12		2.40	
(Qualitativ		Effects		e	xposure dose				
quantitativ	e)				(man-Sv) Person time				
				(person-days)		—		—	
Good Pract									
Descriptio									
-								primary containment vessel	
				-		sement floor insid	e the PC∖	/* to confirm the situation in	
detail, including	•	,				nviranmant with	etainadu	ator we decided to conduct	
					-			ater, we decided to conduct e (hereinafter "submersible	
	Ũ				, , , , ,			pedestal and the interior of	
the pedestal.	aics (Junace	oru		vey a large area c			
	e RO\	/ is deploy	ed for su	vev	and collection us	ing the access ro	ute establ	ished in the X-2 penetration	
				-		-		nd the X-2 penetration). The	
, following measure		,					0.	, ,	
(1) Remotely	oper	rate the s	submersil	ole	D(N)/and	ration room in the			
provide on-	(1) Remotely operate the submersible ROV and provide on-site work instructions from low-dose								
areas (including the operation room in the seismic on the 2nd floor									
isolation bui	isolation building and the large item loading entrance								
on the 2nd f	on the 2nd floor).								
(2) Perform decontamination and install shielding in									
area around X-2 penetration									
					Figu	e 1: Location of X-2 per	netration on t	ne 1st floor of Unit 1 reactor building	

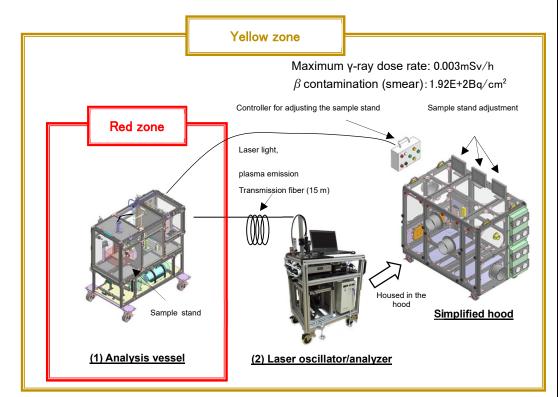
Edited by Hitachi-GE Nuclear Energy, Ltd.

Location		(Category							
Inside reactor building	RB			1 Time						
Inside turbine building	тв			2 Distance		Good P	ractice	es in Radiation		
R ZONE	R		2,	3 Shielding	1	Expos	ure Do	se Reduction		
Y ZONE	Ŷ	RY	R.Y	R.Y	5,	4 Removin 4 radiation source	U U		Meas	sures
G ZONE	G	, -	6	5 Remote- control, r operation	obot 1					
Other	z		U	6 Preventin spread o contamir 7 Other	f	No.		4- (2)		
		Analysis	of spe	cimens col	lected	during the in	vestiga	tion of the inside of		
Title		the Unit	2 react	or well usir	ng a po	ortable remot	e laser	analyzer (portable		
		LIBS sys	IBS system).							
Work locat	ion	66-kV sv	-kV switchyard							
		The portable remote laser analyzer (portable LIBS system) that we								
		developed was used to analyze test specimens (including deposits and								
		duct components) collected during the investigation of the inside of the								
Overviev		Unit 2 reactor well. In this analysis, the applicability of 1F was also								
Overview	v	evaluated by taking measures against contamination of the LIBS system,								
		evaluating the radioactive contamination due to diffusion of dust generated								
		by laser irradiation, and taking measures against worker radiation								
		exposure	e, such	as control	ling an	alyzers by re		peration.		
						Before Implemen		After Implementation		
Assessment (Qualitative / quantitative)		Effects		cts Radiation exposure dose (mSv)				0.04		
quanta ()				Person (person-o				30		
Good Practice										
Descriptio	on									
●Purpose										
Analysis of	test	specime	ns (incl	uding depo	osits ar	nd duct com	oonents) and other materials		

collected during the investigation of the inside of the Unit 2 reactor well using the "portable remote laser analyzer (portable LIBS* system)" that we developed.

*LIBS: Abbreviation for laser-induced breakdown spectroscopy. A technique for analyzing the wavelength of plasma emission light induced by laser irradiation.

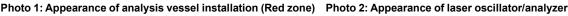
Measures to reduce radiation exposure


- The portable LIBS system consists of (1) an analysis vessel and (2) a laser oscillator/analyzer (Fig. 1). The analysis vessel, which handles samples with high dose rates, was installed in the Red zone (Photo 1), and the laser oscillator/analyzer in the Yellow zone (Photo 2). The sample stand in the analysis vessel was adjusted and laser oscillation/analysis was performed by remote control to reduce the radiation exposure of analysis workers.

- The sample chamber of the analysis vessel was simply sealed with acrylic boards and the air was exhausted through filters (HEPA/ULPA filters, and activated carbon) to prevent external contamination.

- As measures against contamination of the LIBS system, the laser oscillator/analyzer was housed in a simple acrylic hood and then cured.
- •Effects of radiation exposure reduction measures, etc.

Analysis work was carried out by remote control and the minimum number of personnel engaged in work. We believe that these measures to reduce radiation exposure dose were effective. In addition, we found no contamination in the set of equipment that we brought in, achieving the original target.


For the first time, a portable LIBS system was applied to the 1F site to demonstrate remote analysis work. In the future, this analysis is expected to make a significant contribution to measures for reducing radiation exposure through remote analysis in no-entry areas with high dose rates and elevated contamination.

Edited by Japan Atomic Energy Agency

Location			Category						
Inside reactor building	RB			1	Time	Good Practices in Radiation Exposure Do			
Inside turbine building	ТВ			2	Distance		Reduction Measures	•	
R ZONE	R	R,Z		3	Shielding				
Y ZONE	Y		6	4	Removing radiation source				
G ZONE	G	,_		5	Remote-control, robot operation				
Other	\bigcirc			6	Preventing spread of contamination			4 (0)	
(Ra)	(z)			7	Other	No. 4- (3)		4- (3)	
Title Introduction			f an improved anorak for full-face mask						
Work location				_					
Overview		We introduced an anorak (protective equipment) that can cover a full-face mask and a full-face mask with an							
Overview		electric fan to prevent internal intake of radioactive materials when removing the full-face mask.							
Assessmen	t					Before Implemer	ntation	After Implementation	
(Qualitative	/	Effects		Radiation exposure dose (mSv)		-		_	
quantitative)				Person time (person-days)		-		_	
Good Practice									
Description									
Purpose									
In operations in	highly	contaminate	ed co	ndi	tions, such as those	performed in contamina	ated buil	dings, contaminants adhere	

to the surface of a worker's face when removing a mask after work. In response to this issue, we introduced radiation protection equipment (an anorak) that can cover the full-face mask, as one of the measures to prevent internal intake of radioactive materials.

Mask type	FY2021	Initiatives for FY2022				
Full-face mask manufactured by Company A	Current model Anorak for full-face mask in use since October 2021. (12,000 pieces purchased)	Anorak for improved full-face mask	Matters to be examined - Consider the specifications of an anorak according to the shape and size of the full-face mask. In addition, consider the specifications of an anorak for full-face mask designed for a full-face mask with an electric fan. - Consider the number of anoraks needed. - Study the materials for the anorak face section to prevent fogging when wearing an anorak for full-face mask. - Create an anorak prototype.			
Full-face mask manufactured by Company B	Not yet started We have modified company A's anorak for full-face mask for common use and are conducting trial fit tests. Targeted start of operation is the second half of 2022.	Reviewed the material of the anorak face section. Can be worn with full-face masks made by both manufacturers. "5,000 pieces purchased	Establish trial fitting test conditions and conduct trial fitting tests of the prototype. Trial fitting test conditions Checked for fogging in the face section in the large high- and low-temperature test chamber First test Testing was conducted at extreme room temperature settings.			
Full-face mask with an electric fan manufactured by Company A	Not yet started We are conducting trial fitting tests and are considering measures against togging of anorak.	electric fan	Environment assuming summer (at a room temperature solaring). Environment assuming summer (at a room temperature of 31°C and at a humidity of 92%) - Second test Environment assuming summer (at a room temperature of 21°C and at a humidity of 92%) Environment assuming winter (at a room temperature of 21°C and at a humidity of 68% to 78%)			
Full-face mask with an electric fan manufactured by Company B	The target date for the start of operation is the second half of 2022.	The structure is different from	To be considered in the future that of Company B's full-face mask with an electric fan; shared use is not allowed.			

[Characteristics]

< Worn over a full-face mask >

- Can be worn over all the full-face masks that we use.

- The filter section (intake) is rubber-drawn and the exhaust section is cut out so as not to obstruct the breathing passage.

 The entire head and about 60~70%* of the full-face mask part are covered by the anorak, preventing contaminants from adhering to the mask during work.

 The shield section is processed so that it does not fog up due to heat from perspiration, etc. (antifogging film)
 Exposed area varies depending on the mask type.

< Worn over a full-face mask with an electric fan >

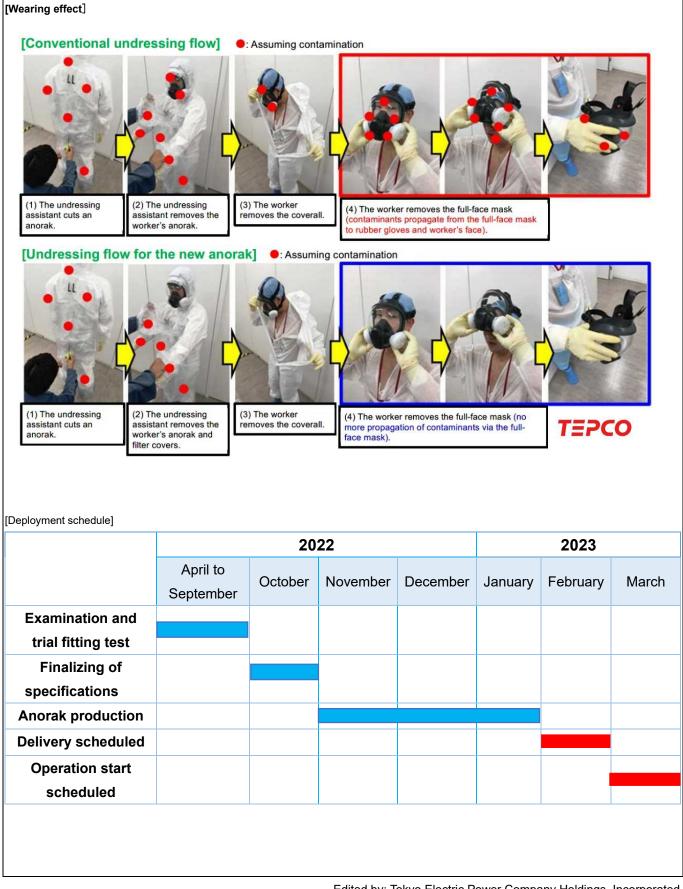
- Can be worn over some full-face masks with an electric fan that we use.

- The filter unit section (intake) is rubber-drawn and the exhaust section is cut out so as not to obstruct the breathing passage.
- The entire head and about 80% of the full-face mask part are covered by the anorak, preventing contaminants from adhering to the mask during work.

- The shield section is processed so that it does not fog up due to heat from perspiration, etc. (antifogging film)

Conventional anorak

The full-face mask is not covered by an anorak.


Contaminants adhere to the surface of the full-face mask during work.

After work, the contaminated full-face mask is removed.

There is a risk of contaminants adhering to the face when removing the full-face mask.

Improved full-face covering anorak

Edited by: Tokyo Electric Power Company Holdings, Incorporated.

Good Practices

Issued in February, 2023 Commissioned by the Ministry of Health, Labour and Welfare Project to Enhance the Radiation Exposure Dose Reduction Measures for Works Relating to the Decommissioning of TEPCO's Fukushima Daiichi Nuclear Power Plant Assignee: Japan Atomic Energy Relations Organization 2-3-31, Shibaura, Minato-ku, Tokyo 108-0023, Japan TEL: +81-3-6891-1573 FAX: +81-3-6891-1575