Contents

Executive Summary .. 1

Introduction ... 3

1. Emergency Exposure Dose Control in the TEPCO Fukushima Daiichi Nuclear Power Plant (NPP) · 4
 1.1 Temporary raising of emergency dose limits .. 4
 1.1.1 The increase of emergency dose limits by MHLW Ordinance 2011-23 (Exemption Ordinance) .. 4
 1.1.2 Partial abolition of increased emergency dose limits for new workers 4
 1.1.3 The abolition of the Exemption Ordinance .. 4
 1.2 Problems that occurred after the accident and the responses by MHLW and TEPCO 6
 1.2.1 Personal identification and exposure dose control ... 6
 1.2.2 Respiratory protective equipment and protective clothing ... 8
 1.2.3 Training for new workers ... 10
 1.2.4 Health and medical care system .. 10
 1.2.5 Preliminary review of work plans ... 11
 1.3 Health control at the TEPCO Fukushima Daiichi NPP ... 12
 1.3.1 The status of long term health control at the TEPCO Fukushima Daiichi NPP 12
 1.3.2 Approvals for occupational accidents of worker/injuries .. 13
 1.4 Implementation status of measures against ionizing radiation hazards associated with decommissioning works ... 14
 1.5 Recommendations ... 14
 1.5.1 Personal identification and exposure dose control ... 14
 1.5.2 Respiratory protective equipment and protective clothing ... 16
 1.5.3 Training for new workers ... 18
 1.5.4 Health and medical care system .. 18
 1.5.5 Preliminary review of work plans ... 19
 1.6 Exposure dose distribution of workers at the TEPCO Fukushima Daiichi NPP 21

2. Decontamination Works Resulting from the Accident of the TEPCO Fukushima Daiichi NPP and Necessary Radiation Protection Measures ... 31
 2.1 Radiation protection of workers involved in decontamination works 31
 2.1.1 Radiation protection for workers engaged in decontamination works 31
 2.1.2 Radiation protection for workers engaged in restoration and reconstruction works 31
 2.1.3 Radiation protection for workers engaged in disposal of accident-derived waste 32
 2.2 Outline of ordinances which provide radiation protection during decontamination works and restoration and reconstruction works, etc. ... 32
 2.2.1 Outline of radiation protection measures during decontamination works 32
 2.2.2 Outline of radiation protection measures during restoration and reconstruction works 33
 2.2.3 Outline of radiation protection measures during disposal of accident-derived waste 33
 2.3 Status of the implementation of radiation protection corresponding to decontamination works .. 34
 2.3.1 Results of inspections and instructions provided to employers engaged in decontamination works, etc. .. 34
 2.3.2 Voluntary activities towards compliance with laws and ordinances 34

3. Overview of Guidelines and Notifications ... 35
 3.1 Overview of the Guidelines on Maintaining and Improving Health of Emergency Workers at Nuclear Facilities ... 35
 3.2 Overview of the Ordinance on Prevention of Ionizing Radiation Hazards at Works to Decontaminate Soil and Wastes Contaminated by Radioactive Materials Resulting from the Great East Japan Earthquake and Related Works .. 35
 3.3 Overview of the Guidelines on Prevention of Radiation Hazards for Workers Engaged in Decontamination Works .. 36
 3.4 Overview of the Guidelines on Prevention of Radiation Hazards for Workers Engaged in Works under a Designated Dose Rate ... 37
3.5 Overview of the notice, “Instructions to enhance actions for safety and health management measures for radiation works and emergency works at nuclear facilities” 37
3.6 Overview of the Guidelines on Prevention of Radiation Hazards for Workers Engaged in (Nuclear) Accident-derived Waste Disposal .. 38
3.7 Overview of the establishment of radiation exposure doses registration systems for decontamination and related works ... 39
3.8 Overview of the Guidelines on Occupational Safety and Health Management at the TEPCO Fukushima Daiichi Nuclear Power Plant .. 39

4. Results of Epidemiological Studies on Emergency Workers .. 40
4.1 Overview of the Report of the Expert Meeting on Epidemiological Studies Targeting Emergency Workers at the TEPCO Fukushima Daiichi Nuclear Power Plant 40
4.2 Overview of the report results, Research on Thyroid Gland Examinations, etc. of Workers at the TEPCO Fukushima Daiichi Nuclear Power Plant (Sobue et al. 2014) 40

5. Technical Tour of the TEPCO Fukushima Daiichi NPP for Overseas Media in Japan 42

List of Figure and Tables

Figure 1 Application of the Radiation Exposure Dose Limit after the Completion of Step 2 5
Table 1 Cumulative Effective Dose (by year) ... 21
Table 2 Radiation Exposure Dose Distribution (by month) ... 23
Table 3 Radiation Exposure Dose Distribution (by age) .. 30
Executive Summary

1. Emergency Exposure Dose Control in the TEPCO Fukushima Daiichi Nuclear Power Plant (NPP)

1) Exemption Ordinance
At the time the accident began at the TEPCO Fukushima Daiichi NPP, emergency dose limits of 100 mSv were in effect for the workers based on the Ordinance on the Prevention of Ionizing Radiation Hazards. However, after consideration of the security of the general public and the prevention of expansion of the nuclear disaster, the emergency dose limit in the affected plant was raised to 250 mSv on 14 March 2011 (Exemption Ordinance). On 1 November 2011, the emergency dose limit for new workers was decreased to the original (100 mSv) with some exceptions designated by the Minister of Health, Labour and Welfare. The exemption ordinance was abolished on 16 December 2011 when TEPCO completed step 2 of the road map.

2) Problems that occurred after the accident and the responses by MHLW and TEPCO
The responses and actions to the following 20 cases were taken by the Ministry of Health, Labour and Welfare (MHLW) and TEPCO.
- Related training for new workers (1 case): 1. Insufficient training hours for workers.
- Related preliminary review of work plans (4 cases): 1. Insufficient management systems for developing work plans, 2. Deficiencies of work plans, 3. Insufficient knowledge about contract conditions, 4. Improvement of lodging and meals.

3) Health control at the TEPCO Fukushima Daiichi NPP
MHLW established “Guidelines on Maintaining and Improving Health of Emergency Workers at the TEPCO Fukushima Daiichi NPP” on 11 October 2011. The Guidelines describe “Actions for long-term health control”, “Development of a database for workers who have engaged in emergency works” and “Support provided by the Government”. Based on the guidelines, MHLW and TEPCO are implementing long term health control such as cancer screenings etc., corresponding to the exposure dose values for the workers who had been engaged in the emergency works at the NPP.

4) Implementation status of measures against ionizing radiation hazards associated with decommissioning works
In order to ensure the working conditions as well as the industrial safety and health of workers engaged in decommissioning works at the NPP, the Fukushima Prefectural Labour Bureau provided employers with focused supervision and instruction.

5) Recommendations
On 10 August 2012, in response to the issues of 20 cases, MHLW demanded the employers who operate nuclear facilities to prepare for nuclear accidents that may necessitate emergency works and also to prepare for the actions that may need to be taken when such accidents occurred. This section shows accident preparations, and the actions to be taken at the time of an accident by the employers in response to the directions.

6) Exposure dose distribution of workers at the TEPCO Fukushima Daiichi NPP
The status of the radiation exposure dose was summarized.

2. Decontamination Works Resulting from the Accident of the TEPCO Fukushima Daiichi NPP and Necessary Radiation Protection Measures

1) Radiation protection of workers involved in decontamination works
The Japanese Government has decided to carry out decontamination works and to manage the wastes resulting from decontamination works and clean-up of uncontaminated goods. Prevention of radiological contamination of the workers has required that the Government ensure sufficient radiological protection is provided to them.

The Act on Special Measures Concerning the Handling of Environmental Pollution by Radioactive Materials Discharged by the Nuclear Power Station Accident Associated with the Tohoku District off the Pacific Ocean Earthquake was fully implemented starting from 1 January 2012.

The Nuclear Emergency Response Headquarters and the National Reconstruction Agency revised the classification of the evacuation areas around the TEPCO Fukushima Daiichi NPP into 3 types of areas: 1. Area for which evacuation orders are ready to be lifted, 2. Areas in which the residents are not permitted to live, and 3. Areas where it is expected that the residents will have difficulties in returning for a long time.

Activities for accident-derived waste disposal were subject to the Ionizing Radiation Ordinance; however, this ordinance did not
contain sufficient regulations for employers involved in disposal work. Therefore the Ionizing Radiation Ordinances was amended and the new guidelines were developed that summarize relevant laws and regulations.

2) Outline of ordinances which provide radiation protection during decontamination works and restoration and reconstruction works
The Decontamination Ordinance specifies actions to be taken by the employer to prevent radiation exposure of workers engaged in decontamination of soil, collection of removed soil/waste in the areas contaminated by radioactive materials released from the accident at the NPP. Actions are largely divided into three types, namely actions to reduce exposure, actions to prevent spread of contamination, and education and health care of workers.

The MHLW published the ministerial ordinance which partially revised the Ionizing Radiation Ordinance for Decontamination. It was put into effect on 1 July 2012. The revision focuses on the following points: 1. Work involving contaminated soil with radioactivity higher than 10,000 Bq/kg (designated contaminated soil handling work) shall also be included in the decontamination operation, and 2. the Ionizing Radiation Ordinance for Decontamination shall also be applied to works other than decontamination at areas with an average ambient dose rate higher than 2.5 μSv/h.

The MHLW published a ministerial ordinance to revise the Ionizing Radiation Ordinance for Decontamination and it was put into effect on 1 July 2013. This revision was made in light of the fact that disposal of waste contaminated with radioactive materials discharged by the NPP accident is expected to increase in scale with the progress of decontamination projects. In parallel with the revision, “Guidelines on Prevention of Radiation Hazards for Workers Engaged in the Accident-derived Waste Disposal” were prepared.

3) Status of the implementation of radiation protection corresponding to decontamination works
The Fukushima Prefectural Labour Bureau (PLB) has conducted inspections and given instructions within the jurisdiction of the Labour Standards Inspection Offices to employers in order to ensure proper conditions of employment and safety, and the health and radiation protection of workers engaged in decontamination works, etc.

3. Overview of Guidelines and Notifications
The following guidelines and notifications were issued.
- “Guidelines on Prevention of Radiation Hazards for Workers Engaged in Decontamination Works”
- “Guidelines on Prevention of Radiation Hazards for Workers Engaged in Works under a Designated Dose Rate”
- Improvement of the safety and health management system of radiation and emergency works at nuclear facilities
- “Guidelines on Prevention of Radiation Hazards for Workers Engaged in (Nuclear) Accident-derived Waste Disposal”
- Radiation exposure doses registration systems for decontamination and related works
- “Guidelines on Occupational Safety and Health Management at the TEPCO Fukushima Daiichi Nuclear Power Plant”

4. Results of Epidemiological Studies on Emergency Workers
1) MHLW compiled a report of the expert meeting series held since February 2014 in which discussions were made about how to make plans for epidemiological studies targeting emergency workers concerning radiation effects on human health.

This report describes study target and method, health effect examinations, ascertaining cumulative doses, control of confounding factors, implementation system of studies, study period and evaluation and publication of study results.

2) A report was compiled regarding the Research on Thyroid Gland Examinations, etc. of Workers at the TEPCO Fukushima Daiichi Nuclear Power Plant. The aim of this research was the epidemiological analysis of radiation effects on the thyroid gland by setting an exposed group (emergency workers exposed to radiation exceeding a thyroid equivalent dose of 100 mSv) and a control group (thyroid equivalent dose of 100 mSv or less), performing ultrasonic examinations for both groups and comparing the results. The results of the analysis were to be evaluated from the viewpoint of clinical medicine in terms of radiation effects on the thyroid gland.

5. Technical Tour to the TEPCO Fukushima Daiichi NPP for Overseas Media in Japan
The Ministry of Health, Labour and Welfare (MHLW) has been implementing the Project to Enhance the International Transmission of Radioactivity-Related Information on the Workers at TEPCO Holdings’ Fukushima Daiichi Nuclear Power Plant since the fiscal year 2013 in order to provide accurate information in a timely manner to international organizations and media abroad on the radiation exposure situation at this power plant and the related exposure countermeasures. As part of the project for the fiscal year 2019, MHLW, in cooperation with TEPCO, conducted a technical tour on 13 November 2019 to the TEPCO Fukushima Daiichi NPP for overseas media in Japan.
Introduction

In response to the accident of the Fukushima Daiichi Nuclear Power Plant (NPP) that resulted from the Great East Japan Earthquake on 11 March 2011, the Tokyo Electric Power Company (TEPCO) undertook emergency works to which an emergency dose limit applied. The dose limit for the emergency works, which was originally 100 mSv, was temporarily increased to 250 mSv from 14 March to 16 December 2011, the day on which the Japanese Government declared that the affected plant had been stabilized as explained in Section 1.1.

During the emergency works, the Japanese Government observed various problems with the radiological protection of emergency workers. To regulate the implementation of radiological protection measures, the Ministry of Health, Labour and Welfare (MHLW) issued a series of compulsory directives and administrative guidances to TEPCO.

Based on the experiences and lessons learned, the MHLW recognized that to properly manage radiological exposure should a similar accident occur at another NPP, sufficient measures and systematic preparation for radiological management must be ensured, including the use of an exposure control system; the implementation of an exposure data control system, and worker training and work planning; and the maintenance of stockpiles of dosimeters, personal protective equipment and protective garments.

This document outlines the problems that occurred during the emergency response to the accident and the measures taken by the MHLW and TEPCO in Section 1.2. The recommendations to avoid the recurrence of similar problems are provided in Section 1.5.

Furthermore, the accident at the Fukushima Daiichi NPP released large amounts of radioactive materials. For rehabilitation of the contaminated areas, the Japanese Government decided to carry out decontamination works (e.g., clean-up of buildings and remediation of soils and vegetation) and to manage the wastes resulting from decontamination and unmarketable contaminated goods.

For the radiological protection of the decontamination workers, the Japanese Government needed to establish new regulations because the existing regulations did not fit the “current exposure situations” in which radioactive sources have been scattered in wide areas from the plant. The new regulations aim to set the appropriate protection standards in accordance with the risk of the ambient dose rates, radioactivity concentrations, and types of radionuclides resulting from the NPP accident, which are equivalent to or more than the typical protection standards required in planned situations. This document explains the key issues of the new regulation and guidelines in Section 2, and the established regulations and guidelines are outlined in Section 3.

The seventh edition is updated with new information in Sections 1.3.2 and 2.3, reflecting the latest numeric data and reports. The exposure dose distribution tables in Section 1.6 were thoroughly updated using the latest information of December 2019.

Section 5 summarizes the technical tour conducted on 13 November 2019 as part of its Project to Enhance the International Transmission of Radioactivity-Related Information on the Workers at TEPCO Holdings’ Fukushima Daiichi Nuclear Power Plant.
1. Emergency Exposure Dose Control in the TEPCO Fukushima Daiichi Nuclear Power Plant (NPP)

Emergency works that began in response to the accident of the TEPCO Fukushima Daiichi NPP associated with the Great East Japan Earthquake of 11 March 2011 were undertaken under high radiation levels and extreme conditions for which normal dose control facilities were ill-equipped to deal with, partially due to the station blackout after the tsunami. There were difficulties in recording the cumulative dose, and delays in monitoring of internal exposure due to insufficient exposure control personnel and equipment. Also, in the summer, workers had to work under the blazing sun, while wearing protective clothing, and some suffered heat stroke. From the problems that occurred, MHLW issued a series of compulsory directions and administrative guidance to TEPCO and the primary contractors.

This section explains the lessons learned in exposure dose control at the TEPCO Fukushima Daiichi NPP, and shows necessary preparation for responding to future nuclear accidents that may necessitate emergency works. This section explains:

(a) Problems that occurred after the accident started and the responses by MHLW and TEPCO in Section 1.2;
(b) The status of the long term health care of emergency workers in Section 1.3; and
(c) Future actions based on experiences in Section 1.4.

1.1 Temporary raising of emergency dose limits

1.1.1 The increase of emergency dose limits by MHLW Ordinance 2011-23 (Exemption Ordinance)

At the time the accident started at the TEPCO Fukushima Daiichi NPP, emergency dose limits of 100 mSv were in effect for the workers engaged in emergency works based on the Ordinance on the Prevention of Ionizing Radiation Hazards (hereinafter called Ionizing Radiation Ordinance) under the Industrial Safety and Health Act (Act No.57-1972) for the prevention of health impairment.

However, consideration for the security of the general public and the prevention of expansion of the nuclear disaster, led to the decision to raise the emergency dose limit in the affected plant to 250 mSv from 100 mSv. This was defined in the Exemption Ordinance of Ionizing Radiation Corresponding to the Situation Resulting from the 2011 Tohoku-Pacific Ocean Earthquake (hereinafter the “Exemption Ordinance”, i.e. MHLW Ordinance 2011-23). This Exemption Ordinance was issued on 14 March 2011, and became effective on 15 March 2011.

Concerning the increase of the emergency dose limits, the points below were taken into consideration:

- According to the International Commission of Radiological Protection (ICRP) recommendation, the emergency dose limit for the “emergency exposure situations in the serious accident” should not exceed approximately 500 mSv, with the exception in the case of life saving actions.
- It is recognized that an exposure dose under 250 mSv may not cause acute radiation symptoms.
- The Radiation Council under the Ministry of Education, Culture, Sports, Science and Technology (MEXT) agreed that the dose limit was appropriate.

1.1.2 Partial abolishment of increased emergency dose limits for new workers

On 1 November 2011, the emergency dose limit for new workers was decreased to the original (100 mSv) with some exceptions designated by the Minister of MHLW. Exempted works were listed as the emergency works related to responses for the prevention of the loss of cooling systems of nuclear reactors and for the loss of the function of the facilities to suppress the release of radioactive materials to offsite areas when engaged in the works in the reactor buildings and the immediate vicinity for a possible dose rate exceeding 0.1 mSv/h. For the exemptions, the dose limit for emergency works was set as 250 mSv.

1.1.3 The abolishment of the Exemption Ordinance

The exemption ordinance was abolished when Step 2 of the “Road Map towards the Restoration from TEPCO Fukushima Daiichi NPP Accident”, which aimed to achieve long-term stability of the reactors was completed on 16 December 2011.

The dose limit exemption of 250 mSv was applied until 30 April 2012, for those specialists who are highly trained and experienced in operating the reactor cooling systems and in maintaining the facilities for suppressing the emission of radioactive materials (approximately 50 TEPCO employees). For the 20,000 persons who had been engaged in the emergency works, 167 persons had exceeded the 100 mSv emergency dose (including 146 TEPCO employees).
Figure 1 Application of the Radiation Exposure Dose Limit after the Completion of Step 2

<table>
<thead>
<tr>
<th>Exemption Ordinance</th>
<th>Revised Exemption Ordinance + Article 7 of Ionizing Radiation Ordinance</th>
<th>Articles 4 & 7 of Ionizing Radiation Ordinance + transitional measures for the Ordinance to abolish the Exemption Ordinance</th>
</tr>
</thead>
<tbody>
<tr>
<td>During emergency work period</td>
<td>Workers starting to be engaged in emergency work after November 1</td>
<td>50mSv/year and 100mSv/5 years</td>
</tr>
<tr>
<td>250mSv (Exemption Ordinance)</td>
<td>Workers responding to problems with reactor cooling systems and radioactive materials release suppression systems</td>
<td>Workers engaged in maintaining functions of reactor cooling systems and radioactive materials release suppression systems</td>
</tr>
<tr>
<td>During emergency work period</td>
<td>Workers who have been engaged in emergency work before November 1</td>
<td>During emergency work period</td>
</tr>
<tr>
<td>250mSv (Revised Exemption Ordinance)</td>
<td>Workers who possess highly specialized knowledge and experience that are essential for maintaining functions for cooling reactor facilities and of the radioactive material release suppression system, and who have been exposed to radiation doses more than 100 mSv</td>
<td>100mSv (Article 7 of Ionizing Radiation Ordinance)</td>
</tr>
<tr>
<td></td>
<td>Emergency work period until 30 April 2012</td>
<td>250mSv (Revised Exemption Ordinance)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Limited to TEPCO employees (approx. 50)</td>
</tr>
</tbody>
</table>
1.2 Problems that occurred after the accident and the responses by MHLW and TEPCO

The problems that occurred for twenty cases are classified into the five categories shown below.

1) Personal identification and exposure dose control (6 cases)
 (1) Insufficient exposure dose control system in the exposure dose control department
 (2) Insufficient numbers of personal dosimeters
 (3) Deficiencies in dosimeter-lending management
 (4) Delay of radiation exposure doses notification to workers
 (5) Delay of internal exposure monitoring
 (6) Unexpected occurrence of workers who could not be contacted

2) Respiratory protective equipment and protective clothing (4 cases)
 (1) Exceeding emergency exposure dose limit
 (2) Exceeding exposure dose limit for women
 (3) Improper use of respiratory protective equipment
 (4) Improper protective garments

3) Training for new workers (1 case)
 (1) Insufficient training hours for workers

4) Health and medical care system (5 cases)
 (1) Establishment of the medical care system at the affected plant
 (2) Prevention of heat stroke
 (3) Instruction to conduct special medical examinations
 (4) Establishing patient transport systems from the affected plant
 (5) Long-term health care program

5) Preliminary review of work plans (4 cases)
 (1) Insufficient management systems for developing work plans
 (2) Deficiencies of work plans
 (3) Insufficient knowledge about contract conditions
 (4) Improvement of the lodging and meals

The responses and actions to these twenty cases taken by MHLW and TEPCO are described in the following sections.

1.2.1 Personal identification and exposure dose control

(1) Insufficient exposure dose control system in the exposure dose control department

As the exposure control systems that were normally used became inoperable after the tsunami, a significant amount of manual work was required, such as making dosimeter-lending records, inputting dose data and name-based collection and calculation of individual exposure doses. Although the work was eventually taken over by the corporate offices, its progress was delayed due to the many manual records that had to be written down. These factors resulted in a substantial delay in the task to accumulate individual exposure doses.

In response to the above, the following actions were taken.

Actions taken by MHLW
- MHLW provided guidance for the consolidation of the exposure administration (22 July).
- MHLW directed organization of a dedicated team to survey workers with whom contact had been lost (10 August).

Actions taken by TEPCO
- TEPCO increased the number of staff members in the radiation control department of the corporate offices, inputted data regarding the information in the dosimeter lending record managed at the NPP, and calculated the dose data using spreadsheet software, in accordance with directions. TEPCO was able to submit a report on radiation exposure doses at the end of the subsequent month to MHLW, starting with the data from September.
- The primary contractors established a systematic control organization for exposure control in their corporate offices and reported to MHLW on the status of the exposure dose control on a monthly basis.

(2) Insufficient numbers of personal dosimeters

Many personal alarm dosimeters (PADs) became inoperable after the tsunami. Due to the shortage of PADs, only one PAD was given per work group during the period of 15–30 March 2011. TEPCO said it had selected the groups working in areas where exposure was expected to be almost constant. However, using the dose of representative workers could have overlooked some extreme exposures of individual workers because highly radioactive contaminated waste was widely dispersed during this period.

In response to the above, the following actions were taken.

Actions taken by MHLW
- MHLW instructed TEPCO to provide each worker with a PAD (31 March).

Actions taken by TEPCO
- TEPCO obtained PADs from other NPPs and fitted every worker with a PAD (1 April).
- TEPCO obtained 4,100 PADs in total for management of the affected plant and 2,200 PADs were made available at J-Village for lending use (as of 17 November).

(3) Deficiencies in dosimeter-lending management

As the normal operating procedures to access controlled areas could not be followed due to the tsunami, TEPCO implemented paper-based dosimeter-lending management, and workers were required to write down their names, affiliations, and radiation exposure doses in the paper-based lending records. However, deficiencies and incorrect information in the records made it difficult to identify individuals and compile name-based consolidated records of doses.

In response to the above, the following actions were taken.

Actions taken by MHLW
- MHLW demanded that TEPCO obtain basic information on workers, issue access permits with IDs, and conduct management of entry/exit (23 May).
- MHLW instructed TEPCO to attach a photo to the access permit (7 July).
Delay of radiation exposure dose notification to workers

In addition to the above, MHLW issued the instructions stated below on 29 October 2012, as a solution to the issue that the lower exposure dose was falsely recorded by covering the dosimeter with a lead plate:

(a) Check the management system of the exposure dose data.
(b) Use the protective garments (Tyvek coveralls) with a transparent chest pocket.
(c) Increase the accuracy of dose monitoring by limiting the wearing of glass badges solely during working hours.
(d) Record the higher reading of a PAD or a glass badge.
(e) Set the alarm as close as to the reasonable estimated maximum doses as possible.
(f) Notify workers of their radiation exposure doses by providing written documentation.
(g) Exchange workers with a high cumulative radiation exposure in a job to workers with a low cumulative radiation exposure, and ensure close communication between the employers and the workers who had received radiation exposure close to the dose limit.

4) Delay of radiation exposure dose notification to workers

The normal dose notification system was inoperative due to the tsunami. It took time to manually input dose data which resulted in TEPCO falling behind notifying primary contractors. In addition, the receipts printing system of radiation exposure doses at the time of returning dosimeters was not functioning. Thus, it became difficult for workers to know their own cumulative exposure.

In response to the above, the following actions were taken.

Actions taken by TEPCO

- TEPCO started issuing a "worker identification card" with an ID number at the seismically isolated building (14 April), and at J-Village (8 June); it started writing ID numbers in the dosimeter-lending records.
- TEPCO started identifying individuals based on official documents at J-Village and issuing an access permit with photo ID (29 July).
- TEPCO started using workers’ identification cards in combination with the access permit (8 August).

MHLW identified that there were certain discrepancies between the dose evaluated by the primary contractors and the dose by TEPCO.

6) Re-evaluation of Internal Dose Assessments

It was noticed that there were significant discrepancies between internal dose assessments of emergency workers made by TEPCO and those reported by primary contractors, doses which were reported to MHLW in April 2013.

In response to the above, the following actions were taken.

Actions taken by MHLW

- MHLW demanded that TEPCO measure internal exposure for emergency workers on a monthly basis (23 May 2011).
- MHLW demanded that TEPCO promote internal exposure monitoring and report on the status (22 July).
- MHLW issued warnings of violation of the law to TEPCO and to the employers who had worked in March and had not had their internal exposure measured once within every three months (30 and 31 August).

Actions taken by TEPCO

- TEPCO determined the intake dose as that on 12 March in principle. TEPCO opened the WBC center at J-Village (10 July 2011) and increased the number of WBCs by borrowing three "in-vehicle" type WBCs from JAEA, and purchased new ones. TEPCO secured 11 WBCs in total (18 October).
- TEPCO assessed and determined committed dose with the support of JAEA and NIRS. Monthly monitoring became possible from September.
MHLW demanded that TEPCO ask the primary contractors for cooperation and release the information about missing workers, by name, on TEPCO’s website (20 June 2011).

MHLW demanded that TEPCO correct the problem of the missing individuals, such as by verifying with other primary contractors groups and checking for overlaps of similar names (13 July).

MHLW demanded the primary contractors consolidate exposure control and add a photo to each worker's identification card (22 and 29 July).

MHLW directed TEPCO to organize a dedicated team to survey workers who could not be contacted (10 August).

Actions taken by TEPCO

- TEPCO, in cooperation with the primary contractors’ offices on site, found missing workers one by one by checking the original records, checking for an overlap in similar names, having them confirmed by the primary contractors, making use of professional investigation agencies, and making those missing individuals’ names public. However, ten individuals are still missing.

1.2.2 Respiratory protective equipment and protective clothing

(i) Exceeding emergency exposure dose limit

The assessment of internal exposure revealed that 6 emergency workers exceeded the dose limit of 250 mSv (revealed on 10 June; 678 mSv was the highest). This presumably occurred because the workers did not use the charcoal filter cartridge in the respiratory protective equipment, and ate and drank in the main control room, where the concentration of radioactive materials had increased after the hydrogen explosion (12 March 2011)

In response to the above, the following actions were taken.

Actions taken by MHLW

- MHLW instructed TEPCO that the workers who had worked in the main control room right after the hydrogen explosion, and those whose radiation exposure dose had tentatively exceeded 100 mSv should be stopped from undertaking any radiation work until their doses were determined. TEPCO was also instructed to immediately exclude the 12 workers whose tentative doses had exceeded 200 mSv from emergency works (3 June, 7 June, and 13 June 2011).

- MHLW performed on-site inspections (7 June and 11 July) and demanded that TEPCO correct violations, these were making workers continue at their job when having a dose in excess of 250 mSv (10 June), and failing to require that workers use effective respiratory protective equipment and failing to prohibit them from eating and drinking in contaminated areas (14 July).

Actions taken by TEPCO

- TEPCO excluded the relevant workers from the work that might cause exposure until their doses were determined, and excluded those whose exposure dose exceeded 200 mSv from any work at Fukushima Daiichi NPP in accordance with instructions (reported on 13 June 2011).
(2) Exceeding exposure dose limit for women

The assessment of internal exposure revealed that 2 female workers had exceeded the dose limit of 5 mSv in March 2011 (revealed on 27 April; 17 mSv was the highest). While the female workers had been engaged in support tasks in the seismically isolated building since the accident occurred (11-23 March), the flow of radioactive materials into the building could not be avoided due to the distortion of the entrance door caused by the hydrogen explosion. It should be noted that local exhaust ventilation equipment was later installed and the windows were shielded with lead.

In response to the above, the following actions were taken.

Actions taken by MHLW
- MHLW performed an on-site inspection (27 May 2011) and demanded that TEPCO correct violations which had caused female workers to be exposed in excess of 5 mSv in March (30 May).
- MHLW also instructed TEPCO to ensure exposure dose control for all workers, monitor their health regularly at the site, and to assess the internal exposure of the 2 female workers after excluding them from the work.

Actions taken by TEPCO
- TEPCO decided not to assign women to tasks in the area of the affected plant.

(3) Improper use of respiratory protective equipment

TEPCO failed to provide sufficient explanation with the instructions on how to wear respiratory protective equipment in the education of new workers. Thus, there were still workers who received internal exposure, even in June.

(a) Improper fitting of respiratory protective equipment

The survey on fitting respiratory protective equipment conducted on 26 September indicated that the leakage rate of respiratory protective equipment was particularly high for those wearing glasses (56% at the highest, 17% on average).

(b) Neglecting to attach filters

One of the workers of a primary contractor was found working near Unit 2 without a charcoal filter cartridge on his full face mask (13 June 2011). A similar case occurred on 29 June, suggesting that workers had not been well informed about the need to wear respiratory protective equipment.

(c) Contamination inside of respiratory protective equipment

Contamination was found on the inner surface of the mask filters used by 4 workers (14 September). Several similar cases were subsequently found.

In response to the above, the following actions were taken.

Actions taken by MHLW
- Instructions were given to inform workers of the procedures for wearing respiratory protective equipment, to ensure that workers follow the rules regarding the correct way of wearing protective equipment, to provide education, and to post instructions on how to wear respiratory protective equipment (22 June 2011).
- Instructions were given to establish work procedures for surveying contamination of respiratory protective equipment filters (5 October).
- TEPCO was instructed to:
 1) Take necessary measures for workers wearing glasses such as giving them sealing pieces to attach to the frames of the eyeglasses to cut leakage;
 2) Provide more masks so workers could choose one that was best suited to their own face;
 3) Set up rooms where workers can perform fitting tests;
 4) Introduce respiratory protective equipment with electric powered fans; and
 5) Improve the contents of the training workers received, based on the results of leakage rate tests using a mask fitting tester (26 September).

Actions taken by TEPCO
- Respiratory protective equipment were sorted by their product makers and sizes in accordance with the instruction so that workers could choose masks suited to their faces more easily (27 September 2011).
- TEPCO started to provide new workers with training about using fitting testers (17 November).
- Masks with electric powered fans were introduced (25 August).

(4) Improper protective garments

(a) The case that a worker soaked his feet in highly contaminated water

A worker who was wearing short mid-calf boots soaked his feet in water (30 cm deep) during work. This caused the skin on both feet to become contaminated (beta ray exposure) (24 March 2011), the radiation dose in the work area had not been monitored before starting work, the worker did not wear high boots, and the worker continued to work although his dosimeter alarm was sounding.

(b) The case that highly contaminated water was poured over workers

A worker was contaminated when contaminated water was unintentionally poured over his head while he was working to discharge water in the tank of the contaminant removal plant. He was not wearing a hooded, waterproof garment.

Another worker, also not wearing a hooded, waterproof garment, was engaged in handling hoses and became contaminated by water (both occurred on 31 August).

In response to the above, the following actions were taken.

Actions taken by MHLW
- MHLW instructed TEPCO to establish a safety and health administration system (24 March 2011).
- MHLW issued guidance to TEPCO and the primary contractors to:
 1) Monitor the radiation doses in the work area before starting work in order to understand the contamination level and decide on work procedures;
 2) Ensure that workers evacuate when alarms of dosimeters go off and that workers wear effective protective garments and footwear according to the contamination level of the work area (26 March);
- MHLW instructed TEPCO to make its best effort to determine the causes of the incidents and prevent their recurrence (1 September).
- MHLW performed on-site inspections (27 May and 28 September) and demanded violations be corrected by the...
employers who:
1) had not made workers wear suitable footwear (high boots) (in the case of the beta ray exposure on 24 March (30 May)); and
2) had not made workers wear effective protective clothing (hooded, waterproof protective clothing) (the cases on 31 August) (5 October).

Actions taken by TEPCO
- TEPCO ensured that workers put on rubber boots, and
required workers who might be exposed to contaminated water to wear hooded, waterproof garments. No cases of exposure to contaminated water have occurred since then.

1.2.3 Training for new workers

(1) Insufficient training hours for workers

In the beginning (until around May), only 30 minutes were spent in worker education on the effects of radiation, how to control radiation dose, and the use of protective equipment; this was done at J-Village with instructional materials developed by TEPCO. In addition, the classroom where the worker education program was given was too small. The classroom accommodated only around 20 people per 30 minute session.

In response to the above, the following actions were taken.

Actions taken by MHLW
- MHLW instructed TEPCO and the primary contractors to educate new workers on radiation hazards, the use of protective equipment, and the actions and evacuation methods to take in an emergency (13 May, 23 May and 22 July 2011).

Actions taken by TEPCO
- TEPCO started a new worker education program in Tokyo from 19 May 2011 and the special education program at J-Village from 6 June to both TEPCO staff and contractors. Arrangements were made to secure sufficient classroom space.

1.2.4 Health and medical care system

(1) Establishment of the medical care system at the affected plant

TEPCO was able to provide physicians only intermittently at the affected plant. In the first month after the accident, 25 workers became sick or were injured, and 31 workers complained of poor health. One case of a worker suffering a heart attack was reported on 14 May 2011, and this incident showed the urgent need for an emergency clinic that provides 24-hour on-site presence of physicians was established on 29 May with the arrival of physicians dispatched from Rassei Hospitals (hospitals for labourers) managed by the Japan Labour Health and Welfare Organization. Subsequently, the plant site clinic was relocated to J-Village (September 2011).

- The National Defense Medical College started dispatching teams of critical incident stress specialists (10 July). The teams provide mental health services on a monthly basis.

Actions taken by TEPCO
- TEPCO opened the on-site makeshift medical clinic at Units 5 and 6 in July 2011. More physicians were allocated in September 2011 to the clinic in J-Village in order to provide the initial treatment and triage and routine preventative health care.

(2) Prevention of heat stroke

It has been a concern since May 2011 that emergency workers might be at risk of occupational hazards derived from heat stroke while working for long hours under the blazing sun while wearing heavy equipment, such as a full-face mask, Tyvek coveralls, and rubber gloves.

In response to the above, the following actions were taken.

Actions taken by MHLW
- MHLW demanded that TEPCO undertake the following. a) Suspend work from 2 p.m. to 5 p.m. in July and August; b) Shift working hours to early morning, and specify the maximum number of consecutive working hours; c) Check workers’ health prior to work, make available air-conditioned rest places where workers can remove their full face masks; d) Conduct education for the prevention of heat stroke; e) Establish a medical care system (10 June 2011).
- MHLW demanded that TEPCO attach checklists for heat stroke prevention measures when they submit work plans to the inspection office.

Actions taken by TEPCO
- TEPCO took measures in addition to the instructions by the MHLW, including the following:
a) Distribution of cool vests (vests with refrigerant gel).
b) Provision of the wet bulb globe temperature (WBGT) through the internet.
c) Display the daily warming level for heat stroke at workplaces.

The University of Occupational and Environmental Health began to dispatch physicians who provide services mainly during the daytime (15 May 2011). A system to ensure the 24-hour on-site presence of physicians was established on 29 May with the arrival of physicians dispatched from Rosari Hospitals (hospitals for labourers) managed by the Japan Labour Health and Welfare Organization. Subsequently, the plant site clinic was relocated to J-Village (September 2011).

- The National Defense Medical College started dispatching teams of critical incident stress specialists (10 July). The teams provide mental health services on a monthly basis.

Actions taken by TEPCO
- TEPCO opened the on-site makeshift medical clinic at Units 5 and 6 in July 2011. More physicians were allocated in September 2011 to the clinic in J-Village in order to provide the initial treatment and triage and routine preventative health care.

(2) Prevention of heat stroke

It has been a concern since May 2011 that emergency workers might be at risk of occupational hazards derived from heat stroke while working for long hours under the blazing sun while wearing heavy equipment, such as a full-face mask, Tyvek coveralls, and rubber gloves.

In response to the above, the following actions were taken.

Actions taken by MHLW
- MHLW demanded that TEPCO undertake the following. a) Suspend work from 2 p.m. to 5 p.m. in July and August; b) Shift working hours to early morning, and specify the maximum number of consecutive working hours; c) Check workers’ health prior to work, make available air-conditioned rest places where workers can remove their full face masks; d) Conduct education for the prevention of heat stroke; e) Establish a medical care system (10 June 2011).
- MHLW demanded that TEPCO attach checklists for heat stroke prevention measures when they submit work plans to the inspection office.

Actions taken by TEPCO
- TEPCO took measures in addition to the instructions by the MHLW, including the following:
a) Distribution of cool vests (vests with refrigerant gel).
b) Provision of the wet bulb globe temperature (WBGT) through the internet.
c) Display the daily warming level for heat stroke at workplaces.
• TEPCO also required workers showing symptoms of mild heat stroke to take a break and a rest. As a result, although 40 patients with heat stroke symptoms were observed, no serious cases were reported.

(3) Instructions to conduct special medical examinations
Considering that exposure exceeding the normal exposure dose limit may cause acute radiation syndrome, special medical examinations conducted every six months would be too late to detect acute radiation damage. The more time that was spent on emergency works, the larger the numbers of workers who were subject to medical examinations. This made it difficult to collect information on the multiple-layered contractors, and the percentage of workers who undertook medical examinations was as low as 60% as of June 2011.

In response to the above, the following actions were taken.

Actions taken by MHLW
• MHLW issued the compulsory instruction to TEPCO, under Item 4, Article 66 of the Industrial Safety and Health Act, to conduct special medical examinations including blood tests, skin test, and weight measurement, and specified the number of days after the completion of emergency works that the examinations must be taken within under the assumption of a short-term emergency works (16 March 2011)
• Additionally, MHLW re-issued instruction to TEPCO to conduct medical examinations for workers who were exposed to more than 100 mSv and who worked for more than 1 month (25 April 2011).
• In efforts to raise the implementation rate of medical examinations, MHLW regularly investigated the status of conducting the medical examinations and gave instructions to TEPCO and the primary contractors (May and June 2011).

(4) Establishing patient transport systems from the affected plant
In order to transport potentially seriously injured workers from the affected plant, a faster way to transport patients to a hospital was required, because 1-2 hours were needed to transport the patients via J-Village to hospitals. To shorten the transportation time, the MHLW tried to establish efficient patient transportation systems, including direct access of local ambulances to the plant and helicopter airlift to a hospital. The MHLW, however, faced difficulties in making arrangements with the hospitals expected to receive the patients.

In response to the above, the following actions were taken.

Actions taken by MHLW
• MHLW staff visited hospitals in Iwaki City and explained decontamination conditions that would allow the hospitals to accept direct patient transportation from the NPP. As a result, in August 2011, non-contaminated patients were allowed to approach hospitals directly from the plant.
• MHLW directed TEPCO to prepare a heliport to be used for an air ambulance, persuaded a helicopter operation company to join the work, and coordinated as a liaison regarding test flights to be conducted by a TEPCO affiliated company.

Actions taken by TEPCO
• TEPCO conducted direct transport of non-contaminated patients to hospitals without going through J-Village so that it was not necessary to decontaminate or transfer a patient to another vehicle (August 2011).
• An agreement was reached with the operation company to locate a heliport in the Fukushima Daini NPP, 13km from the affected plant, instead of using the Hirono town playground near J-Village, 20km from the affected plant. (February 2012).

(5) Long-term health care program
In addition to the compulsory medical examinations, it became necessary to examine workers who exceeded the normal dose limit of 50 mSv/y and those who exceeded the emergency exposure dose limit of 100 mSv. It also became necessary to conduct health consultations for workers about their long-term mental and physical health.

In response to the above, the following actions were taken.

Actions taken by MHLW
• MHLW established the Minister's guidelines pursuant to Item 2, Article 70 of the Industrial Safety and Health Act (11 October 2011). In the guidelines, the employers should basically be required to conduct long-term healthcare. However, the Government should conduct it for the workers who changed their jobs to those that are not related to radiation works, those who are continuously employed by the firms (small to midsize only) but not engaged in radiation work, and persons who are not currently employed.
• As additional medical examinations, MHLW decided to provide cataract eye examinations, for the workers who exceeded 50 mSv, and thyroid examinations and cancer screenings, (stomach, lung, and colon) for those whose dose exceeded 100 mSv, in accordance with the report provided by the experts' meeting.
• The MHLW compiled a report on methods for providing health care and exposure dose control during emergency works in nuclear facilities (1 May 2015). In this report, the items that should be provided to workers were compiled regarding the following items:
 1) Long-term health care including the period after termination of employment, such as the medical examination of emergency workers
 2) Healthcare during emergency works
 3) Ensuring a medical care system in nuclear facilities during emergency works
 4) Mid- to long-term exposure dose control to be provided to the workers whose exposure doses exceed the dose limit for regular radiation works
 5) Exposure dose control during emergency works
 6) Special education to the emergency workers who will be engaged in exceptional emergency works

1.2.5 Preliminary review of work plans
(1) Insufficient management systems for developing work plans
During the first month from the start of receiving work plans, a large number of plans were submitted from TEPCO in which many deficiencies were found. It took a lot of time to revise the work plans in spite of having provided correction instruction afterwards. As there was no other back-up organization to
1.3 Health control at the TEPCO Fukushima Daiichi NPP

1.3.1 The status of long term health control at the TEPCO Fukushima Daiichi NPP

MHLW established a ministerial guideline “Guidelines on Maintaining and Improving Health of Emergency Workers at the TEPCO Fukushima Daiichi NPP” on 11 October 2011 (see 3.1 (3) for revision). The Guidelines describes “Actions for long-term health control”, “Development of a database for workers who have engaged in emergency works” and “Support provided by the Government”.

Based on the guidelines, MHLW and TEPCO are implementing long term health control such as cancer screenings etc. corresponding to the exposure dose values for the workers who had been engaged in the emergency works at the TEPCO Fukushima Daiichi NPP.

The implementation status as of 23 October 2017 is as follows:

(1) Status of registration card issuance
Out of 19,908 emergency workers, 19,686 workers (99.4%)
were issued cards. For those 122 workers who had not received the cards, confirmation of addresses was continuing.

(2) Status of handbook for recording radiation exposure doses (handbook) issuance
Out of 910 designated emergency workers, 877 workers (96.4%) were issued handbooks. In February 2013, a document that recommended the handbook application was delivered to the employers of the designated workers. Recommendation of application etc. will be continued in the future.

(3) Status of database registration of the medical examination results
The implementation rate of the special medical examinations reached 92.7% (the data registration reached 77.9%), and that of general medical examinations reached 91.9% (the data registration reached 71.2%).

(4) Status of the database registration of cancer screening results of designated emergency workers
(a) Recommendation to implement cancer screenings specified in the guidelines (From June to November 2012 and November 2013)
Several recommendations to implement cancer screenings were delivered to the employers. The survey of current addresses for all designated workers should be conducted once a year. (June 2014)
(b) The results of the implementation status for cancer screenings (From October 2012 to September 2013)
Implementation rate for cataract screening was 67.4%, and that for cancer screenings was 96.78% respectively.
(c) Status of database registration of the cancer screening results (From October 2012 to September 2013)
For current workers, data base registration for cataract screening was 54.7%, and that for cancer screenings was 63.6%.

(5) Status of health consultation or guidance to emergency workers at the support desk (From April 2013 to March 2014)
There were 214 consultations cases, of which 91 cases were long term health control, and 53 cases were about radiation exposure and health effects.

1.3.2 Approvals for occupational accidents of worker/injuries
Regarding the determination of industrial accidents related to leukemia and cancer, criteria for the determination of industrial accidents were established concerning compensation for workers in light of the intent of the Industrial Accident Compensation Insurance system. Provided that these criteria were satisfied, after discussion in a medical investigation committee, such cases shall be approved as an industrial accident unless non-work-related factors are clear. However, determination of an industrial accident regarding leukemia and cancer does not scientifically prove a causal relationship between radiation exposure and health effects.

- Leukemia
A request for approval of a claim for occupational accident/injury was made by a worker as he had developed leukemia due to his engagement in radiation work at the TEPCO Fukushima Daiichi NPP.
The MHLW held a review meeting attended by medical experts to discuss the matter. As a result, in October 2015, the MHLW acknowledged a causal relationship between the radiation exposure and the development of leukemia in this case, and they gave approval for a claim of occupational accident/injury for the first time since the accident at the TEPCO Fukushima Daiichi NPP.

With respect to leukemia due to radiation exposure, MHLW established criteria for determining occupational accidents* and, based on examination by medical experts, judgment on whether they are business-related.

*Approval criteria of occupational accidents for leukemia:
1) Exposure to an equivalent amount of ionizing radiation (5 mSv × years of engagement).
2) Onset of leukemia after a period of at least 1 year after the beginning of radiation exposure.

In addition, in August 2016, the MHLW approved a second occupational accident/injury based on the above approval criteria by medical experts for a worker who developed leukemia after the accident at the TEPCO Fukushima Daiichi NPP. A third such case was approved by MHLW in December 2017.

- Thyroid cancer
In December 2016, the MHLW compiled medical knowledge on thyroid cancer and radiation exposure in a report from a review meeting of medical experts, and published its immediate view on compensation for an occupational accident/injury** as indicated below:

**The MHLW’s immediate view on compensation for an occupational accident/injury concerning thyroid cancer and radiation exposure:
1) An association between radiation exposure and onset of cancer is suspected when onset of cancer is observed for an exposure dose of 100 mSv or more, and as the exposure dose increases, the association with onset of cancer is strengthened.
2) The period of time from radiation exposure to onset of cancer shall be five years or more.
3) Factors other than radiation exposure also need to be considered.

Based on the above immediate view on compensation for an occupational accident/injury, in the same month, MHLW recognized a case of thyroid cancer that developed in a worker after the accident at the TEPCO Fukushima Daiichi NPP, and approved it as an occupational accident/injury in the light of deliberations by medical experts. A second such case was approved by MHLW in December 2018.

- Lung Cancer
In January 2015, the MHLW compiled medical knowledge on lung cancer and radiation exposure in a report resulting from a review meeting of medical experts, and published the immediate view similar to that for thyroid cancer.** The first claim for case of lung cancer was approved by MHLW in August 2018, and this was also the first case involving death.
1.4 Implementation status of measures against ionizing radiation hazards associated with decommissioning works

In order to ensure the working conditions as well as the industrial safety and health of workers engaged in decommissioning works at the TEPCO Fukushima Daiichi NPP, the Fukushima Prefectural Labour Bureau provided employers of such workers with focused supervision and instruction. As a result of supervision and instruction provided for 724 employers by 30 September 2015, 409 employers were identified to be violating laws and ordinances related to the labour standards, namely, the Labour Standards Act and the Industrial Safety and Health Act, in some form (violation rate: 56.5%). The total number of violation cases was 656, where violations related to working conditions were found in 406 cases and violations related to industrial safety and health in 250 cases. For the employers discovered to be violating laws and ordinances, the Fukushima Prefectural Labour Bureau provided instruction towards rectification. Additionally, the Bureau has provided instruction on appropriate implementation of measures stipulated in the “Guidelines on occupational safety and health management at the TEPCO Fukushima Daiichi Nuclear Power Plant” formulated on 26 August 2015.

1.5 Recommendations

On 10 August 2012, in response to the issues that were shown in previous sections, MHLW demanded the employers who operate nuclear facilities to prepare for nuclear accidents that may necessitate emergency works and also to prepare for the actions that may need to be taken when an accident occurred. This section shows accident preparations, and the actions to be taken at the time of an accident by the employers in response to the directions.

The guidance document is available at:

1.5.1 Personal identification and exposure dose control

(1) Insufficient exposure dose control system in the exposure dose control department

(a) Preparations to be made by the employers

[Actions taken at the nuclear facilities including NPPs (hereinafter referred to as "the nuclear facility")]

- Develop a plan in preparation for emergency works to establish an organization to consolidate the radiation control of all the emergency workers (hereinafter referred to as "systematic control organization") in the nuclear facility (or the corporate offices if it is beyond the ability of the nuclear facility).
- Develop an emergency action plan for the case that the normally used systems become unavailable for exposure dose control, and prepare for increasing staff members to be engaged in temporarily exposure dose control.

[Actions taken by the primary contractors]

- Establish the management system for dose control in emergency situations, as well as educate and train staff members to perform radiation control.

[Actions taken in the corporate offices or at the facilities with the functionality of the nuclear department in the corporate offices, excluding at the nuclear facilities (hereinafter "the corporate offices")]

- If necessary, develop a plan in advance to establish systematic control organization in the corporate offices.
- In preparation for supporting radiation control in the corporate offices and dispatching staff to help at the nuclear facility, make a staff list, provide required preliminary education and training to inexperienced staff members, and establish a system in the corporate offices for being able to increase the number of staff members temporarily.

(b) Post-accident actions to be taken by the employers

[Actions taken at the nuclear facility]

- Establish a system for exposure dose control such as by temporarily increasing the number of staff members in charge of dosimeter-lending for the case that the systems normally used are not available.

[Actions taken by the primary contractors]

- Ensure a system for exposure dose control such as by temporarily increasing the number of staff members carrying out radiation control in each primary contractor, and establishing an organization that can consolidate radiation exposure doses of workers under all the involved subcontractors.

[Actions taken in the corporate offices]

- Check the situation in exposure data inputting work at the nuclear facility and, if there are any problems in the system for exposure dose control, obtain the administrative documents from the said facility and perform exposure dose control directly including the exposure data input and name-based dose consolidations in the corporate offices.

(2) Insufficient numbers of personal dosimeters

(a) Preparations to be made by the employers

[Actions taken at the nuclear facility]

- Prepare sufficient numbers of extra PADs that can be used during emergency works (including battery chargers and emergency power generators, if non-battery-powered) (hereinafter all PADs and their auxiliary equipment are referred to as "PADs").
- Make agreements with other nuclear facilities in advance to supply sufficient number of PADs for all emergency workers (including those who are not engaged normally in radiation works).
3 Deficiencies in dosimeter-lending management
(a) Preparations to be made by the employers

Actions taken at the nuclear facility
- In the case that the normally used system becomes unavailable, issue access permits with both personal identification numbers (hereinafter referred to as "ID number(s)") and photos, and build a backup system in advance that can control exposure dose by the ID number on mobile personal computers or computer systems that can be used in emergency situations (hereinafter referred to as "the backup system").
- In the case that the backup system is not operable, establish in advance an administrative list form to be filled in by hand and the administration method using the central registration number for each worker's radiation passbook and driver's license number (if it is difficult to use those, a combination of date of birth and name) as a temporary ID number (hereinafter referred to as "the temporary ID number").
- Conduct training on a regular basis so as to implement the management stated in (1) and (2) immediately in emergency situations.

Actions taken in the corporate offices
- In the case that the backup system is not operable at the nuclear facility, set up a backup system in the corporate offices as well. Note, however, that this may not apply to the case that the backup system is located in the seismically isolated building. (Repeated notice was given for this action.)
- If the data input task is performed in the corporate offices, as appropriate.

(b) Post-accident actions to be taken by the employers

Actions taken at the nuclear facility
- Check whether or not sufficient PADs are available immediately after the occurrence of an accident.
- Once the shortage of PADs is found, borrow them immediately from other nuclear facilities in accordance with the agreement made in advance.

Actions taken in the corporate offices
- Check if a sufficient number of PADs are available at the nuclear facility, and if required, provide support to allow the nuclear facility to obtain PADs from other nuclear facilities, as appropriate.

(4) Delay of radiation exposure dose notification to workers
(a) Preparations to be made by the employers

Actions taken at the nuclear facility
- Ensure that the backup system prepared for unavailability of the normally used system provides the function of issuing receipts to workers providing them with a written notice of their daily radiation exposure doses.
- Specify in advance the procedures for immediately informing the primary contractors of the input data when it is necessary for the corporate offices to undertake inputting of doses.

Actions taken in the corporate offices
- Plan in advance the procedures for immediately informing the nuclear facility of the dose data at the corporate offices, if the corporate offices are required to do so after the accident.
- For the case that the backup system is not operable at the nuclear facility, set up a backup system with a function to issue receipts in the corporate offices. Note, however, that this may not apply to the case that the backup system is located in the seismically isolated building. (Repeated notice was given for this action.)

(b) Post-accident actions to be taken by the employers

Actions taken at the nuclear facility
- Make a backup system operable, and issue receipts of radiation exposure doses to workers.
- While the backup system is unavailable, issue a written notice of radiation exposure doses to workers at the time of returning dosimeters (hand-written memos are acceptable).
- Immediately inform the primary contractors of the radiation exposure dose data inputted.

Actions taken by the primary contractors
- Immediately notify all the workers under the involved subcontractors through the said subcontractors of the dose data obtained from the nuclear facility.

Actions taken in the corporate offices
- Check the situation in dose data input and notification among employers at the nuclear facility, and perform the tasks such as data input in the corporate offices, as appropriate.
- If the data input task is performed in the corporate offices, provide the input data to the nuclear facility immediately.

(5) Delay of internal exposure monitoring
(a) Preparations to be made by the employers

Actions taken at the nuclear facility
- In order to measure internal exposure, specify in advance the places to locate mobile WBCs which will be borrowed in case of an accident under the prior agreements made by the relevant corporate offices.
- Develop in advance the method for evaluating internal exposure in emergency situations, such as identifying the date of ingestion or inhalation through a study of worker behavior.
Actions taken in the corporate offices

- For the agreements stated in (1) above, provide support such as by negotiating and concluding agreements with the corporate offices of other utilities and organizations, as appropriate.
- Develop in advance an assessment model to evaluate exposure to radionuclides of cesium and/or radionuclide of iodine after accidents in cooperation with JAEA and NIRS (hereinafter referred to as "the Advanced Radiation Expert Institutes").
- Develop in advance a plan for responding to an accident including the method for positioning WBCs outside a nuclear facility for the case that they cannot be located inside it. Also, make an agreement with other utilities and the Federation of Electric Power Companies of Japan to make mobile WBCs available for transport in emergency situations.

(b) Post-accident actions to be taken by the employers

Actions taken at the nuclear facility

- Ask other nuclear facilities in accordance with the agreement concluded in advance, to obtain mobile WBCs and transport them to a proper location when the normally used WBCs become unavailable.
- Immediately establish an internal exposure assessment model suitable for the released nuclides, in cooperation with the Advanced Radiation Expert Institutes.
- Immediately determine the nuclides and the date of ingestion or inhalation for the workers who may exceed their normal exposure dose limit, by making use of WBCs in the Advanced Radiation Expert Institute, and determine the committed dose.
- Immediately consolidate the committed doses and external radiation doses by name and calculate the sums to ensure workers do not exceed the exposure limit.

Actions taken by the primary contractors

- Check the situation of internal exposure measurement by the involved subcontractors, and guide or support them to provide the measurement to all their workers.

Actions taken in the corporate offices

- Check the situation of internal exposure measurement at the nuclear facility, and if the normally used WBCs become unavailable, provide support so that the nuclear facility can obtain transferable WBCs from other nuclear facilities, and can measure internal exposure at other nuclear institutions.
- Provide technical support in cooperation with the Advanced Radiation Expert Institutes to identify the specific nuclides causing internal exposure, develop an exposure model, and identify the date of ingestion or inhalation.

6. Unexpected occurrence of workers who could not be contacted

(a) Preparations to be made by the employers

Actions taken at the nuclear facility

- Specify the procedures to successfully identify individuals until the backup system is up and running, such as by recording temporary ID numbers and names on the handwritten dosimeter lending list.
- For the case that contact is lost with any individual workers, specify in advance the investigation methods including checking the original records, checking for overlap of similar names, having them confirmed by other primary contractor groups, asking the employers' office on the site to investigate, making use of professional investigation agencies, and making those individuals' names known in public places.

Actions taken in the corporate offices

- Provide support when the nuclear facility develops survey methods, as appropriate.

(b) Post-accident actions to be taken by the employers

Actions taken at the nuclear facility

- Conduct the dosimeter-lending administration for emergency situations in the manner specified in advance.
- In the case that contact is lost with any individual workers, immediately check for overlap of similar names and ask the employers’ office on the site for reconfirmation, in cooperation with the primary contractors’ office on the site.

Actions taken by the primary contractors

- In the case that contact is lost with any individual workers, immediately check for overlap of similar names and ask the employers’ office on the site for reconfirmation.

Actions taken in the corporate offices

- Check the dosimeter lending procedures at the nuclear facility, and if contact is lost with any individual workers, reconfirm the dose records in the corporate offices, as required.

1.5.2 Respiratory protective equipment and protective clothing

(1) Exceeding emergency exposure dose limit

(a) Preparations to be made by the employers

Actions taken at the nuclear facility

- Prepare required measurement instruments and establish measurement procedures so as to measure radiation dose in the air at any time in places inside of the nuclear facilities where workers work or are on standby in emergency situations (hereinafter referred to as "the standby areas") (including places where air is considered to be not contaminated under normal conditions).
- In the case standby areas are contaminated, based on the breakthrough time, prepare a sufficient number of charcoal filters for workers to allow them to stay for several days at the standby areas, and store spare filters in the seismically isolated building.
- Train emergency workers (particularly focusing on such workers as drivers who do not generally wear respiratory protective equipment very often, and those wearing glasses) on how to wear respiratory protective equipment in an appropriate manner, and re-educate them at proper intervals.
- Conclude agreements with other nuclear facilities in advance to lend WBCs that can be transferred in emergency situations so as to measure internal exposure of all the emergency workers. (Repeated notice was given for this action.)

Actions taken in the corporate offices

- Provide support to allow the nuclear facility to take the actions, as appropriate.

(b) Post-accident actions to be taken by the employers

Actions taken at the nuclear facility

- Make all the workers in the standby areas wear charcoal filter respiratory protective equipment immediately after an accident, until it is verified that the air is not contaminated based on the concentration of radioactive materials in the air.
(2) Exceeding exposure dose limit for women
(a) Preparations to be made by the employers
Actions taken in the corporate offices
- Check the situation of radiation measurement in the standby areas of the nuclear facility, and provide support such as by dispatching staff members of the radiation control departments in other nuclear facilities, as appropriate.

Actions taken at the nuclear facility
- Prepare the required measurement instruments and establish measurement procedures so as to measure radiation dose in the air at any time in the standby areas. (Repeated notice was given for this action.)
- Prepare charcoal filter respiratory protective equipment at each standby area, and store spare equipment in the seismically isolated building in advance. (Repeated notice was given for this action.)
- Prepare a sufficient number of personal dosimeters such as PADs for all the emergency workers (including those who are not engaged normally in radiation works). (Repeated notice was given for this action.)
- Provide support to allow the nuclear facility to take the necessary actions, as appropriate.

(b) Post-accident actions to be taken by the employers
Actions taken at the nuclear facility
- Immediately measure internal exposure for all the workers in the standby areas where air contamination is uncertain.
- Make all the workers in the standby areas wear charcoal filter respiratory protective equipment and PADs immediately after an accident, until it is verified that air is not contaminated by measuring the concentration of radioactive materials in the air. (Repeated notice was given for this action.)
- Promote introduction of masks with an electric powered fan.

Actions taken in the corporate offices
- Provide support such as by preparing education materials and training instructors to be dispatched in emergency situations, so that the nuclear facilities can take the necessary actions, as appropriate.

(3) Improper use of respiratory protective equipment
(a) Preparations to be made by the employers
Actions taken at the nuclear facility
- Provide new workers with education regarding the performance and usage of masks focusing on the following points, and re-educate them at proper intervals.
 1) Verifying proper fitting by using fitting testers.
 2) Taking preventive measures against leak-in, especially having workers use sealing pieces on their glasses.
 3) Instructing workers how to wear masks, and how to verify operation of fitting filters.
 4) Instructing workers how to handle masks properly to prevent contamination inside them.

Actions taken in the corporate offices
- Provide support such as by preparing education materials and training instructors to be dispatched in emergency situations, so that the nuclear facilities can take the necessary actions, as appropriate.

(b) Post-accident actions to be taken by the employers
Actions taken at the nuclear facility
- Prepare a sufficient number of rubber boots, chemical protective suits, and waterproof protective clothing (hereinafter referred to as "the protective clothing") for emergency situations.
- Prepare a sufficient number of dosimeters including PADs for emergency situations (Repeated notice was given for this action.).
- Provide support such as by preparing education materials and training instructors to be dispatched in emergency situations, so that the nuclear facilities can take the necessary actions, as appropriate.

Actions taken in the corporate offices
- Provide support such as by preparing education materials and training instructors to be dispatched in emergency situations, so that the nuclear facilities can take the necessary actions, as appropriate.

(4) Improper protective garments
(a) Preparations to be made by the employers
Actions taken at the nuclear facility
- Prepare a sufficient number of charcoal filters in every standby area, based on the breakthrough time.
- In the case that workers need to standby in a work area where air contamination is uncertain, give them some rest at a proper interval in a work area where it is verified that the air is not contaminated.
- Measure the concentrations of radioactive materials in the air and ambient dose rates in the standby areas continuously.
- Immediately measure internal exposure for all the workers in the standby areas where air contamination is uncertain.
- Promote introduction of masks with an electric powered fan.

Actions taken in the corporate offices
- Provide support such as by preparing education materials and training instructors to be dispatched in emergency situations, so that the nuclear facilities can take the necessary actions, as appropriate.

(b) Post-accident actions to be taken by the employers
Actions taken at the nuclear facility
- Immediately educate new workers regarding the points shown in (3) of the previous section, namely
 "(a) Preparations to be made by the employers".

Actions taken in the corporate offices
- Provide support such as by preparing education materials and training instructors to be dispatched in emergency situations, so that the nuclear facilities can take the necessary actions, as appropriate.
1.5.3 Training for new workers

(1) Insufficient training hours for workers

(a) Preparations to be made by the employers

<table>
<thead>
<tr>
<th>Actions taken at nuclear facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Prepare a large enough classroom and sufficient instructional materials, and train instructors so as to provide sufficient sessions in emergency situations to all of those who need the education as new workers.</td>
</tr>
<tr>
<td>2. In addition to the special education program conventionally offered in nuclear reactor/nuclear fuel handling, develop instructional materials regarding the evacuation methods, emergency responses and radiation dose control methods at the time of an accident, and provide education and re-education at proper intervals, to workers doing these works.</td>
</tr>
<tr>
<td>3. Educate workers engaged in radiation works (particularly focusing on those such as drivers who do not generally wear respiratory protective equipment and workers wearing eyeglasses) on how to wear respiratory protective equipment in an appropriate manner, and re-educate them at proper intervals (Repeated notice was given for this action.).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actions taken in the corporate offices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Support the nuclear facility to develop education and training materials.</td>
</tr>
<tr>
<td>2. Train a sufficient number of instructors to train workers, in order to dispatch them to the nuclear facility in emergency situations.</td>
</tr>
</tbody>
</table>

(b) Post-accident actions to be taken by the employers

<table>
<thead>
<tr>
<th>Actions taken at nuclear facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Provide education to emergency workers who require education as new workers and according to the curriculum, prepare materials in advance.</td>
</tr>
<tr>
<td>2. Check if the classroom size, the materials and the number of instructors are sufficient, and ask the corporate offices for support otherwise.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actions taken by the primary contractors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. In cooperation with the nuclear facility, support the education for new workers for all the involved subcontractors.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actions taken in the corporate offices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Check the situation of educating workers in the nuclear facility, and provide support such as by dispatching instructors to assist in the education sessions and provide education materials, as appropriate.</td>
</tr>
</tbody>
</table>

(2) Prevention of heat stroke

(a) Preparations to be made by the employers

<table>
<thead>
<tr>
<th>Actions taken at nuclear facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Take preventive measures against heat stroke in advance including determining the suppliers of cooling vests and cooler boxes; building a rest area equipped with the required functions; developing procedures for actions to be taken when heat strokes occurs; forecasting conditions likely to promote heat stroke occurrence using the WBGT; and obtaining educational materials about heat stroke, on the assumption that workers work wearing heavy equipment under the blazing sun.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actions taken in the corporate offices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Establish in advance a framework to share information among the employers engaged in construction work in the nuclear facility site.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actions taken in the corporate offices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Provide the nuclear facility with support to take proper preventive measures against heat stroke, as appropriate.</td>
</tr>
</tbody>
</table>

(b) Post-accident actions to be taken by the employers

<table>
<thead>
<tr>
<th>Actions taken at nuclear facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Take the planned preventive measures against heat stroke in a proper manner for workers working in hot and humid places.</td>
</tr>
<tr>
<td>2. Check physical conditions frequently, making use of medical questionnaires.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actions taken in the corporate offices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. When heat stroke occurs, analyze the causes, and reflect the results in measures to prevent recurrence, and share them through the council consisting of the primary contractors.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actions taken by the primary contractors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Provide required guidance or support in cooperation with the nuclear facility to ensure that the involved subcontractors can take proper preventive measures against heat stroke.</td>
</tr>
</tbody>
</table>
(3) Instructions to conduct special medical examinations

(a) Preparations to be made by the employers

- Build a consensus with the relevant parties in the council for the medical care system to immediately conduct special medical examinations in case that emergency works leads to a high-level of exposure.
- In the case that the nuclear facility cannot conduct the special medical examinations during emergency works, consider and make required preparations to directly conduct and manage them.

(b) Post-accident actions to be taken by the employers

- Conduct special medical examinations in accordance with the inspection items in the examinations as instructed.
- Obtain correct information on the primary contractors, and provide special medical examinations to workers under the involved subcontractors.
- Check the situation of special medical examinations conducted by the primary contractors.

(4) Establishing patient transport systems from the affected plant

(a) Preparations to be made by the employers

- Build a consensus with the relevant parties in the council for the medical care system on the emergency transport systems.
- Prepare a heliport near the nuclear facility to be used by a helicopter ambulance after the occurrence of an accident.

(b) Post-accident actions to be taken by the employers

- Participate in the council for the medical care system to support the nuclear facility in providing transport systems.
- Request emergency transport systems based on the consensus reached in the council for the medical care system.
- Prepare the pre-arranged heliport for an air ambulance according to the severity of the accident, and request the operation of the air ambulance in accordance with the consensus in the council for the medical care system.

(5) Long-term health care program

(a) Preparations to be made by the employers

- Make advance preparations to take actions for emergency workers, conforming to the Minister's guidelines.

(b) Post-accident actions to be taken by the employers

- Take actions for emergency workers, in accordance with the Minister's guidelines.

1.5.5 Preliminary review of work plans

(1) Insufficient management system for developing work plans

(a) Preparations to be made by the employers

- In the case that emergency works is required, establish an organizational system at both the nuclear facility and the corporate offices to develop and review the emergency work plans.

(b) Post-accident actions to be taken by the employers

- Formulate an organizational system in advance that allows the corporate offices to review the emergency work plans directly in the case of an emergency.

(2) Deficiencies of work plans

(a) Preparations to be made by the employers

- Reflect the summarized typical findings indicated by the Labour Standard Inspection Office having jurisdiction over the nuclear facility when developing work plans in normal situations in addition to emergency works.

(b) Post-accident actions to be taken by the employers

- Plan the organizational system in advance to allow the corporate offices to review the details of works directly, in the case that the nuclear facility cannot do the task properly in the case of an emergency.
(b) Post-accident actions to be taken by the employers

Actions taken at nuclear facilities
- Develop and review the details of emergency work plans, and prepare and submit work plans that include proper actions to mitigate exposure, based on the findings indicated in advance.

Actions taken in the corporate offices
- Check the situation of the work plans prepared by the nuclear facility, and provides support such as by directly reviewing them at the corporate offices, as appropriate.

(3) Insufficient knowledge about contract conditions

(a) Preparations to be made by the employers

Actions taken at nuclear facilities
- Arrange in advance the system for collecting information on workers under the involved subcontractors through the primary contractors in the case of an emergency.

Actions taken by the primary contractors
- Establish in advance the system for obtaining correct information on workers engaged in emergency works under the involved subcontractors.

Actions taken in the corporate offices
- Provide support to allow the nuclear facility to take the necessary actions in an appropriate manner.

(b) Post-accident actions to be taken by the employers

Actions taken at nuclear facilities
- Collect information on subcontractors through the primary contractors, and check if education and medical examinations are provided in an appropriate manner.

Actions taken by the primary contractors
- Be sure to obtain information on workers under the involved subcontractors who are engaged in emergency works, and provide guidance or support appropriately to ensure that education and medical examinations are provided in a proper manner.

Actions taken in the corporate offices
- Check the situation of collecting the information on contract conditions at the nuclear facility, and provide support appropriately.

(4) Improvement of the lodging and meals

(a) Preparations to be made by the employers

Actions taken at nuclear facilities
- Prepare temporary sleeping equipment with bedclothes, and plan in advance where to locate them for an emergency.
- Prepare a sufficient volume of emergency meals with good nutritional balance for an emergency.

Actions taken in the corporate offices
- Provide support to allow for the nuclear facilities to take the necessary actions in an appropriate manner.

(b) Post-accident actions to be taken by the employers

Actions taken at nuclear facilities
- Make temporary sleeping areas available and provide meals based on the pre-determined plan.

Actions taken in the corporate offices
- Check the conditions of temporary sleeping areas and meals in the nuclear facility, and provide support, as appropriate.
Exposure dose distribution of workers at Fukushima Daiichi NPP (provided by TEPCO)

Table 1 Cumulative Effective Dose (by year)

<table>
<thead>
<tr>
<th>Effective dose (E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mSv</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effective dose (E)</th>
<th>TEPCO</th>
<th>Contractors</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 < E</td>
<td>6</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>200 < E ≤ 250</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>150 < E ≤ 200</td>
<td>26</td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td>100 < E ≤ 150</td>
<td>117</td>
<td>20</td>
<td>137</td>
</tr>
<tr>
<td>75 < E ≤ 100</td>
<td>186</td>
<td>65</td>
<td>251</td>
</tr>
<tr>
<td>50 < E ≤ 75</td>
<td>257</td>
<td>261</td>
<td>518</td>
</tr>
<tr>
<td>20 < E ≤ 50</td>
<td>630</td>
<td>2,660</td>
<td>3,290</td>
</tr>
<tr>
<td>10 < E ≤ 20</td>
<td>491</td>
<td>2,896</td>
<td>3,387</td>
</tr>
<tr>
<td>5 < E ≤ 10</td>
<td>377</td>
<td>2,556</td>
<td>2,933</td>
</tr>
<tr>
<td>1 < E ≤ 5</td>
<td>589</td>
<td>4,625</td>
<td>5,214</td>
</tr>
<tr>
<td>E ≥ 1</td>
<td>735</td>
<td>4,633</td>
<td>5,368</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum (mSv)</th>
<th>3,415</th>
<th>17,720</th>
<th>21,135</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average (mSv)</td>
<td>678.80</td>
<td>238.42</td>
<td>678.80</td>
</tr>
<tr>
<td>April 2013 – March 2014</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effective dose (E)</th>
<th>TEPCO</th>
<th>Contractors</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 < E ≤ 250</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>150 < E ≤ 200</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100 < E ≤ 150</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>75 < E ≤ 100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50 < E ≤ 75</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20 < E ≤ 50</td>
<td>31</td>
<td>629</td>
<td>660</td>
</tr>
<tr>
<td>10 < E ≤ 20</td>
<td>95</td>
<td>2,067</td>
<td>2,162</td>
</tr>
<tr>
<td>5 < E ≤ 10</td>
<td>195</td>
<td>1,897</td>
<td>2,092</td>
</tr>
<tr>
<td>1 < E ≤ 5</td>
<td>670</td>
<td>3,739</td>
<td>4,409</td>
</tr>
<tr>
<td>E ≥ 1</td>
<td>701</td>
<td>4,722</td>
<td>5,423</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum (mSv)</th>
<th>1,692</th>
<th>13,054</th>
<th>14,746</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average (mSv)</td>
<td>41.90</td>
<td>41.40</td>
<td>41.90</td>
</tr>
<tr>
<td>April 2015 – March 2016</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effective dose (E)</th>
<th>TEPCO</th>
<th>Contractors</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 < E ≤ 250</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>150 < E ≤ 200</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100 < E ≤ 150</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>75 < E ≤ 100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50 < E ≤ 75</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20 < E ≤ 50</td>
<td>6</td>
<td>592</td>
<td>598</td>
</tr>
<tr>
<td>10 < E ≤ 20</td>
<td>52</td>
<td>1,947</td>
<td>1,999</td>
</tr>
<tr>
<td>5 < E ≤ 10</td>
<td>108</td>
<td>2,247</td>
<td>2,355</td>
</tr>
<tr>
<td>1 < E ≤ 5</td>
<td>533</td>
<td>5,114</td>
<td>5,647</td>
</tr>
<tr>
<td>E ≥ 1</td>
<td>998</td>
<td>6,599</td>
<td>7,597</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum (mSv)</th>
<th>1,697</th>
<th>16,499</th>
<th>18,196</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average (mSv)</td>
<td>24.00</td>
<td>43.20</td>
<td>43.20</td>
</tr>
<tr>
<td>April 2016 – March 2017</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The status of the radiation exposure dose is shown on the URL of the MHLW (English)

April 2017 - March 2018

<table>
<thead>
<tr>
<th>Effective dose (E) (mSv)</th>
<th>TEPCO</th>
<th>Contractors</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 < E</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>200 < E ≤ 250</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>150 < E ≤ 200</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100 < E ≤ 150</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>75 < E ≤ 100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50 < E ≤ 75</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20 < E ≤ 50</td>
<td>0</td>
<td>74</td>
<td>74</td>
</tr>
<tr>
<td>10 < E ≤ 20</td>
<td>18</td>
<td>1,133</td>
<td>1,151</td>
</tr>
<tr>
<td>5 < E ≤ 10</td>
<td>85</td>
<td>1,038</td>
<td>1,123</td>
</tr>
<tr>
<td>1 < E ≤ 5</td>
<td>306</td>
<td>3,571</td>
<td>3,877</td>
</tr>
<tr>
<td>E ≤ 1</td>
<td>1,121</td>
<td>6,597</td>
<td>7,718</td>
</tr>
</tbody>
</table>

Total 1,530 12,413 13,943

Maximum (mSv) 15.94 13.74 13.87

Average (mSv) 1.15 2.88 2.69

April 2018 – March 2019

<table>
<thead>
<tr>
<th>Effective dose (E) (mSv)</th>
<th>TEPCO</th>
<th>Contractors</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 < E</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>200 < E ≤ 250</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>150 < E ≤ 200</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100 < E ≤ 150</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>75 < E ≤ 100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50 < E ≤ 75</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20 < E ≤ 50</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10 < E ≤ 20</td>
<td>2</td>
<td>434</td>
<td>436</td>
</tr>
<tr>
<td>5 < E ≤ 10</td>
<td>32</td>
<td>796</td>
<td>828</td>
</tr>
<tr>
<td>1 < E ≤ 5</td>
<td>259</td>
<td>2,076</td>
<td>2,335</td>
</tr>
<tr>
<td>E ≤ 1</td>
<td>1,070</td>
<td>5,125</td>
<td>6,195</td>
</tr>
</tbody>
</table>

Total 1,363 8,431 9,794

Maximum (mSv) 12.21 19.46 19.90

Average (mSv) 0.77 2.10 1.91

The exposure dose is subject to change due to the replacement of the PAD-measured dose by the glass badge-measured dose. The number of workers is also subject to change due to the addition of workers who wore only glass badges (e.g., workers who work only indoors).
<table>
<thead>
<tr>
<th>Month/Year</th>
<th>E ≤ 1</th>
<th>1 < E ≤ 5</th>
<th>5 < E ≤ 10</th>
<th>10 < E ≤ 20</th>
<th>20 < E ≤ 50</th>
<th>50 < E ≤ 75</th>
<th>75 < E ≤ 100</th>
<th>100 < E ≤ 150</th>
<th>150 < E ≤ 200</th>
<th>200 < E ≤ 250</th>
<th>250 < E</th>
<th>Total</th>
<th>Maximum (mSv)</th>
<th>Average (mSv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 2011</td>
<td>TEPCO</td>
<td>40</td>
<td>66</td>
<td>239</td>
<td>529</td>
<td>539</td>
<td>119</td>
<td>77</td>
<td>65</td>
<td>16</td>
<td>2</td>
<td>3</td>
<td>1,696</td>
<td>670.36</td>
</tr>
<tr>
<td>Contractor</td>
<td>402</td>
<td>525</td>
<td>397</td>
<td>461</td>
<td>372</td>
<td>65</td>
<td>34</td>
<td>17</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2,277</td>
<td>238.42</td>
<td>141.8</td>
</tr>
<tr>
<td>Total</td>
<td>442</td>
<td>591</td>
<td>636</td>
<td>990</td>
<td>911</td>
<td>184</td>
<td>111</td>
<td>82</td>
<td>18</td>
<td>2</td>
<td>3</td>
<td>3,973</td>
<td>670.36</td>
<td>215.9</td>
</tr>
<tr>
<td>April 2011</td>
<td>TEPCO</td>
<td>228</td>
<td>323</td>
<td>857</td>
<td>186</td>
<td>62</td>
<td>1</td>
<td>1,657</td>
<td>59.60</td>
<td>6.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contractor</td>
<td>1,550</td>
<td>1,467</td>
<td>625</td>
<td>433</td>
<td>128</td>
<td>9</td>
<td>4,203</td>
<td>49.61</td>
<td>435.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1,778</td>
<td>1,796</td>
<td>1,482</td>
<td>619</td>
<td>190</td>
<td>1</td>
<td>5,860</td>
<td>59.60</td>
<td>506.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May 2011</td>
<td>TEPCO</td>
<td>437</td>
<td>782</td>
<td>171</td>
<td>73</td>
<td>14</td>
<td>1,477</td>
<td>33.42</td>
<td>3.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contractor</td>
<td>2,221</td>
<td>2,367</td>
<td>809</td>
<td>349</td>
<td>80</td>
<td>9</td>
<td>5,826</td>
<td>48.80</td>
<td>337.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2,658</td>
<td>3,149</td>
<td>980</td>
<td>422</td>
<td>94</td>
<td>10</td>
<td>7,303</td>
<td>48.80</td>
<td>333.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>June 2011</td>
<td>TEPCO</td>
<td>513</td>
<td>723</td>
<td>85</td>
<td>30</td>
<td>1</td>
<td>1,351</td>
<td>16.29</td>
<td>2.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contractor</td>
<td>2,560</td>
<td>2,651</td>
<td>772</td>
<td>351</td>
<td>65</td>
<td>1</td>
<td>6,401</td>
<td>89.50</td>
<td>30.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3,073</td>
<td>3,374</td>
<td>857</td>
<td>381</td>
<td>65</td>
<td>1</td>
<td>7,752</td>
<td>89.50</td>
<td>29.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>July 2011</td>
<td>TEPCO</td>
<td>653</td>
<td>625</td>
<td>53</td>
<td>17</td>
<td>3</td>
<td>1,351</td>
<td>31.13</td>
<td>1.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contractor</td>
<td>2,934</td>
<td>2,759</td>
<td>587</td>
<td>200</td>
<td>38</td>
<td>3</td>
<td>6,521</td>
<td>61.97</td>
<td>2.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3,587</td>
<td>3,384</td>
<td>640</td>
<td>217</td>
<td>41</td>
<td>3</td>
<td>7,872</td>
<td>61.97</td>
<td>2.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>August 2011</td>
<td>TEPCO</td>
<td>543</td>
<td>666</td>
<td>57</td>
<td>19</td>
<td>1</td>
<td>1,286</td>
<td>23.33</td>
<td>1.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contractor</td>
<td>2,826</td>
<td>2,731</td>
<td>485</td>
<td>162</td>
<td>24</td>
<td>2</td>
<td>6,230</td>
<td>66.50</td>
<td>2.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3,369</td>
<td>3,397</td>
<td>542</td>
<td>181</td>
<td>25</td>
<td>2</td>
<td>7,516</td>
<td>66.50</td>
<td>2.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>September 2011</td>
<td>TEPCO</td>
<td>534</td>
<td>633</td>
<td>38</td>
<td>2</td>
<td>1,207</td>
<td>11.35</td>
<td>1.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contractor</td>
<td>2,856</td>
<td>2,582</td>
<td>399</td>
<td>140</td>
<td>23</td>
<td>1</td>
<td>6,000</td>
<td>33.40</td>
<td>2.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3,390</td>
<td>3,215</td>
<td>437</td>
<td>142</td>
<td>23</td>
<td>1</td>
<td>7,207</td>
<td>33.40</td>
<td>1.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>October 2011</td>
<td>TEPCO</td>
<td>564</td>
<td>552</td>
<td>45</td>
<td>15</td>
<td>3</td>
<td>1,179</td>
<td>36.35</td>
<td>1.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contractor</td>
<td>2,823</td>
<td>2,352</td>
<td>337</td>
<td>103</td>
<td>8</td>
<td>1</td>
<td>5,623</td>
<td>23.90</td>
<td>1.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3,387</td>
<td>2,904</td>
<td>382</td>
<td>118</td>
<td>11</td>
<td>1</td>
<td>6,802</td>
<td>23.90</td>
<td>1.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>November 2011</td>
<td>TEPCO</td>
<td>853</td>
<td>286</td>
<td>37</td>
<td>10</td>
<td>1</td>
<td>1,180</td>
<td>13.40</td>
<td>1.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contractor</td>
<td>3,354</td>
<td>1,911</td>
<td>228</td>
<td>82</td>
<td>5</td>
<td>1</td>
<td>5,580</td>
<td>23.03</td>
<td>1.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4,207</td>
<td>2,197</td>
<td>514</td>
<td>162</td>
<td>5</td>
<td>1</td>
<td>6,760</td>
<td>23.03</td>
<td>1.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>December 2011</td>
<td>TEPCO</td>
<td>868</td>
<td>282</td>
<td>26</td>
<td>13</td>
<td>3</td>
<td>1,192</td>
<td>23.20</td>
<td>1.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contractor</td>
<td>3,345</td>
<td>1,729</td>
<td>238</td>
<td>76</td>
<td>3</td>
<td>1</td>
<td>5,408</td>
<td>19.80</td>
<td>1.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4,213</td>
<td>2,011</td>
<td>264</td>
<td>89</td>
<td>3</td>
<td>1</td>
<td>6,600</td>
<td>23.20</td>
<td>1.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>January 2012</td>
<td>TEPCO</td>
<td>761</td>
<td>284</td>
<td>37</td>
<td>13</td>
<td>1,095</td>
<td>17.00</td>
<td>1.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contractor</td>
<td>3,226</td>
<td>1,435</td>
<td>203</td>
<td>72</td>
<td>1</td>
<td>1</td>
<td>4,947</td>
<td>21.90</td>
<td>1.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3,987</td>
<td>1,719</td>
<td>240</td>
<td>85</td>
<td>1</td>
<td>1</td>
<td>6,042</td>
<td>21.90</td>
<td>1.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>February 2012</td>
<td>TEPCO</td>
<td>845</td>
<td>231</td>
<td>25</td>
<td>8</td>
<td>1,109</td>
<td>17.63</td>
<td>0.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contractor</td>
<td>2,940</td>
<td>1,584</td>
<td>221</td>
<td>100</td>
<td>2</td>
<td>1</td>
<td>4,847</td>
<td>20.91</td>
<td>1.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3,785</td>
<td>1,815</td>
<td>246</td>
<td>108</td>
<td>2</td>
<td>1</td>
<td>5,956</td>
<td>20.91</td>
<td>1.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>March 2012</td>
<td>TEPCO</td>
<td>874</td>
<td>220</td>
<td>23</td>
<td>2</td>
<td>1,119</td>
<td>12.10</td>
<td>0.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contractor</td>
<td>3,029</td>
<td>1,465</td>
<td>206</td>
<td>53</td>
<td>3</td>
<td>1</td>
<td>4,756</td>
<td>21.83</td>
<td>1.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3,803</td>
<td>1,685</td>
<td>229</td>
<td>55</td>
<td>3</td>
<td>1</td>
<td>5,885</td>
<td>21.83</td>
<td>1.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>April 2012</td>
<td>TEPCO</td>
<td>857</td>
<td>179</td>
<td>19</td>
<td>3</td>
<td>1,071</td>
<td>13.00</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contractor</td>
<td>2,835</td>
<td>1,305</td>
<td>151</td>
<td>75</td>
<td>3</td>
<td>1</td>
<td>4,349</td>
<td>23.90</td>
<td>1.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3,702</td>
<td>1,484</td>
<td>170</td>
<td>78</td>
<td>3</td>
<td>1</td>
<td>5,440</td>
<td>23.90</td>
<td>1.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May 2012</td>
<td>TEPCO</td>
<td>854</td>
<td>177</td>
<td>10</td>
<td>1</td>
<td>1,042</td>
<td>10.20</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contractor</td>
<td>2,898</td>
<td>1,406</td>
<td>246</td>
<td>49</td>
<td>1</td>
<td>1</td>
<td>4,599</td>
<td>18.22</td>
<td>1.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3,752</td>
<td>1,583</td>
<td>256</td>
<td>50</td>
<td>1</td>
<td>1</td>
<td>5,641</td>
<td>18.22</td>
<td>1.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>June 2012</td>
<td>TEPCO</td>
<td>829</td>
<td>162</td>
<td>20</td>
<td>3</td>
<td>1,014</td>
<td>12.10</td>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contractor</td>
<td>3,086</td>
<td>1,652</td>
<td>220</td>
<td>29</td>
<td>1</td>
<td>1</td>
<td>4,087</td>
<td>14.94</td>
<td>1.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3,915</td>
<td>1,814</td>
<td>240</td>
<td>32</td>
<td>1</td>
<td>1</td>
<td>5,001</td>
<td>14.94</td>
<td>1.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Month/Year</td>
<td>E≤1 (mSv)</td>
<td>1 < E≤5</td>
<td>5 < E≤10</td>
<td>10 < E≤20</td>
<td>20 < E≤50</td>
<td>50 < E≤75</td>
<td>75 < E≤100</td>
<td>100 < E≤150</td>
<td>150 < E≤200</td>
<td>200 < E≤250</td>
<td>250 < E</td>
<td>Total (mSv)</td>
<td>Maximum (mSv)</td>
<td>Average (mSv)</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>---------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------</td>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>July 2012</td>
<td>854</td>
<td>156</td>
<td>9</td>
<td>3</td>
<td>3065</td>
<td>1,621</td>
<td>222</td>
<td>38</td>
<td>1,919</td>
<td>1,771</td>
<td>231</td>
<td>38</td>
<td>1,013</td>
<td>6.60</td>
</tr>
<tr>
<td>August 2012</td>
<td>835</td>
<td>144</td>
<td>7</td>
<td>3</td>
<td>3,299</td>
<td>1,341</td>
<td>120</td>
<td>4</td>
<td>4,134</td>
<td>1,485</td>
<td>127</td>
<td>4</td>
<td>986</td>
<td>7.20</td>
</tr>
<tr>
<td>September 2012</td>
<td>850</td>
<td>123</td>
<td>9</td>
<td>2</td>
<td>3,272</td>
<td>1,274</td>
<td>163</td>
<td>29</td>
<td>1</td>
<td>4,122</td>
<td>1,397</td>
<td>127</td>
<td>29</td>
<td>982</td>
</tr>
<tr>
<td>October 2012</td>
<td>826</td>
<td>145</td>
<td>7</td>
<td>3</td>
<td>3,307</td>
<td>1,325</td>
<td>136</td>
<td>31</td>
<td>4,133</td>
<td>1,476</td>
<td>143</td>
<td>31</td>
<td>978</td>
<td>6.30</td>
</tr>
<tr>
<td>November 2012</td>
<td>812</td>
<td>149</td>
<td>7</td>
<td>2</td>
<td>3,306</td>
<td>1,222</td>
<td>145</td>
<td>27</td>
<td>4,118</td>
<td>1,371</td>
<td>152</td>
<td>27</td>
<td>968</td>
<td>9.50</td>
</tr>
<tr>
<td>December 2012</td>
<td>846</td>
<td>149</td>
<td>10</td>
<td>3</td>
<td>3,489</td>
<td>1,263</td>
<td>180</td>
<td>10</td>
<td>4,335</td>
<td>1,512</td>
<td>190</td>
<td>10</td>
<td>1,065</td>
<td>7.50</td>
</tr>
<tr>
<td>January 2013</td>
<td>870</td>
<td>96</td>
<td>3</td>
<td>4</td>
<td>3,768</td>
<td>1,310</td>
<td>115</td>
<td>7</td>
<td>4,638</td>
<td>1,406</td>
<td>118</td>
<td>7</td>
<td>969</td>
<td>7.39</td>
</tr>
<tr>
<td>February 2013</td>
<td>870</td>
<td>105</td>
<td>2</td>
<td>4</td>
<td>3,917</td>
<td>1,415</td>
<td>263</td>
<td>35</td>
<td>4,787</td>
<td>1,526</td>
<td>265</td>
<td>35</td>
<td>977</td>
<td>5.43</td>
</tr>
<tr>
<td>March 2013</td>
<td>845</td>
<td>146</td>
<td>10</td>
<td>2</td>
<td>3,908</td>
<td>1,706</td>
<td>335</td>
<td>35</td>
<td>4,753</td>
<td>1,846</td>
<td>345</td>
<td>37</td>
<td>997</td>
<td>11.03</td>
</tr>
<tr>
<td>April 2013</td>
<td>948</td>
<td>108</td>
<td>4</td>
<td>5</td>
<td>4,029</td>
<td>1,165</td>
<td>111</td>
<td>5</td>
<td>4,977</td>
<td>1,273</td>
<td>115</td>
<td>5</td>
<td>1,060</td>
<td>5.90</td>
</tr>
<tr>
<td>May 2013</td>
<td>896</td>
<td>106</td>
<td>4</td>
<td>5</td>
<td>3,920</td>
<td>1,141</td>
<td>92</td>
<td>5</td>
<td>4,816</td>
<td>1,241</td>
<td>96</td>
<td>5</td>
<td>1,000</td>
<td>8.60</td>
</tr>
<tr>
<td>June 2013</td>
<td>931</td>
<td>87</td>
<td>6</td>
<td>7</td>
<td>3,731</td>
<td>1,182</td>
<td>85</td>
<td>7</td>
<td>4,662</td>
<td>1,269</td>
<td>91</td>
<td>7</td>
<td>1,024</td>
<td>7.40</td>
</tr>
<tr>
<td>July 2013</td>
<td>891</td>
<td>96</td>
<td>1</td>
<td>7</td>
<td>3,752</td>
<td>1,128</td>
<td>107</td>
<td>9</td>
<td>4,643</td>
<td>1,224</td>
<td>108</td>
<td>9</td>
<td>998</td>
<td>5.50</td>
</tr>
<tr>
<td>August 2013</td>
<td>834</td>
<td>118</td>
<td>4</td>
<td>4</td>
<td>3,665</td>
<td>1,211</td>
<td>142</td>
<td>40</td>
<td>4,499</td>
<td>1,329</td>
<td>146</td>
<td>40</td>
<td>956</td>
<td>6.10</td>
</tr>
<tr>
<td>September 2013</td>
<td>933</td>
<td>102</td>
<td>3</td>
<td>1</td>
<td>3,525</td>
<td>1,420</td>
<td>247</td>
<td>6</td>
<td>4,458</td>
<td>1,522</td>
<td>230</td>
<td>6</td>
<td>1,038</td>
<td>5.60</td>
</tr>
<tr>
<td>October 2013</td>
<td>893</td>
<td>146</td>
<td>8</td>
<td>4</td>
<td>3,460</td>
<td>1,556</td>
<td>343</td>
<td>47</td>
<td>4,353</td>
<td>1,702</td>
<td>351</td>
<td>47</td>
<td>1,047</td>
<td>9.30</td>
</tr>
<tr>
<td>Month/Year</td>
<td>E ≤ 1</td>
<td>1 $<$ E ≤ 5</td>
<td>5 $<$ E ≤ 10</td>
<td>10 $<$ E ≤ 20</td>
<td>20 $<$ E ≤ 50</td>
<td>50 $<$ E ≤ 75</td>
<td>75 $<$ E ≤ 100</td>
<td>100 $<$ E ≤ 150</td>
<td>150 $<$ E ≤ 200</td>
<td>200 $<$ E ≤ 250</td>
<td>Total</td>
<td>Maximum (mSv)</td>
<td>Average (mSv)</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>----------</td>
<td>-------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>November 2013</td>
<td>954</td>
<td>126</td>
<td>5</td>
<td>303</td>
<td>32</td>
<td>4,654</td>
<td>1,653</td>
<td>308</td>
<td>32</td>
<td>1,079</td>
<td>9.30</td>
<td>0.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>December 2013</td>
<td>968</td>
<td>116</td>
<td>7</td>
<td>199</td>
<td>23</td>
<td>4,820</td>
<td>1,743</td>
<td>201</td>
<td>23</td>
<td>1,086</td>
<td>5.40</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>January 2014</td>
<td>997</td>
<td>84</td>
<td>4</td>
<td>221</td>
<td>53</td>
<td>5,109</td>
<td>1,889</td>
<td>221</td>
<td>53</td>
<td>1,081</td>
<td>4.50</td>
<td>0.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>February 2014</td>
<td>1,018</td>
<td>56</td>
<td>4</td>
<td>168</td>
<td>30</td>
<td>5,629</td>
<td>1,667</td>
<td>172</td>
<td>30</td>
<td>1,078</td>
<td>6.50</td>
<td>0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>March 2014</td>
<td>1,012</td>
<td>85</td>
<td>4</td>
<td>227</td>
<td>23</td>
<td>5,952</td>
<td>1,952</td>
<td>227</td>
<td>23</td>
<td>1,097</td>
<td>4.80</td>
<td>0.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>April 2014</td>
<td>1,049</td>
<td>74</td>
<td>1</td>
<td>234</td>
<td>19</td>
<td>6,448</td>
<td>1,837</td>
<td>235</td>
<td>19</td>
<td>1,094</td>
<td>5.70</td>
<td>0.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>May 2014</td>
<td>1,053</td>
<td>65</td>
<td>1</td>
<td>209</td>
<td>47</td>
<td>7,027</td>
<td>1,859</td>
<td>210</td>
<td>47</td>
<td>1,119</td>
<td>6.00</td>
<td>0.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>June 2014</td>
<td>1,056</td>
<td>66</td>
<td>1</td>
<td>329</td>
<td>26</td>
<td>7,029</td>
<td>1,856</td>
<td>320</td>
<td>26</td>
<td>1,123</td>
<td>6.20</td>
<td>0.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>July 2014</td>
<td>1,092</td>
<td>39</td>
<td>1</td>
<td>258</td>
<td>49</td>
<td>8,384</td>
<td>1,767</td>
<td>259</td>
<td>49</td>
<td>1,132</td>
<td>5.40</td>
<td>0.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>August 2014</td>
<td>1,062</td>
<td>39</td>
<td>1</td>
<td>214</td>
<td>9</td>
<td>8,880</td>
<td>1,377</td>
<td>214</td>
<td>9</td>
<td>1,101</td>
<td>3.40</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>September 2014</td>
<td>1,110</td>
<td>51</td>
<td>1</td>
<td>287</td>
<td>36</td>
<td>9,123</td>
<td>1,685</td>
<td>288</td>
<td>36</td>
<td>1,162</td>
<td>6.00</td>
<td>0.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>October 2014</td>
<td>1,112</td>
<td>62</td>
<td>1</td>
<td>234</td>
<td>18</td>
<td>9,063</td>
<td>1,766</td>
<td>234</td>
<td>18</td>
<td>1,174</td>
<td>2.70</td>
<td>0.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>November 2014</td>
<td>1,141</td>
<td>45</td>
<td>1</td>
<td>269</td>
<td>19</td>
<td>9,339</td>
<td>1,689</td>
<td>269</td>
<td>19</td>
<td>1,186</td>
<td>3.00</td>
<td>0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>December 2014</td>
<td>1,099</td>
<td>66</td>
<td>1</td>
<td>283</td>
<td>34</td>
<td>9,371</td>
<td>1,972</td>
<td>283</td>
<td>34</td>
<td>1,159</td>
<td>4.30</td>
<td>0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>January 2015</td>
<td>1,111</td>
<td>37</td>
<td>1</td>
<td>56</td>
<td>1</td>
<td>9,635</td>
<td>1,556</td>
<td>56</td>
<td>1</td>
<td>1,148</td>
<td>4.20</td>
<td>0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>February 2015</td>
<td>1,096</td>
<td>74</td>
<td>1</td>
<td>285</td>
<td>36</td>
<td>9,284</td>
<td>2,288</td>
<td>291</td>
<td>36</td>
<td>1,176</td>
<td>8.00</td>
<td>0.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>E1</td>
<td>E2</td>
<td>E3</td>
<td>E4</td>
<td>E5</td>
<td>E6</td>
<td>E7</td>
<td>E8</td>
<td>E9</td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>1,093</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>1,093</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>1,093</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>1,093</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: E1, E2, ..., E9 represent different categories of data.
<table>
<thead>
<tr>
<th>Month/ Year</th>
<th>TEPCO Contractors</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 2016</td>
<td>1,138</td>
<td>12</td>
<td>7,849</td>
<td>791</td>
<td>80</td>
<td>3</td>
<td>8,987</td>
<td>803</td>
<td>80</td>
<td>3</td>
<td>1,150</td>
<td>1.92</td>
<td>8,723</td>
<td>10.70</td>
<td>9,873</td>
<td>10.70</td>
<td>1.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>August 2016</td>
<td>1,125</td>
<td>41</td>
<td>7,951</td>
<td>532</td>
<td>19</td>
<td></td>
<td>9,076</td>
<td>573</td>
<td>19</td>
<td></td>
<td>1,166</td>
<td>4.39</td>
<td>8,502</td>
<td>7.10</td>
<td>9,668</td>
<td>7.10</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>September 2016</td>
<td>1,160</td>
<td>20</td>
<td>8,041</td>
<td>689</td>
<td>35</td>
<td></td>
<td>9,201</td>
<td>709</td>
<td>35</td>
<td></td>
<td>1,180</td>
<td>3.50</td>
<td>8,765</td>
<td>8.80</td>
<td>9,945</td>
<td>8.80</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>October 2016</td>
<td>1,142</td>
<td>21</td>
<td>7,693</td>
<td>875</td>
<td>48</td>
<td></td>
<td>8,835</td>
<td>896</td>
<td>48</td>
<td></td>
<td>1,163</td>
<td>2.40</td>
<td>8,616</td>
<td>8.34</td>
<td>9,779</td>
<td>8.34</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>November 2016</td>
<td>1,167</td>
<td>29</td>
<td>7,646</td>
<td>1,000</td>
<td>50</td>
<td>5</td>
<td>8,813</td>
<td>1,029</td>
<td>50</td>
<td>5</td>
<td>1,196</td>
<td>3.10</td>
<td>8,701</td>
<td>12.00</td>
<td>9,897</td>
<td>12.00</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>December 2016</td>
<td>1,144</td>
<td>16</td>
<td>7,667</td>
<td>856</td>
<td>46</td>
<td>4</td>
<td>8,811</td>
<td>872</td>
<td>48</td>
<td>4</td>
<td>1,162</td>
<td>6.24</td>
<td>8,573</td>
<td>12.60</td>
<td>9,735</td>
<td>12.60</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>January 2017</td>
<td>1,105</td>
<td>24</td>
<td>7,729</td>
<td>785</td>
<td>69</td>
<td>5</td>
<td>8,834</td>
<td>809</td>
<td>69</td>
<td>5</td>
<td>1,129</td>
<td>2.40</td>
<td>8,588</td>
<td>11.00</td>
<td>9,717</td>
<td>11.00</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>February 2017</td>
<td>1,127</td>
<td>49</td>
<td>7,859</td>
<td>1,111</td>
<td>121</td>
<td>6</td>
<td>8,786</td>
<td>1,261</td>
<td>121</td>
<td>6</td>
<td>1,176</td>
<td>3.40</td>
<td>8,697</td>
<td>13.70</td>
<td>10,073</td>
<td>13.70</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>March 2017</td>
<td>1,132</td>
<td>38</td>
<td>7,525</td>
<td>1,136</td>
<td>162</td>
<td>26</td>
<td>8,657</td>
<td>1,168</td>
<td>162</td>
<td>26</td>
<td>1,170</td>
<td>3.70</td>
<td>8,843</td>
<td>16.30</td>
<td>10,013</td>
<td>16.30</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>April 2017</td>
<td>1,027</td>
<td>26</td>
<td>7,165</td>
<td>892</td>
<td>87</td>
<td>5</td>
<td>8,192</td>
<td>918</td>
<td>87</td>
<td>5</td>
<td>1,053</td>
<td>2.74</td>
<td>8,149</td>
<td>11.40</td>
<td>9,202</td>
<td>11.40</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May 2017</td>
<td>1,023</td>
<td>12</td>
<td>7,247</td>
<td>713</td>
<td>78</td>
<td></td>
<td>8,270</td>
<td>725</td>
<td>78</td>
<td></td>
<td>1,035</td>
<td>2.40</td>
<td>8,038</td>
<td>8.80</td>
<td>9,073</td>
<td>8.80</td>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>June 2017</td>
<td>1,023</td>
<td>26</td>
<td>7,301</td>
<td>896</td>
<td>64</td>
<td>9</td>
<td>8,324</td>
<td>916</td>
<td>64</td>
<td>9</td>
<td>1,049</td>
<td>3.30</td>
<td>8,264</td>
<td>12.90</td>
<td>9,313</td>
<td>12.90</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>July 2017</td>
<td>1,001</td>
<td>14</td>
<td>7,211</td>
<td>847</td>
<td>55</td>
<td>2</td>
<td>8,212</td>
<td>861</td>
<td>55</td>
<td>2</td>
<td>1,015</td>
<td>3.80</td>
<td>8,115</td>
<td>11.50</td>
<td>9,130</td>
<td>11.50</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>August 2017</td>
<td>979</td>
<td>19</td>
<td>7,164</td>
<td>651</td>
<td>19</td>
<td></td>
<td>8,143</td>
<td>670</td>
<td>19</td>
<td></td>
<td>998</td>
<td>3.20</td>
<td>7,834</td>
<td>7.60</td>
<td>8,832</td>
<td>7.60</td>
<td>0.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>September 2017</td>
<td>1,033</td>
<td>15</td>
<td>7,082</td>
<td>657</td>
<td>16</td>
<td></td>
<td>8,115</td>
<td>672</td>
<td>16</td>
<td></td>
<td>1,048</td>
<td>3.30</td>
<td>7,755</td>
<td>7.50</td>
<td>8,803</td>
<td>7.50</td>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>October 2017</td>
<td>1,085</td>
<td>29</td>
<td>6,886</td>
<td>715</td>
<td>32</td>
<td>2</td>
<td>7,971</td>
<td>744</td>
<td>32</td>
<td>2</td>
<td>1,064</td>
<td>2.50</td>
<td>7,635</td>
<td>10.30</td>
<td>8,699</td>
<td>10.30</td>
<td>0.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Month/ Year</th>
<th>Total</th>
<th>Maximum (mSv)</th>
<th>Average (mSv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 2016</td>
<td>1,150</td>
<td>1.92</td>
<td>0.11</td>
</tr>
<tr>
<td>August 2016</td>
<td>1,166</td>
<td>4.39</td>
<td>0.17</td>
</tr>
<tr>
<td>September 2016</td>
<td>1,180</td>
<td>3.50</td>
<td>0.14</td>
</tr>
<tr>
<td>October 2016</td>
<td>1,163</td>
<td>2.40</td>
<td>0.14</td>
</tr>
<tr>
<td>November 2016</td>
<td>1,196</td>
<td>3.10</td>
<td>0.15</td>
</tr>
<tr>
<td>December 2016</td>
<td>1,162</td>
<td>6.24</td>
<td>0.16</td>
</tr>
<tr>
<td>January 2017</td>
<td>1,129</td>
<td>2.40</td>
<td>0.15</td>
</tr>
<tr>
<td>February 2017</td>
<td>1,176</td>
<td>3.40</td>
<td>0.17</td>
</tr>
<tr>
<td>March 2017</td>
<td>1,170</td>
<td>3.70</td>
<td>0.18</td>
</tr>
<tr>
<td>April 2017</td>
<td>1,053</td>
<td>2.74</td>
<td>0.17</td>
</tr>
<tr>
<td>May 2017</td>
<td>1,035</td>
<td>2.40</td>
<td>0.13</td>
</tr>
<tr>
<td>June 2017</td>
<td>1,049</td>
<td>3.30</td>
<td>0.16</td>
</tr>
<tr>
<td>July 2017</td>
<td>1,015</td>
<td>3.80</td>
<td>0.13</td>
</tr>
<tr>
<td>August 2017</td>
<td>998</td>
<td>3.20</td>
<td>0.13</td>
</tr>
<tr>
<td>September 2017</td>
<td>1,048</td>
<td>3.30</td>
<td>0.11</td>
</tr>
<tr>
<td>October 2017</td>
<td>1,064</td>
<td>2.50</td>
<td>0.14</td>
</tr>
<tr>
<td>Month/Year</td>
<td>E ≤ 1</td>
<td>1 < E ≤ 5</td>
<td>5 < E ≤ 10</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>November 2017</td>
<td>1,627</td>
<td>23</td>
<td>6,874</td>
</tr>
<tr>
<td>December 2017</td>
<td>961</td>
<td>22</td>
<td>6,683</td>
</tr>
<tr>
<td>January 2018</td>
<td>914</td>
<td>24</td>
<td>6,444</td>
</tr>
<tr>
<td>February 2018</td>
<td>941</td>
<td>56</td>
<td>6,353</td>
</tr>
<tr>
<td>March 2018</td>
<td>935</td>
<td>46</td>
<td>6,394</td>
</tr>
<tr>
<td>April 2018</td>
<td>1,001</td>
<td>13</td>
<td>5,840</td>
</tr>
<tr>
<td>May 2018</td>
<td>927</td>
<td>15</td>
<td>5,820</td>
</tr>
<tr>
<td>June 2018</td>
<td>939</td>
<td>29</td>
<td>5,795</td>
</tr>
<tr>
<td>July 2018</td>
<td>867</td>
<td>27</td>
<td>5,665</td>
</tr>
<tr>
<td>August 2018</td>
<td>947</td>
<td>25</td>
<td>5,784</td>
</tr>
<tr>
<td>September 2018</td>
<td>985</td>
<td>17</td>
<td>5,684</td>
</tr>
<tr>
<td>October 2018</td>
<td>976</td>
<td>26</td>
<td>5,579</td>
</tr>
<tr>
<td>November 2018</td>
<td>1,009</td>
<td>13</td>
<td>5,556</td>
</tr>
<tr>
<td>December 2018</td>
<td>981</td>
<td>21</td>
<td>5,562</td>
</tr>
<tr>
<td>January 2019</td>
<td>944</td>
<td>16</td>
<td>5,569</td>
</tr>
<tr>
<td>February 2019</td>
<td>974</td>
<td>28</td>
<td>5,575</td>
</tr>
<tr>
<td>Total</td>
<td>12,298</td>
<td>260</td>
<td>100,726</td>
</tr>
<tr>
<td>Month/Year</td>
<td>TEPCO Contractors</td>
<td>TEPCO Total</td>
<td>Contractor Total</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>March 2019</td>
<td>960</td>
<td>5,532</td>
<td>6,492</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>613</td>
<td>647</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>32</td>
<td>33</td>
</tr>
<tr>
<td>April 2019</td>
<td>920</td>
<td>4,780</td>
<td>5,700</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>491</td>
<td>515</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>May 2019</td>
<td>967</td>
<td>4,876</td>
<td>5,843</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>552</td>
<td>772</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>June 2019</td>
<td>1,016</td>
<td>4,993</td>
<td>6,009</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>538</td>
<td>555</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>July 2019</td>
<td>964</td>
<td>5,048</td>
<td>6,012</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>547</td>
<td>566</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>August 2019</td>
<td>1,006</td>
<td>5,037</td>
<td>6,043</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>471</td>
<td>483</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>September 2019</td>
<td>942</td>
<td>4,953</td>
<td>5,895</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>594</td>
<td>606</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>October 2019</td>
<td>915</td>
<td>5,066</td>
<td>6,001</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>613</td>
<td>635</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>November 2019</td>
<td>1,024</td>
<td>5,255</td>
<td>6,279</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>595</td>
<td>618</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>December 2019</td>
<td>963</td>
<td>5,196</td>
<td>6,159</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>615</td>
<td>628</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

*The exposure dose is subject to change due to the replacement of the PAD-measured dose by the glass badge-measured dose.
*The number of workers is also subject to change due to the addition of workers who wore only glass badges (e.g., workers who work only indoors).

Note) The numbers of workers may have been corrected not only for those in fiscal 2019, but also for those before fiscal 2019.
Table 3 Radiation Exposure Dose Distribution (by age)

Ages 18 to 19

<table>
<thead>
<tr>
<th>Effective dose (E) mSv</th>
<th>TEPCO</th>
<th>Contractors</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 < E</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>75 < E ≤ 100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50 < E ≤ 75</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20 < E ≤ 50</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10 < E ≤ 20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5 < E ≤ 10</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1 ≤ E ≤ 5</td>
<td>3</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>E ≤ 1</td>
<td>3</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td>7</td>
<td>19</td>
<td>26</td>
</tr>
<tr>
<td>Maximum (mSv)</td>
<td>7.65</td>
<td>4.56</td>
<td>7.65</td>
</tr>
<tr>
<td>Average (mSv)</td>
<td>2.12</td>
<td>0.81</td>
<td>1.16</td>
</tr>
</tbody>
</table>

Ages 20 to 29

<table>
<thead>
<tr>
<th>Effective dose (E) mSv</th>
<th>TEPCO</th>
<th>Contractors</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 < E</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>75 < E ≤ 100</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>50 < E ≤ 75</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>20 < E ≤ 50</td>
<td>0</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>10 < E ≤ 20</td>
<td>0</td>
<td>134</td>
<td>134</td>
</tr>
<tr>
<td>5 < E ≤ 10</td>
<td>1</td>
<td>181</td>
<td>181</td>
</tr>
<tr>
<td>1 < E ≤ 5</td>
<td>42</td>
<td>218</td>
<td>260</td>
</tr>
<tr>
<td>E ≤ 1</td>
<td>70</td>
<td>397</td>
<td>467</td>
</tr>
<tr>
<td>Total</td>
<td>102</td>
<td>778</td>
<td>880</td>
</tr>
<tr>
<td>Maximum (mSv)</td>
<td>37.58</td>
<td>75.50</td>
<td>75.50</td>
</tr>
<tr>
<td>Average (mSv)</td>
<td>5.84</td>
<td>5.62</td>
<td>5.65</td>
</tr>
</tbody>
</table>

Ages 30 to 39

<table>
<thead>
<tr>
<th>Effective dose (E) mSv</th>
<th>TEPCO</th>
<th>Contractors</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 < E</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>75 < E ≤ 100</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>50 < E ≤ 75</td>
<td>0</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>20 < E ≤ 50</td>
<td>16</td>
<td>388</td>
<td>404</td>
</tr>
<tr>
<td>10 < E ≤ 20</td>
<td>45</td>
<td>437</td>
<td>482</td>
</tr>
<tr>
<td>5 < E ≤ 10</td>
<td>41</td>
<td>404</td>
<td>445</td>
</tr>
<tr>
<td>1 < E ≤ 5</td>
<td>124</td>
<td>799</td>
<td>923</td>
</tr>
<tr>
<td>E ≤ 1</td>
<td>226</td>
<td>1,392</td>
<td>1,618</td>
</tr>
<tr>
<td>Total</td>
<td>452</td>
<td>3,455</td>
<td>3,907</td>
</tr>
<tr>
<td>Maximum (mSv)</td>
<td>43.25</td>
<td>78.29</td>
<td>78.29</td>
</tr>
<tr>
<td>Average (mSv)</td>
<td>3.83</td>
<td>7.39</td>
<td>6.98</td>
</tr>
</tbody>
</table>

Ages 40 to 49

<table>
<thead>
<tr>
<th>Effective dose (E) mSv</th>
<th>TEPCO</th>
<th>Contractors</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 < E</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>75 < E ≤ 100</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>50 < E ≤ 75</td>
<td>0</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>20 < E ≤ 50</td>
<td>11</td>
<td>469</td>
<td>480</td>
</tr>
<tr>
<td>10 < E ≤ 20</td>
<td>31</td>
<td>659</td>
<td>690</td>
</tr>
<tr>
<td>5 < E ≤ 10</td>
<td>47</td>
<td>660</td>
<td>707</td>
</tr>
<tr>
<td>1 < E ≤ 5</td>
<td>151</td>
<td>1,194</td>
<td>1,345</td>
</tr>
<tr>
<td>E ≤ 1</td>
<td>361</td>
<td>2,493</td>
<td>2,854</td>
</tr>
<tr>
<td>Total</td>
<td>601</td>
<td>5,548</td>
<td>6,149</td>
</tr>
<tr>
<td>Maximum (mSv)</td>
<td>33.30</td>
<td>79.90</td>
<td>79.90</td>
</tr>
<tr>
<td>Average (mSv)</td>
<td>2.47</td>
<td>6.62</td>
<td>6.22</td>
</tr>
</tbody>
</table>

Ages 50 to 59

<table>
<thead>
<tr>
<th>Effective dose (E) mSv</th>
<th>TEPCO</th>
<th>Contractors</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 < E</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>75 < E ≤ 100</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>50 < E ≤ 75</td>
<td>0</td>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td>20 < E ≤ 50</td>
<td>17</td>
<td>625</td>
<td>642</td>
</tr>
<tr>
<td>10 < E ≤ 20</td>
<td>47</td>
<td>664</td>
<td>711</td>
</tr>
<tr>
<td>5 < E ≤ 10</td>
<td>197</td>
<td>1,351</td>
<td>1,548</td>
</tr>
<tr>
<td>1 < E ≤ 5</td>
<td>493</td>
<td>2,646</td>
<td>3,139</td>
</tr>
<tr>
<td>E ≤ 1</td>
<td>761</td>
<td>5,767</td>
<td>6,528</td>
</tr>
<tr>
<td>Total</td>
<td>35.77</td>
<td>78.54</td>
<td>78.54</td>
</tr>
<tr>
<td>Maximum (mSv)</td>
<td>1.75</td>
<td>5.97</td>
<td>5.48</td>
</tr>
</tbody>
</table>

Ages 60 to 69

<table>
<thead>
<tr>
<th>Effective dose (E) mSv</th>
<th>TEPCO</th>
<th>Contractors</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 < E</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>75 < E ≤ 100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50 < E ≤ 75</td>
<td>0</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>20 < E ≤ 50</td>
<td>2</td>
<td>205</td>
<td>207</td>
</tr>
<tr>
<td>10 < E ≤ 20</td>
<td>6</td>
<td>277</td>
<td>283</td>
</tr>
<tr>
<td>5 < E ≤ 10</td>
<td>6</td>
<td>367</td>
<td>373</td>
</tr>
<tr>
<td>1 < E ≤ 5</td>
<td>33</td>
<td>742</td>
<td>775</td>
</tr>
<tr>
<td>E ≤ 1</td>
<td>129</td>
<td>1,716</td>
<td>1,845</td>
</tr>
<tr>
<td>Total</td>
<td>176</td>
<td>3,326</td>
<td>3,502</td>
</tr>
<tr>
<td>Maximum (mSv)</td>
<td>35.45</td>
<td>68.82</td>
<td>68.82</td>
</tr>
<tr>
<td>Average (mSv)</td>
<td>1.63</td>
<td>4.83</td>
<td>4.67</td>
</tr>
</tbody>
</table>

Ages 70 and over

<table>
<thead>
<tr>
<th>Effective dose (E) mSv</th>
<th>TEPCO</th>
<th>Contractors</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 < E</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>75 < E ≤ 100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50 < E ≤ 75</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>20 < E ≤ 50</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>10 < E ≤ 20</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>5 < E ≤ 10</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>1 < E ≤ 5</td>
<td>57</td>
<td>57</td>
<td>57</td>
</tr>
<tr>
<td>E ≤ 1</td>
<td>153</td>
<td>156</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>255</td>
<td>258</td>
</tr>
<tr>
<td>Maximum (mSv)</td>
<td>0.32</td>
<td>54.64</td>
<td>54.64</td>
</tr>
<tr>
<td>Average (mSv)</td>
<td>0.16</td>
<td>3.59</td>
<td>3.55</td>
</tr>
</tbody>
</table>

Number of workers

<table>
<thead>
<tr>
<th>TEPCO</th>
<th>Contractors</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>19</td>
<td>26</td>
</tr>
<tr>
<td>272</td>
<td>1,714</td>
<td>1,986</td>
</tr>
<tr>
<td>452</td>
<td>3,455</td>
<td>3,907</td>
</tr>
<tr>
<td>601</td>
<td>5,548</td>
<td>6,149</td>
</tr>
<tr>
<td>761</td>
<td>5,767</td>
<td>6,528</td>
</tr>
<tr>
<td>176</td>
<td>1,716</td>
<td>1,845</td>
</tr>
<tr>
<td>32</td>
<td>31</td>
<td>63</td>
</tr>
<tr>
<td>255</td>
<td>255</td>
<td>510</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2,272</td>
<td>20,084</td>
<td>22,356</td>
</tr>
<tr>
<td>43.25</td>
<td>79.90</td>
<td>79.90</td>
</tr>
<tr>
<td>2.83</td>
<td>6.14</td>
<td>5.80</td>
</tr>
</tbody>
</table>

* The exposure dose is subject to change due to the replacement of the PAD-measured dose by the glass badge-measured dose. The number of workers is also subject to change due to the addition of workers who wore only glass badges (e.g., workers who work only indoors).
2. Decontamination Works Resulting from the Accident of the TEPCO Fukushima Daiichi NPP and Necessary Radiation Protection Measures

2.1 Radiation protection of workers involved in decontamination works

The accident at the Fukushima Daiichi Nuclear Power Plant (NPP) released large amounts of radioactive materials. For rehabilitation of the contaminated areas, the Japanese Government has decided to carry out decontamination works (e.g., clean-up of buildings and remediation of soil and vegetation) and to manage the wastes resulting from decontamination works and clean-up of unmarketable contaminated goods. Prevention of radiological contamination of the workers has required that the Government ensure sufficient radiological protection is provided to them.

2.1.1 Radiation protection for workers engaged in decontamination works

The Act on Special Measures Concerning the Handling of Environmental Pollution by Radioactive Materials Discharged by the Nuclear Power Station Accident Associated with the Tohoku District Off the Pacific Ocean Earthquake That Occurred on 11 March 2011 (Act. No.110, 2011, hereinafter referred to as the “Act on Disaster Special Measures”) was passed into law in August 2011, and fully implemented starting from 1 January 2012.

(1) The regulations established by the Act on Disaster Special Measures are as follows:
 a) Treatment of wastes contaminated with radioactive materials; and
 b) Actions such as decontamination of soil contaminated with radioactive materials.

However, the Act on Disaster Special Measures does not include measures for protecting workers engaged in these tasks from health hazards caused by exposure to ionizing radiation.

(2) In addition, in the current Ordinance on Prevention of Ionizing Radiation Hazards (Ordinance No. 41 of the Ministry of Labour, 1972, hereinafter referred to as the “Ionizing Radiation Ordinance”), measures are established on the premise that the radioactive sources are located at a certain place, such as at medical facilities or at NPPs, where workers mainly work indoors (planned exposure situations).

Measures for responding to the types of decontamination works that involve collection of wastes stipulated in the Act on Disaster Special Measures are not included. Furthermore, this Act was not established on the premise that the radioactive sources are dispersed over wide areas and that workers mostly work outdoors (existing exposure situations).

(3) Further, under the fundamental policies, based on the Act on Disaster Special Measures, approved by the cabinet on 11 November 2011, it is stated that “ensuring the safety of workers is the highest priority when handling environmental decontamination. Therefore, the employers should take great care regarding the safety and health of workers engaged in duties concerning decontamination of the environment, for example, by providing radiological protection guidance. In addition, they should manage the radiation doses received by the workers and provide workers with opportunities to enhance their knowledge of safety and health.”

Considering the situation, a new ordinance was formulated that regulates measures to properly protect workers from health hazards caused by ionizing radiation based on the nature of the works such as decontamination works and waste collection works; this is the “Ordinance on Prevention of Ionizing Radiation Hazards at Works to Decontaminate Soil and Wastes Contaminated by Radioactive Materials Resulting from the Great East Japan Earthquake and Related Works” (hereinafter referred to as the “Decontamination Ordinance.”) This Ordinance was formulated separately from the current Ionizing Radiation Ordinance.

2.1.2 Radiation protection for workers engaged in restoration and reconstruction works

The Nuclear Emergency Response Headquarters and the National Reconstruction Agency revised the classification of the evacuation areas around the TEPCO Fukushima Daiichi NPP (restricted areas and deliberate evacuation areas) into 3 types of areas on 1 April 2012: (1) Areas for which evacuation orders are ready to be lifted; (2) Areas in which the residents are not permitted to live; and (3) Areas where it is expected that the residents will have difficulties in returning for a long time.

In the “Areas in which evacuation orders are ready to be lifted”, activities can be started for:

(1) Restoring local infrastructures other than those requiring decontamination;
(2) Restarting businesses such as manufacturing industries;
(3) Preparing to reopen hospitals and welfare facilities;
(4) Restarting agriculture and forestry industries; and
(5) Restarting transportation services associated with these activities.

The Decontamination Ordinance which came into force on 1 January 2012 was applicable only for decontamination operations (decontaminating soil, and collecting, transporting and storing wastes). For applications of the above activities, revision of the Ordinance was required.

Therefore, the expert meeting originally organized to discuss decontamination operations was reorganized to discuss measures to protect workers from radiation hazards in the evacuation areas. The committee compiled their discussions and issued a second report on 27 April 2012.

Based on this report, the Decontamination Ordinance was amended and guidelines were prepared that summarize relevant laws and regulations comprehensively and in an easy way to understand manner.\(^{41}\)

\(^{41}\) Under the amended Decontamination Ordinance definitions were given for: “specified contaminated soil handling work (tasks handling soil with a cesium concentration exceeding 10,000 Bq/kg)” and “work under a designated dose rate (tasks performed
2.1.3 Radiation protection for workers engaged in disposal of accident-derived waste

The Ministry of the Environment estimated that approximately 15 - 31 million tons of soil and wastes had been generated from decontamination works and clean-up of unmarketable contaminated goods had reached approximately 0.56 million tons in Fukushima Prefecture alone. The Ministry was expected to start deploying full-scale activities to dispose of those wastes in the summer of 2013.

Activities for accident-derived waste disposal were subject to the Ionizing Radiation Ordinance; however, this ordinance did not contain sufficient regulations for employers involved in disposal work.

The expert meeting on radiation protection and waste disposal was held to consider measures to prevent radiological hazards. The report of the expert meeting was published on 14 February 2013.

Based on the report, the Ionizing Radiation Ordinance was amended and the new guidelines were developed that summarize relevant laws and regulations.

These include e.g., final disposal (landfill), interim storage, and interim treatments (incineration, crushing, etc.)

2.2 Outline of ordinances which provide radiation protection during decontamination works and restoration and reconstruction works, etc.

Measures to prevent ionizing radiation hazards for each step are outlined below.

2.2.1 Outline of radiation protection measures during decontamination works

The Decontamination Ordinance specifies actions to be taken by the employer to prevent radiation exposure of workers engaged in decontamination of soil, collection of removed soil/waste in the areas contaminated by radioactive materials released from the accident at the Fukushima Daiichi NPP. Actions are largely divided into three types as follows:

- **Actions to reduce exposure**
 - The dose limit for the workers shall be 100 mSv for five years, and not exceed 50 mSv for any one year (it shall not exceed 5 mSv for three months for potentially pregnant workers).
 - In areas where dose rates are higher than 2.5 µSv/h (equivalent to 5 mSv/y)*3), the external dose shall be measured with a personal dosimeter (it should be noted that, in areas where dose rate is in the range of 0.23 µSv/h - 2.5 µSv/h (1 mSv - 5 mSv/y), simple methods of measurement may be acceptable.)
 - Measured data shall be kept for 30 years*4; as well, workers shall be notified of their doses.
 - The decontamination shall be started after measuring dose rates, and conducted under the direction of an operation leader in accordance with the work plan. The decontamination in areas where the dose rate is higher than 2.5 µSv/h in particular, requires submitting a work plan to the relevant Labour Standards Inspection Office.
*3) This approximately corresponds to the areas that cover the deliberate evacuation areas and the restricted areas.

- **Actions to prevent spread of contamination**
 - When dust containing a high concentration of radioactive cesium may be generated, dispersion of soil shall be prevented by moistening the soil. When works are involving soil with a high radioactivity concentration or the possibility that a high concentration of dust may be generated, workers shall wear proper respiratory protective equipment and protective clothes.
 - Removed soil shall be stored in a container that meets certain requirements*5) and access to the containers shall be restricted.
 - Smoking, drinking or eating in working areas that may have a risk of ingestion or inhalation of radioactive material shall be prohibited.
 - Contamination inspection areas shall be set up where contamination surveys are conducted for the body and clothing of workers.
*5) The requirements are: no risk of dispersal or leaking of container contents; and the 1 cm dose equivalent rate at 1 m from the container surface shall be 0.1 mSv/h or less.

- **Education and health care of workers**
 - Education shall be provided to workers who will be engaged in the decontamination works with respect to radiation effects, radiation dose control, work methods, etc.
 - Special medical examinations shall be provided to workers when they are employed, their jobs are changed, and once every six months. The records of the medical examinations implemented for each worker shall be kept for 30 years*6) and notified to each worker. When any abnormalities are found in the medical examination of any workers, some consideration in their work shall be made, such as a change of workplace.
 - When the workers leave the job or the companies terminate their decontamination business, the records of radiation doses of the workers and their individual medical examination records shall be delivered to the organization designated by the MHLW, and copies shall be given to the workers.
*6) After 5 years, the data may be transferred to the organization designated by the MHLW.
2.2.2 Outline of radiation protection measures during restoration and reconstruction work

The MHLW published the ministerial ordinance which partially revises the “Ordinance on Prevention of Ionizing Radiation Hazards at Works to Decontaminate Soil and Wastes Contaminated by Radioactive Materials Resulting from the Great East Japan Earthquake and Related Works” (hereafter referred to as the “Ionizing Radiation Ordinance for Decontamination”). It was put into effect on 1 July 2012.

The revision was made anticipating the start and resumption of “restoration of life infrastructures (excluding decontamination works) and manufacturing industries” in “special decontamination areas” in response to the readjustment of the evacuation areas.

Specifically, the guidelines summarize the following items:

1. Identification of personnel for whom radiation dose needs to be controlled, and prescribe methods to control the radiation dose;
2. Measures to reduce radiation exposure;
3. Measures to prevent spread of contamination and internal exposure;
4. Worker education programs;
5. Actions for health care; and
6. Safety and health control system.

It should be noted that the guidelines are also expected to be useful for local residents or volunteers who are in the special decontamination areas, though their original purpose was to ensure safety of workers engaged in decontamination works or works under a designated dose rate. In addition, a textbook for special education of workers as specified in the Ionizing Radiation Ordinance for Decontamination was also prepared, and is available from the MHLW website.

2.2.3 Outline of radiation protection measures during disposal of accident-derived waste

The MHLW published a ministerial ordinance to revise the Ionizing Radiation Ordinance for Decontamination on 12 April 2013, and put the revised ordinance into effect on 1 July 2013.

This revision was made in light of the fact that disposal of wastes contaminated with radioactive materials discharged by the NPP accident associated with the 11 March 2011 earthquake and tsunami is expected to increase in scale with the progress of decontamination project.

Disposal business employers were recommended to take radiological hazard prevention measures for the 5 revised points shown below. It should be noted that definitions of controlled area, dose limits, dose measurement and recording and measures for health care shall follow the provisions in the current Ordinance on Preventing Ionizing Radiation Hazards.

1. Requirements to be satisfied by such facilities as incineration plants and landfills where the disposal of accident-derived wastes will be performed.
2. Measures to prevent the spread of contamination, such as the use of dust masks and protective clothing, as well as making contamination inspection.
3. Operation management by, for example, preparing operation manuals.
4. Special education for workers engaged in disposal work.
5. Exemptions when the disposal facility is constructed in special decontamination areas.

In parallel with the revision, “Guidelines on prevention of radiation hazards for workers engaged in the accident-derived waste disposal” were also prepared. These guidelines summarize the provisions specified in the Industrial Safety and Health Act and other relevant regulations, including the Ordinance for Preventing Ionizing Radiation Hazards, as well as recommended actions that employers shall implement in order to prevent workers from encountering radiological hazards. Specifically, the following subjects were included:

1. Methods for defining radiation controlled areas and controlling radiation doses
2. Education of workers
3. Dose limits in facilities
4. Actions for health care
5. Requirements for facilities to prevent contamination
6. Safety and health control system
7. Measures to prevent contamination
8. Exemptions in the special decontamination areas
9. Work management, etc.

A textbook for special education of workers engaged in the disposal works, as specified in this revision, was also prepared. This textbook is available from the MHLW website. The MHLW is making public the textbook so that it will be widely utilized by employers and workers in taking appropriate measures at work sites.
2.3 Status of the implementation of radiation protection corresponding to decontamination works

2.3.1 Results of inspections and instructions provided to employers engaged in decontamination works, etc.
The Fukushima Prefectural Labour Bureau (PLB) has conducted inspections and given instructions within the jurisdiction of the Labour Standards Inspection Offices to employers in order to ensure proper conditions of employment and safety, and the health of workers engaged in decontamination works, etc.

The investigations were focused on conditions of employment such as clear indications of conditions of employment, payment of wages, and working hours, reflecting the circumstances that some inquiries were raised about wages and other conditions of employment such as the special duty (decontamination) allowance.

As a result of inspections for 290 employers from January to December 2019, a total of 154 employers were recognized as being in violation (violation rate: 53.1%) of applicable laws such as the Labour Standards Act or the Industrial Safety and Health Act. Corrective recommendations were issued to these employers to correct the said violations accordingly.

2.3.2 Voluntary activities towards compliance with laws and ordinances
On 30 October 2015, the Fukushima PLB formulated its own “General Measures toward Improvement of Level of Compliance with Laws and Ordinances for Decontamination Works, etc.” Its contents include provision of focused supervision and instruction for decontamination worksites and promotion of voluntary activities towards compliance with the related laws and ordinances by the relevant employers.

On 9 November 2015, the Fukushima PLB held an information session on the General Measures. At the information session, the Bureau provided all the primary contractors of decontamination works ordered by the National Government (Ministry of the Environment) with detailed information on the General Measures, provided them with instruction on ensuring proper working conditions, safety and health of workers engaged in decontamination works as well as maintaining and improving the fairness in subcontracting relations, and requested them to thoroughly comply with the related laws and ordinances in collaboration with the Fukushima Office for Environmental Restoration.
3. Overview of Guidelines and Notifications

3.1 Overview of the Guidelines on Maintaining and Improving Health of Emergency Workers at Nuclear Facilities

These guidelines were issued on 11 October 2011 as “Guidelines on Maintaining and Improving Health of Emergency Workers at the TEPCO Fukushima Daiichi Nuclear Power Plant”. The purpose of the guidelines is to support appropriate and effective implementation of measures to maintain and improve the health of workers who have engaged or had engaged in the emergency works or radiation works at the TEPCO Fukushima Daiichi NPP (hereinafter referred to as “emergency workers.”). The guidelines require that the following measures are implemented appropriately to maintain and improve the health of emergency workers.

(1) Actions for long-term health care
 • An on-site health care system should be established, appropriate to the scale of each workplace to implement the relevant medical examinations.
 • The following examinations should be performed for those workers whose exposure doses (effective doses) during emergency works fall in the following ranges:
 (a) Higher than 50 mSv, a cataract examination once a year.
 (b) Higher than 100 mSv, a cancer screening once a year.
 • Health guidance should be provided to all emergency workers.

(2) Development of a database for workers who have engaged in emergency works
 • Employers who assign their emergency workers to be engaged in the emergency works or radiation works should report to the Japanese Government the results of their medical examination and provide status reports on their radiation dose control.
 • A registration card for the database established by the Japanese Government should be issued to emergency workers. The emergency workers should be able to obtain transcripts of their records for exposure doses and medical examination results by presenting the card at the national support service.
 • The emergency workers whose exposure doses are higher than 50 mSv are eligible to receive a record book describing the doses.

(3) Support provided by the Japanese Government
 • Recommendations for cancer screenings and other examinations to emergency workers.
 • Health consultations and guidance to emergency workers at the support services.
 • Full or partial financial support for the expenses incurred by emergency workers who fall into the categories described in Section 2 of “Actions for long-term health care”.

On 31 August 2015, the MHLW promulgated the partial revision of the Ministerial Ordinance on Prevention of Ionizing Radiation Hazards that defines actions to prevent workers from encountering radiation hazards, etc. In accordance with the partial revision of the ordinance, the above guidelines were revised (to be applied from 1 April 2016) as shown below.

• Modification of the name to “Guidelines on Maintaining and Improving Health of Emergency Workers at Nuclear Facilities”.
• Enhanced long-term healthcare (examination items such as cancer screenings were added and a stress check will be provided).
• Mid-term exposure dose control for workers who were exposed to radiation beyond the dose limit for regular radiation works.
• Exposure dose control for the regular radiation works during the exposure dose control period including the time of the accident.

Further information is available on the following sites.

3.2 Overview of the Ordinance on Prevention of Ionizing Radiation Hazards at Works to Decontaminate Soil and Wastes Contaminated by Radioactive Materials Resulting from the Great East Japan Earthquake and Related Works

The Ordinance on Prevention of Ionizing Radiation Hazards at Works to Decontaminate Soil and Wastes Contaminated by Radioactive Materials Resulting from the Great East Japan Earthquake and Related Works specifies the actions below to be taken by employers to prevent radiation exposure of workers engaged in decontamination works.

(1) Fundamental principles and definitions
 • Employers shall strive toward minimizing worker exposure to ionizing radiation.

(2) Measuring doses and monitoring the maximum dose levels
 • The exposure doses shall not exceed 100 mSv per five years and 50 mSv per one year.
 • The exposure doses received by workers shall be monitored,
recorded, and the records kept for 30 years.
• The external exposure doses shall be monitored.
• The workers handling contaminated soil shall receive examinations for internal exposure doses.

(3) Measures for implementation of decontamination works
• Exposure doses in workplaces shall be surveyed and recorded before commencing works.
• A work plan shall be established and disseminated to every worker.
• An operation leader shall be appointed to lead the project.
• The work plan shall be submitted to the Head of the relevant Labour Standards Inspection Office.
• When the radiation doses exceed the maximum standardized levels, employers shall promptly consult a physician and report the case to the relevant office.

(4) Prevention of contamination
• For suppression of dust, measures shall be taken to keep contaminated soil and wastes in a wet condition.
• Contaminated soil and wastes shall be stored in containers.
• When workers leave their workplaces, their bodies and belongings shall be screened for contamination.
• When workers are engaged in certain designated works, they shall wear protective equipment.
• When protective equipment is contaminated, it shall not be used until it is decontaminated.
• In the workplaces, eating, drinking, and smoking shall be prohibited.

(5) Education
• Workers engaged in decontamination works shall receive special education.

(6) Health care
• Special medical examinations for workers engaged in decontamination works shall be conducted.
• The medical examination cards shall be created, and the examination results recorded on them and the cards kept for 30 years.
• Opinions of physicians shall be received and recorded on the medical examination cards.
• Workers shall be informed the results of the special medical examinations and the results shall be submitted to the Head of the relevant Labour Standards Inspection Office.
• Based on the medical examination results, workers shall receive needed measures to protect their health.

(7) Others
• Radiation dosimeters, which are indispensable to abide by the ordinance, shall be provided.
• When employers terminate their businesses, the records of radiation dose measurements and medical examination cards shall be transferred to the organization designated by the MHLW.
• When workers leave their jobs, such records shall be issued to the workers.
• Exposure doses shall be added to those received during other decontamination works.

3.3 Overview of the Guidelines on Prevention of Radiation Hazards for Workers Engaged in Decontamination Works

These guidelines specify actions to be taken by the employers to prevent radiation exposure for workers engaged in decontamination works. The guidelines were issued on 22 December 2011, partially revised on 15 June 2012, 12 April 2013, 26 December 2013, 18 November 2014, and 30 January 2018.

(1) Objectives
• These guidelines aim at collectively providing the essence of the actions that employers should take and the provisions specified in the Industrial Safety and Health Act (Act No. 57, 1972) and other relevant laws and regulations, in addition to the provisions specified in the revised Ionizing Radiation Ordinance for Decontamination.

(2) Scope
• “Decontamination works” refers to the works in performing decontamination of soil, etc.; handling of designated contaminated soil, and wastes and collecting wastes, etc.
• Employers should follow applicable matters from each section of the guidelines, as needed.

(3) Targets and methods for radiation exposure dose control
• Employers for decontamination works, etc., should conduct effective exposure dose monitoring during decontamination works.
• Employers for decontamination works, etc., should ensure that the individual total effective dose does not exceed the limits defined in the guidelines. The records of exposure data should be kept for 30 years.

(4) Measures to reduce radiation exposure
• Employers for decontamination works, etc., should make surveys of workplaces in advance and formulate a work plan, according to which works should be conducted, based on the information from the preparatory survey.

(5) Measures for preventions of contamination spreading and internal exposure
• Control of dust generation by wetting soil, contamination screening for workers when leaving the controlled area, use of dust mask or other protective equipment etc., are required.

(6) Education for workers
• Education for operation leaders and special education for the workers are defined.

(7) Measures for health care
• Employers for decontamination works, etc., should provide workers with the special and general health examinations once every 6 months. The examination results should be recorded in the medical examination cards and the cards kept for 30 years.

(8) Safety and health management system
• The safety and health management system should be
established by the primary contractors, by appointing a
general safety and health manager and a radiation
administrator to conduct radiation dose control, and related
activities.

Further information is available on the following site.
https://www.mhlw.go.jp/english/topics/2011eq/workers/ri/gn/g
n_141118_a01.pdf

3.4 Overview of the Guidelines on Prevention of Radiation Hazards for Workers Engaged in Works under
a Designated Dose Rate

These guidelines specify actions to be taken by the employers to
prevent radiation exposure for workers engaged in works, such
as restoration and reconstruction works, under a designated dose
rate.

(1) Objectives
The Ionizing Radiation Ordinance was partially revised to
regulate measures for appropriately protecting workers from
health hazards caused by radiation, according to the types of
restoration and reconstruction works.

(2) Application
These guidelines apply to employers who provide services
other than the decontamination works at the sites where the
average ambient dose rate exceeds 2.5μSv/h.

(3) Subjects and methods of radiation exposure dose control
The total effective exposure doses should not exceed 100 mSv
per five years and 50 mSv per year for workers, 5 mSv per
three months for female workers having the possibility to
become pregnant. The dose records should be preserved for 30
years.

(4) Measures to reduce radiation exposure
The employers should measure the average ambient dose rate
of the work sites to determine the appropriate measures for
radiation exposure dose control. The appropriate health
services and consultations by physicians should be provided to
the workers.

Further information is available on the following site.
https://www.mhlw.go.jp/english/topics/2011eq/workers/ri/gn/g
n_141118_a02.pdf

3.5 Overview of the notice, “Instructions to enhance actions for safety and health management measures
for radiation works and emergency works at nuclear facilities”

On 10 August 2012, the MHLW issued a circular notice
(“Instructions to enhance actions for safety and health
management measures for radiation works and emergency
works at nuclear facilities”, Labour Standard Bureau
Notification No. 0810-1, issued on 10 August 2012) to the
directors of the relevant Prefectural Labour Bureaus with a
directive to enhance instruction to relevant employers with
respect to safety and health measures in preparation for
emergency works at nuclear facilities (nuclear power plants,
reprocessing facilities and fuel fabrication facilities).

The MHLW has provided instructions via circular notices
since 2000 regarding safety and health management of radiation
works in nuclear facilities, including radiation exposure dose
control. In consideration of the lessons learned from the accident
at the TEPCO Fukushima Daiichi NPP associated with the Great
East Japan Earthquake, measures in preparation for emergency
works to be taken by the employers are also considered
important. Accordingly, the Ministry decided to improve the
instructions thoroughly.

Points where instructions are improved:
(1) Provisions in preparation for emergency works should be
taken not only at nuclear facilities, but also at corporate offices
and primary contractors;
(2) In making prior preparations for emergency works, nuclear
facility operators, etc. are required to conduct the voluntary
inspections listed below. The facilities will be instructed to
implement those matters that are difficult to implement
immediately in a step-by-step manner.
(a) Radiation dose control
Improvement of the framework of the dose management
system should be undertaken, including securing availability
of dosimeters by making advance borrowing agreements
with other facilities, managing dosimeter-lending records of
workers, and notifying workers of their doses and
measurements of internal exposure, etc.
(b) Protective equipment and clothing
Protective equipment and clothing should be made available
and workers should be shown the correct way to wear the
respiratory protective equipment. Employers should measure airborne concentration at waiting stations (stand-by areas) and other places.

(c) Safety and health education
Textbooks should be prepared and classrooms for educating new workers should be provided.

(d) Health care and medical care systems
The medical care system should be established, measures against heat stroke should be implemented, special medical examinations should be conducted, and a patient transportation system should be established.

(e) Work plan and others
A system to prepare work plans should be established, preparation of proper work plans should be promoted, the actual status of contracted work should be assessed, and arrangements for proper accommodations (lodging) and meals, etc. should be made in advance.

(3) The Ministry will clarify the items for the relevant Prefectural Labour Bureaus to ensure that nuclear facilities are properly instructed in the case of implementing emergency works.

Further information is available on the following site.

3.6 Overview of the Guidelines on Prevention of Radiation Hazards for Workers Engaged in (Nuclear) Accident-derived Waste Disposal

These guidelines, prepared for disposal of accident-derived waste, summarize the provisions specified in the Industrial Safety and Health Act and other relevant regulations, including the Ordinance for Preventing Ionizing Radiation Hazards.

(1) Objectives
The guidelines aim at collectively providing the actions that the disposal operators handling accident-derived waste should take.

(2) General principles
The disposal operators should strive to minimize the amount of ionizing radiation. The disposal operators should strive to decontaminate the area around the disposal site in advance in order to reduce radiation exposure to workers.

(3) Methods on setting radiation controlled areas and radiation dose control
The disposal operators should clearly specify the radiation controlled areas with posted signs and prohibit access to the area. The dose measurements should be recorded basically every three months, every year, and every five years, and the records should be kept for 30 years.

(4) Dose limit at facilities
The disposal operators should ensure that the dose rate is restricted so that the sum of the external dose and committed effective dose from radioactive materials in air should not exceed 1mSv per week.

(5) Requirements on equipment for preventing contamination
The disposal operators should use materials and structures that prevent spread of contamination, and ensure that workers in the facilities are not exposed to radiation.

(6) Measures to prevent spread of contamination
The disposal operators should use containers in order to prevent spread of contamination, should create an inspection area to check the contamination levels of workers, and should make available effective respiratory protective equipment and protective clothing for workers to prevent body contamination.

(7) Work management
The disposal operators should define rules on work methods and procedures, etc. that should be disseminated to the workers. The disposal operators should submit a "work permit" to the head of the relevant Labour Standards Inspection Office.

(8) Education for workers
The disposal operators should provide workers with special education on the following topics: what accident-derived wastes are and how they should be disposed.

(9) Measures for health care
The disposal operators should provide workers with special and general medical examinations once every 6 months. The examination results should be recorded on medical examination cards and the cards kept for 30 years.

(10) Safety and health management system
The safety and health management system should be established by the primary contractors by assigning a general safety and health manager, a responsible person for safety and health management by involved subcontractors, and so on. Safety and health coordinating meetings consisting of all of the involved subcontractors will be held once a month.

Further information is available on the following sites.
http://www.mhlw.go.jp/english/topics/2011eq/workers/dr/wd/pr_130412_a03.pdf (Overview)
3.7 Overview of the establishment of radiation exposure doses registration systems for decontamination and related works

The primary contractors of decontaminator works came to an agreement on establishing the Organization for registration control of radiation exposure doses for decontamination and related works from April 2014 as follows:

1) Objectives
The registration system aims to achieve the following:
Establish a registration system in coordination with the existing system for nuclear facilities to verify past exposure doses when decontamination workers are successively employed by different employers.

2) Systematic operation of the radiation passbook control
- Obtaining the radiation passbook
- Control of radiation passbooks and notification of exposure doses
- Obtaining the result of medical examinations and recording it in radiation passbooks
- Obtaining implementation status of special education and recording it in radiation passbooks

3) Methods for dose registration and past record inquiry
- Registration of work sites
- Periodical registration of exposure doses
- Inquiry and registration of records prior to 2014
- Cross-reference of data with system for nuclear facilities

4) Transfer of records of exposure dose and medical examination
- Statutory transfer of exposure dose records
- Statutory transfer of medical examination records

5) Operation of dose control system
- Expense for participating in dose control system
- Development of work procedures and manuals
- Establishment of governance council to maintain the system

Further information is available on the following site.
http://www.mhlw.go.jp/english/topics/2011eq/workers/or/oi/pr_131115.html

3.8 Overview of the Guidelines on Occupational Safety and Health Management at the TEPCO Fukushima Daiichi Nuclear Power Plant

The MHLW formulated the Guidelines on Occupational Safety and Health Management at the TEPCO Fukushima Daiichi Nuclear Power Plant (Labour Standards Bureau Notification No. 0826-1, 26 August 2015). This guideline summarizes transparently actions to be conducted by TEPCO and the primary contractors according to the subjects shown below in taking measures for occupational safety and health management toward decommissioning of the TEPCO Fukushima Daiichi NPP.

1) Establishment of a system for occupational safety and health management undertaken by TEPCO and the primary contractors
- Selecting a general health and safety manager, etc. and holding safety and health coordinating meetings by TEPCO
- Providing instructions to, and support of, relevant subcontractors by the primary contractors

2) Implementation of risk assessment and measures to be taken for enhancement of safety and health education based on the results
- Implementing a risk assessment (identifying dangers or hazards caused by the works, estimating occurrence of occupational injuries and diseases that may be caused by them, and considering measures to reduce the risks) and taking measures to reduce the possibility of occupational injuries and diseases based on the results
- Enhancing education of new workers or operation leaders

3) Consideration and implementation of effective exposure dose reduction measures from the stage of placing orders
- Preparing an “Exposure dose reduction specification” by TEPCO for radiation works that may cause one man-sievert of total exposure dose for all workers, and preparing a “Dose control plan” by the primary contractors, etc., and submitting them to the Director of the Labour Standard Inspection Office

4) Healthcare measures, etc.
- Providing health guidance based on medical examination results, establishing an emergency medical system, taking heat stroke measures and long-term healthcare measures, improving the work environment, etc.

Further information is available on the following site.
4. Results of Epidemiological Studies on Emergency Workers

4.1 Overview of the Report of the Expert Meeting on Epidemiological Studies Targeting Emergency Workers at the TEPCO Fukushima Daiichi Nuclear Power Plant

MHLW compiled a report of the expert meeting series held since February 2014 in which discussions were made about how to make plans for epidemiological studies targeting emergency workers concerning radiation effects on human health.

The purpose of the report is to compile the basic concept and matters of note in establishing the abovementioned plans.

(1) Study targets and method
- Around 20,000 emergency workers should be covered with the study period lasting throughout their respective lifetimes.
- Follow-up for the target group should be done and the current-state survey conducted by the MHLW should be utilized and maintained in the course of the long-term health care database management.
- Health and psychological effects to be examined should cover cancers (tumors), leukemia and non-cancerous diseases.
- The cumulative dose should be set as an exposure factor. Dose-response relationships of health effects are to be examined, and classification by exposure conditions should be done.
- The prospective cohort study method should be employed.
- When compiling study results, analysis results that show both presence and absence of statistically significant differences using a suitable statistical test should be reported.

(2) Health effects examinations
- The abovementioned diseases, for which radiation effects have been previously suspected, should be covered broadly. In addition to health checkups, other systems and data should also be referred to.
- Examination items and frequencies should be determined based on the MHLW Minister’s guidelines, while referring to the examinations targeting WWII atomic bomb survivors. However, these may be changed or added to in accordance with technological advancement.
- Questionnaires to ascertain psychological effects should be used.

(3) Ascertaining cumulative doses
- Primary source materials for both internal and external exposures should be preserved as original documents where possible for data verification in the future.
- A chromosomal test to biologically measure exposure doses should be conducted for workers whose effective doses exceed 100mSv.

(4) Control of confounding factors
- As the epidemiological studies take time and cover cancers and various other diseases, it is important to control confounding factors.
- In addition to examinations of items adopted in previous studies in Japan, examinations of each worker’s history of exposure to toxic substances and work details should be collected.

(5) Implementation system of the studies
- A controlling research institute should first be designated and cooperative research institutions in respective sectors should be selected thereunder.
- Consigned health check organizations should be selected.

(6) Study period, evaluation and publication of study results
- As the studies will take time, research institutions should be evaluated by an international third-party panel at 5-year intervals.
- Research institutions should regularly report their results to the MHLW and publicize them in the controlling research institute’s publications, and compile and publish achievements in international academic journals.

Further information is available on the following sites.

4.2 Overview of the report results, Research on Thyroid Gland Examinations, etc. of Workers at the TEPCO Fukushima Daiichi Nuclear Power Plant (Sobue et al. 2014)

A report was compiled regarding the Research on Thyroid Gland Examinations, etc. of Workers at the TEPCO Fukushima Daiichi Nuclear Power Plant (chief researcher: Tornotaka Sobue (Professor, Environmental Medicine and Population Sciences, Graduate School of Medicine, Osaka University)).

This research funded by the Health and Labour Science Research Grants aims to epidemiologically analyze radiation effects on the thyroid gland by setting an exposed group (emergency workers exposed to radiation exceeding a thyroid equivalent dose\(^{1}\) of 100 mSv) and a control group (thyroid equivalent dose of 100 mSv or less), performing ultrasonic examinations for both groups and comparing the results. The results of the analysis are to be evaluated from the viewpoint of clinical medicine in terms of radiation effects on the thyroid gland. Major findings and discussion was as follows.

\(^{1}\)Thyroid equivalent dose: Dose only focusing on thyroid exposure, which is calculated as the total of internal exposure and external exposure (including exposure prior to the accident); 1/20 of the whole-body exposure dose (effective dose)

(1) No difference was found in the percentages of workers assigned as level B (a secondary examination was recommended) and level C (secondary examination was necessary) between the exposed group and the control group, and there was no correlation with thyroid equivalent doses. However, the percentage of workers assigned as level A2 (a secondary examination was unnecessary) was relatively high for people with high doses, and the same trend was observed in analysis using re-evaluated thyroid equivalent doses.

(2) While no correlation was found between nodule size and
thyroid equivalent dose, the incidence of relatively larger cysts*2 was high for workers with high doses.
*2) Cysts themselves need not be treated. However, as large cysts may cause neck symptoms, a cyst 20.1 mm or larger is judged as level B (only one case).

(3) This is an interim report based only on the ultrasonic examination and prepared before definite diagnoses have become available. Conclusions drawn based only on the results of this research could be faulty due to the following uncertainties.

- According to the research results, the percentage of workers who received ultrasonic examinations before the present ultrasonic examinations was high for the exposed group while that for the control group was low, and the percentage of workers who received the present examination was low for the exposed group. This suggests the possibility of considerable bias in cyst and nodule incidence among workers with high doses.

- Namely, there is a possibility that workers judged as level A2 in earlier ultrasonic examinations selectively participated. Also, workers judged as level B or level C in their ultrasonic examinations might have selectively dropped out of the research program.
- For workers whose internal exposure evaluation results are considered less reliable, quantitative evaluation of internal exposure should be conducted.

(4) Efforts need to be made to collect and analyze the detailed examination results where abnormalities were detected in the examination and for past thyroid gland ultrasonic examinations for the exposed group.

- The ultrasonic examination results and secondary examination results have not been collected.

Further information is available on the following sites:
http://www.mhlw.go.jp/english/topics/2011eq/workers/tepco/or t/pr_140805.html
5. Technical Tour of the TEPCO Fukushima Daiichi NPP for Overseas Media in Japan

The Ministry of Health, Labour and Welfare (MHLW) implemented the Project to Enhance the International Transmission of Radioactivity-Related Information on the Workers at TEPCO Holdings’ Fukushima Daiichi Nuclear Power Plant, beginning in the 2013 fiscal year. This project was intended to provide timely and accurate information to international organizations and media abroad on the radiation exposure situation at this power plant and the related exposure countermeasures.

As part of the project, in which relevant information from press releases by MHLW and other organizations are posted in English on its website, workshops have been held annually by MHLW through the 2016 fiscal year, in cooperation with TEPCO and its primary contractors, for overseas media and specialists in Japan on good practices toward radiation exposure reduction and safety and health management of workers.

As part of project activity for the 2019 fiscal year, MHLW in cooperation with TEPCO conducted a technical tour on 13 November 2019 for overseas media to the TEPCO Fukushima Daiichi Nuclear Power Plant (NPP).

At the beginning of the tour, the attendees visited the TEPCO Decommission Archive Center which is located about 600 meters northwest of Tomioka Station on the Japan Railway’s Joban Line. This facility is generally the transit point for visitor groups, at which a bus is provided by TEPCO for entry into the Fukushima Daiichi NPP site.

Upon entering the Fukushima Daiichi NPP site, the attendees left the bus and visited the Entrance Control Building, where their identification was checked and they were authorized to enter the site. Then each attendee had a radioactivity measurement using a chair-type whole body counter (WBC) installed in the facility known as the Large Rest House. Before the onsite tour, three presentations were delivered at a room on the seventh floor from which most of the plant buildings can be viewed. The details are as follows.

Presentations on Radiation Protection, and Industrial Safety and Health-Related Laws and Ordinances
The first presentation “Basic knowledge on radiation and radiation protection” discussed the types, sources, and features of radiation, units used for measuring radiation, types and effects of radiation exposure, and the associated risks.

The second presentation “Industrial Safety and Health-Related Laws and Ordinances” summarized the Industrial Safety and Health Act from which three areas of industrial health management (working environment management, work management, and health management) were discussed in the context of actual operations of radiation protection.

TEPCO’s Presentation on Current Status of the Fukushima Daiichi NPP
TEPCO provided the third presentation which was focused on the current status of the Fukushima Daiichi NPP. The presentation had seven topics: (1) State of Units 1–4; (2) Sea area monitoring status; (3) Conceptional diagram of reactor circulation cooling; (4) Three policies for contaminated water management; (5) Multilayered countermeasures to reduce contaminated water generation; (6) Efforts to improve work environment; and (7) Mid-and-long roadmap toward the decommissioning (fuel debris retrieval). The Ministry of Economy, Trade and Industry of Japan uploads a monthly Progress Status Report regarding the Mid-and-Long-Term Roadmap towards the Decommissioning of TEPCO’s Fukushima Daiichi Nuclear Power Station Units 1–4 at http://www.meti.go.jp/english/earthquake/nuclear/decommissioning/index.html#progress_status

On-site Bus Tour of the Fukushima Daiichi NPP site
After having lunch in a cafeteria on the second floor of the Large Rest House, the attendees moved to a room in the Entrance Control Building where they donned the normal work clothes supplied by TEPCO for entry into the zone on the site classified as the Green Zone or G-zone, and they were also equipped with personal alarm dosimeters (PADs) supplied by TEPCO. A large part of the site is now classified as G-zone. Then the attendees left the building for Sakura Street where TEPCO’s bus was waiting to take them for the on-site bus tour. This bus is used only on the site and visitors board it only following access control.

The on-site bus tour began by seeing the exterior of the facility housing the Multi-nuclide Removal Equipment (ALPS) from the bus windows. The attendees left the bus to see the exteriors of the reactor buildings of Units 1-4 from a hill near Units 1 and 2 and also to see the exterior of the large remodeled bus which includes the remote operating room of the exhaust stack. The attendees left the bus again to see construction of welded tanks in the G1 Tank Area and finally, they left the bus to see the frozen soil wall near Unit 4.

After the tour, the attendees were checked by TEPCO personnel for the received dose displayed on the PADs at the Entrance Control Building and again had their radioactivity measured by the WBCs in the Large Rest House. Finally, the attendees moved back to the TEPCO Decommission Archive Center in the bus provided by TEPCO.