Attachment 6-2 Simplified measurement procedures for radioactivity concentration of farmland soil

- 1. Method to determine that the radioactivity (total of Cs-134 and Cs-137) in farmland soil is lower than 10,000 Bq/kg based on the average ambient dose rate at the height of 1 m from the ground surface
- 1) Measure the average ambient dose rate $\overline{A}(\mu Sv/h)$ at the workplace (farmland) before starting the work (See Attachment 5 for the measurement method)
- 2) Select the estimation formula depending on the type of farmland and type of soil as summarized in Table 1.
- 3) To estimate the radioactivity concentration of Cs in the farmland soil (15 cm in depth), substitute the measurement $\overline{A}(\mu Sv/h)$ into the formula selected in step 2).

(Ambient dose rate $A(\mu Sv/h)$ x FactorX) – FactorY

= Radioactivity concentration (total of Cs-134 and Cs-137) (Bq/kg)

Example

Radioactivity concentration of Cs in Black soil for a "rice paddy in other areas" when the average ambient dose rate is 0.2μ Sv/h (Estimation formula: E)

$$(0.2 \times 3,340) - 104 = 564$$
 Bq/kg (Estimated)

Zones	Type of farmland	Type of soil*	Formula**	Factor X	Factor Y
evacuation	Rice paddy	Black soil	А	3,250	<u>0</u>
area	Agricultural	Non-black	В	2,520	<u>0</u>
	field,	soil			
	Orchard,				
	Pasture				
Other areas	Rice naddy	Black soil	C	3 3/0	104
Other areas	Rice paddy	Non blook		<u>3,540</u> 2,610	200
		soil	D	<u>3,010</u>	200
	Agricultural	Black soil	Е	3,330	193
	field	Non-black soil	F	<u>3,010</u>	<u>138</u>
	Orchard, Pasture		G	<u>2,930</u>	<u>0</u>

Table 1 Selection of estimation formula

* Whether or not the soil of the farmland is black soil can be checked in the soil distribution map on the web site of the National Institute for Agro-Environmental Science (http://agrimesh.dc.affrc.go.jp/soil_db/).

** The conversion factor will change due to radioactivity decay with time. The estimation formula will be revised before the change

becomes significantly large.

Table 2 Lookup table for radioactive Cs concentrations in rice paddies (Black soil) and agricultural fields in the restricted areas, deliberate evacuation areas, and former emergency evacuation preparation areas as a function of ambient dose rates

Ambient dose rate (µSv/h)	Cs concentration (Bq / kg)	Ambient dose rate (µSv/h)	Cs concentration (Bq / kg)	Ambient dose rate (µSv/h)	Cs concentration (Bq / kg)
0.1	325	1.1	<u>3,575</u>	2.1	<u>6,825</u>
0.2	<u>650</u>	1.2	<u>3,900</u>	2.2	<u>7,150</u>
0.3	<u>975</u>	1.3	<u>4,225</u>	2.3	<u>7,475</u>
0.4	<u>1,300</u>	1.4	<u>4,550</u>	2.4	<u>7,800</u>
0.5	<u>1,625</u>	1.5	<u>4,875</u>	2.5	<u>8,125</u>
0.6	<u>1,950</u>	1.6	<u>5,200</u>	2.6	<u>8,450</u>
0.7	<u>2,275</u>	1.7	<u>5,525</u>	2.7	<u>8,775</u>
0.8	<u>2,600</u>	1.8	<u>5,850</u>	2.8	<u>9,100</u>
0.9	<u>2,925</u>	1.9	<u>6,175</u>	2.9	<u>9,425</u>
1.0	<u>3,250</u>	2.0	<u>6,500</u>	3.0	<u>9,750</u>