Commissioned by the Ministry of Health, Labour and Welfare

FY2020 Waterworks Project Planning Guidance Project (Phase 2)

Nacala Corridor Urban Water Supply Enhancement Project in the Republic of Mozambique

Final Report

March 2021

Japan Techno Co., Ltd.

Summary		i
Location Ma	۱ <i>p</i>	ix
Abbreviation	1S	xiii
List of Figure	e and Tables	xv
Chapter 1	Introduction	
1.1 Bac	ckground and Objectives	1
1.2 Sch	edule and Survey Method	
1.3 Con	mposition of Survey Team	3
Chapter 2	Present Status of Project	
2.1 Wa	ter Supply Projects of Mozambique and Their Problems	
2.1.1	Present Status of Water Supply Sector (National Level)	
2.1.2	Problems of Water Supply Services (National Level)	10
2.1.3	Issues related to Sanitation and Waterborne Diseases (National Level)	11
2.1.4	Current Status of Water Supply Services (Project Area)	13
2.1.5	Problems of Drinking Water Supply (Project Area)	23
2.1.6	Issues related to Sanitation and Waterborne Diseases	24
2.2 Rel	lated Projects	24
2.2.1	Outline of Development Plan	24
2.2.2	High Level and Related Plans of Project Area	25
2.2.3	Project Urgency and Priority of Mozambican Side	26
2.2.4	Mutual Comparison with Other Candidate Projects	27
2.3 Res	sponsible Authorities and Executing Agency	27
2.3.1	Relevant Government Authorities	27
2.3.2	Organization of Executing Agency	
2.3.3	Duties of Executing Agency	29
2.4 Pro	gress of Japan's Cooperation	
2.4.1	Progress of Financial Assistance	29
2.4.2	Progress of Technical Cooperation	
2.4.3	Comments by Mozambique on Japan's Cooperation	
2.5 Pro	gress of Cooperation by Third Countries and International Organizations	30
2.5.1	Assistances related to the Project	31
2.5.2	Request for the Project	31
2.5.3	Compliance of the Project with Japan's Assistance Policy	31
2.5.4	Necessity of Project Linkage with Cooperation by Third	Countries/
Internat	ional Organizations	32
2.5.5	Reasons for not Implementing this Project by Third	Countries
/Interna	tional Organizations	32
Chapter 3	Project Related Information	
3.1 Imp	provement of Problems	33
3.1.1	Problems in Water Supply Services (National Level) and Relation to the Project	et33
3.1.2	Current Status of Water Services and Problems in Drinking Water Supply (Pro	oject Area)
and Rela	ation to the Project	

Table of Contents

3.1.3	Scope of Cooperation	34
3.1.4	Type of Cooperation	34
3.1.5	Period of Implementation	34
3.2 Pur	pose of the Project	35
3.2.1	Short-Term Objectives	35
3.2.2	Medium- to Long-Term Objectives	35
3.3 Cor	ntents of the Project	35
3.3.1	Outline of the Project	35
3.3.2	Description, Scale, and Quantity of the Project	36
3.3.3	Contents, Scale and Quantity of Dispatch of Experts and Equipment Procurement	40
3.3.4	Project Cost Estimation	40
3.4 Site	e Conditions	41
3.4.1	Location (Land Acquisition, Land Use, Pollution causing Facilities, etc.)	41
3.4.2	Natural Conditions	41
3.4.3	Access	43
3.4.4	Power and Communication	43
3.4.5	Safety	44
Chapter 4	Effectiveness and Impacts of the Project	44
4.1 Effe	ectiveness of Project Implementation	44
4.1.1	Extent of Solving Current Situation of Water Supply Sector	44
4.1.2	Extent of Solving Problems of Drinking Water Supply	44
4.1.3	Extent of Solving Problems related to Sanitation and Waterborne Diseases	44
4.2 Imp	pacts from Project Implementation	44
4.2.1	Political Impact	44
4.2.2	Social Impact	44
4.2.3	Economic Impact	44
4.2.4	Technical Impact	44
4.2.5	Diplomatic and Public Relations Impact	45
Chapter 5	Project Feasibility	45
5.1 Res	sults of Comparison with Main Alternatives	45
5.2 Org	anizational Relevance and Sustainability of Project Implementation	45
5.2.1	Organizational Capacity for Management	45
5.2.2	Organizational Capacity during Construction	45
5.2.3	Organizational Capacity during Operation and Maintenance	45
5.2.4	Relationships with Local Residents	46
5.3 Fin	ancial Viability and Sustainability of Project Implementation	46
5.3.1	Source of Funds to be Borne by Mozambican Side	46
5.3.2	Current Status of Water Supply Service Indicators	46
5.3.3	Trends in Financial Balance	47
5.3.4	Projected Financial Balance	47
5.4 Tec	hnical Feasibility and Sustainability of Project Implementation	47
5.4.1	Consistency with Technical Level of Mozambique	47
5.4.2	Staff Allocation and Employment Status	48

4.3	Operation and Maintenance Status of Facilities and Equipment	
Er	nvironmental Considerations	
5.1	Expected Environmental Impacts	
5.2	Assessment of Environmental Impacts	
r 6	Conclusion	
Pa	rticular Remarks	
N	otes on Project Implementation	
С	oncluding Remarks	
Fi	nal Remarks	53
1	4.3 Er 5.1 5.2 r 6 Pa No Co Fi	 4.3 Operation and Maintenance Status of Facilities and Equipment 5.1 Expected Environmental Impacts 5.2 Assessment of Environmental Impacts r 6 Conclusion Particular Remarks Notes on Project Implementation Concluding Remarks Final Remarks

Annexes

Annex-1	Schedule	A-1
Annex-2	List of Persons Visited or Interviewed	A-2
Annex-3	List of Collected Information	A-3

Summary

1. Background of the Project

Japan has been continuously providing assistance to Mozambique, and in particular, the development assistance to the Nacala Corridor is positioned as one of the most important projects in the entire African region. The Nacala Corridor is expected to grow in the future, but it lacks sufficient water services to meet the growing demand for water due to population growth. In particular, the city of Nampula, the capital of Nampula Province, has been receiving many residents from the neighboring province of Cabo Delgado due to the outbreak of attacks by unidentified armed groups in this Province.

The main water source for the city of Nampula, the capital of Nampula Province located in the Nacala Corridor, is a dam on the Monapo River built in the 1960s, which has limited capacity to continue meeting the city's water supply needs. Based on this reality, studies have concluded that the current water sources will face serious water shortages due to the effects of climate change, and research on alternative water sources is recommended for the medium to long term, with the construction of new dams (Saua Saua, Meluli, Mecuburi, and Lúrio rivers) being a particular focus. On the other hand, groundwater studies have confirmed the difficulty to secure a large quantity of groundwater sufficient to cover the entire city of Nampula.

Through investments up to 2014, the production capacity of the water treatment plant doubled from 20,000 m³/day to 40,000 m³/day and the service hours more than doubled from 6 hours to 13 hours/day.

Currently, the Nampula municipal water supply system produces about 40,000 m³/day of water, which, according to a 2018 study, represents 50% of the estimated water demand of 77,787 m³/day in 2017, pointing to the limitations of the water source. The current water coverage rate is 51% for an estimated population of 650,000 persons. As mentioned above, refugees from Cabo Delgado are expected to settle in the outskirts of Nampula city, which will further worsen the water supply situation in Nampula, requiring urgent actions by the Mozambican government.

2. Objective of the Project

This project will provide recommendations and advice for contributing to the preparation of plans for solving problems from professional and technical perspectives, based on the issues (facilities development, operation and maintenance, human resources development, etc.) and potential needs of water services.

The project also aims to improve the capacities of the central and local governments of Mozambique to develop water supply projects, formulate water supply policies, and manage water supply facilities by identifying specific measures to solve problems together with the administrative officials and staff in charge of water supply of Mozambique.

Specifically, with regard to the water supply facilities in Nampula City, in which the Fund for Investment and Assets of Water Supply (Fundo de Investimento e Património do Abastecimento de Água: FIPAG) has positioned this project as the top priority project, the feasibility of the project will be assessed in terms of needs, consistency with higher-level plans, degree of urgency, contents of facilities to be improved, and other factors, by compiling existing data and conducting field surveys. The project will provide specific support and guidance to formulate a more feasible plan, including the need for a cooperation scheme and soft component support suitable for the scale of the project.

In the Mozambique water supply project, the ownership of facilities and the operation and maintenance system are clearly divided according to the size of the municipality to be covered. The ownership of each facility and the organization in charge of operation and maintenance are described below.

Organization	Water Supply Investment Promotion Fund (FIPAG)	Water Supply and Sanitation Infrastructure Administration (AIAS)	Provincial Directorate of Public Works (DPOP) District Planning and Infrastructure Service Division (SDPI)
Target	Large cities (Capital, Provincial capital, etc.)	Medium-sized cities (District government, etc.)	Towns and villages other than those listed to the left (Town/village)
Number of Responsible Areas	21	131	Areas not covered by FIPAG and AIAS
Ownership and Responsibility for Operation and Maintenance	FIPAG	AIAS	Each District
Operation and Maintenance	Directly managed by FIPAG	Private In case private outsourcing is difficult, SDPI or Municipality etc.	Piped water supply facilities: Private sector Borehole with hand pump: Water and Sanitation Committee

Note: The specific cities and towns under the jurisdiction of each agency are determined by government ordinance.

The target of this project is Nampula City, the capital of Nampula Province, and the decree stipulates that the competent authority is FIPAG.

3. Problems and Challenges

(1) National Level

At the national level, the following water supply issues have been identified.

Classification	Problems and Issues
PPP	• Delays in dissemination of PPP/PFI to rural cities
Project	• Delays in scheduling of loan projects
Scheduling	
Operations	 Securing facilities rehabilitation funds
and Finance	 Rise in debt-to-water revenue ratio
	 Low recovery of non-collected fees
Facilities	> Water source
	• Scarcity of water sources (drought and increased water

Classification	Problems and Issues					
	demand due to climate change)					
	➤ Facility					
	 Insufficient capacity of facilities 					
	 Increase in water leakages 					
	Water supply					
	• Routine implementation of planned water suspensions					
	Non-installation of water meters					
	 No assurance of residual chloride 					
Management	 Insufficient water pressure and water volume 					
 Non-implementation of asset management 						
	• No improvement in management of water supply					
	services					
Staff	• Low capacity in technical skills of staff					

(2) Project Target Area

The problems in Nampula City, which is the project target area, range from lack of basic water sources to leakages due to deteriorating facilities and delayed expansion of facilities due to population growth. The main problems are listed below.

Classic	Duchlana	Necessary Countermeasure			
Classification	Problem	Short term	Medium- to long-term		
Services Management	• Delays in implementation of large-scale projects	Planning management and securing financial resources	-		
Water Source	• Water source shortage	Securing alternative water sources such as boreholes	Water source developments such as Mugica Dam		
Facility	 Occurrence of large- scale water leakages Uneven distribution of water volume Lack of water pressure Expansion of nonserved areas 	 Renewal of deteriorated pipelines (water transmission) Division of water service areas Construction of new water distribution centers 	 Elimination of nonserved areas Renewal of deteriorated pipelines (water distribution) Block service of water pipe network 		
Fee collection	Insufficient fee collection	-	Installation of water meters		
Staff	• Low capacity for operation and maintenance	-	 Conducting technical training Procurement of maintenance equipment Planning for renewals 		

4. Project Outline

The initial request for the high-priority project is as follows

Parameter	Project Target Area
Target area name and population (2017)	Nonserved areas: Namiteka, Mapara => 54,000 persons Expansion/rehabilitation areas: Muahivire, Nampaco, Muhala => 146,302 persons
Design year	2037

Parameter			Project Target Area				
Design population ¹			246,571 persons (2037)				
Unit supply ra	ite		House connections: 125L/person/day				
			Private yard tap:	80 L/per	rson/day		
			Shared yard tap:	Shared yard tap: 50 L/person/day			
			Public tapstand :	30 L / p	erson / day		
Design pumpi	ng rate		2,250 m ³ /day				
Planning St	tage]	Facility name, etc.		Specifications, etc.	Quantity	
		Borehol	e drilling 20 wells		Depth: 60m	20 boreholes	
	1-1	(10 exist used)	ting boreholes will	also be	Pumping rate : 5.0 m ³ /hr		
		Borehol	e facilities	(pump	Pillar and beam RC construction	5 locations	
	1-2	operatio	n room, guard	room,	(wall CB pile), borehole pump		
		generato	or room)		equipment		
	1-3	Transmi transmis	ssion main	and	HDPE pipe DN80-250	25km	
1. Facility construction	1-4	Booster (receivin room, po room, ge	pumping ng water tank, water ower receiving equi enerator room)	station r pump ipment	Receiving basin (V=300m ³) RC construction, water pump equipment, in-plant piping (steel pipes)	1 location	
	1-5	Water d distribut room, fl	listribution center tion reservoir, disin ow meter room)	(water fection	Water distribution reservoir (ground type V=1000m ³ , elevated tank V=300m ³) RC construction, chlorine dosage system	1 location	
	1-6	Water di	istribution pipe		HDPE pipe DN50-300	80km	
2. Design and construction supervision 2-1 Facilities design, construction supervision, etc.		-	1 set				

System Outline Diagram

 $^{^1\}mathrm{Source}$: Update of the Feasibility Study for City of Nampula, 2018、 FIPAG

5. Conclusion

While Mozambique is still at the stage of focusing on cyclone reconstruction assistance, Nampula is one of the cities that should be given the highest priority for expansion of water supply facilities due to the strained demand for water. The urgency of the project is very high due to the deteriorating facilities, the amount of water leakages, the chronic suspension of water supply in the city, and the fact that internally displaced persons have settled in the suburbs of Nampula due to the degrading security situation in Cabo Delgado Province.

In this project, based on the understanding of the current status of the project area and upon consideration of solving the issues, this high priority project is proposed as a grant aid project.

Category	Main Item	Sub-Item	Indicator	Source
1 Basic	1 Country information	1 Area	799,000 km ²	Ministry of Foreign Affairs of Japan
Information		2 Population	31.4 million (2019)	World Population White Paper 2019
		3 Population growth rate	2.9% (2018)	World Bank
	2 Politics	1 Form of government	Republic	Ministry of Foreign Affairs of Japan
		2 Former colonial country	Portugal	11
		3 Capital	Maputo	11
	3 Society and Culture	1 Race	About 40 ethnic groups including Makua and Lomwe	11
		2 Language	Portuguese]]
		3 Religion	Christianity (about 40%), Islam (about 20%), traditional religions	11
	4 Climate	1 Climate	The Indian Ocean coast has a tropical savanna climate, the northwestern part near the Malawi border has a temperate rainy climate, and the southern part has an arid climate. Maputo, the capital city located in the south, has an annual average temperature of 22.9°C and annual precipitation of about 800mm. Beira, near the central coast, has an annual average temperature of 24.4°C and annual precipitation of about 1600mm.	Peel, M.C. (2007) Maps, etc.
	5 Travel	1 Security and cautions for traveling	Alert level <u>Level 1</u> : Maputo Province, Niassa Province, part of Manica Province, part of Sofala Province <u>Level 2</u> : Southern part of Cabo Delgado Province, Sofala Province, Manica Province <u>Level 3: Cabo Delgado</u> <u>Province</u> <u>Nampula Province</u> : Not	Overseas Safety Homepage, Ministry of Foreign Affairs of Japan (As of February 12, 2021)

Basic Indicators

Category	Main Item	Sub-Item	Indicator	Source
2 Economic	1 Indicator	1 GNI	13.8 billion USD (World Bank 2016)	Ministry of Foreign Affairs of Japan
Indicators		2 GNI per capita	480USD (World Bank 2016)	11
		3 Economic growth rate	3.6% (2016 World Bank)	11
		4 Price escalation rate	19.8% (2016 World Bank)	11
		5 Unemployment rate	24.5% (2017 World Bank)	11
		6 Literacy rate	60.7% (2017)	UNESCO
		7 Human Development Index (HDI)	0.437 (180th in the world) (2017)	UNDP
	2 Overview	Economic Overview	The main industries are agriculture, forestry, fisheries, and mining. The country has achieved economic growth with the establishment of peace, and although the high economic growth of recent years (7-8% per year) has temporarily declined, the private sector is highly motivated to invest due to abundant natural resources (natural gas, coal), and stable growth is expected in the future.	Ministry of Foreign Affairs of Japan
3 Water Supply	1 Coverage	Service population	16,437 thousand persons (Urban: 8,723, Rural: 7,714) / 29,669 thousand persons (Urban:10,384, Rural:19,285)	JMP (2017 data)
	2 SDGs Reference index	SDGs Reference Indicators	Country 56%, Urban 84%, Rural 40% Percentage of population with access to "basic drinking water" ²	JMP (2017 data)
	3 Governance	1 National Strategy for Water Supply	National Water Policy (amended in 2016)	JICA report ³ *3
		2 Water Supply Law	Water Law (Act No. 16/91)	
		3 Water quality standards	Ministerial Authorization DM 180/2004	
		4 Financial foundation	Two public corporations (FIPAG for large cities and AIAS for small cities) own the country's water supply. The World Bank has explained that	

 $^{^2\,}$ Estimates for countries that do not provide the percentage of the population using "Safely managed" water, which should be indicated.

³ Source: Completion Report for the Sustainable Rural Water Supply and Sanitation Improvement Project, Niassa Province, Mozambique, JICA, February 2017.

Category	Main Item	Sub-Item	Indicator	Source		
			FIPAG can achieve full cost recovery to eliminate government subsidies, but external donors continue to make public investments in the water sector.			
4 Official Development Assistance (ODA) Policy	1 Development Cooperation Policy	Support will be prov sector, as a priority water through the facilities, with the Development Index the world, and achie	vided to the human development sector, to expand access to safe development of water supply aim of improving the Human , which is one of the lowest in eving the MDGs. (March 2013)	Ministry of Foreign Affairs ODA Country-based Development Cooperation Policy (Former Country Assistance Policy)		
	2 Project Development Plan	As part of the " Improvement Prog were implemented training in water sanitation project no Development Fund Volunteers (JOCV) sanitation, and gras for the water sector.	Ministry of Foreign Affairs ODA Rolling Plan			
5 Relationship with Japan	Trade value	Exports to Japan and Imports from Japan (2017)	Approx. 21.59 billion Yen (timber and similar products, mineral fuels, seeds/fruits for extraction) Approx. 11.31 billion Yen (vehicles, steel products, etc.)	Ministry of Foreign Affairs of Japan		
	Business expansion, etc.	Japanese companies operating in Mozambique Number of Japanese residents	- 176 persons (2017)	"		

Source: Ministry of Health, Labour and Welfare, FY2040 Report on International Cooperation Study Project in the Water Supply Sector, p. 89-91, March 2020.

Location Map

 $Nampula\ City © Open Street Map contributors$

Photographs

Elevated tank at Pumping Station No. 3	Elevated tank at Pumping Station No. 4
	2020-11-9 10:28
House connection installed in Nampula City	House connection installed in Nampula City
Parebola constructed in 2020 in Namiteka area, south	Probable with pump constructed in 2020 in Namitaka
Borenole constructed in 2020 in Namiteka area, south	Borenole with pump constructed in 2020 in Namiteka

Abbreviations

AIAS	Administration for Water and Sanitation Infrastructure
AURA	Water Regulation Authority
CRA	Water Regulatory Council (renamed to AURA in 2019)
DIP	Ductile cast iron pipe
DN	Nominal diameter
DNAAS	National Directorate of Water Supply and Sanitation
DPOP	Provincial Directorate of Public Works
EAS	Simplified environmental survey
EB	Pumping station
EIA	Environmental Impact Assessment
ETA	Water treatment plant
FIDIC	International Federation of Consulting Engineers
FIPAG	Water Supply Investment Promotion Fund
F/S	Feasibility study
GDP	Gross domestic product
GIS	Geographic information system
GNI	Gross national income
HDPE	High-density polyethylene pipes
ISO	International Organization for Standardization
JICA	Japan International Cooperation Agency
JMP	Joint Monitoring Program
KPI	Key Performance Indicator
MCA	U.S. Millennium Challenge Accounting
MDGs	Millennium Development Goals
MITA	Ministry of Land and Environment
MOPHRH	Ministry of Public Works, Housing and Water Resources
MZN	Metical (Mozambican currency)
NGOs	Non-governmental organization
NPO	Nonprofit organization
ODA	Official Development Assistance
PBPGA	Good practices related to environmental management
PPP	Public-private partnership
PFI	Private Finance Initiative
PVC	Polyvinyl Chloride
QGD	Delegation management framework
SDGs	Sustainable Development Goals
SDPI	County Planning and Infrastructure Development Division
SPA	Provincial Department of Environmental Improvement
UNESCO	United Nations Educational, Scientific and Cultural Organization
UNICEF	United Nations Children's Fund

VAT	Value-added tax
WDI	World Development Indicator
WHO	World Health Organization

List of Figure and Tables

[Figure]

Figure 1	Water Supply Facilities Coverage
Figure 2	Sanitation Facilities Coverage Rate11
Figure 3	Number of Deaths due to Unsafe WASH Services (per 100,000 persons)12
Figure 4	Number of Deaths due to Waterborne Diseases
Figure 5	Number of Deaths caused by Diarrhea12
Figure 6	Organization Chart of FIPAG Nampula Branch Office
Figure 7	Nampula Water Treatment Facilities
Figure 8	Conceptual Diagram of Water Supply Facilities (Water Source to Distribution Centers)
Figure 9	Location Map of Distribution Centers
Figure 10	Pipeline Network Map21
Figure 11	Underserved areas and areas with inadequate water quantity and pressure
Figure 12	Areas to be Developed23
Figure 13	Undernutrition Status by Province (Percentage less than 2 standard deviations)24
Figure 14	Organization Chart of Ministry of Public Works, Housing and Water Resources28
Figure 15	Organization Chart of FIPAG Headquarters28
Figure 16	Country-wise Development Assistance Policy
Figure 17	System Outline
Figure 18	Project Target Area37
Figure 19	Location of Facilities in the City
Figure 20	Existing Water Sources (Namiteka Well Field)
Figure 21	Existing Borehole (Pump Installation expected in 2021)
Figure 22	Temperature and Precipitation Rates (Average Values for 2018 and 2019)42
Figure 23	Elevations of Nampula City42
Figure 24	Financial Balance47

[Table]

Table 1	Implementation Schedule	2
Table 2	Composition of Survey Team	3
Table 3	Water Quality Standards	5
Table 4	Ownership of Water Supply Facilities and Organizations in Charge of Operation	n and
Mai	intenance	8
Table 5	Records of Concession Contracts	8
Table 6	Financial Balance (Unit: million Yen)	8

Table 7	Donors and Breakdown of Investments (Unit: Million Yen)
Table 8	Training Achievements (2019)
Table 9	Expansion of Training Courses
Table 10	Major Problems and Issues of Water Supply Services (National Level)10
Table 11	Sanitation and Health Indicators
Table 12	Summary of Project Area (Nampula City)14
Table 13	Water Tariff System15
Table 14	Major Repair Works carried out in the past 3 years (2018-2020)16
Table 15	Project Planning17
Table 16	Pipe Lengths by Diameter (Treatment Plant to Water Distribution Center)19
Table 17	Summary of Existing Facilities (Nampula City)19
Table 18	Pipe Lengths by Diameter
Table 19	Major Problems and Issues of Water Supply Services (Project Area)23
Table 20	List of Water Supply Facilities in Major Cities under FIPAG's Jurisdiction29
Table 21	Japan's Grant Aid Achievements (Water Supply Sector)
Table 22	Projects by Third Countries/International Organizations
Table 23	Relationship between Problems in Water Supply Services (National Level)
and	the Project
Table 24	Relationship between Problems in Water Supply Services (Project Area)
and	the Project
Table 25	Tentative Overall Construction Period
Table 26	Project Outline (Initial Request)
Table 27	Namiteka Well Field
Table 28	Water Quality of Namiteka Well Field (Partial)
Table 29	Project Cost Estimation
Table 30	Namiteka Well Field43
Table 31	Organizational Capacity for Operation and Maintenance (FIPAG Nampula Branch
Offi	
Table 32	Current Status of Water Supply Service Indicators (All Facilities under FIPAG's
Juris	diction)
Table 33	Social and Environmental Impacts
Table 34	Project Scale and Description
Table 35	Status of Consultations with Stakeholders (Legend: ■YES□NO)
Table 36	Social and Environmental Impacts (Reproduced)51

Chapter 1 Introduction

1.1 Background and Objectives

1) Country Overview

The Republic of Mozambique (hereinafter referred to as "Mozambique") has a land area about twice of Japan (about 800,000 km²), is located in the southeast of the African continent, faces the Indian Ocean to the east, and is bordered by six neighboring countries: South Africa and Swaziland to the southeast, Zimbabwe to the east, and Tanzania, Malawi, and Zambia to the north. The population is 27.12 million persons (National Statistics Office estimate, 2017), and the population growth rate is 2.8% (World Bank World Development Indicator (WDI) 2016).

Since the end of the civil war in 1992, Mozambique has been promoting democratization and peace building with the support of the international community, and has achieved high economic growth, recording a real GDP growth rate of 6-8% since 2001, and is regarded as an "honorary country of post-war reconstruction". As a resource-rich country with abundant natural resources such as coal, titanium, and natural gas, economic development has been driven by large-scale projects of foreign companies and their related active investment in infrastructure development in the transportation, communications, and energy sectors.

However, it remains one of the poorest countries in the world with a GNI (Gross National Income) per capita of US\$480 (United Nations Statistics, 2016), a poverty rate of 54.7% (National Statistics Office, 2009), and a Human Development Index of 0.418, ranking 181st out of 188 countries (United Nations Development Programme, 2016).

2) Background

Japan has been continuously providing assistance to Mozambique, and in particular, the development assistance to the Nacala Corridor is positioned as one of the most important projects in the entire African region. The Nacala Corridor is expected to grow in the future, but it lacks sufficient water services to meet the growing demand for water due to population growth. In particular, the city of Nampula, the capital of Nampula Province, has been receiving many residents from the neighboring province of Cabo Delgado due to the outbreak of attacks by unidentified armed groups in this Province.

Nampula City's main water source is a dam on the Monapo River built in the 1960s, which has limited capacity to continue meeting the city's water supply needs. Based on this reality, studies have concluded that the current water sources will face serious water shortages due to the effects of climate change and other factors, and research on alternative water sources is recommended for the medium to long term, with the focus on construction of new dams (Saua Saua, Meluli, Mecuburi, and Lúrio rivers). On the other hand, groundwater studies have confirmed that it is difficult to secure a large quantity of groundwater sufficient to cover the entire city of Nampula.

Through investments up to 2014, the production capacity of the water treatment plant doubled from 20,000 m³/day to 40,000 m³/day and the service hours more than doubled from 6 hours to 13 hours/day.

Currently, the Nampula municipal water supply system produces about 40,000 m³/day of water, which, according to a 2018 study, represents 50% of the estimated water demand of 77,787 m³/day in 2017,

pointing to the limitations of the water source. The current water coverage rate is 51% for an estimated population of 650,000 persons. As mentioned above, refugees from Cabo Delgado are expected to settle in the outskirts of Nampula city, which will further worsen the water supply situation in Nampula, requiring urgent action by the Mozambican government.

The Fund for Investment and Assets of Water Supply (Fundo de Investimento e Património do Abastecimento de Água: FIPAG) holds the ownership of urban water supply facilities and directly operates, maintains and manages them in all regions except in the metropolitan area of Maputo.

3) Objective

This project will give advice and recommendations that can contribute to the preparation of plans for solving problems from a professional and technical perspective, based on identifying the problems (facilities development, operation and maintenance, human resources development, etc.) and potential needs of water services.

The project also aims to improve the capacities of the central and local governments of Mozambique to develop water supply projects, formulate water supply policies, and manage water supply services by examining specific measures to solve problems together with the administrative officials and staff in charge of water supply in Mozambique.

Specifically, with regard to the water supply facilities in Nampula City, where FIPAG has positioned this project as the top priority project, the feasibility of the project will be assessed in terms of needs, consistency with higher-level plans, degree of urgency, and contents of facilities to be improved, by compiling existing data and conducting field surveys. The project will provide specific support and guidance for the formulation of more feasible plans, such as the need for cooperation schemes and soft component support suitable for the scale of the project.

1.2 Schedule and Survey Method

1) Schedule

The overall schedule of this project is shown in Table 1. Due to the COVID-19 crisis, the survey was conducted remotely using online meetings and e-mail.

	*																								
							20	20											20	21					
	Activity		October				November			D)ece	mbe	er	January				I	Febr	uar	У	March			
	-	1	2	3	4	1	1 2 3		4	1	2	3	4	1 2 3 4			4	1	2	3 4	4	1	2	3	4
1	Collection and compilation of existing information																								
2	Sending and collection of questionnaire forms																								
3	Guidance on plan preparation																								
4	Preparation of report																								
5	Submission of report (Japansee version)																					$ \bigtriangleup $			
6	Submission of report (English version)																								
7	Submission of deliverables																								\bigtriangleup
8	Submission of project achievement report																								Δ
	Legend: Local guidance Work in Japan \triangle Submission of reports																								

Table 1 Implementation Schedule

2) Survey Method

Existing information and data were collected from the project responsible authority, the supervising agency "National Directorate for Water Supply and Sanitation" (hereinafter referred to as "DNAAS"), and the executing agency FIPAG, and the collected information and data were reviewed. In addition, a questionnaire survey and online and telephone interviews on the current status and operation of existing water supply facilities in Nampula City were conducted.

1.3 Composition of Survey Team

The members of the survey team assigned to this project are listed in Table 2.

Name	Affiliation	Assignment					
Shajahi Vakagi	Japan Techno Co., Ltd.	Project Team Leader/Water Source					
Shorem rokogi		Development					
Hiroshi Kojima	Tokyo Water Co., Ltd	Specialist Advisor					
Kazuhiro Arita	Japan Techno Co., Ltd.	Facility Planning/Facility Design					
Kazuyoshi Honda	Japan Techno Co., Ltd.	Water Supply Planning					
Toshiki Horie	Japan Techno Co., Ltd.	Water Supply Planning					

Table 2Composition of Survey Team

Chapter 2 Present Status of Project

2.1 Water Supply Projects of Mozambique and Their Problems

2.1.1 Present Status of Water Supply Sector (National Level)

1) Water Supply Facilities Coverage Rate

The total population of the country is about 27.91 million (2017 census), and as Figure 1 the coverage rate was 56% in 2017 (84% in urban areas and 40% in rural areas), which is a significant improvement compared to the coverage rate of 20% in 2000. However, about 1.6 million persons in urban areas and 10.8 million persons in rural areas do not have access to safely managed drinking water^{*1} or basic drinking water^{*2} (urban population is 35% of the country's total).

Figure 1 Water Supply Facilities Coverage

Source: UNICEF/WHO, Progress on household drinking water, sanitation and hygiene 2000-2017 *1: Safely managed drinking water (supply service): Drinking water that is available on premises, available when needed, free from contamination by excreta or chemicals, and obtained from an improved water source. *2: Basic drinking water (supply service): drinking water obtained from an improved water source that allows people to fetch water from their homes within 30 minutes round trip (including waiting time).

2) Legislation

(1) Water Supply Law

The design and technical requirements for water supply and wastewater facilities are set forth in Decree No. 30/2003 (Regulation on Public Water Supply and Wastewater Drainage, Nr. 30/2003), dated July 1, 2003. In addition, the ISO standards are to be adopted for the standards that are not specified in this Decree.

(2) Water Quality Standards

Water quality standards are set forth in "Diploma Ministerial Nr. 180/2004 - Regulamento sobre a Qualidade de Água para o Consumo Humano, de 15 de Setembro (Regulation on Quality of Water for Human Consumption)". Table 3 shows the comparison with those of Japan.

Parameter	Japanese Standard (R2.4.1)	Mozambique Standard
Standard Plate Count	100 Per 1 ml	-
Escherichia coli (E. coli)	Not to be detected	Not to be detected
Cadmium and its compounds	Less than or equal to 0.003 mg/L as cadmium	0.003 mg/L or less
Mercury and its compounds	0.0005mg/L or less as mercury	0.001 mg/L or less
Selenium and its compounds	Less than or equal to 0.01 mg/L as selenium	0.01 mg/L or less
Lead and its compounds	0.01 mg/L or less as lead	0.01 mg/L or less
Arsenic and its compounds	0.01 mg/L or less in terms as arsenic	0.01 mg/L or less
Chromium (VI) compounds	0.02 mg/L or less as hexavalent chromium	0.05 mg/L or less
Nitrite-Nitrogen	0.04mg/L or less	0.05 mg/L of 1035
Cyanide ion and Cyanogen chloride	1 ess than or equal to 0.01 mg/L as evanide	0.07 mg/I
Nitrate and Nitrite	10mg/L or less	50 mg/I
Fluoride and its compounds	0.8mg/L or less as fluorine	1.5 mg/L
Boron and its compounds	1.0 mg/L or less as horon	0.3 mg/L
Carbon totrachlarida (CC14)	0.002 mg/L or loss	0.5 mg/L
	0.002mg/L or less	-
1,4-Dioxane		-
trans 1.2 diable reathyland	0.04mg/L or less	-
Dishlaramathana	0.02mg/L or loss	
Tetrachlaracthylana	0.02mg/L or less	
	0.01 mg/L or less	-
D		-
Benzene	0.01mg/L or less	-
Chloric acid	0.6mg/L or less	-
Chloroacetic acid	0.02mg/L or less	-
Chloroform	0.06mg/L or less	-
Dichloroacetic acid	0.03mg/L or less	
Dibromochloromethane	0.1mg/L or less	
Bromic acid	0.01mg/L or less	-
Total trihalomethane	0.1mg/L or less	-
Trichloroacetic acid	0.03mg/L or less	-
Bromodichloromethane	0.03mg/L or less	-
Bromoform	0.09mg/L or less	-
Formaldehyde	0.08mg/L or less	-
Zinc and its compounds	Less than or equal to 1.0 mg/L of zinc	3.0 mg/L
Aluminum and its compounds	0.2mg/L or less as aluminum	0.2 mg/L
Iron and its compounds	Less than or equal to 0.3 mg/L as iron	0.3 mg/L
Copper and its compounds	Less than or equal to 1.0 mg/L as copper	1.0 mg/L
Sodium and its compounds	Less than 200 mg/L of sodium	200 mg/L
Manganese and its compounds	Less than or equal to 0.05mg/L for the	0.1 mg/L
	amount of manganese	
Chloride ion	200mg/L or less	250 mg/L
Calcium, Magnesium, etc.	300 mg/L or less	50 mg/L
Evaporation residue (Total residue)	500mg/L or less	1000 mg/L
Anionic surface active agent	0.2mg/L or less	-
Geosmin	0.00001mg/L or less	-
2-methylisobolneol	0.00001 mg/L or less	-
Non-ionic surface active agent	0.02mg/L or less	_
Phenols	0.005 mg/L or less in terms of the amount of	_
	phenol	
Organic substances (Total Organic Carbon (TOC))	3mg/L or less	2.5 mg/L
pH value	5.8 to 8.6	6.5 - 8.5
Taste	Not abnormal	Not abnormal

Table 3Water Quality Standards

Parameter	Japanese Standard (R2.4.1)	Mozambique Standard					
Odor	Not abnormal	Not abnormal					
Color	Less than 5 degrees	15TCU					
Turbidity	Less than 2 degrees	5NTU					

(3) PPP Related Laws

In 2011, the law to establish the Public-Private Partnerships (PPP) framework in Mozambique was enacted by Law No. 15/2011. It establishes guidelines for the contracting process, implementation, and auditing of all PPP projects, large projects, and business concessions.

Regarding the water sector, the Government of Mozambique has approved the Delegated Management Framework (Quadro de Gestão Delegada: QGD, Decree 72/98) as part of the sector reform. For water supply in provincial capitals and large cities, FIPAG, the executing agency for the Project, and the Water Regulatory Authority (AURA), the regulatory agency, were created. Under the QGD, an institutional framework has been established in which FIPAG, a public corporation, invests in water supply infrastructures, while private companies provide water supply services and are audited by AURA, an independent regulatory agency. On the other hand, the private sector is currently providing water supply services only in the Mozambique Capital Region. In other cities, water supply is provided directly by FIPAG.

(4) Environmental Impact Assessment

Environmental impact assessment in Mozambique is specified as follows

1) Regulations and Related Organizations

Environmental impact assessment in Mozambique is regulated by the Decree on Environmental Impact Assessment (Decree No. 54/2015) and the Approval of the Overall Policy on Environmental Impact Assessment (Ministerial Degree No. 129/2006). The agency responsible for environmental impact assessment is the Ministry of Land and Environment (Ministério da Terra, Ambiente: MITA, formerly MITADER), and for this project, the agency responsible for environmental impact assessment and environmental license approval is Provincial Service for Environment of Nampula (SPA-Nampula) (formerly DPTADER).

2) Responsible Agency for Environmental Impact Assessment and Environmental License Application

In Mozambique, there are four environmental categories: A⁺, A, B and C. For each category, licenses for environmental impact assessment can be applied from the following offices.

- Category A⁺ and A: MITA (Ministry of Land and Environment)
- Category B and C: SPA-Nampula (Land and Environment Department, Nampula Province)

3) Procedures for Environmental Impact Assessment and Acquisition of Environmental Licenses

The procedure for environmental impact assessment and environmental licensing in Mozambique is as follows.

① The Provincial Infrastructure Service (Serviço Provincial de Infra-Estruturas: SPI) submits an

application for an environmental impact license to the Director General of SPA-Nampula, and a fee of MZN1,000.- is transferred to the bank.

- ② SPA-Nampula conducts a pre-evaluation of the project target site. Two SPA staff accompanied by one staff member from SPI's Water and Sanitation Division (Departamento do Serviço de Infra-Estruturas - Água e Saneamento: DSI-AS) will visit the project site and carry out the pre-evaluation.
- ③ The project is categorized (A⁺, A, B or C) according to the result of a preliminary assessment by the SPA.
- ④ For Categories A⁺ and A, an Environmental Impact Assessment (EIA) is required to be conducted and a report submitted to MITA.
- (5) In the case of Category B, a Simplified Environmental Study (EAS) needs to be conducted and a report submitted to SPA-Nampula.
- (6) In the case of Category C, a Procedure of Good Practice of Environmental Management (PBPGA) should be prepared and submitted to SPA-Nampula.
- After approval of the report by SPA-Nampula, an environmental license will be issued to SPI (in the case of this project).

3) Planning for Urban Water Supply

The plan for urban water supply and sanitation in Mozambique was formulated in 2011 by the Ministry of Public Works, Housing and Water Resources in the form of the National Strategy for Urban Water Supply and Sanitation, 2011-2025.

The strategy aims to guide the effective implementation of the key objectives of the National Water Policy in urban areas. In the water supply sector, the goal is to achieve a coverage of 70% as the medium-term target (2015) set by the government within the scope of the Millennium Development Goals, which is about 6.6 million people, and a long-term target (2025) to achieve a water supply rate to cover all citizens and ensure sustainability. The target for sanitation in urban areas is to increase the coverage to about 67% or about 6.3 million people in 2015, gradually approaching coverage for the entire population by 2025.

4) Assistance and Water Sector Organization

The supervisory authority in the water supply sector in Mozambique is the DNAAS, which belongs to the Ministry of Public Works, Housing and Water Resources and is responsible for policy formulation and financing. In addition, AURA has been established as the regulatory related supervisory authority. The owners of water supply facilities and the agencies responsible for operation and maintenance are classified according to the importance of each city (Ministerial Decree No. 237/2010 (Official Gazette, December 27, 2010)). In the case of the capital city and provincial capitals such as Nampula, FIPAG holds the ownership of the water supply facilities and is responsible for operation and maintenance.

In addition, the Administration of Water Supply and Sanitation Infrastructure (AIAS: Administração de Infra-Estruturas de Abastecimento de Água e Saneamento) has jurisdiction in medium-sized cities such as district headquarters, and the Provincial Public Works Department (DPOP: Direcção Provincial das Obras Públicas) or the District Planning and Infrastructure Service (SDPI: Serviço Distrital de Planeamento e Infra-Estruturas) for smaller towns and villages.

The operation and maintenance works are mainly outsourced to the private sector, but at the provincial capital level, such as Nampula, FIPAG, the owner of the facility, is responsible for the operation and maintenance.

Organization	Water Supply Investment Promotion Fund (FIPAG)	Water Supply and Sanitation Infrastructure Administration (AIAS)	Provincial Department of Public Works (DPOP) District Planning and Infrastructure Service Division (SDPI)
Target	Large cities (Capital, Provincial capital, etc.)	Medium-sized cities (District Headquarter, etc.)	Towns and villages other than those listed to the left (Town/village)
Number of Responsible Areas	21	131	Areas not covered by FIPAG and AIAS
Ownership and Responsibility for Operation and Maintenance	FIPAG	AIAS	Each District
Operation and Maintenance	Directly managed by FIPAG	Private In case private outsourcing is difficult, SDPI or Municipal council, etc.	Piped water supply facilities: Private sector Borehole with hand pump: Water and Sanitation Committee

Table 4Ownership of Water Supply Facilities and Organizations in Charge of Operation andMaintenance

5) Private Outsourcing

FIPAG has plans to promote concession contracts in the provinces of Sofala, Zambezia, and Manica in addition to the concessions in the metropolitan area. The World Bank continues to support the promotion of concession contracts.

Company Name	Water Distribution Area	Number of Contracts	Water Supply Rate
Águas da Região de	Maputo Metropolitan Area		
Maputo (FIPAG is the	(Maputo City, Matola City,	254,064	147,000m ³ /day
main stakeholder)	southern part of Marracuene City)		

Table 5 Records of Concession Contracts

6) Financial Condition

FIPAG's financial balance is on an improving trend. Expenditures are also on an upward trend, but revenues from fee collection is increasing at an even faster rate. It should be noted that personnel costs account for 30% of expenditures and cover a major portion of the expenditures. In addition, since impairment due to uncollected fees is increasing yearly, except for special reasons such as relief for affected persons, resolution of this situation is highly required.

 Table 6
 Financial Balance (Unit: million Yen)

		2016	2017	2018	2019
	Fee income	2,261	2,629	3,128	3,622
a)	Trading investment cost	-219	-265	-228	-282

		2016	2017	2018	2019
	Subtotal (1)	2,042	2,364	2,900	3,340
	Labor cost	-888	-904	1,015	1,138.
	Commisioning expense	-816	-975	1,099	1,229
	Depreciation cost	-527	-533	-533	-523
b)	Procurement cost of chemicals, materials and equipment	-199	-30	-96	-20
	Impairment cost of uncollected fees	-6	-3	-34	-47
	Other operating expenditures	179	-23	-150	-140
	Subtotal (2)	-2,257	-2,468	-2,927	-3.097
Balance $c) = a) + b)$		-215	-104	-27	243

Source: FIPAG, Business Report (calculated using local currency = 1.4184 Yen)

For loan assistance, the country is having assistance mainly from the World Bank. The ratio of loans from donor agencies to tariff revenues in 2019 is high at about 1.9 times $(8,737 \div 4,597)$. In order to meet the water demand and maintain sound management, it is necessary to ensure that financial resources are secured through tariff revenues.

Organization	2018		2019	
World Bank	2,273	63%.	5,025	73%.
Dutch Government	1,160	32%.	711	10%.
Águas de Portugal	85	2%.	25	0%.
UNICEF	0	0%.	63	1%.
Mozambique Government	64	2%.	1,061	15%.
Total	3,582		6,885	

 Table 7
 Donors and Breakdown of Investments (Unit: Million Yen)

Source: FIPAG, Business Report (calculated using local currency = 1.4184 Yen) Totals do not add up to 100% due to rounding.

7) Training Center

FIPAG has a technical training center (Academy for the Development of Skills and Professional Careers). The center is located in the FIPAG headquarters and has basic facilities such as staff rooms, training rooms, work space, and storage room.

The center is self-funded by FIPAG. It is supported by Nuffic (a Dutch international non-profit organization for the internationalization of education) with a partnership agreement for technical support.

Table 8 below shows the training achievements. As training programs, 3 courses on project management, waterworks facility operation and maintenance, and facility management have been held with the aim of improving expertise and skills in each field.

	Tuote o Training Fleine veniento (2	01))	
Course Title	Subject	Number of	Participants
		Days	
Project.	Contract Management - FIDIC	5 days	08 parsons
Management	Construction Management	5 days	98 persons

Table 8 Training Achievements (2019)

Course Title	Subject	Number of	Participants
		Days	
	Water Supply Planning	5 days	
	Water Distribution Design	5 days	
Operation and	Water Quality Analysis	5 days	
Maintenance of Water	Water Demand Analysis	5 days	
Supply Facilities	Pipe Network Analysis (Hydraulic	5 days	137
	Calculation)		persons
	Loss Calculation and Pipeline	5 days	
	Planning		
Service Management	Water Supply Service Management	5 days	227
	Facilities Management	5 days	227
	Acquisition	5 days	persons

In addition, discussions are underway to expand the training courses shown in Table 9 and to establish a training system at FIPAG regional branches.

Course	Contents	Course	Contents	
Social Audit	Environmental, quality, and safety	Asset	Asset management	
	management	Management		
	Environmental and social impact		Deterioration diagnosis	
	assessment and monitoring			
Promotion of	Promotion and management of	Finance	Public services and	
Private Sector	outsourcing contracts		international accounting	
Outsourcing	Feasibility study		Budget handling and	
			management	
Mechanical and	Equipment operation	Designing	Pipeline design	
Electrical	Maintenance of mechanical and		Drawing	
Equipment	electrical equipment			
	Maintenance of water quality analysis			
	equipment			

 Table 9
 Expansion of Training Courses

2.1.2 Problems of Water Supply Services (National Level)

In order to meet the growing demand for water as the country recovers from the civil war, the country's major urban water supply systems have been operated by FIPAG, which has been restoring and expanding the functions of the devastated water supply facilities, and at the same time, FIPAG has been directly managing the operation and maintenance of the systems and promoting PPP.

During the decade from 2007 to 2017, the population of major cities has almost doubled, and this trend is expected to be maintained. As a result, the scale of problems that need to be tackled, such as securing large-scale water sources and using water sources that require costly treatment, is expanding even further. In addition, in order to maintain the safety and stability of supplied water, it is necessary to further improve the efficiency of operations and work on thorough implementation of the principles of water services. Based on interviews with the executing agency, FIPAG, the main problems and issues of water supply services are shown below in Table 10.

 Table 10
 Major Problems and Issues of Water Supply Services (National Level)

Classification		Problems and Issues	
PPP	•	Delays in dissemination of PPP/PFI to rural cities	
Project	•	Delays in scheduling of loan projects	

Classification	Problems and Issues			
Scheduling				
Operations	• Securing facilities rehabilitation funds			
and Finance	• Rise in debt-to-water revenue ratio			
	 Recovery of non-collected fees 			
Facility	Water source.			
	• Scarcity of water sources (drought and increased water demand due			
	to climate change)			
	Facilities			
	 Insufficient capacity of facilities 			
	Increase in water leakages			
	Water supply.			
	• Routine implementation of water suspensions			
	• Non-installation of water meters			
	• No assurance of residual chloride			
Management	 Insufficient water pressure and water volume 			
	 Non-implementation of asset management 			
	• No improvement in management of water supply services			
Staff	• Low capacity in technical skills of staff			

2.1.3 Issues related to Sanitation and Waterborne Diseases (National Level)

1) Sanitation Facilities (Latrine) Coverage Rate

The country's total population is about 27.91 million (2017 census), and as Figure 2,エラー! 参照 元が見つかりません。 the coverage rate was 29% in 2017 (52% in urban areas and 17% in rural areas), which is a significant improvement compared to the 10% coverage rate in 2000. The number of people without access to safely managed sanitation facilities⁴ or basic hygiene facilities⁵ is about 4.7 million in urban areas and about 15.1 million in rural areas.

Source: UNICEF/WHO, Progress on household drinking water, sanitation and hygiene, 2000-2017

The number of deaths attributed to unsafe water supply and lack of sanitation and health services is about 28 per 100,000 persons.

Percentage of Population using Basic Hygiene Services (%)	Number of Deaths due to Unsafe Water Supply and Lack of Sanitation and Health Services. (per 100,000 persons)	Infant Mortality Rate Number of deaths after birth of less than 1 year per 1000 births per year
29.34	27.63 persons	61 persons
(2017)	(2016)	(2011)

Table 11 Sanitation and Health Indicat	ors
--	-----

Source: WHO, https://www.who.int/data/gho

• Africa • America Eastern Mediterrar Europe South-East Asia Western Pacific 100

Number of Deaths due to Unsafe WASH Services (per 100,000 persons) Figure 3 Source: WHO, https://www.who.int/data/gho

2) Waterborne Diseases

(1) National Scale

Although the number of deaths due to waterborne diseases has been decreasing since 1990, it has remained unchanged since 2011. The most common type of waterborne disease is diarrhea, with 10,689 cases in 2017. Of these cases, 41.1% (4,393 cases) were under 4 years of age, and the percentage of other classes, excluding the class of 80 years and older, was below 5%.

Figure 4 Diseases

Number of Deaths due to Waterborne Figure 5 Number of Deaths caused by Diarrhea (2017)

Source: IHME, https://vizhub.healthdata.org/gbd-compare/

IHME: Institute for Health Metrics and Evaluation, Washington University, School of Medicine, USA

2.1.4 Current Status of Water Supply Services (Project Area)

1) Priority Order

The National Water Supply and Sanitation Agency (DNAAS) has prepared a list of priority projects for major cities in accordance with the government's five-year plan, and FIPAG has also prepared a list of priority projects in line with the government's plan as follows

As a result of interviewing FIPAG and confirming the status of each project with reference to the priority project list, several priority projects are already under implementation or scheduled to be implemented by the World Bank and other donors. In addition, FIPAG replied to Japan that it expects Japan to implement the expansion and renewal of the water supply facilities in Nampula because of the serious situation of water supply in the city, as described in Chapter 1. With this background, this project can be expected to be realized in accordance with the high-level plans of the Mozambican government and executing agency.

City Name	Project Cost	Project Outline	Results of Confirmation through Hearings, etc.
Nampula City (proposed site)	62.6 million	Develop a water source in the suburbs to provide water supply to additional 10,800 households. *Because it is difficult to secure a budget to deal with the development of water sources such as dams, facilities using groundwater as water source that can be dealt with in the short to medium term will be developed.	Expecting assistance from Japan
Quelimane City	23.6 million	Increase in water supply volume, expansion of water supply area in the city, replacement of deteriorating pipes, improvement of facilities, etc.	Consider World Bank support
Nacala City	27.1 million	Design water supply rate: 34,000 m³/day Water intake facilities, water treatment facilities, water transmission pipes, pump stations, water distribution center, and piping networks using dams as water sources	[In progress] Public announcement of bidding for design and construction management services funded by the World Bank was made in June 2020.
Tete City	41.9 million	Design water supply rate: 90,000 m ³ /day	[In progress] Rehabilitation of the existing water source, construction of a distribution center and expansion of the piping network is underway since July 2018.
Beira City, Dondo City	74.3 million	Project to meet demand in 2020 New water supply house connections for 265,000 households	[In progress] Plans are underway as part of disaster recovery efforts for Cyclone Idai which landed in 2019.
Lichinga City	57.0 million	Design water supply rate: 20,500 m³/day New house connections for 275,000 households Expansion of water storage dams, expansion of the city's water supply area, replacement of deteriorated distribution pipes, increase of individual house connections and installation of water meters.	[In progress] March 2019 - March 2021
Pemba City	44.1 million	Design water supply rate: 34,000 m³/day New house connections for 275,000 households	Unidentified groups have been attacking villages around Pemba City, the provincial capital, and many people have been killed. Security is deteriorating in the area, and the Ministry of Foreign Affairs has designated it as Level 3

FIPAG Priority Projects List (Unit: USD)

Source: Water Sector Overview and Urban Water Supply Development Status, JETRO, December 2015, and edited with

2) Project Summary

(1) Scale

The water supply facilities in Nampula City are managed by FIPAG, where the water source is Monapo dam located about 10km north of Nampula city, consist of one water treatment plant and five water transmission and distribution facilities. The served population for 2019 was about 330,000 persons and the daily water supply capacity (nominal value) was 40,000 m³. The average water supply rate per person per day is 121 liters, which is close to the 125 liters per person unit rate adopted by the country. Although the leakage rate is lower than that of Nampula City, the increase in leakages is a serious problem given the shortage of water sources.

Parameter	Present Condition	Remarks	
Water supply area	Nampula City (capital of the province)		
Water source	Monapo Dam	Completed in 1959	
Number of water treatment plants and distribution centers	1 water treatment plant, 2 water transmission stations, 3 water distribution centers		
Population of water supply area	660,240 persons	2019	
Annual population growth rate	6.1 %		
Service population	329,206 persons		
Number of house connections (2019)	35,732 houses		
Number of public tapstands (2019)	498 units		
Daily maximum water supply rate (2019)	36,940 m ³ /day	2019	
Daily average water supply rate (2019)	10,240 m ³ /day	2019	
Water supply hours	10 hours	Dry season	
Daily average per capita water supply rate (2019)	31 liters/person/day		
Unit water supply rate	125 liters/person/day	Design criteria	
Leakage rate	59%.	Amount of water metered / amount of water distributed	
Fee collection rate	90%.		

Table 12	Summary	of Project	Area	(Nampula	City)
					//

(2) Water Tariff

Water tariff rates in Mozambique are set by AURA.

The current tariff system is shown in Table 13 below. A two-stage tariff system with increasing rates has been introduced for house connections, and a separate tariff system has been established for water supply from public tapstands. In addition, there are exemptions for those with low income.

It should be noted that the fee collection rate in Nampula City is reported to be 90%, but this may not be an accurate figure due to the low installation rate of water meters (44%).

	Public Tap	Domestic (House Connections)				~	General (Commerce, public and industry)			
Town/ System Name		Service availability fee	Consumption up to 5m ³	Consumption above 5m3		micipalit	(Commerce and Public)	(Industry) Above minim	Above minimum	
				1st 5m ³	5-10m ³	> 10m ³	ML	Consumption of 25m3/month	Consumption of 50m3/month	consumption
	(MZN/m ³)	(MZN/month)	(MZN/month)	(MZN/m ³)	(MZN/m ³)	(MZN/m ³)	(MZN/m ³)	(MZN/m ³)	(MZN/m3)	(MZN/m ³)
Nampula	10.00	60.00	58.40	139.88	41.96	46.90	20.23	1,160.51	2,321.01	46.42
Maputo, Matola, Boane	10.00	60.00	58.40	132.66	39.80	54.29	19.87	1,386.97	3,773.94	55.48
Chókwè, City and District	10.00	60.00	58.40	110.10	33.03	40.85	16.26	1,185.04	2,370.08	47.40
Xai-Xai	10.00	60.00	58.40	112.39	33.72	40.07	19.78	1,108.55	2,217.10	44.34
Inhambane	10.00	60.00	58.40	116.85	35.06	42.40	17.27	1,201.05	2,402.10	48.04
Maxixe	10.00	60.00	58.40	133.28	39.98	45.23	19.73	1,231.63	2,463.26	49.27
Beira, Dondo, Mafambisse	10.00	60.00	58.40	132.37	39.71	45.22	20.15	1,070.05	2,140.10	42.80
Chimoio, Manica, Gondola	10.00	60.00	58.40	111.77	33.53	39.84	17.70	1,007.51	2,015.03	40.30
Tete, Moatize	10.00	60.00	58.40	109.75	32.93	39.20	17.70	1,007.51	2,015.03	40.30
Quelimane, Nicoadala	10.00	60.00	58.40	130.58	39.17	41.77	19.78	1,065.92	2,131.83	42.64
Nacala	10.00	60.00	58.40	100.82	30.25	35.43	16.26	1,072.76	2,145.52	42.91
Angoche	10.00	60.00	58.40	105.28	31.59	36.79	17.17	1,000.00	2,000.00	40.00
Pemba, Morrébuè, Metuge	10.00	60.00	58.40	134.29	40.29	46.79	19.82	1,198.49	2,396.98	47.94
Lichinga	10.00	60.00	58.40	119.17	35.75	38.64	17.70	1,036.09	2,072.18	41.44
Cuamba	10.00	60.00	58.40	96.93	29.08	33.37	16.26	953.74	1,907.48	38.15

Table 13	Water Tariff Syste	em
----------	--------------------	----

Source: Ordinance No. 2/2018, Official Gazette, July 20, 2018

(3) Organization (FIPAG Nampula Branch Office)

• Organizational structure

The FIPAG Nampula branch office has 85 technical staff members, with 33 assigned to the operation and maintenance of the water treatment plants and distribution centers, 28 to the maintenance of the distribution pipe network, and 7 to the management of facilities through GIS and other means. The General Affairs and Accounting Department has 68 employees. A diagram of the organization is shown in Figure 6.

• Status of ledger management

Information on facilities such as pipelines is managed by GIS, and the status of mechanical and electrical equipment such as pumps is also managed. In addition, EPANET has been developed for pipe network analysis.

• Maintenance system

A total of 28 persons are employed in the department for the maintenance of the water distribution network. The past repair records are shown in Table 14. However, renewal of pipelines and equipment is postponed unless it has a significant impact on water supply. Maintenance is carried out by FIPAG staff.

Figure 6 Organization Chart of FIPAG Nampula Branch Office

Target	2018	2019	2020			
Water transmission pipes	Repairs at 33 locations	Repairs at 23 locations	Repair at 12 locations			
Water distribution pipes	Repairs at 8423 locations	Repairs at 7126	Repair at 2351			
		locations	locations			
Mechanical and electrical	21 repairs	31 repairs	22 repairs			
equipment (pumps, control						
panels, electrical equipment)						
Water distribution reservoirs,	4 repair works	2 repair works	3 repair works			
buildings						
Repair Cost	MZN4,954,141	MZN5,962,735	MZN7,669,704			
	(¥7,026,954)	(¥8,457,543)	(¥10,878,708)			

Table 14Major Repair Works carried out in the past 3 years (2018-2020)

Source: FIPAG questionnaire (calculated assuming local currency = 1.4184 Yen)

(4) Project Planning

From 2021 to 2022, FIPAG have plans to develop a water supply Master Plan and conduct a feasibility study for the expansion project of water supply facilities using the privately owned Mugica Dam as the source of water supply, with the support of the World Bank (Table 15). In addition, due to the strained situation of water resources, the government wants to fasten the construction of water supply facilities using the boreholes from Namiteka well field as water source, but no donor has been decided yet. The situation is similar for other projects.
	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Water Supply Master Plan (World Bank)	-	-		-						
• Water demand forecasting, water source										
assessment	•	•								
Project formulation										
Mugica Dam Utilization Plan (World										
Bank)										
(Mugica Dam)	•	•								
• F/S, schematic design, environmental										
impact assessment										
Water Supply Facility Expansion Project I										
(Namiteka Well Field)										
• Detailed design, environmental impact	\cap									
assessment										
• Construction work (boreholes, water										
treatment and distribution facilities)										
Water Supply Facility Expansion Project										
(Mugica Dam)						\cap	\cap			
Detailed design							0			
• Construction work (water intake,										
treatment and transmission facilities)										
Water Source Development and Water										
Supply Facility Improvement Project						\cap				
(Meluli Dam)										
• Basic design, F/S										
Water Source Development and Water										
Supply Facility Improvement Project										
(Meluli Dam)						\bigcirc	\bigcirc	\cap	\bigcirc	\bigcirc
Detailed design						U	0	0	U	0
• Construction work (dams, water intake,										
treatment and distribution facilities)										

Table 15 Project Planning

Legend: • Projects with confirmed financial resources, OProjects without confirmed financial resources

3) Water Source Facilities

The Monapo Dam was constructed in 1959. It has an effective storage capacity of 3.7 million m^3 , and intakes 40,000 m^3 /day during the six months of the rainy season, but due to the decrease in precipitation caused by climate change, water intake is restricted to 25,000 m^3 during the six months of the dry season.

FIPAG has a plan to increase the capacity of the water source to about five times the current level in 20 years. In the past, FIPAG was planning to construct the Saua Saua Dam (planned intake capacity of 20,000 m³) downstream of the Monapo Dam, but as shown in Table 15, FIPAG is currently planning to construct the Meluli Dam (effective storage capacity of 500 million m³) and the use of the private Mugica Dam presently used for plantations as the water source.

4) Water Intake Facilities and Water Treatment Facilities

The Millennium Challenge Account (MCA), a US aid fund, is being used to update and expand the existing facilities at a total construction cost of about 5 billion Yen. The facility has been in service since 2013.

The facilities were designed by a Canadian company, where the facilities from intake to distribution centers are designed in compliance with the water source capacity.

Figure 7 Nampula Water Treatment Facilities

The water treatment plant uses the typical rapid filtration method of coagulation sedimentation, filtration, and chlorine disinfection. Aluminum sulfate is used as the common coagulant, and polymer coagulant is also used. The quality of the raw water is good, and there are no water quality parameters that are difficult to treat, but it is reported that they are having problems removing iron and manganese.

In addition, calcium carbonate for pH adjustment and calcium hypochlorite for chlorine disinfection are used. No particular problems have been reported regarding the quality of the chemicals. During the rainy season, the amount of chemicals used tends to increase due to the increase in turbidity caused by rainfall, but appropriate removal of turbidity is possible.

One of the problems at the time of the survey was that the electro-mechanical equipment stops operating due to power failures because an in-house generator was not equipped. In addition, since the scraping device in the sedimentation tank is out of order, it is currently being handled manually.

5) Transmission Pump and Water Distribution Stations

The water transmission facility consists of a water transmission pump (EB1) in the water treatment plant. Then, water is pumped at the booster pumping station (EB2) to the distribution centers from EB3 to BE5.

Source: Information provided by FIPAG

Figure 8 Conceptual Diagram of Water Supply Facilities (Water Source to Distribution Centers)

(1) Water Transmission Facilities (EB1, EB2)

Only the EB5 water distribution center was built in 2014, while the other facilities were built when the plant was founded in 1958, and each of the facilities from EB1 to EB4 was also partially updated in 2014. However, the water transmission pumps and booster pumps are not equipped with spare units, causing problems with stable supply in case of failure.

(2) Water Transmission Pipes

According to MCA, water transmission pipes (16km, 600mm diameter) have been laid and some old pipes have been removed, but 400mm diameter asbestos and PVC pipes are still in operation concurrently.

Ductile iron pipes were laid by MCA, and one line was added from the water treatment plant (EB1) to EB5. Asbestos pipes were laid at the time of establishment (1958) and account for about 1/4 of the total water transmission pipe length, which is assumed to be the cause of large-scale leakages. PVC pipes are relatively new, having been installed in 1996, but there is concern about leakages from the joints.

Type of Pipe	Route	Diameter (mm)	Length (km)	Year Laid	Percentage
Asbestos Pipe	EB2 to EB3, EB4	400	9.5	1958	24%.
Polyvinyl Chloride Pine	EB1~EB2~EB3	400	12.5	1996	32%.
Ductile Cast Iron Pipe	EB1~EB2~EB5	600	17.2	2013	44%.
Total	-	-	39.2	-	100%.

 Table 16
 Pipe Lengths by Diameter (Treatment Plant to Water Distribution Center)

(3) Water Distribution Centers (EB3, EB4, EB5)

As for the water distribution centers, the total capacity of the distribution reservoirs is considered to be sufficient in terms of water source capacity, but the problem seems to be the small capacities of EB4 and EB5. In addition, since each distribution center is located in the central and southeastern parts of the city, water pressure shortage is likely to occur in the western part of the city. Each facility is equipped with a flow meter and a monitoring control device.

Facility	Year of Construction	Pump Capacity	Ground Type Distribution Reservoir Capacity	Elevated Water Tank Capacity		
EB1 (Water Transmission Facility in Water Treatment Plant)	1958	40,000 m ³ /day	-	-		
EB2 (Booster Pumping Station)	1958	40,000 m ³ /day	7,500 m ³	-		
EB3 (Water Distribution Center)	1958	-	10,000 m ³	300 m ³		

Table 17Summary of Existing Facilities (Nampula City)

Facility	Year of Construction	Pump Capacity	Ground Type Distribution Reservoir Capacity	Elevated Water Tank Capacity
EB4 (Water Distribution Center)	1958	-	1,000 m ³	300 m ³
EB5 (Water Distribution Center)	2013	Gravity flow	(Constructed on residual hill) 5,000 m ³	-

Figure 9 Location Map of Distribution Centers

6) City Pipeline

(1) Pipe Network

The urban area of Nampula City is expanding rapidly. In the periphery, water distribution pipelines are still inadequate (non served areas). In low-income areas, only the minimum number of water distribution pipes have been laid, resulting in illegal connections of water pipes.

The problem of water supply scarcity is expected to continue as long as the water sources of the Mugica or Meluli dams do not become stably available. Therefore, in order to properly manage water quantity and water pressure, it is advisable to develop distribution blocks by comprehensively considering the regional distribution of water demand, the location of distribution points, piping networks and topographical features.

Figure 10 Pipeline Network Map

(2)**Distribution Pipes**

The maximum diameter of water distribution pipes is 400 mm, and 90% of the pipes have a diameter of 200 mm or less. Asbestos pipes account for one quarter of the total number of pipes, and polyvinyl chloride pipes account for three quarters. The asbestos pipes were laid when the city was founded (1958), and are thought to be concentrated in the central part of the city.

Table 18 Pipe Lengths by Diameter				
Diamatar		Pipe Length (km)		
(mm)	Asbestos Pipe	Polyvinyl Chloride Pipe	То	tal
50	11.5	12.4	23.9	270.0
60	17.8		17.8	(55%)
63		90.2	90.2	
75		55.9	55.9	
80	70.3		70.3	
90		5.9	5.9	
100	6		6.0	
110		94.6	94.6	171.9
125	8.4		8.4	(35%)
160		31.7	31.7	
200	7.5	29.7	37.2	
250		9.4	9.4	9.9
300	0.5		0.5	(2%)
315		9.0	9.0	39.2

Table 18 Pipe Lengt	hs by Diameter
---------------------	----------------

Diamatar		Pipe Length (km)		
(mm)	Asbestos Pipe	Polyvinyl Chloride Pipe	То	tal
350		1.3	1.3	(8%)
400		28.9	28.9	
Total	122.0 (25%)	369.0 (75%)	491.0	

(3) Water Meters

Common mechanical water meters are used, and the installation rate is very low at 44%. In addition, prepaid meters (1,300 units) have been introduced in some areas on a pilot basis. Meter readings are basically made monthly, but the frequency varies by area. At public tapstands, the fee is collected through a designated manager.

7) Current Status of Nonserved Areas with Insufficient Water Volume and Pressure

With the economic growth of Nampula city, the population has been increasing rapidly in the surrounding areas. Since no emergency facilities have been built by NGOs and other organizations, the residents obtain water for daily use from surface water or unsafe dug wells.

Since some areas in the city are served by public tapstands, the boundary between the nonserved areas and the water service areas is ambiguous. In the periphery of the city, water supply service is not as adequate as in the central part of the city due to problems such as insufficient water volume and water pressure even within the water service areas.

Figure 11 Underserved areas and areas with inadequate water quantity and pressure

In response to the current situation, FIPAG has divided the areas to be developed in the short, medium, and long term by 2037 as shown in Figure 12, taking into account future population growth and other factors.

Souce : Volume 3. Update of the Feasibility Study for City of Nampula (Draft), 2018, FIPAG Figure 12 Areas to be Developed

2.1.5 Problems of Drinking Water Supply (Project Area)

The main problems of water supply services are explained in "2.1.4 Current Status of Water Supply Services (Project Area)," and these problems and corresponding issues are organized in Table 19. Projects that directly lead to an increase in tariff revenue are considered to have higher priority. Therefore, securing alternative water sources, such as boreholes, and renewal of deteriorating water transmission pipes as a measure to improve large-scale leakages are considered to be the most important issues.

In addition, in order to eliminate areas with water pressure deficits and to distribute water evenly, it is important to develop pipelines after developing a medium- to long-term plan for organizing water service areas, rather than extending pipelines along the current line.

It is desirable that the location and size of new distribution centers be determined after considering the division of water service areas. It is also important to systematically address the elimination of nonserved areas and the renewal of old pipes (water distribution) by setting priorities in each service area or service block.

	-	2 A 7	· · · · · · · · · · · · · · · · · · ·		
Classification Problem		Necessary Countermeasure			
		Short Term	Medium- to Long-Term		
Service	Delays in large scale	• Planning management and	-		
Management	projects	securing financial resources			
Water Source	Water source shortage	• Securing alternative water	• Water source developments		
		sources such as boreholes	such as Mugica Dam		

 Table 19
 Major Problems and Issues of Water Supply Services (Project Area)

Cleasification	Drahlam	Necessary Cou	intermeasure
Classification	Problem	Short Term	Medium- to Long-Term
Facility	 Occurrence of large- scale water leakages Uneven distribution of water volume Lack of water pressure Expansion of nonserved areas 	 Renewal of deteriorating pipelines (water transmission) Division of water service areas Construction of new water distribution centers 	 Elimination of nonserved areas Renewal of deteriorating pipelines (water distribution) Block service of pipe network
Fee Collection	Insufficient fee collection	-	• Installation of water meters
Staff	• Low capacity for operation and maintenance	-	 Conducting technical training Procurement of maintenance equipment Planning for renewal

2.1.6 Issues related to Sanitation and Waterborne Diseases

According to the UNICEF, WHO and World Bank definitions of stunting, the cumulative percentage classified as stunting, underweight and weakening is highest in the province of Cabo Delgado. The province of Nampula, which is the project area, ranks 10th and has a relatively high rate of undernutrition in Mozambique.

Figure 13 Undernutrition Status by Province (Percentage less than 2 standard deviations)

2.2 Related Projects

2.2.1 Outline of Development Plan

The country of Mozambique is urbanizing in the course of its development. By 2025, it is estimated that 6.3 million persons, or 52% of the 12.5 million urban population, will live in the 12 cities with a population of 250,000 or more, or 21% of the national population. This is about twice the number of persons living in urban areas, and about three-quarters of them will live in peri-urban areas, with insecure housing, water supply, and sanitation.

According to the National Strategy of Urban Water and Sanitation 2011-2025 developed in 2012,

under the implementation of the Delegated Management Framework for Major Water Systems, major cities have made significant investments to achieve improved quality and extension of services to the peri-urban areas. The management and viability of these systems is becoming increasingly sustainable, and against this background, the water subsector is attracting funds to secure the future of these systems.

According to the National Five-Year Plan (2020-2024) of the Government of Mozambique, the following goals have been set for urban water supply and sanitation.

Strategic	Indicator	Baseline Year	Target Year	Responsible
Objectives		(2019)	(2024)	Body
Promote the	xx% of urban residents will	83%.	90%.	Ministry of
development of	have access to safe water			Public Works,
economic, social,	xx% of urban residents use	56%	80%.	Housing and
and administrative			0070	Water
infrastructure	proper sanitation facilities			Resources

2.2.2 High Level and Related Plans of Project Area

The mission and vision of FIPAG are as follows.

- Mission : Promote water services in major cities through effective management with private sector participation, efficient and sustainable investment and asset utilization, promotion of fair pricing, and environmental protection.
 Vision. : Provide excellent and sustainable urban water services to drive the country's
 - ision. : Provide excellent and sustainable urban water services to drive the country's development.

The following is the plan for Nampula city's water supply from 2021 to 2050.

Schedule	Project Name (If Realized)	Project Outline	Donor (If Confirmed)	Proposed Project Cost (Million U.S. Dollars)
2021 - 2022	Master Plan for Nampula City Water Supply	 Water Demand Assessment Water Source assessment Master Plan Environmental and Social Screening 	World Bank	1.0
2021 - 2022	Feasibility study and design for use of the Mugica dam for water supply to the city of Nampula	 Options Preliminary Design Mugica Dam Safety Assessment Detail Design E&S Impact Assessment and Management Plan 	World Bank	1.5
2021 - 2023	Nampula City Water Supply System Design and Extension <i>Works</i> - Phase I (<i>Namiteka</i> <i>Groundwater Source</i>)	 Water Supply Project Design & EIA/Plan services Drilling of 20 boreholes and installation of pumping equipment Construction of Storage Tank Installation of Pumping 	ЛСА	20.8

Schedule	Project Name (If Realized)	Project Outline	Donor (If Confirmed)	Proposed Project Cost (Million U.S. Dollars)
		Stations Construction of distribution centers and network Consulting Services		
D2024 - 2027	Nampula City Water Supply System Design and Extension <i>Works</i> - Phase II (<i>Mugica Dam</i> <i>Source</i>)	 Project Detail Design & Supervision Installation of Water Intake and Pumping equipment Construction of Treatment Plan, Reserve Storage Installation of Pumping Stations Construction of distribution centers and network Work Supervision Services 	To be identified	175.0
024 - 2025	Feasibility Study for Meluli Dam as Additional for Supply Nampula City	 Options Preliminary Design Technical, Financial and Economic Feasibility Assessment and Study Meluli Detail Design E&S Impact Assessment and Management Plan 	To be identified	2.0
2025 - 2030	Meluli Dam Development Work for Water Supply Nampula City	 Project Detail Design & Supervision Dam Civil Works Installation of spillway gate and hydromechanics equipment Construction of Treatment Plan, Reserve Storage Water Supply Main Construction - 110 km 	To be identified	400.0

Source: FIPAG, 2020

2.2.3 Project Urgency and Priority of Mozambican Side

In response to Goal 7 of the MDGs, "By 2015, halve the proportion of people without continuous access to safe drinking water and sanitation," the government has developed the National Rural Water Supply and Sanitation Program 2010-2015, especially for rural areas where water supply facilities are lagging, with the goal of increasing the country's overall water supply rate to 70% by 2015. However, according to data from the World Bank, the water supply rate for the entire country in 2015 was 58%, indicating a large gap between the target and the actual situation. When the water supply rate is classified into urban and rural areas, the urban water supply rate is as high as 88%, while the rural water supply rate remains low at 45%. However, since the population growth rate in urban areas is higher than that in rural areas, the facility capacity has not been able to keep up with the increase in water demand. This has resulted in problems such as insufficient water pressure, in addition to the implementation of time restricted water supply and planned water suspensions due to chronic water shortages.

These problems are not only affecting the lives and health of the citizens, but also the development of commerce and industry, and are becoming an important factor in maintaining public safety. Furthermore, the need to provide safe water to the resettled people from Cabo Delgado Province has made the improvement of water supply services in the city one of the major challenges in the urban area.

FIPAG has identified the water supply facilities project in Nampula, the top city in the northern part of Mozambique, as the most important project after the capital city, and it is given a very high priority.

2.2.4 Mutual Comparison with Other Candidate Projects

There are no other candidate projects.

2.3 Responsible Authorities and Executing Agency

2.3.1 Relevant Government Authorities

The Ministry of Public Works, Housing and Water Resources (MOPHRH) is the central government agency with authority over public works and water resources management, and is responsible for and supervises the water sector. The National Water Supply and Sanitation Authority (DNAAS) is the central agency of the MOPHRH responsible for drinking water supply and sanitation to the population.

Under Decree No. 72/98 of December 23, 1998 and Decree No. 18/2009 of May 13, 2009, the participation of private entities in the management of public water services was approved. Through the enactment of Decree No. 73/98 of December 23, 1998, Water Supply Investment Promotion Fund (FIPAG) will be responsible for investing in and ensuring the operation of water supply systems in major cities. Decree No. 19/2009 of May 13, 2009 established the Administration for Water and Sanitation Infrastructure (AIAS), which will be responsible for the development of water supply systems and sewerage networks in all semi-major cities. The same decree establishes a provincial level advisory body, the Provincial Water and Sanitation Council.

Legislative Decree No. 74/98 of December 23, 1998, as part of the creation of the Delegated Management Framework (QGD), established the Council for Water Regulation (CRA), the body responsible for regulating the operation of water utilities and the relationship between FIPAG and private operators, particularly with regard to water tariffs, quality of service, and the water network expansion program. According to Decree No. 18 of 2009, "the powers of the CRA are extended to the regulation of all public water distribution and drainage systems in a manner appropriate to the technical and system-specific management conditions. The CRA was renamed as the Water Regulatory Authority (AURA) by Decree No. 8/2019 of February 18, 2019.

The following is an organizational chart of the Ministry of Public Works, Housing and Water Resources, to which FIPAG, the implementing agency of the project, belongs.

Figure 14 Organization Chart of Ministry of Public Works, Housing and Water Resources

2.3.2 Organization of Executing Agency

The FIPAG headquarters has 2,800 staff members, and the organizational structure is shown in the figure below. Planning and other activities are carried out by the Administration Department, which also serves as the contact point for this project.

Figure 15 Organization Chart of FIPAG Headquarters

2.3.3 Duties of Executing Agency

FIPAG owns and has jurisdiction over the operation and maintenance of water supply facilities in the designated cities of Mozambique as listed in the table below. Its main roles are as follows

- Planning, supervision, and promotion of projects
- Various procedures related to budget and coordination with donors
- Planning and implementation of capacity building training within the organization
- Follow-up on national level programs

11 7 3					,					
Province	Niassa	Cape Delgado	Nampula	Zambezia	Tete	Manica	Sofala	Inhambane	Gaza	Maputo
City	Lichinga	Pemba	Nampula	Quelimane	Tete	Chimoio	Beira	Inhambane	Xai-xai	Maputo
	Cuamba		Nacala		Moatize	Manica	Dondo	Maxixe	Chókwè	Matola
			Angoche			Gondola				Boane

Table 20 List of Water Supply Facilities in Major Cities under FIPAG's Jurisdiction

2.4 Progress of Japan's Cooperation

2.4.1 Progress of Financial Assistance

Japan has continued to provide assistance to rural areas in Mozambique as part of its support for achieving the MDGs and SDGs. For the water sector, the target provinces were Zambezia and Niassa in the northern part of Mozambique.

The project for the construction of water supply facilities, which will directly contribute to the improvement of the water supply coverage, after the completion of the preparatory study for the grant aid "Niassa Region Water Supply Facilities Construction Project" in 2020, actually is scheduled to be implemented in 2021.

14010 21	oupants Grane		(mater suppry sector)
Project Name	Implementation Year	Project Cost (100 Million Yen)	Project Summary
Zambezia Province Groundwater Development Project 1/3	2001-2002	9.90	Eight northern districts in Zambezia ProvinceConstruction of boreholes (148 locations)Renewal of existing hand pumps (13
Zambezia Province Groundwater Development Project 2/3	2001-2003	5.07	 locations) Procurement of equipment and materials related to borehole drilling
Zambezia Province Groundwater Development Project 3/3	2002-2004	4.28	 Promotion of smooth operation and maintenance of facilities. Support for strengthening the organization
Zambezia Province Sustainable Water Supply and Sanitation Improvement Project (Technical Cooperation Project)	2007-2011	4.20	 Four districts in Zambezia Province Strengthening of the support system by the administration Support for sustainable operation and maintenance of water supply facilities Sensitization activities to improve hygiene
Emergency Water Supply Project	2009	10.00	• Procurement of equipment related to climate change countermeasures (water tankers and other equipment, water quality

Table 21Japan's Grant Aid Achievements (Water Supply Sector)

Project Name	Implementation Year	Project Cost (100 Million Yen)	Project Summary
			equipment, borehole drilling rigs and other related equipment, solar-powered water supply equipment, etc.)Guidance on operation and maintenance of procured equipment
Sustainable Rural Water Supply and Sanitation Improvement Project in Niassa Province (Technical Cooperation Project)	2013-2017	9.18	 Four districts in Niassa Province Construction of 50 boreholes with hand pumps and latrines for schools (20 schools) Renewal of 65 existing water supply facilities Strengthening of the operation and maintenance system of water supply facilities Improvement of the hygienic behavior of residents. Dissemination and sharing at the national level

Source: Compiled using information from JICA website.

2.4.2 Progress of Technical Cooperation

As technical cooperation, Japan has been working on the construction of boreholes with hand pumps, which is directly related to the improvement of the water supply rate in rural areas, as well as capacity building of local government and communities to enable maintenance and renewal of the existing facilities. In addition to water supply, construction of sanitation facilities such as latrines and improvement of hygiene practices such as hand washing with soap are also being implemented.

Furthermore, the Niassa Sustainable Water Supply System and Sanitation Promotion Project, a technical cooperation project to promote the strengthening of the capacity of municipalities in rural areas such as district seats to operate and maintain water supply facilities, is scheduled to be implemented from 2021 to 2026.

2.4.3 Comments by Mozambique on Japan's Cooperation

As an agency of the Ministry of Public Works, Housing and Water Resources, which is also responsible for the project, although it was not directly involved in the implementation of the project, Japan's assistance in the construction of facilities and implementation of technical projects to date is highly appreciated, and Japan's continued cooperation in the future is desired.

2.5 Progress of Cooperation by Third Countries and International Organizations

The city of Nampula is undergoing intensive investment of US\$45,000,000 by the US MCA in 2013. Another project that has been accepted is the formulation of a master plan for the use of Mugica Dam, which is scheduled for 2021-2022.

Table 22 Trojects by Third Countries, international Organizations						
Project Name	Aid Organization	Contents				
Water Supply Master Plan	World Bank	• Water demand forecast				
		• Water source assessment				
		• Project implementation				
		plan				

Table 22 Projects by Third Countries/International Organizations

Project Name	Aid Organization		Contents	
Mugica Dam Utilization Project	World Bank	٠	F/S	
(Mugica Dam)		•	Outline design	
		•	Environmental	impact
			assessment	

2.5.1 Assistances related to the Project

There is currently no assistance from third countries/international organizations to Nampula City related to this project. The survey of the Namiteka boreholes was carried out with FIPAG's own financial resources.

2.5.2 Request for the Project

FIPAG will prepare a request for cooperation for the enhancement of water supply in Nampula and submit it to the Embassy of Japan in Mozambique and the JICA Mozambique office by March 2021, in order to approach them for implementation of the grant aid.

2.5.3 Compliance of the Project with Japan's Assistance Policy

The country-specific development cooperation policy for 2013 states that the country will focus on supporting (1) regional economic revitalization, including corridor development, (2) human development, and (3) disaster prevention and climate change countermeasures so that the country can realize its high potential for sustainable economic growth and achieve poverty reduction.

Figure 16 Country-wise Development Assistance Policy

The aid policy for water supply is stated in "(2) Human Development", which states, "To improve the human development index, which is the lowest in the world, and to achieve the MDGs, assistance will be provided to improve access to health services and basic education, and to expand access to safe water through the construction of water supply facilities. The plan also states that "In addition, this plan targets

the city of Nampula, the largest city in the Nacala corridor, and the proposal will contribute to supporting the development of the corridor".

2.5.4 Necessity of Project Linkage with Cooperation by Third Countries/ International Organizations

In 2013, some of the existing water supply facilities in Nampula were upgraded and expanded from intake facilities to distribution facilities at a total construction cost of about 5 billion Yen, using MCA, a US aid fund. At this point, the Monapo Dam was already experiencing seasonal depletion problems, making it difficult to implement further facility expansions. Therefore, the project is positioned as an augmentation project for the purpose of stable water supply by reducing large-scale leakages and eliminating nonserved areas through development of new water sources.

2.5.5 Reasons for not Implementing this Project by Third Countries /International Organizations

To date, FIPAG has been actively utilizing loans from the World Bank and other donors to improve urban water supply. However, since the World Bank and other donors provide assistance to the entire country, priority is currently being given to the reconstruction of the metropolitan areas and cycloneaffected cities that are facing serious problems. Furthermore, the project has been excluded as a major project from the perspective that improvement of water source capacity will be limited without largescale investments such as dam construction.

Currently, there are no plans for construction of facilities at the project site, although other donors are expected to provide support in the form of F/S and master plan in 2021-2022. However, in the future, if the situation in Nampula does not improve when projects such as the cyclone damage control project in Beira are completed, the project may be budgeted due to its high importance. As for Nampula, although there is a possibility of budgeting for water source development projects such as dams when the Bank resumes full-scale assistance, there are various issues to be addressed, including environmental impact assessment.

Since the World Bank, African Development Bank and other donors have been providing continuous support to FIPAG, it is necessary to promptly share information with each donor and coordinate assistance when this project is adopted.

Chapter 3 Project Related Information

3.1 Improvement of Problems

3.1.1 Problems in Water Supply Services (National Level) and Relation to the Project

Urban areas have not been able to cope with the growing demand for water due to delays in largescale projects and rising leakage rates caused by deteriorating facilities. Therefore, the main objective of this project is to effectively solve the problems faced by water supply facilities through a scheme that does not place a financial burden on the recipient country, taking into consideration the future water supply service conditions. Among the problems (at the national level), the proposed project is expected to improve the shortage of water sources, insufficient capacity of facilities, increase in water leakages, and routine execution of water suspensions.

	and the Project				
Classification	Problems				
PPP	• Delays in dissemination of PPP/PFI to rural cities				
Project • Delays in scheduling of loan projects					
Scheduling					
Operations	• Securing facilities rehabilitation funds				
and Finance	• Rise in debt-to-water revenue ratio				
	 Recovery of non-collected fees 				
Facility	Water source				
2	• Scarcity of water sources (drought and increased water				
	demand due to climate change)				
	Facility				
	 Insufficient capacity of facilities 				
	• Increase in water leakages				
	Water supply				
	• Routine implementation of water suspensions				
	• Non-installation of water meters				
	• No assurance of residual chloride				
Management	 Insufficient water pressure and water volume 				
U	 Non-implementation of asset management 				
	• No improvement in management of water supply services				
Staff	• Low capacity in technical skills of staff				

Table 23Relationship between Problems in Water Supply Services (National Level)

3.1.2 Current Status of Water Services and Problems in Drinking Water Supply (Project Area) and Relation to the Project

This project will address the problems of water sources and facilities among the problems of water supply services in the project area. Specifically, the project will solve the problems of large-scale leakages, uneven distribution of water volume and insufficient water pressure, and the expansion of nonrserved areas.

	and the Project								
Cleasification	Duchlam	Necessary Countermeasure							
Classification	Problem	Short Term	Medium- to Long-Term						
Service Management	 Delays in implementation of large-scale projects 	Planning management and securing financial resources	-						
Water Source	• Water source scarcity	Secure alternative water sources such as boreholes	• Development of Mugica Dam and other water sources						
Facility	 Occurrence of large- scale water leakages Uneven distribution of water volume and insufficient water pressure Expansion of nonserved areas 	 Renewal of deteriorated pipelines (water transmission) Division of water service areas Construction of new water distribution center 	 Elimination of nonserved areas Renewal of deteriorated pipelines (water distribution) Block service of water pipe network 						
Fee	Insufficient fee	-	• Installation of water						
Collection	collection		meters						
Staff	Low capacity for operation and maintenance	-	 Conducting technical training Procurement of maintenance equipment Planning for renewals 						

Table 24Relationship between Problems in Water Supply Services (Project Area)

3.1.3 Scope of Cooperation

The scope of cooperation for this project, if adopted as a grant aid project, will be a package, starting with a preparatory study to improve water supply facilities in Nampula, followed by construction of the facilities, construction supervision, and soft component support.

3.1.4 Type of Cooperation

FIPAG expects the construction of the facility to be funded by a general grant from the Japanese government.

3.1.5 Period of Implementation

The project is expected to take about six years from the request to the completion of construction.

	1 st Year	2 nd Year	3 rd Year	4 th Year	5 th Year	6 th Year
Acceptance of						
Preparatory						
Cabinet Decision						
Detailed Design						
Construction Tendering						
Construction Work						

 Table 25
 Tentative Overall Construction Period

3.2 Purpose of the Project

3.2.1 Short-Term Objectives

This project, which can be roughly divided into two sub-projects, aims to contribute to the stable supply of water that conforms to water quality standards as well as to reliably secure revenues. The short-term objectives of this project are as follows.

- ① In order to eliminate nonserved areas, new water supply facilities sourced by boreholes will be constructed in Nampula City to expand the water supply area.
- ② To reduce the amount of non-revenue water and increase the water supply, old pipes that are the cause of large-scale leakages will be replaced.

3.2.2 Medium- to Long-Term Objectives

In the medium and long term, the project aims to contribute to the improvement of the health of the residents, the stable growth of the city, and economic development by implementing hygiene awareness activities in conjunction with the construction of the facility. The following are the medium- to long-term objectives of the project.

- ① In addition to supplying safe water to slums and other inappropriate living environments, the project will promote the improvement of the health of the beneficiaries and the stable growth of the city by implementing hygiene awareness activities such as measures against infectious diseases.
- 2 Eliminating large-scale water leakages will ensure a stable water supply for Nampula City and promote economic development.

3.3 Contents of the Project

3.3.1 Outline of the Project

The initial request for the high-priority project is shown in Table 26.

Item			Project Area				
Target Area Name and Population (2017)			Nonserved areas: Namitek Expansion/Rehabilitation persons	Nonserved areas: Namiteka, Mapara => 54,000 persons Expansion/Rehabilitation areas: Muahivire, Nampaco, Muhala => 146,302 persons			
Design Year				2037			
Design Populat	tion ⁴			246,571 persons (2037)			
Unit Supply Rate			House connections : 125L/person/day Private yard tap: 80 L/person/day Shared yard tap: 50 L/person/day Public tapstand: 30 L / person / day				
Design Pumpir	ng Rate		2,250 m ³ /day				
Project Division			Facility	Specifications		Quantity	
1. Facilities Construction	1-1	20 Bor (10 ex) be used	ehole drillings isting boreholes will also d)	Depth : 60m, pumping rate m ³ /hr	: 5.0	20 boreholes	

Table 26Project Outline (Initial Request)

⁴Source: Update of the Feasibility Study for City of Nampula, 2018, FIPAG

	1-2	Borehole facilities (pump operation room, guard room, generator room)	Pillar and beam, RC construction (wall CB pile), borehole pump equipment	5 locations
	1-3	transmission main and transmission pipes	HDPE pipe, DN80-250	25km
	1-4	Booster pumping station (water receiving basin, pump room, power receiving room, generator room)	Receiving basin (V=300m ³) RC construction, transmission pump equipment, in-plant plumbing (steel pipe)	1 location
	1-6	Water distribution center (water distribution reservoir, disinfection room, flow meter room)	Water distribution reservoir (ground type, V=1000m ³ , elevated water tank, V=300m ³) RC construction, chlorine dosage equipment	1 location
	1-7	Distribution pipe	HDPE pipe, DN50-300	80km
2. Design and Construction Supervision	2-1	Facilities design, construction supervision, etc.	-	1 lot

3.3.2 Description, Scale, and Quantity of the Project

The overall system and each facility of the project are described below.

1) Outline of Overall System (Facilities Construction)

The Monapo Dam water source is susceptible to changes in rainfall due to climate change, and due to population and economic growth in the existing service area, the current water supply system cannot adequately cover the water demand of the entire city of Nampula. Therefore, since expansion of the water service area using the Monapo Dam as the source of water supply is difficult, new boreholes to be drilled in the Namiteka well field will be used as the source of water to eliminate the nonserved areas.

In addition, pipelines will be upgraded to eliminate large-scale leaks that have been a problem in existing service areas.

Figure 18 Project Target Area

Figure 19 Location of Facilities in the City

2) Outline of Each Facility (Proposed Construction Site, Scale, Capacity and Quantity)

(1) Water Source

The 20 new boreholes are planned to be constructed in the Namiteka borehole field. The Namiteka water source field is located at the confluence of several tributaries of the south-flowing Meluli River, and 10 boreholes were constructed on the left bank in 2020. The catchment area is not large, as the Nampula urban area is a watershed. The Namiteka boreholes are located about 8 km south of the city center at an elevation of about 300 meters. The elevation of the urban area of Nampula is in the range of 350m to 440m.

The average well depth of the existing boreholes (10 boreholes) is 53m, the average safe pumping rate is 17.6m³/hr, the average static water level is -5m, and the average drawdown is about 4m. The area around the Namiteka Borehole field is mainly used as agricultural land, and some houses are scattered in the surroundings. The area around the Namiteka Borehole is used for public purposes.

Figure 20 Existing Water Sources (Namiteka Well Field)

Figure 21 Existing Borehole (Pump Installation expected in 2021)

Borehole	Depth(m)	Static Water Level(m)	Drawdown(m)	Safe Yield (m ³ /hr)
Number				
F-01	51	-4.77	2.20	18.0
F-02	62	-4.79	3.24	18.0
F-03	54	-4.75	3.21	18.0
F-04	51	-5.46	6.55	18.0
F-05	52	-6.57	4.04	14.0
F-06	51	-3.19	2.38	18.0
F-07	51	-2.43	7.00	18.0
F-08	51	-5.74	3.44	18.0
F-09	55	-6.12	4.12	18.0
F-10	53	-5.40	5.13	18.0
Minimum	51	-6.57	2.20	14.0
Average	53	-4.92	4.13	17.6

Borehole	Depth(m)	Static Water	Drawdown(m)	Safe Yield (m^3/hr)
Number				
Maximum	62	-2.43	7.00	18.0

The water quality of the above group of boreholes was analyzed in three boreholes, and the results were as follows.

	14010 20 1	rater Quality of f	annitena weni i	eia (i ai tiai)	
Parameter*.	Unit	Mozambique	Borehole F-01	Borehole F-02	Borehole F-03
		Standard			
Electrical	μS/cm	2,000	1,284	1,590	N/A
conductivity					
pН		6.5-8.5	7.6	7.8	7.7
TDS	mg/L	1,000	706	875	N/A
Turbidity	NTU	5	1.3	1.0	89.0
E. Coli group	NMP/100ml	0	0	0	0
Color	TCU	15	0	0	> 100
Calcium (Ca)	mg/L	50	16	20	87
Chloride	mg/L	250	163	123	112
Total Hardness	mg/L	500	336	336	500
Total iron	mg/L	0.3	0.0	0.1	0.1
Magnesium (Mg)	mg/L	50	48.54	35.46	40.90
Silicon dioxide	mg/L		2.26	2.28	2.01
(SiO2)	-				

 Table 28
 Water Quality of Namiteka Well Field (Partial)

Analyses were conducted in the laboratory at the FIPAG Nampula branch office. Red figures indicate values that exceed the standard.

(2) Transmission Main and Transmission Pipe

Considering the future plan and conditions of the existing pipelines, the project plans to lay about 6 km of pipelines with diameters of 100 mm to 200 mm from each borehole to the booster pump station. The roads are unpaved, but river crossings are required along the way. Depending on the location of the water treatment plant and distribution centers, it may be necessary to construct new water pipe bridges.

(3) Booster Pumping Station

The booster pumping station shall have a fence around the perimeter for security and environmental consideration. In addition, gates and small doors will be installed to facilitate access of materials, maintenance vehicles, operation and maintenance personnel, guards, and other required conveniences. The site will be equipped with a retention pond to stabilize the raw water flowing into the pump, a transformer room for receiving high-voltage power, a water transmission pump room, a private generator room, a guard room, and toilets. The capacity of the retention pond is 300m³, which is equivalent to one hour of water supply, and the structure is a ground type RC cylindrical water tank in accordance with the structure of the existing water tank.

(4) Transmission Main

Considering the future plan and the conditions of the existing pipelines, the plan is to lay about 20km of 200mm to 300mm diameter pipelines to the existing distribution reservoir (EB5: V=5,000m³) and the newly constructed distribution center. The transmission mains will be installed in the utility zone between the road structure and private structures, and river crossings will be required along the way.

(5) Water Distribution Center

The capacity of the distribution reservoir will be 30% to 50% of the design average daily water supply rate at 1,300m³ (1,000m³ for the ground tank and 300m³ for the elevated water tank, for a total effective capacity of 1,300m³). The structure of the distribution reservoir will be a cylindrical RC water tank to match the structure of the existing water tank. In addition to the inflow and outflow pipes, drainage pipes and overflow pipes for maintenance are to be installed in the reservoir. The reservoir will be equipped with valve boxes for outflow and drainage valves, ventilators for suction and exhaust due to water level fluctuations, outer walls, ladders inside the tank, and manholes for maintenance. In addition, a flow meter and a flow meter room will be installed to measure the current water distribution volume and to monitor leakages in the distribution pipes as well as seasonal, weekly, and hourly flow rate fluctuations.

In addition, there will be a disinfection room in the site for storing calcium hypochlorite, a mixing tank, and a chemical dosage pump. In addition, power receiving equipment will be installed at both water distribution centers to operate the chemical dosage pumps.

(6) Distribution Pipe

The existing water distribution pipes are PVC or DIP pipes. The distribution pipes of this project are planned to be HDPE pipes of relatively small diameters of DN300 or less in consideration of facilitating future maintenance. The water distribution pipes will be located in the utility zone between the road structure and the private structures. In accordance with local standards for pipe laying depths, the cover soil thicknesses shall be 600mm for pipes up to DN63, and 1,000mm for transmission pipes and pipes of DN75 and above.

3.3.3 Contents, Scale and Quantity of Dispatch of Experts and Equipment Procurement

If this project is implemented with Japanese technical assistance, it is expected that the water supply facilities will be properly operated due to the improvement in technical skills of FIPAG staff through the dispatch of experts or the implementation of technical cooperation projects in the following areas

- Training on operation and maintenance of boreholes (dispatch of experts, etc.) and procurement of maintenance equipment
- Training on inspection of electro-mechanical equipment (dispatch of experts, etc.)
- Implementation of technical cooperation for non-revenue water measures and water service block formation

3.3.4 Project Cost Estimation

The estimated project cost is shown in Table 29.

Table 29 Project Cost Estimation

	Facilities to be Constructed and Other Items	Quantity	Construction Cost (million Yen)
Ι	Construction cost		
1	Water source facilities construction (borehole drilling,	20 boreholes	140
	pump equipment, pump pit, etc.)		
2	Booster pumping station construction (receiving water	1 location	57
	tank 300m ³ , water pump room, power receiving		
	equipment room, generator room)		
3	Transmission main and transmission pipeline laying	25km	589
	(HDPE pipe DN75-200)		
4	Distribution pipe laying (new installations and	80km	491
	rehabilitations) (HDPE pipe DN50-250)		
5	Water distribution center construction (reservoir	1 location	82
	V=1000m ³ , elevated water tank V=300m ³ ,		
	disinfection room, flow meter room, generator room)		
6	Total direct construction cost		1,359
7	Site supervision cost		544
	Subtotal		1,903
II	Design and construction supervision cost		
1	Design and construction supervision cost		190
2	Soft component cost		20
	Subtotal		210
III	Contingencies		
1	Contingencies such as price escalation, etc.		106
	Subtotal		106
	Total		2,219

3.4 Site Conditions

3.4.1 Location (Land Acquisition, Land Use, Pollution causing Facilities, etc.)

The area around the Namiteka borehole field is being used as forest and farmland. Since the area around the water source is public land, securing land for the project is not a problem. Since the pipeline will be laid under the road, there is no particular problem although the locations of occupancy need to be discussed with the road administrator. Furthermore, the sites for water distribution centers have not yet been decided, but priority is planned to be given to selection of unused land in the city.

3.4.2 Natural Conditions

(In Particular, Descriptions of Water Sources such as Precipitation,

River and Groundwater)

1) Precipitation Rate

The average annual rainfall is relatively high at about 1,700 mm, and the wet and dry seasons are clearly divided. The average minimum temperature is over 15 degrees even in the winter. However, since the area around Nampula City is located upstream of a large river, the catchment area is small and not

suitable for development of a large dam.

2) Topography

The elevation difference in Nampula city is about 100 m (350 to 450 m above sea level). National Highway 13, which runs east to west along the ridge, serves as a dividing line. Bounded by the national highway, the north side is the catchment area of the Monapo River flowing eastward and the south side of the Meluli River flowing southward. The water supply nonserved area is in the periphery of the city where the elevation is relatively low. The elevation of the Namiteka boreholes, which will be the new water source, is about 300 m.

Source: ALOS Data of JAXA Figure 23 Elevations of Nampula City

3) Groundwater

Gneiss and metamorphic rocks are distributed around Nampula City as residual hills are found in the city. The Namiteka well field is located south of Nampula City, and weathering has progressed to depths

of 35 to 60 m in this area. Since it is located at the point where the tributaries of the Meluli River (Muhala, Muepelume and Natuko Rivers) converge, it is assumed that rainwater and river water are supplied to the underground from the surface, allowing for the storage of large amounts of groundwater.

According to the pumping test of 10 boreholes drilled by FIPAG, most of the boreholes have relatively large yields of 18.0 m³/hr per borehole. However, the distances between boreholes are short in some cases, and it is difficult to evaluate the continuity of fractures in the fracture zone, so it is necessary to determine the safe pumping rate after thoroughly evaluating the mutual interference of 30 boreholes. In addition, it should be noted that the catchment area of the Namiteka boreholes is not so large because they are located in the relatively upstream area, and that the flow rate in the downstream area of the tributaries may decrease.

Borehole	Borehole	Static Water	Pumping	Drawdown
Number	Depth	Level	Rate	Diawdown
F-01	51.0m	4.77m	18.0m ³ /h	2.20m
F-02	62.0m	4.79m	18.0m ³ /h	3.24m
F-03	54.0m	4.75m	18.0m ³ /h	3.21m
F-04	51.0m	5.46m	18.0m ³ /h	6.55m
F-05	52.0m	6.57m	14.0m ³ /h	4.04m
F-06	51.0m	3.19m	18.0m ³ /h	2.38m
F-07	51.0m	2.43m	18.0m ³ /h	7.00m
F-08	51.0m	5.74m	18.0m ³ /h	3.44m
F-09	55.0m	6.12m	18.0m ³ /h	4.12m
F-10	53.0m	5.40m	18.0m ³ /h	5.13m

Table 30 Namiteka Well Field

Source: Geophysical prospecting and supervision of borehole construction in surrounding Nampula City, 2020, FIPAG.

3.4.3 Access

Nampula City is located about 200 km west of Nacala International Port. The national highway is well paved, which provides good conditions for transporting materials. Nampula International Airport, which has daily flights to and from the capital city of Maputo, can make traveling more convenient.

An access road to the Namiteka borehole field, which is planned as the water source, does not have to be constructed since an unpaved road already leads to the site.

3.4.4 Power and Communication

The coverage and stabilization of electrical power have become a national issue, and power lines are being developed in the northern part of Mozambique. Since power failures occur regularly in Nampula City, it is necessary to install an emergency power generator and even if a power failure occurs, adopting a gravity type distribution method similar to the existing facilities is desirable for continued water distribution during a certain period of time.

Since cell phones, Internet and other means of communication are widespread, the environment is generally free of inconvenience.

3.4.5 Safety

In terms of security, there are no major problems in Nampula Province except for general crime. However, in the northeastern part of the province of Cabo Delgado, located to the north of Nampula, there have been frequent attacks by armed groups, and some residents have fled as refugees to the Nampula City area.

Chapter 4 Effectiveness and Impacts of the Project

4.1 Effectiveness of Project Implementation

4.1.1 Extent of Solving Current Situation of Water Supply Sector

Although the project will not directly solve the scarcity of water resources, it can be expected to improve the amount of water leakages and thus the efficient use of water.

4.1.2 Extent of Solving Problems of Drinking Water Supply

The project is expected to solve the problems of nonserved areas and also function as a backup for existing water supply areas.

4.1.3 Extent of Solving Problems related to Sanitation and Waterborne Diseases

Water supply to nonserved areas is expected to prevent COVID-19 infection and reduce the number of patients with waterborne diseases.

4.2 Impacts from Project Implementation

4.2.1 Political Impact

In Nampula, the government is encouraging people to wash their hands due to the Corona crisis as planned water suspensions during the drought period have been prolonged.

4.2.2 Social Impact

In the nonserved areas of Nampula, people are forced to use unsafe water sources, and there are many sanitary problems. The project is expected to contribute to solving these problems and improve the living conditions of the poor in particular.

4.2.3 Economic Impact

The city of Nampula, the main city in the Nacala corridor, has been experiencing stable economic growth, but it is inadequate in terms of water supply. It is feared that the current level of water service will be a hindrance to growth. The construction of facilities to meet the growing demand for water is essential for the growth of the economy.

4.2.4 Technical Impact

In addition to population growth, deterioration of facilities in Mozambique is significant, and the

country needs to resolve both issues: expansion of facilities capacity and renewal of existing facilities. A technological proposal that can solve both issues in the medium to long term should have a great impact. It is also expected that technology transfer through the cooperation of the Japanese side will be meaningful not only for FIPAG but also for the water supply sector in Mozambique.

4.2.5 Diplomatic and Public Relations Impact

The northern part of Mozambique and the Nacala Corridor are areas where rapid economic development is expected, and Japan has been providing continuous support. The development of urban water supply can directly contribute to the economic development and improvement of people's lives, which is a challenge for Mozambique, and the highly attention receiving project in Nampula City will further increase the presence of Japan's contribution, and is expected to have a great impact diplomatically and in terms of public relations.

Chapter 5 Project Feasibility

5.1 Results of Comparison with Main Alternatives

There are no alternative plans for this project.

5.2 Organizational Relevance and Sustainability of Project Implementation

5.2.1 Organizational Capacity for Management

Since FIPAG's financial balance is improving, its financial condition seems to be good. Although the water supply rate is low at 50%, for the time being, FIPAG will be able to stabilize its management by making investments that directly lead to an increase in water supply revenue. However, it is necessary to allocate the necessary budget to reduce leakages by upgrading deteriorating facilities and to optimize billing through the installation of water meters, in order to achieve sustainable management.

5.2.2 Organizational Capacity during Construction

Although the input of the engineers to be involved in construction supervision is to be borne by the donor agency, FIPAG, as the executing agency, will assign staff to supervise the construction in cooperation with the dispatched engineers.

5.2.3 Organizational Capacity during Operation and Maintenance

The capacity of FIPAG for operation and maintenance is shown in Table 31.

Item		Description
Organization	Department name	Development Department (Water Treatment, Facility Maintenance, Operation and Maintenance)
in charge of	Number of staff	33 persons
Operation and	Operating	Since the newly constructed boreholes and distribution centers will be
Maintenance conditions equipped with the same mechanical and electrica existing water treatment plant and distribution center problems in operation and maintenance.		equipped with the same mechanical and electrical equipment as the existing water treatment plant and distribution centers, there will be no problems in operation and maintenance.
	Status of repairs	Long-term water suspensions due to large-scale leaks from pipes or

 Table 31
 Organizational Capacity for Operation and Maintenance (FIPAG Nampula Branch Office)

		equipment failure have not occurred.
Problems	and	• Budget
issues	of	Since there is no budget for repairs, repairing of facilities that seriously
department		affect the water supply cannot be made. Therefore, it is necessary to secure
		a certain amount of annual budget for repairs.
		Operation/Maintenance Technology and Equipment
		Since the department does not have the skills and equipment to operate and
		maintain boreholes, it is necessary to provide maintenance equipment as
		well as training for staff.

5.2.4 Relationships with Local Residents

1) Anticipated Interests

The construction of water supply facilities brings a variety of benefits to the local residents, such as the elimination of water supply suspensions and time restricted water supply, as well as employment for a certain period of time. Therefore, local governments and users are very interested in this project.

2) Possibility of Involuntary Resettlement

The locations of the Namibian boreholes and the pipelines that are planned to be renewed are on land managed by the government of Namibia. Although the planned sites for the water distribution centers have not yet been determined, the government will give priority to selecting lands that are not in use, and will start the procedures for land acquisition once the locations of lands required are determined. Therefore, problems such as involuntary resettlement should not arise.

5.3 Financial Viability and Sustainability of Project Implementation

5.3.1 Source of Funds to be Borne by Mozambican Side

The main burden of this project is to secure the land. The area around the Namiteka well field is government land. Land parcels for the construction of the water distribution centers are yet to be determined, and if they are privately owned, it will be funded from the FIPAG budget.

5.3.2 Current Status of Water Supply Service Indicators

FIPAG uses Key Performance Indicators (KPIs) to evaluate the performance of FIPAG and its concession contractors. Important KPIs are water supply service population, annual water distribution volume, average water supply hours, billing status, number of house connections, and water quality analysis status. The following table shows the current status of water service indicators.

	Item	2019	2020
Water Supply	Population in water supply area	6,494,436	7,142,690
Service	Population served by house connections	2,710,876	2,936,524
Population and	Population served by public tapstands	561,728	658,628
Water Supply	Water supply rate (%)	51	50
Rate	Water supply rate for house connections (%)	9	9
	Water supply rate for public tapstands (%)	42	41
Water Supply	Water supply hours (hr)	14	15
Hours and Unit	Unit water supply rate per person per day	60	55
Supply Rate	(liters/day)		
Leakage Rate	Water production rate (thousand m ³ /year)	187,388	134,522
	Metered water supply rate (thousand m ³ /year)	175,404	125,681

 Table 32
 Current Status of Water Supply Service Indicators (All Facilities under FIPAG's Jurisdiction)

	2019	2020	
	Leakage rate (%)	51	52
Fee Collection	Billing rate by water meter (%)	85	80
Rate	Fee collection rate (%)	89	-
	Fee collection rate (house connections) (%)	86	85
	Fee collection rate (public tapstands) (%)	51	37
Water Quality	Water quality test items	30	30
Analysis	Analyses results	29	26
Number of Staff	Number of staff members	2,734	2,828
	Number of staff / 1000 taps	5	5

5.3.3 Trends in Financial Balance

Figure 24 shows the status of revenues and expenditures. The balance between revenue and expenditure has been on an improving trend since 2016 and has shifted to the positive side in 2019. Expenditures are on an increasing trend, but tariff revenues are increasing more rapidly. Since the demand for water is expected to continue increasing in the future, revenue is expected to grow in proportion to the development of water supply facilities.

Figure 24 Financial Balance

5.3.4 Projected Financial Balance

For stable management, it is necessary to carry out effective service operations that directly lead to an increase in tariff revenue. Even if the annual debt payment due to investment increases, sustainable service operations is possible if the tariff revenue also increases concurrently.

5.4 Technical Feasibility and Sustainability of Project Implementation

5.4.1 Consistency with Technical Level of Mozambique

The FIPAG Nampula branch office is responsible for operation and maintenance of the water supply facilities. The branch office has a technical staff of 85 persons, consisting of engineers who graduated from universities and technical schools in the country. The staff of the branch offices regularly attend training courses at the training center established by FIPAG.

The facilities to be constructed under this project will use the same mechanical and electrical equipment as the existing facilities. From the perspective of consistency with the technical level of the

recepient country, there is no problem. However, since it is desirable to conduct regular operation and maintenance of boreholes, technical guidance is necessary.

5.4.2 Staff Allocation and Employment Status

For operation and maintenance of the new facilities, the project will provide initial guidance on the system structure and management techniques. However, since the number of management personnel needs to be increased, the knowledge and experience of the current staff should be fully utilized.

5.4.3 Operation and Maintenance Status of Facilities and Equipment

This project will provide technical guidance on facilities operation through soft component support, which is anticipated to be more effective than previous efforts.

5.5 Environmental Considerations

5.5.1 Expected Environmental Impacts

In this project, borehole drillings, new and renewal pipe installations, and construction of water distribution centers are planned. Since there are no rare animals or plants living in the project area and along the proposed pipe laying route, and also, residents do not need to be relocated, serious impacts should not occur. Based on these results, this project is considered to fall under Category B of Environmental and Social Considerations.

Other possible impacts on society and the environment are shown in Table 33. As negative impacts on society due to the construction, there is a possibility of the spread of infectious diseases and occupational accidents due to the influx of workers from outside the area, noise and dust, and traffic accidents. In addition, as negative impacts on the environment due to the operation of the facilities, there are possibilities of disturbance on the hydrologic cycle and land subsidence.

Preventive measures need to be taken in order to minimize or eliminate the impacts on society. For environmental impacts, monitoring should be conducted, and if widespread or localized land subsidence is expected to occur, the expected damage should be identified and the water source should be changed to another source such as surface water in the future.

Impact	Impact on Society	Impact on Environment
Туре		
Positive	• Stable supply of water	• Effective use of water resources
Impact	 Improving the health of infants and children Creation of employment opportunities Increase in volume of water distributed to slum areas around the 	(reduction of water leakages)
	city.	
Negative	• Spread of infectious diseases due to	• Disturbance on hydrologic cycle
Impact	influx of workers from outside the	(increased pumping rate)
	region	• Decreased flow in the lower reaches of

 Table 33
 Social and Environmental Impacts

Impact	Impact on Society	Impact on Environment
Туре		
	• Occurrence of occupational accidents	tributaries
	• Generation of noise, dust, etc.	
	• Occurrence of traffic accidents, etc.	

5.5.2 Assessment of Environmental Impacts

Here, the magnitude of environmental and social impacts related to this project is assessed by referring to the Environmental and Social Consideration Guidelines of the Japan International Cooperation Agency.

- 1) Location of the project site, scale and contents of the project
- (1) Project site: Nampula City, Nampula Province
- (2) Type of project: Expansion and renewal
- (3) Scale and contents of the project

The scale and contents of the project are shown in Table 34.

		Jeres Press
Facility	Item	Number/Capacity
Borehole	Number of facilities	30 boreholes (10 existing wells, 20 new wells)
(New)	Pumping rate	Average 5 m ³ /h x 30 wells x 15 hours = $2,250 \text{ m}^3/\text{day}$
	Static water	Average: Static water level = $4.9m$, drawdown = $4.1m$
	level/drawdown	
Water	Number of facilities	1 location (2 distribution reservoirs)
Distribution		
Center (New)		
	Facility capacity	V=1000m ³ , V=300m ³
Pipeline	Pipe removal	None
(Renewal)	Pipe renewal	Site survey required
(New)	New pipe laying	Site survey required

Table 34Project Scale and Description

2) Project Summary

As described in "3.3 Contents of the Project" of this report.

- 3) Necessity of the Project (High-level and related plans)As described in "2.2.2 High Level and Related Plans for Project Area" of this report.
- 4) Zero options and alternative plans

As described in "5.1 Results of Comparison with Main Alternatives" of this report.

5) Status of stakeholders consultations

The table below shows the status of consultations with stakeholders.

Target	Held or Not	Contents of Consultation
	Held	
Relevant		Information on this project is shared with DNAAS, the supervisory
Ministries	_	organization.
and	-	
Agencies		
Local		Although we have received requests from residents for water supply, we
Residents		have not yet held any consultations in order to avoid creating extra
		expectations regarding this project.
NGOs		Same as above
Others		Same as above

Table 35 Status of Consultations with Stakeholders (Legend: ■YES□NO)

6) Residents' feelings toward similar past projects

■ No complaints

□ Have complaints

7) Names and procedural status of environmental impact assessment laws or guidelines

Law or Guideline: Environmental impact assessment in Mozambique is regulated by the Decree on Environmental Impact Assessment (Decree No. 54/2015) and the Approval of the Overall Policy on Environmental Impact Assessment (Ministerial Degree No. 129/2006).

Procedural status:

□Approved (without additional conditions)

 \Box Approved (with additional conditions)

 \Box Under review

■Procedure not yet started

□Other

8) Permit Application System and Procedural Status

Name of permit: As stipulated in "Decree No. 54/2015, Law on Environmental Impact Assessment", it is mandatory to obtain an "Environmental License" for projects involving construction of facilities. Procedural status: After the project and its details are finalized, the application will be submitted to the Provincial Land and Environment Department.

□Acquired

■Required but not yet acquired: To be applied after the project details are finalized.

□Not required

□Other (not considered necessary, but needs to go through a formal review process)

9) Whether the Project falls under a sensitive sector or not (Legend: ■YES□NO)

 $\Box(1)$ Mining development (including oil and natural gas development)

□(2) Pipeline

 $\square(3)$ Industrial development

□(4) Thermal power generation (including geothermal)

 $\Box(5)$ Hydropower, dams and reservoirs

 \Box (6) Power transmission lines, power distribution (involving large-scale involuntary resettlement, large-scale deforestation, submarine power lines)

 $\Box(7)$ River and erosion control

 $\square(8)$ Roads, railways, and bridges

□(9) Airports

 $\Box(10)$ Ports

■(11) Water supply, sewage and wastewater treatment (having sensitive characteristics or located in sensitive areas)

 \Box (12) Waste treatment and disposal

 $\Box(13)$ Agriculture

1 0) Applicable characteristics likely to have impacts (Legend: ■YES□NO)

□Large-scale involuntary resettlement (scale: household members)

■Large-scale groundwater pumping (scale: 821,250 m³/year)

□Large-scale land reclamation, land development, and land clearing (scale: ha)

□Large-scale deforestation and logging (scale: ha)

1 1) Applicable sensitive areas (Legend: ■YES□NO)

□National parks, nationally-designated protected areas (coastal areas, wetlands, areas for ethnic minorities or indigenous peoples, cultural heritage sites, etc. designated by national governments)

□Areas that are thought to require careful consideration by the country or locality

1 2) Potential of the Project to have environmental and social impacts

■YES

 $\square NO$

 \Box Do not know.

Table 36 shows the expected impacts of this project on the surrounding environment and society.

Impact	Impact on Society	Impact on Environment
Туре		
Positive	• Stable supply of water	• Effective use of water resources
Impact	• Improving the health of infants and	(reduction of water leakages)
	children	
	• Creation of employment	
	opportunities	
	• Increase in the volume of water	
	distributed to slum areas around the	
	city.	
Negative	• Spread of infectious diseases due to	• Disturbance on hydrologic cycle
Impact	influx of workers from outside the	(increased pumping rate)
	region	• Decreased flow in the lower reaches of
	• Occurrence of occupational	tributaries
	accidents	
	• Generation of noise, dust, etc.	
	• Occurrence of traffic accidents, etc.	

Table 36Social and Environmental Impacts (Reproduced)

Chapter 6 Conclusion

6.1 Particular Remarks

In addition to population growth, the country's lifestyle is expected to change gradually as the economy grows, leading to further increase in water demand. At the same time, the need for high quality services such as safe and reliable water supply, water pressure, and water volume is expected to gradually increase. To meet such diverse needs, it is necessary to comprehensively improve the capabilities required of water services.

In order to maintain water supply services at a high level, it is necessary to have a sufficient margin in design and rapid construction of facilities to anticipate increases in water demand, to secure financial resources that can be used reliably at the discretion of the management, and to improve the technical level of the staff. Since it is difficult for FIPAG to solve the issues on its own, public-private partnerships (PPP) are being promoted mainly in the capital area. In the future, PPP will also be required in rural cities that are directly managed by FIPAG. We are currently in a transitional period for PPP, and it is expected that FIPAG will play a major role in strengthening the technology and management of water services not only through facility maintenance but also through technical cooperation on non-revenue water reduction and other measures.

6.2 Notes on Project Implementation

1) Assistance to Long Term Projects

This project proposal is for a high priority short-term project. Efforts should be made to promote each project appropriately in line with the changes in water demand.

2) Assistance to Facilities Operation and Maintenance (e.g., Reduction of Water Leakages)

Japan is contributing to the operation and maintenance of water supply facilities in developing countries (e.g., reduction of water leakages) through technical cooperation projects implemented by JICA, and Japanese water utility officials are participating in these projects. Water leakage in Nampula and other major cities is one of the most serious problems, and it is also one of the projects that FIPAG wants to promote. Therefore, there is a high need for technical guidance along with its effect. In addition, we believe that FIPAG should focus on the operation and maintenance of boreholes, which can be an effective countermeasure against climate change in rural areas.

However, in order to sustain the operation and maintenance process, the country should secure its own financial resources which does not rely on loan projects from international aid organizations.

6.3 Concluding Remarks

While Mozambique is still in the process of focusing on cyclone reconstruction assistance, Nampula is one of the cities that should be given the highest priority to expand its water supply facilities due to its distressed water demand. The urgency of the project is considered to be very high due to the deteriorated conditions of the facilities, the amount of water leakages, and the chronic water supply suspensions in the city. In this project, based on the understanding of the current situation of this project, we recommended the plan to solve the problem and proposed the high priority project as a grant aid project.
6.4 Final Remarks

Through the field survey, we found that FIPAG was highly motivated to implement the project, and we were able to smoothly carry out mutual communications and discussions with relevant organizations despite conducting the survey through remote measures.

As has been frequently reported in the news recently, Nampula City is facing a serious water shortage due to the shortage of capacity of the Monapo Dam, which is the main source of water for Nampula City's water supply. In addition, as a result of drought, population growth and other issues, Nampula City is in a state of emergency, and the expectations of the government are high for the realization of this project.

ANNEXES

Annex-1 Schedule

Since the survey team could not travel to the site due to the Corona crisis, the survey and information collection were conducted through online meetings, e-mail, and phone calls. The following is the schedule of the major events.

Number of Days	Date	Activity	Remarks
1	Wednesday,	10:00 Hearing at the First Country	
	October 28, 2020	Development Cooperation Division,	
		International Cooperation Bureau, Ministry of	
		Foreign Affairs	
	Friday, October 16,	16:00 FIPAG Headquarters, Mozambique,	Zoom
	2020	Explanation of the project, Explanation of	Conference
		general grant aid, Discussion on selection of	
		target sites	
	Wednesday,	14:00 Hearing with Water Resources Team 2,	
	November 11,	Water Resources Group, Global Environment	
	2020	Department, Japan International Cooperation	
		Agency	
	Wednesday,	International Affairs Division, Minister's	
	November 25,	Secretariat, Ministry of Health, Labour and	
	2020	Welfare (MHLW) issued a letter to FIPAG	
		requesting cooperation in this project.	
	Thursday,	Receipt of a reply letter from FIPAG stating	
	November 26,	their approval to implement this project	
	2020		
	Friday, January 15,	Consultation with FIPAG: Request for	Zoom
	2021	additional information and data, and	Conference
		discussion on project contents	
	Friday, Feb. 5,	Discussions with FIPAG: Discuss project	Zoom
	2021	contents	Conference
	Tuesday, February	Discussion with FIPAG and Ministry of	Zoom
	9, 2021	Health, Labour and Welfare: Contents, overall	Conference
		schedule, urgency of the project in Nampula	

Affiliation	Name	Position	
National Water Supply and Sanitation Bureau (DNAAS)	Mr. Arlindo Correia	Head of Unit, Urban Water Supply	
Fund for Investment and Assets	Mr. Victor Tauacale	Director General	
of Water Supply (FIPAG)	Mr. Stelio Manuel J. Chire	Director, Central Services	
	Mr. Elidio Khossa	Director, Operation	
	Mr. Belarmino M. Chivambo	Director, Projects and Investments	
	Ms. Sheila M. Abdul	Head, Investment Department	
Ministry of Foreign Affairs of Japan	Takashi Ishii	Deputy Director, Country Assistance Planning Division III,	
		International Cooperation Bureau	
Japan International Cooperation Agency (JICA)	Yoko Hattori	Director, Water Resources Team 2, Water Resources Group, Global Environment Department	
	Izumi Shoji	Senior Deputy Director, Water Resources Team 2, Water Resources Group, Global	
	Tomoko Matsunaga	Technical Advisor, Water Resources Team 2, Water Resources Group, Global Environment Department	

Annex 2 List of Persons Visited or Interviewed

No.	Document Name	Language	Document Form	Issuing Organization/	Published Year
1	FIPAG Annual Report and Accounts (2017)	Portuguese	PDF	FIPAG	2017
2	FIPAG Annual Report and Accounts (2018)	Portuguese	PDF	FIPAG	2018
3	FIPAG Annual Report and Accounts (2019)	Portuguese	PDF	FIPAG	2019
4	Strategic Plan 2019-2023	Portuguese		FIPAG	2019
5	Business Plan of the Strategic Plan 2019-2023	Portuguese	PDF	FIPAG	2019
6	Geophysical Prospecting and Supervision of Borehole Drilling in Surrounding Nampula City	Portuguese	PDF	FIPAG-North	2020
7	Water Quality of Namiteka Boreholes	Portuguese	PDF	FIPAG	2021
8	National Strategy for Urban Water and Sanitation 2011-2025	Portuguese	PDF	MOPHRH	2012
9	Establishment of Water Supply Master Plan for Cities of Lichinga, Nampula and Xai-Xai in Mozambique, Volume 3: Update of the Feasibility Study for City of Nampula (Draft)	English	PDF	FIPAG	2018
10	RegulationonProcessforEnvironmentalImpactAssessment, Decree Nr. 54/2015	Portuguese	PDF	Official Gazette	2015
11	GeneralDirectiveforEnvironmentalImpactAssessment, MinisterialDiploma Nr. 129/2006	Portuguese	PDF	Official Gazette	2006
12	Five-YearProgramofGovernment 2020-2024	Portuguese	PDF	Government of Mozambique	2020
13	Water Quality for Drinking Purpose, Ministerial Diploma Nr. 180/2004	Portuguese	PDF	Official Gazette	2004
14	Organic Structure of FIPAG, Decree Nr. 48/2012	Portuguese	PDF	Official Gazette	2012
15	Regulation for Public System for Water Supply and Drainage of Waste Water, Decree Nr. 30/2003	Portuguese	PDF	Official Gazette	2003
16	Water Policy, Resolution Nr. 42/2016	Portuguese	PDF	Official Gazette	2016
17	Change of name from CRA to AURA, Decree Nr. 8/2019	Portuguese	PDF	Official Gazette	2019

Annex 3 List of Collected Information