最終報告書

3-メチルブタン-2-オンの Bhas 42 細胞を用いる形質転換試験 (プロモーション試験)

厚生労働省 労働基準局 安全衛生部 化学物質対策課 委託

試験施設 一般財団法人食品薬品安全センター 秦野研究所 〒257-8523 神奈川県秦野市落合 729 番地の 5 TEL 0463-82-4751 試験契約書番号 16-契-065

試験委託者 厚生労働省 労働基準局 安全衛生部 化学物質対策課

(東京都千代田区霞が関 1-2-2)

試験番号 G-16-042

被験物質 3-メチルブタン-2-オン

試験項目 Bhas 42 細胞を用いる形質転換試験

試験開始日 2016年10月7日

実験開始日 2016年10月10日

実験終了日 2016年12月5日

試験終了日 試験責任者の押印日

試資料保管場所 秦野研究所資料保存施設

保管期間 保管期間は、試験終了後10年間とする。

その後の保管については、試験委託者と協議する。

運営管理者 一般財団法人食品薬品安全センター 秦野研究所

所長 小島幸一

本試験は、「Bhas 42 細胞を用いる形質転換試験による調査の基準」(平成 26 年 7 月 4 日、厚生 労働省第 3 回遺伝毒性評価ワーキンググループ合意事項) に準拠し、「労働安全衛生規則第 34 条の 3 第 2 項の規定に基づき試験施設等が具備すべき基準を定める告示」(昭和 63 年 9 月 1 日労働省告示第 76 号、最終改正平成 12 年 12 月 25 日労働省告示第 120 号)を遵守して実施したものである。

年 月 日

試験責任者 佐々木澄志 印

試験従事者

試験責任者 佐々木澄志(安全性評価室)

試験担当者

培養佐々木澄志処理佐々木澄志固定・染色佐々木澄志

吸光度測定 佐々木澄志、新妻 健*

形質転換巣観察 佐々木澄志

被験物質管理 平林尚之*(被験物質管理責任者)

*:安全性評価室

目次

1.	要約	5
2.	試験目的	5
3.	試験ガイドラインと GLP	5
4.	材料と方法	5
4.	1 被験物質	5
4.	2 陽性対照物質	6
	3 細胞と培養条件	
	4 被験物質の調製液および処理	
	5 用量設定試験	
	6 細胞増殖試験 (再現性確認)	
	7 形質転換試験における群構成	
	8 形質転換試験	
	9 形質転換巣の判定	
	10 結果の判定	
	予見することができなかった試験の信頼性に影響を及ぼす疑いのある事態および試験計画	Ĭ
	書に従わなかったこと・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
	結果と考察	
	1 用量設定試験	
	2 細胞増殖試験 (再現性確認)	
	3 形質転換試験	
	参考文献	
	1 3-メチルブタン-2-オンの Bhas 42 細胞における用量設定試験および細胞増殖試験(再現	J
	生確認)の結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10
	2 3-メチルブタン-2-オンの Bhas 42 細胞における形質転換試験の結果	
	1 3-メチルブタン-2-オンの Bhas 42 細胞における用量設定試験の結果	
	2 3-メチルブタン-2-オンの Bhas 42 細胞における細胞増殖試験 (再現性確認) の結果	
	3 3-メチルブタン-2-オンの Bhas 42 細胞における形質転換試験の細胞増殖試験の結果	
	4 3-メチルブタン-2-オンの Bhas 42 細胞における形質転換試験の結果	
11	4.5-	
	()

信頼性保証陳述書

1. 要約

Bhas 42 細胞を用いる形質転換試験を実施することにより、3-メチルブタン-2-オンについて *in vitro* での発がんプロモーション作用の有無を検討した。

用量設定試験において、Bhas 42 細胞を 0.31、0.63、1.3、2.5、5.0、10 mM の濃度で処理したところ、細胞毒性作用は認められなかった。そこで 1.0、2.0、4.0、6.0、8.0、10 mM を用いて形質転換試験を行ったが、並行して実施した細胞増殖試験において、10 mM 処理群は約 50%の相対細胞増殖率を示した。そこで、再現性を確認するために形質転換試験と同じ濃度を用いて、細胞増殖試験のみをもう一度実施した。その結果、10 mM で約 60%の相対細胞増殖率が見られ、再現性が確認されたことから、3-メチルブタン-2-オンは 10 mM において細胞毒性作用を示すと判断した。

形質転換試験の結果、8.0 および 10 mM を除く、いずれの濃度においても形質転換巣の有意な増加は認められなかった。なお、8.0 および 10 mM では細胞毒性作用が強すぎ、細胞が培養終了時でも confluent にならなかったことから、評価対象外とした。

以上の結果から、3-メチルブタン-2-オンは *in vitro* での発がんプロモーション作用を有しないことが示された。

2. 試験目的

3-メチルブタン-2-オンの Bhas 42 細胞を用いる形質転換試験を実施し、in vitro での発がんプロモーション作用を評価した。

3. 試験ガイドラインと GLP

本試験は、「Bhas 42 細胞を用いる形質転換試験による調査の基準」(平成 26 年 7 月 4 日、厚生 労働省第 3 回遺伝毒性評価ワーキンググループ合意事項)に準拠し、「労働安全衛生規則第 34 条の 3 第 2 項の規定に基づき試験施設等が具備すべき基準を定める告示」(昭和 63 年 9 月 1 日労働省告示第 76 号、最終改正平成 12 年 12 月 25 日労働省告示第 120 号)を遵守して実施した。

4. 材料と方法

4.1 被験物質

1) 名称

3-メチルブタン-2-オン

2) 英名

3-Methylbutan-2-one

3) 略称

MBO

4) CAS No.

563-80-4

5) 物理化学的性質

性状無色、透明、液体

融点 −92°C

沸点 94~95℃

純度 99.5%

比重 0.805

分配係数 log Pow 2.29 蒸気圧 25℃で70 hPa

6) 分子量

86.13

7) 分子式

 $C_5H_{10}O$

8) ロット番号

MKAA4021V

9) 取り扱い上の注意

使用時は適切な保護具を着用

10) 安定性

推奨保管条件下で安定

GLP 基準での確認はされていないが、本実験期間中は遮光、密閉、冷所下で保管したことから、当該試験結果の信頼性に影響しないと判断した。

11) 保管、保存上の注意

使用時まで遮光、密閉、冷所(実測温度:5~7°C)にて保管した。

12) 被験物質の保管

秦野研究所被験物質保存施設において約20 mLを保管した。

13) 購入元

Sigma-Aldrich

4.2 陽性対照物質

1) 名称

12-0-tetradecanoylphorbol-13-acetate

2) 略称

TPA

3) CAS No.

16561-29-8

4) 物理化学的性質

純度 99%

5) ロット番号

SLBN6222V

6) 取り扱い上の注意

使用時は適切な保護具を着用

7) 安定性

推奨保管条件下で安定

8) 保管、保存上の注意

使用時まで遮光、冷凍(実測温度:-32~-28℃)にて保管した。

9) 製造元

Sigma-Aldrich

10) 調製

ジメチルスルホキシド(略称: DMSO、ロット番号: KPG6245、和光純薬工業)に溶解し、50 μ g/mL としたものを小分け後、-15°C 以下で凍結保存し、調製後 1 年以内に用時解凍して用いた(最終濃度: 50 ng/mL)。

4.3 細胞と培養条件

Bhas 42 細胞(マウス全胎児由来 BALB/c 3T3 A31-1-1 に v-Ha-ras 遺伝子を導入した細胞) ¹⁾ は JCRB 細胞バンクより 1988 年 4 月 19 日に入手した。入手した時点で 7 代のものを 17 代まで継代して凍結保存した(マイコプラズマ陰性)。これを解凍後 2 代で用量設定試験および形質転換試験に、また 4 代で細胞増殖試験(再現性確認)に用いた $^{2-5}$)。培養はウシ胎児血清(FBS、ロット番号: S11605S1780、Biowest)を 5 vol%含む Dulbecco's modified Eagle's medium/Ham's F12 (DMEM/F12)を用い、 CO_2 インキュベーター(5% CO_2 、37°C)内で培養した。

FBS を 5 vo1%含む DMEM/F12 は以下のように調製した。まず、DMEM/F12 粉末(1 L 分/袋、Thermo Fisher Scientific) 1 袋に滅菌した超純水 100 mL を加え溶解させ、フィルター滅菌(ポアサイズ:0.22 μ m) し 10 倍濃度培地を作製した。次に、滅菌した超純水 450 mL に 10 倍濃度培地 50 mL、10% NaHCO3 水溶液 6 mL、10000 U/mL ペニシリン-10000 μ g/mL ストレプトマイシン溶液 5 mL および FBS 26.8 mL を加えて作製した。

4.4 被験物質の調製液および処理

被験物質の 5 mg/mL (58.1 mM) と 10 mM (0.86 mg/mL) では、10 mM の方が低い用量であるため、10 mM を最高用量とした。そこで溶解性試験では、超純水および DMSO を用いて 10 mM の 200 倍濃度液を調製し観察した。その結果、超純水では不溶だったが DMSO では溶解したため、DMSO を被験物質の溶媒として使用した。なお両溶媒において、被験物質と混合した際に発熱、発泡、変色は認められなかった。

被験物質および TPA 調製液は、黄色灯下にて最終濃度の 200 倍溶液を用時調製し、溶媒濃度が 0.5 vol%となるように培地に添加して処理した。

溶媒中での安定性試験は用時調製のため実施しなかった。また含量測定も実施しなかった。

4.5 用量設定試験

調製液は、2.0 M原液を溶媒との混合により公比2で段階希釈して作製した。

形質転換試験で用いる処理濃度を決定するため、用量設定試験として細胞増殖試験を行った。 細胞を 0.25%トリプシンを用いて剥離した後、細胞濃度 0.7×10^4 個/mL の懸濁液とした。この細胞懸濁液 2 mL $(1.4\times10^4$ 個) を 6 ウェルプレートに分注し(3 ウェル/群)、4 日間培養した。被験物質の処理は、播種 4 日後に被験物質添加培地と交換(2 mL/ウェル)することで実施した。播 4 日後に培地を捨て(3 日間処理)、メタノールで固定後、4 0.1%クリスタルバイオレット液で染色した。

ウェル内に色素抽出液 (0.02~M 塩酸、50%エタノール)を 2~mL ずつ注入し、色素抽出した。各抽出液を $100~\mu$ L 取り、96 ウェルプレートに移し、マイクロプレートリーダー(SUNRISE CLASSIC、Tecan)を用いて吸光度(540~nm)を測定した。各濃度群での相対細胞増殖率(%)は次の式によって求めた。

 $X (\%) = (T - B)/(S - B) \times 100$

X:被験物質群の相対細胞増殖率(%)

S:溶媒対照群の吸光度

T:被験物質群の吸光度

B:ブランクの吸光度(培地のみを入れたウェル)

4.6 細胞増殖試験 (再現性確認)

「4.5 用量設定試験」と同じ方法により相対細胞増殖率を測定した。

4.7 形質転換試験における群構成

形質転換試験の濃度は用量設定試験の結果から以下の基準をもとに決定した。

- 1) 細胞増殖の促進が見られた場合、細胞毒性が認められない濃度(相対細胞増殖率が80~120%) に1濃度、細胞増殖の促進が認められる濃度に3濃度、弱い増殖阻害が認められる濃度に1 濃度を設定する。
- 2) 細胞増殖の阻害が見られた場合、細胞毒性が認められない濃度に 2 濃度、細胞毒性が認められない濃度から増殖が 50%阻害される濃度 (IC50) 間に 2 濃度、IC50 から増殖が 90%阻害される濃度 (IC90) 間に 1 濃度を設定する。
- 3) 最終的な決定は、生物学的な観点からの判断を加味して総合的に設定する。

4.8 形質転換試験

形質転換試験を実施するにあたり、被験物質の細胞増殖に及ぼす影響を評価するため、並行して細胞増殖試験を実施した。

細胞を 0.25%トリプシンを用いて剥離した後、細胞濃度 0.7×10^4 個/mL の懸濁液とした。この 細胞懸濁液 2 mL $(1.4\times10^4$ 個) を 6 ウェルプレートに分注し(形質転換本試験用: 6 ウェル/群、細胞増殖試験用: 3 ウェル/群)、4 日間培養した。被験物質の処理は播種 4 日後、播種 7 日後、播種 11 日後に被験物質添加培地と交換(2 mL/ウェル)することで実施した。播種 14 日後に新鮮培地と交換し(10 日間処理)、さらに 7 日間培養した。形質転換本試験用のプレートについては、細胞播種 21 日後にメタノールで固定後、5 vol%ギムザ液で染色し、ウェルあたりの形質転換巣を

数えた。細胞増殖試験では、「4.5 用量設定試験」と同じ方法により相対細胞増殖率を測定した。

4.9 形質転換巣の判定

実体顕微鏡を用いて細胞を観察し、次の基準により形質転換巣であると判定したものについて、 その数を数えた。なお、プレートをコード化し、処理条件が判らない状況で観察した。

- 1) 形質転換巣を構成する細胞数が 100 個以上。
- 2) 紡錘形をしている (spindle-shaped)。
- 3) 細胞質が塩基性(濃い紫色)に強く染まっている(basophilic)。
- 4) ランダムな配列で互いに交差している (criss-cross)。
- 5) 積み重なりあっている (piling-up)。
- 6) 周辺部の単層の細胞へ浸潤している (invasive)。
- 7) 2~6) の所見が全部揃わなくても、一部著しければ形質転換巣と判定する。

4.10 結果の判定

1) 統計処理対象群

以下に示す基準を満たした群について統計処理を行った。

- (1) 細胞増殖試験用のプレートでは2ウェル以上が測定可能である。
- (2) 形質転換本試験用のプレートでは5ウェル以上が計数可能である。
- 2) 統計処理

統計解析ソフトウェア SAS®を用い、各被験物質濃度群と溶媒対照群間において Dunnett 検定を行った(パラメトリック、有意水準 α =0.05、片側)。また TPA 処理群と溶媒対照群間においては Student の t 検定を行った(有意水準 α =0.05、片側)。

3) 試験成立の判定

以下の基準が全て満たされた場合、結果を評価できる試験が成立したと考えた。

- (1) 溶媒対照群の形質転換率が12個/ウェルを越えていない。
- (2) 陽性対照群の形質転換巣数が有意に高い。
- (3) 被験物質群において以下の条件を含む統計処理対象群が4濃度以上ある。ただし、大きくこの条件から外れない限り、濃度は適正と考える。
- (4) 細胞増殖の促進が見られた場合、少なくとも、細胞毒性が認められない濃度に1濃度、細胞増殖の促進が認められる濃度に2濃度ある。
- (5) 細胞増殖の阻害が見られた場合、少なくとも、細胞毒性が認められない濃度に2濃度、細胞毒性が認められない濃度からIC50の間に2濃度ある。
- 4) 試験結果の判定
 - 「3)試験成立の判定」により試験が成立した場合、被験物質群の統計処理を実施した群において、以下の基準によって結果を判定した。
 - (1) 陰性:形質転換巣の統計学的に有意な増加が、全ての群で認められない。
 - (2) 陽性:形質転換巣の統計学的に有意な増加が、連続した2濃度以上で認められる。
 - (3) 疑陽性:形質転換巣の統計学的に有意な増加が、1 濃度または不連続な 2 濃度以上で認められる。

不確かな結果が得られた場合は、必要に応じて確認試験を行うこととした。

最終的な判定は、統計学的検定、背景データ、形質転換巣の誘発率を考慮し、生物学的な観点からの判断を加味して総合的に評価した。

5. 予見することができなかった試験の信頼性に影響を及ぼす疑いのある事態および試験計画書 に従わなかったこと

試験期間中に、「予見することができなかった試験の信頼性に影響を及ぼす疑いのある事態および試験計画書に従わなかったこと」はなかった。

6. 結果と考察

6.1 用量設定試験

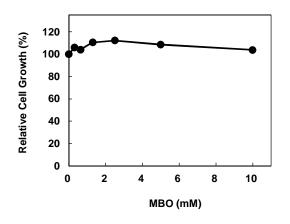
形質転換試験に用いる被験物質の適正な処理濃度を求めるため、用量設定試験を行った。Bhas 42 細胞を被験物質で処理したところ (0.31、0.63、1.3、2.5、5.0、10 mM)、細胞毒性作用は認められなかった (図 1 左 、表 1)。この結果をもとに、形質転換試験における濃度を 1.0、2.0、 4.0、6.0、8.0、10 mM に設定した。

6.2 細胞増殖試験 (再現性確認)

ところが並行して実施した細胞増殖試験において、10 mM 処理群は約50%の相対細胞増殖率を示した(図2、表3)。そこで、再現性を確認するために形質転換試験と同じ濃度を用いて、細胞増殖試験のみをもう一度実施した。その結果、10 mM 処理群で約60%の相対細胞増殖率が見られ(図1右、表2)、再現性が確認されたことから、3-メチルブタン-2-オンは10 mM において細胞毒性作用を示すと判断した。

6.3 形質転換試験

用量設定試験で決定した被験物質処理濃度を用いて形質転換試験を実施し、試験が成立しているかどうか確認した結果、TPA 群の形質転換率は DMSO 群と比較して有意に増加しており、また DMSO 群の形質転換率は 12 個/ウェルを越えていなかった。 さらに、用量設定試験の結果から 10 mM では細胞毒性作用が無いと判断して形質転換試験の濃度を設定したものの、被験物質群の統計処理対象群は 4 濃度以上あった(図 2、表 3 および表 4)。このように試験成立の基準が全て満たされたため、被験物質の $in\ vitro\ vit$


被験物質処理群では、8.0 および 10 mM を除く、いずれの濃度においても形質転換巣の有意な増加は認められなかったため、陰性と判定した(図 2、表 3 および表 4)。なお、8.0 および 10 mM では細胞毒性作用が強すぎ、細胞が培養終了時でも confluent にならなかったことから、評価対象外とした。

7. 結論

3-メチルブタン-2-オンは in vitro での発がんプロモーション作用を有しないことが示された。

8. 参考文献

- 1) Sasaki, K. et al.: Isolation and characterization of *ras*-transfected BALB/3T3 clone showing morphological transformation by 12-0-tetradecanoyl-phorbol-13-acetate. Jpn. J. Cancer Res. 79: 921-930 (1988)
- 2)Ohmori, K. et al.: An assay method for the prediction of tumor promoting potential of chemicals by the use of Bhas 42 cells. Mutat. Res. 557: 191-202 (2004)
- 3)Ohmori, K. et al.: Inter-laboratory collaborative study of cell transformation assay for tumor promoters using Bhas 42 cells by non-genotoxic carcinogen study group in Japan. Altern. Lab. Anim. 33: 619-639 (2005)
- 4) Sakai, A. et al.: A Bhas 42 cell transformation assay on 98 chemicals: the characteristics and performance for the prediction of chemical carcinogenicity. Mutat. Res. 702: 100-122 (2010)
- 5) Sakai, A. et al.: An international validation study of a Bhas 42 cell transformation assay for the prediction of chemical carcinogenicity. Mutat. Res. 725: 57-77 (2011)

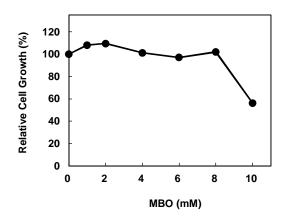


図 1 3-メチルブタン-2-オンの Bhas 42 細胞における用量設定試験および細胞増殖試験(再現性確認)の結果

左:用量設定試験、右:細胞增殖試験(再現性確認)。

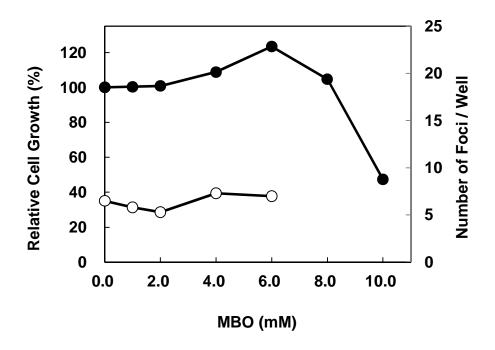


図 2 3-メチルブタン-2-オンの Bhas 42 細胞における形質転換試験の結果

●:相対細胞増殖率(%)、○:形質転換巣数/ウェル。形質転換試験では10日間処理しているため、8.0 および10 mM では細胞毒性作用が強すぎ評価対象外としたことから、シンボルを示していない。

表 1 3-メチルブタン-2-オンの Bhas 42 細胞における用量設定試験の結果

物質名	質名 濃度		相対細胞				
	(mM)	1	2	3	平均	S.D.	増殖率 (%)
ブランク	-	0.074	0.070	0.072	0.072	0.002	-
DMSO	0.5 vol%	0.612	0.608	0.588	0.603	0.013	100.0
MBO	0.31	0.627	0.611	0.667	0.635	0.029	106.0
	0.63	0.631	0.616	0.627	0.625	0.008	104.1
	1.3	0.665	0.621	0.692	0.659	0.036	110.5
	2.5	0.655	0.639	0.711	0.668	0.038	112.2
	5.0	0.642	0.624	0.677	0.648	0.027	108.5
	10	0.623	0.633	0.613	0.623	0.010	103.8

表 2 3-メチルブタン-2-オンの Bhas 42 細胞における細胞増殖試験(再現性確認)の結果

物質名	濃度		相対細胞				
	(mM)	1	2	3	平均	S.D.	増殖率 (%)
ブランク	-	0.068	0.069	0.072	0.070	0.002	_
DMSO	0.5 vol%	0.624	0.673	0.690	0.662	0.034	100.0
MBO	1.0	0.736	0.664	0.730	0.710	0.040	108.1
	2.0	0.700	0.686	0.769	0.718	0.044	109.5
	4.0	0.684	0.644	0.678	0.669	0.022	101.2
	6.0	0.670	0.637	0.626	0.644	0.023	97.0
	8.0	0.707	0.655	0.661	0.674	0.028	102.0
	10	0.383	0.425	0.401	0.403	0.021	56.3

表 3 3-メチルブタン-2-オンの Bhas 42 細胞における形質転換試験の細胞増殖試験の結果

物質名	濃度		相対細胞				
	(mM)	1	2	3	平均	S.D.	増殖率 (%)
ブランク	-	0.072	0.070	0.069	0.070	0.002	-
DMSO	0.5 vol%	0.450	0.413	0.435	0.433	0.019	100.0
TPA	50 ng/mL	0.565	0.585	0.639	0.596	0.038	144.9
MBO	1.0	0.420	0.441	0.442	0.434	0.012	100.3
	2.0	0.428	0.436	0.444	0.436	0.008	100.8
	4.0	0.464	0.478	0.453	0.465	0.013	108.8
	6.0	0.500	0.523	0.530	0.518	0.016	123.4
	8.0	0.461	0.412	0.477	0.450	0.034	104.7
	10	0.276	0.176	0.274	0.242	0.057	47.4

表 4 3-メチルブタン-2-オンの Bhas 42 細胞における形質転換試験の結果

物質名	濃度				形質転換	ぬ巣/ウェル	/		
	(mM)	1	2	3	4	5	6	平均	S.D.
DMSO	0.5 vol%	7	11	7	7	3	4	6.5	2.8
TPA	50 ng/mL	15	16	15	19	17	12	15.7	* 2.3
MBO	1.0	6	9	8	1	8	3	5.8	3.2
	2.0	6	7	7	4	6	2	5.3	2.0
	4.0	9	11	9	4	5	6	7.3	2.7
	6.0	10	2	10	6	3	11	7.0	3.9
	8.0	tox	tox	tox	tox	tox	tox		
	10	tox	tox	tox	tox	tox	tox		

^{*:}p < 0.05、Studentのt検定(片側)による。

tox:細胞毒性作用が強すぎ、細胞がconfluentにならなかったため評価対象外とした。