Khóa đào tạo Kỹ năng Vận hành Xe cần cẩu trên Bề mặt sàn
Tài liệu Bổ sung
本補助テキストは、一般社団法人日本クレーン協会の協力の下、「技能講習用テキスト：床上操作式クレーンの運転」（日本クレーン協会発行、平成31年2月1日改訂版）に「テキスト」と略記）を基に、令和元年度厚生労働省委託事業において設置した「補助テキスト作成検討会」の審議を通じて作成した教科書対訳表であり、上記の技能講習用テキストと併用することにより、外国人労働者に対する教育効果を高める等の目的で作成されたものです。

2020年3月
<table>
<thead>
<tr>
<th>Chương 1</th>
<th>Kiến thức về Căn trục</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Trình độ của Người vận hành Căn trục (p.1)</td>
</tr>
<tr>
<td>2</td>
<td>Định nghĩa Căn trục (p.3)</td>
</tr>
<tr>
<td>3</td>
<td>Các Thựat ngữ Kỹ thuật Liên quan đến Căn trục (p.5)</td>
</tr>
<tr>
<td>4</td>
<td>Chuyển động của Căn trục (p.8)</td>
</tr>
<tr>
<td>5</td>
<td>Thiết bị An toàn và Báo động cho Căn trục (p.32)</td>
</tr>
<tr>
<td>6</td>
<td>Phanh của Căn trục (p.42)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chương 2</th>
<th>Văn hành và Kiểm tra Căn trục có Công tác điều khiển Treo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Các tính năng Chinh của Căn trục có Công tác điều khiển Treo (P.47)</td>
</tr>
<tr>
<td>2</td>
<td>Cách Văn hành An toàn Căn trục có Công tác điều khiển Treo (p.48)</td>
</tr>
<tr>
<td>3</td>
<td>Quy tắc Làm việc Cơ bản cho Người vận hành Căn trục (p.50)</td>
</tr>
<tr>
<td>4</td>
<td>Quy trình Văn hành Căn trục Được Văn hành Từ dưới Nên (p.51)</td>
</tr>
<tr>
<td>5</td>
<td>Danh sách Kiểm tra trước khi khởi động (p.52)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chương 3</th>
<th>Kiến thức về Động cơ chính và Điển</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Điển (p.96)</td>
</tr>
<tr>
<td>2</td>
<td>Thiết bị Điển của Căn trục (p.101)</td>
</tr>
<tr>
<td>3</td>
<td>Kiểm tra và sửa chữa mạch Điển (p.116)</td>
</tr>
</tbody>
</table>

Chữ số, số bằng và số trang trong ngoặc đơn liên quan tới sách giáo khoa riêng (phiên bản tiếng Nhật).
Chương 4
Kiến thức về Động lực học Cần thiết để Văn hành Cần trực

1. Chú đê Liên quan đến Lực (p.126) .. 73
2. Khối lượng và Trong Tâm (p.135) .. 78
3. Chuyển động (p.140) .. 78
4. Cụm Rộng roc (p.145) ... 80
5. Tải (p.148) ... 83
6. Ứng lực (p.150) ... 87
7. Đỡ bén của Dây Cáp, Xích và các Thiết bị Treo tài Khác (p.152) 88
8. Mối quan hệ giữa Số lượng Dây cáp và Tải (p.155) 90

Chương 5
Phương pháp Báo hiệu

1. Phương pháp Báo hiệu (p.160) .. 93

Chương 6
Luật và Quy định Có liên quan

1. Industrial Safety and Health Law (Luật An toàn và Sức khỏe Công nghiệp) 94
2. Lệnh Thi hành Đạo luật An toàn và Sức khỏe Công nghiệp 94
3. Pháp lệnh An toàn cho Cần trực ... 95
Chương 1
Kiến thức về Cần trục

1 Trình độ của Người vận hành Cần trục (p.1)

Trình độ của người vận hành cần trục được phân loại theo kiểu vận hành và tài trọng nặng, như trong Bảng 1-1.

<table>
<thead>
<tr>
<th>Tài trọng nặng và loại hình hoạt động</th>
<th>5 tần trở lên</th>
<th>Nhỏ hơn 5 tần</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cần trục (bao gồm cả loại không đẩy)</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Cần trục được vận hành từ dưới nền</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Cần trục được vận hành từ dưới nền (di chuyển cùng với tài trọng)</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Palăng điện</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Giây phép vận hành cần trục (không giới hạn)</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Giây phép vận hành cần trục từ dưới nền (có giới hạn)</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Khóa đảo tạo kỹ năng để vận hành cần trục từ dưới nền</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Tạp huấn đặc biệt để vận hành cần trục</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

Như đã nêu trong bảng, người vận hành cần trục là những người đủ điều kiện, đã hoàn thành khóa đào tạo kỹ năng về điều khiển cần trục từ dưới nền theo quy định của pháp luật hiện hành là “ở quy mô nặng tài trọng dưới 5 tấn và được vận hành bởi người vận hành đứng dưới nền, di chuyển theo chuyển động của tài trọng được nâng bởi cần trục”.

Hình 1-1 minh họa một phần của cần trục cấu tạo, là một ví dụ để giải thích cho những cần trục đã được trên, được vận hành bởi người vận hành đứng dưới nền hoặc mặt đất và di chuyển theo chuyển động của tài trọng được nâng bởi cần trục. Loại cần trục này có một tổ hợp nút bấm (gọi là “công tác điều kiện treo”) theo trục tiếp lên xe tơi.
Hình 1-1 Công tác điều khiển Treo được Treo trên Palăng

Người vận hành cần thực hiện hoàn thành khóa đào tạo kỹ năng theo quy định ở đây, nhưng nếu chưa hoàn thành khóa đào tạo kỹ năng hoặc tập huấn đặc biệt về hoạt động treo cáp thì sẽ không được phép treo hàng hóa để vận chuyển bằng cần treo hoặc bất kỳ thiết bị nâng nào khác.

Ngoài ra, khi vận hành cần thực từ dưới nên, giấy phép vận hành cần thực cũng có yêu cầu giống như giấy phép vận hành trong cabin điều khiển thông thường (loại vận hành trên xe).

Hình 1-2 Công tác Điều khiển Treo được Treo trên Dây Chứa Lực
Người điều khiển phải di chuyển theo tải trọng nâng trong khi cần trực di chuyển.

Hình 1-3 Công tác Điều khiển Treo được Treo ở Vị trí Cổ định của Dầm ngang
Định nghĩa Cân trục (p.3)

Thuật ngữ “cân trục” có nghĩa là bất kỳ thiết bị cơ khí nào, ngoại các cân trục tự hành (mobile crane) và derrick (derrick) (như mô tả trong Hình 1-4), được thiết kế để nâng tải trọng bằng điện (không dùng sức người) và mang tải trọng nặng đó đi ngang.

Hình 1-4 Định nghĩa Cân trục

Theo đó, cân trục không bao gồm các thiết bị cơ khí nâng hàng hóa bằng sức người, sử dụng hệ rồng rộc tay làm bộ phân nâng hàng, ngay cả khi chúng mang hàng hóa nặng đó đi ngang bằng điện. (Xem Hình 1-5, p.3) Mất khác, cân trục bao gồm những thiết bị cơ khí nâng hàng hóa bằng điện ngay cả khi chúng dựa vào sức người để vận chuyển hàng hóa nặng đó đi ngang.

Các máy được định nghĩa dưới đây có chức năng tương tự, nhưng trình độ vận hành khác với cân trục được vận hành từ dưới nên.
2.1 Cấn trục Tự hành

“Cấn trục tự hành” có nghĩa là bất kỳ cấn trục nào có đồng cơ tích hợp dễ tự di chuyển đến nơi chưa xác định. (Xem Hình 1-6, 1-7, 1-8, p.4)

2.2 Đêrit

Đêrit là những thiết bị cơ khí được thiết kế để nâng hàng hóa bằng động lực, có cốt hoặc cấn doc và được điều vận bằng các dây cáp với mô to lập đặt riêng. Thông thường, đêrit được phân loại theo cấu trúc, bao gồm đêrit kiểu cáp căng, đêrit kiểu chăn cúng, đêrit kiểu trả đối và đêrit kiểu thấp. (Xem Hình 1-9, 1-10, p.5)

3 Các Thuật ngữ Kỹ thuật Liên quan đến Cấn trục (p.5)

3.1 Tài trọng Näng

Thuật ngữ “tài trọng nâng” có nghĩa là tải trọng tối đa có thể đặt trên một cấn trục tùy theo cấu trúc hoặc cấu hình và vật liệu được sử dụng. Tài trọng nâng bao gồm cả trọng lượng phụ kiện nâng của cấn trục.

Hình 1-5 Tài trọng Năng, Tài trọng Định mức
3.2 Tài Trọng Định Mức

Thuật ngữ “tài trọng chuẩn” là trọng lượng tính sau khi trừ đi trọng lượng của móc, gâu ngôam hoặc bất kỳ phụ kiện nặng nào khác từ tài trọng nặng. Nơi một cách chính xác hơn thì tài trọng định mức có thể được định nghĩa là tài trọng rỗng tối đa có thể được treo trên móc cân trục; thông thường tài trọng định mức sẽ được đánh nhận trên cân trục hoặc cùng móc của nó.

Diểm cần lưu ý ở đây là tài trọng định mức không đại diện cho một giá trị cố định duy nhất ở một số loại cân trục vốn được thiết kế để tài trọng tính tối đa cho phép của chúng thay đổi theo các yêu tố như vị trí của xe tối hoặc góc của cân. Do đó, trước khi làm việc với bất kỳ cân trục nào, bạn phải kiểm tra tài trọng định mức và phạm vi hoạt động.

![Hình 1-6 Tài Trọng Định Mức](image)

3.3 Tốc Độ Định Mức

“Tốc độ định mức” có nghĩa là tốc độ tối đa mà một cân trục, cân trục tự hành hoặc đế thiết có thể thực hiện chuyển động nâng, di chuyển ngang, di chuyển hoặc quay cân trục với tài trọng định mức trên phụ kiện nặng của nó.

3.4 Xe Tối (hoặc Palăng)

3.5 Khẩu độ

Thuật ngữ “khẩu độ” có nghĩa là khoảng cách giữa các tâm của ray di chuyển.

![Hình 1-7 Khẩu độ](image)

3.6 Nâng

Thuật ngữ “nâng” có nghĩa là khoảng cách hiệu dụng giữa các giới hạn trên và dưới để nâng hạ các phụ kiện nâng như móc và gáu. (Xem Hình 1-8.)

3.7 Tầm vói

Thuật ngữ “tầm vói” có nghĩa là khoảng cách ngang giữa đầu ngoài cùng của móc và tâm của ray di chuyển. (Xem Hình 1-8.)

![Hình 1-8 Khẩu độ, Nâng và Tầm vói](image)
3.8 Bán kính Hoạt động

“Bán kính hoạt động” có nghĩa là khoảng cách theo phương ngang giữa tâm quay của cần trục kiểu cán và tâm của phù kiện nâng. Bán kính hoạt động còn được gọi là “bán kính quay”, trong đó giới hạn lớn nhất gọi là “bán kính hoạt động (hoặc quay) tối đa” và giới hạn nhỏ nhất gọi là “bán kính hoạt động (hoặc quay) tối thiểu.”

![Hình 1-9 Bán kính Hoạt động](image)

3.9 Nhích

“Nhích” có nghĩa là một cách thức vận hành để di chuyển tải trọng nâng theo từng bàng cách khối động và động cần trục liên tục qua các nút bấm trên công tác điều khiển treo.

3.10 Treo tải (Hình 1-16, p.8)

“Treo tải” có nghĩa là có định tải trọng vào hoặc tháo tải ra khỏi phù kiện nâng của cần trục bằng dây cáp, xích và/hoặc các thiết bị treo tải khác.

3.11 Nhắc khối mặt đất

Thưật ngữ này có nghĩa là chuyển động nâng nhẹ tải trọng khối cum lên đỗ. Dùng lại khi tải trọng đã được nhắc khối mặt đất và xác nhận độ ổn định của tải cũng như độ an toàn của thiết bị treo tải.
4 Chuyển động của Cấn trục (p.8)

Sau đây là các chuyển động của cấn trục trong việc nâng tải và mang tải đến nơi mong muốn:

4.1 Nâng lên và hạ xuống

Đây là những chuyển động lên và xuống của tải. Nâng lên có nghĩa là chuyển động của cấn trục để di chuyển tải trọng di lên bằng cách cuốn dây cáp vào tạ và hạ xuống là chuyển động ngược lại để hạ tải xuống bằng cách thả dây cáp khỏi tạ.

4.2 Di chuyển ngang

Di chuyển ngang là chuyển động của cấn trục để di chuyển xe tời đợt theo dầm ngang, thường theo hướng vuông góc với đường di chuyển của chính cấn trục đó.

Thật ngữ này cũng để cấp đến chuyển động của palăng của cấn trục lập trên tạ (đạng khác của cấn trục kiểu cản) đợt theo cản ngang của nó.

4.3 Di chuyển

Di chuyển là chuyển động của toàn bộ cấn trục trên đường di của nó. Trong trường hợp cấn trục cấu tạo chạy hoặc công tác, thuật ngữ này để cấp đến chuyển động của cấn trục trên đường ray hoặc đường chạy của nó.

Chuyển động của một cấn trục lập trên tạ đợt theo mặt tạ và cửa một palăng diện đợt theo đường ray của palăng cũng được gọi là “di chuyển”.

Hình 1-10 Nâng lên, Hạ xuống, Di chuyển ngang và Di chuyển
4.4 Thay đổi tâm vị và góc cấn

Chuyển động của cấn theo hướng gia tăng góc cấn (góc giữa trục cấn và mặt phẳng ngang) được gọi là “nâng hoặc tăng cấn”, trong khi chuyển động về hướng góc cấn nhỏ hơn được gọi là “hạ cấn”.

4.5 Quay

Quay có nghĩa là hoạt động xoay của cấn ngang, cấn độc hoặc một số bộ phận tương tự khác của cấn trực với đầu cò định hoặc tâm xoay chính là trục.

Hình 1-11 Thay đổi tâm vị và Quay
4.6 Phảm vi hoạt động (p.32)

"Phảm vi hoạt động" có nghĩa là khoảng không gian mà cần trục hoặc bất kỳ thiết bị nâng nào khác có thể di chuyển hàng hóa theo từng tổ hợp chuyển động có sẵn (di chuyển ngang, di chuyển, xoay, v.v...).

![Diagram of Palăng điện](image1)

![Diagram of Cân trục câu chay](image2)

![Diagram of Cân trục kiểu cán không di chuyển](image3)

![Diagram of Cân trục dán trên tường](image4)

![Diagram of Cân trục dán trên tường](image5)

![Diagram of Cân trục dán trên tường](image6)

Hình 1-12 Chuyển động của Cân trục và Phảm vi Hoạt động
Thiết bị An toàn và Bảo động cho Căn trục (p.32)

Khi vận hành cần trục, cần phải thực hành một cách an toàn và đảm bảo mọi lúc. Vì vậy, phải có đủ kiến thức về các khả năng nếu trong thông số kỹ thuật (tài trọng định mức, chiều cao nâng, v.v.), chú ý đến các điều kiện xung quanh và vận hành theo cách phù hợp với khả năng của cần trục. Cần trục không chỉ có các thiết bị an toàn khác nhau mà còn có các thiết bị bảo động và phụ kiện cần thiết nhằm đảm bảo hoạt động an toàn. Nên thường xuyên kiểm tra những thiết bị an toàn và bảo động này để đảm bảo chúng luôn hoạt động, bất cứ khi nào cần thiết. Trước khi khởi động cần trục, người vận hành phải kiểm tra và kiểm thử cần thận tất cả các thiết bị an toàn của cần trục để đảm bảo chúng luôn hoạt động, bất cứ khi nào cần thiết.

5.1 Thiết bị Chống Quan Quá mức (p.33)

Thiết bị chống cuộn quá mức sẽ tự động dừng chuyển động nâng bất cứ khi nào đạt đến giới hạn nâng lên quy định, để ngăn ngừa các rủi ro như va chạm giữa phù kiến nâng với thành phần cơ khí hoặc cấu trúc của cần trục hoặc đày cáp bị đứt do cuộn quá mức. Thiết bị này có hai loại, một loại là loại điều khiển trực tiếp để bát hoặc tất mach điều khiển của công tácритор điện tử và loại kia (loại giám tiếp / bán giám tiếp, v.v.) là thiết bị ngắt trực tiếp, bát hoặc tất trực tiếp mạch điện của mô to.

Theo yêu cầu của luật hiện hành, khi có mốc động làr theo sự điều khiển của công tác gió hàn và khoang hở giữa đỉnh của mốc và dạy của bất kỳ bộ phận nào của cần trục như tang, puli và xung xói không được nhỏ hơn 50 mm nếu công tác gió hàn là thiết bị hoạt động trực tiếp và không nhỏ hơn 250 mm nếu công tác không phải là thiết bị hoạt động trực tiếp. Nếu khoang hở giữa các bộ phận của cần trục không đủ như lưu ý ở trên, mốc có thể và vào tang hoặc một số bộ phận khác, dẫn đến các sự cố như đứt dây cáp, hỏng khung xe tối hoặc roí tải trong.
Thiết bị Chống Quần Quá mức Loại Truyền động Trục tiếp (Hình 1-68, 1-69, p.34)

Hạn chế của thiết bị này là không thể kiểm soát được vị trí hạ xuống do hệ thống được điều tiết trực tiếp bằng cụm móc. Vì lý do này, cần phải lập đặt một công tác giới hạn riêng để kiểm soát giới hạn dưới.

Hình 1-13 Công tác Giới hạn

Hình 1-14 Cơ chế hoạt động của Công tác Giới hạn Trên-Dưới của Hệ Rồng rộc Điện
5.2 Thiết bị Chống Quá tải (p.35)
Tuy nhiên, đối với cẩn trọng cần có tải trọng nặng dưới 3 t, với góc cần và chiều dài cần có định hoặc tải trọng định mức không thay đổi, quy định có một thiết bị chống quá tải như thiết bị phát hiện trọng lượng của tải trọng (có chức năng hiện thị tải trọng hoặc phát âm báo động) là đủ, thay vì một thiết bị chống quá tải có chức năng dừng.

5.3 Thiết bị Báo động (p.36)
Tuy theo trường hợp, kẹn chính, dùng cụ phát tiếng bip, chuông hoặc một số thiết bị khác được sử dụng làm báo phản báo động cho cẩn trọng. Đặc biệt, khi có nhiều cẩn trọng được lắp đặt trên cùng một đường ray di chuyển, người ta thường lắp thiết bị báo động để phòng ngừa va chạm.
Có hai cách để sử dụng thiết bị báo động:
- Công tắc điều khiển treo có nút báo động được chấp nhận và người lại có thể phát báo động ở bất kỳ vị trí nào khi cần thiết (ví dụ, khi bất đầu di chuyển nặng hoặc chạy cẩn trọng). (Xem Hình 1-75, p.37)
- Phương pháp tự động phát âm báo động bằng cách bật ra một hoạt động và thời gian cụ thể của một chuỗi các chu trình làm việc, chẳng hạn như nặng, chuyển động, di chuyển và hạ thấp (ví dụ, chỉ báo động khi di chuyển ngang)

5.4 Thiết bị Chốt An toàn (Hình 1-76, 1-77, p.37)
"Chốt An toàn" là một thiết bị để phòng ngừa các dây cáp treo bị tuột khỏi mốc và phải được sử dụng khi nặng tải trọng. Có hai loại "chốt an toàn", một là loại lỏ xo và loại kia là loại trong lồng.

5.5 Thiết bị Giảm chấn ở Ria Ray Di chuyển ngang (p.37)
Yêu cầu phải lắp đặt các thiết bị giảm chấn hoặc gói chân bánh xe ở cả hai đầu của ray di chuyển nặng hoặc vị trí tương tự để ngăn chặn cần trực vượt ra khỏi đường ray của chúng.

5.6 Thiết bị Giảm chấn ở Ria Ray Di chuyển (p.38)
Để phòng ngừa thần căn trực chuyển vượt ra khỏi đầu ray di chuyển, Safety Ordinance (Pháp lệnh An toàn) có quy định về các thiết bị giảm chấn, vật liệu giảm chấn hoặc gói chân bánh xe
5.7 Thiết bị An toàn Chống gió (p.39)

Kẹp Ray

Thiết bị này giúp ngăn chặn sự cố trượt khối ray trước những cơn gió bất thường cản trục đang hoạt động. Cẩn trục bị ngăn dịch chuyển bởi lực ma sát không kep vào mặt phía đầu của ray di chuyển tại một vị trí bất kỳ trên đường di chuyển hoặc ép vào mặt trên của đầu ray di chuyển. Do đó, khi có nguy cơ gió mạnh, cần phải di chuyển cản trục đến vị trí neo trên đường di chuyển và buộc cản trục bằng thiết bị neo cản trục. (Xem Hình 1-84, p.40)

Neo cản trục

Đây là một thiết bị giúp ngăn chặn cản trục ngoài trời trượt khối ray khi cản trục có nguy cơ bị trượt di do bão hoặc điều kiện tương tự trong lực ngược hoạt động. Thảm giả độ (tầm neo cản trục) tại vị trí neo cố định của đường di chuyển trên nên đặt sẽ ngăn cản trục dịch chuyển. (Xem Hình 1-85, p.40)
5.8 Các Thiết bị An toàn Khác (p.40)

Luật hiện hành yêu cầu khi hai hoặc nhiều cán trục được lắp đặt trên cùng một đường chạy, thì phải cung cấp các bộ giảm chấn ở đầu mỗi cán trục, phía đồi mặt với cán trục kia. Ngoài các biện pháp bảo vệ này, một số cán trục còn được trang bị một thiết bị đặc biệt để phòng ngừa va chạm như sau. (Xem Hình 1-86, 1-87, 1-88, p.41)

6 Phanh của Cấn trục (p.42)

Phanh là một bộ phận thiết yếu của cắn trục, giúp dừng mô tơ và giữ tay trong ở vị trí mong muốn bằng phương pháp ma sát.

Phanh của thiết bị nâng có lực phanh gấp 1,5 lần lực nâng. Phanh đi chuyển ngang và phanh di chuyển thường không đạt đến lực phanh 100% mô men xoắn của động cơ.

Từ quan điểm đảm bảo an toàn, cắn trục phải được thiết kế sao cho chúng luôn gài phanh khi ở trạng thái dừng. Nơi cách khác, cắn trục chỉ được nhà phanh khi mô tơ quay.

6.1 Phanh của Cấn trục có Xe đẩy Tời (p.42)

Thông thường một cắn trục có xe đẩy tời sẽ được trang bị phanh điện tử để dừng chuyển động nâng của cắn trục và phanh điện thủy lực để điều khiển tốc độ. Một trong hai phanh này cũng được sử dụng rộng rãi cho chuyển động ngang hoặc chuyển động đi chuyển nếu được trang bị phanh.
Hình 1-17 Phanh đĩa

6.2 Phanh của Cấn trực có Palăng (p.44)

Phanh cho cơ cấu nâng của cấn trực có palăng được tích hợp trong mô to điện. Các loại phanh thường được sử dụng cho mục đích này bao gồm:

- Phanh điện từ gân bẩn lề
- Phanh điện tử

![Hình 1-19 Phanh điện tử](#)

- Phanh côn

![Hình 1-20 Phanh côn](#)
Chương 2
Vận hành và Kiểm tra Cấn trực có Công tác điều khiển Treo

1 Các tính năng Chính của Cấn trực có Công tác điều khiển Treo (P.47)

Cấn trực có công tác điều khiển treo điều tiết các chuyển động nâng, di chuyển ngang, di chuyển và chuyển động khác bằng một tổ hợp công tác nút bấm, gọi là "công tác điều khiển treo", được treo lên palăng hoặc xe đẩy tói. So với các cấn trực được điều khiển từ cabin của người vận hành, các cấn trực có công tác điều khiển treo có các tính năng đặc biệt như mô tả sau đây.

- Cấn trực có công tác điều khiển treo rất dễ vận hành.
- Người vận hành có thể điều khiển cấn trực từ dưới nền, do đó việc định vị trở nên dễ dàng hơn.
- Người vận hành có thể giao tiếp đầy đủ với người treo tại bảng tín hiệu, v.v.
- Người vận hành cũng có thể làm các nhiệm vụ khác.

<table>
<thead>
<tr>
<th>a</th>
<th>Để đăng vận hành</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>Có thể định vị dễ dàng</td>
</tr>
<tr>
<td>c</td>
<td>Có thể giao tiếp thỏa đáng với những người khác</td>
</tr>
<tr>
<td>d</td>
<td>Có thể thực hiện những nhiệm vụ khác</td>
</tr>
</tbody>
</table>

Hình 2-1 Các tính năng Đặc biệt của Cấn trực có Công tác điều khiển Treo (So với Cấn trực được Điều khiển từ Cabin)
Tý lệ tai nạn công nghiệp cao với cần trục có công tác điều khiển theo chu yểu có thể làm do số lượng sử dụng các cần trục ngày càng tăng. Các yếu tố chính khác được tóm tắt dưới đây:

- Những cần trục này hầu hết được lắp đặt trong môi trường làm việc thuận lợi cho người vận hành dễ dàng điều khiển. (Xem Hình 2-2, p.48)
 - Người vận hành không đủ trình độ để đảm bảo làm sai các quy tắc khi vận hành cần trục.
 - Nhiệm vụ xử lý sự cố rất dễ bị đẩy cho người khác nếu có nhiều người vận hành cần trục.
 - Đã xảy ra tai nạn nếu người vận hành không quan tâm.
- Người vận hành đối khi được chỉ định вне tài trọng dễ nâng lên cùng như vận hành cần trục.
 - Người vận hành có thể vờ tinh nhàn công tác nứt bám.
- Người vận hành thường được chỉ định vận hành cần trục và treo tài như một công việc phụ trong khi thực hiện nhiệm vụ chính của mình (ví dụ: hàn, lắp ráp hoặc gia công).
 - Rất khó để có kỹ năng vận hành cần trục.
- Các dịch vụ an toàn và bảo trì cho những cần trục này có thể gặp sai số hoặc bị bỏ qua vì trong nhiều trường hợp, những người có trách nhiệm phụ trách công tác này không được chỉ định rõ ràng.
Hình 2-2 Nhiệm vụ của từng người phụ trách

Hoạt động của căn cứ nhắm chung là hoạt động phối hợp với hoạt động treo tài, và người treo tài cũng người báo hiệu thường gặp nguy hiểm khi tài nạn nghề nghiệp xảy ra. Nguyên nhân của các vụ tai nạn chây ì là do thiếu biện pháp an toàn trong hoạt động treo tài, chẳng hạn như quy trình treo tài không phù hợp và thiết bị treo tài bị hư hỏng. Vì lý do này, người vận hành căn cứ treo cũng cần có đủ kiến thức về hoạt động treo tài và hoạt động đi chung với các công nhân liên quan như người treo tài và người báo hiệu về các điều kiện treo tài an toàn để phòng ngừa thương tích trong quá trình căn cứ hoạt động.
3 Quy tắc Làm việc Cơ bản cho Người vận hành Cận trục (p.50)

(1) Hãy nhở vận hành cận trục dùng cách dưa trên sự hiểu biết cảnh ke về hiệu suất và chức năng của cận trục.
 - Hiểu cảnh ke hướng dẫn sử dụng và hướng dẫn vận hành của nhà sản xuất.
 - Tuân thủ tiêu chuẩn hoạt động nếu có.

(2) Liên tục kiểm tra trạng thái của mọi thứ tài vị trí làm việc của bạn để đảm bảo an toàn trong hoạt động của cận trục.

(3) Mặc trang phục làm việc theo quy định
 - Mang giày có độ chống trượt, độ an toàn cao.
 - Buộc chất gấu quần của bạn với xà cạp, bao chân hoặc các lớp bảo hộ khác.
 - Mặc áo khoác tay dài và cài chất nút khuy hoặc móc khóa.
 - Không mặc quần áo ướt, khiên bạn dễ bị điện giật.
 - Mang găng tay khô, sạch.
 - Giăng tay sể bảo vệ bạn khỏi bị điện giật do nguy cơ rò rỉ điện từ dây cáp của điều khiển treo.
 - Đội mũ cứng hoặc mũ bảo hộ để bảo vệ đầu, đề phòng vật rơi từ cận trục.

Hình 2-3 Trang phục làm việc
(4) Quy tắc An toàn cho Người đi bộ
- Khi đi chuyển từ nơi này đến nơi khác trong nhà máy, hãy đi theo lối đi quy định.
- Quan sát kỹ càng các dấu hiệu an toàn và làm theo các chỉ dẫn trên đó.
- Khi lên cạn trục, sử dụng cầu thang hoặc thang máy hoặc bàn nâng chuyên dụng.
- Không leo lên cạn trục đang hoạt động.
- Không chạy trên bất kỳ nơi nguy hiểm nào như lối đi trên dầm ngang của cản trục và vị trí hoạt động của cản trục.
- Không đi với một tay dút vào túi.

(5) Giữ Nội Lầm việc Ngăn nắp
- Bảo quản máy móc, vật liệu, dụng cụ và những thứ khác gọn gàng ở đúng nơi quy định.
- Không để bất cứ vật gì trên đỉnh của cản trục hoặc ở nơi cao. Nếu bạn buộc phải đặt một vật gì đó ở một nơi như vậy trong những trường hợp không thể tránh khỏi, hãy thực hiện các biện pháp cần thiết để phòng ngừa vật bị rơi.
- Cần cẩn thận để tránh rò rỉ dầu, mồm, sơn hoặc chất lỏng tương tự khác lên cản trục hoặc vị trí hoạt động của cản trục.
Hình 2.4 minh họa luồng công việc hàng ngày của một căn trục được vận hành từ dưới nền thông thường. Căn trục được vận hành từ dưới nền hiệm khi được vận hành xuyên suốt bởi một công nhân cụ thể mà thường được một số lượng không xác định công nhân lầu phiên vận hành theo tiến độ của từng quy trình làm việc. Trong điều kiện như vậy, thường không rõ ai là người thực hiện kiểm tra trước/sau vận hành và cần phải xác định trước người chịu trách nhiệm. Ngoài ra, người được chỉ định sẽ kiểm tra sự bất thường và báo cáo cho nhân viên quản lý.

1. Họp trước khi khởi động

2. Sắp xếp các khu vực làm việc và đường lái căn trục (đảm bảo an toàn cho người buộc đi)

3. Kiểm tra trước khi khởi động (kiểm tra tính các bộ phận của căn trục, tiếp nhận liệu, v.v.)

4. Cập nguồn cho dây nuôi xe tới chính hoặc cấp chính

5. Bắt nguồn công tác điều khiển treo

6. Kiểm tra trước khi khởi động (xác nhận hoạt động của thiết bị căn trục, hoạt động của thiết bị an toàn, v.v.)

7. Công việc vận hành căn trục

8. Điều căn trục về vị trí chỗ định sẵn và tắt nguồn của công tác điều khiển treo

9. Kiểm tra sau khi hoàn thành công việc (kiểm tra tính các bộ phận của căn trục, tiếp nhận liệu, v.v.)

10. Tắt nguồn dây nuôi xe tới chính hoặc cấp chính

Hình 2.4 Luồng Công việc Hàng ngày của Căn trục được vận hành từ dưới Nền
5 Danh sách Kiểm tra trước khi khởi động (p.52)

Trước khi sắp đặt công việc của mình mỗi ngày, người vận hành cần trực phải thực hiện các hạng mục thiết yếu trong danh sách kiểm tra trước khi khởi động như sau:

- Kiểm tra các chi tiết cung cấp công việc sẽ thực hiện trong ngày (đặc biệt là thông tin về tài trống sẽ được nâng lên)
- Đặt vị trí vận hành và lỗ trình vào đúng trình tự
- Thực hiện kiểm tra trước khi khởi động cần trực

5.1 Kiểm tra Chi tiết Công việc Trong ngày (p.52)

Trước khi bắt đầu công việc mỗi ngày, hãy kiểm tra các giấy tờ như giấy giao việc và bàn về sản xuất để có được thông tin cần thiết về hàng hóa sẽ được vận chuyển bằng cần trực trong ngày.

- Kiểm tra nơi bố dỡ hàng hóa và sau đó vạch ra lỗ trình vận chuyển cùng các quy trình khác của công việc.
- Sau khi đã nấm kích thước, trọng lượng, COG (trọng tâm) cùng các chi tiết khác của hàng hóa, hãy chuẩn bị trước thiết bị treo tài và các công cụ liên quan khác.

Hình 2-5 Kiểm tra Trước khi Khởi động
● Dựa trên các kế hoạch làm việc được mô tả ở trên, hãy sắp đặt nơi làm việc, lô trình vận hành và những thứ khác để đảm bảo cung cấp lộ trình an toàn cho công nhân.

● Nếu cần thiết, hãy yêu cầu người chịu trách nhiệm treo tài thực hiện các biện pháp như loại bỏ chướng ngại vật.

Hình 2-6 Kiểm tra xem đã được cung cấp lộ trình phù hợp hay chưa

5.2 Kiểm tra Trước khi Khởi động (p.51)

Hình 2-7 Kiểm tra trước khi khởi động
Sau đây là các hạng mục, chi tiết và những điểm chính của hoạt động kiểm tra trước khi khởi động đối với căn trục tiêu chuẩn có palăng:

Điều quan trọng là phải hiểu các kỹ chi tiết của từng hạng mục để bạn có thể đánh giá chính xác tình trạng của căn trục.

(1) Kiểm tra Trước khi Bắt Nguồn Điện

- Kiểm tra xem có bất kỳ chương ngai vật nào trên ray di chuyển hoặc ray di chuyển ngang và xem có ai đang làm việc trên hoặc ở gần đường chạy hoặc đăm ngang của căn trục hay không. Đồng thời kiểm tra xem các đường ray có đúng theo trình tự hay không.

Hình 2-8 Kiểm tra chương ngai vật
- Kiểm tra xem có sự sai lệch nào ở các bộ phận mà dây cáp nâng đi qua hay không.
 (a) Kiểm tra xem dây cáp có bị tuột ra khỏi puli hay không.
 (b) Kiểm tra dây cáp không chạm vào xe tơi, khung palăng hoặc các cấu trúc khác.
 (c) Kiểm tra xem dây cáp có bị đứt, hao mòn, xoắn, biến dạng, ảnh mòn hoặc hư hỏng nào khác hay không.

![Hình 2-9 Dây Cáp Hồng](image)

- Kiểm tra tinh trạng của trạm nút bấm.
 (a) Kiểm tra xem cáp cabtyre hoặc cáp vò cao su bên có bị hư hỏng hay không.
 (b) Kiểm tra xem dây cáp nâng có hợp lệ hay không (không bị căng).
 (c) Kiểm tra hộp công tắc có bị hư hỏng không.
 (d) Kiểm tra các nút bấm có hoạt động trơn tru không. Không vận hành cán trục nếu nút bấm bị kết ở vị trí nhận xuống.
 (e) Kiểm tra xem khóa liên động cơ khí của các công tắc nút bấm có hoạt động tốt không.

- Kiểm tra sự bôi trơn của các bộ phận cần trục (cụ thể là dây cáp nâng, ống trục và tất cả các bộ phận khác cần được bôi trơn hoặc trơn trong gịp) chinh
- Kiểm tra xem có bất kỳ thiết bị khóa hoặc neo nào như neo cán trục hoặc kep ray bị nham ra không.
(2) Kiểm tra khi Nguồn Điện Bắt

Kiểm tra cách thức hoạt động của cần trục.

Kích hoạt cần trục khi không có tải trọng và xác nhận các hàng mục sau đây.

- Kiểm tra xem cần trục có di chuyển theo từng hướng được chỉ định trên bảng chỉ báo của tổ hợp công tác nút bấm hay không.
 Hoạt động này kiểm tra các chức năng như bắt và tắt nguồn điện, nâng, hạ, di chuyển ngang, di chuyển, phát báo động và chiếu sáng.

 \[\text{Căn cấu có hoạt động như hướng dẫn không}\]

Hình 2-10 Kiểm tra Hoạt động

- Kiểm tra xem cần trục có tạo ra tiếng ồn hoặc rung bất thường trong quá trình vận hành hay không.
- Kiểm tra công tắc chống quá mức có hoạt động đúng chức năng hay không.
 (a) Kiểm thử công tắc giới hạn ít nhất hai đến ba lần trong điều kiện không tải.
 (b) Nếu công tắc giới hạn không hoạt động, dây cáp nâng có thể bị quá tải khi hoạt động. Để loại trừ rủi ro như vậy, hãy tiến hành kiểm thử lần đầu bằng cách nhích và, nếu công tắc giới hạn còn hoạt động, hãy tiến hành kiểm thử lần hai, và tất cả các thử nghiệm tiếp theo trong chế độ hoạt động bình thường.
• Kiểm tra cụm móc xem có bất thường không.
 (a) Kiểm tra độ hao mòn hoặc hư hỏng, hoặc xem độ mở của móc có quá rộng không.
 (b) Kiểm tra góil chăn không bị hư hỏng hoặc dịch chuyển trơn tru.
 (c) Kiểm tra móc xoay tròn tru hoặc khớp móc không bị lồng.
 Nếu móc xoay không dung, dây cáp nâng và dây cáp treo sẽ bị xoắn khi tải trong xoay, và điều này có thể dẫn đến thiệt hại.
• Văn hành bộ phận nâng trên toàn bộ vì nặng để tìm xem có bất thường với thiết bị quấn dây hoặc bất kỳ bộ phận cần trục nào khác có liên quan hay không.
 (a) Kiểm tra xem dây cáp nâng có được quán dung cách trên tảng hay không.
 Kiểm tra xem cáp nâng có được quán dung cách đốc theo các ránh của tảng hay không. Khi dây cáp không được quán dung cách đốc theo các ránh của tảng, như minh họa trong hình Hình 2-11 b, được gọi là quán lồn xơn. Để khắc phục tình trạng quán lồn xơn, hãy xã quán và nói lòng dây cáp như trong hình Hình 2-11 a.

![Hình 2-11 Trạng thái quán của tảng](image)

(b) Kiểm tra các puli có xoay đúng cách hay không.
 Nếu xảy ra rối xoay, dây cáp quấn bị che ép dẫn đến sinh nhiệt, và điều này có thể làm đứt dây.
• Kiểm tra phanh có ở trong tình trạng hoạt động tốt hay không.
 Kiểm tra hiệu quả hoạt động của phanh trong điều kiện không tải.

32 (VI)
5.3 Danh sách Kiểm tra Khi Văn hành (p.57)

Các hạng mục Thiệt yếu của Danh sách Kiểm tra (p.57)

- Chỉ những ai đủ điều kiện mới có thể văn hành cần trục. Đối với cần trục được văn hành từ dưới lên, tay nghề của người treo tay được yêu cầu riêng khi người văn hành tự mình treo tay.
- Không sử dụng cần trục có tải trọng nặng từ 3 tấn trở lên khi không có chứng nhận kiểm tra, khi thời hạn của chứng nhận kiểm tra đã hết hiệu lực hoặc khi bảo trì kém.
- Hiệu căn kế các thông số kỹ thuật của cần trục và không văn hành ngoài các thông số này. Cụ thể, không nâng tải vượt quá tải trọng định mức dù chỉ một lần hoặc chỉ hoài tải trọng định mức một chút.

Hình 2-12 Cảm quá tải

● Ngay cả khi chiều cao năng cơn thiếu đối chọi, không tạo công tác giới hạn thiết bị chống quá mức hoặc không điều khiển, và không tạo công tác giới hạn cơ chế di chuyển ngang/di chuyển để có phạm vi hoạt động ròng hơn.

Hình 2-13 Giữ cho thiết bị an toàn luôn có hiệu lực (1)

● Không buộc chặt các thiết bị chốt an toàn móc bằng bằng vì khó treo tái.

Hình 2-14 Giữ cho thiết bị an toàn luôn có hiệu lực (2)

- Hãy dùng nặng tài bằng công tác để tránh phải dùng bằng thiết bị chống quá mức mới khi có thể.
- Gọi chấn như ngành cẩn trục hoặc xe đẩy tơ chạy vượt khỏi đầu ray trong trường hợp khan cáp. Nếu xảy ra va chạm, lực va chạm sẽ tác động lên cẩn trục hoá xe đẩy tơ, và điều này có thể gây ra hỏng hóc.

Hình 2-15 Không được va chạm với gói chấn
• Khi làm việc chung với người báo hiệu, hãy sắp xếp đầy đủ các tín hiệu trước và thực hiện đúng các tín hiệu quy định.
 Tìm hiểu cách treo tay và ra hiệu. Hãy nhớ đúng hoạt động của căn trục nếu xảy ra bất kỳ lỗi báo hiệu hoặc lỗi treo tay nào sau đây.

(a) Khi tín hiệu không rõ ràng hoặc không phải là phương pháp báo hiệu quy định
(b) Khi có hai hoặc nhiều người báo hiệu
(c) Khi một người không đủ điều kiện hoặc không phải là người được chỉ định thực hiện công việc báo hiệu hoặc treo tay
(d) Nếu bạn cảm thấy rằng việc treo tay là nguy hiểm
(e) Khi trọng lượng của tay có thể vượt quá tài trọng định mức của căn trục
(f) Khi bạn nghĩ rằng đó là một hành động nguy hiểm

Hình 2-16 Hoạt động bị cấm
● Không sử dụng cần trục để vận chuyển hoặc nâng công nhân. Không vận hành cần trục trong khi người vận hành hoặc người treo tài đang ở trên tài trọng.

Hình 2-17 Cảm vận chuyển công nhân bằng cần trục

● Không rơi khỏi vị trí vận hành khi tài đang được nâng lên.
Ngay cả khi rơi khỏi cần trục trong một thời gian ngắn, bạn phải hạ tài trọng xuống và tắt nguồn cung cấp năng lượng của cần trục bằng công tác điều khiển treo hoặc bất kỳ công tác nguồn nào khác ở gần đó.

Hình 2-18 Cảm rơi khỏi vị trí khi đang nâng tài
• Về nguyên tắc, trong các trường hợp sau đây và thậm chí trong các trường hợp khác, không được bước dưới tài nặng.

![Móc cầu](image1)
![Kẹp](image2)

Khi nâng tài trọng treo bằng các móc cầu
Khi nâng tài trọng treo bằng kẹp

![Khi nâng tài trọng trên một điểm bằng dây cáp hoặc xích](image3)

Khi nâng tài trọng trên một điểm bằng dây cáp hoặc xích
Khi nâng tài trọng gồm nhiều ống và tâm không cót lại với nhau

![Khi nâng tài trọng bằng máy nâng từ hoặc máy nâng chân không](image4)

Khi nâng tài trọng bằng máy nâng từ hoặc máy nâng chân không

Hình 2-19 Không đi vào khu vực phía dưới tài trọng
- Nếu bạn nhận thấy cần trục tạo ra tiếng ồn hoặc rung động bất thường hoặc có vấn đề gì đó không đúng với hoạt động thông thường, hãy dừng cần trục ngay lập tức và báo cho người giám sát báo trí.

![Hình 2-20 Các biện pháp khi thấy sự bất thường](image1)

- Cách xử lý các công tác nút.bmp và cấp cấp nguồn
 - Sau khi kiểm tra cần thân các dấu hiệu trên bảng chỉ báo (hiển thị danh mục và hướng chuyển động của cần trục) để tránh gây ra bất kỳ lỗi nào, hãy bấm nút thích hợp về đúng vị trí (cho đến khi hết hành trình).
 - Văn hành cần trục theo hướng sao cho cấp cấp nguồn cho các nút bấm, chuyển động ngang và chuyển động di chuyển cùng các bộ phận khác không tiếp xúc với bất kỳ vật cố định nào trên nền hoặc mất đất.
 - Nếu kéo quá mạnh, công tác nút.bmp có thể bị đứt, dẫn đến tai nạn điện giật.

![Hình 2-21 Kéo bằng cấp dẫn hướng](image2)
- Khi có một cán trục khác ở trên cùng đường chạy, hãy nhớ vận hành cần thân cá hai cán trục để tránh va chạm, vi va chạm cần trục là sự cố cực kỳ nghiêm trọng. Có gang tránh thực hiện chuyển động ngang và di chuyển đồng thời khi có thể.

Hình 2.22 Nguy hiểm khi vận hành đồng thời hai hướng

- Trong các trường hợp sau đây, hãy phát báo động để cảnh báo cho công nhân xung quanh cán trục:
 - Khi khởi động cần trục; khi mang hàng tron hoặc nguy hiểm; khi nhìn thấy một số công nhân khác ở hướng tài trọng đang di chuyển; khi bằng qua lời dì "an toàn" hay đứng xe chạy; hoặc khi cảm thấy nguy hiểm.
 - Khi có một cán trục khác ở trên cùng đường chạy, hãy nhớ vận hành cần thân cá hai cán trục để tránh va chạm, vi va chạm cần trục là sự cố cực kỳ nghiêm trọng. Đường nhân khi tiếp cận với một cán trục trên cùng đường chạy, bạn phải cảnh báo cho người vận hành kia bằng thiết bị báo động hoặc các phương pháp khác.
 - Nếu xảy ra sự cố mất điện trong khi vận hành, hãy tắt công tắc nguồn của cần trục và chờ có điện lại. Đối với cần trục sử dụng nam châm năng, nếu có thể vận hành bằng nguồn điện khác cấp khi mất điện, hãy hạ tải trọng xuống đất ngay lập tức.
 - Nếu cảm thấy có động đất trong khi đang vận hành, bạn phải hạ tải trọng xuống đất càng nhanh càng tốt và tắt nguồn điện.
- Nếu bạn phải chờ tín hiệu xử lý với tài trọng đang được nâng trên mộc của cần trục, hãy dùng cần trục ở một nơi không phải ngay trên lối đi an toàn hoặc nơi làm việc.

Hình 2-23 Dùng với tài trọng đang nâng

- Bạn không được sử dụng cần trục vận hành để đẩy một vật dụng yên khách.
- Đò phanh di chuyển được kích hoạt trong khi cần trục đã dừng lại, có khả năng mở to đằng cho việc di chuyển trong quá trình vận hành cần trục bị chây do quá tải.
- Nếu cần trục không dừng lại sau khi nạt nút vận hành, hãy bấm nút “OFF” để thực hiện dừng khẩn cấp. Nếu vô hình không cút OFF, hãy tắt công tắc nguồn chính.
- Khí mô cấp dao động, không thực hiện thao tác nâng. Điều này có thể gây ra tình trạng cấp nâng quá lớn xơn xung quanh tang, cũng như làm dứt và hư hỏng đầy cấp. Ngoài ra, nếu mô dao động khi đến gần tăng hoặc có thể làm hư hỏng chúng.
- Không vận hành cần trục theo hướng ngược lại
 - Tải trọng dao động mạnh và điều này có thể làm cho tai rơi xuống.
 - Lực tác động tác động lên các bộ phận cơ khí và cầu trục của cần trục.
 - Động diện của mô tơ gia tăng, các tiếp điểm cơ động cơ công tác ở bị suy giảm và nhiệt độ của mô tơ tăng lên, có thể làm giảm tuổi thọ của cần trục. Khi vận hành theo hướng ngược lại, chỉ bấm nút theo hướng ngược lại sau khi mô tơ dừng hẳn.

![Hình 2-24] Cảm vận hành ngược lại

- Không vận hành cần trục trong khi công nhân đang ở trên cần trục để bảo trì cần trục, các tòa nhà và thiết bị lận cần. Trong trường hợp này, hãy tắt nguồn của cần trục và báo hiệu cảnh báo động cần trục.

![Hình 2-25] Cảm khi động trong quá trình kiểm tra.
Các hạng mục của Danh sách Kiểm tra cho Hoạt động Cụ thể (p.66)

Di chuyển Cận trực đến Nội Dạng tài (bằng Chuyển động Ngang và Chuyển động Di chuyển)
- Di chuyển cân trực theo phương ngang sau khi quan mô lên đến độ cao không chạm vào các công trình và thiết bị lân cận trên mặt đất. Thông thường, quấn cao 2 mét trở lên, nhưng không quấn nhiều hơn mức cần thiết.
- Đặt vị trí di chuyển ngang và di chuyển theo cách sao cho tâm của mô ở ngay phía trên COG của tài trọng cần nâng.

Hãy mở xuống một mức thích hợp để treo tải lên.
Hãy mở xuống một mức thích hợp để treo tải lên. Tại thời điểm này, các văn đề sau có thể xảy ra.
Văn hành cần thân để sản không hạ thấp hơn mức cần thiết.
- Cáp nâng bị chừng xuống và dây cáp lưng ra khỏi các ránh cửa tang trong quá trình nâng. Điều này có thể gây ra tình trạng quấn lọn xoắn.
- Cáp nâng được trang bị đủ hai vòng quấn trợ lên trên tang của thiết bị nâng khi phủ lên nâng ở vị trí thấp nhất. Việc hạ thấp cấp quan vị trí này có thể làm cho tài trọng tác động trực tiếp vào đầu của cấp nâng, khiến cho cấp rơi ra khỏi tang.
- Đối với các xe đẩy tối và palang không có thiết bị chống quan quả mức (công tác giới hạn hạ thấp), nếu tiếp tục hoạt động hạ xuống, cấp nâng sẽ bung ra khỏi tăng và sau đó cuốn lên theo hướng ngược lại (cuồn ngược cấp nâng).

Hãy văn hành cần thân khi hạ mối xuống gần giới hạn dưới và dùng hoạt động ngày lập tức khi tài trọng bắt đầu di chuyển theo hướng nâng lên, ngay lúc ban đang thực hiện thao tác hạ xuống.

Nếu cấp nâng đang ở trạng thái quan ngược, các văn đề sau có thể xảy ra.
- Do cấp đang được văn hành theo mạch hạ xuống, nên ngày cá khi cấp di chuyển theo hướng nâng lên, thiết bị chống quan quả mức có thể sẽ không hoạt động.
- Điều này có thể dẫn đến các tai nạn như hu hỏng giá có định thiết bị nâng, dây cấp và các khung của xe đẩy tối và palang.

Đối với các xe đẩy tối không có công tác giới hạn hạ thấp, nếu tiếp tục hoạt động hạ xuống, cấp nâng sẽ do cuốn lên theo hướng ngược lại.

Hình 2-26 Quan ngược đẩy cấp để nâng lên
Chờ cho đến khi công việc treo tài hoàn thành.

Đối với cán trục được vận hành tự dưới nên hoặc mặt đất, hãy tắt công tác nguồn và đặt cần trục ở chế độ chờ cho đến khi hoàn thành công việc treo tài và xác nhận tình trạng treo tài trong thời gian này. Treo tài không hợp lý là yếu tố chính làm rối tài trọng, vì vậy phải đảm bảo người vận hành cần trục có đủ kiến thức về công việc treo tài và có thể xác nhận được sự an toàn của hoạt động treo do. Thông hết là người vận hành cũng có chức năng treo tài. Nếu người vận hành thực hiện công việc treo tài, họ phải hoàn thành một khóa đào tạo kỹ năng treo tài.

Hình 2-27 Hiểu về cách treo
Hình 2-28 Chung nhân Máy làm khuôn ly tâm

Kiểm tra trạng thái treo tài trước khi bắt đầu vận hành

- Kiểm tra trọng lượng của tài không vượt quá tải trọng định mức của cần trục.
 - Xác nhận trọng lượng của tài trọng.
 - Xác nhận trước trọng lượng của tài trọng thông qua các cuộc họp bàn và hướng dẫn công việc.
 - Thực hành đánh giá trực quan về trọng lượng trong các nhiệm vụ hàng ngày.
- Kiểm tra thiết bị treo tải có đủ mạnh để treo tải trọng hay không.
- Kiểm tra dây cáp treo có gãp vấn đề gì không.
 - Về nguyên tắc, dây cáp treo tải phải có góc treo từ 90 độ trở xuống và thường là 60 độ trở xuống.
 - Nếu bị xỏan, dây đế bị giật dứt, do đó hãy tháo gỡ mọi đoạn xoắn.

![Hình 2-29 Góc treo tải](image1)

Nâng lên
- Sự tản công nhân đến khu vực không có nguy hiểm ngay cả khi tải trọng dao động, và sau đó cũng sự tản chính bản. Không giữ tải bằng tay để làm dụng sự dao động, điều này cực kỳ nguy hiểm.

![Hình 2-30 Tạo đủ khoảng cách để sơ tán](image2)
- Không kéo tải trọng sang một bên hoặc nâng lên.
 - Khi nhạc tải trọng lên khỏi mặt đất, chuyển động của tải có thể gây tiếp, va chạm và các tai nạn khác.
 - Điều này có thể làm hỏng xe đẩy hoặc khung palăng, hoặc dẫn đến hư hỏng dây cáp.
 - Trước khi bắt đầu hoạt động nâng lên, hãy xác nhận móc nam ngay phía trên COG của tải trọng.

![Hình 2-31 Cầm kéo tải trọng sang một bên hoặc nâng lên.](image)

- Không vận hành nâng nhanh tải trọng.
 - Tiếp tục nâng lên cho đến ngay trước khi dây cáp treo tải bắt đầu căng.
 - Ngay khi cáp treo tải vừa căng lên và tải trọng rời khỏi mặt đất, hãy tạm ngừng nâng và giảm tốc độ của việc nhạc tải lên khỏi mặt đất.
 - (a) Xác nhận tình trạng treo và trạng thái căng của dây cáp treo tải.
 - Nếu siết dây cáp treo tải không hiệu quả, tải trọng có thể bị ngã đổ và tạo ra xung lực tác động lên cần trục.
 - Xác nhận tải trọng được phân bổ đồng đều trên toàn bộ dây cáp treo tải.
 - Nếu vị trí của dây cáp treo tải bị lệch trong quá trình nâng lên, dây có thể bị đứt, vì vậy hãy ngừng nâng và chính lại cáp treo.
Dùng nâng ngay khi dây cáp treo bị căng.

Hình 2-32 Cầm nâng nhanh tài trọng.

Lợ hàng rơi vỡ Cáp dắn hướng

Hình 2-33 Kiểm tra tình trạng cáp

(b) Kiểm tra các miếng lót có nằm đúng vị trí hay không.
 - Nếu dây cáp treo tài được treo trực tiếp vào góc nhọn của tài trọng, dây có thể bị cắt.

(c) Kiểm tra tài trọng có cân bằng tốt trên dây treo hay không.
 - Xác nhận COG của tài trọng và móc cùng nằm trên một đường thẳng.
 - Khi nâng một tài trọng mà khó xác định được COG, hãy nâng tài từ từ và xác nhận.
 - Để đảm bảo sự cân bằng của tài trọng trong khi nâng, hãy giám định vị trí nâng theo COG của tài, và cân nhắc việc gắn các linh kiện treo vào tài tại thời điểm tình toán tùy thuộc vào từng tình huống.
(d) Kiểm tra các thiết bị treo tải và tải trọng không bị kết bởi tải trọng, máy móc và cầu trục khác.

- Khi tải trọng hoặc thiết bị treo tải bị kết vào vật khác sẽ tạo ra một lực lớn hơn tải trọng định mức, và điều này có thể làm hỏng cấp nâng và palăng.

![Hình 2-34 Kiểm tra tình trạng của tải trọng](image)

Hình 2-34 Kiểm tra tình trạng của tải trọng

- Nâng tải từ từ bằng hai hoặc ba cử htmlspecialchars cho đến khi tải bắt đầu rơi khỏi nền hoặc mặt đất. Sau đó dùng cần trục một lần.

- Tài kiểm các Hạng mục Kiểm tra từ (a) đến (d) ngay sau khi tải trọng được nâng lên.

- Sau khi đã hoàn toàn nâng lên, nâng tải liên tục đến độ cao mong muốn.

 - Nâng tải trọng lên vị trí cao hơn chiều cao đầu người để họ có thể di chuyển an toàn mọi lúc. Tuy nhiên, nếu không có con đường ngang vật trong vùng lán cần, hãy dùng nâng ở độ cao càng thấp càng tốt.

 - Khi nâng một tải trọng có trọng lượng gần bằng tải trọng định mức của cần trục, hãy nhớ kiểm tra phanh trong khi tải trọng vẫn ở mức thấp trước khi tiến hành vận hành bình thường.

 - Tránh sử dụng thường xuyên công tác giới hạn trên để dùng chuyển động nâng.

 - Không sử dụng chế độ nâng khi không cần thiết trong quá trình nâng tải.

- Nếu tải trọng đang dao động thì không được nâng lên, bởi vì trong điều kiện như vậy dây cấp nâng có thể được quán không đều vào tảng, dẫn đến dây cấp bị hỏng.
Vận chuyển Tái trọng đến Noi Đỡ hàng

- Khi vận hành cần trục, bạn hãy dùng phía sau hoặc ở bên cạnh tái trọng và di dọc theo tái.
 Không dùng ở phía trước tái trọng (nhìn từ hướng chuyến động của tái) hoặc ngay phía dưới tái.
 Nếu tái trọng bị rơi do tốn hiểu không đầy đủ hoặc vi nguyên nhân khác, tái trọng có thể để lên ai đó.
- Không chuyển tái trọng qua đầu bất kỳ công nhân nào khác trong môi trường hợp. Đi theo lộ trình qua những nơi không có máy móc hoặc bất kỳ động vật nào khác (tốt nhất là cung cấp các lối đi riêng để vận chuyển hàng hóa bằng cần trục).
- Không vận hành cần trục một cách lơ lửng. Luôn luôn đề mắt đến lối đi phía trước trong khi cần trục đang đi chuyển.
- Trước khi bằng qua lối đi an toàn hoặc đường xe chạy, hãy giảm tốc cần trục và cảnh báo cho công nhân xung quanh bằng cách phát ra âm thanh bảo động hoặc bằng một số phương pháp khác.

Hình 2-35 Đảm bảo an toàn trong quá trình vận chuyển
Hạ xuống

- Kiểm tra sự an toàn ở nơi đở hàng.
 Cạnh báo cho công nhân xung quanh nơi đở hàng để họ di chuyển khỏi vị trí đó.
 Kiểm tra xem có hư hỏng vật nào tại nơi đở hàng và liệu tài trọng có khả năng bị lật khi được đặt tại đó hay không.

Hình 2-36 Kiểm tra nơi đở hàng

- Hãy liên tục đến khi gần chạm nện hoặc mặt đất (để giảm thao tác nhích).
- Ngày trước khi tải tiếp đất, hãy dùng chuyên động Hạ xuống trong giấy lát để đảm bảo bề mặt của nơi đở hàng thẳng bằng.
- Thận trọng đặt tài trên nện hoặc mặt đất bằng cách nhích nhẹ nhàng.
- Khi tải chạm nện hoặc mặt đất, hãy dùng cân trực một lần để kiểm tra xem tài có nằm ổn định không.
- Trong khi làm chùng các dây cấp treo tài, hãy hạ thấp móc liên tục và hạn chế các thao tác nhích không cần thiết.
Tháo cáp treo tài

- Hãy nhờ người đến giúp đỡ khi tháo cáp từ tài khi bắt đầu tháo dây cáp ra khỏi tài.
- Không kéo các dây cáp tài khi tháo dây cáp ra khỏi tài.

![Hình 2-37 Cầm kéo cáp treo tài bằng cần trục.](image)

Hình 2-37 Cầm kéo cáp treo tài bằng cần trục.

Nâng Móc của Cần trục

- Nâng móc lên, kiểm tra xem dây cáp có được quấn dùng cách vào tang palăng hay không.
- Cần cân thận, không nâng móc lên trong khi móc đang dao động.
 Nếu cáp nâng quấn lớn xốn xung quanh tang, dây cáp có khả năng bị đứt hoặc hư hỏng. Ngoài ra, nếu móc treo dao động, móc có thể chìm vào tang, khung xe đẩy tới hoặc khung palăng khi chờ được hư hỏng.

![Hình 2-38 Cầm nâng móc đang dao động.](image)

Hình 2-38 Cầm nâng móc đang dao động.
Kết thúc Công việc Văn chuyển

- Tắt nguồn điện cho cần trục.
- Nếu bạn đang cầm bảng điều khiển nút bấm treo với dây nặng sau khi thao tác xong, đừng bỏ bông bằng ra từ vị trí đó.
 Điều này có thể gây ra và chấn với công nhân và máy móc trong khu vực lăn cần, dẫn đến thương tích cho công nhân, làm hỏng công tác điều khiển treo, vò tinh kích hoạt công tác nút bấm và làm hỏng may móc bị hỏng.

Không tham công tác bàn đáp khi đang kéo lên.

Hình 2-39 Làm việc với công tác điều khiển treo

Danh sách Kiểm tra Sau Văn hành (p.74)

- Khi sử dụng thiết bị treo tài, hãy hạ thấp thiết bị xuống vị trí đã chỉ định và nhờ tháo móc ra.
- Dùng cần trục tại vị trí quy định.
 Nếu có cầu thang hoặc thang máy hoặc bàn nâng dành riêng cho mục đích kiểm tra, hãy dùng cần trục ở vị trí lập đặt chúng.
- Có định cần trục nếu có kẻ ray hoặc neo cần trục.
- Năng ròng rọc có móc mở đến độ cao không gây căng tròn giao thông của người đi bộ và xe cộ.
- Tắt các công tác cung cấp điện của cần trục.
 Nếu tổ hợp nút bấm có công tác “OFF”, hãy bấm công tác đó để ngắt điện.
Tắt công tác nguồn điện chính của cần trục.
- Kiểm tra các bộ phận của cần trục, nhất là các bộ phận khuyên chặn kỹ trong quá trình vận hành và nếu cần, hãy báo cáo cho người giám sát báo tri.
- Bôi trơn hoặc trao mờ cho các bộ phận của cần trục khi cần thiết.
• Diện vào các mục cần thiết trong số theo dõi, nhất kỳ hoặc báo cáo khác để hỗ trợ bạn thông tin cần thiết khi cần.

Hình 2-40 Các biện pháp khi kết thúc công việc

Cách Vận hành Căn trục có Palăng để Ngăn Tải trong Dao động (p.75)

Các thiết bị dao động cũng thường hay xảy ra. Điều quan trọng là vận hành cần trục cần thận trọng để giữ cho tài trọng ổn định nhất có thể.

Nguyên nhân Tài trọng Dao động

Sau đây là những nguyên nhân chính làm tài trọng dao động có thể xảy ra với loại cần trục này:

• Năng xe, COG không cân bằng
 Tình trạng tài trọng dao động xảy ra khi năng tài theo hướng xiên hoặc khi năng tài với COG không cân bằng.

• Lực quán tính lực bất động và động di chuyển ngang hoặc di chuyển
 Trong trường hợp cần trục di chuyển ngang và di chuyển với một tốc độ nào đó, thì việc tài trọng dao động lực bất động và động các chuyển động này là điều không thể tránh khỏi ở một mức độ nhất định. Ngoài ra, sự dao động của tài trọng có các thuộc tính sau đây:
 • Tài trọng càng tăng thì việc làm dừng dao động càng khó khăn hơn.
 • Càng gia tăng hoạt động tăng tốc hoặc giảm tốc thì càng làm tài trọng dao động rộng.
 • Cáp nâng càng dài, tài trọng dao động càng rộng.
 • Cáp nâng càng dài, chiều dán dao động càng lâu.
 • Trọng lượng của tài trọng không liên quan đến chiều dán dao động.
Đựa vào các thuộc tính trên, dưới đây là những điều cơ bản để phòng ngừa tai trong dao động.

- Sử dụng các cụ nhân chỉ cho đến khi dây cấp căng lên và tạm thời dừng quan cấp ở vị trí càng đỏ, sau đó xác nhận COG của tài trọng một lần nữa trước khi nhấc tài lên khởi mặt đất.
- Khi tài trọng tăng lên, hãy giảm hoạt động tăng tốc và giảm tốc.
- Thực hiện các hoạt động làm chủ động phù hợp đối với chiều dài của cấp nâng (chu kỳ dao động).

![Hình 2-41 Vị trí móc](image)

Trên đây là những ví dụ về cách ngăn ngừa tai trọng dao động, nhưng tài trọng không dao động theo cùng một kiểu. Điều quan trọng là phải làm chủ các hoạt động dựa trên cần trục được sử dụng tại mỗi nơi làm việc cũng cách xử lý tài trọng, trong khi vẫn giữ vững các nguyên tắc cơ bản trên trên. Nói chung, những cần trục có palăng thực hiện các hoạt động nâng, dịch chuyển ngang, dịch chuyển và các chuyển động khác ở một tốc độ đều và không có thiết bị giảm chấn khi cần trục khối động. Việc thực hiện các hoạt động trong khi giữ cho tài trọng ít dao động khó khăn hơn so với loại cần trục vận hành trên xe, vì vậy điều quan trọng là phải cải thiện các kỹ năng vận hành bằng cách thực hành liên tục. Ngoài ra, những cần trục có palăng có thể cần trục nhẹ hơn so với loại cần trục có xe đẩy tốt, và đặc biệt là các palăng nhẹ hơn nhiều so với tài trọng định mức.

Việc thực hiện hoạt động dịch chuyển ngang hoặc dịch chuyển cần trục hoặc palăng trong khi tài trọng đang dao động có thể dẫn đến những kết quả sau.

- Nếu tài trọng đang dao động theo hướng tiến tới, tốc độ di chuyển sẽ tăng lên.
- Nếu tài trọng đang dao động theo hướng ngược lại với hướng tiến tới, tốc độ di chuyển sẽ giảm đi.
- Việc dao động của tài trọng sẽ khiến cần trục rung lắc khi di chuyển và không di chuyển với một tốc độ cố định.
Nếu vòng dao động quá lớn, cần thực hiện palăng có thể dùng tâm thời do tải trọng dao động giữa hướng tiến tới và hướng ngược lại.

Hình 2-42 Veranst không dao động

Ngăn ngừa tải trọng dao động

(1) Định vị móc gần phía trên COG và nâng lên
Đặt móc gần phía trên COG và thực hiện các cử động để đến khi đẩy căng lên, sau đó tầm thời dùng quấn dây ở vị trí căng do và nhắc tải trọng lên khỏi mặt đất sau khi xác nhận lại vị trí của COG.

(2) Ngăn ngừa tải trọng dao động do hoạt động
Với các cân thú, việc ngăn ngừa tải trọng dao động được tiến hành thông qua hai phương pháp sau.

Phương pháp Tăng tốc Tự động Ngăn Tải Trọng Dao động
Phương pháp này ngăn chặn sự dao động của tải trọng bằng cách lập lại các cử động trước khi cân thực đạt đến tốc độ di chuyển hoặc di chuyển ngang định mức. Có thể ngăn chặn khá dễ dàng sự dao động của tải trọng bằng phương pháp này, nhưng cần phải nỗ lực để giảm các cử động cần thiết.
Phương pháp Bảm-Ngắt (Follow-Notch) để Ngăn ngừa Tài trọng Dao động

- Ngăn ngừa Tài trọng Dao động khi Khởi động
 - Nếu công tác hành trình được nhận ở Trạng thái (I) như mô tả trong Hình 2-43, cần trục sẽ bắt đầu di chuyển ngay lập tức nhưng tài trọng sẽ không bắt đầu di chuyển cho đến một lúc sau vì lực quán tính tác dụng lên tài và điều này sẽ dẫn đến Trạng thái (II).
 - Nếu công tác hành trình bị tắt ở trạng thái này, cần trục sẽ giảm tốc ngay lập tức trong khi tài trọng vẫn sẽ tiến trên cần trục, dẫn đến Trạng thái (III).
 - Sau đó, nếu công tác hành trình được nhận lại ngay trước khi tài đến ngay dưới cần trục, như ở Trạng thái (III), thì tài trọng sẽ bắt đầu di chuyển về phía trước mà không bị dao động đáng kể.

Hình 2-43 Ngăn ngừa Tài trọng Dao động khi Khởi động
- Ngăn ngừa Tài trọng Dao động khi Dừng lại
 - Nếu công tác hành trình bị tắt ngay trước khi cần trục đat đến vị trí dừng mong muốn, như ở Trạng thái (IV), cần trục sẽ ngay lập tức giảm tốc về điểm dừng nhưng tài trọng vẫn sẽ tiếp tục di chuyển về phía trước nhờ lực quán tính. Dẫn đến Trạng thái (V) sẽ diễn ra.
 - Nếu công tác hành trình được nhận lại ngay trước khi tài trọng đạt đến điểm đầu của vòng dao động, như ở Trạng thái (V), cần trục sẽ di chuyển xa hơn một chút và sau đó dừng lại ở Trạng thái (VI).

Hình 2-44 Ngăn ngừa Tài trọng Dao động khi Dừng lại

(3) Ngăn ngừa tải trọng dao động bằng thiết bị
Bằng cách dùng công nghệ thường quy như khớp thủy lực và giảm chấn điện hoặc công nghệ mới như giảm chấn biến tần, có thể làm cho việc khởi động và dừng lại trở nên trôi chảy hơn, giúp giảm thiểu sự dao động của tài trọng.
5.4 Kiểm tra và Bảo trì (p.77)

Quy tắc Làm việc cho Người vận hành (p.77)

Người vận hành cần thực hiện những nhiệm vụ của đội bảo trì và trong quá trình thực hiện công việc hàng ngày, phải vận hành cần thực đúng cách, luôn chú ý sát sao đến mọi thay đổi trong cách hoạt động của cần trục.

![Vấn đề và Triệu chứng thất bại](image)

Hình 2-45 Kiểm tra Thường kỳ

Bất cứ khi nào thấy có sự cố hoặc trục trặc nào sau đây, người vận hành phải dừng ngay cần trục và báo cáo cho tổ bảo trì chính về tình trạng của sự cố hoặc trục trặc này. Thông tin về sự cố hoặc trục trặc cũng nên được thông báo cho tất cả những người vận hành cần trục khác.

- Nếu cần trục không động khi người vận hành ngừng nhấn nút bấm:
 Nguyên nhân có thể hiểu được là do sự liên kết của tiếp điểm trong tổ hợp nút bấm hoặc trong công tắc tor.

![Hiểu cách tắt nút cấp điện](image)

Hình 2-46 Dừng lại khi có bất thường
• Nếu sau khi kích hoạt công tác giới hạn quá mức mà cần trực không bất đấu chuyển động hạ thấp:
Nguyên nhân khả dĩ nhất là công tác giới hạn khắc sâu dịch không kích hoạt do lõi của công tác giới hạn dịch vụ.

• Nếu có sự thay đổi về đề ổn cơ khí, đặc biệt là hiện tượng phát ra tiếng ổn bất thường (ví dụ như tiếng kêu rác rác hoặc âm âm) hoặc âm thanh ma sát hay vo ve:
Cần chú ý không chỉ đối với cần trực mà còn với cả tình trạng cửa và xung quanh tài trọng năng và đường ray di chuyển.

• Nếu cần trực rung lên bất thường:
Người vận hành phải kiểm tra xem cần trực có phát ra tiếng ổn hoặc đây cáp công tác điều khiển treo có rung lên trong tay hay không.

• Những bất thường sau đây có thể xảy ra với hoạt động của cần trực:
 ● Không di chuyển chút nào
 ● Suy giảm tốc độ chuyển động, khả năng đáp ứng nhanh, sự sẵn sàng khởi động, độ êm của chuyển động hoặc tốc độ vận hành dưới mức quy định hoặc thường không hoạt động
 ● Giảm hiệu suất của phanh
 ● Lỗ cỏ các bộ phận xoay để chuyển hướng: Các bộ phận của cần trực bị sự cố này bao gồm puli của ròng rọc có móc, bánh xe di chuyển và bánh xe cần vật.

• Nếu cần trực tóa ra nhiệt hoặc có mùi bất thường:
 ● Mở tor náo độ quá nóng hoặc bị cháy
 ● Lốp bộ phanh nào đó có nhiệt độ cao bất thường hoặc bị cháy
5.5 Thực hiện Kiểm tra và Rà soát (p.79)

Quy định vận hành cần thực hiện các bước kiểm tra và rà soát sau đây. Kết quả tự kiểm tra định kỳ trong (2) và kiểm tra sau cơ bão trong (4) được thiết lập để lưu giữ trong ba năm, nhưng nếu có thể cũng nên giữ lại các kết quả kiểm tra khác.

(1) Kiểm tra Truớc khi Khởi động (Xem 2.3.2, p.54)

(2) Tự kiểm tra định kỳ
 Dù cho có sự cố hay bất thường hay không, cũng cần phải tiến hành kiểm tra chi tiết và đại tu các bộ phận
 quan trọng để phát hiện ra các bộ phận bị hỏng hoặc chưa được khi kiểm tra hàng ngày. Việc này thường do nhân viên bảo trì có kiểm thử chuyên môn về căn cứ thực hiện.
 - Tự kiểm tra hàng tháng
 Đây là cuộc kiểm tra tự giác được thực hiện trong vòng một tháng.
 - Tự kiểm tra hàng năm
 Đây là một cuộc kiểm tra tự giác được thực hiện trong vòng một năm.

(3) Kiểm tra hiệu suất
 Đây là cuộc kiểm định được thực hiện trong thời hạn hiệu lực (thường là hai năm) của giấy chứng nhận.

(4) Kiểm tra sau Bão
 Quy định phải sớm tiến hành kiểm tra những bộ phận trong từng bộ phận của Thiết bị Năng cho Công
 trình Xây dựng khi thực hiện công việc có sử dụng Thiết bị Năng này (không bao gồm thiết bị được lập đất
 dưới lòng đất), sau khi gặp gió có vận tốc tức thời vượt quá 30 m/s, hoặc sau một trận động đất có cường
 độ trung bình hoặc cao hơn.
5.6 Hướng dẫn Kiểm tra (p.80)

Hướng dẫn cho Người văn hành Cản trục

Trong quá trình kiểm tra cản trục, không được bấtstüt người di chuyển hoặc văn hành cản trục.

Khi văn hành một cản trục ở gần cản trục khác đang được kiểm tra, cần chú ý di chuyển chậm và tránh dúvida cản trục này lại gần hơng mức cần thiết với cản trục kia để tránh sự va chạm giữa chúng.

Lưu ý khi kiểm tra

Khi kiểm tra một cản trục, hãy thực hiện đầy đủ các bước chuẩn bị trước để ngăn ngừa tai nạn trong quá trình kiểm tra và thực hiện các phương pháp làm việc thích hợp.

- Chuẩn bị trước
 Trước khi kiểm tra cản trục phải thông báo đầy đủ cho tất cả những người có liên quan về thời gian cần thiết và các chi tiết khác của việc kiểm tra.

- Kiểm tra Trang phục Kiểm tra
 Trước khởi đầu kiểm tra, thường sẽ thực hiện với đầy đủ trang cao và liên quan đến mọi nguy hiểm về diện, tất cả các thành viên đội kiểm tra phải đeo bảo mào trang phù hợp làm việc phù hợp.

Hình 2-47 Chuẩn bị trước
Hình 2-48 Trang phục phù hợp với các thiết bị bảo hộ

- Dụng cụ Kiểm tra
 - Hãy nhớ sử dụng các dụng cụ kiểm tra được bảo dưỡng tốt.
 - Đưa ra các biện pháp cần thiết để phòng ngừa bất kỳ dụng cụ nào rơi xuống.
- Biến báo và Đầu hiệu
 - Đè biến “Đang Kiểm Tra” và các biến báo cần thiết khác trong quá trình kiểm tra.
 - Căng dây quanh cẩn trục để hạn chế người không phần sự.
 - Đặt biến “Không Bắt Nguồn” và các biện báo liên quan khác tại các công tác nguồn.
- Các biện pháp Ngân ngừa Va chạm
 - Nếu cần trực lần cần dùng hoạt động, hãy đắt gối chân để tránh va chạm.
5.7 Kiểm tra và bảo trì dây cáp và xích tải (p.81)

Kiểm tra và bảo trì dây cáp

Lời cuối dây cáp có cấu tạo chất chống rỉ sét và đầu đề chống mài mòn do ma sát giữa các cáp. Bề mặt của các bộ cáp và dây cáp cũng được bôi trơn, nhưng nếu chúng được sử dụng trong một thời gian dài, đầu sẽ bị vật can, khiến cho độ mòn của dây tăng lên, vì vậy điều quan trọng là phải bảo đảm và bảo sung nguồn cáp. Ngoài ra, ở các dây cáp đúng đề năng và thay đổi làm với còn xảy ra sự mài mòn và mất dầu do bị xỏan liên tục trên puli và tảng quán. Vì lý do này, nên tập trung kiểm tra dây cáp ở các điểm trọng yếu như các phần đế bị hư hỏng, đặc biệt là các phần đi qua puli và bi xoắn nhiều lần. Các bộ phận lắp đặt ở hai đầu của dây và khu vực xung quanh các phần tiếp xúc với puli bộ căng bằng. Nếu phát hiện thấy các tình trạng sau dây trong quá trình kiểm tra, bạn phải thay đổi các bộ phận ngay lập tức.

Các tiêu chí để xác định khả năng chấp nhận dây cáp được quy định trong quy chuẩn xây dựng cho căn trở. Theo tiêu chí, không được sử dụng bất kỳ dây cáp nào được như dưới dây cho căn trở:

- Những dây cáp có hơn 10 phần trăm tổng số cáp (trừ dây dẫn) trong bất kỳ một dây bên nào bị dứt.
- Những dây cáp đã giảm hơn 7 phần trăm đường kính danh định
- Những dây cáp bị xỏan
- Những dây cáp bị đâm nghiêng trọng hoặc bị ăn mòn

Khi thay dây cáp, hãy xử dụng một trong những loại nhà sản xuất chỉ định. Nên thay dây cáp càng sớm càng tốt ngay cả khi vật cắt hoặc sự suy giảm đường kính của dây cáp nằm trong các giá trị sau.

Bó cáp

Hình 2-49 1 sối bên dây cáp

Hình 2-50 Dứt cáp
Hình 2-51 Hao mòn

a: Xoắn ngược
b: Xoắn thuận

(1) (2) (3) (4) (5)

c: Quá trình tạo các nút

Hình 2-52 Xoắn

a: Sự ăn mòn
b: Làm cong

Hình 2-53 Biến dạng
Kiểm tra và bảo trì xích tải (p.81)

Các tiêu chí để xác định khả năng chấp nhận xích tải được quy định trong quy chuẩn xây dựng cho căn trục. Theo các tiêu chí này, không được sử dụng bất kỳ xích tải nào được nếu dưới đây cho căn trục:

- Những chuỗi xích đã gián hon 5 phần trăm so với chiều dài đầu lúc sản xuất
- Những chuỗi xích có bát kỳ mối liên kết nào mà đường kính mặt cắt đã giảm hon 10 phần trăm so với kích thước ban đầu lúc sản xuất
- Những chuỗi xích có vết nứt
- Khuyết tật mối hàn, khuyết tật mối rên, hoặc biên dạng đang kéo

Khi thay một chuỗi xích cũ bằng một xích mới, cần chú ý sử dụng loại và chất lượng xích mà nhà sản xuất chỉ định. Không được nối thêm vào chuỗi xích hiện hữu vì không an toàn.

Bôi trơn (p.84)

Cần phải bôi trơn hợp lý cho các ốc trục, bánh răng và dây cáp. Loại chất bôi trơn được dùng tùy theo vị trí sử dụng. Sử dụng mỡ, dầu hợp số và dầu máy trên các khu vực thích hợp. Ngoài ra, chất bôi trơn thích hợp thay đổi tùy thuộc vào tình trạng sử dụng của các phần được bôi trơn, chẳng hạn như độ nhừ, độ bền của màng dầu và độ xuống cáp.
5.8 Hướng dẫn Vận hành Căn trục Lập đặt Ngoài trời (p.86)

Về cơ bản, căn trục lập đặt ngoài trời được xử lý giống như căn trục lập đặt trong nhà nhưng hoạt động của chúng đòi hỏi phải có sự am hiểu căn kể về các hướng dẫn, quy tắc làm việc và danh sách kiểm tra hiện hành, đặc biệt là các biện pháp phòng ngừa trước thời tiết xấu.

Lưu ý khi vận hành

- Kiểm tra thông tin thời tiết trong bản tin buổi sáng mỗi ngày.
- Nếu bề mặt của tài trọng bị ướt, phải vận hành căn trục hết sức căn thận vì các dây cáp treo tài có thể trượt ra khỏi vị trí của chúng trên tài.
- Nếu căn trục không có lớp vỏ chống mưa, thì không vận hành trong thời tiết âm ướt.
 - Palăng tiêu chuẩn không có khả năng chống thấm nước, do đó có thể xảy ra sự cố hoặc điện giật.
 - Khi không sử dụng, hãy đặt chúng bên dưới mái che (mái nhà).
 - Chú ý sự hao hụt dầu ở dây cáp hoắc các thành phần được bôi trơn do mưa và những điều kiện tương tự.
 - Chú ý ri sét ở các thành phần cơ khí và cấu trúc bên trong của palăng cũng như thiết bị di chuyển.
 - Chú ý các hàng mục điện, dây điện và những linh kiện tương tự để bị hỏng phần cách điện.
- Dùng công việc nếu khả nghi có nguy hiểm do gió mạnh (tốc độ gió trung bình từ 10 m/giây trở lên trong 10 phút).
- Nếu có khả năng xảy ra bão (nhuộ tốc độ gió tức thời vượt quá 30 mét mỗi giây), hãy thực hiện các biện pháp căn thiết để ngăn chặn căn trục chuyển động ngoài ý muốn.
- Nếu các ray di chuyển ngang và di chuyển bị ướt do mưa hoặc tuyết, hãy vận hành căn trục căn thận, đặc biệt là khi khởi động hoặc dừng căn trục, vì các bánh xe có thể bị trượt trên đường ray.
● Ngừng vận hành cần trực khi có gió bão, vì có thể xảy ra tai nạn từ sét.

Hình 2-54 Kiểm tra thông tin thời tiết

Hình 2-55 Đừng hoạt động do mưa

Lưu ý hành chính

● Ngoài các quy định pháp lý, nếu có các tiêu chuẩn tại chỗ về việc ngừng hoạt động trong điều kiện thời tiết khắc nghiệt, hãy bảo đảm luôn tuân thủ.

● Biên pháp ứng phó với gió mạnh
 ● Quyết định phương pháp thu nhận thông tin về tốc độ gió.
 ● Nếu có các tiêu chuẩn cho việc ngừng hoạt động khi có gió mạnh, hãy bảo đảm luôn tuân thủ.
 ● Nếu có các tiêu chuẩn để thực hiện các biện pháp ứng phó với gió mạnh, hãy thực hiện các biện pháp đó theo tiêu chuẩn đã nêu.

(a) Có định căn trực bằng neo cần trực hoặc các thiết bị khóa khác.
(b) Nếu có bất kỳ vật thể nào có khả năng rơi xuống hoặc bay vào cần trực, hãy thực hiện các biện pháp ứng phó.

● Thực hiện kiểm tra sau khi có gió mạnh hay những điều kiện tương tự và xác nhận không có bất thường nào.
5.9 Tài nạn Công nghiệp từ Hoạt động của Cân trục (p.87)

Cân trục được sử dụng để vận chuyển vật nặng nên một tài nạn phát sinh từ hoạt động của cân trục có thể dẫn đến thiệt hại nghiêm trọng cho con người và vật chất. Lưu ý quan trọng để ngăn chặn tai nạn cân trục là thực hiện các biện pháp phòng ngừa thỏa đáng dựa trên nghiên cứu hồ sơ trước đây về các tai nạn của cân trục.

Sau đây là các trường hợp tai nạn cân trục được phân loại theo nguyên nhân:

(1) Rơi tài trọng
- Treo tài không đảm bảo (ví dụ: sử dụng dây cáp có đường kính quá lớn, đặt góc treo tài quá lớn hoặc treo tài với COG không cân bằng)
- Tài trọng dao động (do treo với COG của tài trọng léch khỏi tâm của móc nâng, treo không cân bằng, cân trục hoạt động không ổn, v.v.)
- Dây cáp bị dứt (do dây cáp không đủ độ bền, quá tải, sử dụng dây cáp bị hỏng, v.v.)
- Thiết bị treo tài bị dứt (do quá tải, sử dụng thiết bị treo tài xuống cáp hoặc hư hỏng, v.v.)

(2) Thương tích do tài trọng va phải hoặc chấn ép
- Lời của người vận hành (ví dụ: lời uc lượng khoảng cách bằng mất hoặc thao tác bất cân)
- Tin hiệu không chính xác

(3) Lất tài trọng (do treo tài không đảm bảo, xử lý chưa tốt vtr trái đổ hàng, phân đoạn sai của người vận hành, kẻ hoach lâm việc kém, v.v.)

(4) Rơi hoặc lật đỗ vật do tài trọng va phải
- Lời của người vận hành (ví dụ: lời uc lượng khoảng cách bằng mất, thao tác bất cân hoặc phân đoạn sai của người vận hành)
- Lời của người treo tài (ví dụ, tin hiệu không chính xác hoặc treo tài không đảm bảo)

(5) Thương tích do bị kẹt bởi thiết bị treo tài hoặc phụ kiện nặng (do tin hiệu không dây dũ, thiếu kỹ năng treo tài, hiểu nhầm tin hiệu, v.v.)

(6) Thương tích do bị kẹt bởi cân trục (do giao tiếp không dây dũ, người vận hành hiểu nhầm, v.v.)
(7) Thương tích do bị kết khối bánh răng dẫn đến (do thiếu hoắc không lập vỏ bảo vệ, công nhân mắc trang phục không phù hợp hoặc vị trí không ổn định, giao tiếp không đầy đủ, v.v.)

(8) Cắn trục bị lật hoặc hư hỏng (do kiểm tra không đầy đủ, lối ánh sáng kết cấu hoặc kỹ thuật, không có biện pháp phòng ngừa chống bão, v.v.)

(9) Thương tích do rơi khỏi cạn trục (do giấn cấu kém chất lượng, công nhân mặc trang phục không phù hợp, người vận hành không nhầm, v.v.)

(10) Rơi từ cạn trục (ví dụ, những vật dễ quên trên đầu cạn trục hoặc các bộ phận cạn trục bị lớn)

(11) Thương tích do điện giật (do tiếp xúc với dây dẫn trên, không tắt nguồn điện chính, vô tình bắt nguồn điện, v.v.)
Chương 3
Kiến thức về Động cơ chính và Đienie

1 Đienie (p.96)

1.1 Đienie áp, Đòng điện và Đienie trở (p.96)

Hình 3-1 Sơ đồ Mạch Đienie So với Nước
2.1 Bộ ngắn mạch và công tắc tổ điện từ để nối dây (p.105)

Hình 3-2 Bộ Bảo vệ Dụng chung

Hình 3-3 Bộ ngắn Rò điện Nối đất
3 Kiểm tra và sửa chữa mạch điện (p.116)

3.1 Nguy hiểm do Điện Giật (p.118)

Diễn giật (chan thương do điện) là một phần ứng sinh lý với những con dau và các tác động khác gây ra bởi dòng điện đi qua cơ thể. Mức độ ảnh hưởng đến cơ thể con người khác nhau tùy thuộc vào các điều kiện như đường độ dòng điện, thời gian truyền điện, loại dòng điện (AC hoặc DC), thành phần vật lý và tình trạng sức khỏe của người bị giật, v.v., đường độ của dòng điện và thời gian cấp điện chịu ảnh hưởng rất lớn nổi tiếng.

Nhin chung, các tiêu chí để ứng dụng mức độ nguy hiểm do điện giật thường chỉ được biểu thị bằng giá trị dòng điện. Mạt khác, Ủy ban Kỳ thuật điện Quốc tế (IEC) đánh giá theo tích của đường độ dòng điện và thời gian đã cho. Xem Hình 3-4. Hình về cho thấy giá trị khi dòng điện chạy từ tay trái xương cá hai chân và nguy cơ tử vong do rung tâm thất có thể xảy ra ở 1.000 mS (millisiemens) tại dòng điện 50 mA, ở 500 mS tại 100 mA và ở 10 mS tại 500 mA tương ứng. Tuy nhiên, ngay cả khi một dòng điện lớn chạy qua cơ thể con người do tiếp xúc với điện áp cao, vẫn có trường hợp người bị điện giật chỉ bị bong và có thể thoát được khi thời gian truyền điện rất ngắn.
<table>
<thead>
<tr>
<th>Vùng</th>
<th>Giới hạn</th>
<th>Phản ứng sinh lý</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC-1</td>
<td>AC-1 đến độ thị a 0,5 mA</td>
<td>Có thể nhận thức nhưng thường không có phản ứng 'giật mình'.</td>
</tr>
<tr>
<td>AC-2</td>
<td>0,5 mA đến độ thị b</td>
<td>Có thể nhận thức và co thắt các cơ ngoại ý nhưng thường không có phản ứng sinh lý do điện nguy hại.</td>
</tr>
<tr>
<td>AC-4</td>
<td>Trên đồ thị c<sub>1</sub></td>
<td>Có thể xảy ra phản ứng sinh lý bệnh lý như ngừng tim, ngừng thở và bóng hoặc tổn thương tế bào khác. Xác suất rung tâm thất tăng dần theo cường độ dòng điện và thời gian.</td>
</tr>
<tr>
<td></td>
<td>c<sub>1</sub> - c<sub>2</sub></td>
<td>AC-4.1 Xác suất rung tâm thất lên đến 5%</td>
</tr>
<tr>
<td></td>
<td>c<sub>2</sub> - c<sub>3</sub></td>
<td>AC-4.2 Xác suất rung tâm thất lên đến 50%</td>
</tr>
<tr>
<td></td>
<td>Ngoài độ thị c<sub>3</sub></td>
<td>AC-4.3 Xác suất rung tâm thất trên 50%</td>
</tr>
</tbody>
</table>

1) Đối với thời lượng của dòng điện dưới 200 ms, rung tâm thất chỉ bắt đầu ở giai đoạn đầu của tổn thương nếu vượt quá các ngưỡng liên quan. Đối với rung tâm thất, hình này liên quan đến tác động của dòng điện lưu chuyển từ tay trái đến bàn chân. Đối với các dòng điện diển khác, phải xét đến hệ số dòng điện qua tim.

Hình 3-4 Vùng thời gian/dòng điện thường quy của dòng điện xoay chiều (15 Hz đến 100 Hz) trên người đối với đường dòng điện tương đương từ tay trái đến chân.
Chương 4
Kiến thức về Động lực học Cần thiết để Văn hành Cần trực

1. Chữ đề Liên quan đến Lực (p.126)

1.1 Ba Yếu tố của Lực (Xem p.126)

1.2 Hành động và phản ứng (Xem p.127)

1.3 Hợp lực (p.127)

Như minh họa trong Hình 4-1 a, khi hai người kéo gốc cây bằng một sợi dây, gốc cây sẽ được kéo theo hướng mũi tên. Do đó, khi hai lực tác dụng lên một vật, hai lực này có thể được thay thế bằng một lực tổng hợp (lực kết hợp) có cùng tác dụng.

Hình 4-1 Hợp lực
Hình 4-1 b giải thích phương pháp tìm ra lực tổng hợp. Có thể xác định tổng của các lực F1 và F2, tác dụng lên điểm O từ hai hướng khác nhau bằng cách vẽ hình bình hành (OADB) với các lực này là hai cạnh bên. Đường chéo R trong hình biểu thị độ lớn và hướng của lực tổng hợp được xác định. Đây được gọi là quy tắc hình bình hành.
1.4 Phân giải lực (p.128)

"Phân giải lực" là quá trình phân chia lực tác dụng lên một vật thành hai hoặc nhiều lực theo các hướng khác nhau. Mỗi phân đoạn chia của một lực được gọi là "thành phần" hay "lực thành phần" của lực ban đầu.

Để tìm thành phần của một lực, người ta sử dụng hình bình hành của các lực được mô tả trong phần "hợp lực" theo trình tự người lại để phân chia lực thành hai hoặc nhiều lực có hướng khác nhau.

Chúng ta hãy nhìn vào người dân ông đang kéo một tạ trọng như trong Hình 4-2 làm ví dụ. Vì anh ta kéo sợi dây về phía trước hợp thành một góc so với mặt đất, lực là hoi hướng lên trên, nên tạ trọng vừa được kéo theo phương ngang (độc theo tạ trọng), nhưng đồng thời cũng theo phương thẳng đứng. Vì vậy, chúng ta phải tìm ra độ lớn thực sự của lực kéo tạ trọng theo phương ngang.

![Hình 4-2 Phân giải lực](image)

Như minh họa trong Hình 4-2 b, lực F (OA) được chia thành F1 (OB) và F2 (OC) sử dụng quy tắc hình bình hành. Đây là sự phân giải lực và có thể thấy rằng lực theo phương ngang của tạ trọng giờ là F1 (OB).
1.5 Mômen Lực (p.129)

Khi vặn đại ốc bằng cơ le, nếu bạn cầm gần về phía đầu trục cơ le thì sẽ dùng ít lực hơn so với khi cầm ở giữa trục.

Hình 4-3 Mối quan hệ giữa Đồ lớn và Cánh tay don của Lực

Hình 4-4 Momen của Đơn bảy

Một đại lượng được biểu thị bằng tích của đồ lớn lực và chiều dài cánh tay don của lực đó, liên quan đến một trục xoay hoặc một điểm tựa đã gọi như mô tả ở trên, được gọi là “mômen lực”.

Với đồ lớn của lực là F và chiều dài của cánh tay don là L, thì mômen lực M có thể được viết là $M = F \times L$.

Trong đồ đồ lớn của lực F được cho là N (newton) và chiều dài của cánh tay don L tính bằng m (mét), mômen của lực M có thể được biểu thị bằng $N\cdot m$ (mét newton).

$M_1 = 9,8 \times m \times L_1$, $M_2 = 9,8 \times m \times L_2$
Hình 4-5 Mômen Tác dụng lên Cần trục Kiểu căn
Thông thường mômen tác dụng để xoay một vật theo chiều kim đồng hồ hoặc ngược chiều kim đồng hồ.
Do đó, để tìm tổng hoặc trung bình của hai hoặc nhiều mômen, bạn phải tính đến hướng xoay của từng mômen.
1.6 Sự cân bằng của các Lực Song song (p.133)

Hình 4-6 minh họa một công nhân đang mang hai tài trọng trên hai đầu cây sào. Để giữ ở mức ngang vải, cây sào phải nằm ở giữa nếu hai tài có trọng lượng bằng nhau, nhưng nếu trọng lượng của chúng khác nhau, sao phải được giữ ở điểm gần tải nặng hơn. Điều này là do sự cần thiết phải cân bằng mômen của các lực.

Hình 4-6 Sự cân bằng của các Lực Song song

Trong số đó này, chúng ta hãy xem xét các mômen của lực với vai của công nhân là trục quay. Với trọng lượng của hai tài trọng là m1 và m2 và với các vị trí doi tài trọng trên sào (khoảng cách ngang giữa tài trọng và vai) được cho là L1 và L2

Mômen theo chiều kim đồng hồ: M1 = 9,8 x m1 x L1
Mômen ngược chiều kim đồng hồ: M2 = 9,8 x m2 x L2

Các mômen quanh trục quay được giữ ở trạng thái cân bằng như sau:

\[
\begin{align*}
9,8 \times m1 \times L1 &= 9,8 \times m2 \times L2 \\
m1 \times L1 &= m2 \times L2 \\
m1 \times L1 &= m2 \times (L - L1) \\
m1 \times L1 &= m2 \times L - m2 \times L1 \\
m1 \times L1 + m2 \times L1 &= m2 \times L \\
L1 \times (m1 + m2) &= m2 \times L \\
(\text{Lưu ý rằng } L &= L1 + L2)
\end{align*}
\]

Không cần phải nhớ, vai của người công nhân đứng vai trỏ là trục quay�� trọng lượng của các tài trọng (m1 + m2).

Phương trình (6) có thể được viết lại thành:

\[
L1 = \frac{m2}{m1 + m2} \times L
\]

Theo đó, các tài trọng sẽ cân bằng nên cây sào được giữ tại điểm được xác định bằng cách chia trên cây sào theo tỷ lệ nghịch với trọng lượng của tài trọng m1 và m2.
Khối lượng và Trọng Tâm (p.135)

Hãy tham khảo tài liệu hướng dẫn.

Chuyển động (p.140)

3.1 Vận tốc (p.141)

Tốc độ là một đại lượng cho thấy chuyển động nhanh chậm của một vật. Đại lượng này được biểu thị bằng khoảng cách mà vật di chuyển trong một đơn vị thời gian.

Nếu một vật chuyển động đều di chuyển 50 mét trong 10 giây, thì tốc độ của vật đó được biểu thị là 5 m/s. Tốc độ của một vật trong chuyển động đều được biểu thị bằng kết quả của phép chia khoảng cách mà vật đã đi chuyển trong một khoảng thời gian nhất định cho khoảng thời gian cần thiết để di hết khoảng cách đó, như được viết dưới đây:

\[\text{Vận tốc (v)} = \frac{\text{Khoảng cách (L)}}{\text{Thời gian (t)}} \]

Các đơn vị tốc độ thường được sử dụng là mét trên giây (m/s), mét trên phút (m/phút) và km trên giờ (km/h).

Tuy nhiên, khi xác định chuyển động của một vật, hậu như khó mà chỉ nói về tốc độ không thôi. Chúng ta cũng phải tìm hướng chuyển động của vật, và thuật ngữ “vận tốc” thường được sử dụng như một đại lượng có cả hướng và tốc độ chuyển động.

3.2 Quán tính (p.142)

Một vật thể luôn có xu hướng dừng yên nếu đang dừng yên, hoặc tiếp tục di chuyển nếu đang di chuyển, theo cùng một hướng, trừ khi vật bị ảnh hưởng bởi ngoại lực. Xu hướng này được gọi là “quán tính”, và lực tác dụng lên vật thể do quán tính được gọi là “lực quán tính”.

[Hình 4-7 Quán tính]
3.3 Lực Hướng tâm và Lực Ly tâm (p.143)

Khi một vận động viên ném nón tự mình, sau khi xoay nhanh để tạo chuyển động tròn rồi thả thay khởi động giữ, ta sẽ bay theo hướng tiếp tuyến với vòng trong tại điểm thả ra. Để làm cho ta tiếp tục chuyển động tròn, vận động viên phải tiếp tục kéo nó về phía trung tâm của vòng tròn.

Để đạt một vật thể vào chuyển động tròn, phải tác dụng một vui lục (trong trường hợp trên là lục của tay cầm tạ bằng vòng) lên vật đó. Lực đạt một vật thể vào chuyển động tròn được gọi là lục hướng tâm. Trong sự tương tác này, lực có đó lớn ngang bằng nhưng ngược hướng với lực hướng tâm được gọi là “lục ly tâm”.

Hình 4-8 Lực Hướng tâm và Lực Ly tâm
Như minh họa trong Hình 4-9, tài trọng quay càng nhanh, lực ly tâm càng lớn, dẫn đến sự chuyển động của tài trọng ra bên ngoài. So với tinh huống tài trọng nâng ở trạng thái nghỉ, tình này làm tăng momento của lực tác dụng làm cho cần trục kiểu cân bị hỏng. Trong một số tình huống xấu, cố khả năng là cần trục sẽ rơi thực sự.

Hình 4-9 Chuyển động ra Bên ngoài của Tài trọng Năng và Những thay đổi trong Bán kinh Hoạt động do Lực Ly tâm
Cụm Ròng rọc (p.145)

“Cụm ròng rọc” là thuật ngữ chung cho một tổ hợp bao gồm sự kết hợp của các puli. Tổ hợp này có thể được chia thành các loại sau:

4.1 Ròng rọc Có định (p.145)

Loại ròng rọc này được cố định tại một nơi quy định như trong Hình 4-10. Việc bạn phải làm để nâng một tải trong bàng ròng rọc cố định là kéo đầu dây bên kia xuống. Nơi cách khác, thiết bị này chỉ thay đổi hướng của lực đặt vào, còn độ lớn của lực không thay đổi. Ví dụ, để nâng tải lên 1 mét, bạn chỉ phải kéo dây xuống 1 mét.

![Hình 4-10 Ròng rọc Có định](image-url)
4.2 Ròng rộc Di động (p.146)

Đây là loại ròng rọc giống như ròng rọc được sử dụng cho các cụm móc của c.environment. Như minh họa trong Hình 4-11, một ròng rọc di động được vận hành bằng cách di chuyển lên xuống một đầu (đầu A trong sơ đồ) của sợi dây chạy trên bánh xe hoặc các bánh xe của ròng rọc, với đầu còn lại gần cố định. Ròng rọc tự di chuyển lên xuống mang theo một tạ trọng, theo chuyển động thẳng đứng của đầu dây A. Bạn có thể nâng tạ trọng bằng thiết bị này với một lực tương đương với một nửa trong lượng của tạ (giá sử rằng ròng rọc không có ma sát), nhưng khi dây được kéo lên 2 mét chẳng hạn, tạ trọng chỉ đi chuyển lên 1 mét - một nửa chiều dài của dây được kéo. Nói cách khác, ròng rọc đòi hỏi một lực đầu vào nhỏ hơn để nâng một trong lượng cho trước nhưng phải kéo dây dài hơn rất nhiều.

Trong khi đó, hướng của lực đạt vào ván không thay đổi khi dây được kéo lên mỗi khi tải trọng được nâng lên.

\[
F = \frac{F_w}{2}
\]

\[
F_w = 9.8 \times m
\]

Hình 4-11 Ròng rọc Di động
4.3 Ròng rộc Kết hợp (p.147)

Cụm ròng rộc kết hợp được tạo ra bằng cách kết hợp một số ròng rộc di động và cố định, có thể nâng hoặc hạ tải trong rất nhanh bằng một lực tương đối nhỏ. Sự kết hợp của ba ròng rộc di động và ba ròng rộc cố định, như mô tả trong Hình 4-12, có khả năng nâng một tải trọng với một lực tương đương chỉ bằng một phần sau trọng lượng của tải trọng, giải định hệ thống ròng rộc không có ma sát. Tuy nhiên, hệ thống này chỉ có thể nâng tải trọng lên một phần sau mét khi kéo dây lên một mét. Điều này có nghĩa là với tốc nâng hoặc hạ tải trọng cùng bằng một phần sau vận tốc của lực duga vò.

\[
F = \frac{1}{2 \times n} \times Fw \\
Vm = \frac{1}{2 \times n} \times v \\
L = 2 \times n \times L
\]

- \(F\): Luc kéo dây
- \(Fw\): Trọng lượng tải trọng
- \(Vm\): Tốc độ quẩn
- \(v\): Tốc độ nâng tải trọng
- \(L\): Chiều dài quấn
- \(Lm\): Khoảng cách nâng tải trọng

Hình 4-12 Ròng rộc Kết hợp (Ba Ròng rộc Di động)

Trong Hình 4-13 là một ví dụ về hệ thống ròng rộc kết hợp cho cân trục.

Hình 4-13 Ròng rộc Kết hợp (Bốn Ròng rộc Di động cho Cân trục)
5 Tải (p.148)

Tải trọng là lực tác dụng lên một vật từ bên ngoài (tức là ngoại lực). Có nhiều cách phân loại khác nhau tùy theo cách thức lực đó tác dụng lên vật có liên quan.

5.1 Phân loại theo Hướng của Lực

Tải trọng Kéo

Tải trọng kéo kéo một thanh bằng lực F tác dụng lên trục doc của thanh. Một ví dụ điển hình của lực này là tải trọng trên dây cáp nâng hàng hóa.

![Hình 4-14 Tải trọng Kéo](image)

Tải trọng Nén

Tải trọng nén hoạt động theo hướng ngược với tải trọng kéo, như minh họa trong Hình 4-15, để nén thanh theo chiều doc bằng lực F. Bạn có thể tìm thấy ví dụ điển hình trong tính hướng lực tác dụng lên pitông của con đội.

![Hình 4-15 Tải trọng Nén](image)
Tải trọng Cắt

Một bu lông doa khi tiếp xúc với lực F như mô tả trong Hình 4-16, có thể bị cắt đờm theo mặt cắt song song với hướng F nếu lực này rất mạnh. Tác dụng như vậy của lực được gọi là “tải trọng cắt”.

![Hình 4-16 Tải trọng Cắt](image)

Tải trọng Uốn

Một đặm được đờ đở cài hai đầu có thể uốn cong nếu lực F vuông góc với trục đờ mà đặm tác động lên như minh họa trong Hình 4-17. Tác dụng này của lực được gọi là “tải trọng uốn”. Ví dụ về tải trọng này là trong trọng lượng của tải trọng hoặc xe tơi làm việc trên đếm ngang của căn trục cấu chây.

![Hình 4-17 Tải trọng Uốn](image)
Tải trọng Xoắn

Một trụ có thể bị xoắn nếu một đầu của trụ được cố định và đầu kia tiếp xúc với lực F tác dụng theo hai hướng ngược nhau trên chu vi của trụ, như mô tả trong Hình 4-18. Tác dụng như vậy của lực được gọi là “tải trọng xoắn”. Bạn có thể tìm thấy ví dụ về tải trọng này trong trường hợp trụ của tổ được kéo và xoắn bởi dây cáp.

![Hình 4-18 Tải trọng Xoắn](attachment:image.png)

Tải trọng Gớp

Các bộ phận cơ khí của cần trục bị ảnh hưởng thường xuyên hơn bởi sự kết hợp của các tải trọng được mô tả ở trên thay vì các tác dụng riêng lẻ của chúng. Ví dụ, dây cáp và móc đều chịu tác dụng kết hợp của tải trọng kéo và ưỡn, trong khi các trụ của bộ phận chịu lực nổi chung phải chịu sự kết hợp của tải trọng arrière và xoắn.
5.2 Phân loại theo tốc độ của tài trọng

Tại trọng Tĩnh
Tại trọng tĩnh có nghĩa là tại trọng có định hoặc dừng yên, có độ lón và hướng lục bất biến giống như trọng lực chuyển của kết cấu cần trực.

Tại Trọng Động
Tại trọng động, vốn có thể thay đổi về độ lớn, được chia làm hai loại. Một là tại trọng lặp, liên tục thay đổi theo thời gian và hai là tại trọng xung, tác dụng lực dột ngọt lên một vật trong một khoảng thời gian rất ngắn.

Tại trọng lặp có thể được chia thành tại trọng tác động đơn và tại trọng tác động kép, trong đó loại trước luôn tác động theo cùng một hướng nhưng thay đổi độ lón theo thời gian như tại trọng trên các bộ phận dây cáp và vòng bi tơ của cần trực, trong khi loại sau thay đổi theo thời gian cá về hướng và độ lớn như tại trọng trên trực truyền động bánh răng.

Mấy mô hoặc cấu trúc có thể bị hư hỏng dưới bất kỳ tài trọng động nào ngay cả khi đường độ của tài nhỏ hơn nhiều so với tài trọng tĩnh. Hiển tượng này được gọi là “đổ bộ mới”, nay sinh từ sự mở cửa vật liệu, chiếm một tỷ lệ đáng kể trong các sự cố gây xẩy ra trên thực tế.

![Hình 4-19 Phân loại Tại Trọng Động](image)

Phân Loại Khác
Cùng có thể phân loại tài trọng theo trạng thái phân bố của tài, thành tài trọng tập trung và tài trọng phân tán, trong đó loại trước tập trung vào một điểm hoặc một vùng rất nhỏ trong khi loại sau tác động trên một diện rộng.
Bát kỳ đối tượng nào, khi chịu tải, sẽ tạo ra một lực trong đó (nơi lực) tác dụng để chống lại và đối trọng với tải trọng được áp dụng như trong Hình 4-20. Nơi lực này được gọi là “ứng lực”, có cường độ bằng độ lớn của lực trên một đơn vị diện tích.

Hình 4-20 Ứng lực

Ứng lực có thể được chia thành ứng lực kéo, nén và cắt, trong đó loại thứ nhất xảy ra dưới tải trọng kéo, loại thứ hai dưới tải trọng nén và loại thứ ba dưới tải trọng cắt. Với diện tích mặt cắt của thành phần kết cấu chịu tải là A và tải trọng kéo tác dụng trên thành phần này là F kg, thì ứng lực kéo có thể được viết là:

\[\text{Ứng lực kéo} = \frac{\text{Tải trọng kéo tác dụng lên thành phần kết cấu (N)}}{\text{Diện tích mặt cắt của thành phần kết cấu (mm}^2) \} = \frac{F}{A} (\text{N/mm}^2) \]
Đồ bèn của Dây Cáp, Xích và các Thiết bị Treo tài Khác (p.152)

Đây cáp, xích hoặc thiết bị treo tài khác có đồ bèn khác nhau, tùy thuộc vào vật liệu cấu thành, ngay cả khi chúng có cùng kích thước và hình dạng. Những hàng mục này cũng chịu một lực lớn hơn nhiều so với trọng lượng của tài trọng nâng vị trọng lượng này tác động đồng lên chúng. Hãy tính đến các yếu tố này và thực hiện các bước thông thường để đạt tiêu chuẩn tham chiếu tràphơn tài trọng, ở mức đó, thiết bị treo tài được chọn như dây cáp hoặc xích có thể bị dứt. Sau đó, sẽ có sắp xếp để tránh sử dụng thiết bị treo tài phía trên tài trọng tham chiếu và để đảm bảo một phương tiện hiệu quả để so sánh trực tiếp tài trọng tham chiếu với tài trọng thực tế được tạo ra bởi thiết bị treo tài, để cung việc nâng có thể được thực hiện một cách an toàn và tròn trịa.

Tài trọng phá hủy

Tài trọng phá hỏng là tài trọng tối đa tại đó dây cáp đオン bị dứt. (Đơn vị: kN)

Hệ số an toàn

Tỷ số giữa tài trọng phá hủy của dây cáp và xích với tài trọng tối đa áp dụng lên chúng được gọi là "hệ số an toàn".

Hệ số an toàn được xác định bằng cách xem xét chúng loại, hình dạng, vật liệu và phương pháp sử dụng thiết bị treo tài. Hệ số an toàn cho thiết bị treo tài được quy định trong Safety Ordinance for Cranes (Pháp lệnh An toàn cho Cân trục) như sau:

- Dây cáp: 6 trớ lên
- Xích: 5 trớ lên, hoặc 4 trớ lên khi đáp ứng các điều kiện nhất định
- Móc, khóa nối xích: 5 trớ lên (Xem p.155.)

Kẹp và móc cấu cũng được sử dụng, và việc sử dụng các dây cáp dạng sợi như dải treo và vòng treo cùng trở nên phổ biến hơn. Mức độ hệ số an toàn của các hàng mục này chưa được định rõ trong các quy định, nhưng Japan Crane Association Standard (Tiêu chuẩn Hiệp hội Cân trục Nhật Bản) đã quy định hệ số an toàn như sau:

- Kẹp và móc cấu: 5 trớ lên
- Dải treo, vòng treo: 6 trớ lên

Tài trọng An toàn Tiêu chuẩn

Tài trọng an toàn tiêu chuẩn (hoặc tài trọng cho phép tiêu chuẩn) là tài trọng tối đa có thể được nâng lên theo phương pháp dùng bằng cách sử dụng một dây cáp đơn, có tính đến hệ số an toàn này. Có thể tính giá trị này theo phương trình sau đây.

Tài trọng An toàn Tiêu chuẩn \(t \) = Tài trọng Phá hủy \((kN) \) / \((9.8 \times \text{Hệ số An toàn})\)
Tải trọng An toàn

Tải trọng an toàn (hoặc tải trọng cho phép) là tải trọng tối đa (t) có thể được nâng lên theo phương thẳng đứng bằng cách sử dụng dây cáp hoặc xích, theo số lượng dây và góc treo tải. Một số thiết bị treo tải cho thấy tải trọng an toàn cũng chính là tải trọng định mức hoặc tải trọng cho phép.

Tải trọng an toàn của Mộc Treo và Thiết bị Treo tải

Nhà sản xuất cho biết tải trọng an toàn hoặc tải trọng cho phép của móc treo và bánh răng treo với hệ số an toàn.

![A] Mắc xích nâng tải hình yên ngựa

![B] Mắc xích nâng tải dạng thẳng

Hình 4-21 khóa nối xích
Mối quan hệ giữa Số lượng Dây cáp và Tài (p.155)

8.1 Tài trọng sử dụng cho dây cáp (p.155)

Tài trọng sử dụng cho dây cáp thay đổi tùy thuộc vào trọng lượng của tài, số lượng dây và góc treo tài.

Số lượng Dây và Góc Treo tài

Số lượng dây được biểu thị là Một dây treo với hai điểm, Hai dây treo với hai điểm, Bốn dây treo với bốn điểm hoặc tùy thuộc vào số lượng điểm treo tài trọng. Góc treo tài (góc giữa các sợi dây treo được gắn vào môc) được minh họa trong tài liệu hướng dẫn. (Fig.4-39, tr.156)

Khi tài trọng được nâng lên bằng hai dây cáp như trong Hình 4-22, lực để đối trọng m của tài trọng là lực tổng hợp (F) của các lực căng (F1, F2), mỗi lực đều lớn hơn giá trị F/2. Đối với tài trọng có trọng lượng cho trước, lực căng F1 và F2 tăng lên khi góc treo tài tăng.

Ngoài ra, thành phần nằm ngang P của các lực căng F1 và F2 cũng tăng theo góc treo tài. Thành phần nằm ngang P này hoạt động như một lực nén trên tài trọng và kéo các dây cáp treo tài hướng vào trong. Do đó phải hết sức thận trọng khi góc treo tài lớn.

![Hình 4-22 Lực căng của dây cáp treo tài](image)

- Trong lượng của tài trọng (t): 9,8 x m (kN)
- Lực căng của dây cáp (kN)
- Lực tổng hợp (kN)
- F = Fw
- Lực kéo dây cáp treo tài hướng vào trong (kN)
Độ cẳng

Hệ số cẳng là giá trị đề tính tải trọng (lực cẳng) tác dụng lên dây cáp đơn ứng với mỗi góc treo tài. Có thể tính tải trọng (lực cẳng) trên dây cáp đơn bằng cách tìm hệ số cẳng và số lượng dây ngay cá khi số lượng dây thay đổi. Để biết mối quan hệ giữa góc treo tài của dây cáp và lực cẳng, hãy tham khảo tài liệu hướng dẫn.
(Bảng 4-4, tr.157)
Hình 4-23 minh họa mối quan hệ giữa góc treo tài và lực cẳng của dây cáp, cho thấy khi góc treo tài tăng lên, phải sử dụng dây cáp to hơn ngay cá khi trọng lượng của tài không đổi, do lực cẳng tác dụng lên dây cáp tăng lên. Nếu góc treo tài tăng quá nhiều, mặt của dây cáp treo có thể bị rơi ra khỏi móc. Do đó, bạn cần đảm bảo rằng góc treo tài là 60 độ hoặc ít hơn.

Hình 4-23 Mối quan hệ giữa Góc Treo tài và Lực cẳng

Hệ số quy cách

(Xem Bảng 4-5, tr.157.)
8.2 Tính toán để Chọn Dây Cáp Treo tải (tr.159)

Để tính toán tải trọng an toàn cho việc lựa chọn dây cáp treo tải, người ta sử dụng hệ số căng và hệ số quy cách.

Tính theo Hệ số Căng

Có thể tính tải trọng an toàn tiêu chuẩn cần thiết cho dây cáp đơn theo phương trình sau đây.

\[\text{Tải trọng an toàn tiêu chuẩn cần thiết cho dây cáp đơn} = \left(\frac{\text{Trọng lượng của Tải trọng}}{\text{Số lượng dây}} \right) \times \text{Hệ số Căng} \]

Tính theo Hệ số Quy cách

Có thể tính tải trọng an toàn tiêu chuẩn cần thiết cho dây cáp đơn theo phương trình sau đây.

\[\text{Tải trọng An toàn Tiêu chuẩn} = \frac{\text{Trọng lượng của Tải trọng}}{\text{Hệ số Quy cách}} \]
Chương 5
Phương pháp Báo hiệu

1 Phương pháp Báo hiệu (p.160)

Các phương tiện báo hiệu khác nhau, bao gồm chuyển động của tay, cờ và còi (làm tín hiệu bổ sung cho chuyển động của tay hoặc cờ) được sử dụng để giao tiếp với người vận hành cần trực, nhưng nhìn chung, tín hiệu bằng tay được sử dụng rộng rãi.

Lưu ý chủ yếu trong việc báo hiệu bằng tay là đưa ra các tín hiệu riêng biệt bằng các chuyển động quy định của bàn tay một cách rõ ràng, dễ nhận thấy, không thể nhầm lẫn.

Người vận hành cần trực phải tương tác với tất cả các tín hiệu được sử dụng, vì vậy họ có thể dễ dàng hiệu chỉnh xác các tín hiệu được cung cấp và vận hành chính xác cần trực theo đó.

Để ngăn chặn bất kỳ tai nạn nào có thể phát sinh từ lỗi báo hiệu, người vận hành phải tầm ngưỡng hoạt động của cần trực trong các trường hợp sau:

- Khi tín hiệu không rõ ràng
- Khi họ nhận được bất kỳ tín hiệu nào khác với những tín hiệu được quy định
- Khi họ nhận được tín hiệu từ hai hoặc nhiều người báo hiệu
- Khi bất kỳ công nhân nào, ngoài người báo hiệu được chỉ dịch, đưa ra tín hiệu

1.1 Báo hiệu bằng Chuyển động của Tay (Xem p.161 - 163)

1.2 Báo hiệu bằng Âm thanh (Xem p.165)

Chương 6

Luật và Quy định Có liên quan

1. **Industrial Safety and Health Law (Luật an toàn và Sức khỏe Công nghiệp)**
 - Luật số 57 ngày 8 tháng 6 năm 1972
 - (Cáp giấy Chứng nhận Kiểm định, v.v.) tr.171
 - Điều 39
 (Hạn chế trong Tuyển dụng) tr.173
 - Điều 61
 Trong trường hợp ngành nghề thuộc một trong những ngành được quy định trong Cabinet Order (Lệnh Nơi các), chủ lao động phải tiến hành đào tạo về an toàn và/hoặc y tế, bảo đảm các vấn đề sau cho những người mới đảm nhiệm vai trò làm trọng kip hoặc những người khác, đề họ thực hiện hướng dẫn hoặc giám sát công nhân trong các hoạt động (trừ trường hợp văn hành), theo quy định của Ordinance of Ministry of Health, Labour and Welfare (Pháp lệnh của Bộ Y tế, Bộ Lao động và Bộ Phúc lợi):
 1. Các vấn đề liên quan đến việc quyết định phương pháp làm việc và phân công công nhân
 2. Các vấn đề liên quan đến phương pháp hướng dẫn hoặc giám sát công nhân
 3. Ngoài các vấn đề được liệt kê ở hai mục trước, các vấn đề cần thiết để phòng ngừa tai nạn công nghiệp, theo quy định của Ordinance of Ministry of Health, Labour and Welfare (Pháp lệnh của Bộ Y tế, Bộ Lao động và Bộ Phúc lợi)

2. **Lệnh Thi hành Đạo luật An toàn và Sức khỏe Công nghiệp**
 - Sửa đổi của Cabinet Order (Lệnh Nơi các) số 13 năm 2012
 - (Các loại Máy móc Quy định, v.v.) tr.170
 - Điều 12
 1. Các loại máy móc, v.v. được quy định trong Cabinet Order (Lệnh Nơi các) được nêu ở đoạn (1) Điều 37 của Đạo luật (không bao gồm các loại máy móc chấn thương không được sử dụng trong nước) là các loại máy móc, v.v. được liệt kê sau đây:
 3. Cận trực có sức nặng từ 3 tấn trở lên (đối với cảnh trực xếp chồng là 1 tấn trở lên)
Pháp lệnh An toàn cho Cận trục

Sửa đổi Ordinance of Ministry of Health, Labour and Welfare (Pháp lệnh của Bộ Y tế, Bộ Lao động và Bộ Phúc lợi) Số 1 năm 2006

(Giấy chứng nhận Kiểm định cho Cận trục) tr.178

Điều 9
Đối với cận trục đã qua kiểm định toàn bộ hoặc cận trục được nêu ở đoạn (1) của Điều 6, Trưởng Văn phòng Kiểm định Tiêu chuẩn Lao động có Thẩm quyền có trách nhiệm cấp giấy chứng nhận kiểm định (Mẫu số 7) cho người nộp đơn theo quy định tại đoạn (6) của cùng Điều khoản.

(Giấy chứng nhận Kiểm định cho Cận trục) tr.178

Điều 10
Thời hạn hiệu lực của giấy chứng nhận kiểm định cận trục là hai năm. Tuy nhiên, dựa trên kết quả kiểm định toàn bộ, thời hạn hiệu lực nội trên có thể bị giới hạn dưới hai năm.

(Giấy chứng nhận Kiểm định cho Cận trục) tr.179

Điều 16
Khi tiến hành công việc có sử dụng cận trục, chủ lao động phải cung cấp giấy chứng nhận kiểm định cho cận trục đó tại nơi tiến hành công việc nội trên.
(Hạn chế Quá tài) tr.180-181

Điều 23
Chủ lao động không được sử dụng cấp trực với tài trong vượt quá Công suất Định mức của cấp trực.

2. Mặc dù có quy định trong đoạn trước, nhưng trong trường hợp không thể tuân theo các quy định trong đoạn đó vì lý do bất khả kháng và khi thực hiện các biện pháp sau đây, chủ lao động có thể sử dụng cấp trực để tài quá Công suất Định mức theo thử nghiệm như quy định trong đoạn (3) của Điều 6:

(i) để nộp trước một báo cáo trường hợp đặc biệt của cấp trực (Mẫu số 10) cho Trưởng Văn phòng Kiểm định Tiêu chuẩn Lao động có Thẩm quyền;

(ii) đề xắc nhận trước rằng không có bất thường bằng cách tiến hành thử tài như quy định trong đoạn (3) của Điều 6;

(iii) đề cề mình một người giám sát hoạt động và vận hành cấp trực dưới sự giám sát trực tiếp của người đó.

(Hạn chế Quá tài) tr.180-181

Điều 25
1. Khi tiến hành công việc có sử dụng cấp trực, chủ lao động phải thiết lập các tinh hiệu có định cho hoạt động của cấp trực, chỉ định một người đưa ra các tinh hiệu nơi trên và yêu cầu người đó thao tác theo các tinh hiệu đã lập. Tuy nhiên, điều này không áp dụng khi chỉ có một người vận hành cấp trực làm việc một mình.

2. Người được chỉ định theo đoạn trước, khi tham gia vào công việc được neu trong đoạn đó, phải thao tác theo các tinh hiệu đã nêu trong đoạn đó.

3. Những công nhân tham gia vào công việc được neu trong đoạn (1) phải tuân theo các tinh hiệu được neu ở đoạn đó.

(Hạn chế Lê tréo) tr. 181

Điều 26
Chủ lao động không được đi chuyển công nhân bằng cấp trực, cũng như không được công nhân du lên cấp trực.
(Tự Kiểm tra Định kỳ) tr.184

Diều 34
1. Sau khi lập đặt căn trực, chủ lao động phải tự kiểm tra các căn trực nội trên định kỳ theo từng khoảng thời gian trong vòng một năm. Tuy nhiên, không áp dụng quy định này cho khoảng thời gian không sử dụng căn trực, nếu không sử dụng trong thời gian hơn một năm.
2. Đối với căn trực được nueva trong điều khoản của đoạn trước, chủ lao động phải tiến hành tự kiểm tra trước khi tiếp tục sử dụng căn trực.
3. Chủ lao động phải tiến hành thử tài trong quá trình tự kiểm tra được quy định trong hai đoạn trước. Tuy nhiên, không áp dụng quy định này cho các căn trực thuộc bất kỳ mục nào sau đây:
 (i) căn trực đã được thử tài theo quy định ở đoạn (1) của Điều 40 trong vòng hai tháng trước khi điền ra hoạt động tự kiểm tra nội trên, hoặc thời hạn hiệu lực của giấy chứng nhận kiểm định căn trực sẽ hết hạn trong vòng hai tháng sau lần tự kiểm tra này;
 (ii) căn trực được lập đặt tại các nhà máy điện, trạm biến áp, v.v., nơi gặp nhiều khó khăn khi thử tài, và việc thử tài được Trưởng Văn phòng Kiểm định Thiếu chuẩn Lao động có thẩm quyền cho rằng không cần thiết.

(Tự Kiểm tra Định kỳ) tr.185

Diều 36
Khi thực hiện công việc sử dụng căn trực, chủ lao động phải rà soát các hạng mục sau đây của căn trực trước khi bắt đầu công việc trong ngày:
 (i) chức năng của các thiết bị chính quản quán quá mức, phanh, bò ly hợp và điều khiển;
 (ii) tình trạng phản trên đường chạy và đường ray mà xe tòi đi qua;
 (iii) tình trạng của các bộ phận mà ngày cấp luôn qua.

(Hồ sơ Tự kiểm tra, v.v.) tr.185

Diều 38
Chủ lao động phải ghi lại kết quả tự kiểm tra và rà soát được quy định trong Phần này (không bao gồm các hạng mục rà soát quy định tại Điều 36) và lưu giữ các hồ sơ này trong ba năm.
(Trả lại Giấy chứng nhận Kiểm định) tr.186

Điều 52
Khi ngưng sử dụng hoặc thay đổi Công suất Năng lượng dưới 3 tấn (đối với cần trục kiểu xếp chồng là dưới 1 tấn), người đã lắp cần trục phải trả lại giấy chứng nhận kiểm định cần trục cho Trưởng Văn phòng Kiểm định Tiêu chuẩn Lao động có thẩm quyền.

(Hệ số An toàn của Xích Treo tải) Tr.186-187

Điều 213-2
1. Chữ lao động không được sử dụng xích làm thiết bị treo tải cho cần trục, Cần trục Tư hành hoặc đêrit, trừ khi hệ số an toàn của xích lớn hơn giá trị được liệt kê trong các mục sau đây, dựa trên các loại xích treo tải.
 (i) xích có tấc cắm các thuộc tính sau đây: 4:
 a) trong trường hợp kéo với một lực bằng một nửa tải trọng pha huy của xích, thì đỡ gián phải từ 0,5% trở xuống; và
 b) giá trị của độ bẹn kéo là 400 N/mm² trở lên và đỡ gián của xích bằng hoặc cao hơn giá trị được liệt kê trong cột benz phải của bảng sau đây, tương ứng với giá trị độ bền kéo được liệt kê trong cột benz trái của bảng đó:

<table>
<thead>
<tr>
<th>Độ bền kéo (N/mm²)</th>
<th>Độ gián (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 trở lên và nhỏ hơn 630</td>
<td>20</td>
</tr>
<tr>
<td>630 trở lên và nhỏ hơn 1000</td>
<td>17</td>
</tr>
<tr>
<td>Hơn 1000</td>
<td>15</td>
</tr>
</tbody>
</table>

(ii) xích không nằm trong mục trước: 5.

2. Hệ số an toàn nếu trong đoạn trước là giá trị thu được từ việc chia tải trọng pha huy của một xích treo tải cho giá trị tải tối đa được treo trên xích đó.

(Hệ số An toàn của Mộc, v.v.) tr.187

Điều 214
1. Chữ lao động không được sử dụng mộc hoặc khóa nôi xích làm thiết bị treo cho cần trục, Cần trục Tư hành hoặc đêrit, trừ khi chúng có hệ số an toàn từ 5 trở lên.

2. Hệ số an toàn nếu trong đoạn trước là giá trị thu được từ việc chia tải trọng pha huy của mộc hoặc khóa nôi xích cho giá trị tải trọng tối đa được treo trên mộc hoặc khóa nôi xích đó.