# 有害性評価書

物質名:アンチモン及びその化合物

1. 化学物質の同定情報 1) (主たる化合物については下表参照)

名称:アンチモン及びその化合物

別名:特定できない 化学式:特定できない 分子量:特定できない

CAS 番号:特定できない

労働安全衛生法施行令別表 9 (名称を通知すべき有害物)第38号

## 2. 物理化学情報

## (1) 物理的化学的性状 1)

|                   | アンチモン     | 三酸化二アンチ                     | 三塩化アンチモン          | 五フッ化ア            | 水素化アンチモン         |
|-------------------|-----------|-----------------------------|-------------------|------------------|------------------|
|                   |           | モン                          |                   | ンチモン             |                  |
| 別名                | アンチモニー    | 酸化アンチモン                     | 塩化アンチモン           |                  | スチビン             |
|                   |           | (III)                       | (III)             |                  |                  |
| CAS 番号            | 7440-36-0 | 1309-64-4                   | 10025-91-9        | 7783-70-2        | 7803-52-3        |
| 化学式               | Sb        | $\mathrm{Sb}_2\mathrm{O}_3$ | $\mathrm{SbCl}_3$ | $\mathrm{SbF}_5$ | $\mathrm{SbH}_3$ |
| 分(原)子量            | 121.8     | 291.5                       | 228.1             | 216.8            | 124.8            |
| 外観                | 白色光沢塊     | 白色の結晶性粉                     | 刺激臭、吸湿性無色         | 油状無色吸            | 刺激臭のある、無色        |
|                   | 状         | 末                           | 結晶                | 湿性液体             | の圧縮ガス            |
| 沸点、℃              | 1635      | 1550(一部昇華)                  | 223.5             | 141              | -18              |
| 融点、℃              | 630       | 656                         | 73                | 8.3              | -88              |
| 引火点、℃             | -         | -                           | -                 | -                | 引火性ガス            |
| 密度、               | 6.7       | 5.2/5.7                     | 3.14              | 3.00             | 2.26∕-25°C       |
| g/cm <sup>3</sup> |           | 結晶構造で異な                     |                   | (比重、水=1)         |                  |
|                   |           | る                           |                   |                  | (比重、水=1)         |
| 蒸気密度(空            | -         | -                           | -                 | -                | 4.4              |
| 気=1)              |           |                             |                   |                  |                  |
| 水溶解性              | 溶けない      | 0.0014(30℃)                 | 10 (25°C)         | 反応する             | 溶けにくい            |
| g/100ml           |           |                             |                   |                  |                  |
| 蒸気圧、              | -         | 130Pa(574℃)                 | 133Pa(49℃)        | 1.33kPa          | -                |
|                   |           |                             |                   | $(25^{\circ}C)$  |                  |

## 物理的化学的性状(続き)2)

|         | 五酸化二アン                     | 五塩化アンチ    | アンチモン酸ソ                                 | 三硫化アン                       | 酒石酸アンチモンカリウム                      |
|---------|----------------------------|-----------|-----------------------------------------|-----------------------------|-----------------------------------|
|         | チモン                        | モン        | ーダ                                      | チモン <sup>4)</sup>           |                                   |
| 別名      | 酸化アンチモ                     | 塩化アンチモ    |                                         | 硫化アンチ                       | 吐酒石、酒石酸アンチモ                       |
|         | ン(V)                       | ン(V)      |                                         | モン(III)                     | ニルカリウム                            |
| CAS 番号  | 1314-60-9                  | 7647-18-9 | 10049-22-6                              | 1345-04-6                   | 16039-64-8 (混合物)、                 |
|         |                            |           |                                         |                             | 28300-74-5(立体異性体)                 |
| 化学式     | $\mathrm{Sb_2O_5} \bullet$ | $SbCl_5$  | NaSbO <sub>3</sub> •1/4H <sub>2</sub> O | $\mathrm{Sb}_2\mathrm{S}_3$ | $C_8H_4K_2O_{12}Sb_2 \cdot 3H_2O$ |
|         | $xH_2O$                    |           |                                         |                             |                                   |
| 分(原)子量  | 323.5                      | 299.1     | 197.2                                   | 339.7                       | 667.87                            |
| 外観      | 白色粉末                       | 淡黄色液体     | 白色結晶                                    | 黒色粉末                        | 無色固体                              |
|         |                            |           | (六方晶系)                                  |                             |                                   |
| 比重、(水   | 3.78                       | _         | 4.0                                     | 4.6                         | 2.6                               |
| =1)     |                            |           |                                         |                             |                                   |
| 水溶解性    | わずかに溶                      | 反応する      | 溶けない                                    | 溶けない                        | 83 g/L                            |
| g/100ml | ける                         | (塩酸、クロロホ  | (濃硫酸に溶ける)                               |                             |                                   |
|         |                            | ルム、四塩化    |                                         |                             |                                   |
|         |                            | 炭素に可溶)    |                                         |                             |                                   |

# (2) 物理的化学的危険性 1)

|            | アンチモン                                                                                | 三酸化二アンチモン                                          | 三塩化アンチモ<br>ン                                                                                           | 五フッ化アン<br>チモン                                                                                                                                                                                                    | 水素化アンチモ<br>ン (スチビン)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------|--------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 火災危険性      | 特定の条件下で<br>可燃性。火災時<br>に刺激性あるい<br>は有毒なフュー<br>ムやガスを放出<br>する。                           | 不燃性である。<br>火災時に刺激性<br>もしくは有毒な<br>フュームやガス<br>を放出する。 | 不燃性である。<br>火災時に刺激性<br>あるいは有毒な<br>フュームやガス<br>を放出する。                                                     | 不他焼るの<br>性物助<br>にいった<br>がのを<br>・<br>災あなフィ<br>を<br>がのった<br>かり<br>にいった<br>がのった<br>がのった<br>がのった<br>がのった<br>がのった<br>で<br>り<br>り<br>し<br>に<br>いった<br>のった<br>のった<br>のった<br>のった<br>のった<br>のった<br>のった<br>のった<br>のった<br>の | 引火性がきわめ<br>て高い。火災<br>時に刺激性ある<br>いは有毒なフュ<br>ームやガスを放<br>出する。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 爆発危険性      | 空気中で粒子が<br>細かく拡散して<br>爆発性の混合気<br>体を生じる。酸、<br>ハロゲン、酸化<br>剤と接触すると<br>火災や爆発の危<br>険性がある。 | 報告なし                                               | 報告なし                                                                                                   | 報告なし                                                                                                                                                                                                             | 気体/空気の混合気体/空気を<br>会気をは爆発がある。は<br>であるいは<br>であるいは<br>であるいは<br>であるいは<br>であるいは<br>であるいは<br>であるいは<br>であるいは<br>であるいは<br>であるい<br>は<br>た<br>り<br>の<br>た<br>り<br>た<br>り<br>に<br>り<br>た<br>り<br>に<br>り<br>に<br>り<br>た<br>り<br>に<br>り<br>た<br>り<br>に<br>り<br>に                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 物理的危険 性    | 粉末や顆粒状で空気と混合すると、粉塵爆発の可能性がある。                                                         | 報告なし                                               | 報告なし                                                                                                   | 報告なし                                                                                                                                                                                                             | 気体は空気より<br>重くは、地に沿った<br>が<br>あるの可能性が<br>ある。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 化学的危険<br>性 | 燃焼フェチは が、しゃ と、(ア)を化、しゃ を接って、大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大                     | 加烈、大学、大学、大学、大学、大学、大学、大学、大学、大学、大学、大学、大学、大学、         | 加しチ含ー水塩シンのくすムチ燃熱、モむムと化塩を存の。はモ焼す塩ン有を反水化生在金ア三ンする素酸毒生応素アじ下属ミ化気を、化なじし、ンるで属ミ化気の解ンをュ。熱キモ水多侵ウンで解ンをュ。熱キモ水多侵ウンで | 加よアフ有の生激し食水る銅熱りンッ毒フじし、性素。、や分チ素でュるく有のをガを燃解モを腐一。反毒フ生ラ侵焼しン含食ム水応でッじス侵に、、む性をとの腐化                                                                                                                                      | 室に200℃解チ生濃と、発し、200分かを、かし爆をしてして、では、からないでした。これが、たいでは、ないのでは、から、ないのでは、から、ないのでは、から、ないのでは、から、ないのでは、から、ないのでは、から、ないのでは、から、ないのでは、から、ないのでは、から、ないのでは、から、ないのでは、から、ないのでは、から、ないのでは、から、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのではないでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないでは、ないのでは、ないのでは、ないでは、ない |

# 生産・輸入量/使用量/用途 アンチモン<sup>3)</sup>

用途:ガラス、半導体等電子材料用

製造業者:日本精鉱4)

## 三酸化二アンチモン

生産量:7,780トン/2006(アンチモンの酸化物として)2)

輸入量:報告なし2)

輸出量:2,164トン/2006(アンチモンの酸化物として)2)

生産/輸入量:1 万-10 万トン/2004 3)

用途:各種樹脂、ビニル電線、帆布、繊維、塗料などの難燃助剤、高級ガラス清澄剤、

ほうろう、吐酒石、合繊触媒、顔料2)

製造業者:山中産業、日本精鉱、東湖産業、日鉱金属(副産物)2)

# 三塩化アンチモン2)

生産量:報告なし

輸入量:報告なし

用途: 顔料、触媒、試薬

製造業者:日本化学産業、日本精鉱

## 五フッ化アンチモン<sup>2)</sup>

生産量:報告なし

輸入量:報告なし

用途:報告なし

製造業者:報告なし

#### 水素化アンチモン(スチビン)2)

生産量:報告なし

輸入量:報告なし

用途:報告なし

製造業者:報告なし

## 五酸化二アンチモン 2)

生産量:300トン/2006

輸入量:報告なし

用途:各種樹脂/繊維の難燃助剤、顔料、ガラス清澄剤、電子材料用原料

製造業者:日産化学工業、日本精鉱、日本化学産業、高南無機

## 五塩化アンチモン2)

生産量:報告なし

輸入量:報告なし

用途:フレオンガス触媒、塩素化触媒 製造業者:日本化学産業、日本精鉱

# アンチモン酸ソーダ 2)

生産量:150トン/2006

輸入量:報告なし

用途:テレビブラウン管バルブ、光学用ガラス、各種高級ガラス、ほうろう、陶磁器、

難燃助剤、乳白剤

製造業者:日本精鉱

# 三硫化アンチモン2)

生産量:報告なし

輸入量:報告なし

用途:報告なし

製造業者:日本精鉱4)

# 4. 健康影響

# (1) 実験動物に対する毒性

ア 急性毒性

致死性

| 金属アンチモン  | マウス                       | ラット                        | ウサギ |
|----------|---------------------------|----------------------------|-----|
| 吸入 LC50  | _                         | -                          | _   |
| 経口 LD50  | _                         | -                          | _   |
| 経皮 LD50  | _                         | 100 mg/kg 体重 <sup>5)</sup> | _   |
| 腹腔内 LD50 | 80 mg/kg 体重 <sup>5)</sup> | 100 mg/kg 体重 <sup>5)</sup> |     |

| 三酸化二アンチモン | マウス | ラット                              | ウサギ |
|-----------|-----|----------------------------------|-----|
| 吸入 LC50   | _   | _                                | _   |
| 経口 LD50   |     | 34,600 mg/kg 体重 <sup>5)</sup> 以上 | _   |
| 経皮 LD50   |     | 7,904 mg/kg 体重 <sup>5)</sup>     | -   |
| 腹腔内 LD50  | _   | 3,250 mg/kg 体重 <sup>5)</sup>     | _   |

| 五塩化アンチモン | マウス                       | ラット                                    | ウサギ |
|----------|---------------------------|----------------------------------------|-----|
| 吸入 LC50  | $620 \text{ mg/m}^{3-5)}$ | 720mg/m <sup>3</sup> /2H <sup>5)</sup> | _   |
| 経口 LD50  | -                         | _                                      | _   |
| 経皮 LD50  | -                         | 525 mg/kg 体重 <sup>5)</sup>             |     |
| 腹腔内 LD50 | 13mg/kg 体重 <sup>5)</sup>  | -                                      | -   |

| 硫化アンチモン | マウス | ラット | ウサギ |
|---------|-----|-----|-----|
| 吸入 LC50 | -   | _   | _   |
| 経口 LD50 | -   | -   | _   |

| 経皮 LD50  | _                           | -                             | - |
|----------|-----------------------------|-------------------------------|---|
| 腹腔内 LD50 | 209 mg/kg 体重 <sup>21)</sup> | 1,500 mg/kg 体重 <sup>21)</sup> | - |

| 三塩化アンチモン | マウス                      | ラット                        | ウサギ |
|----------|--------------------------|----------------------------|-----|
| 吸入 LC50  | _                        | -                          | _   |
| 経口 LD50  | _                        | -                          | -   |
| 経皮 LD50  |                          | 525 mg/kg 体重 <sup>5)</sup> | -   |
| 腹腔内 LD50 | 13mg/kg 体重 <sup>5)</sup> | -                          | -   |

| 酒石酸アンチモンカリウム | マウス                         | ラット                         | ウサギ                         |
|--------------|-----------------------------|-----------------------------|-----------------------------|
| 吸入 LC50      | _                           | -                           | _                           |
| 経口 LD50      | 600 mg/kg 体重 <sup>21)</sup> | 115 mg/kg 体重 <sup>21)</sup> | 115 mg/kg 体重 <sup>21)</sup> |
| 経皮 LD50      | 55 mg/kg 体重                 | -                           | _                           |
| 腹腔内 LD50     | 60 mg/kg 体重 <sup>21)</sup>  | 11 mg/kg 体重 <sup>21)</sup>  | -                           |

### 健康影響

ラットに三酸化二アンチモン 2,760 mg/m³を4 時間吸入ばく露した試験で、肺の軽度の限局性変色、白色巣がみられている  $^{21)}$ 。

ラットに酒石酸アンチモンカリウム 1 mg/kg を腹腔内投与した試験で、脱毛、呼吸困難、体重減少を起こし、数日後に死亡した。病理組織学的検査で、心臓浮腫、多形核の白血球浸潤を伴う肝臓のうっ血、糸球体腎炎がみられた<sup>21)</sup>。

### イ 刺激性及び腐食性

ウサギに対する三酸化二アンチモンの経皮適用試験で、刺激性は認められなかった $^{21)}$ 。一方、三酸化二アンチモン $^{100}$  mg を眼に適用した試験で、重度の刺激性が認められた $^{21)}$ 。

## ウ 感作性

モルモットに対する三酸化二アンチモンのビューラー法による皮膚感作性試験で、皮膚刺激のない最大濃度の三酸化二アンチモンを剪毛した背部に閉塞適用して感作し、その2 週間後に10%(w/v) 水溶液で惹起した結果、陰性であったという報告がある<sup>21)</sup>。

エ 反復投与毒性(生殖・発生毒性、遺伝毒性/変異原性、発がん性は除く)

#### 吸入ばく露

# 三酸化二アンチモン

雌雄のF344ラットに三酸化二アンチモン 0、0.2、1.0、5.0、25.0 mg/m³ (実測濃度: 0、0.25、1.08、4.92、23.46 mg/m³、0、0.21、0.90、4.11、19.60 mg Sb/m³相当) (粒径: 0.485–0.536  $\mu$  m) を6時間/日、5日間/週、13週間吸入ばく露(全身)し、その後27週間の観察期間を設けた試験で、雌雄の5.0 mg/m³以上の群に肺の絶対及び相対重量増加、肺胞マクロファージ増加、25.0 mg/m³ 群に間質性肺炎、外来性微粒子を含む肺胞マクロファージの増加、雄の25.0 mg/m³ 群に体重増加抑制がみられた。また、ばく露終了後の観察期間27週間後に、雌雄の0.2 mg/m³ 以上の群に

肺胞マクロファージ及び外来性微粒子を含む肺胞マクロファージの増加、雌の5.0 mg/m³以上の群及び雄の25.0 mg/m³ 群に外来性微粒子を含むマクロファージの増加が肺の血管周囲/細気管支周囲に凝集したリンパ球の集団中にみられた<sup>21)</sup>。

雌雄のF344ラットに三酸化二アンチモン 0、0.05、0.5、5.0 mg/m³ (実測濃度: 0、0.06, 0.51、4.50 mg/m³、0、0.05、0.43、3.76 mg Sb/m³相当) (粒径:  $0.63 \mu$  m) を6時間/日、5日間/週、12か月間吸入ばく露 (全身) し、その後12か月間の観察期間を設けた試験で、ばく露後及び観察期間終了後ともに、雌雄の0.05 mg/m³ 以上の群に肺胞マクロファージ及び外来性微粒子を含む肺胞マクロファージの増加、血管周囲/細気管支周囲に外来性微粒子を含むマクロファージの増加、雌に用量に関連しない白内障の増加、5.0 mg/m³群では重篤度が中等度以上の間質性肺炎の増加がみられた210。200 mg/m³群に限った眼球検査で雌の水晶体変性がみられた211。

雌のF344ラットに三酸化二アンチモン 0、1.9、5.0 mg/m³ (0、1.6、4.2 mg Sb/m³) (粒径: 0.44  $\mu$  m) を6時間/日、5日間/週、55週間吸入ばく露(全身)した試験で、1.9 mg/m³以上の群に限局性肺線維症、肺胞上皮過形成、コレステロール裂(cholesterol clefts)、5.0 mg/m³群に肺の腺腫様過形成、多核巨細胞がみられた $^{21}$ 。

雌雄のWistarラットに三酸化二アンチモン 0、 $45 \text{ mg/m}^3$  (0、 $37.61 \text{ mg Sb/m}^3)$  (粒径:  $0.347 \mu \text{ m}$ ) を7時間/日、5日間/週、52週間吸入ばく露した試験で、投与群に肺の間質性線維症がみられた  $^{21}$   $^{21}$ 

## 三硫化二アンチモン

ラット、ウサギ、イヌに三硫化二アンチモンを吸入曝露した試験で、心電図の変化等がみられている<sup>21)</sup>。

## 経口投与

#### 金属アンチモン

雄の Wistar ラットに金属アンチモン 0、5,000、10,000、20,000 ppm を 24 週間混餌投与した試験で、5,000 ppm 以上の群に体重増加抑制、肝細胞の混濁腫脹、10,000 ppm 以上の群に白血球数減少、20,000 ppm 群にヘマトクリット値及びヘモグロビン濃度減少がみられたが、体重増加抑制以外の影響については軽微なものであった 210。

## 三酸化二アンチモン

雌雄のWistarラットに三酸化二アンチモン 0、1,000、5,000、20,000 ppm (雄: 0、84、421、1,686 mg/kg/日相当、雌: 0、97、494、1,879 mg/kg/日相当) を90日間混餌投与した試験で、20,000 ppm群の雌雄に肝臓重量のわずかな増加、雌にアスパラギン酸アミノトランスフェラーゼ (AST) の増加がみられた<sup>21)</sup>。雄のWistarラットに三酸化二アンチモン 0、10,000、20,000 ppmを24週間混餌投与した試験で、10,000 ppm以上に赤血球数減少、AST活性の増加、20,000 ppm 群にアルカリホスファターゼ (ALP)の増加がみられたが、軽微な影響であった。また、病理組織学的検査において変化は認められなかった<sup>21)</sup>。

#### 酒石酸アンチモンカリウム

雌雄のB6C3F1 マウスに酒石酸アンチモンカリウム 0、0.3、0.65、1.25、2.5、5.0 mg/mL (0、59、98、174、273、407 mg/kg/日相当) を14 日間飲水投与した試験で、投与による体重、摂水量に影響はみられなかった<sup>21)</sup>。

雌雄のCD マウスに酒石酸アンチモンカリウム0、5 ppm を生涯にわたって飲水投与した試験で、体重、生存期間、組織中アンチモン濃度、病理組織学的検査において投与による影響はみ

られなかった21)。

雌雄のF344 ラットに酒石酸アンチモンカリウム 0、0.15、0.3、0.65、1.25、2.5 mg/mL (0、16、28、59、94、168 mg/kg/日相当)を14 日間飲水投与した試験で、投与による体重、摂水量に影響はみられなかった<sup>21)</sup>。

雌雄のSD ラットに酒石酸アンチモンカリウム 0、0.5、5、50、500 ppm (雄: 0、0.06、0.56、5.6、42.2 mg/kg/日、雌: 0、0.06、0.64、6.1、45.7 mg/kg/日相当) を13 週間飲水投与した試験で、0.5 ppm以上の雄に肝細胞核大小不同、雌に脾洞の過形成、5 ppm 以上の雄に脾洞のうっ血、雌に血清中グルコース濃度減少、50 ppm 以上の雌に胸腺相対重量減少、甲状腺ホルモン結合比上昇、500 ppm の雌雄に摂水量及び摂餌量の減少、体重増加抑制、腎臓相対重量減少、血清中クレアチニン値、ALPの減少、雄に血尿、肝硬変、雌に肝細胞核大小不同、血清中コレステロール及び総タンパク質量の減少がみられた<sup>21)</sup>。

雌雄のLong-Evans ラットに酒石酸アンチモンカリウム0、5 ppm を生涯にわたって飲水投与した試験で、5 ppm 群の雌の27 か月目以降で死亡率増加、寿命の短縮、血清中コレステロール増加、血清中グルコース濃度の減少がみられた<sup>21)</sup>。

#### 才 生殖・発生毒性

## 吸入ばく露

## 三酸化二アンチモン

雌ラットに三酸化二アンチモン 0、 $250 \text{ mg/m}^3$  を交配前 $1.5\sim2$  か月、交配期間、妊娠期間及 び出産の $3\sim5$  日前まで4 時間/日吸入ばく露し、無処置の雄と交配させた試験で、妊娠匹数は 対照群、ばく露群でそれぞれ、10/10 匹、16/24 匹であった。また、ばく露群の非妊娠動物では、 卵胞に卵細胞がなく、卵巣嚢腫が観察された例もみられた210。

雌ラットに三酸化二アンチモン 0、0.027、0.082、0.27 mg/m³ を妊娠期間中1日24時間、21日間吸入ばく露し、妊娠21 日目に帝王切開した試験で、母動物の体重変化には投与による影響はみられなかったが、0.082 mg/m³群に胎児体重の低値、0.082 mg/m³以上の群に着床前後の子宮内胚・胎児死亡率の増加、胎児の肝臓周辺部及び脳膜における出血、腎盂及び脳室の拡張がみられた<sup>20,21)</sup>。

雌のSD ラットに三酸化二アンチモン 0、2.6、4.4、6.3 mg/m³ を6 時間/日の頻度で妊娠0~ 19日目まで吸入(鼻部) ばく露し、妊娠20日目に帝王切開した試験で、胎児に投与による影響はみられなかった21。

### 経口投与/経皮投与/その他の経路等

### 三酸化二アンチモン

雄のCD-1マウス及びWistarラットに三酸化二アンチモン 0、12、1,200 mg/kg/日 (0、10、1,000 mg Sb/kg/日相当)をマウスには5日/週、ラットには3日/週で4週間強制経口投与し、精巣への影響を調べた試験で、すべての投与群に精巣の影響はみられなかった $^{21}$ 。

## 三塩化アンチモン

雌のSD ラットに三塩化アンチモン 0、100 mg Sb/kg/日を妊娠6~15日目まで筋肉内注射投与し、妊娠20日目に帝王切開した試験で、投与群に吸収胚増加、生存胎児数の減少、胎児体重低値がみられ、内臓・骨格異常が増加した<sup>21)</sup>。

## カ 遺伝毒性(変異原性)

### 三酸化二アンチモン

In vitro 試験では、ネズミチフス菌を用いた復帰突然変異試験で、S9の添加の有無にかかわらず、陰性であった<sup>21)</sup>。マウスリンパ腫細胞を用いた遺伝子突然変異試験でも陰性であった<sup>21)</sup>。ヒト末梢血リンパ球を用いた染色体異常試験で、S9添加で陽性を示した<sup>21)</sup>。V79細胞及びヒト末梢血リンパ球を用いた姉妹染色分体交換試験やコメットアッセイで陽性を示した<sup>21)</sup>。また、枯草菌を用いたDNA 修復試験 (rec assay)で陽性を示した<sup>21)</sup>。

In vivo 試験では、マウスに強制経口投与後、骨髄細胞を調べた染色体異常試験で、単回投与では陰性であったが、21日間反復投与では陽性であった。マウス骨髄細胞を用いた小核試験では、単回、反復ともに陰性であった<sup>21)</sup>。ラット肝細胞の不定期DNA合成(UDS)試験では陰性であった<sup>21)</sup>。三酸化二アンチモンの反復投与によるマウスの骨髄細胞を用いた染色体異常試験では陽性であったが、小核試験では陰性の結果が得られている<sup>21)</sup>。

#### 三塩化アンチモン

In vitro 試験ではネズミチフス菌を用いた復帰突然変異試験で、S9の添加の有無にかかわらず、陰性であった<sup>21)</sup>。チャイニーズハムスター卵巣線維芽細胞(CHO 細胞)、チャイニーズハムスター卵巣線維芽細胞(CHO 細胞)、チャイニーズハムスター肺線維芽細胞(V79細胞)及びヒト末梢血リンパ球を用いた小核試験で、陽性を示した<sup>21)</sup>。 V79細胞及びヒト末梢血リンパ球を用いた姉妹染色分体交換試験やコメットアッセイで陽性を示した<sup>21)</sup>。また、枯草菌を用いたDNA 修復試験(rec assay)で陽性を示した<sup>21)</sup>。ネズミチフス菌や大腸菌を用いたDNA修復試験(umu 試験、SOS 修復試験)では陰性であった<sup>21)</sup>。

In vivo 試験では、マウスに強制経口投与後、骨髄細胞を調べた染色体異常試験で、単回投与では陽性であった<sup>21)</sup>。

## 五酸化二アンチモン

 $In\ vitro\$ 試験ではネズミチフス菌を用いた復帰突然変異試験で、S9の添加の有無にかかわらず、陰性であった $^{21}$ 。枯草菌を用いたDNA修復試験 (rec assay) で陽性を示したが、 $V79\$ 細胞を用いた姉妹染色分体交換 (SCE) 試験で陰性を示した $^{21}$ 。

In vivo 試験は、調査した範囲では情報は得られていない。

#### 五塩化アンチモン

 $In\ vitro\$ 試験ではネズミチフス菌を用いた復帰突然変異試験で、S9の添加の有無にかかわらず、陰性であった $^{21}$ 。枯草菌を用いたDNA修復試験 (rec assay) で陽性を示したが、 $V79\$ 細胞を用いた姉妹染色分体交換 (SCE) 試験で陰性を示した $^{21}$ 。

In vivo 試験は、調査した範囲では情報は得られていない。

# 酒石酸アンチモンカリウム

In vitro 試験ではネズミチフス菌を用いた復帰突然変異試験で、S9の添加の有無にかかわらず、陰性であった<sup>21)</sup>。

In vivo 試験は、調査した範囲では情報は得られていない。

アンチモン化合物の遺伝毒性に関して、in vitro 系では突然変異試験はいずれも陰性であるが、染色体異常試験、DNA損傷試験で陽性の結果が得られている。一方、in vivo 系でも、三酸化二アンチモンの反復投与、より水溶解度の高い三塩化アンチモンの単回投与によるマウスの骨髄細胞を用いた染色体異常試験では陽性であったが、三酸化二アンチモンの小核試験では陰性の結果が得られている。

|          | 試験方法                   | 使用細胞種・動物種                                       | 結果 |
|----------|------------------------|-------------------------------------------------|----|
| 三酸化二     | アンチモン                  |                                                 |    |
| In vitro |                        | $Sb_2O_3$ : ネズミチフス菌TA98、TA100( $-S9$ 、 $+S9$ )  | _  |
|          | 復帰突然変異試験               | $\mathrm{Sb_2O_3}$ : ネズミチフス菌TA98、TA100、TA1535、  | _  |
|          | 18/市大                  | TA1537                                          |    |
|          |                        | 大腸菌WP2(-S9、+S9)                                 |    |
|          | 前進突然変異                 | $Sb_2O_3$ :マウスリンパ腫細胞 (L5178Y) ( $-S9$ 、 $+S9$ ) | _  |
|          | <br>  染色体異常            | Sb <sub>2</sub> O <sub>3</sub> :ヒト末梢血リンパ球 (-S9) | _  |
|          | 朱巴怀共市                  | Sb <sub>2</sub> O <sub>3</sub> :ヒト末梢血リンパ球 (+S9) | +  |
|          | <br>  姉妹染色分体交換試験       | Sb <sub>2</sub> O <sub>3</sub> :V79 細胞(-S9)     | +  |
|          | 如                      | Sb <sub>2</sub> O <sub>3</sub> :ヒト末梢血リンパ球(-S9)  | +  |
|          | DNA 修復 rec assay       | Sb <sub>2</sub> O <sub>3</sub> :枯草菌(-S9)        | +  |
|          | DIVA 修復 TeC assay      | Sb <sub>2</sub> O <sub>3</sub> :枯草菌(-S9)        | +  |
| In vivo  | <br>  染色体異常            | Sb <sub>2</sub> O <sub>3</sub> :マウス骨髄細胞(経口 単回)  | _  |
|          | 来已件共市                  | ${ m Sb_2O_3}$ :マウス骨髄細胞(経口 $21$ 日間反復)           | +  |
|          | 小核試験                   | Sb <sub>2</sub> O <sub>3</sub> :マウス骨髄細胞(経口 単回)  | _  |
|          | 7] 竹久 时代初失             | $Sb_2O_3$ :マウス骨髄細胞(経口 7~21日間反復)                 | _  |
|          | 不定期DNA合成               | Sb <sub>2</sub> O <sub>3</sub> :ラット肝細胞胞(経口 単回)  | _  |
| 三塩化ア     | ンチモン                   |                                                 |    |
| In vitro | 復帰突然変異試験               | SbCl <sub>3</sub> : ネズミチフス菌TA98、TA100(-S9、+S9)  |    |
|          |                        | SbCl <sub>3</sub> :CHO細胞(-S9)                   | +  |
|          | 小核試験                   | SbCl <sub>3</sub> :V79 細胞(-S9)                  | +  |
|          |                        | SbCl <sub>3</sub> :ヒト末梢血リンパ球(-S9)               | +  |
|          | 姉妹染色分体交換試験             | SbCl <sub>3</sub> :V79 細胞(-S9)                  | +  |
|          | <b>州外朱</b> 己万          | SbCl <sub>3</sub> :ヒト末梢血リンパ球(-S9)               | +  |
|          | コメットアッセイ               | SbCl <sub>3</sub> :V79 細胞(-S9)                  | +  |
|          | DNA 修復 rec assay       | SbCl <sub>3</sub> :枯草菌(-S9)                     | +  |
|          |                        | SbCl <sub>3</sub> :枯草菌(-S9)                     | +  |
|          | DNA 修復 <i>umu</i> 試験   | SbCl <sub>3</sub> :ネズミチフス菌TA1535/pSK1002(-S9、+  | _  |
|          | DIVII 19 12 and 11 vol | S9)                                             |    |
|          | DNA 修復                 | SbCl <sub>3</sub> : E. coli PQ37(—S9)           | _  |
|          | SOS 修復                 |                                                 |    |
| In vivo  | 染色体異常                  | SbCl <sub>3</sub> :マウス骨髄細胞(経口 単回)               | +  |
| 五酸化二     | アンチモン                  |                                                 |    |
| In vitro | 復帰突然変異試験               | $Sb_2O_5$ :ネズミチフス菌TA98、TA100( $-S9$ 、 $+S9$ )   | _  |
|          |                        | $Sb_2O_5$ :ネズミチフス菌TA98、TA100( $-S9$ 、 $+S9$ )   | _  |
|          | 姉妹染色分体交換試験             | Sb <sub>2</sub> O <sub>5</sub> :V79 細胞(-S9)     | _  |
|          | DNA 修復 rec assay       | Sb <sub>2</sub> O <sub>5</sub> :枯草菌(-S9)        | +  |

| 五塩化アン    | 五塩化アンチモン         |                                                                                                              |   |  |  |
|----------|------------------|--------------------------------------------------------------------------------------------------------------|---|--|--|
| In vitro | 復帰突然変異試験         | SbCl <sub>5</sub> :ネズミチフス菌TA98、TA100(-S9、+S9)                                                                | _ |  |  |
|          | 姉妹染色分体交換試験       | SbCl <sub>5</sub> :V79 細胞(-S9)                                                                               | _ |  |  |
|          | DNA 修復 rec assay | SbCl <sub>5</sub> :枯草菌(-S9)                                                                                  | + |  |  |
| 酒石酸アン    | /チモンカリウム         |                                                                                                              |   |  |  |
| In vitro | 復帰突然変異試験         | C <sub>8</sub> H <sub>4</sub> K <sub>2</sub> O <sub>12</sub> Sb <sub>2</sub> 3H <sub>2</sub> O:ネズミチフス菌(TA97、 | _ |  |  |
|          |                  | TA98 、TA100、TA1535(-S9、+S9)                                                                                  |   |  |  |

#### キ 発がん性

## 吸入ばく露

### 三酸化二アンチモン

雌のF344 ラットに三酸化二アンチモン 0、1.9、5.0 mg/m³ (0、1.6、4.2 mg Sb/m³相当) (粒径:  $0.44 \mu$  m) を6 時間/日、5日間/週、約55 週間吸入ばく露した試験で、ばく露終了後の観察期間中5.0 mg/m³群の肺に硬性がんの発生率の増加がみられた²¹¹。雌雄のWistar ラットに三酸化二アンチモン 0、45 mg/m³ (0、37.61 mg Sb/m³ 相当) (粒径:  $0.347 \mu$  m) を7 時間/日、5日間/週、52 週間吸入ばく露した試験で、雌の19/70匹 (27%)に肺腫瘍がみられ、うち、9例が扁平上皮がん、5例が硬性がん、11例が細気管支腺腫またはがんであった²¹¹。

雌雄のF344 ラットに三酸化二アンチモン 0、0.05、0.5、5.0 mg/m³ (実測濃度: 0、0.06、0.51、4.50mg/m³、0、0.05、0.43、3.76 mg Sb/m³相当) (粒径: 0.63  $\mu$ ) を6時間/日、5日間/週、12か月間吸入ばく露(全身)した試験で、ばく露に関連する腫瘍発生は認められなかった $^{21}$ 。

#### アンチモン鉱石 (三硫化二アンチモン)

雌雄のWistar ラットにアンチモン鉱石 (主成分: 三硫化二アンチモン、元素分析でアンチモン含有率 46%) 0、36~40 mg/m³を7 時間/日、5日間/週、52週間吸入ばく露した試験で、雌の 17/68匹 (25%) に肺腫瘍がみられ、うち、9例が扁平上皮がん、4 例が硬性がん、6 例が細気管支腺腫またはがんであった $^{21}$ 。

#### 経口投与/経皮投与・その他の経路等

調査した範囲では情報は得られていない。

### (2) ヒトへの影響(疫学調査及び事例)

#### ア 急性毒性

一般店で、エナメルでコーティングされた容器にレモネード粉末を溶かしてつくったレモネードを飲んだ店員の50 人余が非常に不快になり、診療所で治療を受けた。その後、ほとんどすべての人が速やかに回復した。レモネード液の成分を分析した結果、金属アンチモンに換算して0.013%のアンチモン化合物と検出限界に近い微量な亜鉛が検出された。10 オンス (およそ300 mL)のレモネードに金属アンチモンとして37 mg Sb 含まれていたことに相当した。一方、エナメルの成分分析から、2.9%の三酸化二アンチモンが検出された <sup>21)</sup>。

## イ 刺激性及び腐食性

英国北部の三酸化二アンチモン製造工場の労働者150人のうち23人が2年間の作業期間中に

皮膚炎を発症した。これらの労働者は、硫化アンチモン鉱石を製錬し、酸化工程を経て、三酸化ニアンチモンを白色粉末として製造する作業に従事していた。三酸化ニアンチモン粉じんの平均粒径は1 μ m以下であり、他に微量の鉛、ヒ素、鉄を含んでいた。皮膚炎患者の17人は溶鉱炉作業員であり、残りは別の高温作業に従事していた。皮疹は前脛部、後頸部、前腕、胴体、顔に認められ、皮疹に先立って強い掻痒感があった。皮疹の形態及び組織学的検査から、初期の損傷は急性皮膚炎症反応を伴う表皮細胞壊死であり、汗腺周辺に生じていた。その結果、三酸化ニアンチモンの粉じんのばく露によるアンチモン疹(antimony spots)と診断された。特に夏場や高温作業中にばく露した場合に皮疹が多くみられた。患者を涼しい環境に移すと3~14日間で皮疹は消失した。三酸化ニアンチモンの水懸濁液や50%パラフィン混合液を用いたパッチテストを10人の患者と対照20人に行った結果、すべて陰性であった。以上の結果、少人数ではあるが、高温下での作業や夏の暑さなどで発汗する状況下で、三酸化ニアンチモンの粉じんに曝露すると、粉じんが汗腺に浸透して皮膚刺激性反応をおこし、一過性の発疹を生ずるようになると、推論している<sup>21)</sup>。

アンチモン製錬工場の労働者でじん肺を罹患した51人(31~54 歳、平均45.2 歳; 勤続年数9~31年、平均17.9年)のうちの32人に色素沈着と小水疱性あるいは膿疱性発疹で特徴づけられるアンチモン皮膚炎が認められた。発症者は主に三酸化二アンチモンと五酸化二アンチモンを含む粉じん( $Sb_2O_3$ 、38.7~88.9%;  $Sb_2O_5$ 、2.1~7.8%;  $SiO_2$ 、0.8~4.7%;  $Fe_2O_3$ 、0.9~3.8%;  $As_2O_3$ 、0.2~6.5%)にばく露されており、特に夏場と溶鉱炉近辺の高温下で作業をした際に発症した $^{21}$ 。

アンチモン製錬工場の労働者でじん肺を罹患した51人中の14人に結膜炎が認められた。他に、喀痰を伴う慢性気管支炎が19人に、喀痰を伴わない慢性気管支炎が12人に、上気道炎が18人に認められた。しかし、これらの症状は珪肺などの他のじん肺と同様の症状であり、アンチモンじん肺との関連は不明である<sup>21)</sup>。

ろう付け棒(brazing rod)製造工場でアンチモンの溶融工程に従事し、皮膚炎を罹患した労働者3人の症例報告がある。アンチモン鋳塊を破砕して、るつぼで断片を溶融する作業に3年間従事した28歳の労働者が前腕、胴、額に小胞状の丘疹や膿疱の発疹を生じた。作業場の空気中アンチモン濃度は8時間-時間加重平均として $0.39~mg~Sb/m^3$ と測定され、尿中から $53.2~\mu~g~Sb/L$ のアンチモンが検出された。非ばく露の人の尿中濃度は $1.0~\mu~g~Sb/L$ 以下であった。同一の作業に従事した33歳の労働者では、腕に小胞状の丘疹や膿疱、胴体に乾燥した湿疹様斑点がみられた。31歳のもう1人には、前腕に紅斑状の丘疹、脚と背に丘疹が認められた。3人ともアンチモン関連作業から離れた後皮膚炎は完治した。金属アンチモンは溶融過程で蒸発し、空気中で凝固する際に酸化されて、三酸化二アンチモンのフュームを生ずることが知られていることから、患者は作業中に金属アンチモンの粉じんや三酸化二アンチモンのフュームにばく露されたと推定している $^{21}$ 。

#### ウ 感作性

陶磁器製造の5工場でエナメル装飾作業に従事した労働者190人(女性119人、男性71人: 皮膚炎患者22人、皮膚炎既往症者44人、健常者124人)を対象に、アンチモンの皮膚感作性が調べられた。皮膚炎患者は全員手に皮膚炎を発症し、そのうちの5人には前腕にも皮膚炎が認められた。対照群として92人のボランティアが選ばれた。エナメル装飾材料として用いられた三酸化二アンチモンを含む15種類の化学物質に加えて、7種類の作業中使用化合物とともにアレルギ

ー検査標準物質など合わせて29物質について、パッチテストを行った。被験者の背中に各物質を2日間閉塞貼付し、その後1日おいて皮膚反応を調べた。パッチテスト陽性を示した53人のうち、2人が三酸化二アンチモン粉末に陽性を示した。対照群はすべて陰性であった。三酸化二アンチモンのパッチテストで陽性結果が得られたが、皮膚感作性物質であると結論するには、今後の研究が必要であると、著者らは結論している<sup>21)</sup>。

## エ 反復ばく露毒性(生殖・発生毒性、遺伝毒性、発がん性は除く)

硫化アンチモン鉱石から金属アンチモンを製造する製錬工場内の精錬部門に従事した労働 者69人を対象に、操業開始後5か月間の症例研究が行われた。硫化アンチモン鉱石は、硫化ア ンチモンを酸化アンチモンに変換する焙焼工程と、溶解還元して粗金属アンチモンとした後に溶 解分離して不純物を除く精錬工程を経て、金属アンチモンに精製された。精錬部門の建物内の アンチモンとヒ素の空気中平均濃度は、それぞれ、10.07~11.81 mg Sb/m<sup>3</sup>、0.36~1.10 mg As/m³であった。対象者は鼻炎(20%)、皮膚炎(20%)、喉頭炎(11%)、気管炎(10%)、鼻腔中隔 穿孔 (8.5%)、咽頭炎 (8%)、気管支炎 (7%)、胃腸炎 (5.5%)、結膜炎 (4%) などに罹患していた。 精錬作業中にヒ素を含むアンチモンのフュームに高濃度ばく露された6人に急激な腹痛、下痢、 嘔吐、眠気、重度の頭痛、虚脱などの全身症状が認められ、胸部X線検査で肺炎と診断された。 空気中のアンチモンとヒ素のフュームは、精錬工程で放出されたアンチモンやヒ素が空気中の酸 素と反応して生成した酸化物であると考えられた。これらの結果、労働者は主に酸化アンチモン フュームにばく露され、上気道刺激、肺炎、皮膚炎、全身症状を引き起こすことが示唆された 21)。 三硫化二アンチモンとフェノールホルムアルデヒド樹脂を材料とした樹脂研磨盤の製造工場で8 か月~2年間製造に従事した男性労働者125人中、この期間中に慢性心臓疾患で2人死亡し、さ らに6人が突然死した。死因として心臓病が疑われた。生存者113人を対象に検診が行われた。 工場内の空気中アンチモン濃度は0.58~5.5 mg Sb/m³であった。血圧が150/90上の人は14人、 110/70以下は24人であり、心電図検査をした75人中37人が特にT-波に有意な異常を示した。他 に、全従業員3,912人中胃潰瘍患者は59人(1,000人あたり15人)であったという胃X線検査結果と 比べて、作業従事者で胃X線検査を受けた111人中7人(1,000人当たり63人)に胃潰瘍が認め られた。しかし、皮膚、粘膜、気道刺激性症状はなかった。また、生存者から無作為に選んだ労 働者の尿中アンチモン濃度は0.8~9.6 mg Sb/Lであった (ただし、検査人数不明)。製造部門で 三硫化二アンチモンの使用を中止した後では、心臓死はなく、また心血管障害の異常な増加も みられなかった。アンチモンにばく露される環境下にいる労働者は通常の検査に加えて心電図 検査を受ける必要があると著者らは述べている<sup>21)</sup>。

三酸化二アンチモン製造工場でアンチモン粗鉱と三酸化二アンチモンの粉じんにばく露された労働者28人(25~61歳、曝露期間1~15年)を対象に胸部X線検査と肺機能検査が行われた。37か所の作業区域での空気中アンチモン濃度は0.081~138 mg Sb/m³であった。27人の尿中アンチモン濃度は0~1.02 mg Sb/Lであった。13人の肺のX線検査で、肺にピンヘッド様の小さい不透明な斑点が散在している像が観察された3人がじん肺(粉じんを吸入することで生じた刺激による肺の炎症)、5人が擬陽性と診断された。観察された不透明像は三酸化二アンチモンによる陰影であると推察された。一方、14人の肺機能検査が行われたが、X線検査で異常が認められた8人のうち3人の肺機能は正常であったなど、X線検査と肺機能検査との検査結果の間に関連性のある結果は得られなかった。また、じん肺患者3人を含む7人の心電図検査では、1人に軽微な徐脈が認められたが、6人が正常であり、じん肺と心電図の結果との関連性は示されなか

った $^{21)}$ 。アンチモン製錬工場の労働者でじん肺を罹患した51人( $31\sim54$ 歳、平均45.2 歳; 勤続年数 $9\sim31$ 年、平均17.9年)の胸部X線検査と肺機能検査を行った。患者は主に三酸化二アンチモンを含む粉じん(粉じん組成:  $Sb_2O_3$ 、 $38.7\sim88.9$ %;  $Sb_2O_5$ 、 $2.1\sim7.8$ %;  $SiO_2$ 、 $0.8\sim4.7$ %;  $Fe_2O_3$ 、 $0.9\sim3.8$ %;  $As_2O_3$ 、 $0.2\sim6.5$ %)にばく露された。粉じん濃度は $17\sim86$  mg/m³であり、80%以上の粒子の粒径は $5\,\mu$  m 以下であった。X線検査で、肺の中葉及び下葉に直径1.0 mm以下の円形、多角形または不定形をした斑点状の不透明像が密に分布しているのが観察された。他に、肺気腫が17人に認められたが、広範囲に広がった肺線維症は一人も観察されなかった。じん肺は9年間以上作業に従事した製錬工に発症していた。慢性的な咳症状が31人に、慢性気管支炎が19人に認められたが、心血管系、肝臓、腎臓、造血系、神経系に関する全身症状はみられなかった。肺機能検査で、残気量の増加(17人)、軽度の気道抵抗の増加(9人)、気管支けいれん(2人)などがみられたが、臨床所見と肺機能変化との関連は明確ではなかった。じん肺は三酸化二アンチモンと五酸化二アンチモンに起因していると結論している $^{21}$ 。

米国テキサス州アンチモン製錬工場のラテンアメリカ系米国人男性労働者928人を対象に死 亡率の追跡調査が行われた。ラテンアメリカ系米国人は非ラテンアメリカ系米国人より喫煙率が 低いこと、肺がん及び心疾患死亡率が一般的に低いことが知られているので、1937年から1971 年までの間に少なくとも3か月間雇用された労働者が調査対象とされた。異なる3地域のスペイン 姓の人口集団を対象とした虚血性心臓疾患死亡率と比較した。第1集団として、ニューメキシコ州 のスペイン姓男性の1958~1989年の虚血性心臓疾患死亡率と比較すると、虚血性心疾患の標 準化率比(standardized rate ratios: SRR) は、0.91 (90%信頼区間 (CI): 0.84~1.09)であり、増加 は認められなかったが、第2集団として、コロラド州カドミウム製錬工場のスペイン姓男性225人(雇 用期間1940~1969年)の1940~1989年の心血管疾患死亡率と比較すると、SRR は1.22 (90%CI: 0.78~1.89)、第3集団として、100万人を対象とした全国死亡率調査からのメキシコ系アメ リカ人男性15,711人の1979~1981 年の虚血性心臓疾患死亡率と比較すると、SRR1.49 (90%CI: 0.84~2.63) と有意な増加はなかった。じん肺死亡率の他の肺疾患死亡率に対する比率に関す るスペイン姓を名乗る男性集団のデータがないので、代わりに白人男性を対照としたデータが用 いられた。その結果、SMR は1.22 (90%CI:0.80~1.80) であった。以上の結果は、アンチモンに ばく露されると、非腫瘍性呼吸器・心臓疾患による死亡率が増加することを示唆しているが、多く の交絡変数や適切な対照群が得られていないために結論できないと、著者らは考察している210。

#### 才 生殖・発生毒性.

旧ソ連のアンチモン冶金工場で金属アンチモン、三酸化二アンチモン、五硫化二アンチモンを含む粉じんに職業性にばく露された女性労働者の生殖能力への影響が調べられた。アンチモン工場の女性従業員に対して1962~1964年の間、アンチモン検出測定と年2回の婦人科検診が行われた。アンチモンの空気中濃度の記載はないが、ばく露された女性全員の血液、尿及び糞便中にアンチモンが検出された。血液中平均アンチモン濃度は、アンチモン製造従事者群(161人)では53 mg Sb/L、研究・保守管理従事者群(157人)では40 mg Sb/L、対照群(115人)では3.3 mg Sb/L であり、アンチモンばく露群の血液中濃度は対照群の12~16倍であった。また、製造及び研究・保守部門の出産経験者(人数不詳)において、アンチモンが母乳(平均3.3 mg Sb/L)、羊水(平均62 mg Sb/L)、胎盤(32~126  $\mu$  g Sb/g)、臍帯血(平均63 mg Sb/L)中に検出された。婦人科検診の結果、月経周期の異常が対照群では35.7%みられたのに対してばく露

群では61.2%であった。自然流産が対照群では4.1%に対して、ばく露群では12.5%、未熟児出産が対照群1.2%に対して、ばく露群では3.4%であった。新生児の体重は対照・ばく露群ともにほぼ同じであったが、ばく露群からの子供の体重増加に遅延が認められた。体内に入ったアンチモンは女性の生殖器及び出産機能に重大な影響を及ぼすと述べているが、アンチモンの定量方法の記載や工場内の環境中成分分析結果の記載はない。<sup>21</sup>。

#### カ 遺伝毒性

自動車の座席の難燃加工に従事し、三酸化二アンチモンに職業ばく露した男性労働者23

人(平均年齢: 41.7 歳)の血液から調製したリンパ球に対する遺伝毒性が調べられた。対照群として年齢、喫煙習慣でマッチングした非ばく露の労働者23人を選んだ。ばく露群は、空気中平均アンチモン濃度が $0.052~\mu~g~Sb/m^3$ (低ばく露群: 6人)と $0.12~\mu~g~Sb/m^3$ (高ばく露群: 17人)の2群に分けられた。調製されたリンパ球の姉妹染色分体交換試験と小核試験結果はすべての群で陰性であったが、酸化的DNA損傷を検出する酵素処理コメットアッセイでは、陽性の頻度は対照群で3/23(13%)、低ばく露群で1/6(17%)、高ばく露群で11/17(65%)であり、高ばく露群は有意に高い陽性を示した21)。

#### キ 発がん性

9~31 年間勤務した労働者51人が主に三酸化二アンチモンと五酸化二アンチモンを含む粉 じんを粉じん濃度17~86 mg/m³で吸入ばく露されたが、がんの発生率には影響しなかった<sup>21)</sup>。英 国北東部のアンチモン製錬工場で1961年初めに勤務していたアンチモン製造、保守管理、ジル コン粉砕作業、事務・管理の4 部門の男性労働者1,420人を対象に1961~1992年中のアンチモ ン製錬工程による発がんに関するコホート研究が行われた。この期間中にアンチモン製造及び 保守部門の労働者は金属アンチモン、三酸化二アンチモン、金属ヒ素、三酸化ヒ素、二酸化硫 黄、芳香族多環炭化水素などにばく露されたが、各ばく露量についての定量的なデータはなか った。1992年末までに357人が死亡し、29人が移住した。ジルコン作業に従事した同工場労働者 を対照とし、当該地方の人口死亡率を用いて死亡率の期待値を算出した。アンチモン部門では、 肺がん、胃がん、その他の腫瘍による全死亡率(期待値54.7人に対し観察値69人: 有意水準P =0.07) は増加し、肺がんによる有意な増加(期待値23.9人に対し観察値37人: P=0.016) が みられた。胃がん、その他の腫瘍による増加はなかった。保守管理部門では、腫瘍による全死亡 率 (期待値18.2人に対し観察値34人: P=0.002) は増加した。 肺がんによる増加 (期待値8.1人 に対し観察値15人: P=0.038) とその他の腫瘍 (期待値8.4人に対し観察値18人: P=0.006) に よる増加がみられたが、胃がんによる増加はなかった。対照群としてのジルコン部門及び事務・ 管理部門では腫瘍による死亡率の増加は認められなかった。肺がん死亡率に関しては、1961年 以前に勤務した労働者に肺がん死亡率の増加(期待値14.7人に対して観察値32人: P<0.001) が認められ、保守管理部門の労働者にも肺がん死亡率の増加(期待値5.3人に対して観察値12 人: P=0.016) がみられた。しかし、多くの化学物質にばく露されているために、この増加をもたら した化学物質を特定できなかった。最初のばく露から肺がんによる死亡までに最低20年の潜伏 期間が認められたが、勤続年数と肺がん死亡との間には関連は認められなかった。一方、1960 年以降雇用された労働者には死亡率の増加はなかった。 1960年以降の肺がん死亡率の低下 は、アンチモンフュームなど種々の化学物質のばく露を減少するように労働環境を改善してきた 結果であるかもしれないが、喫煙に関する適切なデータは示されていない<sup>21)</sup>。

米国テキサス州アンチモン製錬工場のラテンアメリカ系米国人男性労働者928人を対象にアンチモン製錬工程による発がんの追跡調査が行われた。1937年から1971年までの間に少なくとも3か月間雇用された労働者が対象とされた。対照に用いたテキサス州のラテンアメリカ系米国人住民の肺がん死亡率と比較すると、肺がんで死亡した労働者の死亡率は高く、標準死亡比(SMR)は1.39(90% CI: 1.01~1.88)であった。雇用期間が長くなると、死亡率が高くなる傾向が認められた。この結果は、アンチモンの職業ばく露によって肺がんで死亡率が増加することを示唆しているが、交絡変数が多く、また、適切な対照群が得られていない<sup>21)</sup>。

## 発がんの定量的リスク評価

アンチモン及びアンチモン化合物についてのユニットリスクに関する報告はない。<sup>6)、7)、8)、9)</sup> (6/24/ 09 参照資料により確認した)

## 発がん性分類

IARC:2B (三酸化アンチモン)、3(三硫化アンチモン) 10)

産衛学会:2B (酸化アンチモン(III)) 11)

NTP 11<sup>th</sup>:報告なし <sup>13)</sup>

ACGIH: A2 (三酸化アンチモン製造現場)<sup>14)</sup>

EU Anex-1:Carc. Cat.3 (三酸化アンチモン) 12)

#### (3) 許容濃度の設定

ACGIH TLV 14):

TWA: 0.5 mg/m³ as Sb (アンチモン及びその化合物、1979)

#### 勧告根拠(要約):

アンチモン及びその化合物への職業ばく露について、TLV-TWA を 0.5 mg/m³ (アンチモンとして)を勧告する。この値は上気道の刺激、腹痛及び食欲減退発現の可能性を最小限にする意図で設定した。著しく高い単回又は繰り返しばく露による重大な影響、例えば心臓や血液の障害発生することがある。入手できる全てのアンチモン化合物に共通の有害性情報から TLV を導くことは困難である。当該 TLV は、生物学的に活性なアンチモン化合物の中の一つである五塩化アンチモンで特定できる健康影響からの外挿によって設定された。経皮吸収性、感作性、発がん性の注釈の付記、又は TLV-STEL を勧告するための十分な情報はない。

TWA:0.1 ppm(スチビン;水素化アンチモン、1990)

### 勧告根拠(要約):

水素化アンチモンへの職業ばく露について、TLV-TWAを 0.1 ppm を勧告する。この値は、血球破壊、肺の刺激及び幼児の健康障害リスクを最小にする意図で設定した。水素化アンチモンは、アルシンと同様に溶血作用があり、また、ばく露された動物や人における生物学的影響の類似性に基き(一部)当該 TLV は設定した。経皮吸収性、感作性、発がん性の注釈の付記、又はTLV-STELを勧告するための十分な情報はない。

(L): Exposure by all routes should be carefully controlled to levels as low as possible、A2(三酸化アンチモン( $\mathrm{Sb_2O_3}$ )製造現場、1977)

#### 勧告根拠(要約):

ヒトの発がん性やその他の健康障害についての情報が不明確である英国及び米国のアンチモン

製造工場の労働者の研究から得られたデータに基いて $\mathrm{Sb_2O_3}$ の製造現場環境について数値的な TLV を勧告しない。アンチモンの製造工場の労働者におけるアンチモンへのばく露と肺がんに関する歴史的なデータに基き発がん性を A2(人に対する発がん性が疑われる)に分類する。これらのデータは、 $\mathrm{Sb_2O_3}$  の製造現場環境を発がん性 A1(人に対する発がん性がある)に分類するためには不十分でそれぞれが対立的である。TLV を勧告しない化学物質で発がん性が指摘される全ての化学物質について、作業者の全てのばく露経路を注意深く監視し、ばく露を出来るだけ低く管理しなければならない。

## 日本産業衛生学会 許容濃度 11)

TWA:  $0.1 \text{ mg/m}^3$  as Sb (アンチモン及びその化合物、スチビンを除く、1991)

### 勧告根拠(要約):

アンチモンおよびその無機化合物の許容濃度の提案にあたって、肺がんの発生と,胚ないし胎児(仔)への影響および心臓毒性を考慮するべきと考える。ラットの胚への影響として報告のあった酸化アンチモン(III) 82 μg/m³ (68.5 μg Sb/m³)を最小作用濃度と考えるべきであるが、この値を最小作用濃度と考えるとすれば、現行のTLVやMAKの勧告値0.5mg/m³ とは8倍近い違いとなり、ラットの感受性が高いと仮定したとしても、充分な安全性を確保しているとは言いがたい。

したがって、現行のTLVやMAKの勧告値 $0.5 \text{ mg/m}^3$ より低い値を提案すべきであると考える。また、労働者の心臓毒性を報告した報告では、ばく露濃度が $0.6\sim5.5 \text{ mg Sb/m}^3$ となっており、やはり、 $0.5 \text{ mg/m}^3$ が充分な安全率を見込んだ値とは言いがたく、暫定的に $0.1 \text{ mg/m}^3$ を提案する。

DFG MAK 18)

設定なし(アンチモン及びその化合物、スチビンを除く)

NIOSH REL 19)

TWA: 0.5 mg/m³ as Sb (アンチモン及びその化合物)

TWA: 0.1 ppm (0.5 mg/m³) (スチビン、水素化アンチモン)

OSHA PEL 18)

TWA: 0.5 mg/m³ as Sb (アンチモン及びその化合物)

TWA: 0.1 ppm (0.5 mg/m³) (スチビン、水素化アンチモン)

#### 引用文献

- 1) IPCS:国際化学物質安全性カード(ICSC)日本語版:アンチモン ICSC 番号 0775 (2006 更新);三酸 化アンチモン ICSC 番号 0012 (2003 更新);三塩化アンチモン ICSC 番号 1224 (2004 更新);五フッ化アンチモン ICSC 番号 0220 (1995 更新);スチビン ICSC 番号 0776 (2008 更新)
- 2) 化学工業日報社:15509の化学商品(2009年)
- 3) 経済産業省:化学物質の製造・輸入量に関する実態調査(平成16年度速報値)結果報告
- 4) 日本精鉱(株)データシート(http://www.nihonseiko.co.jp/products/pdf/datasheet.pdf)
- 5) NIOSH: RTECS (CD 版(2009))
- 6) IRIS Cancer Unit Risk Values, US EPA

(http://cfpub.epa.gov/ncea/iris/index.cfm?fuseaction=iris.showSubstanceList)

7) WHO air quality guidelines for Europe, 2nd edition (2000)

(http://www.euro.who.int/air/activities/20050223\_4)

8) WHO "Air Quality Guidelines - global update 2005

## (http://whqlibdoc.who.int/hq/2006/WHO\_SDE\_PHE\_OEH\_06.02\_eng.pdf)

- 9) California EPA (OEHHA), Hot Spots Unit Risk and Cancer Potency Values (http://www.oehha.ca.gov/air/hot\_spots/pdf/TSDlookup2002.pdf)
- 10) IARC Monographs on the Evaluation of Carcinogenic Risks to Humans (<a href="http://monographs.iarc.fr/ENG/Classification/index.php">http://monographs.iarc.fr/ENG/Classification/index.php</a>)
- 11) (社)日本産業衛生学会:許容濃度の勧告、産業衛生学雑誌 50 巻 5 号(2008)
- 12)(社)日本化学物質安全・情報センター: EU 危険な物質のリスト日本語版 第8版(2009)(第31次的 適応化委員会指令2009/2/EC対応)
- 13) National Institute of Health:Carcinogens Listed in NTP Eleventh Report (http://ntp.niehs.nih.gov/?objectid=035E5806-F735-FE81-FF769DFE5509AF0A)
- 14) ACGIH: TLVs and BELs (Booklet 2009)
- 15) ACGIH: Documentation, Antimony and Compounds (2001)
- 16) ACGIH: Documentation, Antimony Hydride(2001)
- 17) ACGIH: Documentation, Antimony Trioxide, Production(2001)
- 18) Deutsche Forschungsgemeinschaft: List of MAK and BAT values. (2007)
- 19) NIOSH: NIOSH Pocket Guide to Chemical Hazards (http://www.cdc.gov/niosh/npg/default.html)
- 20) IARC: IARC Monograph Vol. 47. (Antimonytrioxide, 1989).
- 21) (独)製品評価技術基盤機構、有害性評価書\_アンチモン及びその化合物 (2008) (http://www.safe.nite.go.jp/pdf/No-132.pdf)
- 22) 日本産業衛生学会、許容濃度の提案理由、産業医学 33 巻 4 号 299-305(1991)