メチレンビス(4,1-シクロヘキシレン)=ジイソシアネートの 測定・分析手法に関する検討結果報告書

目 次

1.	はじめに3
2.	文献調査3
3.	捕集および分析条件4
;	3-1. 捕集·測定方法
;	3-2.試薬類
;	3-3. 溶液の調製方法
;	3-4. 誘導体化操作
4.	標準溶液の誘導体化反応の検討6
5.	クロマトグラムおよびスペクトル8
6.	検量線 12
7.	検出下限および定量下限12
8.	捕集材のブランク 13
9.	脱着率13
10	. 添加回収率(通気試験)
11	. 保存性 14
12	. まとめ15
13	- 16

1. はじめに

メチレンビス(4,1-シクロヘキシレン)=ジイソシアネートの物理化学的性状を示した $^{1)}$ (表 1)

表 1 メチレンビス(4,1-シクロヘキシレン)=ジイソ シアネートの物理化学的性状

CAS No.	5124-30-1				
別名	ジシクロヘキシルメタン 4,4'-ジイソシアナート				
	シクロヘキシルメタン	ジイソシアネート			
	メチレン・ビス(4・シクロ	ュヘキシルイソシアナート)			
	*	7ロヘキシルイソシアナート)			
	1,1'-メチレンビス(4-7	(ソシアナトシクロヘキサン) など			
用途	接着剤、塗料、ウレ	/タンフォーム・エラストマーの原料 など			
構造式					
	0=C=N-	$O=C=N CH_2 N=C=O$			
	C15H22N2O2				
分子量	262.35 g/mol				
物性	比重	1.07 g/mL (Water=1)			
	沸点	180℃			
	融点	19∼23℃			
	蒸気圧 0.0021Pa(25℃)				
	形状 常温・常圧では無色液体				
許容濃度等	日本産業衛生学会 設定されていない				
	ACGIH	TWA:0.054 mg/m ³ 、 0.005 ppm (1985)			

気中濃度として、ACGIH の TLV-TWA 0.054mg/m³の 1/1000 から 2 倍の範囲における捕集及 び分析方法について検討を行った。

2. 文献調査

分析・測定手法に関する文献調査の結果を示す。(表 2)

表 2 分析・測定手法に関する文献調査

出典	サンプリング法	脱着溶媒	分析方法
OSHA Method No, PV2092	1-(2-ピリジル)ピペラジン含浸フィ ルター	アセトニトリル:ジ メチルスルホキシド =90:10	高速液体クロ マトグラフ法
NIOSH Method No,5525 (2003) (ISOCYANATES, TOTAL)	インピンジャー (吸収液:1×10 ⁻⁴ M, 1-(9- Anthracenyl) piperazine /butyl benzoate)+1-(9-Anthracenyl) piperzine 含浸グラスファイバーフ イルター	1×10 ⁻⁴ M 1-(9-Anthracenyl) piperazine/Acetonit rile	高速液体クロ マトグラフ法
公益社団法人日本 作業環境測定協会 作業環境測定ガイ ドブック3 特定化学物質 3022トリレンジ イソシアネート (TDI)	1-(2-ピリジル)ピペラジン含浸フ ィルター	0.05%v/v 酢酸/メタ ノール	高速液体クロ マトグラフ法

3. 捕集および分析条件

3-1. 捕集·測定方法

OSHA Methods No.PV2092 および作業環境測定ガイドブック 3 の TDI の捕集方法である 1-(2-ピリジル)ピペラジン含浸フィルターにより捕集し、高速液体クロマトグラフ法で測定する方法が示されている。よって、この方法を参考に検討することとした。

なお、抽出溶媒は、OSHA Method No,PV2092 のアセトニトリル/ジメチルスルホキシド (90:10)を使用しているが、誘導体後の標準ピーク面積が時間の経過と共に減少したので、抽出溶媒を 0.05%(v/v)酢酸を添加したアセトニトリル/ジメチルスルホキシド(90:10)で検討した。詳細は後述する。

表3 メチレンビス(4,1-シクロヘキシレン)=ジイソシアネートの測定条件

測定条件			
装置	高速液体クロマトグラフ法		
	Agilent 1100Series		
カラム	ZORBAX Eclipse		
	XDB-C8 ID4.6mm×150mm,5μm		
カラム温度	40°C		
移動相	A)0.1M 酢酸アンモニウム溶液 (pH 6.20)		
	B)アセトニトリル		
	グラジエント条件		
	A/B=70/30(1min 保持)		
	→20/80(10min)-(4min 保持)		
流量	1mL/min		
注入量	20μL		
検出器	FL 検出器 Ex:240nm Em:370nm		
保持時間	8.3~8.4		
検量線 絶対検量線法			
捕集方法			
捕集材	SUPELCO 製 ORBO-80		
	1-(2-ピリジル)ピペラジン 1mg 含浸フィルター		
吸引ポンプ	柴田科学製 Σシリーズ		
	吸引速度 1L/min		
採気時間	10~240min		
	抽出方法		
抽出溶媒	0.05%(v/v)酢酸-(アセトニトリル/ジメチルスルホキシ		
	ド=90:10) 4mL		
抽出方法	40℃乾燥機で 60 分間-ろ過		

3-2. 試薬類

・メチレンビス(4,1-シクロヘキシレン)=ジイソシアネート 東京化成工業㈱ >90% mixture of isomers(異性体混合物) 異性体は 3 種類 cis-cis 体,cis-trans 体,trans-trans 体(存在比は不明。)

- ・1-(2-ピリジル)ピペラジン: 東京化成工業㈱ >98%
- ・ジメチルスルホキシド: 和光純薬工業㈱ >99.5%
- ・アセトニトリル: 和光純薬工業㈱ 高速液体クロマトグラフィー用 >99.8%
- ・酢酸アンモニウム:和光純薬工業㈱ >97%
- 酢酸: 関東化学㈱ >99.7%

3-3. 溶液の調製方法

- ① 抽出溶媒(0.05%(v/v)酢酸-アセトニトリル/ジメチルスルホキシド=(90:10))の調製方法 アセトニトリルとジメチルスルホキシドを体積比で 90 対 10 の割合で混合する。 抽出溶媒 200mL 調製する場合、200mL のメスフラスコに酢酸を 0.1mL 入れ、アセトニト リル/ジメチルスルホキシド混合溶液で標線に合わせる。
- ② 1-(2 ピリジル)ピペラジン誘導体化溶液(約 0.25 mg/mL)の調整方法 1-(2 ピリジル)ピペラジンを 200 mL のメスフラスコに天秤にて 0.050 g 量り取り、抽出溶媒で標線に合わせる。

3-4. 誘導体化操作

1-(2 ピリジル)ピペラジン誘導体化溶液(約 0.25 mg/mL) 4 mL に一定量のメチレンビス(4,1-シ クロヘキシレン)=ジイソシアネート標準を添加し行った。分子構造を下記に示す。(図 1)

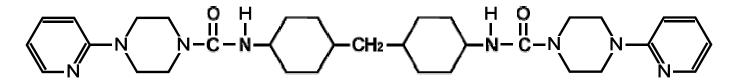


図 1 誘導体化分子構造式

メチレンビス(4,1-シクロヘキシレン)=ジイソシアネートの 1 分子に対して、1-(2 ピリジル)ピペラジンが 2 分子反応する。捕集材(ORBO-80)には、1 mg (6 mmol)の 1-(2 ピリジル)ピペラジンが含浸されていることから、誘導体化できるメチレンビス(4-シクロヘキシレン)=ジイソシアネートは最大 1.76 mg (3 mmol)となる。

4. 標準溶液の誘導体化反応の検討

0.25 mg/mL の 1-(2 ピリジル)ピペラジン誘導体化溶液 4 mL にメチレンビス(4,1-シクロヘキシレン)=ジイソシアネート標準を 125 μ g 添加し、1-(2-ピリジル)ピペラジン誘導体化反応に必要な時間の検討について実施した。

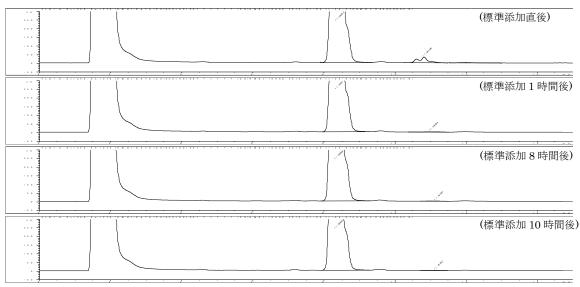


図 2 誘導体化反応の時間経過の測定クロマトグラム (上から添加直後,添加 1 時間後,添加 8 時間後,添加 10 時間後)

標準添加直後のクロマトグラムには、保持時間 8.3 分付近と 10.8 分付近にピークが確認されたが、添加 1 時間後では、保持時間 10.8 分付近に見られたピークが減少し、10 時間後までのクロマトグラムには大きな変化は見られなかったが、保持時間 8.3 分付近の見られた標準ピークの面積は、8 時間後付近を境に時間の経過と共に徐々に減少していった。(図 3)

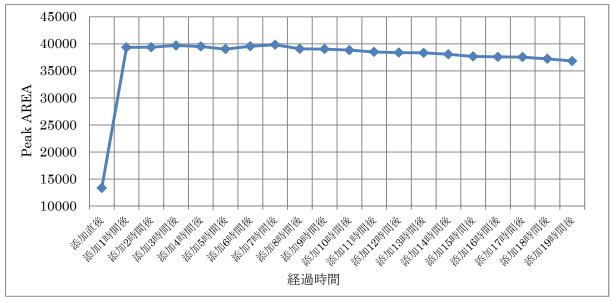


図3 標準ピーク(保持時間 8.3 分付近)の AREA の減衰

図 3 の結果から、標準添加後、おおよそ $1\sim2$ 時間程度で標準のピーク(保持時間 8.3 分付近)が安定を示している事から、誘導体化反応時間は $1\sim2$ 時間必要と思われる。しかし、添加後 8 時間付近で標準ピークの面積が徐々に減少している。

そこで、誘導体化溶液の安定性を確認するため、抽出溶媒に酢酸無と酢酸入り(0.05%(v/v))との安定性の比較検討を行った。

誘導体化を促進させる為、誘導体化溶液に標準を添加した後、 40° に設定した乾燥機に 1 時間入れ、室温に戻したのち、1 時間間隔で 23 時間測定し比較した。

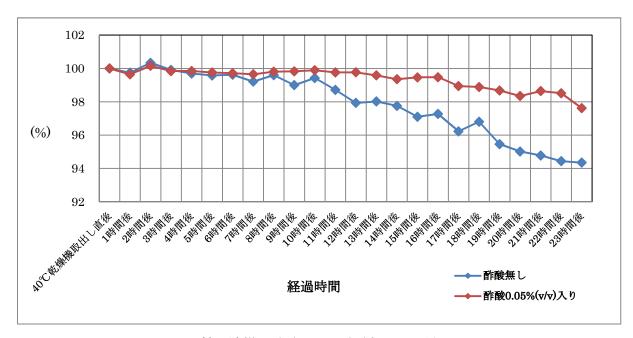
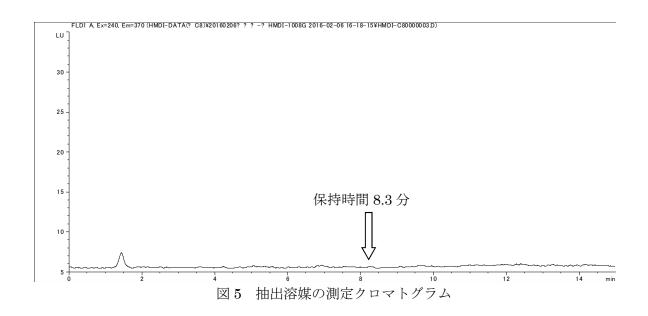


図4 抽出溶媒に酢酸入りと酢酸無しの標準ピーク (保持時間8.3分付近)の安定性の比較

図 4 の結果の通り、抽出溶媒に酢酸無しの場合は、8 時間後から標準ピーク面積値が減少しているのに対し、酢酸を添加した抽出溶媒は、16 時間後まで安定した面積値を示し、23 時間後においても乾燥機から取出し直後の面積値に対し 97%と安定性を維持していた。


よって、後者の抽出溶媒を用いて検討を行うこととした。

5. クロマトグラムおよびスペクトル

表3の測定条件で得られたクロマトグラムを下記に示す。

抽出溶媒のクロマトグラムを図 5 に 1-(2-ピリジル)ピペラジン誘導体化溶液のクロマトグラムを図 6 に示した。また、メチレンビス(4,1-シクロヘキシレン)=ジイソシアネート誘導体化標準溶液 10 μ g/mL および 0.016 μ g/mL のクロマトグラムを図 7 および 8 に示した。併せて、吸収スペクトルを図 9 に蛍光スペクトルを図 10 に示す。

抽出溶媒および 1-(2-ピリジル)ピペラジン誘導体化溶液の測定クロマトグラムには、標準ピーク(保持時間 8.3 付近)の保持時間に妨害ピークは確認されなかった。

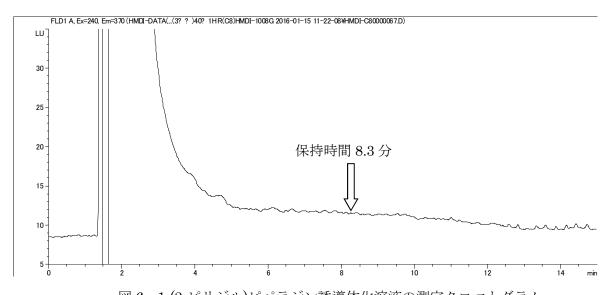


図 6 1-(2-ピリジル)ピペラジン誘導体化溶液の測定クロマトグラム

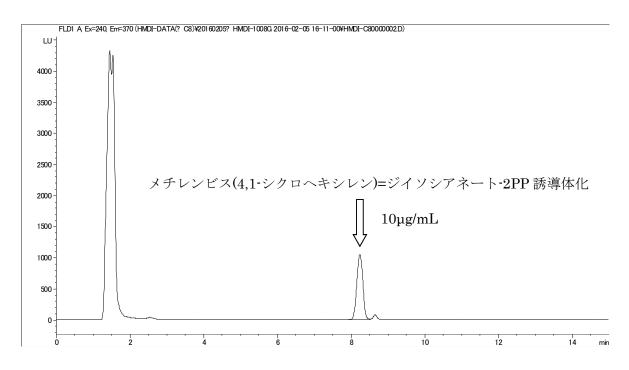
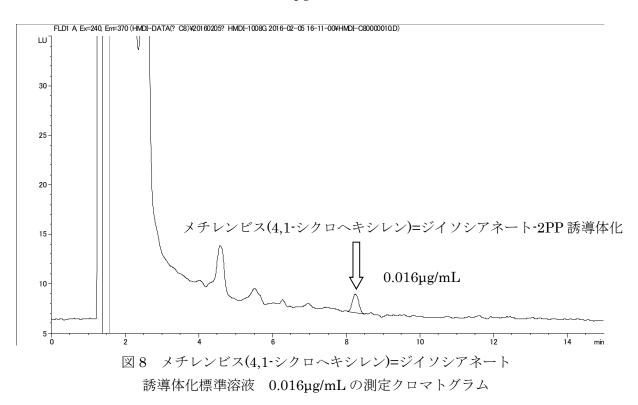



図 7 メチレンビス(4,1-シクロヘキシレン)=ジイソシアネート 誘導体化標準溶液 $10\mu g/mL$ の測定クロマトグラム

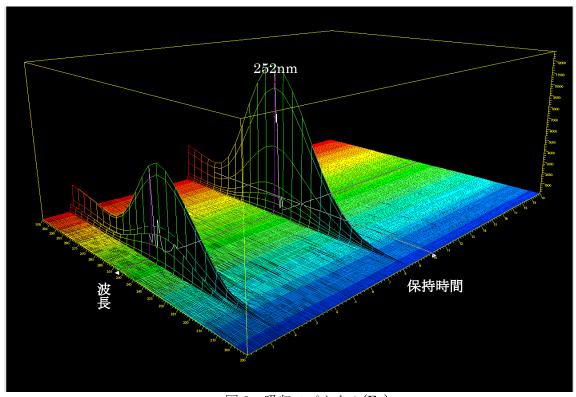


図9 吸収スペクトル(Ex)

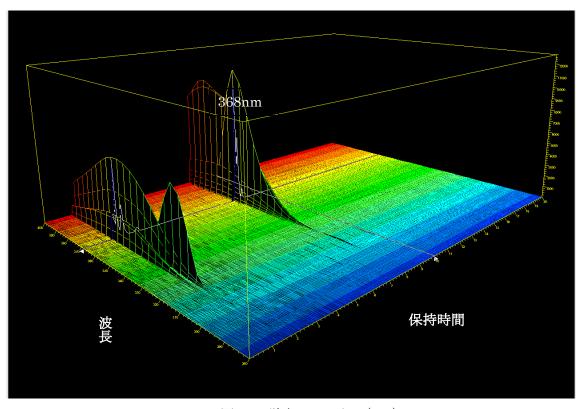


図 10 蛍光スペクトル(Em)

6. 検量線

10 μ g/mL のメチレンビス(4,1-シクロヘキシレン)=ジイソシアネート誘導体化標準溶液を調製した。10 μ g/mL の誘導体化標準溶液を抽出溶媒で希釈し、0.0、0.016、0.032、0.063、0.126、0.25、0.50、1.0、2.0、10.0 μ g/mL の 10 段階の標準系列とした。

 $0.0\sim10.0~\mu g/mL$ の範囲で作成した検量線の直線性(r=1.00000)は良好な結果となった。 検量線を図 11 に示す。

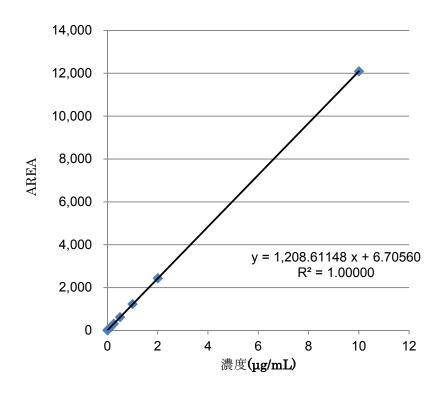


図 11 0.0~10.0 µg/mL の検量線

7. 検出下限および定量下限

検量線作成で調製した最小濃度($0.016~\mu g/mL$)の標準溶液を 5~回繰り返し測定し、得られた値から標準偏差(SD)を算出し、次式より検出下限および定量下限を求めた。(表 <math>4)

検出下限(μg/mL)=3SD

定量下限(μg/mL = 10 SD

表 4 繰り返し測定結果

	濃度(µg/mL)
1	0.0134
2	0.0124
3	0.0118
4	0.0127
5	0.0125

	Ave.	0.0126
	SD	0.00059
-	3SD	0.0018
	10SD	0.0059

その結果、検出下限 $0.0018 \, \mu g/mL$ および定量下限 $0.0059 \, \mu g/mL$ となった。

検出下限および定量下限から採気量 240 L,抽出溶媒液量 4 mL の条件で求められる気中濃度を表 5 に示す。

	検出下限値	定量下限値
溶液濃度 μg/mL	0.0018	0.0059
気中濃度 mg/m³	0.000030	0.000098
(ppm)	(0.0000028)	(0.0000092)

表 5 検出・定量下限

8. 捕集材のブランク

捕集材(ORBO-80)を抽出溶媒 4 mL に抽出し、ブランク測定の確認を行ったところ、標準ピーク(保持時間 8.3 分付近)の保持時間に妨害ピークは確認されなかった。(図 12)

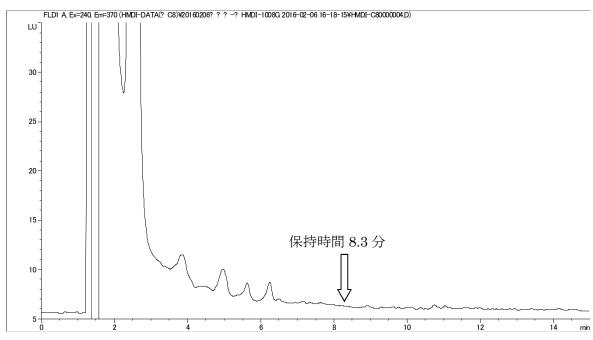


図 12 捕集材(ORBO-80)の抽出液の測定クロマトグラム

9. 脱着率

脱着率試験は、ACGIH TLV-TWA: $0.054 \text{ mg/m}^3 \mathcal{O} 1/100$ 、1/10および 2 倍の 3 濃度について、試料空気を 240 L (1 L/分で 4 時間吸引し、抽出溶媒 4 mL)採気した場合、捕集材に捕集されるメチレンビス(4,1-シクロヘキシレン)=ジイソシアネートの量を直接添加し、1 L/分で 5 分間室内

空気(室温: 14.5 ± 1 °C、湿度: 50 ± 5 %)を通気させたものを一晩冷蔵庫(5 ± 1 °C)保存した。 試料抽出液と標準溶液を測定して得られた値を比較し、脱着率を求めた。(表 6)

	衣 0				
添加量(µg)		脱着率(%) n		n=5	
4167月	1里(μg)	Mean	SD	RSD(%)	
0.13	(E/100)	93.3	1.6	1.7	
1.3	(E/10)	100.5	0.7	0.7	
26	(2E)	94.4	1.3	1.4	

表 6 脱着率試験結果

*Eは、ACGIH TLV-TWA:0.054mg/m³を示す。

10. 添加回収率(通気試験)

添加回収試験は、ACGIH TLV-TWA: 0.054 mg/m^3 の 1/100、1/10 および 2 倍の 3 濃度について、試料空気を 240 L(1 L/分で 4 時間吸引し、抽出溶媒 4 mL)採気した場合、捕集材に捕集されるメチレンビス(4,1-シクロヘキシレン)=ジイソシアネートの量を直接添加し、1 L/分で 240 分間室内空気(室温: 15.0 ± 2 °C、湿度: 65 ± 5 %)を通気させた。

試料抽出液と標準溶液を測定して得られた値を比較し、回収率を求めた。(表 7)

-		₩ 荣 华 (V/)	
添加量(µg)		脱着率(%)	n=5
小小山王(hg)	Mean	SD	RSD(%)
0.13 (E/100)	93.5	4.6	4.9
1.3 (E/10)	99.9	0.9	0.9
26 (2E)	98.8	1.1	1.1

表 7 添加回収率試験結果

*Eは、ACGIH TLV-TWA:0.054mg/m³を示す。

11. 保存性

保存性試験は、ACGIH TLV-TWA: 0.054 mg/m³の 1/100、1/10 および 2 倍の 3 濃度について、試料空気を 240 L (1 L/分で 4 時間吸引、抽出溶媒 4 mL) 採気した場合、捕集材に捕集されるメチレンビス(4,1-シクロヘキシレン)=ジイソシアネートの量を直接添加し、1 L/分で 240 分間室内空気(室温: 15.0 ± 1 °C、湿度: 50 ± 5 %)を通気させたもので 0、1、3、5 日後の保存性の確認を行った。保存性試験用試料は、冷蔵庫(5 ± 1 °C)内で保存した。

試料抽出液と標準溶液を測定して得られた値を比較し、回収率を求めた。その結果を表 8 に示し、0 日目を基準とした保存率を表 9 に示した。

衣 6 保存性試験指示(凹収率)				
添加量	保存日数		回収率(%)	n=3
(µg)		Mean	SD	RSD(%)
0.13(E/100)	0	91.7	2.3	2.5
	1	92.4	1.0	1.1
	3	90.7	1.7	1.9
	5	93.2	1.6	1.8

表 8 保存性試験結果(回収率)

1.3(E/10)	0	97.6	0.8	0.8
	1	100.2	0.7	0.7
	3	99.7	1.2	1.2
	5	101.5	0.4	0.4
26(2E)	0	99.3	0.9	0.9
	1	94.5	1.0	1.1
	3	100.5	0.3	0.3
	5	91.8	0.9	1.0

表 9 保存性試験結果(保存性)

泛 ·加里.	Ī	C PITTIES WORTH		. – 0
添加量	保存日数		保存率(%)	n=3
(µg)	水行口数	Mean	SD	RSD(%)
0.13(E/100)	0	100.0	2.5	2.5
	1	100.7	1.1	1.1
	3	98.8	1.9	1.9
	5	101.6	1.8	1.8
1.3(E/10)	0	100.0	0.8	0.8
	1	102.6	0.7	0.7
	3	102.1	1.3	1.2
	5	104.0	0.4	0.4
26(2E)	0	100.0	0.9	0.9
	1	95.1	1.0	1.1
	3	101.2	0.3	0.3
	5	92.4	1.0	1.0

*Eは、ACGIH TLV-TWA:0.054mg/m³を示す。

12. まとめ

検量線は、 $0.016\sim10.0\,\mu\text{g/mL}$ の範囲で良好な直線性(r=1.0000)が得られた。

脱着率試験の結果、添加量 $0.13~\mu g$ 、 $1.3~\mu g$ および $26~\mu g$ の濃度範囲では 90%以上であった。

回収率試験の結果、添加量 $0.13~\mu g$ 、 $1.3~\mu g$ および $26~\mu g$ の濃度範囲では 90%以上であった。

保存性試験では、添加量 $0.13~\mu g$ 、 $1.3~\mu g$ および $26~\mu g$ の 3~ 濃度全てにおいて、冷蔵保存することで 5~ 日後まで保存性が 90%以上であった。

今回実施した測定条件では、分析機器で求められた定量下限濃度(液中濃度)で、240 L $(1 \text{ L/min} \times 4 \text{ 時間}, 4 \text{ mL}$ 抽出)においては、ACGIH TLV-TWA の 1/500 程度が限界である。また、脱着率試験において、 $1 \text{ L/min} \times 4 \text{ 時間}$ で 240 L 採気、4 mL 抽出の条件で E/200 (添加量 0.065 µg) の濃度で検討を行ったところ、脱着率が 90%未満となったため、E/100 (添加量 0.13 µg) $\sim 2E$ (添加量 26 µg) の範囲で今回の検討を行った。以上の事から、本測定方法では、E/1000 まで定量することは難しい為、E/1000 より低濃度域の測定を行うには、他の分析機器及び測定手法の検討が必要と考える。

13. 参考文献

- 1. 中央労働災害防止協会 安全衛生情報センター 製品安全データシート
- 2. Occupational Safety and Health Administration(OSHA): Method No,PV2092

Methylene bis(4-Cyclohexylisocyanate)

3. The National Institute for Occupational Safety and Health(NIOSH):

Method No, 5525(2003) ISOCYANATES, TOTAL

4. 日本作業環境測定協会 作業環境測定ガイドブック 3 特定化学物質

3002 トリレンジイソシアネート(TDI)

(別紙) メチレンビス(4,1-シクロヘキシレン)=ジイソシアネート標準測定分析法

化学式: C15H22N2O2 分子量: 262.35g/mol CAS No.5124-30-1

許容濃度等:

日本産業衛生学会:設定されていない

ACGIH: TLV-TWA 0.054 mg/m³

(1985) 0.005 ppm

物性等:

沸 点:180℃ 融 点:19~23℃

蒸気圧: 0.0021Pa(25℃)

形 状:常温・常圧では無色液体

分析方法:高速液体クロマトグラフ法

分析機器: Agilent 1100Series

別名: ジンクロヘキシルメタン 4,4'-ジイソシアナート、シクロヘキシルメタンジイソシアネート、メチレン・ビス(4-シクロヘキシルイソシアナート)、4,4'-メチレンビス(シクロヘキシルイソシアナート)、1,1'-メチレンビス(4-イソシアナトシクロヘキサン)

サンプリング 分析

サンプラー: SUPELCO ORBO-80

1-(2-ピリジル)ピペラジン 1 mg

含浸グラスファイバーフィルター

サンプリング流量:1L/分

サンプリング時間:10~240 分間

回収率:添加量 0.13 ug の場合

10 L 採気

10 L 採気

240 L 採気

240 L 採気

保存性:0.13~26 μg の濃度範囲で

冷蔵庫保管で5日後まで保存率

90%以上であることを確認した。

1.3 μg の場合

26 μg の場合

1.3 μg の場合

26 μg の場合

分析条件:

カラム: ZORBAX Eclipse

B-C8 ID4.6 mm \times 150 mm, 5 μ m

抽出溶媒:4 mL 0.05%酢酸-アセトニトリル/ジメチルスルホキシド(90:10)

抽出方法:40℃乾燥機で60分間以上-ろ過

カラム温度:40℃

脱着率:添加量 0.13 ug の場合 93.3% 移動相:A)0.1M 酢酸アンモニウム溶液(pH:6.20)

B)アセトニトリル

グラジエント測定

A/B=70:30 (1min 保持)

20:80 (10 min) -4 min 保持

流量: 1.0 mL/min

注入量:20 uL

検出器: FLD (Ex:240 nm、Em:370 nm)

検量線:絶対検量線

0.016~10 μg/mL の範囲で直線性を確認。

保持時間: 8.3~8.4 min

適用:個人ばく露測定、作業環境測定

妨害:

精度

(4 時間)

定量下限(10 σ)

検出下限(3σ)

文献:1. 中央労働災害防止協会 安全衛生情報センター 製品安全データシート

100.5%

94.4%

93.5%

99.9%

98.8%

 0.0024 mg/m^3

0.000098 mg/m³

0.00072 mg/m³

 0.000030 mg/m^3

2. Occupational Safety and Health Administration(OSHA): Method No, PV2092

3. 作業環境測定ガイドブック 3 特定化学物質 3022 トリレンジイソシアネート

備考:

平成 28 年 2 月 23 日