Macrogol 400

Polyethylene Glycol 400

Macrogol 400 is a polymer of ethylene oxide and water, represented by the formula HOCH₂(CH₂OCH₂)nCH₃OH, in which the value of n ranges from 7 to 9.

Description

Macrogol 400 occurs as a clear, colorless and viscous liquid. It has no odor or a slight, characteristic odor.

It is miscible with water, with methanol, with ethanol (95) and with pyridine.

It is soluble in diethyl ether.

It is slightly hygroscopic.

Congealing point: 4 – 8°C

Specific gravity 1.110 – 1.140

Identification

Dissolve 50 mg of Macrogol 400 in 5 mL of dilute hydrochloric acid, add 1 mL of barium chloride TS, shake, and filter, if necessary. To the filtrate add 1 mL of a solution of phosphomolybdic acid n-hydrate (1 in 10): a yellow-green precipitate is formed.

pH <2.5

Dissolve 1.0 g of Macrogol 400 in 20 mL of water: the pH of this solution is between 4.0 and 7.0.

Purity (1) Acidity—Dissolve 5.0 g of Macrogol 400 in 20 mL of neutralized ethanol, and add 2 drops of phenolphthalein TS and 0.20 mL of 0.1 mol/L sodium hydroxide VS until a light red color remains for not less than 15 seconds. Perform a blank determination in the same manner.

Average molecular mass

Add 42 g of phthalic anhydride to 200-mL glass-stoppered pressure bottle. Add about 1.5 g of Macrogol 400, accurately weighed, stopper the bottle, wrap it securely with strong cloth, and immerse in a water bath, having a temperature of 98 ± 2°C, to the level so that the mixture in the bottle soaks completely in water. Maintain the temperature of the bath at 98 ± 2°C for 30 minutes. Remove the bottle from the bath, and allow to cool in air to room temperature. Add exactly 50 mL of 0.5 mol/L sodium hydroxide VS and 5 drops of a solution of phenolphthalein in pyridine (1 in 100). Titrate ≤2.50 with 0.5 mol/L sodium hydroxide VS until a light red color remains for not less than 15 seconds. Perform a blank determination in the same manner.

Average molecular mass is between 380 and 420.

Water <2.4

Not more than 1.0% (2 g, volumetric titration, direct titration).

Residue on ignition <2.4

Not more than 0.1% (1 g).

Containers and storage

Containers—Tight containers.

Macrogol 1500

Polyethylene Glycol 1500

Macrogol 1500 is a mixture containing equal amounts of lower and higher polymers of ethylene oxide and water, represented by the formula HOCH₂(CH₂OCH₂)nCH₃OH, in which the value of n is 5 or 6 for the lower polymers and from 28 to 36 for the higher.

Description

Macrogol 1500 occurs as a white, smooth petrolatum-like solid. It is odorless or has a faint, characteristic odor.

It is very soluble in water, in pyridine and in diphenyl ether, freely soluble in methanol, sparingly soluble in ethanol (95), very slightly soluble in ethanol (99.5), and practically insoluble in diethyl ether.

Congealing point: 37 – 41°C

Identification

Dissolve 50 mg of Macrogol 1500 in 5 mL of dilute hydrochloric acid, add 1 mL of barium chloride TS, shake, and filter, if necessary. To the filtrate add 1 mL of a solution of phosphomolybdic acid n-hydrate (1 in 10): a solution under the above operating conditions, and calculate the resolution. Use a column clearly dividing peaks of ethylene glycol and diethylene glycol in this order.

Detection sensitivity: Adjust the detection sensitivity so that the peak height of diethylene glycol obtained from 2 μL of the standard solution composes about 80% of the full scale.

Average molecular mass

Average molecular mass = \(\frac{(M \times 4000)}{(a - b)} \)

\(M \): Amount (g) of Macrogol 400 taken

\(a \): Volume (mL) of 0.5 mol/L sodium hydroxide VS used in the blank determination

\(b \): Volume (mL) of 0.5 mol/L sodium hydroxide VS used in the test of the sample

Average molecular mass is between 380 and 420.

Water <2.4

Not more than 1.0% (2 g, volumetric titration, direct titration).

Residue on ignition <2.4

Not more than 0.1% (1 g).

Containers and storage

Containers—Tight containers.
yellow-green precipitate is formed.

pH \(< 2.54\) Dissolve 1.0 g of Macrogol 1500 in 20 mL of water: the pH of the solution is between 4.0 and 7.0.

Purity (1) Clarity and color of solution—Dissolve 5.0 g of Macrogol 1500 in 50 mL of water: the solution is clear and colorless.

(2) Acidity—Dissolve 5.0 g of Macrogol 1500 in 20 mL of neutralized ethanol, and add 2 drops of phenolphthalein TS and 0.20 mL of 0.1 mol/L sodium hydroxide VS: the solution is red in color.

(3) Ethylene glycol and diethylene glycol—Place 50.0 g of Macrogol 1500 in a distilling flask, add 75 mL of diphenyl ether, warm to dissolve if necessary, distil slowly under a reduced pressure of 0.13 to 0.27 kPa and take 25 mL of the distillate in a 100-mL container with 1-mL graduations. To the distillate add exactly 20 mL of water, shake vigorously, cool in ice-water, congeal the diphenyl ether, and filtrate into a 25-mL volumetric flask. Wash the residue with 5.0 mL of ice-cold water, combine the washings with the filtrate, warm to room temperature, and add water to make 25 mL. Transfer this solution to a glass-stoppered flask, shake with 25.0 mL of freshly distilled acetonitrile, and use this solution as the standard solution. Separately, to 62.5 mg of diethylene glycol add a mixture of water and freshly distilled acetonitrile (1:1) to make exactly 25 mL, and use this solution as the standard solution. Take exactly 10 mL each of the sample solution and the standard solution, and add to each exactly 15 mL of cerium (IV) diammonium nitrate TS. Perform the test with this solution as directed under Ultraviolet-visible Spectrophotometry \(< 2.24\) within 2 to 5 minutes: the absorbance of the solution obtained from the sample solution at the wavelength of maximum absorption at about 450 nm is not larger than the absorbance of the solution obtained from the standard solution.

Water \(< 2.48\)

Residue on ignition \(< 2.44\) Not more than 0.1% (1 g).

Containers and storage Containers—Tight containers.

Macrogol 4000

Polyethylene Glycol 4000

マクロゴール 4000

Macrogol 4000 is a polymer of ethylene oxide and water, represented by the formula HOCH\(_2\)(CH\(_2\)O\(_n\))\(_{2}\)OH, in which the value of \(n\) ranges from 59 to 84.

Description Macrogol 4000 is a white, paraffin-like solid, occurring as flakes or powder. It is odorless or has a faint, characteristic odor.

It is very soluble in water, freely soluble in methanol and in pyridine, and practically insoluble in ethanol (99.5) and in diethyl ether.

Congealing point 53 – 57°C

Identification Dissolve 50 mg of Macrogol 4000 in 5 mL of dilute hydrochloric acid, add 1 mL of barium chloride TS, shake, and filter, if necessary. To the filtrate add 1 mL of a solution of phosphomolybdic acid \(n\)-hydrate (1 in 10): a yellow-green precipitate is formed.

pH \(< 2.54\) Dissolve 1.0 g of Macrogol 4000 in 20 mL of water: the pH of this solution is between 4.0 and 7.5.

Purity (1) Clarity and color of solution—A solution of 5.0 g of Macrogol 4000 in 50 mL of water is clear and colorless.

(2) Acidity—Dissolve 5.0 g of Macrogol 4000 in 20 mL of neutralized ethanol by warming, cool, and add 0.20 mL of 0.1 mol/L sodium hydroxide VS and 1 drop of phenolphthalein TS: the color of the solution is red.

Average molecular mass Weigh accurately about 12.5 g of Macrogol 4000, transfer to an about 200-mL glass-stoppered pressure bottle, add about 25 mL of pyridine, dissolve by warming, and allow to cool. Separately, pipet 300 mL of freshly distilled pyridine into a 1-L light-resistant, glass-stoppered bottle, add 42 g of phthalic anhydride, dissolve with vigorous shaking, and allow to stand for 16 hours or more. Pipet 25 mL of this solution, transfer to the former bottle, stopper the bottle tightly, wind it securely with strong cloth, and immerse in a water bath, previously heated at 98 ± 2°C, to the level so that the mixture in the bottle soaks completely in water. Maintain the temperature of the bath at 98 ± 2°C for 30 minutes. Remove the bottle from the bath, and allow to cool in air to room temperature. Add exactly 50 mL of 0.5 mol/L sodium hydroxide VS and 5 drops of a solution of phenolphthalein in pyridine (1 in 100), Titrate \(\geq 2.50\) with 0.5 mol/L sodium hydroxide VS until a light red color remains for not less than 15 seconds. Perform a blank determination in the same manner.

Average molecular mass \(= (M \times 4000)/(a - b)\)

\(M\): Amount (g) of Macrogol 4000 taken

\(a\): Volume (mL) of 0.5 mol/L sodium hydroxide VS consumed in the blank determination

\(b\): Volume (mL) of 0.5 mol/L sodium hydroxide VS consumed in the test of the sample

Average molecular mass is between 2600 and 3800.

Water \(< 2.48\) Not more than 1.0% (2 g, volumetric titration, direct titration).

Residue on ignition \(< 2.44\) Not more than 0.2% (1 g).

Containers and storage Containers—Well-closed containers.

Macrogol 6000

Polyethylene Glycol 6000

マクロゴール 6000

Macrogol 6000 is a polymer of ethylene oxide and water, represented by the formula HOCH\(_2\)(CH\(_2\)O\(_n\))\(_{2}\)OH, in which the value of \(n\) ranges from 165 to 210.

Description Macrogol 6000 is a white, paraffin-like solid, occurring as flakes or powder. It is odorless or has a faint, characteristic odor.

It is very soluble in water, freely soluble in pyridine, and practically insoluble in methanol, in ethanol (95), in ethanol (99.5) and in diethyl ether.

Congealing point 56 – 61°C

Identification Dissolve 50 mg of Macrogol 6000 in 5 mL of dilute hydrochloric acid, add 1 mL of barium chloride TS,
shake, and filter, if necessary. To the filtrate add 1 mL of a solution of phosphomolybdic acid \(n \)-hydrate (1 in 10): a yellow-green precipitate is formed.

pH\(\text{<2.54}\)** Dissolve 1.0 g of Macrogol 6000 in 20 mL of water: the pH of this solution is between 4.5 and 7.5.

Purity (1) Clarity and color of solution—Dissolve 5.0 g of Macrogol 6000 in 50 mL of water: the solution is clear and colorless.

(2) Acidity—Dissolve 5.0 g of Macrogol 6000 in 20 mL of neutralized ethanol by warming, cool, and add 0.20 mL of 0.1 mol/L sodium hydroxide VS and 1 drop of phenolphthalein TS: the color of the solution is red.

Average molecular mass
Weigh accurately about 12.5 g of Macrogol 6000, transfer to an about 200-mL glass-stoppered pressure bottle, add about 25 mL of pyridine, dissolve by warming, and allow to cool. Separately, pipet 300 mL of freshly distilled pyridine into a 1-L light-resistant, glass-stoppered bottle, add 42 g of phthalic anhydride, dissolve with vigorous shaking, and allow to stand for 16 hours or more. Pipet 25 mL of this solution, transfer to the former pressure bottle, stopper the bottle tightly, wrap it securely with strong cloth, and immerse in a water bath, previously heated at 98 ± 2°C, to the level so that the mixture in the bottle soaks completely in water. Maintain the temperature of the bath at 98 ± 2°C for 30 minutes. Remove the bottle from the bath, and allow to cool in air to room temperature. Add exactly 50 mL of 0.5 mol/L sodium hydroxide VS and 5 drops of a solution of phenolphthalein in pyridine (1 in 100). Titrate \(\text{<2.50}\) with 0.5 mol/L sodium hydroxide VS until a light red color remains for not less than 15 seconds. Perform a blank determination in the same manner.

Average molecular mass = \((M \times 4000)/(a - b)\)

\(M\): Amount (g) of Macrogol 6000 taken
\(a\): Volume (mL) of 0.5 mol/L sodium hydroxide VS consumed in the blank determination
\(b\): Volume (mL) of 0.5 mol/L sodium hydroxide VS consumed in the test of the sample

Average molecular mass is between 7300 and 9300.

Water \(\text{<2.48}\)** Not more than 1.0% (2 g, volumetric titration, direct titration).

Residue on ignition \(\text{<2.44}\)** Not more than 0.2% (1 g).

Containers and storage Containers—Well-closed containers.

Macrogol 20000

Polyethylene Glycol 20000

マクロゴール 20000

Macrogol 20000 is a polymer of ethylene oxide and water, represented by the formula \(\text{HOCH}_2(\text{CH}_2\text{OCH}_3)_n\text{CH}_2\text{OH}\), in which the value of \(n\) lies between 340 and 570.

Description Macrogol 20000 occurs as white, paraffin-like flakes or powder. It is odorless or has a faint, characteristic odor.

It is freely soluble in water and in pyridine, and practically insoluble in methanol, in ethanol (95), in petroleum benzine and in macrogol 400.

Macrogol Ointment

Polyethylene Glycol Ointment

マクロゴール軟膏

Melt Macrogol 4000 and Macrogol 400 by warming on a water bath at 65°C, and mix well until it congeals. Less than 1000 g

Method of preparation

<table>
<thead>
<tr>
<th>Macrogol 4000</th>
<th>500 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macrogol 400</td>
<td>500 g</td>
</tr>
</tbody>
</table>

To make 1000 g
100 g of Macrogol 4000 or Macrogol 400 may be replaced by an equal amount of Macrogol 400 or Macrogol 4000 to prepare 1000 g of a proper soft ointment.

Description Macrogol Ointment is white in color. It has a faint, characteristic odor.

Identification Dissolve 50 mg of Macrogol Ointment in 5 mL of dilute hydrochloric acid, add 1 mL of barium chloride TS, shake, filter if necessary, and add 1 mL of a solution of phosphomolybdic acid n-hydrate (1 in 10) to the filtrate: a yellow-green precipitate is formed.

Containers and storage Containers—Tight containers.

Magnesium Aluminosilicate

ケイ酸アルミン酸マグネシウム

Magnesium Aluminosilicate contains not less than 27.0% and not more than 34.3% of aluminum oxide (Al₂O₃: 101.96), not less than 20.5% and not more than 27.7% of magnesium oxide (MgO: 40.30), and not less than 14.4% and not more than 21.7% of silicon dioxide (SiO₂: 60.08), calculated on the dried basis.

Description Magnesium Aluminosilicate occurs as a white, powder or grain. It is practically insoluble in water and in ethanol (99.5).

When heat 1 g of Magnesium Aluminosilicate with 10 mL of dilute hydrochloric acid, most of it dissolves.

Identification (1) To 0.5 g of Magnesium Aluminosilicate add 5 mL of diluted sulfuric acid (1 in 3), heat until white fumes are evolved, cool, add 20 mL of water, and filtrate. Neutralize the filtrate with ammonia TS, and filter the precipitate produced. Dissolve the residue in dilute hydrochloric acid: the solution responds to Qualitative Tests <1.09> for aluminum salt.

(2) The filtrate obtained in (1) responds to Qualitative Tests <1.09> (2) for magnesium salt.

(3) Wash the residue obtained in (1) with 30 mL of water, add 2 mL of a solution of methylene blue trihydrate (1 in 10,000), and wash with 30 mL of water: the precipitate produced. Dissolve the residue in dilute hydrochloric acid, most of it dissolves.

Purity (1) Soluble salts—To 10.0 g of Magnesium Aluminosilicate add 150 mL of water, boil gently for 15 minutes while shaking thoroughly. After cooling, add water to make 150 mL, and centrifuge. To 75 mL of the supernatant liquid add water to make 100 mL, and use this solution as the sample solution. Evaporate 25 mL of the sample solution on a water bath to dryness, then ignite the residue at 700°C for 2 hours: the mass of the residue is not more than 20 mg.

(2) Alkalinity—To 20 mL of the sample solution obtained in (1), add 2 drops of phenolphthalein TS, and add 0.1 mol/L hydrochloric acid VS until the solution becomes colorless: the consumed volume is not more than 0.50 mL.

(3) Chloride <1.05>—To 10 mL of the sample solution obtained in (1), add 6 mL of dilute nitric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 0.75 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.053%).

(4) Sulfate <1.14>—To 2 mL of the sample solution obtained in (1), add 1 mL of dilute hydrochloric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 1.0 mL of 0.005 mol/L sulfuric acid VS (not more than 0.480%).

(5) Heavy metals <1.07>—To 2.67 g of Magnesium Aluminosilicate add 20 mL of water and 8 mL of hydrochloric acid, evaporate to dryness on a water bath. To the residue add 5 mL of dilute acetic acid and 20 mL of water, boil for 2 minutes, add 0.4 g of hydroxylammonium chloride, and heat to boiling. After cooling, add water to make exactly 100 mL, and filter. Pipet 25 mL of the filtrate, adjust to pH 3.0 with dilute acetic acid or ammonia TS, and add water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution as follows: evaporate 2 mL of hydrochloric acid to dryness on a water bath, add 2.0 mL of Standard Lead Solution, 0.1 g of hydroxylammonium chloride and water to make 25 mL, adjust to pH 3.0 with dilute acetic acid or ammonia TS, and add water to make 50 mL (not more than 30 ppm).

(6) Iron—To 0.11 g of Magnesium Aluminosilicate add 8 mL of 2 mol/L nitric acid TS, boil for 1 minute, cool, add water to make exactly 100 mL, and centrifuge. Pipet 30 mL of the supernatant liquid, add water to make 45 mL, add 2 mL of hydrochloric acid, and shake. Add 50 mg of ammonium persulfate and 3 mL of a solution of ammonium thiocyanate (3 in 10), and shake: the solution is not more colored than the following control solution (not more than 0.03%).

Control solution: Pipet 1 mL of Standard Iron Solution, add water to make 45 mL, add 2 mL of hydrochloric acid, shake, and proceed in the same manner.

(7) Arsenic <1.11>—To 1.0 g of Magnesium Aluminosilicate add 10 mL of water and 1 mL of sulfuric acid, and shake thoroughly. After cooling, perform the test using this solution as the test solution (not more than 2 ppm).

Loss on drying <2.41> Not more than 20.0% (1 g, 110°C, 7 hours).

Acid-consuming capacity <6.04> Weigh accurately about 0.2 g of Magnesium Aluminosilicate, transfer to a glass-stoppered flask, add exactly 100 mL of 0.1 mol/L hydrochloric acid VS, stopper the flask tightly, shake at 37 ± 2°C for 1 hour, and filter. Pipet 50 mL of the filtrate, and titrate <2.50> the excess hydrochloric acid, while stirring thoroughly, with 0.1 mol/L sodium hydroxide VS until the pH of the solution becomes 3.5. Perform a blank determination in the same manner. The consumed volume of 0.1 mol/L hydrochloric acid VS is not less than 250 mL per g of Magnesium Aluminosilicate calculated on the dried basis.

Assay (1) Aluminum oxide—Weigh accurately about 1.25 g of Magnesium Aluminosilicate, transfer to a conical flask, add 10 mL of 3 mol/L hydrochloric acid TS and 50 mL of water, and heat on a water bath for 15 minutes. To the solution add 8 mL of hydrochloric acid, heat on a water bath for 10 minutes. After cooling, transfer to a 250-mL volumetric flask, rinse the flask with water, and add water to make 250 mL. Centrifuge the solution, and use the supernatant liquid as the sample solution. Pipet 20 mL of the sample solution, add exactly 20 mL of 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS. To this solution add 15 mL of acetic acid-ammonium acetate buffer solution (pH 4.8) and 20 mL of water, and boil for 5 minutes. After cooling, add 50 mL of ethanol (95%), and titrate <2.50> with 0.05 mol/L zinc sulfate VS until the color of the solution changes from light dark green to light red (indicator: 2 mL of dibasic zone TS). Perform a blank determination in the same manner.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.)
Each mL of 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS
\[= 2.549 \text{ mg of Al}_2\text{O}_3 \]

(2) Magnesium oxide— Pipet 50 mL of the sample solution obtained in (1), add 50 mL of water and 25 mL of a solution of 2.2,2’-nitrilotriethanol (1 in 2), shake thoroughly, then add 25 mL of ammonia-ammmonium chloride buffer solution (pH 10.7), and titrate <2.50> with 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS until the color of the solution changes from red-purple to blue lasting for 30 seconds (indicator: 40 mg of eriochrome black T-sodium chloride indicator).

Each mL of 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS
\[= 2.015 \text{ mg of MgO} \]

(3) Silicon dioxide— Weigh accurately about 1 g of Magnesium Aluminosilicate, add 30 mL of dilute hydrochloric acid, and evaporate to dryness on a water bath. Moisten the residue with hydrochloric acid, evaporate to dryness on a water bath. To the residue add 8 mL of hydrochloric acid, stir, and then add 25 mL of hot water, and stir again. After allowing to stand, filter, the supernatant liquid through a filter paper for quantitative analysis, add 10 mL of hot water to the residue, stir, and decompose the supernatant liquid on a filter paper to filter. Then wash the residue with three 10-mL portions of hot water, add 50 mL of water to the residue, and heat on a water bath for 15 minutes. Transfer the residue onto the filter paper, wash the residue with hot water until the last 5 mL of washing yields no precipitate on addition of 1 mL of silver nitrate TS, place the residue and the filter paper in a platinum crucible, ignite, and then ignite at 800 ± 25°C for 1 hour. After cooling, weigh the crucible, and designate the mass as a (g). Then add 6 mL of hydrofluoric acid, evaporate to dryness, ignite for 5 minutes, weigh the crucible after cooling, and designate the mass as b (g).

Amount (g) of silicon dioxide (SiO₂) = \(a - b \)

Containers and storage Containers—Well-closed containers.

Magnesium Aluminometasilicate

メタケイ酸アルミン酸マグネシウム

Magnesium Aluminometasilicate contains not less than 29.1% and not more than 35.5% of aluminum oxide (Al₂O₃: 101.96), not less than 11.4% and not more than 14.0% of magnesium oxide (MgO: 40.30), and not less than 29.2% and not more than 35.6% of silicon dioxide (SiO₂: 60.08), calculated on the dried basis.

Description Magnesium Aluminometasilicate occurs as a white, powder or grain. It is practically insoluble in water and in ethanol (99.5).

When heat 1 g of Magnesium Aluminometasilicate with 10 mL of dilute hydrochloric acid, most of it dissolves.

Identification

(1) To 0.5 g of Magnesium Aluminometasilicate add 5 mL of dilute sulfuric acid (1 in 3), heat until white fumes are evolved, cool, add 20 mL of water, and filtrate. Neutralize the filtrate with ammonia TS, and filter the precipitate produced. Dissolve the residue in dilute hydrochloric acid: the solution responds to Qualitative Tests <1.09> for aluminum salt.

(2) The filtrate obtained in (1) responds to Qualitative Tests <1.09> (2) for magnesium salt.

(3) Wash the residue obtained in (1) with 30 mL of water, add 2 mL of a solution of methylene blue trihydrate (1 in 10,000), and wash with 30 mL of water: the precipitate has a blue color.

Purity

(1) Soluble salts—To 10.0 g of Magnesium Aluminometasilicate add 150 mL of water, boil gently for 15 minutes while shaking thoroughly. After cooling, add water to make 150 mL, and centrifuge. To 75 mL of the supernatant liquid add water to make 100 mL, and use this solution as the sample solution. Evaporate 25 mL of the sample solution on a water bath to dryness, then ignite the residue at 700°C for 2 hours: the mass of the residue is not more than 20 mg.

(2) Alkalinity—To 20 mL of the sample solution obtained in (1), add 2 drops of phenolphthalein TS, and add 0.1 mol/L hydrochloric acid VS until the solution becomes colorless: the consumed volume is not more than 0.50 mL.

(3) Chloride <1.03>—To 10 mL of the sample solution obtained in (1), add 6 mL of dilute nitric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 0.75 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.053%).

(4) Sulfate <1.14>—To 2 mL of the sample solution obtained in (1), add 1 mL of dilute hydrochloric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 1.0 mL of 0.005 mol/L sulfuric acid VS (not more than 0.480%).

(5) Heavy metals <1.07>—To 2.67 g of Magnesium Aluminometasilicate add 20 mL of water and 8 mL of hydrochloric acid, evaporate to dryness on a water bath. To the residue add 5 mL of dilute acetic acid and 20 mL of water, boil for 2 minutes, add 0.4 g of hydroxylammonium chloride, and heat to boiling. After cooling, add water to make exactly 100 mL, and filter. Pipet 25 mL of the filtrate, adjust to pH 3.0 with dilute acetic acid or ammonia TS, and add water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution as follows: evaporate 2 mL of hydrochloric acid to dryness on a water bath, add 2.0 mL of Standard Lead Solution, 0.1 g of hydroxylammonium chloride and water to make 25 mL, adjust to pH 3.0 with dilute acetic acid or ammonia TS, and add water to make 50 mL (not more than 30 ppm).

(6) Iron—To 0.11 g of Magnesium Aluminometasilicate add 8 mL of 2 mol/L nitric acid TS, boil for 1 minute, cool, add water to make exactly 100 mL, and centrifuge. Pipet 30 mL of the supernatant liquid, add water to make 45 mL, add 2 mol/L of hydrochloric acid, and shake. Add 50 mg of ammonium peroxodisulfate and 3 mL of a solution of ammonium thiocyanate (3 in 10), and shake: the solution is not more colored than the following control solution (not more than 0.03%).

Control solution: Pipet 1 mL of Standard Iron Solution, add water to make 45 mL, add 2 mL of hydrochloric acid, shake, and proceed in the same manner.

(7) Arsenic <1.17>—To 1.0 g of Magnesium Aluminometasilicate add 10 mL of water and 1 mL of sulfuric acid, and shake thoroughly. After cooling, perform the test using this solution as the test solution (not more than 2 ppm).

Loss on drying <2.41> Not more than 20.0% (1 g, 110°C, 7 hours).

Acid-consuming capacity <6.04> Weigh accurately about 0.2 g of Magnesium Aluminometasilicate, transfer to a glass-n
stopped flask, add exactly 100 mL of 0.1 mol/L hydrochloric acid VS, stopper the flask tightly, shake at 37 ± 2°C for 1 hour, and filter. Pipet 50 mL of the filtrate, and titrate \(<2.50 \) the excess hydrochloric acid, while stirring thoroughly, with 0.1 mol/L sodium hydroxide VS until the pH of the solution becomes 3.5. Perform a blank determination in the same manner. The consumed volume of 0.1 mol/L hydrochloric acid VS is not less than 210 mL per g of Magnesium Aluminometasilicate calculated on the dried basis.

Assay (1) Aluminum oxide—Weigh accurately about 1.25 g of Magnesium Aluminometasilicate, transfer to a conical flask, add 10 mL of 3 mol/L hydrochloric acid TS and 50 mL of water, and heat on a water bath for 15 minutes. To the solution add 8 mL of hydrochloric acid, heat on a water bath for 10 minutes. After cooling, transfer to a 250-mL volumetric flask, rinse the flask with water, and add water to make 250 mL. Centrifuge the solution, and use the supernatant liquid as the sample solution. Pipet 20 mL of the sample solution, add exactly 20 mL of 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS to this solution, add 15 mL of acetic acid-ammonium acetate buffer solution (pH 4.8) and 20 mL of water, and boil for 5 minutes. After cooling, add 50 mL of ethanol (95), and titrate \(<2.50 \) with 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS until the color of the solution changes from light dark green to light red (indicator: 2 mL of dithizone TS). Perform a blank determination in the same manner.

Each mL of 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS = 2.549 mg of Al\(_2\)O\(_3\)

(2) Magnesium oxide—Pipet 50 mL of the sample solution obtained in (1), add 50 mL of water and 25 mL of a solution of 2.2% nitrolotriethanol (1 in 2), shake thoroughly, then add 25 mL of ammonia-ammonium chloride buffer solution (pH 10.7), and titrate \(<2.50 \) with 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS until the color of the solution changes from red-purple to blue lasting for 30 seconds (indicator: 40 mg of eriochrome black T-sodium chloride indicator).

Each mL of 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS = 2.015 mg of MgO

(3) Silicon dioxide—Weigh accurately about 1 g of Magnesium Aluminometasilicate, add 30 mL of dilute hydrochloric acid, and evaporate to dryness on a water bath. Moisten the residue with hydrochloric acid, evaporate to dryness on a water bath. To the residue add 8 mL of hydrochloric acid, stir, then add 25 mL of hot water, and stir again. After allowing to stand, filter the supernatant liquid through a filter paper for quantitative analysis, add 10 mL of hot water to the residue, stir, and decant the supernatant liquid on a filter paper to filter. Then wash the residue with three 10-mL portions of hot water, add 50 mL of water to the residue, and heat on a water bath for 15 minutes. Transfer the residue onto the filter paper, wash the residue with hot water until the last 5 mL of washing yields no precipitate on addition of 1 mL of silver nitrate TS, place the residue and the filter paper in a platinum crucible, ignite to ash, and then ignite at 800 ± 25°C for 1 hour. After cooling, weigh the crucible, and designate the mass as \(a \) (g). Then add 6 mL of hydrofluoric acid, evaporate to dryness, ignite for 5 minutes, weigh the crucible after cooling, and designate the mass as \(b \) (g).

Amount (g) of silicon dioxide (SiO\(_2\)) = \(a - b \)

Magnesium Carbonate

Magnesium Carbonate is a basic hydrated magnesium carbonate or a normal hydrated magnesium carbonate.

Magnesium Carbonate contains not less than 40.0% and not more than 44.0% of magnesium oxide (MgO: 40.30).

“Heavy magnesium carbonate” may be used as commonly used name for Magnesium Carbonate which shows the height of the precipitate below the 12.0-mL graduation line in the Precipitation test.

Description Magnesium Carbonate occurs as white, friable masses or powder. It is odorless.

It is practically insoluble in water, in ethanol (95), in 1-propanol and in diethyl ether.

It dissolves in dilute hydrochloric acid with effervescence. Its saturated solution is alkaline.

Identification (1) Dissolve 1 g of Magnesium Carbonate in 10 mL of dilute hydrochloric acid, boil, then cool, neutralize with sodium hydroxide TS, and filter, if necessary: the solution responds to Qualitative Tests \(<1.09\) for magnesium salt.

(2) Magnesium Carbonate responds to Qualitative Tests \(<1.09\) (1) for carbonate.

Purity (1) Soluble salts—To 2.0 g of Magnesium Carbonate add 40 mL of 1-propanol and 40 mL of water, heat to boil with constant stirring, cool, and filter. Wash the residue with water, combine the washings with the filtrate, and add water to make exactly 100 mL. Evaporate 50 mL of the solution on a water bath to dryness, and dry at 105°C for 1 hour: the mass of the residue does not exceed 10.0 mg.

(2) Heavy metals \(<1.07\)—Moisten 1.0 g of Magnesium Carbonate with 4 mL of water, dissolve by addition of 10 mL of dilute hydrochloric acid, and evaporate on a water bath to dryness. Dissolve the residue in 35 mL of water, 2 mL of dilute acetic acid, 1 drop of ammonia TS, filter, if necessary, wash the filter paper with water, combine the washings with the filtrate, and add water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution as follows: evaporate 10 mL of dilute hydrochloric acid on a water bath to dryness, add 2 mL of dilute acetic acid and 3.0 mL of Standard Lead Solution, and dilute with water to make 50 mL (not more than 30 ppm).

(3) Iron \(<1.10\)—Prepare the test solution with 0.10 g of Magnesium Carbonate according to Method 1, and perform the test according to Method A. Prepare the control solution with 2.0 mL of Standard Iron Solution (not more than 200 ppm).

(4) Arsenic \(<1.10\)—Prepare the test solution with 0.40 g of Magnesium Carbonate, previously moistened with 1.5 mL of water, add 3.5 mL of dilute hydrochloric acid, and perform the test (not more than 5 ppm).

(5) Calcium oxide—Weigh accurately about 0.6 g of Magnesium Carbonate, and dissolve in 35 mL of water and 6 mL of dilute hydrochloric acid. Add 250 mL of water and 5 mL of a solution of L-tartaric acid (1 in 3), then add 10 mL of a solution of 2,2',2"-nitrolotriethanol (3 in 10) and 10 mL
of 8 mol/L potassium hydroxide TS, allow to stand for 5 minutes, and titrate <2.50> with 0.01 mol/L disodium dihydrogen ethylenediamine tetraacetate VS until the color of the solution changes form red-purple to blue (indicator: 0.1 g of NN indicator). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.01 mol/L disodium dihydrogen ethylenediamine tetraacetate VS = 0.5608 mg of CaO

The content of calcium oxide (CaO: 56.08) is not more than 0.6%.

(6) Acid-insoluble substances—Mix 5.0 g of Magnesium Carbonate and 75 mL of water, add 10 mL of hydrochloric acid dropwise while stirring, boil for 5 minutes, and cool. Collect the insoluble residue using filter paper for quantitative analysis, wash well with water until the last washing shows no turbidity with silver nitrate TS, and ignite the residue together with the filter paper: the mass of the residue is not more than 2.5 mg.

Pretreatment test Transfer 1.0 g of Magnesium Carbonate, previously sifted through a No. 100 (150 μm) sieve to a glass-stoppered measuring cylinder with a 50-mL graduation line at 150 mm from the bottom, and add water to make 50 mL. Shake vigorously for exactly 1 minute, allow to stand for 15 minutes, and measure the height of the precipitate (in graduation in ml).

Assay Weigh accurately about 0.4 g of Magnesium Carbonate, dissolve in 10 mL of water and 3.5 mL of dilute hydrochloric acid, and add water to make exactly 100 mL. Pipet 25 mL of the solution, add 50 mL of water and 5 mL of ammonia-ammonium chloride buffer solution (pH 10.7) and titrate <2.50> with 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS (indicator: 40 mg of eriochrome black T-sodium chloride indicator). Perform a blank determination in the same manner, and make any necessary correction.

From the volume of 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS consumed deduct the volume of 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS corresponding to the content of calcium oxide (CaO) obtained in the Purity (5).

Each mL of 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS = 2.015 mg of MgO

Each mg of calcium oxide (CaO) = 0.36 mL of 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS

Containers and storage Containers—Well-closed containers.

Magnesium Oxide

酸化マグネシウム

MgO: 40.30

Magnesium Oxide, when ignited, contains not less than 96.0% of magnesium oxide (MgO).

When 5 g of Magnesium Oxide has a volume not more than 30 mL, it may be labeled heavy magnesium oxide.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.)

1290 Magnesium Oxide / Official Monographs

JP XVIII
Magnesium Oxide according to Method 1, and perform the test according to Method A. Prepare the control solution with 2.0 mL of Standard Iron Solution (not more than 500 ppm).

(5) Calcium oxide—Weigh accurately about 0.25 g of Magnesium Oxide, previously ignited, dissolve in 6 mL of dilute hydrochloric acid by heating. Cool, add 300 mL of water and 3 mL of a solution of l-tartaric acid (1 in 5), then add 10 mL of a solution of 2,2′,2‴-nitrilotriethanol (3 in 10) and 10 mL of 8 mol/L potassium hydroxide TS, allow to stand for 5 minutes, and titrate 2<.50> with 0.01 mol/L disodium dihydrogen ethylenediamine tetraacetate VS until the color of the solution changes from red-purple to blue (indicator: 0.1 g of NN indicator). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.01 mol/L disodium dihydrogen ethylenediamine tetraacetate VS

\[= 0.5608 \text{ mg of CaO}\]

The mass of calcium oxide (CaO: 56.08) is not more than 1.5%.

(6) Arsenic <1.11>—Dissolve 0.20 g of Magnesium Oxide in 5 mL of dilute hydrochloric acid, and perform the test with this solution as the test solution (not more than 10 ppm).

(7) Acid-insoluble substances—Mix 2.0 g of Magnesium Oxide with 75 mL of water, add 12 mL of hydrochloric acid dropwise, while shaking, and boil for 5 minutes. Collect the insoluble residue using filter paper for quantitative analysis, wash well with water until the last washing shows no turbidity with silver nitrate TS, and ignite the residue together with the filter paper: the mass of the ignited residue does not more than 2.0 mg.

(8) Fluoride—(i) Apparatus: Use a hard glass apparatus as illustrated in the figure. Ground-glass joints may be used.

(ii) Procedure: Transfer 5.0 g of Magnesium Oxide to the distilling flask A with the aid of 20 mL of water, add about 1 g of glass wool and 50 mL of dilute purified sulfuric acid (1 in 2), and connect A to the distillation apparatus, previously washed with steam streamed through the steam introducing tube E. Connect the condenser C with the receiver D containing 10 mL of 0.01 mol/L sodium hydroxide VS and 10 mL of water so that the lower end of C is immersed in the solution. Heat A gradually until the temperature of the solution in A reaches 130°C, then open the rubber tube F, close the rubber tube G, boil in water in the steam generator B vigorously, and introduce the generated steam into F. Simultaneously, heat A, and maintain the temperature of the solution in A between 135°C and 145°C. Adjust the distilling rate to about 10 mL per minute. Collect about 170 mL of the distillate, then stop the distillation, wash C with a small quantity of water, combine the washings with the distillate, add water to make exactly 200 mL, and use this solution as the test solution. Perform the test with the test solution as directed in the procedure of determination for fluoride under Oxygen Flask Combustion Method <1.09>. No corrective solution is used in this procedure. The content of fluoride (F) is not more than 0.08%.

Amount (mg) of fluoride (F: 19.00) in the test solution

\[= \frac{\text{amount (mg) of fluoride in 5 mL of the standard solution}}{A_1/A_3 \times 200/V}\]

Loss on ignition <2.43> Not more than 10% (0.25 g, 900°C, constant mass).

Official Monographs / Magnesium Silicate 1291

Assay Ignite Magnesium Oxide to constant mass at 900°C, weigh accurately about 0.2 g of the residue, dissolve in 10 mL of water and 4.0 mL of dilute hydrochloric acid, and add water to make exactly 100 mL. Pipet 25 mL of this solution, add 50 mL of water and 5 mL of ammonia-ammonium chloride buffer solution (pH 10.7) and titrate 2<.50> with 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS (indicator: 40 mg of eriochrome black T-sodium chloride indicator). Perform a blank determination in the same manner, and make any necessary correction.

From the volume of 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS consumed, deduct the volume of 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS corresponding to the content of calcium oxide (CaO) obtained in the Purity (5).

Each mL of 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS

\[= 2.015 \text{ mg of MgO}\]

Each mg of calcium oxide (CaO)

\[= 0.36 \text{ mL of 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS}\]

Containers and storage Containers—Tight containers.

Magnesium Silicate ケイ酸マグネシウム

Magnesium Silicate contains not less than 45.0% of silicon dioxide (SiO₂: 60.08) and not less than 20.0% of magnesium oxide (MgO: 40.30), and the ratio of percentage (%) of magnesium oxide to silicon dioxide is not less than 2.2 and not more than 2.5.

Description Magnesium Silicate occurs as a white, fine powder. It is odorless and tasteless.

It is practically insoluble in water, in ethanol (95) and in diethyl ether.

Identification (1) Mix 0.5 g of Magnesium Silicate with 10 mL of dilute hydrochloric acid, filter, and neutralize the filtrate with ammonia TS: the solution responds to Qualitative Tests <1.09> for magnesium salt.

(2) Prepare a bead by fusing ammonium sodium hydrogencarbonate tetrahydrate on a platinum loop. Place the bead in contact with Magnesium Silicate, and fuse again: an insubstantial matter appears in the bead, which changes to an opaque bead with a web-like structure upon cooling.

Purity (1) Soluble salts—Add 150 mL of water to 10.0 g of Magnesium Silicate, heat on a water bath for 60 minutes with occasional shaking, then cool, dilute with water to 150 mL, and centrifuge. Dilute 75 mL of the resultant transparent liquid with water to 100 mL, and use this solution as the sample solution. Evaporate 25 mL of the sample solution on a water bath to dryness, and ignite the residue at 700°C for 2 hours: the mass of the ignited residue is not more than 0.02 g.

(2) Alkalinity—To 20 mL of the sample solution obtained in (1) add 2 drops of phenolphthalein TS and 1.0 mL of 0.1 mol/L hydrochloric acid VS: no color develops.

(3) Chloride <1.09>—Take 10 mL of the sample solution obtained in (1), add 6 mL of dilute nitric acid, dilute with water to 50 mL, and perform the test using this solution as the test solution. Prepare the control solution with 0.75 mL of 0.01 mol/L hydrochloric acid VS (not more than
Sulfate —To the residue obtained in (1) add
about 3 mL of dilute hydrochloric acid, and heat on a
water bath for 10 minutes. Add 30 mL of water, filter, wash
the residue on the filter with water, combine the washings
with the filtrate, and dilute to 50 mL with water. To 4 mL of
the solution add 1 mL of dilute hydrochloric acid and water
to make 50 mL. Perform the test using this solution as the
test solution. Prepare the control solution with 1.0 mL of 0.005
mol/L sulfuric acid VS (not more than 0.48%).

(5) Heavy metals —To 1.0 g of Magnesium Silicate
add 20 mL of water and 3 mL of hydrochloric acid, and boil
for 2 minutes. Filter, and wash the residue on the filter with
two 5-mL portions of water. Evaporate the combined filtrate
and washings on a water bath to dryness, add 2 mL of dilute
acetic acid to the residue, warm until solution is complete,
filter, if necessary, add water to make 50 mL, and perform
the test using this solution as the test solution. Prepare the
control solution with 3.0 mL of Standard Lead Solution, 2
mL of dilute acetic acid and water to make 50 mL (not more
than 30 ppm).

Arsenic —To 0.40 g of Magnesium Silicate add
5 mL of dilute hydrochloric acid, heat gently to boiling while
shaking well, cool rapidly, and centrifuge. Mix the residue
with 5 mL of dilute hydrochloric acid with shaking, center-
fuge, then add 10 mL of water to the residue, and repeat the
extraction in the same manner. Concentrate the combined
extracts on a water bath to 5 mL. Use this solution as the test
solution, and perform the test (not more than 5 ppm).

Loss on ignition —Not more than 34% (0.5 g, 850°C, 3 hours).

Acid-consuming capacity —Place about 0.2 g of Magnesium Silicate, accurately weighed, in a glass-stoppered
flask, add exactly 30 mL of 0.1 mol/L hydrochloric acid VS
and 20 mL of water, shake at 37 ± 2°C for 1 hour, and
cool. Pipet 25 mL of the supernatant liquid, and titrate
2.50 mL of excess hydrochloric acid, while stirring well, with
0.1 mol/L sodium hydroxide VS until the pH becomes 3.5.

1 g of Magnesium Silicate, calculated on the anhydrous
basis by making allowance for the observed loss on ignition
determined as directed in the preceding Loss on ignition,
consumes not less than 140 mL and not more than 160 mL of
0.1 mol/L hydrochloric acid VS.

Assay (1) Silicon dioxide —Weigh accurately about 0.7 g
of Magnesium Silicate, add 10 mL of 0.5 mol/L sulfuric acid
TS, evaporate on a water bath to dryness, add 25 mL of
water to the residue, and heat on a water bath for 15 minutes
with occasional stirring. Filter the supernatant liquid
through filter paper for quantitative analysis, add 25 mL of
hot water to the residue, stir, and decant the supernatant li-
quid on the filter paper to filter. Wash the residue in the same
manner with two 25-mL portions of hot water, transfer the
residue onto the filter paper, and wash with hot water until
the last washing does not respond to Qualitative Tests C for
silicate. Place the residue and the filter paper in a
platinum crucible, incinerate with strong heating, and ignite
between 775°C and 825°C for 30 minutes, then cool, and
weigh the residue as a (g). Moisten the residue with water,
and add 6 mL of hydrofluoric acid and 3 drops of sulfuric
acid. Evaporate to dryness, ignite for 5 minutes, cool, and
weigh the residue as b (g).

\[
\text{Content} \, \% = \frac{a - b}{M} \times 100
\]

M: Mass (g) of the Magnesium Silicate taken

(2) Magnesium oxide —Weigh accurately about 0.3 g of
Magnesium Silicate, transfer to a 50-mL conical flask, add
10 mL of 0.5 mol/L sulfuric acid VS, and heat on a water
bath for 15 minutes. Cool, transfer to a 100-mL volumetric
flask, wash the conical flask with water, add the washings to
the volumetric flask, dilute with water to 100 mL, and filter.
Pipet 50 mL of the filtrate, shake with 50 mL of water and 5
mL of dilute 2.2',2'-nitrolitriethanol (1 in 2), add 2.0 mL of
ammonia TS and 10 mL of ammonia-ammonium chloride
buffer solution (pH 10.7) and titrate 2.50 mL with 0.05 mol/L
disodium dihydrogen ethylenediamine tetracetate VS (indi-
cator: 40 mg of eriochrome black T-sodium chloride indi-
cator).

Each mL of 0.05 mol/L disodium dihydrogen
ethylenediamine tetracetate VS

\[= 2.015 \text{ mg of MgO}\]

(3) Ratio of percentage (%) of magnesium oxide (MgO)
to silicon dioxide (SiO\textsubscript{2}) —Calculate the quotient from
the percentages obtained in (1) and (2).

Contents and storage —Well-closed containers.

MgO

This monograph is harmonized with the European Phar-
cacopoeia and the U.S. Pharmacopoeia.

Magnesium Stearate

MgO

Magnesium Stearate is a compound of magnesium with a mixture of solid fatty acids, and consists chiefly of variable proportions of magnesium stearate and magnesium palmitate obtained from sources of vegetable or animal origin.

It contains not less than 4.0% and not more than
5.0% of magnesium (Mg: 24.31), calculated on the
dried basis.

Description —Magnesium Stearate occurs as a white, light, bulky powder.

Identification —Mix 5.0 g of Magnesium Stearate with 50
mL of peroxide-free diethyl ether, 20 mL of dilute nitric
acid, and 20 mL of water in a round-bottom flask, and heat to
dissolve completely under a reflux condenser. After cool-
ing, transfer the contents of the flask to a separator, shake,
allow the layers to separate, and transfer the aqueous layer
to a flask. Extract the diethyl ether layer with two 4-mL por-
tions of water, and combine these extracts to the main aque-
ous extract. After washing the combined aqueous extract
with 15 mL of peroxide-free diethyl ether, transfer to a
50-mL volumetric flask, add water to make 50 mL, and use
this solution as the sample solution. To 1 mL of the sample
solution add 1 mL of ammonia TS: A white precipitate is
dissolved on addition of 1 mL of ammonium

See General Notices chapter on harmonization
chloride TS. By further addition of 1 mL of a solution of disodium hydrogen phosphate dodecahydrate (4 in 25) a white crystalline precipitate is formed.

Purity (1) Acidity or alkalinity—Heat 1.0 g of Magnesium Stearate in 20 mL of freshly boiled and cooled water on a water bath for 1 minute while shaking, cool, and filter. Add 0.05 mL of bromothymol blue TS to 10 mL of the filtrate: not more than 0.05 mL of 0.1 mol/L hydrochloric acid VS or 0.1 mol/L sodium hydroxide VS is required to change the color of the solution.

(2) Chloride 〈1.0〉—Perform the test with 10.0 mL of the sample solution obtained in Identification. Prepare the control solution with 1.4 mL of 0.02 mol/L hydrochloric acid VS (not more than 1.0%).

(3) Sulfate 〈1.4〉—Perform the test with 6.0 mL of the sample solution obtained in Identification. Prepare the control solution with 3.0 mL of 0.02 mol/L sulfuric acid VS (not more than 1.0%).

Heavy metals 〈1.07〉—Heat 1.0 g of Magnesium Stearate weakly first, then incinerate at about 500 ± 25°C. After cooling, add 2 mL of hydrochloric acid, evaporate on a water bath to dryness, add 20 mL of water and 2 mL of dilute acetic acid to the residue, and heat for 2 minutes. After cooling, filter this solution through a filter paper, wash the filter paper with 15 mL of water, and combine the washing with the filtrate. To the filtrate add water to make 50 mL, and perform the test with this solution as the test solution. Prepare the control solution as follows: evaporate 2 mL of hydrochloric acid on a water bath to dryness, add 2 mL of dilute acetic acid, 2.0 mL of Standard Lead Solution and water to make 50 mL (not more than 20 ppm).

Loss on drying 〈2.41〉—Not more than 6.0% (2 g, 105°C, constant mass).

Microbial limit 〈4.05〉—The acceptance criteria of TACM and TYMC are 100 CFU/g and 5 × 10⁵ CFU/g, respectively. Salmonella and Escherichia coli are not observed.

Relative content of stearic acid and palmitic acid—Transfer 0.10 g of Magnesium Stearate to a small conical flask fitted with a reflux condenser. Add 5.0 mL of boron trifluoride-methanol TS, mix, and reflux for 10 minutes to dissolve the solids. Add 4 mL of heptane through the condenser, and reflux for 10 minutes. After cooling, add 20 mL of saturated sodium chloride solution, shake, and allow the layers to separate. Pass the heptane layer through about 0.1 g of anhydrous sodium sulfate, previously washed with heptane, into another flask. Transfer 1.0 mL of this solution to a 10-mL volumetric flask, dilute with heptane to volume, and use this solution as the sample solution. Perform the test with 1 μL of the sample solution as directed under Gas chromatography 〈2.02〉 according to the following conditions, and determine the area, A, of the methyl stearate peak and the sum of the areas, B, of all of the fatty acid ester peaks. Calculate the percentage of stearic acid in the fatty acid fraction of Magnesium Stearate by the following formula.

\[
\text{Content (\% of stearic acid) = } \frac{A}{B} \times 100
\]

Similarly, calculate the percentage of palmitic acid in the portion of Magnesium Stearate taken. The methyl stearate peak, and the sum of the stearate and palmitate peaks are not less than 40% and not less than 90% of the total area of all fatty acid ester peaks, respectively.

Operating conditions—
Detector: A hydrogen flame-ionization detector.
Column: A fused silica capillary column 0.32 mm in inside diameter and 30 m in length, the inside coated with a 0.5-μm layer of polyethylene glycol 15000-diepoxide for gas chromatography.
Column temperature: Maintain at 70°C for 2 minutes after injection, then program to increase the temperature at the rate of 5°C per minute to 240°C and to maintain 240°C for 5 minutes.
Injection port temperature: A constant temperature of about 220°C.
Detector temperature: A constant temperature of about 260°C.
Carrier gas: Helium.
Flow rate: 2.4 mL per minute.
Splitless.

Time span of measurement: For 41 minutes after the solvent peak.

System suitability—
Test for required detectability: Place about 50 mg each of stearic acid for gas chromatography and palmitic acid for gas chromatography in a small conical flask fitted with a reflux condenser. Add 5.0 mL of boron trifluoride-methanol TS, mix, and proceed in the same manner as directed for the preparation of the sample solution, and use the solution so obtained as the solution for system suitability test. To exactly 1 mL of the solution for system suitability test add heptane to make exactly 10 mL. To exactly 1 mL of this solution add heptane to make exactly 10 mL. Further, to exactly 1 mL of this solution add heptane to make exactly 10 mL. Confirm that the peak area of methyl stearate obtained with 1 μL of this solution is equivalent to 0.05 to 0.15% of that with 1 μL of the solution for system suitability test.

System performance: When the procedure is run with 1 μL of the solution for system suitability test under the above operating conditions, the relative retention time of methyl palmitate to methyl stearate is about 0.9, and the resolution between these peaks is not less than 5.0.

System repeatability: When the test is repeated 6 times with the solution for system suitability test under the above operating conditions, the relative standard deviation of the peak areas of methyl palmitate and methyl stearate are not more than 3.0%, respectively, and the relative standard deviation of the ratios of the peak area of methyl palmitate to methyl stearate is not more than 1.0%.

Assay—Transfer about 0.5 g of Magnesium Stearate, accurately weighed, to a 250-mL flask, add 50 mL of a mixture of ethanol (99.5) and 1-butanol (1:1), 5 mL of ammonia solution (28), 3 mL of ammonium chloride buffer solution (pH 10), 30.0 mL of 0.1 mol/L disodium dihydrogen ethylenediamine tetaacetate VS and 1 to 2 drops of eriochrome black T TS, and mix. Heat at 45 – 50°C to make the solution clear, and after cooling, titrate 〈2.50〉 the excess disodium dihydrogen ethylenediamine tetaacetate with 0.1 mol/L zinc sulfate VS until the solution changes from blue to violet in color. Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L disodium dihydrogen ethylenediamine tetaacetate VS = 2.431 mg of Mg

Containers and storage—Containers—Tight containers.
Magnesium Sulfate Hydrate
硫酸マグネシウム水和物

MgSO₄·7H₂O: 246.47

Magnesium Sulfate Hydrate, when ignited, contains not less than 99.0% of magnesium sulfate (MgSO₄: 120.37).

Description Magnesium Sulfate Hydrate occurs as colorless or white crystals. It has a cooling, saline, bitter taste. It is very soluble in water, and practically insoluble in ethanol (95).

It dissolves in dilute hydrochloric acid.

Identification A solution of Magnesium Sulfate Hydrate (1 in 40) responds to Qualitative Tests <1.09> for magnesium salt and for sulfate.

pH <2.54> Dissolve 1.0 g of Magnesium Sulfate Hydrate in 20 mL of water: the pH of this solution is between 5.0 and 8.2.

Purity (I) Clarity and color of solution—Dissolve 1.0 g of Magnesium Sulfate Hydrate in 20 mL of water: the solution is clear and colorless.

(2) Chloride <1.07>—Perform the test with 1.0 g of Magnesium Sulfate Hydrate. Prepare the control solution with 0.40 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.014%).

(3) Heavy metals <1.07>—Proceed with 2.0 g of Magnesium Sulfate Hydrate according to Method 1, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(4) Zinc—Dissolve 2.0 g of Magnesium Sulfate Hydrate in 20 mL of water, and add 1 mL of acetic acid (31) and 5 drops of potassium hexacyanoferrate (II) TS: no turbidity is produced.

(5) Calcium—Dissolve 1.0 g of Magnesium Sulfate Hydrate in 5.0 mL of dilute hydrochloric acid, add water to make 100 mL, and use this solution as the sample solution. Separately, dissolve 1.0 g of Magnesium Sulfate Hydrate in 2.0 mL of Standard Calcium Solution and 5.0 mL of dilute hydrochloric acid, add water to make exactly 100 mL, and use this solution as the standard solution. Perform the test with the sample solution and standard solution as directed under Atomic Absorption Spectrophotometry <2.23> according to the following conditions, and determine the absorbances, A₁ and A₅, of both solutions: A₁ is smaller than A₅ − A₂ (not more than 0.02%).

Gas: Combustible gas—Acetylene or hydrogen.

Supporting gas—Air.

Lamp: Calcium hollow-cathod lamp.

Wavelength: 422.7 nm.

(6) Arsenic <1.17>—Prepare the test solution with 1.0 g of Magnesium Sulfate Hydrate according to Method 1, and perform the test (not more than 2 ppm).

Loss on ignition <2.45> 45.0 – 52.0% (1 g, after drying at 105°C for 2 hours, ignite at 450°C for 3 hours).

Assay Weigh accurately about 0.6 g of Magnesium Sulfate Hydrate, previously ignited at 450°C for 3 hours after drying at 105°C for 2 hours, and dissolve in 2 mL of dilute hydrochloric acid and water to make exactly 100 mL. Pipet 25 mL of this solution, add 50 mL of water and 5 mL of ammonia-ammonium chloride buffer solution (pH 10.7), and titrate with 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS (indicator: 40 mg of eriochrome black T-sodium chloride indicator). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS = 6.018 mg of MgSO₄.

Containers and storage Containers—Well-closed containers.

Magnesium Sulfate Injection
硫酸マグネシウム注射液

Magnesium Sulfate Injection is an aqueous injection.

It contains not less than 95.0% and not more than 105.0% of the labeled amount of magnesium sulfate hydrate (MgSO₄·7H₂O: 246.47).

Method of preparation Prepare as directed under Injections, with Magnesium Sulfate Hydrate.

Description Magnesium Sulfate Injection is a clear, colorless liquid.

Identification Measure a volume of Magnesium Sulfate Injection, equivalent to about 0.3 g of magnesium sulfate hydrate (MgSO₄·7H₂O: 246.47), and add water to make 20 mL: the solution responds to Qualitative Tests <1.09> for magnesium salt and for sulfate.

pH <2.54> 5.5 – 7.0 When the labeled concentration exceeds 5%, prepare a solution of 5% with water, and perform the test.

Bacterial endotoxins <4.01> Less than 0.09 EU/mg.

Extractable volume <5.05> It meets the requirement.

Foreign insoluble matter <6.06> Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter <6.07> It meets the requirement.

Sterility <4.06> Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Measure exactly a volume of Magnesium Sulfate Injection, equivalent to about 0.3 g of magnesium sulfate hydrate (MgSO₄·7H₂O), and add water to make 75 mL. Then add 5 mL of ammonia-ammonium chloride buffer solution (pH 10.7), and proceed as directed in the Assay under Magnesium Sulfate Hydrate.

Each mL of 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS = 12.32 mg of MgSO₄·7H₂O.

Containers and storage Containers—Hermetic containers.

Plastic containers for aqueous injections may be used.
Magnesium Sulfate Mixture

The pH of a solution of 1.0 g of Maltose Hydrate contains not less than 13.5 w/v% and not more than 16.5 w/v% of magnesium sulfate hydrate (MgSO₄·7H₂O: 246.47).

Method of preparation

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnesium Sulfate Hydrate</td>
<td>150 g</td>
</tr>
<tr>
<td>Bitter Tincture</td>
<td>20 mL</td>
</tr>
<tr>
<td>Dilute Hydrochloric Acid</td>
<td>5 mL</td>
</tr>
<tr>
<td>Purified Water or Purified</td>
<td>a sufficient quantity</td>
</tr>
</tbody>
</table>

To make 1000 mL

Prepare before use, with the above ingredients.

Description
Magnesium Sulfate Mixture is a light yellow clear liquid. It has a bitter and acid taste.

Identification (1) Magnesium Sulfate Mixture responds to Qualitative Tests <1.09> for magnesium salt.

(2) Magnesium Sulfate Mixture responds to Qualitative Tests <1.09> (2) for chloride.

Assay
Pipet 10 mL of Magnesium Sulfate Mixture, and add water to make exactly 100 mL. Pipet 10 mL of this solution, add 50 mL of water and 5 mL of ammonia-ammonium chloride buffer solution (pH 10.7), and titrate <2.50> with 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS (indicator: 40 mg of eriochrome black T-sodium chloride indicator).

Each mL of 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS = 12.32 mg of MgSO₄·7H₂O

Containers and storage
Containers—Tight containers.

Maltose Hydrate

マルトース水和物

C₁₂H₂₂O₁₁·H₂O: 360.31
α-D-Glucopyranosyl-(1→4)-β-D-glucopyranose monohydrate [6363-53-7]

Maltose Hydrate, when dried, contains not less than 98.0% of maltose hydrate (C₁₂H₂₂O₁₁·H₂O).

Description
Maltose Hydrate occurs as white, crystals or crystalline powder. It has a sweet taste.

It is freely soluble in water, very slightly soluble in ethanol (95%), and practically insoluble in diethyl ether.

Identification (1) Dissolve 0.5 g of Maltose Hydrate in 5 mL of water, add 5 mL of ammonia TS, and heat for 5 minutes on a water bath: an orange color develops.

(2) Add 2 to 3 drops of a solution of Maltose Hydrate (1 in 50) to 5 mL of boiling Fehling TS: a red precipitate is formed.

Optical rotation <2.49> [α]D°: +126° - +131° Weigh accurately about 10 g of Maltose Hydrate, previously dried, dissolve in 0.2 mL of ammonia TS and water to make exactly 100 mL, and determine the optical rotation of this solution in a 100-mm cell.

pH <2.54> The pH of a solution of 1.0 g of Maltose Hydrate in 10 mL of water is between 4.5 and 6.5.

Purity (1) Clarity and color of solution—Put 10 g of Maltose Hydrate in 30 mL of water in a Nessler tube, warm at 60°C in a water bath to dissolve, and after cooling, add water to make 50 mL: the solution is clear, and has no more color than the following control solution.

Control solution: Add water to a mixture of 1.0 mL of Cobalt (II) Chloride CS, 3.0 mL of Iron (III) Chloride CS and 2.0 mL of Copper (II) Sulfate CS to make 10.0 mL. To 1.0 mL of this solution add water to make 50 mL.

(2) Chloride <1.03>—Perform the test with 2.0 g of Maltose Hydrate. Prepare the control solution with 1.0 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.018%).

(3) Sulfate <1.14>—Perform the test with 2.0 g of Maltose Hydrate. Prepare the control solution with 1.0 mL of 0.005 mol/L sulfuric acid VS (not more than 0.024%).

(4) Heavy metals <1.07>—Proceed with 5.0 g of Maltose Hydrate according to Method 1, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 4 ppm).

(5) Arsenic <1.17>—Dissolve 1.5 g of Maltose Hydrate in 5 mL of water, add 5 mL of dilute sulfuric acid and 1 mL of bromine TS, heat on a water bath for 5 minutes, then heat to concentrate to 5 mL, and use this solution as the test solution after cooling. Perform the test (not more than 1.3 ppm).

(6) Dextrin, soluble starch and sulfite—Dissolve 1.0 g of Maltose Hydrate in 10 mL of water, and add 1 drop of iodine TS: a yellow color appears, and the color changes to a blue by adding 1 drop of starch TS.

(7) Nitrogen—Weigh accurately about 2 g of Maltose Hydrate, and perform the test as directed under Nitrogen Determination <1.08> using 10 mL of sulfuric acid for the decomposition and 45 mL of a solution of sodium hydroxide (2 in 5) for the addition: the amount of nitrogen (N: 14.01) is not more than 0.01%.

(8) Related substances—Dissolve 0.5 g of Maltose Hydrate in 10 mL of water, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add water to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following operating conditions. Determine the peak areas from both solutions by the automatic integration method: the total area of the peaks which appear before the peak of maltose obtained from the sample solution is not larger than 1.5 times the total area of maltose from the standard solution, and the total area of the peaks which appear after the peak of maltose from the sample solution is not larger than 1/2 times the peak area of maltose from the standard solution.

Operating conditions

Detector, column, column temperature, mobile phase, flow rate, and selection of column: Proceed as directed in the operating conditions in the Assay.

Detection sensitivity: Adjust the sensitivity so that the peak height of maltose obtained with 20 μL of the standard solution is about 30 mm.

Time span of measurement: About 2 times as long as the
Manidipine Hydrochloride

マニジピン塩酸塩

C_{35}H_{38}N_{4}O_{6}.2HCl: 683.62
3-[2-[4-(Diphenylmethyl)piperazin-1-yl]ethyl]
5-methyl (4RS)-2,6-dimethyl-4-(3-nitrophenyl)-
1,4-dihydropyridine-3,5-dicarboxylate dihydrochloride
[126229-12-7]

Manidipine Hydrochloride, when dried, contains not less than 98.5% and not more than 101.0% of manidipine hydrochloride (C_{35}H_{38}N_{4}O_{6}.2HCl).

Description Manidipine Hydrochloride occurs as white to pale yellow, crystals or crystalline powder.

It is freely soluble in dimethylsulfoxide, sparingly soluble in methanol, slightly soluble in ethanol (99.5), and practically insoluble in water.

A solution of Manidipine Hydrochloride in dimethylsulfoxide (1 in 100) shows no optical rotation.

Manidipine Hydrochloride turns slightly brown-yellowish white on exposure to light.

Melting point: about 207°C (with decomposition).

Identification (1) Determine the absorption spectrum of a solution of Manidipine Hydrochloride in methanol (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Manidipine Hydrochloride RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Manidipine Hydrochloride as directed in the potassium chloride disc method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of Manidipine Hydrochloride RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) Add 10 mL of water to 0.1 g of Manidipine Hydrochloride, shake vigorously, and filter. Add 1 drop of ammonia TS to 3 mL of the filtrate, allow to stand 5 minutes, and filter. The filtrate responds to Qualitative Tests <1.09> (2) for chlorides.

Purity (1) Heavy metals <1.07>—Proceed with 1.0 g of Manidipine Hydrochloride according to Method 2, and perform the test. Prepare the control solution with 1.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Arsenic <1.12>—Prepare the test solution with 2.0 g of Manidipine Hydrochloride according to Method 4, and perform the test (not more than 1 ppm).

(3) Related substances—Dissolve 20 mg of Manidipine Hydrochloride in a mixture of water and acetoniitrile (1:1) to make 200 mL, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add the mixture of water and acetoniitrile (1:1) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with ex-
Manidipine Hydrochloride Tablets

Manidipine Hydrochloride Tablets contain not less than 92.0% and not more than 108.0% of the labeled amount of manidipine hydrochloride (C_{21}H_{17}N_2O_4.HCl) (683.62).

Method of preparation Prepare as directed under Tablets, with Manidipine Hydrochloride.

Identification To a quantity of powdered Manidipine Hydrochloride Tablets, equivalent to 10 mg of Manidipine Hydrochloride, add 5 mL of methanol, shake vigorously, centrifuge, and use the supernatant liquid as the sample solution. Separately, dissolve 10 mg of Manidipine Hydrochloride RS in 5 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography (2.03). Spot 5 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate and diethylamine (200:1) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the principal spot obtained from the sample solution and the spot from the standard solution show the same Rt value.

Uniformity of dosage units (6.02) Perform the test according to the following method: it meets the requirement of the Content uniformity test. Conduct this procedure using light-resistant vessels. To 1 tablet of Manidipine Hydrochloride Tablets, add exactly 1 mL of the internal standard solution per 1 mg of manidipine hydrochloride (C_{21}H_{17}N_2O_4.HCl), disintegrate by adding a mixture of water and acetonitrile (1:1) to make 108 mL so that each mL contains about 0.1 mg of manidipine hydrochloride.
(C₆H₁₂O₆·2HCl), shake vigorously for 10 minutes, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 1 mL of the filtrate, and use the subsequent filtrate as the sample solution. Then, proceed as directed in the Assay.

Amount (mg) of manidipine hydrochloride

\[(C₆H₁₂O₆·2HCl) = M_S \times \frac{Q_T}{Q_S} \times \frac{V}{250} \]

\[M_S: \text{Amount (mg) of Manidipine Hydrochloride RS taken} \]

Internal standard solution—A solution of butyl benzoate in acetonitrile (7 in 10,000).

Dissolution C6.10 When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of 0.05 mol/L acetic acid-sodium acetate buffer solution (pH 4.0) as the dissolution medium, the dissolution rate in 45 minutes of Manidipine Hydrochloride Tablets is not less than 75%.

- Conduct this procedure using light-resistant vessels. Start the test with 1 tablet of Manidipine Hydrochloride Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, and add the dissolution medium to make exactly V mL so that each mL contains about 5.6 μg of manidipine hydrochloride (C₆H₁₂O₆·2HCl). Pipet 2 mL of this solution, add exactly 2 mL of methanol, and use this solution as the sample solution. Separately, weigh accurately about 25 mg of Manidipine Hydrochloride RS, previously dried, dissolve in a mixture of water and acetonitrile (1:1) to make exactly 50 mL. Pipet 1 mL of this solution, and add the dissolution medium to make exactly V mL of the standard solution, add a mixture of water and acetonitrile (1:1) to make exactly 100 mL. Pipet 2 mL of this solution, add exactly 2 mL of methanol, and use this solution as the standard solution. Perform the test with exactly 20 μL of each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions, and determine the peak areas, Aₜ and Aₛ, of manidipine in each solution.

Dissolution rate (%) with respect to the labeled amount of manidipine hydrochloride (C₆H₁₂O₆·2HCl)

\[\frac{A_T}{A_S} \times \frac{V}{V'} \times \frac{1}{C} \times \frac{1}{18} \]

\[M_S: \text{Amount (mg) of Manidipine Hydrochloride RS taken} \]

C: Labeled amount (mg) of manidipine hydrochloride (C₆H₁₂O₆·2HCl) in 1 tablet

Operating conditions—

- Detector: An ultraviolet absorption photometer (wavelength: 228 nm).
- Column: A stainless steel column 4.0 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
- Column temperature: A constant temperature of about 25°C.
- Mobile phase: A mixture of acetonitrile and a solution of potassium dihydrogen phosphate (681 in 100,000) (3:2).
- Flow rate: Adjust so that the retention time of manidipine is about 6 minutes.

System suitability—

- System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of manidipine are not less than 1500 and not more than 1.5, respectively.
- System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of manidipine is not more than 2.0%.

Assay Conduct this procedure using light-resistant vessels. Weigh accurately not less than 20 Manidipine Hydrochloride Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 10 mg of manidipine hydrochloride (C₆H₁₂O₆·2HCl), add exactly 10 mL of the internal standard solution, add a mixture of water and acetonitrile (1:1) to make 100 mL, shake vigorously for 10 minutes, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 1 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 25 mg of Manidipine Hydrochloride RS, previously dried, and dissolve in the mixture of water and acetonitrile (1:1) to make exactly 50 mL. Pipet 20 mL of this solution, add exactly 10 mL of the internal standard solution, add the mixture of water and acetonitrile (1:1) to make 100 mL, and use this solution as the standard solution. Then, proceed as directed in the Assay under Manidipine Hydrochloride.

Amount (mg) of manidipine hydrochloride

\[(C₆H₁₂O₆·2HCl) = M_S \times \frac{Q_T}{Q_S} \times \frac{V}{250} \]

\[M_S: \text{Amount (mg) of Manidipine Hydrochloride RS taken} \]

Internal standard solution—A solution of butyl benzoate in acetonitrile (7 in 10,000).

Containers and storage Containers—Tight containers.

Storage—Light-resistant.

d-Mannitol

d-マンニトール

C₆H₁₂O₆: 182.17

d-Mannitol

[69-65-8]

This monograph is harmonized with the European Pharmacopoeia and the U.S. Pharmacopeia.

The parts of the text that are not harmonized are marked with symbols (●). Information on the harmonization with the European Pharmacopoeia and the U.S. Pharmacopeia is available on the website of the Pharmaceuticals and Medical Devices Agency.

d-Mannitol contains not less than 97.0% and not more than 102.0% of d-mannitol (C₆H₁₂O₆), calculated on the dried basis.

Description d-Mannitol occurs as white, crystals, powder or grain. It has a sweet taste with a cold sensation. It is freely soluble in water, and practically insoluble in ethanol (99.5).

It dissolves in sodium hydroxide TS.

It shows crystal polymorphism.●

Identification Determine the infrared absorption spectrum of d-Mannitol as directed in the potassium bromide disk
method under Infrared Spectrophotometry \(<2.23＞\), and compare the spectrum with the Reference Spectrum or the spectrum of \(d\)-Mannitol RS: both spectra exhibit similar intensities of absorption at the same wave numbers. If any difference appears between the spectra, put 25 mg each of \(d\)-Mannitol and \(d\)-Mannitol RS in glass vessels, dissolve in 0.25 mL of water without heating, dry them in a 600 – 700 W microwave oven for 20 minutes or in a drying chamber at 100°C for 1 hour, then further dry by gradual reducing pressure, and perform the same test as above with so obtained non-sticky white to pale yellow powders: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point \(<2.60>\) 165 – 170°C

Purity (1) Clarity and color of solution—Dissolve 5.0 g of \(d\)-Mannitol in water to make 50 mL, and use this solution as the test solution. Perform the test with the test solution as directed under Turbidity Measurement \(<2.61>\): the solution is clear. Perform the test with the test solution according to Method 2 under Methods for Color Matching \(<2.65>\): the solution is colorless.

(2) Heavy metals \(<1.07>\)—Proceed with 5.0 g of \(d\)-Mannitol according to Method 1, and perform the test. Prepare the control solution with 2.5 mL of Standard Lead Solution (not more than 5 ppm).

(3) Nickel—Shake 10.0 g of \(d\)-Mannitol with 30 mL of 2 mol/L acetic acid TS, and add water to make exactly 100 mL. Add 2.0 mL of a saturated solution of ammonium pyrrolidinedithiocarbamate (about 10 g/L) and 10.0 mL of water-saturated 4-methyl-2-pentanone, and shake for 30 seconds without exposure to light. Allow the layers to separate, and use the 4-methyl-2-pentanone layer as the sample solution. Separately, put 10.0 g of \(d\)-Mannitol in three vessels, add 30 mL of 2 mol/L acetic acid TS to them, shake, add a suitable amount of water and exactly 0.5 mL, 1.0 mL and 1.5 mL respectively of Standard Nickel Solution for Atomic Absorption Spectrophotometry, and add water to make them exactly 100 mL. Then, proceed in the same manner as the sample solution, and use so obtained three 4-methyl-2-pentanone layers as the standard solutions. Additionally, prepare a 4-methyl-2-pentanone layer by proceeding in the same manner as the sample solution without using \(d\)-Mannitol, and use this layer as the blank solution. Perform the test with the sample solution and standard solutions as directed in the standard addition method under Atomic Absorption Spectrophotometry \(<2.23>\) according to the following conditions. Set the zero of the instrument using the blank solution, and between each measurement, rinse with water and ascertain that the readings return to zero with the blank solution: amount of nickel is not more than 1 ppm.

Gas: Combustible gas—Acetylene.
Supporting gas—Air.
Lamp: Nickel hollow-cathode lamp.
Wavelength: 232.0 nm.

(4) Related substances—Dissolve 0.50 g of \(d\)-Mannitol in water to make 10 mL, and use this solution as the sample solution. Pipet 2 mL of the sample solution, add water to make exactly 100 mL, and use this solution as the standard solution (1). Pipet 0.5 mL of the standard solution (1), add water to make exactly 20 mL, and use this solution as the standard solution (2). Perform the test with exactly 20 mL each of the sample solution and standard solutions (1) and (2) as directed under Liquid Chromatography \(<2.01>\) according to the following conditions. Determine each peak area by the automatic integration method: the peak area of \(d\)-sorbitol, having the relative retention time of about 1.2 to \(d\)-mannitol, obtained from the sample solution is not larger than that of \(d\)-mannitol from the standard solution (1) (not more than 2.0%), the total peak area of maltitol, having the relative retention time of about 0.69, and isomalt, having the relative retention times of about 0.6 and about 0.73, is not larger than the peak area of \(d\)-mannitol from the standard solution (1) (not more than 2.0%), and the area of the peak other than \(d\)-mannitol and the peaks mentioned above is not larger than 2 times the peak area of \(d\)-mannitol from the standard solution (2) (not more than 0.1%). Furthermore, the total area of the peak other than \(d\)-mannitol from the sample solution is not larger than the peak area of \(d\)-mannitol from the standard solution (1) (not more than 2.0%). For these calculations exclude the peak which area is not larger than the peak area of \(d\)-mannitol from the standard solution (2) (not more than 0.05%).

Operating conditions—
Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.
Time span of measurement: About 1.5 times as long as the retention time of \(d\)-mannitol.

System suitability—
System performance: Proceed as directed in the system suitability in the Assay.
Test for required detectability: Confirm that the peak area of \(d\)-mannitol obtained with 20 \(\mu\)L of the standard solution (2) is equivalent to 1.75 to 3.25% of that with 20 \(\mu\)L of the standard solution (1).
System repeatability: When the test is repeated 6 times with 20 \(\mu\)L of the standard solution (1) under the above operating conditions, the relative standard deviation of the peak area of \(d\)-mannitol is not more than 1.0%.

(5) Glucose—To 7.0 g of \(d\)-Mannitol add 13 mL of water and 40 mL of Fehling’s TS, boil gently for 3 minutes, and allow to stand for 2 minutes to precipitate copper (I) oxide. Separate the supernatant liquid, filter through a sintered glass filter for cupric oxide filtration coated with siliceous earth or a sintered glass filter (G4). Wash the precipitates with 50 – 60°C hot water until the washing no longer alkaline, and filter the washings through the filter described above. Discard all the filtrate at this step. Immediately, dissolve the precipitate with 20 mL of iron (III) sulfate TS, filter through the filter described above in a clean flask, and wash the filter with 15 – 20 mL of water. Combine the filtrate and the washings, heat to 80°C, and titrate \(\text{C}_{6}\text{H}_{12}\text{O}_{6}\) with 0.02 mol/L potassium permanganate VS until the green color turns to light red and the color persists at least 10 seconds: not more than 3.2 mL is required to change the color of the solution (not more than 0.1% expressed as glucose).

Conductivity \(<2.51>\) Dissolve 20.0 g of \(d\)-Mannitol in a fleshly boiled and cooled water prepared from distilled water by heating to 40 – 50°C, add the same water to make 100 mL, and use this solution as the sample solution. After cooling, measure the conductivity of the sample solution at 25 ± 0.1°C while gently stirring with a magnetic stirrer: not more than 20 \(\mu\)S cm\(^{-1}\).

Loss on drying \(<2.41>\) Not more than 0.5% (1 g, 105°C, 4 hours).

Assay Weigh accurately about 0.5 g each of \(d\)-Mannitol and \(d\)-Mannitol RS (separately determine the loss on drying \(<2.41>\) under the same conditions as \(d\)-Mannitol), dissolve separately in water to make exactly 10 mL, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with exactly 20 \(\mu\)L each of the sample solution and standard solution as directed under

The JP Drugs are to be tested according to the provisions given in the pertinent monographs. General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
Liquid Chromatography^{4.01} according to the following conditions, and determine the peak areas, \(A_T \) and \(A_S \), of \(\text{d}-\text{mannitol} \) in each solution.

Amount (g) of \(\text{d}-\text{mannitol} \) (C\(_6\)H\(_{12}\)O\(_3\)) = \(M_S \times A_T / A_S \)

\(M_S \): Amount (g) of \(\text{d}-\text{Mannitol RS} \) taken, calculated on the dried basis

Operating conditions—

Detector: A differential refractometer maintained at a constant temperature (40°C for example).

Column: A stainless steel column 7.8 mm in inside diameter and 30 cm in length, packed with strongly acidic ion-exchange resin for liquid chromatography (calcium type) composed with a sulfonated polystyrene cross-linked with 8% of divinylbenzene (9 \(\mu \)m in particle diameter).

Column temperature: 85 ± 2°C.

Mobile phase: water.

Flow rate: 0.5 mL per minute (the retention time of \(\text{d}-\text{mannitol} \) is about 20 minutes).

System suitability—

System performance: Dissolve 0.25 g of \(\text{d}-\text{Mannitol} \) and \(\text{d}-\text{sorbitol} \) in water to make 10 mL, and use this solution as the solution for system suitability test (1). Separately, dissolve 0.5 g each of maltitol and isomalt in water to make 100 mL. To 2 mL of this solution add water to make 10 mL, and use this solution as the solution for system suitability test (2). When proceed with 20 \(\mu \)L each of the solution for system suitability test (1) and the solution for system suitability test (2) as directed under the above operating conditions, isomalt (first peak), maltitol, isomalt (second peak), \(\text{d}-\text{mannitol} \) and \(\text{d}-\text{sorbitol} \) are eluted in this order, the relative retention time of isomalt (first peak), maltitol, isomalt (second peak) and \(\text{d}-\text{sorbitol} \) to \(\text{d}-\text{mannitol} \) is about 0.6, about 0.69, about 0.73 and about 1.2, respectively, and the resolution between the peaks of \(\text{d}-\text{mannitol} \) and \(\text{d}-\text{sorbitol} \) is not less than 2.0. Coelution of maltitol and the second peak of isomalt may be observed.

System repeatability: When the test is repeated 6 times with 20 \(\mu \)L of the standard solution under the above operating conditions, the relative standard deviation of the peak area of \(\text{d}-\text{mannitol} \) is not more than 1.0%.

Containers and storage Containers—Well-closed containers.

Maprotiline Hydrochloride

マプロチリン塩酸塩

\[
\text{C}_{20}\text{H}_{23}\text{N.HCl: 313.86} \\
3-(9,10-Dihydro-9,10-ethanoanthracen-9-yl)-N-methylpropylamine monohydrochloride \\
[10347-81-6]
\]

Maprotiline Hydrochloride, when dried, contains not less than 99.0% of maprotiline hydrochloride (C\(_{20}\)H\(_{23}\).N.HCl).

Description Maprotiline Hydrochloride occurs as a white crystalline powder.

It is soluble in methanol and in acetic acid (100), sparingly soluble in ethanol (99.5), and slightly soluble in water.

Melting point: about 244°C (with decomposition).

It shows crystal polymorphism.

Identification (1) Determine the absorption spectrum of a solution of Maprotiline Hydrochloride in methanol (1 in 10,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Maprotiline Hydrochloride, previously dried, as directed in the potassium chloride disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.
Weigh accurately about 0.1 g of Maprotiline Hydrochloride, dissolve in 2.0 mL of 0.1 mol/L perchloric acid VS (potentiometric titration). Perform the test with 1.0 g of Meclofenoxate Hydrochloride according to Method 3, and titrate with 0.1 mol/L perchloric acid VS to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the number of the spot other than the principal spot obtained from the sample solution is not more than 2 and they are not more intense than the spot from the standard solution.

Residue on ignition

Not more than 0.5% (1 g, 105°C, 3 hours).

Assay

Weigh accurately about 0.25 g of Maprotiline Hydrochloride, previously dried, dissolve in 80 mL of acetic acid (100), add 8 mL of a solution of bismuth nitrate pentahydrate in acetic acid (100) (1 in 50), and titrate with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

\[
\text{Each mL of 0.1 mol/L perchloric acid VS} = 31.39 \text{ mg of } C_{23}H_{36}N\text{HCl}
\]

Containers and storage

Containers—Well-closed containers.

Freeze-dried Live Attenuated Measles Vaccine

Freeze-dried Live Attenuated Measles Vaccine is a preparation for injection which is dissolved before use. It contains live attenuated measles virus.

It conforms to the requirements of Freeze-dried Live Attenuated Measles Vaccine in the Minimum Requirements for Biological Products.

Description

Freeze-dried Live Attenuated Measles Vaccine becomes a colorless, yellowish or reddish clear liquid on addition of solvent.

Meclofenoxate Hydrochloride

メクロフェノキサート塩酸塩

C₅H₃ClNO₃.HCl: 294.17

2-(Dimethylamino)ethyl (4-chlorophenoxy)acetate monohydrochloride

[3685-94-5]

Meclofenoxate Hydrochloride contains not less than 98.0% of meclofenoxate hydrochloride (C₁₂H₁₆CINO₃.HCl), calculated on the anhydrous basis.

Description

Meclofenoxate Hydrochloride occurs as white, crystals or crystalline powder. It has a faint, characteristic odor and a bitter taste.

It is freely soluble in water and in ethanol (95), sparingly soluble in acetic anhydride, and practically insoluble in diethyl ether.

The pH of a solution of 1.0 g of Meclofenoxate Hydrochloride in 20 mL of water is between 3.5 and 4.5.

Identification

(1) To 10 mg of Meclofenoxate Hydrochloride add 2 mL of ethanol (95), dissolve by warming if necessary, cool, and add 2 drops of a saturated solution of hydroxylammonium chloride in ethanol (95) and 2 drops of a saturated solution of potassium hydroxide in 40% ethanol (95), and heat in a water bath for 2 minutes. After cooling, render the solution slightly acidic with dilute hydrochloric acid, and add 3 drops of iron (III) chloride TS: a red-purple to dark purple color develops.

(2) Dissolve 50 mg of Meclofenoxate Hydrochloride in 5 mL of water, and add 2 drops of Reinecke salt TS: a light red precipitate is formed.

(3) Determine the absorption spectrum of a solution of Meclofenoxate Hydrochloride (1 in 10,000) as directed under Ultraviolet-visible Spectrophotometry (2.24), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(4) A solution of Meclofenoxate Hydrochloride (1 in 100) responds to Qualitative Tests (1.09) for chloride.

Melting point

139 – 143°C

Purity

(1) Clarity and color of solution—Dissolve 0.5 g of Meclofenoxate Hydrochloride in 10 mL of water: the solution is clear and colorless.

(2) Sulfate (1.14)—Perform the test with 1.0 g of Meclofenoxate Hydrochloride. Prepare the control solution with 1.0 mL of 0.005 mol/L sulfuric acid VS (not more than 0.048%).

(3) Heavy metals (1.07)—Proceed with 1.0 g of Meclofenoxate Hydrochloride according to Method 1, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(4) Arsenic (1.11)—Prepare the test solution with 1.0 g of Meclofenoxate Hydrochloride according to method 3, and perform the test (not more than 2 ppm).

(5) Organic acids—To 2.0 g of Meclofenoxate Hydrochloride add 50 mL of diethyl ether, shake for 10 minutes, filter through a glass filter (G3), wash the residue with two 5-mL portions of diethyl ether, and combine the washings.
with the filtrate. To this solution add 50 mL of neutralized ethanol and 5 drops of phenolphthalein TS, and neutralize with 0.1 mol/L sodium hydroxide VS: the volume of 0.1 mol/L sodium hydroxide VS consumed is not more than 0.54 mL.

Water Not more than 0.50% (1 g, volumetric titration, direct titration).

Residue on ignition Not more than 0.1% (1 g).

Assay Weigh accurately about 0.4 g of Meclofenoxate Hydromethylcobalamin occurs as dark red, crystals or pinkish-red needles. Not more than 0.1 mL of 0.1 mol/L perchloric acid VS until the color of the solution changes from blue-green through yellow-green to pale greenish yellow [indicator: 3 drops of a solution of malachite green oxalate in acetic acid (100) (1 in 100)]. Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 29.42 mg of \(\text{C}_{12}\text{H}_{6}\text{ClN}_{3}\text{O}_{4}\cdot\text{HCl} \)

Containers and storage Containers—Tight containers.

Mecobalamin

メコバラミン

C\(_6\)H\(_9\)CoN\(_3\)O\(_{13}\)P: 1344.38

\[\text{Co} \text{-}[\text{(5,6-Dimethyl-1H-benzimidazol-1-yl)]-Co}^{\text{II}}\text{-methylcobamide} \]

[13422-55-4]

Mecobalamin contains not less than 98.0% and not more than 101.0% of mecobalamin (C\(_6\)H\(_9\)CoN\(_3\)O\(_{13}\)P), calculated on the anhydrous basis.

Description Mecobalamin occurs as dark red, crystals or crystalline powder.

It is sparingly soluble in water, slightly soluble in ethanol (99.5), and practically insoluble in acetonitrile.

It decomposes on exposure to light.

Identification (1) Conduct this procedure without exposure to light, using light-resistant vessels. Determine the absorption spectrum of a solution of Mecobalamin in hydrochloric acid-potassium chloride buffer solution (pH 2.0) (1 in 20,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum 1 or the spectrum of a solution of Mecobalamin RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths. Separately, determine the absorption spectrum of a solution of Mecobalamin in phosphate buffer solution (pH 7.0) (1 in 20,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum 2 or the spectrum of a solution of Mecobalamin RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Mix 1 mg of Mecobalamin with 50 mg of potassium bisulfate, and fuse by igniting. Cool, break up the mass with a glass rod, add 3 mL of water, and dissolve by boiling. Add 1 drop of phenolphthalein TS, then add dropwise sodium hydroxide TS until a light red color just develops. Add 0.5 g of sodium acetate, 0.5 mL of dilute acetic acid and 0.5 mL of a solution of disodium 1-nitroso-2-naphthol-3,6-disulfonate (1 in 500): a red to orange-red color is immediately produced. Then add 0.5 mL of hydrochloric acid, and boil for 1 minute: the red color does not disappear.

Purity (1) Clarity and color of solution—Dissolve 20 mg of Mecobalamin in 10 mL of water: the solution is clear and red color.

(2) Related substances—Perform the test with 10 \(\mu \)L of the sample solution obtained in the Assay as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area by the automatic integration method: each area of the peaks other than mecobalamin is not more than 0.5% of the peak area of mecobalamin, and the total area of the peaks other than mecobalamin is not more than 2.0%.

System suitability—

Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 2.5 times as long as the retention time of mecobalamin.

Operating conditions—

System performance: Proceed as directed in the system suitability in the Assay.

Test for required detectability: To exactly 1 mL of the sample solution add the mobile phase to make exactly 100 mL, and use this solution as the solution for system suitability test. Pipet 1 mL of the solution for system suitability test, add the mobile phase to make exactly 10 mL. Confirm that the peak area of mecobalamin obtained with 10 \(\mu \)L of this solution is equivalent to 7 to 13% of that with 10 \(\mu \)L of the solution for system suitability test.

System repeatability: When the test is repeated 6 times with 10 \(\mu \)L of the solution for system suitability test under the above operating conditions, the relative standard deviation of the peak areas of mecobalamin is not more than 3.0%.

Water Not more than 12% (0.1 g, volumetric titration, direct titration).

Assay Conduct this procedure without exposure to light, using light-resistant vessels. Weigh accurately about 50 mg of Mecobalamin and Mecobalamin RS (separately), determine the water <2.48> in the same manner as Mecobalamin, dissolve each in the mobile phase to make exactly 50 mL, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with exactly 10 \(\mu \)L of each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to
the following conditions, and determine the peak areas, A_T and A_S, of mecobalamin in each solution.

Amount (mg) of mecobalamin ($C_{63}H_{95}CoN_{13}O_{12}P$)
\[= M_s \times A_T / A_S\]

M_s: Amount (mg) of Mecobalamin RS taken, calculated on the anhydrous basis

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 266 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecylsila-nized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase: To 200 mL of acetonitrile add 800 mL of 0.02 mol/L phosphate buffer solution (pH 3.5), then add 3.76 g of sodium 1-hexane sulfonate to dissolve.
Flow rate: Adjust so that the retention time of mecobalamin is about 12 minutes.

System suitability—
System performance: Dissolve 5 mg each of cyanocoba-

mamin and hydroxocobalamin in the mobile phase to make 100 mL. When the procedure is run with 10 μL of this solution under the above operating conditions, cyanocoba-

mamin and hydroxocobalamin are eluted in this order with the resolution between these peaks being not less than 3. And when the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates of the peak of mecobalamin is not less than 6000.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak areas of mecobalamin is not more than 1.0%.

Containers and storage
Containers—Tight containers.
Storage—Light-resistant.

Mecobalamin Tablets
メコバラミン錠

Mecobalamin Tablets contain not less than 92.0% and not more than 108.0% of the labeled amount of mecobalamin ($C_{63}H_{95}CoN_{13}O_{12}P$: 1344.38).

Method of preparation
Prepare as directed under Tablets, with Mecobalamin.

Identification (1) Conduct this procedure without exposure to light, using light-resistant vessels. To a quantity of powdered Mecobalamin Tablets, equivalent to 1 mg of Mecobalamin, add 10 mL of hydrochloric acid-potassium chloride buffer solution (pH 7.0), sonicate, and add phosphate buffer solution (pH 7.0) to make 20 mL. Centrifuge this solution, and filter the supernatant liquid through a membrane filter with a pore size not exceeding 0.8 μm. Determine the absorption spectrum of the filtrate as directed under Ultraviolet-visible Spectrophotometry $<2.24>$: it exhibits maxima between 264 nm and 268 nm, between 339 nm and 343 nm, and between 520 nm and 524 nm.

Uniformity of dosage units $<6.02>$ Perform the test according to the following method: it meets the requirement of the Content uniformity test.

Conduct this procedure without exposure to light, using light-resistant vessels. Take 1 tablet of Mecobalamin Tablets, and disintegrate the tablet by adding $V/5$ mL of water. Add methanol to make exactly V mL so that each mL contains about 25 μg of mecobalamin ($C_{63}H_{95}CoN_{13}O_{12}P$). After shaking for 5 minutes, allow to stand for not less than 10 minutes. Filter thus obtained supernatant liquid through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 5 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 25 mg of Mecobalamin RS (separately determine the water $<2.48>$ in the same manner as Mecobalamin), and dissolve in water to make exactly 100 mL. Pipet 5 mL of this solution, add 5 mL of water and methanol to make exactly 50 mL. Use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography $<2.01>$ according to the following conditions, and determine the peak areas, A_T and A_S, of mecobalamin in each solution.

Amount (mg) of mecobalamin ($C_{63}H_{95}CoN_{13}O_{12}P$)
\[= M_s \times A_T / A_S \times V/1000\]

M_s: Amount (mg) of Mecobalamin RS taken, calculated on the anhydrous basis

Operating conditions—
Proceed as directed in the operating conditions in the Assay under Mecobalamin.

System suitability—
System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of mecobalamin are not less than 2000 and 0.8 to 1.1, respectively.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of mecobalamin is not more than 1.0%.

Dissolution $<6.10>$ When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 45 minutes of Mecobalamin Tablets is not less than 80%.

Conduct this procedure without exposure to light, using light-resistant vessels. Start the test with 1 tablet of Mecobalamin Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.8 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, and add water to make exactly V mL so that each mL contains about 0.28 μg of mecobalamin ($C_{63}H_{95}CoN_{13}O_{12}P$). Use this solution as the sample solution. Separately, weigh accurately about 28 mg of Mecobalamin RS (separately determine the water $<2.48>$ in the same manner as Mecobalamin), and dissolve in water to make exactly 100 mL. Pipet 5 mL of this solution,
add water to make exactly 100 mL. Pipet 2 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 100 µL of each of the sample solution and standard solution as directed under Liquid Chromatography \(<2.07\>\) according to the following conditions, and determine the peak areas, \(A_T\) and \(A_S\), of mecobalamin in each solution.

Dissolution rate (%) with respect to the labeled amount of mecobalamin (C\(_9\)H\(_{13}\)CoN\(_2\)O\(_5\)P) = \(M_S \times A_T / A_S \times V' / V \times 1 / C \times 9 / 10\)

\(M_S\): Amount (mg) of Mecobalamin RS taken, calculated on the anhydrous basis

\(C\): Labeled amount (mg) of mecobalamin (C\(_9\)H\(_{13}\)CoN\(_2\)O\(_5\)P) in 1 tablet

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 264 nm).

Column: A stainless steel column of 4.6 mm in inside diameter and 15 cm in length, packed with octadecysilanized silica gel for liquid chromatography (5 µm in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: Adjust to pH 3.0 of a solution of 6.0 g of L-tartaric acid in 1000 mL of water with a solution of 14.3 g of disodium hydrogen phosphate dodecahydrate in 1000 mL of water. To 630 mL of this solution add 370 mL of methanol.

Flow rate: Adjust so that the retention time of mecobalamin is about 8 minutes.

System suitability—

System performance: When the procedure is run with 100 µL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of mecobalamin are not less than 3000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 100 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of mecobalamin is not more than 2.0%.

Assay Conduct this procedure without exposure to light, using light-resistant vessels. Disintegrate 20 tablets of Mecobalamin Tablets with V/5 mL of water. Add methanol to make exactly V mL so that each mL contains about 50 µg of mecobalamin (C\(_9\)H\(_{13}\)CoN\(_2\)O\(_5\)P). After shaking for 5 minutes, allow to stand for not less than 10 minutes. Filter thus obtained supernatant liquid through a membrane filter with a pore size not exceeding 0.45 µm. Discard the first 5 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 25 mg of Mecobalamin RS (separately determine the water \(<2.48\>\) in the same manner as Mecobalamin), and dissolve in water to make exactly 100 mL. To exactly 10 mL of this solution add methanol to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly 10 µL of each of the sample solution and standard solution as directed under Liquid Chromatography \(<2.07\>\) according to the following conditions, and determine the peak areas, \(A_T\) and \(A_S\), of mecobalamin in each solution.

Amount (mg) of mecobalamin (C\(_9\)H\(_{13}\)CoN\(_2\)O\(_5\)P) in 1 tablet = \(M_S \times A_T / A_S \times V / 1000\)

\(M_S\): Amount (mg) of Mecobalamin RS taken, calculated on the anhydrous basis

Operating conditions—

Proceed as directed in the operating conditions in the Assay under Mecobalamin.

System suitability—

System performance: When the procedure is run with 10 µL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of mecobalamin are not less than 3000 and 0.8 to 1.1, respectively.

System repeatability: When the test is repeated 6 times with 10 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of mecobalamin is not more than 1.0%.

Containers and storage Containers—Tight containers.

Storage—Light-resistant.

Medazepam

C\(_9\)H\(_{13}\)CIN\(_3\): 270.76

7-Chloro-1-methyl-5-phenyl-2,3-dihydro-1H-1,4-benzodiazepine

[2898-12-6]

Medazepam, when dried, contains not less than 98.5% and not more than 101.0% of medazepam (C\(_9\)H\(_{13}\)CIN\(_3\)).

Description Medazepam occurs as white to light yellow, crystals or crystalline powder.

It is freely soluble in methanol, in ethanol (99.5), in acetic acid (100) and in diethyl ether, and practically insoluble in water.

It gradually turns yellow on exposure to light.

Identification (1) Dissolve 10 mg of Medazepam in 3 mL of citric acid-acetic acid TS: a deep orange color develops. Heat in a water bath for 3 minutes: the color changes to dark red.

(2) Determine the absorption spectrum of a solution of Medazepam in methanol (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry \(<2.24\>\), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(3) Determine the infrared absorption spectrum of Medazepam as directed in the potassium bromide disk method under Infrared Spectrophotometry \(<2.25\>\), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(4) Perform the test with Medazepam as directed under Flame Coloration Test \(<1.04\>\): (2) a green color appears.

Melting point \(<2.60\>\) 101 – 104°C

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Medazepam in 10 mL of methanol: the solution is clear and light yellow to yellow in color.

(2) Chloride \(<1.05\>\)—Dissolve 1.5 g of Medazepam in 50
mL of diethyl ether, add 46 mL of water and 4 mL of sodium carbonate TS, shake, and collect the water layer. Wash the water layer with two 20-mL portions of diethyl ether, and filter. To 20 mL of the filtrate add dilute nitric acid to neutralize, add 6 mL of dilute nitric acid and water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution with 0.30 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.018%).

(3) Heavy metals \(<1.07\)—Proceed with 1.0 g of Medazepam according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(4) Arsenic \(<1.1\)—Prepare the test solution with 1.0 g of Medazepam according to Method 3, and perform the test (not more than 2 ppm).

(5) Related substances—Dissolve 0.25 g of Medazepam in 10 mL of methanol, and use this solution as the sample solution. Pipet 1 mL of the sample solution, and add methanol to make exactly 20 mL. Pipet 2 mL of this solution, add methanol to make exactly 50 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography \(\text{c2.03}\). Spot 10 \(\mu\)L each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of cyclohexane, acetone and ammonia solution (28:60:40:1) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying \(<2.4\) Not more than 0.5% (1 g, in vacuum, 60°C, 4 hours).

Residue on ignition \(<2.4\) Not more than 0.1% (1 g).

Assay Weigh accurately about 0.4 g of Medicinal Carbon, previously dried, dissolve in 50 mL of acetic acid (100), and titrate \(<2.5\) with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 27.08 mg of \(\text{C}_3\text{H}_7\text{ClN}_2\).

Containers and storage Containers—Tight containers. Storage—Light-resistant.

Medicinal Carbon

薬用炭

Description Medicinal Carbon occurs as a black, odorless and tasteless powder.

Identification Place 0.5 g of Medicinal Carbon in a test tube, and heat by direct application of flame with the aid of a current of air: it burns without any flame. Pass the evolved gas through calcium hydroxide TS: a white turbidity is produced.

Purity (1) Acidity or alkalinity—Boil 3.0 g of Medicinal Carbon with 60 mL of water for 5 minutes, allow to cool, dilute to 60 mL with water, and filter: the filtrate is colorless and neutral.

(2) Chloride \(<1.07\)—Take 4.0 mL of the filtrate obtained in (1) in a Nessler tube, add 6 mL of dilute nitric acid and sufficient water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution with 0.80 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.142%).

(3) Sulfate \(<1.1\)—Take 5 mL of the filtrate obtained in (1) in a Nessler tube, add 1 mL of dilute hydrochloric acid and sufficient water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution with 1.0 mL of 0.005 mol/L sulfuric acid VS (not more than 0.192%).

(4) Sulfide—Boil 0.5 g of Medicinal Carbon with a mixture of 15 mL of dilute hydrochloric acid and 10 mL of water: lead (II) acetate paper does not become brown when held in the evolved gas within 5 minutes.

(5) Cyanogen compounds—Place a mixture of 5 g of Medicinal Carbon, 2 g of L-tartaric acid and 50 mL of water in a distilling flask connected to a condenser provided with a tightly fitting adapter, the end of which dips below the surface of a mixture of 2 mL of sodium hydroxide TS and 10 mL of water, contained in a small flask surrounded by ice. Heat the mixture in the distilling flask to boiling, and distill to 25 mL. Dilute the distillate with water to 50 mL. To 25 mL of the diluted distillate add 1 mL of a solution of iron (II) sulfate heptahydrate (1 in 20), heat the mixture almost to boiling, cool, and filter. To the filtrate add 1 mL of hydrochloric acid and 0.5 mL of dilute iron (III) chloride TS: no blue color is produced.

(6) Acid soluble substances—To about 1 g of Medicinal Carbon, accurately weighed, add 20 mL of water and 5 mL of hydrochloric acid, boil for 5 minutes, filter, wash the residue with 10 mL of hot water, and add the washings to the filtrate. Add 5 drops of sulfuric acid to the filtrate, evaporate to dryness, and ignite the residue strongly: the mass of the residue is not more than 3.0%.

(7) Heavy metals \(<1.07\)—Proceed with 0.5 g of Medicinal Carbon according to Method 2, and perform the test. Prepare the control solution with 2.5 mL of Standard Lead Solution (not more than 50 ppm).

(8) Zinc—Ignite 0.5 g of Medicinal Carbon to ash, add 5 mL of dilute nitric acid to the residue, boil gently for 5 minutes, filter, wash with 10 mL of water, and combine the washings and the filtrate. Add 3 mL of ammonia TS to the solution, filter again, wash with water, combine the washings and the filtrate, add another washing to make 25 mL, add 1 drop of sodium sulfide TS, and allow to stand for 3 minutes: the liquid produces no turbidity.

(9) Arsenic \(<1.1\)—Prepare the test solution with 1.0 g of Medicinal Carbon according to Method 3, and perform the test (not more than 2 ppm).

Loss on drying \(<2.4\) Not more than 15.0% (1 g, 105°C, 4 hours).

Residue on ignition \(<2.4\) Not more than 4% (1 g).

Adsorptive power (1) Add 1.0 g of Medicinal Carbon, previously dried, to 100 mL of water containing 120 mg of quinine sulfate hydrate, shake the mixture vigorously for 5 minutes, filter immediately, and reject the first 20 mL of the filtrate. Add 5 drops of iodine TS to 10 mL of the subsequent filtrate: no turbidity is produced.

(2) Dissolve 250 mg of methylene blue trihydrate, exactly weighed, in water to make exactly 250 mL. Measure two 50-mL portions of this solution into each of two glass-stoppered flasks. To one flask add exactly 250 mg of Medicinal Carbon, previously dried, and shake vigorously for 5 minutes. Filter the contents of each flask, rejecting the first 20 mL of each filtrate. Pipet 25-mL portions of the remaining filtrate into two 250-mL volumetric flasks. To each volu-
Medroxyprogesterone Acetate occurs as a white to light yellow, powder or granules. It has a characteristic odor free from rancidity.

Medroxyprogesterone Acetate, when dried, contains not less than 97.0 and not more than 103.0% of medroxyprogesterone acetate (C₂₃H₃₂O₄).

Description Medroxyprogesterone Acetate occurs as a white crystalline powder.

It is soluble in acetone, sparingly soluble in acetonitrile, slightly soluble in ethanol (99.5), and practically insoluble in water.

Identification (1) Determine the absorption spectrum of a solution of Medroxyprogesterone Acetate in ethanol (99.5) (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry \(2.24\%), and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Medroxyprogesterone Acetate RS prepared in the same manner as the sample solution; both spectra exhibit similar intensities of absorption at the same wavelengths.

Optical rotation \(2.49\)° [\(\alpha\)D]20 +47° + 53° (after drying, 0.25 g, acetone, 25 mL, 100 mm).

Melting point \(2.60\)° 204 – 209°C

Purity (1) Heavy metals \(1.07\) g of Medroxyprogesterone Acetate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

Related substances—Use the sample solution obtained in the Assay as the sample solution. Pipet 1 mL of the sample solution, add acetonitrile to make exactly 100 mL,
and use this solution as the standard solution. Perform the test with exactly 10 µL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area by the automatic integration method: the area of the peak other than medroxyprogesterone acetate obtained from the sample solution is not larger than the peak area of medroxyprogesterone acetate from the standard solution, and the total area of the peaks other than medroxyprogesterone acetate from the sample solution is not larger than 2 times the peak area of medroxyprogesterone acetate from the standard solution.

Operating conditions—
Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 1.2 times as long as the retention time of medroxyprogesterone acetate, beginning after the solvent peak.

System suitability—
Test for required detectability: Pipet 1 mL of the standard solution, and add acetonitrile to make exactly 10 mL. Confirm that the peak area of medroxyprogesterone acetate obtained with 10 µL of this solution is equivalent to 7 to 13% of that with 10 µL of the standard solution.

System performance: When the procedure is run with 10 µL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of medroxyprogesterone acetate are not less than 5000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 10 µL of the standard solution, the relative standard deviation of the peak area of medroxyprogesterone acetate is not more than 2.0%.

Loss on drying <2.41> Not more than 1.0% (1 g, 105°C, 3 hours).

Residue on ignition <2.44> Not more than 0.2% (0.5 g).

Assay Weigh accurately about 25 mg each of Medroxypregesterone Acetate and Medroxyprogesterone Acetate RS, both previously dried, dissolve in acetonitrile to make them exactly 25 mL, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with exactly 10 µL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A₁ and A₅, of medroxyprogesterone acetate in each solution.

Amount (mg) of medroxyprogesterone acetate (C₉₃H₅₃O₄) = M₅ × A₁/A₅

M₅: Amount (mg) of Medroxyprogesterone Acetate RS taken

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 254 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 µm in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase: A mixture of water and acetonitrile (3:2).
Flow rate: Adjust so that the retention time of medroxyprogesterone acetate is about 31 minutes.

System suitability—
System performance: When the procedure is run with 10 µL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of medroxyprogesterone acetate are not less than 5000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 10 µL of the standard solution, the relative standard deviation of the peak area of medroxyprogesterone acetate is not more than 1.0%.

Containers and storage Containers—Well-closed containers.
Storage—Light-resistant.

Mefenamic Acid
メフェナム酸

C₉₃H₅₃NO₄: 241.29
2-(2,3-Dimethylphenylamino)benzoic acid [61-68-7]

Mefenamic Acid, when dried, contains not less than 99.0% of mefenamic acid (C₉₃H₅₃NO₄).

Description Mefenamic Acid occurs as a white to light yellow powder. It is odorless and tasteless at first, but leaves a slightly bitter aftertaste.

It is sparingly soluble in diethyl ether, slightly soluble in methanol, in ethanol (95%) and in chloroform, and practically insoluble in water.

It dissolves in sodium hydroxide TS.

Melting point: about 225°C (with decomposition).

Identification (1) Dissolve 10 mg of Mefenamic Acid in 1 mL of methanol by warming, cool, add 1 mL of a solution of 4-nitrobenzene diazonium fluoroborate (1 in 1000) and 1 mL of sodium hydroxide TS, and mix thoroughly: an orange-red color is produced.

(2) Dissolve 10 mg of Mefenamic Acid in 2 mL of sulfuric acid, and heat: the solution shows a yellow color and a green fluorescence.

(3) Dissolve 7 mg of Mefenamic Acid in a solution of hydrochloric acid in methanol (1 in 1000) to make 500 mL. Determine the absorption spectrum of the solution as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

Purity (1) Chloride <1.03>—To 1.0 g of Mefenamic Acid add 20 mL of sodium hydroxide TS, and dissolve by warming. Cool, add 2 mL of acetic acid (100) and water to make 100 mL, and mix well. Remove the produced precipitate by filtration, discard the first 10 mL of the filtrate, and to subsequent 25 mL of the filtrate add 6 mL of dilute nitric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution as follows: to 0.50 mL of 0.01 mol/L hydrochloric acid VS add 5 mL of sodium hydroxide TS, 0.5 mL of acetic acid (100), 6 mL of nitric acid and water to make 50 mL (not more than 0.071%).
(2) Heavy metals <0.07—Proceed with 2.0 g of Mefenamic Acid according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(3) Arsenic <0.01—Prepare the test solution with 1.0 g of Mefenamic Acid according to Method 3, and perform the test (not more than 2 ppm).

(4) Related substances—Dissolve 0.10 g of Mefenamic Acid, in 5 mL of a mixture of chloroform and methanol (3:1), and use this solution as the sample solution. Pipet 1 mL of the sample solution, add a mixture of chloroform and methanol (3:1) to make exactly 200 mL, pipet 10 mL of this solution, add a mixture of chloroform and methanol (3:1) to make exactly 50 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography $<2.67>$. Spot 25 μL of each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of 2-methyl-1-propanol and ammonia solution (28) (3:1) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying $<2.41>$ Not more than 0.5% (1 g, in vacuum, phosphorus (V) oxide, 4 hours).

Residue on ignition $<2.44>$ Not more than 0.1% (1 g).

Assay Weigh accurately about 0.5 g of Mefenamic Acid, previously dried, and dissolve in 100 mL of ethanol (95), previously neutralized to phenol red TS with 0.1 mol/L sodium hydroxide VS, by warming gently. Cool, and titrate $<2.50>$ with 0.1 mol/L sodium hydroxide VS until the color of the solution changes from yellow through yellow-red to red-purple (indicator: 2 to 3 drops of phenol red TS). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L sodium hydroxide VS = 24.13 mg of CF$_3$H$_2$NO$_2$

Containers and storage Containers—Well-closed containers.

Mefloquine Hydrochloride

メフロキン塩酸塩

![Chemical Structure](Image)

C$_{17}$H$_{16}$F$_6$N$_2$O.HCl: 414.77

(1RS)-[2,8-Bis(trifluoromethyl)quinolin-4-yl][2SR]-piperidin-2-yl)methanol monohydrochloride

[51773-92-3]

Mefloquine Hydrochloride contains not less than 99.0% and not more than 101.0% of mefloquine hydrochloride (C$_{17}$H$_{16}$F$_6$N$_2$O.HCl), calculated on the anhydrous basis.

Description Mefloquine Hydrochloride occurs as white crystals or a white crystalline powder.

It is freely soluble in methanol, soluble in ethanol (99.5), and slightly soluble in water.

It dissolves in sulfuric acid.

A solution of Mefloquine Hydrochloride in methanol (1 in 20) shows no optical rotation.

Melting point: about 260°C (with decomposition).

Identification (1) Dissolve 2 mg of Mefloquine Hydrochloride in 1 mL of sulfuric acid: the solution shows a blue fluorescence under ultraviolet light (main wavelength: 365 nm).

(2) Determine the absorption spectrum of a solution of Mefloquine Hydrochloride in methanol (1 in 25,000) as directed under Ultraviolet-visible Spectrophotometry $<2.24>$, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(3) Determine the infrared absorption spectrum of Mefloquine Hydrochloride, previously dried at 105°C for 2 hours, as directed in the potassium chloride disk method under Infrared Spectrophotometry $<2.25>$, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(4) To 5 mL of a solution of Mefloquine Hydrochloride (1 in 1000) add 1 mL of dilute nitric acid and 1 mL of silver nitrate TS: a white precipitate is formed, and the separated precipitate dissolves on the addition of an excess amount of ammonia TS.

Purity (1) Heavy metals <0.07—Proceed with 1.0 g of Mefloquine Hydrochloride according to Method 2 using a quartz crucible, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(2) Arsenic <0.01—To 1.0 g of Mefloquine Hydrochloride add 10 mL of a solution of magnesium nitrate hexahydrate in ethanol (95) (1 in 10), burn the ethanol, gradually heat, and incinerate by ignition at 800°C. If a carbonized residue still retains, moisten the residue with a little amount of nitric acid, and ignite again to incinerate. After cooling, to the residue add 3 mL of hydrochloric acid, warm on a water bath to dissolve, and perform the test using this solution as the test solution (not more than 2 ppm).

(3) Related substances—Dissolve 50 mg of Mefloquine Hydrochloride in 50 mL of the mobile phase, and use this solution as the sample solution. Pipet 1 mL of the sample solution, and add the mobile phase to make exactly 50 mL. Pipet 2 mL of this solution, add the mobile phase to make exactly 20 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography $<2.61>$ according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak other than mefloquine and the peak eluted first obtained from the sample solution is not larger than the peak area of mefloquine from the standard solution, and the total area of the peaks other than the peak of mefloquine and the peak eluted first from the sample solution is not larger than 2.5 times the peak area of mefloquine from the standard solution.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 282 nm).

Column: A stainless steel column 3.9 mm in inside diameter and 30 cm in length, packed with aminopropylsilylized silica gel for liquid chromatography (10 μm in particle diameter).
Column temperature: A constant temperature of about 40°C.

Mobile phase: A mixture of acetonitrile and diluted phosphoric acid (1 in 14) (24:1).

Flow rate: Adjust so that the retention time of mefloquine is about 10 minutes.

Time span of measurement: About 3 times as long as the retention time of mefloquine.

System suitability—
Test for required detectability: To exactly 10 mL of the standard solution add the mobile phase to make exactly 20 mL. Confirm that the peak area of mefloquine obtained with 10 μL of this solution is equivalent to 40 to 60% of that with 10 μL of the standard solution.

System performance: Dissolve 10 mg of mefloquine hydrochloride and 5 mg of diprophylline in 50 mL of the mobile phase. To 2 mL of this solution add the mobile phase to make 20 mL. When the procedure is run with 10 μL of this solution under the above operating conditions, diprophylline and mefloquine are eluted in this order with the resolution between these peaks being not less than 5.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of mefloquine is not more than 2.0%.

Water <2.48> Not more than 3.0% (1 g, volumetric titration, direct titration).

Residue on ignition <2.44> Not more than 0.1% (1 g, platinum crucible).

Assay Weigh accurately about 0.5 g of Mefruside Hydrochloride, dissolve in 100 mL of a mixture of acetic anhydride and acetic acid (100) (7:3), and titrate <2.50> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 41.48 mg of C17H19F8N2O2.HCl

Containers and storage Containers—Well-closed containers.

Mefruside

メフルシド

\[
\begin{align*}
\text{C}_{13}\text{H}_{19}\text{ClN}_{2}\text{O}_{2}\text{S}_2 & : 382.88 \\
4\text{-Chloro-N-methyl-N-[(2RS)-2-methyltetrahydrofuran-2-ylmethyl]-3-sulfamoylbenzenesulfonamide} & \left[7195-27-9\right]
\end{align*}
\]

Mefruside, when dried, contains not less than 98.5% of mefruside (C13H19ClN2O2S2).

Description Mefruside occurs as a white crystalline powder.

It is very soluble in \(N,N\)-dimethylformamide, freely soluble in acetone, soluble in methanol, sparingly soluble in ethanol (95), and practically insoluble in water.

A solution of Mefruside in \(N,N\)-dimethylformamide (1 in 10) has no optical rotation.

Identification (1) Determine the absorption spectrum of a solution of Mefruside in methanol (1 in 40,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Mefruside, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) Perform the test with Mefruside as directed under Flame Coloration Test <1.04> (2): a green color appears.

Melting point <2.60> 149 – 152°C

Purity (1) Heavy metals <1.07>—Dissolve 1.0 g of Mefruside in 30 mL of acetone, and add 2 mL of dilute acetic acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution as follows: to 2.0 mL of Standard Lead Solution add 30 mL of acetone, 2 mL of dilute acetic acid and water to make 50 mL (not more than 20 ppm).

(2) Arsenic <1.11>—Prepare the test solution with 1.0 g of Mefruside according to Method 3, and perform the test (not more than 2 ppm).

(3) Related substances—Dissolve 0.20 g of Mefruside in 10 mL of acetone, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add acetone to make exactly 200 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.08>. Spot 10 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of chloroform and acetone (5:2) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying <2.41> Not more than 0.5% (1 g, 105°C, 2 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.5 g of Mefruside, previously dried, dissolve in 80 mL of \(N,N\)-dimethylformamide, and titrate <2.50> with 0.1 mol/L tetramethylammonium hydroxide VS (potentiometric titration). Separately, perform a blank determination in the same manner with a solution prepared by adding 13 mL of water to 80 mL of \(N,N\)-dimethylformamide, and make any necessary correction.

Each mL of 0.1 mol/L tetramethylammonium hydroxide VS = 38.29 mg of C13H19ClN2O2S2

Containers and storage Containers—Well-closed containers.
Mefruside Tablets

メフルシド錠

Mefruside Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of mefruside (C_{13}H_{19}ClN_{2}O_{5}S_{2}: 382.88).

Method of preparation Prepare as directed under Tablets, with Mefruside.

Identification (1) Weigh a quantity of powdered Mefruside Tablets, equivalent to 0.3 g of Mefruside, shake with 70 mL of methanol strongly for 15 minutes, add methanol to make 100 mL, and filter. Determine the absorption spectrum of the filtrate as directed under Ultraviolet-visible Spectrophotometry \(<2.2\sigma>\): it exhibits maxima between 274 nm and 278 nm, and between 283 nm and 287 nm.

Uniformity of dosage units \(<6.02>\) Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 tablet of Mefruside Tablets add 40 mL of methanol, disintegrate the tablet by sonication with occasional stirring, then further sonicate for 10 minutes, and add methanol to make exactly \(V\) mL of a solution containing about 0.5 mg of mefruside (C_{13}H_{19}ClN_{2}O_{5}S_{2}) per mL. Centrifuge the solution, pipet 5 mL of the supernatant liquid, add methanol to make exactly 20 mL, and use this solution as the sample solution. Then, proceed as directed in the Assay.

Amount (mg) of mefruside (C_{13}H_{19}ClN_{2}O_{5}S_{2})

\[M_5 = M_5 \times A_1/A_3 \times V/125 \]

M_{5}: Amount (mg) of mefruside for assay taken

Dissolution \(<6.10>\) When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 45 minutes of Mefruside Tablets is not less than 85%.

Start the test with 1 tablet of Mefruside Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a filter paper for quantitative analysis \(<5C>\). Discard not less than 5 mL of the first filtrate, pipet \(V\) mL of the subsequent filtrate, add water to make exactly \(V\) mL so that each mL contains about \(28\mu g\) of mefruside (C_{13}H_{19}ClN_{2}O_{5}S_{2}), and use this solution as the sample solution. Separately, weigh accurately about 70 mg of mefruside for assay, previously dried at 105°C for 2 hours, and dissolve in methanol to make exactly 100 mL, then add methanol to make exactly 200 mL. Pipet 2 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution. Determine the absorbances, \(A_1\) and \(A_3\), of the sample solution and standard solution at 285 nm as directed under Ultraviolet-visible Spectrophotometry \(<2.2\sigma>\).

Amount (mg) of mefruside (C_{13}H_{19}ClN_{2}O_{5}S_{2})

\[M_5 = M_5 \times A_1/A_3 \times V/125 \]

M_{5}: Amount (mg) of mefruside for assay taken

Containers and storage Containers—Tight containers.

Meglumine

メグルミン

C_{13}H_{17}NO_{5}: 195.21
1-Deoxy-1-methylamino-d-glucitol [6284-40-8]

Meglumine, when dried, contains not less than 99.0% of meglumine (C_{13}H_{17}NO_{5}).

Description Meglumine occurs as a white crystalline powder. It is odorless, and has a slightly bitter taste. It is freely soluble in water, and slightly soluble in ethanol \((95)\), and practically insoluble in diethyl ether.

The pH of a solution of 1.0 g of Meglumine in 10 mL of water is between 11.0 and 12.0.

Identification (1) To 1 mL of a solution of Meglumine (1 in 10) add 1 mL of potassium 1,2-naphthoquinone-4-sulfonate TS: a deep red color develops.

(2) To 2 mL of a solution of Meglumine (1 in 10) add 1 drop of methyl red TS, and add 0.5 mL of dilute sodium hydroxide TS and 0.5 g of boric acid after neutralizing with 0.5 mol/L sulfuric acid TS: a deep red color develops.

(3) Dissolve 0.5 g of Meglumine in 1 mL of diluted hydrochloric acid (1 in 3), and add 10 mL of ethanol (99.5): a white precipitate is produced. Then, rubbing the inside wall of the container with a glass rod, cool with ice and produce more precipitate. Filter the precipitate by suction through a glass filter (G3), wash the precipitate with a small volume of ethanol (99.5), and dry at 105°C for 1 hour: the residue thus obtained melts \(<2.60\) between 149°C and 152°C.

Optical rotation \(<2.49\) \([\alpha]_D^{20}: -16.0 \sim -17.0^\circ\) (after drying, 1 g, water, 10 mL, 100 mm).

Melting point \(<2.60\) 128 – 131°C
Purity (1) Clarity and color of solution—Dissolve 1.0 g of Meglumine in 10 mL of water: the solution is clear and colorless.

(2) Chloride \(<0.03\)—Dissolve 1.0 g of Meglumine in 30 mL of water, and add 10 mL of dilute nitric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 0.25 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.009%).

(3) Sulfate \(<1.14\)—Dissolve 1.0 g of Meglumine in 30 mL of water, and add 5 mL of dilute hydrochloric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 0.40 mL of 0.005 mol/L sulfuric acid VS (not more than 0.019%).

(4) Heavy metals \(<0.07\)—Proceed with 2.0 g of Meglumine according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(5) Arsenic \(<1.17\)—Prepare the test solution with 2.0 g of Meglumine according to Method 3, and perform the test (not more than 1 ppm).

(6) Reducing substances—To 5 mL of a solution of Meglumine (1 in 20) add 5 mL of Fehling’s TS, and boil for 2 minutes: no red-brown precipitate is produced.

Loss on drying \(<2.41\) Not more than 0.5% (1 g, 105°C, 4 hours).

Residue on ignition \(<2.44\) Not more than 0.1% (1 g).

Assay Weigh accurately about 0.4 g of Meglumine, previously dried, dissolve in 25 mL of water, and titrate \(<2.50\) with 0.1 mol/L hydrochloric acid VS (indicator: 2 drops of methyl red TS).

Each mL of 0.1 mol/L hydrochloric acid VS = 19.52 mg of C\(_{12}\)H\(_7\)I\(_4\)N\(_2\)O\(_5\).

Containers and storage Containers—Tight containers.

Meglumine Iotalamate Injection

イオタラム酸メグルミン注射液

Meglumine Iotalamate Injection is an aqueous injection.

It contains not less than 95.0% and not more than 105.0% of the labeled amount of iotalamic acid (C\(_{17}\)H\(_{13}\)I\(_3\)N\(_2\)O\(_5\)·613.91).

Method of preparation

(1) Iotalamic Acid 227.59 g
Meglumine 72.41 g
Water for Injection or Sterile Water for Injection in Containers a sufficient quantity

To make 1000 mL

(2) Iotalamic Acid 455 g
Meglumine 145 g
Water for Injection or Sterile Water for Injections in Containers a sufficient quantity

To make 1000 mL

Prepare as directed under Injections, with the above ingredients (1) or (2).

Description Meglumine Iotalamate Injection is a clear, colorless to pale yellow, slightly viscous liquid. It gradually changes in color by light.

Identification (1) To 1 mL of Meglumine Iotalamate Injection add 1 mL of potassium 1,2-naphthoquinone-4-sulfonate TS and 0.2 mL of sodium hydroxide TS: a deep red color develops.

(2) To a volume of Meglumine Iotalamate Injection, equivalent to 1 g of Iotalamic Acid, add 25 mL of water, and add 2.5 mL of dilute hydrochloric acid while shaking: a white precipitate is produced. Filter the precipitate by suction through a glass filter (G4), wash the precipitate with two 10-mL portions of water, and dry at 105°C for 4 hours. Proceed with the precipitate so obtained as directed in the Identification (2) under Iotalamic Acid.

Optical rotation \(<2.49\) Method of preparation (1) \(\alpha D^{20} = 1.67 - 1.93\) (100 mm).

Method of preparation (2) \(\alpha D^{20} = -3.35 - 3.86\) (100 mm).

pH \(<2.54\) 6.5—7.7

Purity (1) Primary aromatic amines—To a volume of Meglumine Iotalamate Injection, equivalent to 0.20 g of Iotalamic Acid, add 15 mL of water, shake, add 4 mL of a solution of sodium nitrite (1 in 100) under ice-cooling, and proceed as directed in the Purity (2) under Iotalamic Acid: the absorbance is not more than 0.17.

(2) Iodine and iodide—Take a volume of Meglumine Iotalamate Injection, equivalent to 1.5 g of Iotalamic Acid, add 20 mL of water and 5 mL of dilute sulfuric acid, shake well, and filter the precipitate by suction through a glass filter (G4). To the filtrate add 5 mL of toluene, and shake vigorously: the toluene layer is colorless. Then add 2 mL of a solution of sodium nitrite (1 in 100), and shake vigorously: the toluene layer has no more color than the following control solution.

Control solution: Dissolve 0.25 g of potassium iodide in water to make 1000 mL. To 2.0 mL of this solution add 20 mL of water, 5 mL of dilute sulfuric acid, 5 mL of toluene and 2 mL of a solution of sodium nitrite (1 in 100), and shake vigorously.

Extractable volume \(<6.07\) It meets the requirement.

Foreign insoluble matter \(<6.07\) Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter \(<6.07\) It meets the requirement.

Sterility \(<4.05\) Perform the test according to the Membrane filtration method: it meets the requirement.

Assay To an exactly measured volume of Meglumine Iotalamate Injection, equivalent to about 4 g of iotalamic acid (C\(_{17}\)H\(_{13}\)I\(_3\)N\(_2\)O\(_5\)), add water to make exactly 200 mL. Pipet 2 mL of this solution, add water to make exactly 200 mL. To exactly 5 mL of this solution add exactly 5 mL of the internal standard solution, add the mobile phase to make 100 mL, and use this solution as the sample solution. Separately, weigh accurately about 0.4 g of iotalamic acid for assay, previously dried at 105°C for 4 hours, dissolve in 100 mL of water and 1 mL of sodium hydroxide TS, and add water to make exactly 200 mL. Pipet 5 mL of this solution, add water to make exactly 50 mL. To exactly 5 mL of this solution add exactly 5 mL of the internal standard solution, add the mobile phase to make 100 mL, and use this solution as the standard solution. Perform the test with 10 μL each of...
perform the test according to the conditions, and calculate the ratios, Q_1 and Q_2, of the peak area of iotalamic acid to that of the internal standard.

$$M_S = \frac{M_a \times Q_1}{Q_2}$$

M_S: Amount (mg) of iotalamic acid for assay taken

Internal standard solution—A solution of L-tryptophan in the mobile phase (3 in 2500).

Operating conditions—
- Detector: An ultraviolet absorption photometer (wavelength: 240 nm).
- Column: A stainless steel column of 4.6 mm in inside diameter and 15 cm in length, packed with octadecysilanized silica gel for liquid chromatography (5 μm in particle diameter).
- Column temperature: A constant temperature of around 20°C.
- Mobile phase: Dissolve 3.9 g of phosphoric acid and 2.8 mL of triethylamine in water to make 2000 mL. To this solution add 100 mL of acetonitrile.
- Flow rate: Adjust so that the retention time of iotalamic acid is about 6 minutes.

System suitability—
- System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, iotalamic acid and the internal standard are eluted in this order with the resolution between these peaks being not less than 5.
- System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratios of the peak area of iotalamic acid to that of the internal standard is not more than 1.0%.

Containers and storage—Containers—Hermetic containers, and colored containers may be used. Storage—Light-resistant.

Meglumine Sodium Amidotrizoate Injection

アミドトリゾ酸ナトリウムメグルミン注射液

Meglumine Sodium Amidotrizoate Injection is an aqueous injection.

It contains not less than 95.0% and not more than 105.0% of the labeled amount of amidotrizoic acid ($C_{11}H_{12}I_3N_2O_4$; 613.91).

Method of preparation

1. Amidotrizoic Acid (anhydrous) 471.78 g
2. Sodium Hydroxide 5.03 g
3. Meglumine 125.46 g
4. Water for Injection or Sterile Water for Injection in Containers a sufficient quantity

To make 1000 mL

Prepare as directed under Injections, with the above ingredients (1) or (2).

Description—Meglumine Sodium Amidotrizoate Injection is a clear, colorless to pale yellow, slightly viscous liquid.

It gradually changes in color by light.

Identification (1)—To a volume of Meglumine Sodium Amidotrizoate Injection, equivalent to 1 g of Amidotrizoic Acid, add 25 mL of water, and add 2.5 mL of dilute hydrochloric acid with stirring: a white precipitate is produced. Filter the precipitate by suction through a glass filter (G4), wash with two 10-mL portions of water, and dry at 105°C for 1 hour. Proceed with the precipitate so obtained as directed in the Identification (2) under Amidotrizoic Acid.

Identification (2)—To 1 mL of Meglumine Sodium Amidotrizoate Injection add 1 mL of potassium 1,2-naphthoquinone-4-sulfonate TS and 0.2 mL of sodium hydroxide TS: a deep red color develops.

Purity (1)—Primary aromatic amines—To a volume of Meglumine Sodium Amidotrizoate Injection, equivalent to 0.20 g of Amidotrizoic Acid, add 6 mL of water, mix, add 4 mL of a solution of sodium nitrite (1 in 100) and 10 mL of 1 mol/L hydrochloric acid TS, and shake. Proceed as directed in the Purity (2) under Amidotrizoic Acid: the absorbance is not more than 0.19.

Purity (2)—Iodine and iodide—To a volume of Meglumine Sodium Amidotrizoate Injection, equivalent to 0.25 g of Amidotrizoic Acid, add water to make 20 mL, add 5 mL of dilute nitric acid, shake well, and filter by suction through a glass filter (G4). Add 5 mL of chloroform to the filtrate, and shake vigorously: no color develops in the chloroform layer. Then add 1 mL of hydrogen peroxide (30), and shake vigorously: the chloroform layer has no more color than the following control solution.

Control solution: Pour 0.10 g of potassium iodide in water to make 100 mL. Add 20 mL of water to 0.10 mL of this solution, add 5 mL of dilute nitric acid, 5 mL of chloroform and 1 mL of hydrogen peroxide (30), and shake vigorously.

Extractable volume<6.07> It meets the requirement.

Foreign insoluble matter<6.06> Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter<6.07> It meets the requirement.

Sterility<4.06> Perform the test according to the Membrane filtration method: it meets the requirement.

Assay—To an exactly measured volume of Meglumine So-
dium Amidotrizoate Injection, equivalent to about 0.5 g of amidotrizoic acid (C$_{13}$H$_{8}$I$_{2}$N$_{2}$O$_{4}$), add water to make exactly 200 mL. Pipet 2 mL of this solution, add exactly 10 mL of the internal standard solution and water to make 100 mL, and use this solution as the sample solution. Separately, weigh accurately about 0.25 g of amidotrizoic acid for assay (separately determine the loss on drying <2.41> under the same condition as Amidotrizoic Acid), dissolve in a solution of meglumine (3 in 1000) to make exactly 100 mL, then pipet 2 mL of this solution, add exactly 10 mL of the internal standard solution and water to make 100 mL, and use this solution as the standard solution. Perform the test with 5 µL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and calculate the ratios, Q_1 and Q_2, of the peak area of amidotrizoic acid to that of the internal standard.

$$\text{Amount (mg) of amidotrizoic acid (C}_{13}\text{H}_{8}\text{I}_{2}\text{N}_{2}\text{O}_{4}) = M_s \times \frac{Q_1}{Q_2} \times 2$$

M_s: Amount (mg) of amidotrizoic acid for assay taken, calculated on the dried basis

Internal standard solution—Dissolve 0.06 g of acetrizoic acid in a solution of meglumine (3 in 1000) to make 100 mL.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 254 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 µm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: Dissolve 1.7 g of tetrabutylammonium dihydrogen phosphate and 7.0 g of dipotassium hydrogen-phosphate in 750 mL of water, adjust the pH to 7.0 with phosphoric acid (1 in 10), add water to make 800 mL, then add 210 mL of acetonitrile, and mix.

Flow rate: Adjust so that the retention time of amidotrizoic acid is about 5 minutes.

System suitability—

System performance: When the procedure is run with 5 µL of the standard solution under the above operating conditions, amidotrizoic acid and the internal standard are eluted in this order with the resolution between these peaks being not less than 6.

System repeatability: When the test is repeated 6 times with 5 µL of the standard solution under the above operating conditions, the relative standard deviation of the ratios of the peak area of amidotrizoic acid to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Hermetic containers, and colored containers may be used.

Storage—Light-resistant.

Melphalan

メルファラン

C$_{13}$H$_{14}$Cl$_{2}$N$_{2}$O$_{2}$: 305.20
4-Bis(2-chloroethyl)amino-l-phenylalanine [148-82-3]

Melphalan contains not less than 93.0% of melphalan (C$_{13}$H$_{14}$Cl$_{2}$N$_{2}$O$_{2}$), calculated on the dried basis.

Description

Melphalan occurs as a white to light yellowish white crystalline powder.

It is slightly soluble in water, in methanol and in ethanol (95), and practically insoluble in diethyl ether.

It dissolves in dilute hydrochloric acid and in dilute sodium hydroxide TS.

It is gradually colored by light.

Optical rotation [α]$_D^{20}$: about −32° (0.5 g calculated on the dried basis, methanol, 100 mL, 100 mm).

Identification (1)

To 20 mg of Melphalan add 50 mL of methanol, dissolve by warming, add 1 mL of a solution of 4-(4-nitrobenzyl)pyridine in acetone (1 in 20), and evaporate on a water bath to dryness. Dissolve the residue in 1 mL of warmed methanol and add 2 drops of ammonia solution (28): a purple color develops.

1. Dissolve 0.1 g of Melphalan in 10 mL of dilute sodium hydroxide TS, and heat on a water bath for 10 minutes. After cooling, add dilute nitric acid to acidify, and filter: the filtrate responds to Qualitative Tests <1.09> for chloride.

2. Determine the absorption spectrum of a solution of Melphalan in methanol (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

Purity (1)

Ionisable chloride—Weigh accurately about 0.5 g of Melphalan, dissolve in 80 mL of diluted nitric acid (1 in 40), stir for 2 minutes, and titrate 0.250 N with 0.1 mol/L silver nitrate VS (potentiometric titration): the consumed volume is not more than 1.0 mL to 0.50 g of Melphalan.

Loss on drying <2.41> Not more than 7.0% (1 g, in vacuum at a pressure not exceeding 0.67 kPa, 105°C, 2 hours).

Residue on ignition <2.44> Not more than 0.3% (1 g).

Assay

Weigh accurately about 0.25 g of Melphalan, add 20 mL of a solution of potassium hydroxide (1 in 5), and heat under a reflux condenser on a water bath for 2 hours. After cooling, add 75 mL of water and 5 mL of nitric acid, cool, and titrate 0.25 N with 0.1 mol/L silver nitrate VS (potentiometric titration). Make any necessary correction by using the results obtained in the Purity (1).

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.)
Each mL of 0.1 mol/L silver nitrate VS = 15.26 mg of C_{13}H_{16}Cl_{2}N_{2}O_{2}

Containers and storage Containers—Tight containers. Storage—Light-resistant.

Menatetrenone

メナテトレノン

C_{31}H_{48}O_{4}: 444.65
2-Methyl-[1(2E,6E,10E)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl]-1,4-naphthoquinone
[863-61-6]

Menatetrenone contains not less than 98.0% of menatetrenone (C_{31}H_{46}O_{4}), calculated on the anhydrous basis.

Description Menatetrenone occurs as yellow, crystals, crystalline powder, waxy mass or oily material.
It is very soluble in hexane, soluble in ethanol (99.5), sparingly soluble in 2-propanol, slightly soluble in methanol, and practically insoluble in water.
It decomposes and the color becomes more intense by light.
Melting point: about 37°C.

Identification (1) Dissolve 0.1 g of Menatetrenone in 5 mL of ethanol (99.5) by warming, cool, and add 1 mL of a solution of potassium hydroxide in ethanol (95) (1 in 10): a blue color develops, and upon standing it changes from blue-purple to red-brown through red-purple.
(2) Determine the infrared absorption spectrum of Menatetrenone, after melting by warming if necessary, as directed in the liquid film method under Infrared Spectrophotometry (2.25), and compare the spectrum with the Reference Spectrum or the spectrum of Menatetrenone RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Purity (1) Heavy metals (1.07)—Proceed with 1.0 g of Menatetrenone according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).
(2) Menadione—To 0.20 g of Menatetrenone add 5 mL of a solution of potassium hydroxide in ethanol (95) (1 in 10): a blue color develops, and upon standing it changes from blue-purple to red-brown through red-purple.
(3) cis Isomer—Dissolve 0.10 g of Menatetrenone in 10 mL of hexane, and use this solution as the sample solution. Pipet 1 mL of this solution, add hexane to make exactly 50 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography (2.01). Spot 10 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the chromatogram with a mixture of hexane and di-n-butyl ether (17:3) to a distance of about 12 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spot corresponding to relative Rf value 1.1 regarding to the principal spot obtained from the sample solution is not more intense than the spot from the standard solution.
(4) Related substances—Conduct this procedure without exposure to light, using a light-resistant vessel. Dissolve 0.10 g of Menatetrenone in 100 mL of ethanol (99.5), and use this solution as the sample solution. Pipet 1 mL of the sample solution, add ethanol (99.5) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography (2.01) according to the following conditions. Determine each peak area of these solutions by the automatic integration method: the total area of peaks other than the peak of menatetrenone obtained from the sample solution is not larger than the peak area of menatetrenone from the standard solution.

Operating conditions—
Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 6 times as long as the retention time of menatetrenone, beginning after the solvent peak.

System suitability—
System performance: Proceed as directed in the system suitability in the Assay.

Test for required detectability: To exactly 5 mL of the standard solution add ethanol (99.5) to make exactly 50 mL. Confirm that the peak area of menatetrenone obtained with 20 μL of this solution is equivalent to 7 to 13% of that with 20 μL of the standard solution.
System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak areas of menatetrenone is not more than 1.0%.

Water (2.48) Not more than 0.5% (0.5 g, volumetric titration, direct titration).

Residue on ignition (2.48) Not more than 0.1% (1 g).

Assay Conduct this procedure without exposure to light, using a light-resistant vessel. Weigh accurately about 0.1 g each of Menatetrenone and Menatetrenone RS (separately, determine the water (2.48) in the same manner as Menatetrenone), dissolve each in 50 mL of 2-propanol, and add ethanol (99.5) to make exactly 100 mL. Pipet 10 mL of these solutions, and add ethanol (99.5) to make exactly 100 mL. Pipet 2 mL each of these solutions, add exactly 4 mL each of internal standard solution, and use these solutions as the sample solution and standard solution. Perform the test with 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography (2.01) according to the following conditions, and calculate the ratios, Q_{f} and Q_{s}, of the peak area of menatetrenone to that of the internal standard.

Amount (mg) of menatetrenone (C_{31}H_{46}O_{4}) = M_{S} \times Q_{s} / Q_{f}

M_{S}: Amount (mg) of Menatetrenone RS taken, calculated on the dehydrated basis

Internal standard solution—A solution of phytanoin in 2-propanol (1 in 20,000).
Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 270 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecysilohized silica
gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase: Methanol.
Flow rate: Adjust so that the retention time of menatetrene is about 7 minutes.
System suitability—
System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, menatetrene and the internal standard are eluted in this order with the resolution between these peaks being not less than 4.
System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratios of the peak area of menatetrene to that of the internal standard is not more than 1.0%.
Containers and storage Containers—Tight containers.
Storage—Light-resistant.
dl-Menthol
dl-メントール

\[
\text{C}_{10}\text{H}_{20}\text{O}: 156.27
\]
\[(1R,5S,5R)-5\text{-Methyl}-2-(1\text{-methylthyl)cyclohexanol}
[89-78-1]
\]
dl-Menthol contains not less than 98.0% of dl-menthol (C\textsubscript{10}H\textsubscript{20}O).

Description dl-Menthol occurs as colorless crystals. It has a characteristic and refreshing odor and a burning taste, followed by a cool taste.
It is very soluble in ethanol (95) and in diethyl ether, and very slightly soluble in water.
It sublimes gradually at room temperature.
Identification (1) Triturate dl-Menthol with an equal amount of camphor, chloral hydrate or thymol: the mixture liquefies.
(2) Shake 1 g of dl-Menthol with 20 mL of sulfuric acid: the mixture becomes turbid with a yellow-red color. Allow to stand for 3 hours: a clear, oily layer possesses no aroma of menthol is separated.
Congealing point \(<2.42 \) 27 – 28°C
Optical rotation \(<2.49 \) \([\alpha]_D^20 \) – 2.0 – +2.0° (2.5 g, ethanol (95), 25 mL, 100 mm).

Purity (1) Non-volatile residue—Volatilize 2.0 g of dl-Menthol on a water bath, and dry the residue at 105°C for 2 hours: the residue weighs not more than 1.0 mg.
(2) Thymol—Add 0.20 g of dl-Menthol to a cold mixture of 2 mL of acetic acid (100), 6 drops of sulfuric acid and 2 drops of nitric acid: no green to blue-green color immediately develops.
(3) Nitromethane or nitroethane—To 0.5 g of dl-Menthol placed in a flask add 2 mL of a solution of sodium hydroxide (1 in 2) and 1 mL of hydrogen peroxide (30), connect a reflux condenser to the flask, and boil the mixture gently for 10 minutes. After cooling, add water to make exactly 20 mL, and filter. Take 1 mL of the filtrate in a Nessler tube, add water to make 10 mL, neutralize with dilute hydrochloric acid, then add 1 mL of dilute hydrochloric acid, and cool. To the mixture add 1 mL of a solution of sulfanilic acid (1 in 100), allow to stand for 2 minutes, and then add 1 mL of a solution of \(N,N\text{-diethyl-N'\text{-1-naphthylethylendiamine oxalate (1 in 1000) and water to make 25 mL: no red-purple color immediately develops.}

Assay Weigh accurately about 2 g of dl-Menthol, add exactly 20 mL of a mixture of dehydrated pyridine and acetic anhydride (8:1), connect a reflux condenser, and heat on a water bath for 2 hours. Wash down the condenser with 20 mL of water, and titrate \(<2.50 \) with 1 mol/L sodium hydroxide VS (indicator: 5 drops of phenolphthalein TS). Perform a blank determination in the same manner.
Each mL of 1 mol/L sodium hydroxide VS = 156.3 mg of C\textsubscript{10}H\textsubscript{20}O.
Containers and storage Containers—Tight containers.
Storage—In a cold place.

l-Menthol
l-メントール

\[
\text{C}_{10}\text{H}_{20}\text{O}: 156.27
\]
\[(1R,5S,5R)-5\text{-Methyl}-2-(1\text{-methylthyl)cyclohexanol}
[2216-51-5]
\]
l-Menthol contains not less than 98.0% of l-menthol (C\textsubscript{10}H\textsubscript{20}O).

Description l-Menthol occurs as colorless crystals. It has a characteristic and refreshing odor and a burning taste, followed by a cool taste.
It is very soluble in ethanol (95) and in diethyl ether, and very slightly soluble in water.
It sublimes gradually at room temperature.
Identification (1) Triturate l-Menthol with an equal amount of camphor, chloral hydrate or thymol: the mixture liquefies.
(2) Shake 1 g of l-Menthol with 20 mL of sulfuric acid: the mixture becomes turbid with a yellow-red color. Allow to stand for 3 hours: a clear, oily layer which possesses no aroma of menthol is separated.
Optical rotation \(<2.49 \) \([\alpha]_D^20 \) – 45.0 – –51.0° (2.5 g, ethanol (95), 25 mL, 100 mm).
Melting point \(<2.60 \) 42 – 44°C

Purity (1) Non-volatile residue—Volatilize 2.0 g of l-Menthol on a water bath, and dry the residue at 105°C for 2 hours: the residue weighs not more than 1.0 mg.
(2) Thymol—Add 0.20 g of l-Menthol to a cold mixture of 2 mL of acetic acid (100), 6 drops of sulfuric acid and 2 drops of nitric acid: no green to blue-green color immediately develops.
(3) Nitromethane or nitroethane—To 0.5 g of l-Menthol placed in a flask add 2 mL of a solution of sodium hydroxide (1 in 2) and 1 mL of hydrogen peroxide (30), connect a reflux condenser to the flask, and boil the mixture gently for 10 minutes. After cooling, add water to make exactly 20 mL, and filter. Take 1 mL of the filtrate in a Nessler tube, add water to make 10 mL, neutralize with dilute hydrochloric acid, then add 1 mL of dilute hydrochloric acid, and cool. To the mixture add 1 mL of a solution of sulfanilic acid (1 in 100), allow to stand for 2 minutes, and then add 1 mL of a solution of \(N,N\text{-diethyl-N'\text{-1-naphthylethylendiamine oxalate (1 in 1000) and water to make 25 mL: no red-purple color immediately develops.}

Assay Weigh accurately about 2 g of l-Menthol, add exactly 20 mL of a mixture of dehydrated pyridine and acetic anhydride (8:1), connect a reflux condenser, and heat on a water bath for 2 hours. Wash down the condenser with 20 mL of water, and titrate \(<2.50 \) with 1 mol/L sodium hydroxide VS (indicator: 5 drops of phenolphthalein TS). Perform a blank determination in the same manner.
Each mL of 1 mol/L sodium hydroxide VS = 156.3 mg of C\textsubscript{10}H\textsubscript{20}O.
minutes. After cooling, add water to make exactly 20 mL, and filter. Take 1 mL of the filtrate in a Nessler tube, add water to make 10 mL, neutralize with dilute hydrochloric acid, add 1 mL of dilute hydrochloric acid, and cool. To the mixture add 1 mL of a solution of sulfanilic acid (1 in 100), allow to stand for 2 minutes, and then add 1 mL of a solution of \(N_2,N_2-dimethyl-N'_2-naphthylethenediamine\) oxalate (1 in 1000) and water to make 25 mL: no red-purple color immediately develops.

Assay Weigh accurately about 2 g of \(\text{\textit{I}-Menthol}\), add exactly 20 mL of a mixture of dehydrated pyridine and acetic anhydride (8:1), connect a reflux condenser, and heat on a water bath for 2 hours. Wash the condenser with 20 mL of water, and titrate \(<2.50\) with 1 mol/L sodium hydroxide VS (indicator: 5 drops of phenolphthalein TS). Perform a blank determination in the same manner.

Each mL of 1 mol/L sodium hydroxide VS = 156.3 mg of \(\text{C}_6\text{H}_5\text{SO}_4\)

Containers and storage Containers—Tight containers.

Storage—In a cold place.

Mepenzolate Bromide

メペンゾラート置換物

\[
\text{C}_{21}\text{H}_{32}\text{BrNOS} \quad 420.34
\]

(3RS)-\(3\)-[(\text{Hydroxy})(\text{diphenyl})\text{acetoxy}]\)-1,1-dimethylpiperidinium bromide

[M 76-90-4]

Mepenzolate Bromide, when dried, contains not less than 98.5% of mepenzolate bromide (\(\text{C}_{21}\text{H}_{32}\text{BrNO}_3\)).

Description Mepenzolate Bromide is white to pale yellow, crystals or crystalline powder. It is odorless, and has a bitter taste.

It is very soluble in formic acid, freely soluble in methanol, soluble in hot water, slightly soluble in water and in ethanol (95), very slightly soluble in acetic anhydride, and practically insoluble in diethyl ether.

Melting point: about 230°C (with decomposition).

Identification (1) To 30 mg of Mepenzolate Bromide add 10 drops of sulfuric acid: a red color develops.

(2) Dissolve 10 mg of Mepenzolate Bromide in 20 mL of water and 5 mL of dilute hydrochloric acid, and to 5 mL of this solution add 1 mL of Dragendorff’s TS: an orange precipitate is produced.

(3) Determine the absorption spectrum of a solution of Mepenzolate Bromide in 0.01 mol/L hydrochloric acid TS (1 in 2000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(4) Dissolve 0.5 g of Mepenzolate Bromide in 50 mL of water and 3 mL of nitric acid by heating. This solution responds to Qualitative Tests <1.095> for Bromide.

Purity (1) Heavy Metals <1.07>—Proceed with 1.0 g of Mepenzolate Bromide according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not less than 20 ppm).

(2) Arsenic <1.11>—Prepare the test solution with 1.0 g of Mepenzolate Bromide according to Method 3, and perform the test (not more than 2 ppm).

(3) Related substances—Dissolve 0.40 g of Mepenzolate Bromide in exactly measured 10 mL of methanol, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add methanol to make exactly 200 mL, and use this solution as the standard solution (1). Separately, dissolve 40 mg of benzophenone in methanol to make exactly 100 mL. Pipet 2 mL of this solution, add methanol to make exactly 10 mL, and use this solution as the standard solution (2). Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 10 \(\mu\)L each of the sample solution, standard solutions (1) and (2) on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of methanol, 1-butanol, water and acetic acid (100) (3:3:2:1) to a distance of about 10 cm, and air-dry the plate and then at 80°C for 30 minutes. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than either the principal spot or the spot corresponding to benzophenone obtained from the sample solution are not more intense than the spot from standard solution (1), and the spot corresponding to benzophenone from the sample solution is not more intense than the spot from standard solution (2). Spray evenly Dragendorff’s TS on the plate: the spots other than the principal spot from the sample solution are not more intense than the spot from standard solution (1).

Loss on drying <2.41>—Not more than 0.5% (1 g, 105°C, 4 hours).

Residue on ignition <2.44>—Not more than 0.1% (1 g).

Assay Weigh accurately about 0.35 g of Mepenzolate Bromide, previously dried, dissolve in 2 mL of formic acid, add 60 mL of acetic anhydride, and titrate \(<2.50\) with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 42.03 mg of \(\text{C}_{21}\text{H}_{32}\text{BrNO}_3\)

Containers and storage Containers—Tight containers.

Mepitiostane

メピチオスタン

\[
\text{C}_{21}\text{H}_{29}\text{O}_8\text{S} \quad 404.65
\]

2\(\alpha\),3\(\alpha\)-Epithio-17\(\beta\)-(1-methoxycyclopentylxyloxy)-5\(\alpha\)-androstan-3\(\beta\),17\(\beta\),19\(\alpha\)-triol [21362-69-6]

Mepitiostane contains not less than 96.0% and not more than 102.0% of mepitiostane (\(\text{C}_{21}\text{H}_{29}\text{O}_8\text{S}\)), calculated on the anhydrous basis.
Description Mepitistane occurs as white to pale yellow, crystals or crystalline powder.

It is freely soluble in triethylamine, in chloroform, in diethyl ether and in cyclohexane, soluble in diethylene glycol dimethyl ether and in petroleum ether, sparingly soluble in acetone, slightly soluble in methanol and in ethanol (99.5), and practically insoluble in water.

It is hydrolized in moist air.

Identification (1) Dissolve 1 mg of Mepitistane in 1 mL of methanol, and add 0.5 mL of palladium (II) chloride TS: an orange precipitate is formed. To this suspension add 1 mL of water and 2 mL of chloroform, shake well, and allow to stand: an orange color develops in the chloroform layer.

(2) Dissolve 0.1 g of Mepitistane in 2 mL of diethylene glycol dimethyl ether, shake with 1 mL of 1 mol/L hydrochloric acid TS, and filter. To the filtrate add 1.5 mL of 2,4-dinitrophenylhydrazine-diethylene glycol dimethyl ether TS and 1.5 mL of diluted ethanol (95) (2 in 3): an orange-yellow precipitate is formed. Filter the precipitate, recrystallize from ethanol (99.5), and dry in a desiccator (in vacuum, phosphorus (V) oxide) for 4 hours: the crystals melt 22.69° between 144°C and 149°C.

(3) Determine the infrared absorption spectrum of Mepitistane as directed in the potassium bromide disk method under Infrared Spectrophotometry 2.25, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation <2.49° [α]D: +20° to +23° (0.1 g, chloroform, 10 mL, 100 mm).

Purity (1) Clarity and color of solution—Dissolve 0.10 g of Mepitistane in 4 mL of petroleum ether: the solution is clear and colorless to pale yellow.

(2) Heavy metals <1.07 (6): Proceed with 1.0 g of Mepitistane according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(3) Related substances—Dissolve 20 mg of Mepitistane in exactly 5 mL of a mixture of acetone and triethylamine (1000:1), and use this solution as the sample solution. Separately, dissolve 10 mg of Epitiostanol RS in a mixture of acetone and triethylamine (1000:1) to make exactly 10 mL. Pipet 1 mL and 3 mL of this solution, to each add a mixture of acetone and triethylamine (1000:1) to make exactly 25 mL, and use these solutions as the standard solution (1) and the standard solution (2), respectively. Perform the test with these solutions as directed under Thin-layer Chromatography 2.25. Spot 5 μL each of the sample solution and standard solutions (1) and (2) on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of hexane and acetone (3:1) to a distance of about 10 cm, and air-dry the plate. Spray evenly diluted sulfuric acid (1 in 5) on the plate, heat the plate between 120°C and 130°C for 5 minutes, and examine under ultraviolet light (main wavelength: 365 nm): the spots other than the principal spot obtained from the sample solution showing the same Rf value as the standard solutions are not more intense than the spot from the standard solution (2), and the remaining spots other than the principal spot are not more intense than the spot from the standard solution (1).

Water <2.49° Not more than 0.7% (0.3 g, volumetric titration, back titration).

Residue on ignition <2.49° Not more than 0.1% (0.5 g).

Assay Weigh accurately about 0.3 g of Mepitistane, and dissolve in cyclohexane to make exactly 10 mL. Pipet 2 mL of this solution, add 10 mL of ethanol (99.5), mix with exactly 2 mL each of 0.01 mol/L hydrochloric acid TS and the internal standard solution, add ethanol (99.5) to make 20 mL, allow to stand at ordinary temperature for 30 minutes, and use this solution as the sample solution. Separately, weigh accurately about 45 mg of Epitiostanol RS, dissolve in exactly 2 mL of the internal standard solution, add ethanol (99.5) to make 20 mL, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography 2.01 according to the following conditions, and calculate the ratios, Q2 and Q3, of the peak area of epitiostanol to that of the internal standard, respectively.

Amount (mg) of mepitistane (C28H39O2S)

\[\text{Amount} = \frac{M_2 \times Q_f}{Q_s} \times 5 \times 1.32 \]

M5: Amount (mg) of Epitiostanol RS taken, calculated on the anhydrous basis

Internal standard solution—A solution of n-octylbenzene in ethanol (99.5) (1 in 300).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 265 nm).

Column: A stainless steel column 4.0 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (10 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: A mixture of methanol and water (20:3).

Flow rate: Adjust so that the retention time of epitiostanol is about 6 minutes.

System suitability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, epitiostanol and the internal standard are eluted in this order with the resolution between these peaks being not less than 4.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratios of the peak area of epitiostanol to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Hermetic containers.

Storage—Light-resistant, under Nitrogen atmosphere, and in a cold place.

Mepivacaine Hydrochloride

メピバカイン塩酸塩

\[
\text{C}_{16}\text{H}_{22}\text{N}_2\text{O}\cdot\text{HCl: 282.81 (2RS)-}N\text{-(2,6-Dimethylphenyl)-1-methylpiperidine-2-carboxamide monohydrochloride [1722-62-9]}
\]

Mepivacaine Hydrochloride, when dried, contains not less than 98.5% and not more than 101.0% of mepivacaine hydrochloride (C16H22N2O.HCl).
Description Mepivacaine Hydrochloride occurs as white, crystals or crystalline powder.

It is freely soluble in water and in methanol, soluble in acetic acid (100), and sparingly soluble in ethanol (99.5).

A solution of Mepivacaine Hydrochloride (1 in 10) shows no optical rotation.

Melting point: about 256°C (with decomposition).

Identification (1) Determine the absorption spectrum of a solution of Mepivacaine Hydrochloride (1 in 2500) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Mepivacaine Hydrochloride as directed in the potassium chloride disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) A solution of Mepivacaine Hydrochloride (1 in 50) responds to Qualitative Tests <1.09> for chloride.

pH <2.54> Dissolve 0.2 g of Mepivacaine Hydrochloride in 10 mL of water: the pH of this solution is between 4.0 and 5.0.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Mepivacaine Hydrochloride in 10 mL of water: the solution is clear and colorless.

(2) Sulfate <1.14>—Perform the test with 0.5 g of Mepivacaine Hydrochloride. Prepare the control solution with 0.40 mL of 0.005 mol/L sulfuric acid VS (not more than 0.038%).

(3) Heavy metals <1.07>—Proceed with 2.0 g of Mepivacaine Hydrochloride according to Method 1, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(4) Related substances—Dissolve 0.10 g of Mepivacaine Hydrochloride in 5 mL of methanol, and use this solution as the sample solution. Pipet 1 mL of the sample solution, and add methanol to make exactly 20 mL. Pipet 2 mL of this solution, add methanol to make exactly 50 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 10 µL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of diethyl ether, methanol and ammonia solution (28) (100:5:1) to a distance of about 10 cm, and air-dry the plate. Spray evenly bismuth nitrate-potassium iodide TS on the plate: the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying <2.41> Not more than 1.0% (1 g, 105°C, 3 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.4 g of Mepivacaine Hydrochloride, previously dried, dissolve in 10 mL of acetic acid (100) and add 70 mL of acetic anhydride. Titrate <2.50> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 28.28 mg of C_{15}H_{22}N_{2}O.HCl

Containers and storage Containers—Tight containers.

Mepivacaine Hydrochloride Injection

メピバカイン塩酸塩注射液

Mepivacaine Hydrochloride Injection is an aqueous injection.

It contains not less than 95.0% and not more than 105.0% of the labeled amount of mepivacaine hydrochloride (C_{15}H_{22}N_{2}O.HCl: 282.81).

Method of preparation Prepare as directed under Injections, with Mepivacaine Hydrochloride.

Description Mepivacaine Hydrochloride Injection is a clear, colorless liquid.

Identification To a volume of Mepivacaine Hydrochloride Injection, equivalent to 20 mg of Mepivacaine Hydrochloride, add 1 mL of sodium hydrochloride TS, and extract with 20 mL of hexane. To 8 mL of the hexane extract add 20 mL of 1 mol/L hydrochloric acid TS, shake vigorously, and determine the absorption spectrum of the water layer separated as directed under Ultraviolet-visible Spectrophotometry <2.24>: it exhibits maxima between 261 nm and 265 nm, and between 270 nm and 273 nm.

pH Being specified separately when the drug is granted approval based on the Law.

Bacterial endotoxins <4.07> Less than 0.6 EU/mg.

Extractable volume <6.07> It meets the requirement.

Foreign insoluble matter <6.06> Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter <6.07> It meets the requirement.

Sterility <4.06> Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Pipet a volume of Mepivacaine Hydrochloride Injection, equivalent to about 40 mg of mepivacaine hydrochloride (C_{15}H_{22}N_{2}O.HCl), add exactly 4 mL of the internal standard solution and 0.001 mol/L hydrochloric acid TS to make 20 mL, and use this solution as the sample solution. Separately, weigh accurately about 40 mg of mepivacaine hydrochloride for assay, previously dried at 105°C for 3 hours, dissolve in 0.001 mol/L hydrochloric acid TS, add exactly 4 mL of the internal standard solution and 0.001 mol/L hydrochloric acid TS to make 20 mL, and use this solution as the standard solution. Perform the test with 5 µL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions, and calculate the ratios, Q_{T} and Q_{o}, of the peak area of mepivacaine to that of the internal standard.

Amount (mg) of mepivacaine hydrochloride

(C_{15}H_{22}N_{2}O.HCl) = M_{T} \times Q_{T}/Q_{o}

M_{T}: Amount (mg) of mepivacaine hydrochloride for assay taken

Internal standard solution—A solution of benzophenone in methanol (1 in 4000).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 254 nm).
Mequitazine Tablets

Mequitazine Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of mequitazine (C_{29}H_{22}N_{2}S; 322.47).

Method of preparation Prepare as directed under Tablets, with Mequitazine.

Identification Powder Mequitazine Tablets. To a portion of the powder, equivalent to 3 mg of Mequitazine, add 50 mL of ethanol (95), shake thoroughly, and add ethanol (95) to make 100 mL. Centrifuge, if necessary, and filter the supernatant liquid through a membrane filter with a pore size not exceeding 0.5 μm. Discard 10 mL of the first filtrate, to 4 mL of the subsequent filtrate add ethanol (95) to make 25 mL, and determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.25>: it exhibits maxima between 253 nm and 257 nm and between 301 nm and 311 nm.

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 tablet of Mequitazine Tablets add 50 mL of a mixture of methanol and water (4:3), and dispense to fine particles by sonicating. Shake this solution thoroughly, and add methanol to make exactly 100 mL. Centrifuge, if necessary,
and filter the supernatant liquid through a membrane filter with a pore size not exceeding 0.5 μm. Discard 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add methanol to make exactly V’ mL so that each mL contains about 4.8 μg of mequipazine \((C_9H_22N_2S)\), and use this solution as the sample solution. Then, proceed as directed in the Assay.

\[
\text{Amount (mg) of mequipazine (C}_9\text{H}_22\text{N}_2\text{S}) = M_S \times A_T / A_S \times V' / V \times 1 / 50
\]

\(M_S\): Amount (mg) of mequipazine for assay taken

Dissolution\(^{(6,10)}\) When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of 2nd fluid for dissolution test as the dissolution medium, the dissolution rate in 45 minutes of Mequitazine Tablets is not less than 70%.

Start the test with 1 tablet of Mequitazine Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.5 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add the dissolution medium to make exactly V’ mL so that each mL contains about 3.3 μg of mequipazine \((C_9H_22N_2S)\), and use this solution as the sample solution. Separately, weigh accurately about 15 mg of mequipazine for assay, previously dried in vacuum at 60°C using phosphorous (V) oxide as the desiccant for 3 hours, dissolve in 50 mL of methanol, and add the dissolution medium to make exactly 100 mL. Pipet 5 mL of this solution, add the dissolution medium to make exactly 200 mL, and use this solution as the standard solution. Determine the absorbances, \(A_T\) and \(A_S\), of the sample solution and standard solution at 253 nm as directed under Ultraviolet-visible Spectrophotometry \(<2.24>\), using the dissolution medium as the control.

Dissolution rate (%) with respect to the labeled amount of mequipazine \((C_9H_22N_2S)\)

\[
= M_S \times A_T / A_S \times V' / V \times 1 / C \times 45 / 2
\]

\(M_S\): Labeled amount (mg) of mequipazine \((C_9H_22N_2S)\) in 1 tablet

Assay Weigh accurately the mass of not less than 20 Mequitazine Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 3 mg of mequipazine \((C_9H_22N_2S)\), add 50 mL of a mixture of methanol and water \((4:3)\), shake thoroughly, and add methanol to make exactly 100 mL. Centrifuge, if necessary, and filter the supernatant liquid through a membrane filter with a pore size not exceeding 0.5 μm. Discard 10 mL of the first filtrate, pipet 4 mL of the subsequent filtrate, add methanol to make exactly 25 mL, and use this solution as the sample solution. Separately, weigh accurately about 24 mg of mequipazine for assay, previously dried in vacuum at 60°C using phosphorous (V) oxide as the desiccant for 3 hours, and dissolve in methanol to make exactly 50 mL. Pipet 1 mL of this solution, add methanol to make exactly 100 mL, and use this solution as the standard solution. Determine the absorbances, \(A_T\) and \(A_S\), of the sample solution and standard solution at 254 nm as directed under Ultraviolet-visible Spectrophotometry \(<2.24>\).

\[
\text{Amount (mg) of mequipazine (C}_9\text{H}_22\text{N}_2\text{S}) = M_S \times A_T / A_S \times 1 / 8
\]

\(M_S\): Amount (mg) of mequipazine for assay taken

Containers and storage Containers—Tight containers.

Mercaptopurine Hydrate
メルカプトプリン水和物

\[
\text{C}_9\text{H}_22\text{N}_2\text{S}.\text{H}_2\text{O}: 170.19
\]

1,7-Dihydro-6H-purine-6-thione monohydrate
[6112-76-1]

Mercaptopurine Hydrate contains not less than 98.0% of mercaptopurine hydrate \((C_9H_22N_2S): 152.18\), calculated on the anhydrous basis.

Description Mercaptopurine Hydrate occurs as light yellow to yellow, crystals or crystalline powder. It is odorless.

It is practically insoluble in water, in acetone and in diethyl ether.

It dissolves in sodium hydroxide TS and in ammonia TS.

Identification\(^{(1)}\) Dissolve 0.6 g of Mercaptopurine Hydrate in 6 mL of sodium hydroxide solution \((3\ in\ 100)\), and add slowly 0.5 mL of iodomethane with vigorous stirring. Stir well for 10 minutes, cool in an ice bath, and adjust the pH with acetic acid \((31)\) to about 5. Collect the separated crystals by filtration, recrystallize from water, and dry at 120°C for 30 minutes: the crystals melt \(<2.60>\) between 218°C and 222°C (with decomposition).

(2) Determine the absorption spectrum of a solution of Mercaptopurine Hydrate in 0.1 mol/L hydrochloric acid TS \((1\ in\ 200,000)\) as directed under Ultraviolet-visible Spectrophotometry \(<2.24>\), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

Purity\(^{(1)}\) Clarity of solution—Dissolve 0.20 g of Mercaptopurine Hydrate in 10 mL of ammonia TS: the solution is clear.

(2) Sulfate \(<1.14>\)—Dissolve 50 mg of Mercaptopurine Hydrate in 10 mL of dilute hydrochloric acid, add 5 drops of barium chloride TS, and allow to stand for 5 minutes: no turbidity is produced.

(3) Heavy metals \(<1.07>\)—Proceed with 1.0 g of Mercaptopurine Hydrate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(4) Hypoxanthine—Dissolve 50 mg of Mercaptopurine Hydrate in exactly 10 mL of a solution of ammonia solution \((28)\ in\ 1\ in\ 10)\, and use this solution as the sample solution. Separately, dissolve 5.0 mg of hypoxanthine in a solution of ammonia solution \((28)\ in\ 1\ in\ 10)\ to make exactly 100 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography \(<2.03>\). Spot 10 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of methanol, chloroform, n-butyl formate and ammonia solution \((8:6:4:1)\ to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spot obtained from the sample solution observed at the same place as that from the standard solution, is not larger and not more intense than that from the standard solution.

Storage—Light-resistant.
(5) Phosphorus—Take 0.20 g of Mercaptopurine Hydrate in a crucible, add 2 mL of diluted sulfuric acid (3 in 7), then heat gently, slowly adding dropwise several 0.5-mL portions of nitric acid, until the liquid becomes colorless. Continue to heat until most of the liquid has evaporated, cool, and dissolve the residue in 10 mL of water. Transfer the solution to a 25-mL volumetric flask, wash the crucible with two 4-mL portions of water, combine the washings with the solution in the volumetric flask, and use this solution as the sample solution. Separately, dissolve 0.4396 g of potassium dihydrogen phosphate in water to make exactly 200 mL. To 2.0 mL of this solution add water to make exactly 100 mL. Transfer 2.0 mL of this solution to a 25-mL volumetric flask, add 16 mL of water, and use this solution as the standard solution. To the sample solution and standard solution add 1 mL of diluted sulfuric acid (3 in 7), 0.5 mL of nitric acid, 0.75 mL of hexammonium heptamolybdate TS, 1 mL of 1-amino-2-naphthol-4-sulfonic acid TS and water to make 25 mL, and allow to stand for 5 minutes. Perform the test with these solutions as directed under Ultraviolet-visible Spectrophotometry (2.24), and compare the spectra: both spectra exhibit similar intensities of absorption at the same wavelengths.

Water [2.48] 10.0 - 12.0% (0.2 g, volumetric titration, back titration).

Residue on ignition [2.48] Not more than 0.1% (1 g).

Assay Weigh accurately about 0.25 g of Mercaptopurine Hydrate, dissolve in 90 mL of N,N-dimethylformamide, and titrate [2.50] with 0.1 mol/L tetramethylammonium hydroxide VS (potentiometric titration). Perform a blank determination in the same manner with a mixture of 90 mL of N,N-dimethylformamide and 15 mL of water, and make any necessary correction.

Each mL of 0.1 mol/L tetramethylammonium hydroxide VS = 15.22 mg of C₇H₅N₃S₈

Containers and storage Containers—Well-closed containers.

Meropenem Hydrate

メロペネム水和物

![Meropenem Hydrate structure](image)

C₁₇H₂₅N₅O₇.3H₂O: 437.51

Meropenem Hydrate contains not less than 980 µg (potency) and not more than 1010 µg (potency) per mg, calculated on the anhydrous basis. The potency of Meropenem Hydrate is expressed as mass (potency) of meropenem (C₁₇H₂₁N₅O₇S): 383.46.

Description Meropenem Hydrate occurs as a white to light yellow crystalline powder.

It is sparingly soluble in water, and practically insoluble in ethanol (95) and in diethyl ether. It dissolves in sodium hydrogen carbonate TS.

Identification (1) Dissolve 10 mg of Meropenem Hydrate in 2 mL of water, add 3 mL of hydroxylammonium chloride ethanol TS, allow to stand for 5 minutes, add 1 mL of acid ammonium iron (III) sulfate TS, and shake: a red-brown color develops.

(2) Determine the absorption spectra of solutions of Meropenem Hydrate and Meropenem RS (3 in 100,000) as directed under Ultraviolet-visible Spectrophotometry (2.24), and compare the spectra: both spectra exhibit similar intensities of absorption at the same wavelengths.

(3) Determine the infrared absorption spectra of Meropenem Hydrate and Meropenem RS as directed in the potassium bromide disk method under Infrared Spectrophotometry (2.25), and compare the spectra: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation [2.49] [α]D: −17° to −21° (0.22 g calculated on the anhydrous basis, water, 50 mL, 100 mm).

pH [2.54] Dissolve 0.2 g of Meropenem Hydrate in 20 mL of water: the pH of the solution is between 4.0 and 6.0.

Purity (1) Clarity and color of solution—Dissolve 0.5 g of Meropenem Hydrate in 10 mL of sodium hydrogen carbonate TS: the solution is clear and has no more color than the following control solution.

Control solution: To a mixture of 0.3 mL of Cobalt (II) Chloride CS and 1.2 mL of Iron (III) Chloride CS add 18.5 mL of diluted hydrochloric acid (1 in 40).

(2) Heavy metals [1.07]—Proceed with 2.0 g of Meropenem Hydrate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(3) Related substances—Dissolve 50 mg of Meropenem Hydrate in 10 mL of triethylamine-phosphate buffer solution (pH 5.0), and use this solution as the sample solution. Prepare the sample solution before use. Pipet 1 mL of the sample solution, and add triethylamine-phosphate buffer solution (pH 5.0) to make exactly 100 mL. Pipet 3 mL of this solution, add triethylamine-phosphate buffer solution (pH 5.0) to make exactly 10 mL, and use this solution as the standard solution. Perform the test with exactly 10 µL each of the sample solution and standard solution as directed under Liquid Chromatography (2.60) according to the following conditions, and determine each peak area by the automatic integration method: the peak area of ring-opened meropenem, having the relative retention time about 0.5 to meropenem, and the peak area of the dimmer, having the relative retention time about 2.2 to meropenem, obtained from the sample solution are not larger than the peak area of meropenem from the standard solution, the area of the peak other than meropenem and the peaks mentioned above from the sample solution is not larger than 1/3 times the peak area of meropenem from the standard solution, and the total area of the peaks other than meropenem from the sample solution is not larger than 3 times the peak area of meropenem from the standard solution.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 220 nm).

Column: A stainless steel column 6.0 mm in inside diameter and 15 cm in length, packed with octadecysilanized silica gel for liquid chromatography (5 µm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase: A mixture of triethylamine-phosphate buffer solution (pH 5.0) and acetonitrile (100:7).
Flow rate: Adjust so that the retention time of meropenem is about 6 minutes.
Time span of measurement: About 7 times as long as the retention time of meropenem.

System suitability—
Test for required detectability: Pipet 5 mL of the standard solution, and add triethylamine-phosphate buffer solution (pH 5.0) to make exactly 25 mL. Confirm that the peak area of meropenem obtained with 10 μL of this solution is equivalent to 16 to 24% of that with 10 μL of the standard solution.
System performance: Warm the sample solution at 60°C for 30 minutes. When the procedure is run with 10 μL of this solution under the above operating conditions, the ring-opened meropenem, meropenem, and the dimer are eluted in this order, and the resolution between the peaks of the ring-opened meropenem and meropenem is not less than 1.5.
System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of meropenem is not more than 1.5%.

Water <2.48> Not less than 11.4% and not more than 13.4% (0.35 g, volumetric titration, direct titration).
Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately an amount of Meropenem Hydrate and Meropenem RS, equivalent to about 50 mg (potency), dissolve each in exactly 10 mL of the internal standard solution, add triethylamine-phosphate buffer solution (pH 5.0) to make 100 mL, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with 5 μL of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and calculate the ratios, QO and QS, of the peak area of meropenem to that of the internal standard.

Amount [μg (potency)] of meropenem (C₁₄H₁₅N₅O₇S) = Mₛ × Qₛ/ Q₀ × 1000
Mₛ: Amount [mg (potency)] of Meropenem RS taken

Internal standard solution—A solution of benzyl alcohol in triethylamine-phosphate buffer solution (pH 5.0) (1 in 300).

Operating conditions—Detector: A ultraviolet absorption photometer (wavelength: 220 nm).
Column: A stainless steel column 6.0 mm in inside diameter and 15 cm in length, packed with octadecysilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase: A mixture of triethylamine-phosphate buffer solution (pH 5.0) and methanol (5:1).
Flow rate: Adjust so that the retention time of meropenem is about 7 minutes.

System suitability—
System performance: When the procedure is run with 5 μL of the standard solution under the above operating conditions, meropenem and the internal standard are eluted in this order with the resolution between these peaks being not less than 20.
System repeatability: When the test is repeated 6 times with 5 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratios of the peak area of meropenem to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Tight containers.

Meropenem for Injection
注射用メロペネム

Meropenem for Injection is a preparation for injection, which is dissolved before use.
It contains not less than 93.0% and not more than 107.0% of the labeled potency of meropenem (C₁₄H₁₅N₅O₇S: 383.46).

Method of preparation Prepare as directed under Injections, with Meropenem Hydrate.

Description Meropenem for Injection occurs as a white to light yellow crystalline powder.

Identification Determine the infrared absorption spectrum of Meropenem for Injection as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25> it exhibits absorption at the wave numbers of about 3410 cm⁻¹, 1750 cm⁻¹, 1655 cm⁻¹, 1583 cm⁻¹ and 1391 cm⁻¹.

pH <2.54> Dissolve an amount of Meropenem for Injection, equivalent to 0.25 g (potency) of Meropenem Hydrate, in 5 mL of water: the pH of the solution is between 7.3 and 8.3.

Purity (I) Clarity and color of solution—Dissolve an amount of Meropenem for Injection, equivalent to 1.0 g (potency) of Meropenem Hydrate, in 20 mL of water: the solution is clear and is not more intensely colored than the following control solution.
Control solution: To a mixture of 0.3 mL of Cobalt (II) Chloride CS and 1.2 mL of Iron (III) Chloride CS add 18.5 mL of diluted hydrochloric acid (1 in 40).
(2) Related substances—Dissolve an amount of Meropenem for Injection, equivalent to 0.10 g (potency) of Meropenem Hydrate, in triethylamine-phosphate buffer solution (pH 5.0) to make 25 mL, and use this solution as the sample solution. Prepare the sample solution before use. Pipet 1 mL of the sample solution, add triethylamine-phosphate buffer solution (pH 5.0) to make exactly 100 mL. Pipet 5 mL of this solution, add triethylamine-phosphate buffer solution (pH 5.0) to make exactly 10 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area by the automatic integration method: the peak area of ring-opened meropenem and meropenem dimer, respectively having the relative retention time of about 0.5 and about 2.2 to meropenem obtained from the sample solution is not larger than the peak area of meropenem from the standard solution, the area of the peak, other than meropenem and the peaks mentioned above, is not larger than 1/5 times the peak area of meropenem from the standard solution, and the total area of the peaks other than meropenem is not larger than 3 times the peak area of meropenem from the standard solution.
Operating conditions—Proceed as directed in the operating conditions in the
Purity (3) under Meropenem Hydrate.

System suitability—
Test for required detectability: Pipet 5 mL of the standard solution, and add triethylamine-phosphate buffer solution (pH 5.0) to make exactly 25 mL. Confirm that the peak area of meropenem obtained with 10 μL of this solution is equivalent to 16 to 24% of that with 10 μL of the standard solution.

System performance: When the procedure is run with 10 μL of the sample solution, previously allowed to stand at 60°C for 30 minutes, under the above operating conditions, the ring-opened meropenem, meropenem and the meropenem dimer are eluted in this order, and the resolution between the peaks of the ring-opened meropenem and meropenem is not less than 1.5.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of meropenem is not more than 1.5%.

Loss on drying <2.41> 9.5 – 12.0% (0.1 g, reduced pressure, 60°C, 3 hours).

Bacterial endotoxins <4.01> Less than 0.12 EU/mg (potency).

Uniformity of dosage units <6.02> It meets the requirements of the Mass variation test.

Foreign insoluble matter <6.06> Perform the test according to Method 2: it meets the requirement.

Insoluble particulate matter <6.07> It meets the requirement.

Sterility <4.06> Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Weigh accurately the mass of the contents of not less than 10 containers of Meropenem for Injection. Weigh accurately an amount of the contents, equivalent to about 50 mg (potency) of Meropenem Hydrate, dissolve in exactly 10 mL of the internal standard solution, add triethylamine-phosphate buffer solution (pH 5.0) to make 100 mL, and use this solution as the sample solution. Separately, weigh accurately an amount of Meropenem RS, equivalent to about 50 mg (potency), dissolve in exactly 10 mL of the internal standard solution, add triethylamine-phosphate buffer solution (pH 5.0) to make 100 mL, and use this solution as the standard solution. Then, proceed as directed in the Assay under Meropenem Hydrate.

Amount [mg (potency)] of meropenem (C₁₇H₂₅N₅O₅S) = M₅ × Qₓ/Qₜ

M₅: Amount [mg (potency)] of Meropenem RS taken

Internal standard solution—A solution of benzyl alcohol in triethylamine-phosphate buffer solution (pH 5.0) (1 in 300).

Containers and storage Containers—Hermetic containers. Plastic containers for aqueous injections may be used.

Mesalazine

メサラジン

C₁₇H₂₅N₅O₅S: 153.14
5-Amino-2-hydroxybenzoic acid

Mesalazine, when dried, contains not less than 98.5% and not more than 101.0% of mesalazine (C₁₇H₂₅NO₅S).

Description Mesalazine occurs as white, light gray or reddish-white, crystals or crystalline powder.

It is very slightly soluble in water, and practically insoluble in ethanol (99.5).

It dissolves in dilute hydrochloric acid.

Identification (1) Determine the absorption spectrum of a solution of Mesalazine in 0.1 mol/L hydrochloric acid TS (1 in 80,000) as directed under Ultraviolet-visible Spectrophotometry <2.24> and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Mesalazine, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25> and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Purity (1) Clarity and color of solution—Perform this procedure while keeping the solution at 40°C. A solution obtained by dissolving 0.5 g of Mesalazine in 20 mL of 1 mol/L hydrochloric acid TS is clear, and its absorbance at 440 nm and 650 nm, determined immediately as directed under Ultraviolet-visible Spectrophotometry <2.24>, is not more than 0.15 and not more than 0.10, respectively.

(2) Chloride <1.05>—Dissolve 0.30 g of Mesalazine in 6 mL of dilute nitric acid and 40 mL of water, and add water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 0.80 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.095%).

(3) Sulfate—To 1.0 g of Mesalazine add 20 mL of water, shake for 1 minute, and filter. To 15 mL of the filtrate add 0.5 mL of acetic acid (31), then add 2.5 mL of the following solution A, and use this solution as the test solution. Solution A: To 3 mL of barium chloride TS add 4.5 mL of a solution of potassium sulfate in diluted ethanol (3 in 10) (181 in 10,000,000), shake, and allow to stand for 1 minute. Prepare the control solution by adding 14.7 mL of water and 0.5 mL of acetic acid (31) to 0.31 mL of 0.005 mol/L sulfuric acid VS, and then proceeding in the same manner for the test solution. Compare the test solution and the control solution after allowing to stand for 5 minutes: the turbidity of the test solution is not more intense than that of the control solution (not more than 0.02%).

(4) Heavy metals <1.07>—Proceed with 0.5 g of Mesalazine according to Method 2, and perform the test. Prepare the control solution with 1.0 mL of Standard Lead Solution (not more than 20 ppm).

(5) Reducing substances—Dissolve 0.10 g of Mesalazine in dilute hydrochloric acid to make 25 mL, add 0.2 mL of starch TS and 0.25 mL of dilute iodine TS, and allow to
stand for 2 minutes: a blue or purple-brown color is produced.

(6) 2-Aminophenol and 4-aminophenol—Weigh exactly 50 mg of Mesalazine, dissolve in the mobile phase A to make exactly 50 mL, and use this solution as the sample solution. Separately, weigh exactly 5.0 mg of 2-aminophenol, and dissolve in the mobile phase A to make exactly 100 mL. Pipet 10 mL of this solution, add the mobile phase A to make exactly 100 mL, and use this solution as the 2-aminophenol standard stock solution. Weigh exactly 5.0 mg of 4-aminophenol, dissolve in the mobile phase A to make exactly 250 mL, and use this solution as the 4-aminophenol standard stock solution. Pipet 1 mL each of the 2-aminophenol standard stock solution and 4-aminophenol standard stock solution, add the mobile phase A to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas of 2-aminophenol and 4-aminophenol: the peak area of 2-aminophenol obtained from the sample solution is not larger than that of 4-aminophenol from the standard solution (not more than 0.02%), and the peak area of 2-aminophenol from the sample solution is not larger than 4 times that of 2-aminophenol from the standard solution (not more than 0.02%).

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 220 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (3 μm in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase A: Mix 2.2 g of perchloric acid and 1.0 g of phosphoric acid with water to make 1000 mL.
Mobile phase B: Mix 1.7 g of perchloric acid and 1.0 g of phosphoric acid with acetonitrile for liquid chromatography to make 1000 mL.
Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 10</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>10 – 25</td>
<td>100 → 40</td>
<td>0 → 60</td>
</tr>
</tbody>
</table>

Flow rate: About 0.8 mL per minute (the retention time of mesalazine is about 16 minutes).
System suitability—
System performance: To 1 mL of the sample solution add the mobile phase A to make 200 mL. To 5 mL of this solution add 5 mL of the 2-aminophenol standard stock solution. When the procedure is run with 20 μL of this solution under the above operating conditions, 2-aminophenol and mesalazine are eluted in this order with the resolution between these peaks being not less than 3.
System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of 2-aminophenol is not more than 2.5%.

(7) Aniline—Dissolve exactly 0.10 g of Mesalazine in the mobile phase to make exactly 50 mL, and use this solution as the sample solution. Separately, dissolve exactly 30.5 mg of aniline sulfate in the mobile phase to make exactly 100 mL. Pipet 1 mL of this solution, add the mobile phase to make exactly 100 mL. Pipet 1 mL of this solution, add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 100 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak area of aniline in each solution: the peak area of aniline obtained from the sample solution is not larger than that of aniline from the standard solution (not more than 10 ppm).

Operating conditions—
Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase: Dissolve 9.52 g of sodium acetate trihydrate in a suitable amount of water, add 1.72 mL of acetic acid (100), then add water to make 1000 mL, and adjust to pH 5.0 with acetic acid (100) or dilute sodium hydroxide TS. To 500 mL of this solution add 500 mL of acetonitrile for liquid chromatography.
Flow rate: Adjust so that the retention time of aniline is about 5 minutes.
System suitability—
System performance: When the procedure is run with 100 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of aniline are not less than 3000 and not more than 2.0, respectively.
System repeatability: When the test is repeated 6 times with 100 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of aniline is not more than 2.0%.

(8) 3-Aminophenol, 3-aminobenzoic acid, gentisic acid, salicylic acid and other related substances—Weigh exactly 50 mg of Mesalazine, dissolve in the mobile phase A to make exactly 50 mL, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add the mobile phase A to make exactly 100 mL, and use this solution as the standard solution. Separately, weigh exactly 10 mg of 3-aminophenol, and dissolve in the mobile phase A to make exactly 100 mL. Pipet 1 mL of this solution, add the mobile phase A to make exactly 50 mL, and use this solution as the 3-aminophenol standard solution. Weigh exactly 5.0 mg of 3-aminobenzoic acid, dissolve in the mobile phase A to make exactly 100 mL. Pipet 1 mL of this solution, add the mobile phase A to make exactly 50 mL, and use this solution as the 3-aminobenzoic acid standard solution. Weigh exactly 5.0 mg of gentisic acid, dissolve in the mobile phase A to make exactly 100 mL. Pipet 1 mL of this solution, add the mobile phase A to make exactly 50 mL, and use this solution as the gentisic acid standard solution. Weigh exactly 15 mg of salicylic acid, dissolve in the mobile phase A to make exactly 100 mL. Pipet 1 mL of this solution, add the mobile phase A to make exactly 50 mL, and use this solution as the salicylic acid standard solution. Perform the test with exactly 10 μL each of the sample solution, standard solution, 3-aminophenol standard solution, 3-aminobenzoic acid standard solution, gentisic acid standard solution and salicylic acid standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine each peak area by the automatic integration method: the peak area of 3-aminophenol obtained from the sample solution is not larger than that from 3-aminophenol standard
solution (not more than 0.2%), the peak area of 3-
aminobenzoic acid from the sample solution is not larger
than that from 3-aminobenzoic acid standard solution (not
more than 0.1%), the peak area of gentisic acid from the
sample solution is not larger than that from gentisic acid
standard solution (not more than 0.1%), and the peak area
of salicylic acid from the sample solution is not larger than
that from salicylic acid standard solution (not more than
0.3%). The area of the peak other than 3-aminophenol,
mesalazine, 3-aminobenzoic acid, gentisic acid and salicylic
acid from the sample solution is not larger than 1/10 times
the peak area of mesalazine from the standard solution (not
more than 1.0%).

Operating conditions—
Detector: An ultraviolet absorption photometer (wave-
lenghth: 220 nm).
Column: A stainless steel column 4.6 mm in inside diam-
eter and 25 cm in length, packed with octylsilanized silica gel
for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about
25°C.
Mobile phase A: Mix 2.2 g of perchloric acid and 1.0 g of
phosphoric acid with water to make 1000 mL.
Mobile phase B: Mix 1.7 g of perchloric acid and 1.0 g of
phosphoric acid with acetonitrile for liquid chromatography
to make 1000 mL.
Flowing of mobile phase: Control the gradient by mixing
the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection</th>
<th>Mobile phase A</th>
<th>Mobile phase B</th>
</tr>
</thead>
<tbody>
<tr>
<td>of sample (min)</td>
<td>(vol%)</td>
<td>(vol%)</td>
</tr>
<tr>
<td>0 - 7</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>7 - 25</td>
<td>100 → 40</td>
<td>0 → 60</td>
</tr>
</tbody>
</table>

Flow rate: About 1.8 mL per minute (the retention time of
mesalazine is about 5 minutes).

Time span of measurement: For 25 minutes after injection
of the sample solution.

System suitability—
Test for required detectability: Pipet 1 mL of the standard
solution, and add the mobile phase A to make exactly 20
mL. Confirm that the peak area of mesalazine obtained with
10 μL of this solution is equivalent to 3.5 to 6.5% of that
with 10 μL of the standard solution.

System performance: To 1 mL of the sample solution and
2 mL of a solution of 3-aminobenzoic acid in the mobile
phase A (in 1 in 20,000) add the mobile phase A to make 100
mL. When the procedure is run with 10 μL of this solution
under the above operating conditions, mesalazine and 3-
aminobenzoic acid are eluted in this order with the resolu-
tion between these peaks being not less than 3.

System repeatability: When the test is repeated 6 times
with 10 μL of the standard solution under the above operat-
ing conditions, the relative standard deviation of the peak
area of mesalazine is not more than 2.0%.

Loss on drying <2.41> Not more than 0.5% (1 g, 105°C,
2 hours).

Residue on ignition <2.44> Not more than 0.2% (1 g).

Assay Weigh accurately about 50 mg of Mesalazine, previ-
ously dried, dissolve in 100 mL of hot water, cool to room
temperature quickly, and titrate <2.50> with 0.1 mol/L so-
dium hydroxide VS (potentiometric titration). Perform a
blank determination in the same manner, and make any nec-
essary correction.

Each mL of 0.1 mol/L sodium hydroxide VS
= 15.31 mg of C7H3NO3

Containers and storage Containers—Well-closed contain-
ers.
Storage—Light-resistant.

Mesalazine Extended-release Tablets
メサラジン徐放錠

Mesalazine Extended-release Tablets contain not
less than 95.0% and not more than 105.0% of the
labeled amount of mesalazine (C7H3NO3: 153.14).

Method of preparation Prepare as directed under Tablets,
with Mesalazine.

Identification Powder Mesalazine Extended-release
Tablets. To a portion of the powder, equivalent to 20 mg of
Mesalazine, add 100 mL of diluted phosphoric acid (1 in
1000) and shake vigorously. To 5 mL of this solution add
diluted phosphoric acid (1 in 1000) to make 50 mL, filter,
and determine the absorbance spectrum of the filtrate as di-
rected under Ultraviolet-visible Spectrophotometry <2.24>:
it exhibits maxima between 227 nm and 231 nm, and between
298 nm and 302 nm.

Uniformity of dosage units <6.02> Perform the Mass vari-
ation test, or the Content uniformity test according to the fol-
lowing method: it meets the requirement.

To 1 tablet of Mesalazine Extended-release Tablets add
6V/25 mL of diluted phosphoric acid (1 in 1000), shake until
the tablet is disintegrated, then add 3V/5 mL of methanol,
and sonicate for 30 minutes. Add diluted phosphoric acid (1
in 1000) to make exactly V mL so that each mL contains
about 1 mg of mesalazine (C7H3NO3), and centrifuge. Pipet
8 mL of the supernatant liquid, add exactly 2 mL of the in-
ternal standard solution and 13 mL of methanol, then add
diluted phosphoric acid (1 in 1000) to make 50 mL, and use
this solution as the sample solution. Then, proceed as di-
rected in the Assay.

Amount (mg) of mesalazine (C7H3NO3)
= Ms × Q1/Q2 × V/40

M5; Amount (mg) of mesalazine for assay taken

Internal standard solution—A solution of ethyl aminobenzo-
ate in methanol (1 in 800).

Dissolution <6.10> When the test is performed at 50 revolu-
tions per minute according to the Paddle method, using 900
mL of 2nd fluid for dissolution test as the dissolution me-
dium, the dissolution rates in 3 hours, in 6 hours and in 24
hours of Mesalazine Extended-release Tablets are 10 to 40%,
30 to 60%, and not less than 80%, respectively.

Start the test with 1 tablet of Mesalazine Extended-release
Tablets, withdraw exactly 20 mL of the medium at the speci-
fied minutes after starting the test and supply exactly 20 mL
of dissolution medium warmed to 37 ± 0.5°C immediately
after withdrawing of the medium every time. Filter the with-
drawn media through a membrane filter with a pore size not
exceeding 0.45 μm. Discard not less than 10 mL of the first
filtrate, pipet V mL of the subsequent filtrate, add the disso-
lution medium to make exactly V mL so that each mL con-

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
Mestranol / Official Monographs

contains about 56 μg of mesalazine (C₇H₆NO₃), and use these solutions as the sample solutions. Separately, weigh accurately about 28 mg of mesalazine for assay, previously dried at 105°C for 2 hours, and dissolve in the dissolution medium to make exactly 100 mL. Pipet 5 mL of this solution, add the dissolution medium to make exactly 25 mL, and use this solution as the standard solution. Determine the absorbances, Aₜₑ₀ and Aₕ₈, of the sample solutions and standard solution at 330 nm as directed under Ultraviolet-visible Spectrophotometry <2.24>.

Dissolution rate (%) with respect to the labeled amount of mesalazine (C₇H₆NO₃) on the mth medium withdrawing (n = 1, 2, 3)

\[
Mₜₐ₉ = \frac{Mₜₐ₉}{Mₕ₈} \times \left(\frac{\text{Aₜₑ₀}}{\text{Aₕ₈}} + \sum_{i=1}^{n-1} \left(\frac{\text{Aₕ₈}}{\text{Aₕ₈}} \times \frac{1}{45} \right) \right) \times \frac{V}{V} \times \frac{C}{180}
\]

Mₜₐ₉: Amount (mg) of mesalazine for assay taken
Mₕ₈: Amount (mg) of mesalazine (C₇H₆NO₃) in 1 tablet

Assay Weigh accurately the mass of not less than 20 Mesalazine Extended-release Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 40 mg of mesalazine (C₇H₆NO₃), add 100 mL of diluted phosphoric acid (1 in 1000), shake vigorously, and sonicate for 5 minutes. Add exactly 10 mL of the internal standard solution, then add 90 mL of methanol and diluted phosphoric acid (1 in 1000) to make 250 mL. Filter this solution through a membrane filter with a pore size 0.45 μm. Discard the first 5 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 40 mg of mesalazine for assay, previously dried at 105°C for 2 hours, add 100 mL of diluted phosphoric acid (1 in 1000), shake vigorously, and sonicate for 5 minutes to dissolve. Add exactly 10 mL of the internal standard solution, then add 90 mL of methanol and diluted phosphoric acid (1 in 1000) to make 250 mL, and use this solution as the standard solution. Perform the test with 10 μL of each of the sample solution and standard solution as directed under Liquid Chromatography <2.01>, according to the following conditions, and calculate the ratios, Qₜ and Qₕ₈, of the peak area of mesalazine to that of the internal standard.

Amount (mg) of mesalazine (C₇H₆NO₃) = Mₜₐ₉ × Qₜ/Qₕ₈

Internal standard solution—A solution of ethyl aminobenzoate in methanol (1 in 800).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 300 nm).

Column: A stainless steel column 4.0 mm in inside diameter and 10 cm in length, packed with octadecyldimethylsilylated silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: Dissolve 400 mL of methanol, 1 mL of phosphoric acid, 0.865 g of sodium lauryl sulfate and 0.679 g of tetrabutylammonium hydrogensulfate in water to make 1000 mL.

Flow rate: Adjust so that the retention time of mesalazine is about 10 minutes.

System suitability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, mesalazine and the internal standard are eluted in this order with the resolution between these peaks being not less than 3.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of mesalazine to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Well-closed containers.

Storage—Light-resistant.

Mestranol

Mestranol, when dried, contains not less than 97.0% and not more than 102.0% of mestranol (C₁₈H₂₂O₅).

Description Mestranol occurs as a white to pale yellow-white crystalline powder. It is odorless.

It is freely soluble in chloroform, sparingly soluble in ethanol (99.5), and practically insoluble in water.

Identification (1) Dissolve 2 mg of Mestranol in 1 mL of a mixture of sulfuric acid and ethanol (99.5) (2:1): a red-purple color develops with a yellow-green fluorescence.

(2) Determine the absorbance spectrum of a solution of Mestranol in ethanol (99.5) (1 in 10,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Mestranol RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(3) Determine the infrared absorption spectrum of Mestranol, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of previously dried Mestranol RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation <2.49> [α]ₒ^2₁₉ = +1 – +6° (after drying, 0.1 g, ethanol (99.5), 10 mL, 100 mm).

Melting point <2.60> 148 – 154°C

Purity (1) Heavy metals <1.07>—Proceed with 1.0 g of Mestranol according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(2) Arsine <1.16>—Prepare the test solution with 1.0 g of Mestranol according to Method 3, and perform the test (not more than 2 ppm).

(3) Related substances—Dissolve 0.10 g of Mestranol in 20 mL of chloroform, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add chloroform to make exactly 200 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 10 μL each
Heavy metals

A mixture of 10 mg each of Mestranol and Metenolone Acetate, when dried, dissolve in ethanol (99.5) (29:1) to a distance of about 10 cm, and air-dry the plate. Spray evenly diluted sulfuric acid (1 in 5) on the plate, and heat the plate at 105°C for 15 minutes: the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying <2.41> Not more than 0.5% (0.5 g, 105°C, 3 hours).

Residue on ignition <2.44> Not more than 0.1% (0.5 g).

Assay Weigh accurately about 10 mg each of Mestranol and Metenolone RS, previously dried, dissolve in ethanol (99.5) to make exactly 100 mL, and use these solutions as the sample solution and the standard solution, respectively. Determine the absorbances, \(A_1 \) and \(A_2 \), of the sample solution and the standard solution at 279 nm as directed under Ultra-violet-visible Spectrophotometry <2.24>.

\[
\text{Amount (mg) of mestranol (C}_{17}\text{H}_{22}\text{O}_{2}) = M_S \times \frac{A_1}{A_2}
\]

where \(M_S \): Amount (mg) of Mestranol RS taken

Containers and storage Containers—Tight containers.

Storage—Light-resistant.

Metenolone Acetate

メテノロン酢酸エステル

\[
\text{C}_{22}\text{H}_{32}\text{O}_{5} \quad 344.49
\]

1-Methyl-3-oxo-5α-androstan-1-en-17β-yl acetate [434-05-9]

Metenolone Acetate, when dried, contains not less than 97.0% and not more than 103.0% of metenolone acetate (\(\text{C}_{22}\text{H}_{32}\text{O}_{5} \)).

Description Metenolone Acetate occurs as a white to pale yellow-white crystalline powder. It is odorless.

It is freely soluble in acetone, in 1,4-dioxane and in chloroform, soluble in methanol and in ethanol (95), sparingly soluble in diethyl ether and in sesame oil, slightly soluble in hexane and in petroleum ether, and practically insoluble in water.

Identification (1) Dissolve 1 mg of Metenolone Acetate in 5 mL of a mixture of sulfuric acid and ethanol (95) (1:1), and heat for 30 minutes in a water bath: a red-brown color develops.

(2) To 10 mg of Metenolone Acetate add 0.5 mL of dilute sodium hydroxide-ethanol TS, and heat for 1 minute on a water bath. After cooling, add 0.5 mL of diluted sulfuric acid (1 in 2), and boil gently for 1 minute: the odor of ethyl acetate is perceptible.

(3) Dissolve 50 mg of Metenolone Acetate in 3 mL of methanol, add 0.3 mL of a solution of potassium carbonate (1 in 6), and boil for 2 hours under a reflux condenser. After cooling, add this solution gradually to 50 mL of cold water, and stir for 15 minutes. Filter the precipitate so obtained by suction through a glass filter (G4), wash with 10 mL of water, and dry at 105°C for 1 hour: it melts <2.60> between 157°C and 161°C.

(4) Determine the infrared absorption spectrum of Metenolone Acetate, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation <2.44> \(\alpha \) : +39 - +42° (after drying, 0.2 g, chloroform, 10 mL, 100 mm).

Melting point <2.60> 141 - 144°C

Purity (1) Clarity and color of solution—Dissolve 0.50 g of Metenolone Acetate in 10 mL of 1,4-dioxane: the solution is clear and colorless to pale yellow.

(2) Heavy metals <1.07>—Proceed with 2.0 g of Metenolone Acetate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(3) Related substances—Dissolve 35 mg of Metenolone Acetate in 20 mL of chloroform, and use this solution as the sample solution. Pipet 1 mL of the sample solution, dilute with chloroform to exactly 250 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.07>. Spot 10 \(\mu \)L each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate and cyclohexane (1:1) to a distance of about 12 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying <2.41> Not more than 0.5% (0.5 g, 105°C, 3 hours).

Residue on ignition <2.44> Not more than 0.1% (0.5 g).

Assay Weigh accurately about 10 mg of Metenolone Acetate, previously dried, and dissolve in methanol to make exactly 100 mL. Pipet 5 mL of this solution, and dilute with methanol to exactly 50 mL. Determine the absorbance \(A \) of this solution at the wavelength of maximum absorption at about 242 nm as directed under Ultra-violet-visible Spectrophotometry <2.24>.

\[
\text{Amount (mg) of metenolone acetate (C}_{22}\text{H}_{32}\text{O}_{5}) = A / 391 \times 10,000
\]

Containers and storage Containers—Tight containers.

Storage—Light-resistant.
Metenolone Enanthate

Metenolone Enanthate, when dried, contains not less than 97.0% and not more than 103.0% of metenolone enanthate (C₂₇H₄₅O₃).

Description
Metenolone Enanthate occurs as white, crystalline powder. It is odorless.

It is very soluble in ethanol (95%), in acetone, in 1,4-dioxane and in chloroform, freely soluble in methanol, in ethyl acetate, in diethyl ether, in cyclohexane, in petroleum ether and in toluene, soluble in sesame oil, and practically insoluble in water.

Identification (1)
Heat 1 mg of Metenolone Enanthate with 5 mL of a mixture of sulfuric acid and ethanol (95%) (1:1) on a water bath for 30 minutes: a red-brown color develops.

(2) Dissolve 50 mg of Metenolone Enanthate in 3 mL of methanol, add 0.3 mL of a solution of potassium carbonate (1 in 6), boil under a reflux condenser for 2 hours, cool, add slowly this solution to 50 mL of cold water, and stir for 15 minutes. Filter the produced precipitate by suction through a glass filter (G4), wash with water until the washings become neutral, and dry at 105°C for 1 hour: it melts between 156°C and 162°C.

Optical rotation
\[\beta = +39 \pm 43^\circ \] (after drying, 0.2 g, in chloroform, 10 mL, 100 mm).

Melting point
67 – 72°C

Purity (1)
Clarity and color of solution—Dissolve 0.5 g of Metenolone Enanthate in 10 mL of 1,4-dioxane: the solution is clear and colorless.

(2) Heavy metals
Proceed with 2.0 g of Metenolone Enanthate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(3) Related substances—Dissolve 20 mg of Metenolone Enanthate in exactly 10 mL of chloroform, and use this solution as the sample solution. Perform the test with the sample solution as directed under Thin-layer Chromatography.<ref>2.07</ref>. Spot 10 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate and cyclohexane (1:1) to a distance of about 15 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): any spot other than the principal spot does not appear.

Loss on drying
Not more than 0.5% (0.5 g, in vacuum, phosphorus (V) oxide, 4 hours).

Residue on ignition
Not more than 0.1% (0.5 g).

Assay
Weigh accurately about 0.1 g of Metenolone Enanthate, previously dried, and dissolve in methanol to make exactly 100 mL. Pipet 10 mL of this solution, and dilute with methanol to make exactly 100 mL. Pipet 10 mL of this solution, and dilute again with methanol to make exactly 100 mL. Determine the absorbance, \(A \), of this solution at the wavelength of maximum absorption at about 242 nm as directed under Ultraviolet-visible Spectrophotometry.<ref>2.24</ref>

\[\text{Amount (mg) of metenolone enanthate (C₂₇H₄₅O₃)} = \frac{A}{325} \times 100,000 \]

Containers and storage
Containers—Tight containers. Storage—Light-resistant.

Metenolone Enanthate Injection

Metenolone Enanthate Injection is an oily solution for injection.

It contains not less than 90.0% and not more than 110.0% of the labeled amount of metenolone enanthate (C₂₇H₄₅O₃).

Method of preparation
Prepare as directed under Injections, with Metenolone Enanthate.

Description
Metenolone Enanthate Injection is a clear, pale yellow, oily liquid.

Identification (1)
Measure a volume of Metenolone Enanthate Injection, equivalent to 0.1 g of Metenolone Enanthate, add 20 mL of petroleum ether, and extract with three 20-mL portions of diluted acetic acid (100) (5 in 7). Combine the extracts, wash with 20 mL of petroleum ether, add 300 mL of cold water while cooling in an ice bath, and stir sufficiently. Filter the produced precipitate by suction through a glass filter (G4), wash with water until the last washing becomes neutral, and dry in a desiccator (in vacuum, phosphorus (V) oxide) for 6 hours. With this sample, proceed as directed in the Identification (1) under Metenolone Enanthate.

(2) Measure a volume of Metenolone Enanthate Injection, equivalent to 10 mg of Metenolone Enanthate, dissolve in 10 mL of chloroform, and use this solution as the sample solution. Separately dissolve 10 mg of metenolone enanthate in 10 mL of chloroform, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography.<ref>2.07</ref>. Spot 10 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with toluene to a distance of about 15 cm, and air-dry the plate. Again develop this plate with a mixture of ethyl acetate and cyclohexane (1:1) to a distance of about 15 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the principal spot obtained from the sample solution and the spot from the standard solution show the same Rf value.

Extractable volume
It meets the requirement.

Foreign insoluble matter
Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter
It meets the requirement.

Sterility
Perform the test according to the Membrane filtration method: it meets the requirement.
Metformin Hydrochloride Tablets

Metformin Hydrochloride Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of metformin hydrochloride (C$_{6}$H$_{11}$N$_{2}$HCl: 165.62).

Method of preparation Prepare as directed under Tablets, with Metformin Hydrochloride.

Identification Shake an amount of powdered Metformin Hydrochloride Tablets, equivalent to 250 mg of Metformin Hydrochloride, with 25 mL of 2-propanol, and filter. Evaporate the filtrate under reduced pressure in a water bath at 40°C, and determine the infrared absorption spectrum of the residue as directed in the potassium chloride disk method under Infrared Spectrophotometry (2.25): it exhibits absorption at the wave numbers of about 3370 cm$^{-1}$, 3160 cm$^{-1}$, 1627 cm$^{-1}$, 1569 cm$^{-1}$ and 1419 cm$^{-1}$.

Uniformity of dosage units Not less than 95.0% of the labeled amount of Metformin Hydrochloride Tablets is supplied in the unit dosage form for oral administration.

Dissolution Being specified separately when the drug is
Methamphetamine Hydrochloride

メタンフェタミン塩酸塩

\[
\text{C}_10\text{H}_{15}\text{N.HCl}: 185.69 \\
(2S)-N-Methyl-1-phenylpropan-2-amine monohydrochloride \[51-57-0]\]

Methamphetamine Hydrochloride, when dried, contains not less than 98.5% of methamphetamine hydrochloride (C$_{10}$H$_{15}$N.HCl).

Description

Methamphetamine Hydrochloride occurs as colorless crystals or a white crystalline powder. It is odorless.

It is freely soluble in water, in ethanol (95%) and in chloroform, and practically insoluble in diethyl ether.

The pH of a solution of 1.0 g of Methamphetamine Hydrochloride in 10 mL of water is between 5.0 and 6.0.

Identification

(1) To 5 mL of a solution of Methamphetamine Hydrochloride (1 in 100) add 0.5 mL of hydrogen hexachloroplatinate (IV) TS: an orange-yellow, crystalline precipitate is produced.

(2) To 5 mL of a solution of Methamphetamine Hydrochloride (1 in 100) add 0.5 mL of iodine TS: a brown precipitate is produced.

(3) To 5 mL of a solution of Methamphetamine Hydrochloride (1 in 100) add 0.5 mL of 2,4,6-trinitrophenol TS: a yellow, crystalline precipitate is produced.

(4) A solution of Methamphetamine Hydrochloride (1 in 20) responds to Qualitative Tests <1.09> for chloride.

Optical rotation \(<2.49> \) \([\alpha]_2^D +16^\circ \sim +19^\circ \) (after drying, 0.2 g, water, 10 mL, 100 mm).

Melting point \(<2.60>\) 171 – 175°C

Purity

Acidity or alkalinity—Dissolve 2.0 g of Methamphetamine Hydrochloride in 40 mL of freshly boiled and cooled water, add 2 drops of methyl red TS, and use this solution as the sample solution.

(i) To 20 mL of the sample solution add 0.20 mL of 0.01 mol/L sulfuric acid VS: a red color develops.

(ii) To 20 mL of the sample solution add 0.20 mL of 0.02 mol/L sodium hydroxide VS: a yellow color develops.

(2) Sulfate <2.14—Dissolve 0.05 g of Methamphetamine Hydrochloride in 40 mL of water, add 1 mL of dilute hydrochloric acid and 1 mL of barium chloride TS, and allow to stand for 10 minutes: the solution remains unchanged.

Loss on drying \(<2.41>\) Not more than 0.5% (1 g, 105°C, 2 hours).

Residue on ignition \(<2.44>\) Not more than 0.1% (1 g).

Assay

Weigh accurately about 0.4 g of Methamphetamine Hydrochloride, previously dried, and dissolve in 50 mL of a mixture of acetic anhydride and acetic acid (100) (7:3). Titrate \(<2.50>\) with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 18.57 mg of C$_{10}$H$_{15}$N.HCl

Containers and storage

Containers—Tight containers.
Storage—Light-resistant.

L-Methionine

L-メチオニン

C₅H₁₁NO₅S: 149.21

(2S)-2-Amino-4-(methylsulfanyl)butanoic acid

[63-68-3]

L-Methionine, when dried, contains not less than 98.5% of L-methionine (C₅H₁₁NO₅S).

Description L-Methionine occurs as white, crystals or crystalline powder. It has a characteristic odor.

It is freely soluble in formic acid, soluble in water, and very slightly soluble in ethanol (95).

It dissolves in dilute hydrochloric acid.

Identification Determine the infrared absorption spectrum of L-Methionine, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation <2.44> [α]D: +21.0° to +25.0° (after drying, 0.5 g, 6 mol/L hydrochloric acid TS, 25 mL, 100 mm).

pH <2.54> Dissolve 0.5 g of L-Methionine in 20 mL of water: the pH of this solution is between 5.2 and 6.2.

Purity (1) Clarity and color of solution—Dissolve 0.5 g of L-Methionine in 20 mL of water: the solution is clear and colorless.

(2) Chloride <1.03>—Dissolve 0.5 g of L-Methionine in 20 mL of water, and add 6 mL of dilute nitric acid and water to make 40 mL. Perform the test using this solution as the test solution. Prepare the control solution with 0.30 mL of 0.01 mol/L hydrochloric acid VS, 6 mL of dilute nitric acid and water to make 40 mL. In this test, to the test solution and the control solution add 10 mL each of silver nitrate TS (not more than 0.021%).

(3) Sulfate <1.14>—Perform the test with 0.6 g of L-Methionine. Prepare the control solution with 0.35 mL of 0.005 mol/L sulfuric acid VS (not more than 0.028%).

(4) Ammonium <1.02>—Perform the test with 0.25 g of L-Methionine. Prepare the control solution with 5.0 mL of Standard Ammonium Solution (not more than 0.02%).

(5) Heavy metals <1.07>—Dissolve 1.0 g of L-Methionine in 40 mL of water and 2 mL of dilute acetic acid, dissolve by warming, cool, and add water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution as follows: to 2.0 mL of Standard Lead Solution add 2 mL of dilute acetic acid and water to make 50 mL (not more than 0.20 ppm).

(6) Arsenic <1.17>—Transfer 1.0 g of L-Methionine to a 100-mL decomposition flask, add 5 mL of nitric acid and 2 mL of sulfuric acid, put a small funnel on the mouth of the flask, and heat carefully until white fumes are evolved. After cooling, add 2 mL portions of nitric acid, heat, add 2-mL portions of hydrogen peroxide (30) several times, and heat until the solution becomes colorless or pale yellow. After cooling, add 2 mL of saturated ammonium oxalate monohydrate solution, and heat again until white fumes are evolved. After cooling, add water to make 5 mL, and perform the test with this solution as the test solution (not more than 2 ppm).

(7) Related substances—Dissolve 0.10 g of L-Methionine in 10 mL of water, and use this solution as the sample solution. Pipet 1 mL of the sample solution, and add water to make exactly 50 mL. Pipet 5 mL of this solution, add water to make exactly 20 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>, Spot 5 μL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. After air-drying, immediately develop the plate with a mixture of 1-butanol, water and acetic acid (100) (3:1:1) to a distance of about 10 cm, and dry the plate at 80°C for 30 minutes. Spray evenly a solution of ninhydrin in acetone (1 in 50) on the plate, and heat the plate at 80°C for 5 minutes: the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying <2.41> Not more than 0.30% (1 g, 105°C, 3 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.15 g of L-Methionine, previously dried, and dissolve in 3 mL of formic acid, add 50 mL of acetic acid (100), and titrate <2.50> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 14.92 mg of C₅H₁₁NO₅S

Containers and storage Containers—Tight containers.

Methotrexate

メトトレキサート

C₂₀H₂₂N₄O₇: 454.44

N-[4-{(2,4-Diaminopteridin-6-ylmethyl)(methylamino)benzoyl]-l-glutamic acid [59-05-2]

Methotrexate is a mixture of 4-amino-10-methylfolic acid and closely related compounds.

It contains not less than 94.0% and not more than 102.0% of methotrexate (C₂₀H₂₂N₄O₇), calculated on the anhydrous basis.

Description Methotrexate occurs as a yellow-brown crystalline powder.

It is slightly soluble in pyridine, and practically insoluble in water, in acetonitrile, in ethanol (95) and in diethyl ether.

It dissolves in dilute sodium hydroxide TS and in dilute sodium carbonate TS.

It is gradually affected by light.

Identification (1) Dissolve 1 mg of Methotrexate in 100 mL of 0.1 mol/L hydrochloric acid TS. Determine the absorption spectrum of this solution as directed under Ultra-
Perform the test according to the method under Infrared Spectrophotometry, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Methotrexate RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Methotrexate as directed in the potassium bromide disk method under Infrared Spectrophotometry, and compare the spectrum with the Reference Spectrum or the spectrum of Methotrexate RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Water<2.48> Take 5 mL of pyridine for water determination and 20 mL of methanol for water determination in a dried titration flask, and titrate with Karl Fischer TS until the end point. Weigh accurately about 0.2 g of Methotrexate, immediately place in the titration flask, and add a known excess volume of Karl Fischer TS for water determination. Mix well for 30 minutes, and perform the test: the water content is not more than 12.0%.

Residue on ignition<2.44> Not more than 0.1% (0.5 g).

Assay Weigh accurately about 25 mg each of Methotrexate and Methotrexate RS, dissolve in the mobile phase to make exactly 250 mL, and use these solutions as the sample solution and standard solution. Perform the test with exactly 10 μL each of these solutions as directed under Liquid Chromatography<2.01> according to the following conditions, and determine the peak areas, A₁ and A₃, of methotrexate in each solution.

Amount (mg) of methotrexate (C₄₈H₇₂N₂O₈) = Mₛ × A₁/A₃

Mₛ: Amount (mg) of Methotrexate RS taken, calculated on the anhydrous basis

Operating conditions—

- **Detector:** An ultraviolet absorption photometer (wavelength: 302 nm).
- **Column:** A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadeclsilanized silica gel for liquid chromatography (10 μm in particle diameter).
- **Column temperature:** A constant temperature of about 25°C.
- **Mobile phase:** A mixture of disodium hydrogen phosphate-citric acid buffer solution (pH 6.0) and acetonitrile (89:11).
- **Flow rate:** Adjust so that the retention time of methotrexate is about 8 minutes.

System suitability—

System performance: Dissolve 10 mg each of Methotrexate and folic acid in 100 mL of the mobile phase. When the procedure is run with 10 μL of this solution under the above operating conditions, folic acid and methotrexate are eluted in this order with the resolution between these peaks being not less than 8.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of methotrexate is not more than 1.0%.

Containers and storage Containers—Tight containers.

Storage—Light-resistant.

Methotrexate Capsules

Methotrexate Capsules contain not less than 95.0% and not more than 105.0% of the labeled amount of methotrexate (C₄₈H₇₂N₂O₈: 454.44).

Method of preparation Prepare as directed under Capsules, with Methotrexate.

Identification To an amount of the content of Methotrexate Capsules, equivalent to 2 mg of Methotrexate, add 100 mL of 0.1 mol/L hydrochloric acid TS, shake, and filter. To 10 mL of the filtrate add 0.1 mol/L hydrochloric acid TS to make 20 mL, and determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry<2.24>: it exhibits maxima between 240 nm and 244 nm and between 304 nm and 308 nm.

Uniformity of dosage units<6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To the content of 1 capsule of Methotrexate Capsules add 3V/5 mL of the mobile phase, sonicate for 15 minutes, then shake for 25 minutes, and add the mobile phase to make exactly V mL so that each mL contains about 20 μg of methotrexate (C₄₈H₇₂N₂O₈). Centrifuge this solution, pipet 2 mL of the supernatant liquid, add exactly 2 mL of the internal standard solution, then add the mobile phase to make 20 mL, and use this solution as the sample solution. Separately, weigh accurately about 10 mg of Methotrexate RS (separately determine the water<2.48> in the same manner as Methotrexate), and dissolve in the mobile phase to make exactly 100 mL. Pipet 10 mL of this solution, and add the mobile phase to make exactly 50 mL. Pipet 2 mL of this solution, add exactly 2 mL of the internal standard solution, then add the mobile phase to make 20 mL, and use this solution as the standard solution. Perform the test with 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography<2.01> according to the following conditions, and calculate the ratios, Q₁ and Q₃, of the peak area of methotrexate to that of the internal standard.

Amount (mg) of methotrexate (C₄₈H₇₂N₂O₈) = Mₛ × Q₁/Q₃ × V/500

Mₛ: Amount (mg) of Methotrexate RS taken, calculated on the anhydrous basis

Internal standard solution—A solution of 4-nitrophenol in methanol (1 in 10,000).

Operating conditions—

Proceed as directed in the operating conditions in the Assay.

System suitability—

System performance: Proceed as directed in the system suitability in the Assay.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of methotrexate to that of the internal standard is not more than 1.0%.

Dissolution<6.10> When the test is performed at 50 revolutions per minute according to the Paddle method using the sinker, using 900 mL of water as the dissolution medium, the dissolution rate in 30 minutes of Methotrexate Capsules is...
Internal standard solution—A solution of 4-nitrophenol in methanol (1 in 10,000).

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 302 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadeclsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase: To 250 mL of 0.2 mol/L potassium dihydrogen phosphate TS add 28.5 mL of 0.2 mol/L sodium hydroxide TS and water to make 1000 mL. To 890 mL of this solution add 110 mL of acetonitrile.
Flow rate: Adjust so that the retention time of methotrexate is about 6 minutes.

System suitability—
System performance: Dissolve 10 mg each of methotrexate and folic acid in 100 mL of the mobile phase. To 2 mL of this solution add the mobile phase to make 20 mL. When the procedure is run with 20 μL of this solution under the above operating conditions, folic acid and methotrexate are eluted in this order with the resolution between these peaks being not less than 8.
System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of methotrexate to that of the internal standard is not more than 1.0%.

Containers and storage—Containers—Tight containers.

Methotrexate for Injection
注射用メトトレキサート

Methotrexate for Injection is a preparation for injection which is dissolved before use.
It contains not less than 95.0% and not more than 115.0% of the labeled amount of methotrexate (C₁₉H₂₇N₂O₆: 454.44).

Method of preparation—Prepare as directed under Injections, with Methotrexate.

Description—Methotrexate for Injection occurs as a light yellow to reddish yellow crystalline powder or mass.

Identification—To 1 mL of a solution of Methotrexate for Injection (1 in 400) add 0.1 mol/L hydrochloric acid TS to make 250 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.2.4>, it exhibits maxima between 241 nm and 245 nm, and between 305 nm and 309 nm.

pH—Being specified separately when the drug is granted approval based on the Law.

Water—Being specified separately when the drug is granted approval based on the Law.

Bacterial endotoxins <4.01>—Less than 0.1 EU/mg.

Uniformity of dosage units <6.02>—It meets the requirement of the Mass variation test (T: Being specified separately when the drug is granted approval based on the Law.).

Foreign insoluble matter <6.06>—Perform the test according to Method 2: it meets the requirement.
Insoluble particulate matter \(<6.07> \) It meets the requirement.

Sterility \(<4.06> \) Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Dissolve the contents of 20 containers of Methotrexate for Injection in the mobile phase, wash the containers with the mobile phase, combine the solution of the content and washings, and add the mobile phase to make exactly 1000 mL. Pipet \(V \) mL of this solution, add the mobile phase to make exactly \(V' \) mL so that each mL contains about 0.1 mg of methotrexate (\(C_{20}H_{22}N_2O_5 \)), and use this solution as the sample solution. Separately, weigh accurately about 10 mg of Methotrexate RS (separately determine the water \(<2.48> \) in the same manner as Methotrexate), add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 \(\mu L \) each of the sample solution and standard solution as directed under Liquid Chromatography \(<2.01> \) according to the following conditions, and determine the peak areas, \(A_f \) and \(A_s \), of methotrexate in each solution.

Amount (mg) of methotrexate (\(C_{20}H_{22}N_2O_5 \)) in 1 container of Methotrexate for Injection

\[
M_s = M_f \times A_f / A_s \times V'/V \times 1/2
\]

\(M_s \): Amount (mg) of Methotrexate RS taken, calculated on the anhydrous basis

Operating conditions—

Detector, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay under Methotrexate.

Column: A stainless steel column of 4.6 mm in inside diameter and 25 cm in length, packed with octadeclarylized silica gel for liquid chromatography (5 \(\mu m \) in particle diameter).

System suitability—

System performance: Dissolve 10 mg each of methotrexate and folic acid in 100 mL of the mobile phase. When the procedure is run with 20 \(\mu L \) of this solution under the above operating conditions, folic acid and methotrexate are eluted in this order with the resolution between these peaks being not less than 8.

System repeatability: When the test is repeated 6 times with 20 \(\mu L \) of the standard solution under the above operating conditions, the relative standard deviation of the peak area of methotrexate is not more than 1.0%.

Containers and storage Containers—Hermetic containers.

Storage—Light-resistant.

Methotrexate Tablets

メトトレキサート錠

Methotrexate Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of methotrexate (\(C_{20}H_{22}N_2O_5 \): 454.44). (This monograph is applied to only 2.5-mg tablets.)

Method of preparation Prepare as directed under Tablets, with Methotrexate.

Identification To a quantity of powdered Methotrexate Tablets, equivalent to 2.5 mg of Methotrexate, add 100 mL of diluted hydrochloric acid (1 in 100), shake, and filter or centrifuge. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry \(<2.24> \); it exhibits maxima between 241 nm and 245 nm and between 305 nm and 309 nm.

Uniformity of dosage unit \(<6.02> \) Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 tablet of Methotrexate Tablets add the mobile phase, stir, and add the mobile phase to make exactly \(V' \) mL so that each mL contains about 0.1 mg of methotrexate (\(C_{20}H_{22}N_2O_5 \)). Centrifuge this solution, and use the supernatant liquid as the sample solution. Then, proceed as directed in the Assay.

Amount (mg) of methotrexate (\(C_{20}H_{22}N_2O_5 \))

\[
M_s = M_f \times A_f / A_s \times V'/250
\]

\(M_s \): Amount (mg) of Methotrexate RS taken, calculated on the anhydrous basis

Dissolution \(<6.10> \) When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 45 minutes of Methotrexate Tablets is not less than 85%.

Start the test with 1 tablet of Methotrexate Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 \(\mu m \). Discard not less than 10 mL of the first filtrate, pipet \(V' \) mL of the subsequent filtrate, add water to make exactly \(V' \) mL so that each mL contains about 2.8 \(\mu g \) of methotrexate (\(C_{20}H_{22}N_2O_5 \)), and use this solution as the sample solution. Separately, weigh accurately about 25 mg of Methotrexate RS (separately determine the water \(<2.48> \) in the same manner as Methotrexate), and dissolve in the mobile phase to make exactly 100 mL. Pipet 1 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 50 \(\mu L \) each of the sample solution and standard solution as directed under Liquid Chromatography \(<2.01> \), and determine the peak areas, \(A_f \) and \(A_s \), of methotrexate in each solution.

Dissolution rate (\%) with respect to the labeled amount of methotrexate (\(C_{20}H_{22}N_2O_5 \))

\[
M_s = M_f \times A_f / A_s \times V'/V \times C \times 9
\]

\(M_s \): Amount (mg) of Methotrexate RS taken, calculated on the anhydrous basis

C: Labeled amount (mg) of methotrexate (\(C_{20}H_{22}N_2O_5 \)) in 1 tablet

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 302 nm).

Column: A stainless steel column 4 mm in inside diameter and 15 cm in length, packed with octadeclarylized silica gel for liquid chromatography (5 \(\mu m \) in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: To 250 mL of 0.2 mol/L of potassium dihydrogen phosphate TS add 29 mL of 0.2 mol/L sodium hydroxide TS and water to make 1000 mL. To 890 mL of this solution add 110 mL of acetonitrile.

Flow rate: Adjust so that the retention time of methotrexate is about 4 minutes.

System suitability—

System performance: When the procedure is run with 50 \(\mu L \) of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of methotrexate are not less than 3000 and
not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 50 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of methotrexate is not more than 1.0%.

Assay Weigh accurately the mass of not less than 20 Methotrexate Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 10 mg of methotrexate (C$_{20}$H$_{22}$N$_{5}$O$_{5}$), add 50 mL of the mobile phase, shake, and add the mobile phase to make exactly 100 mL. Centrifuge this solution, and use the supernatant liquid as the sample solution. Separately, weigh accurately about 25 mg of Methoxsalen RS (separately determine the water <2.48> in the same manner as Methotrexate), dissolve in the mobile phase to make exactly 250 mL, and use this solution as the standard solution. Perform the test with exactly 20 µL of each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A$_{1}$ and A$_{S}$, of methotrexate in each solution.

Amount (mg) of methotrexate (C$_{20}$H$_{22}$N$_{5}$O$_{5}$)

\[M_{S} = \frac{A_{S} \times A_{1} / A_{S} \times 2/5}{5} \]

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 302 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 µm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: A mixture of disodium hydrogen phosphate-citric acid buffer solution (pH 6.0) and acetonitrile (89:11).

Flow rate: Adjust so that the retention time of methotrexate is about 8 minutes.

System suitability—

System performance: Dissolve 10 mg each of methotrexate and folic acid in 100 mL of the mobile phase. When the procedure is run with 20 µL of this solution under the above operating conditions, folic acid and methotrexate are eluted in this order with the resolution between these peaks being not less than 8.

System repeatability: When the test is repeated 6 times with 20 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of methotrexate is not more than 1.0%.

Containers and storage Containers—Well-closed containers.

Storage—Light-resistant.

Methoxsalen

メトキサレン

C$_{12}$H$_{8}$O$_{4}$: 216.19

9-Methoxy-7H-furo[3,2-g]chromen-7-one [298-81-7]

Methoxsalen contains not less than 98.0% and not more than 102.0% of methoxsalen (C$_{12}$H$_{8}$O$_{4}$), calculated on the anhydrous basis.

Description Methoxsalen occurs as white to pale yellow, crystals or crystalline powder. It is odorless and tasteless.

It is freely soluble in chloroform, slightly soluble in methanol, in ethanol (95) and in diethyl ether, and practically insoluble in water.

Identification (1) To 10 mg of Methoxsalen add 5 mL of dilute nitric acid, and heat; a yellow color develops. Make this solution alkaline with a solution of sodium hydroxide (2 in 5); the color changes to red-brown.

(2) To 10 mg of Methoxsalen add 5 mL of sulfuric acid, and shake; a yellow color develops.

(3) Determine the absorption spectrum of a solution of Methoxsalen in ethanol (95) (1 in 200,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Methoxsalen RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

Melting point <2.60> 145 - 149°C

Purity (1) Heavy metals <1.07>—Proceed with 1.0 g of Methoxsalen according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(2) Arsenic <1.11>—Prepare the test solution with 1.0 g of Methoxsalen according to Method 3, and perform the test (not more than 2 ppm).

(3) Related substances—Dissolve 50 mg of Methoxsalen in 10 mL of chloroform, and use this solution as the sample solution. Pipet 2 mL of the sample solution, add chloroform to make exactly 50 mL. Pipet 1 mL of this solution, add chloroform to make exactly 10 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 5 µL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of chloroform, hexane and ethyl acetate (40:10:3) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Water <2.48> Not more than 0.5% (1 g, volumetric titration, direct titration).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 50 mg each of Methoxsalen and Methoxsalen RS, and dissolve each in ethanol (95) to
make exactly 100 mL. Pipet 2 mL of each of these solutions, and dilute each with ethanol (95%) to make exactly 25 mL. Pipet 10 mL of each of these solutions, and dilute each again with ethanol (95%) to make exactly 50 mL, and use these solutions as the sample solution and the standard solution, respectively. Determine the absorbances, A_7 and A_9, of the sample solution and the standard solution at 300 nm as directed under Ultraviolet-visible Spectrophotometry <2.24>.

Amount (mg) of methoxsalen (C_{12}H_{18}O_4) = M_5 \times A_7/A_9

M_5: Amount (mg) of Methoxsalen RS taken, calculated on the anhydrous basis

Containers and storage Containers—Well-closed containers. Storage—Light-resistant.

Methylbenactyzium Bromide

メチルベナクチジウム臭化物

C_{19}H_{33}BrNO_3: 422.36
N,N-Diethyl-2-(hydroxy)(diphenyl)acetoxyl-N-methylthalaminium bromide [3166-62-9]

Methylbenactyzium Bromide, when dried, contains not less than 99.0% of methylbenactyzium bromide (C_{19}H_{33}BrNO_3).

Description Methylbenactyzium Bromide occurs as white, crystals or crystalline powder. It is odorless, and has an extremely bitter taste.

It is freely soluble in water and in acetic acid (100), soluble in ethanol (95), slightly soluble in acetic anhydride, and practically insoluble in diethyl ether.

The pH of a solution of 1.0 g of Methylbenactyzium Bromide in 50 mL of water is between 5.0 and 6.0.

Identification (1) Shake 0.5 mL of a solution of Methylbenactyzium Bromide (1 in 100) with 5 mL of phosphate buffer solution (pH 7.0), 2 to 3 drops of bromothymol blue TS and 5 mL of chloroform: a yellow color develops in the chloroform layer.

(2) To about 1 g of Methylbenactyzium Bromide add 5 mL of water and 10 mL of sodium hydroxide TS, allow to stand for 5 minutes, add 5 mL of dilute hydrochloric acid, collect the precipitate, wash well with water, recrystallize from a mixture of water and ethanol (95) (10:3), and dry at 105°C for 1 hour: the crystals melt <2.60> between 145°C and 150°C. Continue the heating up to about 200°C: a red color develops.

(3) Add 2 mL of dilute nitric acid to 5 mL of a solution of Methylbenactyzium Bromide (1 in 10): the solution responds to Qualitative Tests <1.109> (1) for bromide.

Melting point <2.60> 168 – 172°C

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Methylbenactyzium Bromide in 10 mL of water: the solution is clear and colorless.

(2) Sulfate <1.14>—Perform the test with 0.5 g of Methylbenactyzium Bromide. Prepare the control solution with 0.40 mL of 0.005 mol/L sulfuric acid VS (not more than 0.038%).

(3) Heavy metals <1.07>—Proceed with 2.0 g of Methylbenactyzium Bromide according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

Loss on drying <2.41> Not more than 0.5% (2 g, 105°C, 2 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.5 g of Methylbenactyzium Bromide, previously dried, and dissolve in 80 mL of a mixture of acetic anhydride and acetic acid (100) (4:1). Titrate <2.50> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 42.24 mg of C_{19}H_{33}BrNO_3

Containers and storage Containers—Tight containers.

Methylcellulose

メチルセルロース

[9004-67-5]

This monograph is harmonized with the European Pharmacopoeia and the U.S. Pharmacopoeia.

The corresponding part of the attributes/provisions which are agreed as non-harmonized within the scope of the harmonization are marked with symbols (◆), and the corresponding parts which are agreed as the JP local requirement other than the scope of the harmonization are marked with symbols (◇).

Information on the harmonization with the European Pharmacopoeia and the U.S. Pharmacopeia is available on the website of the Pharmaceuticals and Medical Devices Agency.

Methylcellulose is a methyl ether of cellulose. It contains not less than 26.0% and not more than 33.0% of methoxy group (-OCH_3: 31.03), calculated on the dried basis.

The viscosity of Methylcellulose is shown in millipascal second (mPa·s).

◆**Description** Methylcellulose occurs as a white to yellowish white, powder or grains.

It is practically insoluble in ethanol (99.5).

It swells, when water is added, and forms a clear or slightly turbid, viscous liquid.

Identification (1) Disperse evenly 1.0 g of Methylcellulose over the surface of 100 mL of water in a beaker, while gently tapping the top of the beaker, if necessary, and allow the beaker to stand: it aggregates on the surface of water.

(2) Add 1.0 g of Methylcellulose to 100 mL of hot water, and stir: it becomes a suspension. Cool the suspension to 5°C, and stir: the resulting liquid is a clear or a slightly cloudy, viscous fluid.

(3) To 0.1 mL of the viscous fluid obtained in (2) add 9 mL of diluted sulfuric acid (9 in 10), shake, heat in a water bath for exactly 3 minutes, and immediately cool in ice water. Add carefully 0.6 mL of ninhydrin TS, shake, and
allow to stand at 25°C: the solution shows a red color, and it does not change to purple color within 100 minutes.

(4) Pour and spread out 2 to 3 mL of the viscous fluid obtained in (2) onto a glass plate, and allow the water to evaporate: a transparent film results.

(5) Pipet 50 mL of water, add exactly 50 mL of the viscous fluid obtained in (2), and warm to raise the temperature at a rate of 2 to 5°C per minute while stirring: the temperature, when a white turbidity of the solution starts to increase, is not less than 50°C.

Viscosity \(\leq 2.53 \) (i) Method I: Apply to Methylcellulose having a labeled viscosity of less than 600 mPa·s. Put an exact amount of Methylcellulose, equivalent to 4.000 g, calculated on the dried basis, in a tared, wide-mouth bottle, add water (between 90°C and 99°C) to make 200 g, stopper the bottle, stir by mechanical means at 350 to 450 revolutions per minute for 10 to 20 minutes to get a homogeneous dispersion. If necessary, take off the sample attached on the walls of the bottle, put them in the dispersed solution, and dissolve by continuing the stirring in a water bath at not exceeding 5°C for 20 to 40 minutes. Add cold water, if necessary, to make 200 g, and use this solution as the sample solution. Centrifuge the solution if necessary to expel any entrapped air bubbles. Perform the test with the sample solution at 20 ± 0.1°C as directed in Method I under Viscosity Determination: not less than 80% and not more than 120% of the labeled viscosity.

(ii) Method II: Apply to Methylcellulose having a labeled viscosity of not less than 600 mPa·s. Put an exact amount of Methylcellulose, equivalent to 10.00 g, calculated on the dried basis, in a tared, wide-mouth bottle, add water (between 90°C and 99°C) to make 500 g, and prepare the sample solution in the same manner as directed in Method I. Perform the test with the sample solution at 20 ± 0.1°C as directed in Method II under Viscosity Determination, using a single cylinder-type rotational viscometer, according to the following operating conditions: not less than 75% and not more than 140% of the labeled viscosity.

Operating conditions—

Apparatus: Brookfield type viscometer LV model or an equivalent apparatus.

Rotor No., rotation frequency, and calculation multiplier: According to the following table, depending on the labeled viscosity.

<table>
<thead>
<tr>
<th>Labeled viscosity (mPa·s)</th>
<th>Rotor No.</th>
<th>Rotation frequency /min</th>
<th>Calculation multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not less than 600 and less than 1400</td>
<td>3000</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>2400</td>
<td>3500</td>
<td>12</td>
<td>100</td>
</tr>
<tr>
<td>3500</td>
<td>9500</td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>4950</td>
<td>99,500</td>
<td>6</td>
<td>1000</td>
</tr>
<tr>
<td>99,500</td>
<td>4</td>
<td>3</td>
<td>2000</td>
</tr>
</tbody>
</table>

Procedure of apparatus: Read the value after 2 minutes of rotation, and stop the rotation for at least 2 minutes. Repeat this procedure more two times, and average the three observed values.

pH \(\leq 2.54 \) The pH of the sample solution obtained in the Viscosity, measured after 5 minutes immersing the electrode in the sample solution, is between 5.0 and 8.0.

Purity Heavy metals—Put 1.0 g of Methylcellulose in a 100-mL Kjeldahl flask, add a sufficient amount of a mixture of nitric acid and sulfuric acid (5:4) to wet the sample, and heat gently. Repeat this procedure until to use totally 18 mL of the mixture of nitric acid and sulfuric acid (5:4). Then boil gently until the solution changes to black. After cooling, add 2 mL of nitric acid, and heat until the solution changes to black. Repeat this procedure until the solution no longer changes to black, and heat strongly until dense white fumes are evolved. After cooling, add 5 mL of water, boil gently until dense white fumes are evolved, then heat until the volume of the solution becomes to 2 to 3 mL. After cooling, if the solution reveals yellow color by addition of 5 mL of water, add 1 mL of hydrogen peroxide (30), and heat until the volume of the solution becomes to 2 to 3 mL. After cooling, dilute the solution with 2 to 3 mL of water, transfer to a Nessler tube, add water to make 25 mL, and use this solution as the sample solution. Separately, put 2.0 mL of Standard Lead Solution in a 100-mL Kjeldahl flask, add 18 mL of the mixture of nitric acid and sulfuric acid (5:4) and an amount of nitric acid equal to that used for preparation of the sample solution, and heat until dense white fumes are evolved. After cooling, add 10 mL of water. In the case where hydrogen peroxide (30) is added for the preparation of the sample solution, add the same amount of hydrogen peroxide (30), then proceed in the same manner for preparation of the sample solution, and use so obtained solution as the control solution. Adjust the sample solution and the control solution to pH 3.0 to 4.0 with ammonia solution (28), and add water to make 40 mL, respectively. To these solutions add 1.2 mL of thioacetamide-alkaline glycerin TS, 2 mL of acetate buffer solution (pH 3.5) and water to make 50 mL, separately. After allowing to stand for 5 minutes, observe vertically both tubes on a white background: the color obtained with the sample solution is not more intense than that with the control solution (not more than 20 ppm).

Loss on drying \(\leq 2.47 \) Not more than 5.0% (1 g, 105°C, 1 hour).

Residue on ignition \(\leq 2.44 \) Not more than 1.5% (1 g).

Assay (i) Apparatus—Reaction vial: A 5-mL pressure-tight serum vial, having 20 mm in outside diameter and 50 mm in height, the neck 20 mm in outside diameter and 13 mm in inside diameter, equipped with a septum of butylrubber processed the surface with fluoroplastics, which can be fixed tightly to vial with aluminum cap, or equivalent.

Heater: A square-shaped aluminum block, having holes 20 mm in diameter and 32 mm in depth, adopted to the reaction vial. Capable of stirring the content of the reaction vial by means of magnetic stirrer or of reciprocal shaker about 100 times per minute.

(ii) Procedure—Weigh accurately about 65 mg of Methylcellulose, transfer to a reaction vial, add 60 to 100 mg of adipic acid, 2.0 mL of the internal standard solution and 2.0 mL of hydroiodic acid, immediately stopper the vial tightly, and weigh accurately. Using a magnetic stirrer equipped in the heating module, or using a shaker, stir for 60 minutes while heating so that the temperature of the vial content is 130 ± 2°C. In the case when a magnetic stirrer or shaker is not available, heat for 30 minutes with repeated shaking at 5-minute intervals by hand, and continue heating for an additional 30 minutes. Allow the vial to cool, and again weigh accurately. If the mass loss is less than 26 mg and there is no evidence of a leak of the content, use the upper layer of the mixture as the sample solution. Separately, put 60 to 100 mg of adipic acid, 2.0 mL of the internal standard solution and 2.0 mL of hydroiodic acid in a reaction vial, immediately stopper the vial tightly, and weigh accurately. Add 45 μL of iodomethane for assay through the septum using a micro-syringe, weigh accurately, shake, and use...
the upper layer of the mixture as the standard solution. Perform the test with 1 to 2 μL each of the sample solution and standard solution as directed under Gas Chromatography <2.02> according to the following conditions, and calculate the ratios, \(Q_T \) and \(Q_S \), of the peak area of iodomethane to that of the internal standard.

\[
\text{Content (\% of methoxy group (CH}_2\text{O)) = M_S/M \times Q_T/Q_S \times 21.86}
\]

\(M_S \): Amount (mg) of iodomethane for assay taken
\(M \): Amount (mg) of Methylcellulose taken, calculated on the dried basis

Internal standard solution—A solution of n-octane in o-xylene (3 in 100).

Operating conditions—
Detector: A thermal conductivity detector or hydrogen flame-ionization detector.
Column: A fused silica column 0.53 mm in inside diameter and 30 m in length, coated with dimethylpolysiloxane for gas chromatography in 3 μm thickness. Use a guard column, if necessary.
Column temperature: Maintain the temperature at 50°C for 3 minutes, raise to 100°C at a rate of 10°C per minute, then raise to 250°C at a rate of 35°C per minute, and maintain at 250°C for 8 minutes.
Injection port temperature: A constant temperature of about 250°C.
Detector temperature: A constant temperature of about 280°C.
Carrier gas: Helium.
Flow rate: 4.3 mL per minute (the retention time of the internal standard is about 10 minutes).
Split ratio: 1:40.

System suitability—
System performance: When the procedure is run with 1 – 2 μL of the standard solution under the above operating conditions, iodomethane and the internal standard are eluted in the same order with the resolution between these peaks being not less than 5.
System repeatability: When the test is repeated 6 times with 1 – 2 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of iodomethane to that of the internal standard is not more than 2.0%.

Containers and storage—Containers—Well-closed containers.

Methyldopa Hydrate

メチルドパ水和物

[Chemical Structure Image]

\(\text{C}_{10}\text{H}_{13}\text{NO}_{4} \times \frac{1}{2} \text{H}_2\text{O} \): 238.24
(25)-2-Amino-3-(3,4-dihydroxyphenyl)-2-methylpropanoic acid sesquihydrate

[41372-08-1]

Methyldopa Hydrate contains not less than 98.0% of methyldopa (\(\text{C}_{10}\text{H}_{13}\text{NO}_{4} \): 211.21), calculated on the anhydrous basis.

Description—Methyldopa Hydrate occurs as a white to pale grayish white crystalline powder.

It is slightly soluble in water, in methanol and in acetic acid (100), very slightly soluble in ethanol (95), and practically insoluble in diethyl ether.

It dissolves in dilute hydrochloric acid.

Identification—
(1) To 10 mg of Methyldopa Hydrate add 3 drops of ninhydrin TS, and heat in a water bath for 3 minutes: a purple color develops.

(2) Determine the absorption spectrum of a solution of Methyldopa Hydrate in 0.1 mol/L hydrochloric acid TS (1 in 25,000) as directed under Ultraviolet-visible Spectrophotometry <2.44>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Methyldopa RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(3) Determine the infrared absorption spectrum of Methyldopa Hydrate as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of Methyldopa RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation—
\(\langle 2.49 \rangle [\alpha]_{D}^{20} = -25 \sim -28^\circ \) (1 g calculated on the anhydrous basis, aluminum (III) chloride TS, 20 mL, 100 mm).

Purity—
(1) Acidity—Shake 1.0 g of Methyldopa Hydrate with 100 mL of freshly boiled and cooled water, and add 0.20 mL of 0.1 mol/L sodium hydroxide VS and 2 drops of methyl red TS: a yellow color develops.

(2) Chloride—\(\langle 1.03 \rangle \)—Perform the test with 0.5 g of Methyldopa Hydrate. Prepare the control solution with 0.40 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.028%).

(3) Heavy metals—\(\langle 1.07 \rangle \)—Proceed with 2.0 g of Methyldopa Hydrate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(4) Arsenic—\(\langle 1.11 \rangle \)—Prepare the test solution with 1.0 g of Methyldopa Hydrate in 5 mL of dilute hydrochloric acid, and perform the test (not more than 2 ppm).

(5) 3-O-Methylmethyldopa—Dissolve 0.10 g of Methyldopa Hydrate in methanol to make exactly 10 mL, and use this solution as the sample solution. Separately, dissolve 5 mg of 3-O-methylmethyldopa for thin-layer chromatography in methanol to make exactly 100 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.07>. Spot 20 μL each of the sample solution and standard solution on a plate of cellulose for thin-layer chromatography. Develop the plate with a mixture of 1-butanol, water and acetic acid (100) (13:5:3) to a distance of about 10 cm, and air-dry the plate. Spray evenly 4-nitroaniline-sodium nitrite TS on the plate, and air-dry the plate, then spray evenly a solution of sodium carbonate decahydrate (1 in 4) on the plate: the spot obtained from the sample solution corresponding to that from the standard solution is not more intense than the spot from the standard solution.

Water—\(\langle 2.48 \rangle \) 10.0 – 13.0% (0.2 g, volumetric titration, direct titration).

Residue on ignition—\(\langle 2.44 \rangle \) Not more than 0.1% (1 g).

Assay—Weigh accurately about 0.3 g of Methyldopa Hydrate, dissolve in 80 mL of acetic acid (100), and titrate with 0.1 mol/L perchloric acid VS until the color of the solution changes from purple through blue to blue-green.
Methyldopa Tablets

メチルドパ錠

Methyldopa Tablets contain not less than 90.0% and not more than 110.0% of the labeled amount of methyldopa (C_{10}H_{13}NO_{2} \cdot 211.21).

Method of preparation Prepare as directed under Tablets, with Methyldopa Hydrate.

Identification (1) To a quantity of powdered Methyldopa Tablets, equivalent to 0.1 g of Methyldopa Hydrate, add 10 mL of water, and heat in a water bath for 5 minutes with occasional shaking. After cooling, centrifuge for 5 minutes at 2000 rotations per minute, apply 1 drop of the supernatant solution to a filter paper, and dry with warm air. Place 1 drop of ninhydrin TS over the spot, and heat for 5 minutes at 100°C: a purple color develops.

(2) To 0.5 mL of the supernatant liquid obtained in (1) add 2 mL of 0.05 mol/L sulfuric acid TS, 2 mL of iron (II) tartrate TS and 4 drops of ammonia TS, and shake well: a deep purple color develops.

(3) To 0.7 mL of the supernatant liquid obtained in (1) add 0.1 mol/L hydrochloric acid TS to make 20 mL. To 10 mL of this solution add 0.1 mol/L hydrochloric acid TS to make 100 mL, and determine the absorption spectrum of the solution as directed under Ultraviolet-visible Spectrophotometry <2.24> : it exhibits a maximum between 277 nm and 283 nm.

Uniformity of dosage units <6.02> Perform the test according to the following methods: it meets the requirements of the Content uniformity test.

To 1 tablet of Methyldopa Tablets add 50 mL of 0.05 mol/L sulfuric acid TS, shake for 15 minutes, then add 0.05 mol/L sulfuric acid TS to make exactly 100 mL, and filter. Discard the first 20 mL of the filtrate, pipet V mL of the subsequent filtrate equivalent to about 5 mg of methyldopa (C_{10}H_{13}NO_{2}), add exactly 5 mL of iron (II) tartrate TS, then add ammonia-ammonium acetate buffer solution (pH 8.5) to make exactly 100 mL, and use this solution as the sample solution. Separately, weigh accurately about 0.11 g of Methyldopa RS (separately determine the loss on drying (indicator: 2 to 3 drops of crystal violet TS). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS
= 21.12 mg of C_{10}H_{13}NO_{2}

Containers and storage Containers—Well-closed containers.

Storage—Light-resistant.

Dissolution <6.0> When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 60 minutes of Methyldopa Tablets is not less than 75%.

Start the test with 1 tablet of Methyldopa Tablets, withdraw not less than 30 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.8 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add water to make exactly V’ mL so that each mL contains about 25 μg of methyldopa (C_{10}H_{13}NO_{2}), and use this solution as the sample solution. Separately, weigh accurately about 56 mg of methyldopa for assay (separately determine the loss on drying <2.41> at 125°C for 2 hours), and dissolve in water to make exactly 200 mL. Pipet 10 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution. Determine the absorbances, A_{T} and A_{S}, of the sample solution and the standard solution at 280 nm as directed under Ultraviolet-visible Spectrophotometry <2.24>.

Dissolution rate (%) with respect to the labeled amount of methyldopa (C_{10}H_{13}NO_{2})
= M_{S} \times A_{T}/A_{S} \times V’/V \times 1/C \times 45

M_{S}: Amount (mg) of methyldopa for assay taken, calculated on the dried basis
C: Labeled amount (mg) of methyldopa (C_{10}H_{13}NO_{2}) in 1 tablet

Assay Weigh accurately and powder not less than 20 Methyldopa Tablets. Weigh accurately a portion of the powder, equivalent to about 0.1 g of methyldopa (C_{10}H_{13}NO_{2}), add 50 mL of 0.05 mol/L sulfuric acid TS, shake thoroughly for 15 minutes, add 0.05 mol/L sulfuric acid TS to make exactly 100 mL, and filter through a dry filter paper. Discard the first 20 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 0.11 g of Methyldopa RS (separately determine the loss on drying <2.41> at 125°C for 2 hours), dissolve in 0.05 mol/L sulfuric acid TS to make exactly 100 mL, and use this solution as the standard solution. Pipet 5 mL each of the sample solution and standard solution, add exactly 5 mL of iron (II) tartrate TS, and add ammonia-ammonium acetate buffer solution (pH 8.5) to make exactly 100 mL. Perform the test with these solutions as directed under Ultraviolet-visible Spectrophotometry <2.24>, using a solution prepared with 5 mL of 0.05 mol/L sulfuric acid TS in the same manner, as the blank. Determine the absorbances, A_{T} and A_{S}, of the subsequent solutions of the sample solution and the standard solution at 520 nm, respectively.

Amount (mg) of methyldopa (C_{10}H_{13}NO_{2})
= M_{S} \times A_{T}/A_{S}

M_{S}: Amount (mg) of Methyldopa RS taken, calculated on the dried basis

Containers and storage Containers—Well-closed containers.
dl-Methylephedrine Hydrochloride

dl-メチルエフェドリン塩酸塩

![Chemical Structure](image)

C₈H₁₁NO.HCl: 215.72

(1RS,2SR)-2-Dimethylamino-1-phenylpropan-1-ol monohydrochloride

[18760-80-0]

dl-Methylephedrine Hydrochloride, when dried, contains not less than 99.0% and not more than 101.0% of dl-methylephedrine hydrochloride (C₈H₁₁NO.HCl).

Description *dl-Methylephedrine Hydrochloride occurs as colorless crystals or a white crystalline powder.

It is freely soluble in water, sparingly soluble in ethanol (99.5), slightly soluble in acetic acid (100), and practically insoluble in acetic anhydride.

A solution of *dl-Methylephedrine Hydrochloride* (1 in 20) shows no optical rotation.

Identification (1) Determine the absorption spectrum of a solution of *dl-Methylephedrine Hydrochloride* (1 in 2000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of *dl-Methylephedrine Hydrochloride*, previously dried, as directed in the potassium chloride disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) A solution of *dl-Methylephedrine Hydrochloride* (1 in 10) responds to Qualitative Tests <1.09> for chloride.

pH <2.34> The pH of a solution prepared by dissolving 1.0 g of *dl-Methylephedrine Hydrochloride* in 20 mL of water is between 4.5 and 6.0.

Melting point <2.60> 207 – 211°C

Purity (1) Clarity and color of solution—Dissolve 1.0 g of *dl-Methylephedrine Hydrochloride* in 10 mL of water: the solution is clear and colorless.

(2) Heavy metals <1.07>—Proceed with 1.0 g of *dl-Methylephedrine Hydrochloride* according to Method 4, and perform the test. Prepare the control solution with 1.0 mL of Standard Lead Solution (not more than 10 ppm).

(3) Related substances—Dissolve 50 mg of *dl-Methylephedrine Hydrochloride* in 20 mL of water, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add water to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions, and determine each peak area by the automatic integration method: the total area of the peaks other than the peak of methylephedrine obtained from the sample solution is not larger than the peak area of methylephedrine from the standard solution.

Operating conditions—

Detector: An ultraviolet absorption photometer (wave-length: 257 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecysilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: Dissolve 13.6 g of potassium dihydrogen phosphate and 3 g of sodium 1-heptane sulfonate in 1000 mL of water, and adjust the pH to 2.5 with phosphoric acid. To 900 mL of this solution add 200 mL of acetonitrile.

Flow rate: Adjust so that the retention time of methylephedrine is about 10 minutes.

Time span of measurement: About 2 times as long as the retention time of methylephedrine, beginning after the solvent peak.

System suitability—

Test for required detectability: To exactly 2 mL of the standard solution add water to make exactly 20 mL. Confirm that the peak area of methylephedrine obtained with 20 μL of this solution is equivalent to 7 to 13% of that with 20 μL of the standard solution.

System performance: Dissolve 50 mg of *dl-Methylephedrine Hydrochloride* and 0.4 mg of methyl parahydroxybenzoate in 50 mL of water. When the procedure is run with 20 μL of this solution under the above operating conditions, methylephedrine and methyl parahydroxybenzoate are eluted in this order with the resolution between these peaks being not less than 3.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of methylephedrine is not more than 2.0%.

Loss on drying <2.41> Not more than 0.5% (1 g, 105°C, 3 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.4 g of *dl-Methylephedrine Hydrochloride*, previously dried, dissolve in 80 mL of a mixture of acetic anhydride and acetic acid (100) (7:3), and titrate <2.50> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 21.57 mg of C₈H₁₁NO.HCl.

Containers and storage Containers—Well-closed containers.

Storage—Light-resistant.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.)
10% *dl*-Methylephedrine Hydrochloride Powder

dl-メチルエフェドリン塩酸塩 10%

10% *dl*-Methylephedrine Hydrochloride Powder contains not less than 9.3% and not more than 10.7% of *dl*-methylephedrine hydrochloride (C₁₁H₁₇NO.HCl: 215.72).

Method of preparation

dl-Methylephedrine Hydrochloride 100 g
Starch, Lactose Hydrate or their mixture a sufficient quantity

Prepare as directed under Granules or Powders, with the above ingredients.

Identification To 0.5 g of 10% *dl*-Methylephedrine Hydrochloride Powder add 100 mL of water, shake vigorously for 20 minutes, if necessary, filter the solution. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry: it exhibits maxima between 250 nm and 253 nm, between 255 nm and 259 nm, and between 261 nm and 264 nm.

Dissolution 6.10D When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 15 minutes of 10% *dl*-Methylephedrine Hydrochloride Powder is not less than 85%.

Start the test with about 0.5 g of 10% *dl*-Methylephedrine Hydrochloride Powder, accurately weighed, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 2 mL of the first filtrate, pipet 2 mL of the subsequent filtrate, and use this solution as the sample solution. Separately, weigh accurately about 22 mg of *dl*-methylephedrine hydrochloride for assay, previously dried at 105°C, and use this solution as the standard solution. Perform the test with exactly 20 μL of each of the sample solution and standard solution as directed under Liquid Chromatography 2.01D according to the following conditions, and determine the peak areas, Aₗ and Aₛₗ, of methylephedrine in each solution.

Dissolution rate (%) with respect to the labeled amount of *dl*-methylephedrine hydrochloride (C₁₁H₁₇NO.HCl) = Mₗ/M₉ × Aₗ/Aₛₗ × 9/4

Mₗ: Amount (mg) of *dl*-methylephedrine hydrochloride for assay taken
M₉: Amount (g) of 10% *dl*-Methylephedrine Hydrochloride Powder taken

Operating conditions—
Column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.
Detector: An ultraviolet absorption photometer (wavelength: 220 nm).

System suitability—
System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of methylephedrine are not less than 5000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of methylephedrine is not more than 2.0%.

Assay Weigh accurately about 0.5 g of 10% *dl*-Methylephedrine Hydrochloride Powder, add exactly 4 mL of the internal standard solution and 25 mL of water, shake vigorously for 20 minutes to dissolve, add water to make 50 mL, filter through a membrane filter with a pore size not exceeding 0.45 μm, if necessary, discard the first 10 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 50 mg of *dl*-methylephedrine hydrochloride for assay, previously dried at 105°C for 3 hours, add exactly 4 mL of the internal standard solution and water to make 50 mL, and use this solution as the standard solution. Perform the test with 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography 2.01D according to the following conditions, and calculate the ratios of the peak area, Qₗ and Qₛ, of methylephedrine to that of the internal standard.

Amount (mg) of *dl*-methylephedrine hydrochloride (C₁₁H₁₇NO.HCl) = Mₗ × Qₗ/Qₛ

Mₗ: Amount (mg) of *dl*-methylephedrine hydrochloride for assay taken

Internal standard solution—A solution of methyl parahydroxybenzoate in acetonitrile (1 in 10,000).
 Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 257 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilsilane silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase: Dissolve 13.6 g of potassium dihydrogen phosphate and 3 g of sodium 1-heptane sulfonate in 1000 mL of water, and adjust the pH to 2.5 with phosphoric acid. To 900 mL of this solution add 200 mL of acetonitrile.
Flow rate: Adjust so that the retention time of methylephedrine is about 10 minutes.

System suitability—
System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, methylephedrine and the internal standard are eluted in this order with the resolution between these peaks being not less than 3.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of methylephedrine to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Well-closed containers.
Storage—Light-resistant.
Methylergometrine Maleate

メチルエルゴメトリンマレイン酸塩

\[
\text{C}_{20}\text{H}_{25}\text{N}_{2}\text{O}_{3}\cdot\text{C}_{4}\text{H}_{8}\text{O}_{4}: \quad 455.50
\]

(8R)-N-[(1S)-1-(Hydroxymethyl)propyl]-6-methyl-9,10-
didehydroergoline-8-carboxamide monomaleate

[M5432-61-8]

Methylergometrine Maleate, when dried, contains not less than 95.0% and not more than 105.0% of methylergometrine maleate (C_{20}H_{25}N_{2}O_{3}·C_{4}H_{8}O_{4}).

Description

Methylergometrine Maleate occurs as a white to pale yellow crystalline powder. It is odorless. It is slightly soluble in water, in methanol and in ethanol (95), and practically insoluble in diethyl ether. It gradually changes to yellow by light.

Melting point: about 190°C (with decomposition).

Identification (1) A solution of Methylergometrine Maleate (1 in 200) shows a blue fluorescence.

(2) The colored solution obtained in the Assay develops a deep blue in color. Determine the absorption spectrum of the colored solution as directed under Ultraviolet-visible Spectrophotometry (2.24), and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Methylergometrine Maleate RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(3) To 5 mL of a solution of Methylergometrine Maleate (1 in 500) add 1 drop of potassium permanganate TS: the red color of the test solution fades immediately.

Optical rotation <2.49> [α]_D^20: +44° – +50° (after drying, 0.1 g, water, 20 mL, 100 mm).

Purity Related substances—Conduct this procedure without exposure to light, using light-resistant vessels. Dissolve 8 mg of Methylergometrine Maleate in 2 mL of a mixture of ethanol (95) and ammonia solution (28) (9:1), and use this solution as the sample solution. Pipet 1 mL of the sample solution, add a mixture of ethanol (95) and ammonia solution (28) (9:1) to make exactly 100 mL, and use this solution as the standard solution. Perform the test immediately with these solutions as directed under Thin-layer Chromatography (2.07). Spot 10 µL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography, and immediately develop the plate with a mixture of chloroform, methanol and water (75:25:3) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 365 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying <2.47> Not more than 2.0% (0.2 g, in vacuum, phosphorus (V) oxide, 4 hours).

Assay Weigh accurately about 10 mg each of Methylergometrine Maleate and Methylergometrine Maleate RS, previously dried, add water to make exactly 250 mL, and use these solutions as the sample solution and the standard solution. Pipet 2 mL each of the sample solution and the standard solution separately into brown glass-stoppered test tubes, add exactly 4 mL each of 4-dimethylaminobenzaldehyde-iron (III) chloride TS while ice cooling, warm for 10 minutes at 45°C, and allow to stand for 20 minutes at room temperature. Perform the test with these solutions as directed under Ultraviolet-visible Spectrophotometry <2.24>, using a solution, prepared with 2.0 mL of water in the same manner, as the blank. Determine the absorbances, A_1 and A_2, of the subsequent solutions of the sample solution and the standard solution at 545 nm, respectively.

\[
M_5: \text{Amount (mg) of methylergometrine maleate} \\
(C_{20}H_{25}N_{2}O_{3}·C_{4}H_{8}O_{4}) = M_x \times A_1/A_2
\]

Containers and storage Containers—Tight containers.

Storage—Light-resistant.

Methylergometrine Maleate Tablets

メチルエルゴメトリンマレイン酸塩錠

Methylergometrine Maleate Tablets contain not less than 90.0% and not more than 110.0% of the labeled amount of methylergometrine maleate (C_{20}H_{25}N_{2}O_{3}·C_{4}H_{8}O_{4}: 455.50).

Method of preparation Prepare as directed under Tablets, with Methylergometrine maleate.

Identification (1) The sample solution obtained in the Assay shows a blue fluorescence.

(2) The colored solution obtained in the Assay shows a deep blue color. Determine the absorption spectrum of the colored solution as directed under Ultraviolet-visible Spectrophotometry <2.24>: it exhibits maxima between 543 nm and 547 nm and between 620 nm and 630 nm.

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

Transfer 1 tablet of Methylergometrine Maleate Tablets to a brown glass-stoppered centrifuge tube, add 10 mL of water, shake for 10 minutes vigorously, and disintegrate the tablet. Add 3 g of sodium chloride and 2 mL of ammonia solution (28), add exactly 25 mL of chloroform, and after vigorous shaking for 10 minutes, centrifuge for 5 minutes. Discard the water layer, take the chloroform extracts, add chloroform to make exactly V mL of a solution containing about 5 µg of methylergometrine maleate (C_{20}H_{25}N_{2}O_{3}·C_{4}H_{8}O_{4}) per mL, and use this solution as the sample solution. Separately, weigh accurately about 1.25 mg of Methylergometrine Maleate RS, previously dried in a desiccator (in vacuum, phosphorus (V) oxide) for 4 hours, and dissolve in water to make exactly 100 mL. Pipet 10 mL of this solution into a brown glass-stoppered centrifuge tube, and add 3 g of sodium chloride and 2 mL of ammonia solution (28). Add exactly 25 mL of chloroform, shake vigorously for 10 minutes, and centrifuge for 5 minutes. Discard the water layer, and use the chloroform layer as the standard solution. Pipet 20 mL each of the sample solution and the
standard solution separately into brown glass-stoppered centrifuge tubes, add immediately exactly 10 mL of dilute 4-dimethylaminobenzaldehydesulfonic acid (III) chloride TS, and shake for 5 minutes vigorously. Centrifuge these solutions for 5 minutes, take the water layers, and allow them to stand for 1 hour. Perform the test with these solutions as directed under Ultraviolet-visible Spectrophotometry (2.24), using dilute 4-dimethylaminobenzaldehydesulfonic acid (III) chloride TS as the blank. Determine the absorbances, A_T and A_S, of the subsequent solutions of the sample solution and standard solution at 545 nm, respectively.

Amount (mg) of methylergometrine maleate

$$\text{Amount (mg) of methylergometrine maleate} = M_s \times \frac{A_T}{A_S} \times \frac{V}{250}$$

M_s: Amount (mg) of Methylergometrine Maleate RS taken

Dissolution (6.10) When the test is performed at 100 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate is 30 minutes of Methylergometrine Maleate Tablets is not less than 70%.

Start the test with 1 tablet of Methylergometrine Maleate Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.8 μm. Discard not less than 10 mL of the first filtrate, to exactly V mL of the subsequent filtrate add water to make exactly V' mL so that each mL contains about 0.13 μg of methylergometrine maleate (C$_{20}$H$_{22}$N$_2$O$_2$·C$_6$H$_{12}$O$_2$), and use this solution as the sample solution. Separately, weigh accurately about 25 mg of Methylergometrine Maleate RS, previously dried in a desiccator (in vacuum, phosphorus (V) oxide) for 4 hours, and dissolve in water to make exactly 100 mL. Pipet 5 mL of this solution, add water to make exactly 100 mL, then pipet 1 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution. Determine immediately the intensity of the fluorescence, F_T and F_S, of the sample solution and standard solution at 338 nm as the excitation wavelength and at 427 nm as the fluorescence wavelength as directed under Fluorometry (2.22).

Dissolution rate (%) with respect to the labeled amount of methylergometrine maleate (C$_{20}$H$_{22}$N$_2$O$_2$·C$_6$H$_{12}$O$_2$) is

$$\text{Dissolution rate} = \frac{M_s \times \frac{A_T}{A_S} \times \frac{V}{250}}{100} \times 100$$

M_s: Amount (mg) of Methylergometrine Maleate RS taken

C: Labeled amount (mg) of methylergometrine maleate (C$_{20}$H$_{22}$N$_2$O$_2$·C$_6$H$_{12}$O$_2$) in 1 tablet

Assay Weigh accurately and powder not less than 20 Methylergometrine Maleate Tablets. Weigh accurately a portion of the powder, equivalent to about 0.3 mg of methylergometrine maleate (C$_{20}$H$_{22}$N$_2$O$_2$·C$_6$H$_{12}$O$_2$), transfer to a brown separator, add 15 mL of sodium hydrogen carbonate solution (1 in 20), and extract with four 20-mL portions of chloroform. Filter each portion of the chloroform extracts through a pledget of absorbent cotton, previously moistened with chloroform, into another dried, brown separator, combine all the extracts, and use this extract as the sample solution. Separately, weigh accurately about 10 mg of Methylergometrine Maleate RS, previously dried in a desiccator (silica gel) for 4 hours, dissolve in water, and add water to make exactly 100 mL. Pipet 3 mL of this solution, and transfer to a brown separator, proceed in the same manner as the preparation of the sample solution, and use this extract as the standard solution. To each total volume of the sample solution and the standard solution add exactly 25 mL of dilute 4-dimethylaminobenzaldehydesulfonic acid (III) chloride TS, and after vigorous shaking for 5 minutes, allow to stand for 30 minutes. Draw off the water layer, centrifuge, and allow to stand for 1 hour. Perform the test with these solutions as directed under Ultraviolet-visible Spectrophotometry (2.24), using dilute 4-dimethylaminobenzaldehydesulfonic acid (III) chloride TS as the blank. Determine the absorbances, A_T and A_S, of the subsequent solutions of the sample solution and the standard solution at 545 nm, respectively.

Amount (mg) of methylergometrine maleate

$$\text{Amount (mg) of methylergometrine maleate} = M_s \times \frac{A_T}{A_S} \times \frac{V}{250}$$

M_s: Amount (mg) of Methylergometrine Maleate RS taken

Containers and storage Containers—Well-closed containers.

Storage—Light-resistant.

Methyl Parahydroxybenzoate

パラオキシ安息香酸メチル

C$_{9}$H$_{8}$O$_{3}$: 152.15
Methyl 4-hydroxybenzoate [99-76-3]

This monograph is harmonized with the European Pharmacopoeia and the U.S. Pharmacopeia.

The parts of the text that are not harmonized are marked with symbols (* • ●)

Information on the harmonization with the European Pharmacopoeia and the U.S. Pharmacopeia is available on the website of the Pharmaceuticals and Medical Devices Agency.

Methyl Parahydroxybenzoate contains not less than 98.0% and not more than 102.0% of methyl parahydroxybenzoate (C$_{9}$H$_{8}$O$_{3}$).

Description Methyl Parahydroxybenzoate, occurs as colorless crystals or a white crystalline powder.

It is freely soluble in methanol, in ethanol (95) and in acetone, and slightly soluble in water.

Identification Determine the infrared absorption spectrum of Methyl Parahydroxybenzoate as directed in the potassium bromide disk method under Infrared Spectrophotometry (2.25), and compare the spectrum with the Reference Spectrum or the spectrum of Methyl Parahydroxybenzoate RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point [2.60] 125 – 128°C

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Methyl Parahydroxybenzoate in ethanol (95) to make 10 mL: the solution is clear and not more intensely colored than the following control solution.

Control solution: To 5.0 mL of Cobalt (II) Chloride CS, 12.0 mL of Iron (III) Chloride CS and 2.0 mL of Copper (II) Sulfate CS add diluted dilute hydrochloric acid (1 in 10) to
Acidity—To 2 mL of the solution of Methyl Parahydroxybenzoate obtained in (1) add 3 mL of ethanol (95), add 5 mL of freshly boiled and cooled water and 0.1 mL of bromocresol green-sodium hydroxide-ethanol TS, then add 0.1 mol/L sodium hydroxide VS until the solution shows a blue color: the volume of 0.1 mol/L sodium hydroxide VS used does not exceed 0.1 mL.

Heavy metals
Not more than 0.1
of that with 10
Weigh accurately about 50.0 mg each of Methyl Parahydroxybenzoate and Parahydroxybenzoic acid, multiply the correction factor, and use as the standard solution.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 272 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 \(\mu \)m in particle diameter).
Column temperature: A constant temperature of about 35°C.
Mobile phase: A mixture of methanol and potassium dihydrogen phosphate solution (17 in 2500) (13:7).
Flow rate: 1.3 mL per minute.

System suitability—
System performance: Dissolve 5 mg each of Methyl Parahydroxybenzoate and Parahydroxybenzoic acid in the mobile phase to make exactly 100 mL. Pipet 1 mL of this solution, and add the mobile phase to make exactly 20 mL. Pipet 1 mL of this solution, and use this solution as the standard solution. Perform the test with exactly 10 \(\mu \)L each of the standard solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions, and determine the areas, \(A_1 \) and \(A_2 \), of methyl parahydroxybenzoate in each solution.

Amount (mg) of methyl parahydroxybenzoate (C8H6O2)
\[
M_S = M_b \times \frac{A_1}{A_2}
\]

\(M_S \): Amount (mg) of Methyl Parahydroxybenzoate RS taken

Containers and storage Containers—Well-closed containers.

Methylprednisolone
メチルプレドニゾロン

Methylprednisolone, when dried, contains not less than 96.0% and not more than 104.0% of methylprednisolone (C22H30O3).

Description Methylprednisolone occurs as a white crystalline powder. It is odorless.
It is sparingly soluble in methanol and in ethanol (99.5), and practically insoluble in water.

Melting point: 232 – 240°C (with decomposition).

Identification (1) Add 2 mL of sulfuric acid to 2 mg of Methylprednisolone: a deep red color develops with no fluorescence. Then add 10 mL of water to this solution: the color fades, and a gray, flocculent precipitate is produced.

(2) Dissolve 10 mg of Methylprednisolone in 1 mL of methanol, add 1 mL of Feuling’s TS, and heat: a red precipitate is produced.

(3) Determine the absorption spectrum of a solution of Methylprednisolone in methanol (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

Optical rotation \([\alpha]_2^9 +93 - +103^\circ \) (after drying, 0.1 g, ethanol (99.5), 10 mL, 100 mm).

Purity Related substances—Dissolve 50 mg of Methylprednisolone in 5 mL of a mixture of chloroform and methanol (9:1), and use this solution as the sample solution. Pipet 1 mL of the sample solution, add a mixture of chloroform and methanol (9:1) to make exactly 200 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography, Spot 10 \(\mu L \) each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of dichloromethane, diethyl ether, methanol and water (385:75:40:6) to a distance of about 12 cm, and air-dry the plate. Then heat the plate at 105°C for 10 minutes, cool, and spray evenly alkaline blue tetrazolium TS on the plate: the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying \(<2.4\% \) Not more than 1.0% (0.5 g, 105°C, 3 hours).

Residue on ignition \(<2.4\% \) Not more than 0.2% (0.2 g).

Assay Weigh accurately about 10 mg of Methylprednisolone, previously dried, and dissolve in methanol to make exactly 100 mL. To exactly 5 mL of this solution add methanol to make exactly 50 mL, and determine the absorbance \(A \) at the wavelength of maximum absorption at about 243 nm as directed under Ultraviolet-visible Spectrophotometry, Amount (mg) of methylprednisolone \((C_{26}H_{33}O_9) \) = \(A/400 \times 10,000 \)

Containers and storage Containers—Tight containers.
the automatic integration method: the area of the peaks other than the peak of methylprednisolone succinate obtained from sample solution is not larger than 1/2 times the peak area of methylprednisolone succinate from the standard solution, and the total area of the peaks other than the peak of methylprednisolone succinate is not larger than the peak area of methylprednisolone succinate from the standard solution.

Operating conditions—

Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 3 times as long as the retention time of methylprednisolone succinate.

System suitability—

System performance: Proceed as directed in the System suitability in the Assay.

Test for required detectability: Pipet 1 mL of the standard solution, and add the mixture of 0.05 mol/L phosphate buffer solution (pH 3.5) and acetonitrile (1:1) to make exactly 10 mL. Confirm that the peak area of methylprednisolone succinate obtained with 5 µL of this solution is equivalent to 7 to 13% of that with 5 µL of the standard solution.

System repeatability: When the test is repeated 6 times with 5 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of methylprednisolone succinate is not more than 2.5%.

Loss on drying <2.44> Not more than 1.0% (1 g, 105°C, 3 hours).

Residue on ignition <2.44> Not more than 0.2% (0.5 g).

Assay Weigh accurately about 15 mg each of Methylprednisolone Succinate and Methylprednisolone Succinate RS, previously dried, dissolve separately in 5 mL of methanol, and add the mixture of 0.05 mol/L phosphate buffer solution (pH 3.5) and acetonitrile (1:1) to make exactly 50 mL. Pipet 5 µL each of these solutions, and add exactly 5 µL of the internal standard solution, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with 5 µL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and calculate the ratios, Q₁ and Q₂, of the peak area of methylprednisolone succinate to that of the internal standard.

Amount (mg) of methylprednisolone succinate (C₃₅H₃₄O₁₄) = Mₛ × Q₁/Q₂

Mₛ: Amount (mg) of Methylprednisolone Succinate RS taken

Internal standard solution—A solution of ethyl parahydroxybenzoate in a mixture of 0.05 mol/L phosphate buffer solution (pH 3.5) and acetonitrile (1:1) (3 in 20,000).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 254 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadeylsilsanized silica gel for liquid chromatography (5 µm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: To 1000 mL of 0.05 mol/L potassium dihydrogen phosphate TS add a suitable amount of 0.05 mol/L disodium hydrogen phosphate TS to make a solution having pH 5.5. To 640 mL of this solution add 360 mL of acetonitrile.

Flow rate: Adjust so that the retention time of methylprednisolone succinate is about 6 minutes.

System suitability—

System performance: When the procedure is run with 5 µL of the standard solution under the above operating conditions, methylprednisolone succinate and the internal standard are eluted in this order with the resolution between these peaks being not less than 6.

System repeatability: When the test is repeated 6 times with 5 µL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of methylprednisolone succinate to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Tight containers.

Methyl Salicylate

サリチル酸メチル

![Methyl Salicylate Structure](image)

C₇H₈O₄: 152.15
Methyl 2-hydroxybenzoate [119-36-8]

Methyl Salicylate contains not less than 98.0% of methyl salicylate (C₇H₈O₄).

Description Methyl Salicylate is a colorless to pale yellow liquid. It has a strong, characteristic odor.

It is miscible with ethanol (95%) and with diethyl ether.

It is very slightly soluble in water.

Specific gravity d₃₀: 1.182 – 1.192
Boiling point: 219 – 224°C

Identification Shake 1 drop of Methyl Salicylate thoroughly with 5 mL of water for 1 minute, and add 1 drop of iron (III) chloride TS: a purple color develops.

Purity (1)

Acidity—Shake 5.0 mL of Methyl Salicylate thoroughly with 25 mL of freshly boiled and cooled water and 1.0 mL of 0.1 mol/L sodium hydroxide VS for 1 minute, add 2 drops of phenol red TS, and titrate <2.50> with 0.1 mol/L hydrochloric acid VS until the red color disappears: not more than 0.45 mL of 0.1 mol/L sodium hydroxide VS is consumed.

(2) Heavy metals—Shake 10.0 mL of Methyl Salicylate thoroughly with 10 mL of water, add 1 drop of hydrochloric acid, and saturate with hydrogen sulfide by passing it through the mixture: neither the oily layer nor the aqueous layer shows a dark color.

Assay Weigh accurately about 2 g of Methyl Salicylate, add an exactly measured 50 mL of 0.5 mol/L potassium hydroxide-ethanol VS, and heat on a water bath for 2 hours under a reflux condenser. Cool, and titrate <2.50> with the excess potassium hydroxide with 0.5 mol/L hydrochloric acid VS (indicator: 3 drops of phenolphthalein TS). Perform a blank determination in the same manner.

Each mL of 0.5 mol/L potassium hydroxide-ethanol VS = 76.08 mg of C₇H₈O₄

Containers and storage Containers—Tight containers.
Compound Methyl Salicylate Spirit

Method of preparation

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methyl Salicylate</td>
<td>40 mL</td>
</tr>
<tr>
<td>Capsicum Tincture</td>
<td>100 mL</td>
</tr>
<tr>
<td>d- or dl-Camphor</td>
<td>50 g</td>
</tr>
<tr>
<td>Ethanol</td>
<td>a sufficient quantity</td>
</tr>
</tbody>
</table>

To make 1000 mL

Prepare as directed under Spirits, with the above ingredients.

Description Compound Methyl Salicylate Spirit is a reddish yellow liquid, having a characteristic odor and a burning taste.

Identification (1) Shake 1 mL of Compound Methyl Salicylate Spirit with 5 mL of dilute ethanol, and add 1 drop of iron (III) chloride TS: a purple color is produced (methyl salicylate).

(2) Shake thoroughly 1 mL of Compound Methyl Salicylate Spirit with 10 mL of chloroform, and use this solution as the sample solution. Dissolve 40 mg of methyl salicylate in 10 mL of chloroform, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.07>. Spot 5 μL each of the sample solution and standard solution on the plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of hexane and chloroform (4:1) to a distance of about 10 cm, air-dry the plate, and examine under ultraviolet light (main wavelength: 254 nm): the spots obtained from the sample solution and the standard solution show the same Rf value. Spray evenly iron (III) chloride TS upon the plate: the spot from the standard solution and the corresponding spot from the sample solution reveal a purple color.

Containers and storage Containers—Tight containers.

Methyltestosterone

メチルテストステロン

\[\text{C}_{20}\text{H}_{36}\text{O}_2: 302.45 \]

\[17\beta\text{-Hydroxy-17a-methylandrost-4-en-3-one} \]

\[[\text{M}]: 58-18-4 \]

Methyltestosterone, when dried, contains not less than 98.0% and not more than 102.0% of methyltestosterone (C_{20}H_{36}O_2).

Description Methyltestosterone occurs as white to pale yellow, crystals or crystalline powder.

It is freely soluble in methanol and in ethanol (95), and practically insoluble in water.

Identification (1) Determine the absorption spectrum of a solution of Methyltestosterone in ethanol (95) (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.25†, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Methyltestosterone RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Methyltestosterone, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25†, and compare the spectrum with the Reference Spectrum or the spectrum of dried Methyltestosterone RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation <2.44> \([\alpha]_D^20 +79° -85°\) (after drying, 0.1 g, ethanol (95), 10 mL, 100 mm).

Melting point <2.60> 163 – 168°C

Purity Related substances—Dissolve 40 mg of Methyltestosterone in 2 mL of ethanol (95), and use this solution as the sample solution. Pipet 1 mL of the sample solution, add ethanol (95) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.07>. Spot 10 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of chloroform and diethylamine (19:1) to a distance of about 15 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying <2.41> Not more than 1.0% (0.5 g, in vacuum, phosphorus (V) oxide, 10 hours).

Residue on ignition <2.44> Not more than 0.1% (0.5 g).

Assay Weigh accurately about 20 mg each of Methyltestosterone and Methyltestosterone RS, previously dried in a desiccator (in vacuum, phosphorus (V) oxide) for 10 hours, dissolve each in methanol to make exactly 200 mL. Pipet 5 mL each of these solutions, add exactly 5 mL of the internal standard solution, add methanol to make 50 mL, and use these solutions as the sample solution and standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions, and calculate the ratios, \(Q_S\) and \(Q_T\), of the peak area of methyltestosterone to that of the internal standard.

\[
\text{Amount (mg) of methyltestosterone (C}_{20}\text{H}_{36}\text{O}_2) = M_S \times \frac{Q_T}{Q_S}
\]

\(M_S\): Amount (mg) of Methyltestosterone RS taken

Internal standard solution—A solution of propylparahydroxybenzoate in methanol (1 in 10,000).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 241 nm).

Column: A stainless steel column 6 mm in inside diameter and 15 cm in length, packed with octadecylsilylized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 35°C.

Mobile phase: A mixture of acetonitrile and water (11:9).

Flow rate: Adjust so that the retention time of methyltestosterone is about 10 minutes.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
System suitability—
System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the internal standard and methyltestosterone are eluted in this order with the resolution between these peaks being not less than 9.
System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratios of the peak area of methyltestosterone to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Tight containers.
Storage—Light-resistant.

Methyltestosterone Tablets
メチルテストステロン錠

Methyltestosterone Tablets contain not less than 90.0% and not more than 110.0% of the labeled amount of methyltestosterone (C_{18}H_{20}O_{2}: 302.45).

Method of preparation Prepare as directed under Tablets, with Methyltestosterone.

Identification To a portion of powdered Methyltestosterone Tablets, equivalent to 10 mg of Methyltestosterone, add 50 mL of acetone, shake for 30 minutes, and filter. Evaporate the filtrate to dryness, dissolve the residue in 10 mL of acetone, and use this solution as the sample solution. Separately, dissolve 10 mg of Methyltestosterone RS in 10 mL of acetone, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.07>. Spot 10 μL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of chloroform and ethanol (95): (9:1) to a distance of about 12 cm, and air-dry the plate. Spray evenly dilute sulfuric acid on the plate, and heat the plate at 110°C for 10 minutes: the spot obtained from the sample solution and the standard solution show the same Rf value.

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 tablet of Methyltestosterone Tablets add 5 mL of water to disintegrate, add 50 mL of methanol, and shake for 30 minutes. Add methanol to make exactly 100 mL, and centrifuge. Measure exactly V mL of the supernatant liquid, add Q z × A Weigh accurately the mass of not less than 20 A
Prepare as directed under Tablets, and that in 60 minutes of a 25-mg tablet is not less than V and not more than 110.0 1/× A

<table>
<thead>
<tr>
<th>Amount (mg) of methyltestosterone (C_{18}H_{20}O_{2})</th>
<th>M_{5}: Amount (mg) of Methyltestosterone RS taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{5} = M_{S} × A_{T}/A_{S} × (1/100) × V/100</td>
<td></td>
</tr>
</tbody>
</table>

Dissolution <6.10> When the test is performed at 100 revolutions per minute according to the Paddle method, using 900 mL of a solution prepared by dissolving 1 g of polysorbate 80 in water to make 5 L as the dissolution medium, the dissolution rate in 30 minutes of a 10-mg tablet is not less than 75% and that in 60 minutes of a 25-mg tablet is not less than 70%.

Start the test with 1 tablet of Methyltestosterone Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add the dissolution medium to make exactly V mL so that each mL contains about 11 μg of methyltestosterone (C_{18}H_{20}O_{2}), and use this solution as the sample solution. Separately, weigh accurately about 22 mg of Methyltestosterone RS, previously dried in vacuum using phosphorus (V) oxide as a desiccant for 10 hours, and dissolve in ethanol (99.5) to make exactly 100 mL. Pipet 5 mL of this solution, add the dissolution medium to make exactly 100 mL, and use this solution as the standard solution. Determine the absorbances, A_{T} and A_{S}, at 249 nm of the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry <2.24>, using the dissolution medium as the blank.

Dissolution rate (%) with respect to the labeled amount of methyltestosterone (C_{18}H_{20}O_{2})

\[M_{5} = M_{S} × A_{T}/A_{S} × V/100 = V/100 \]

M_{5}: Amount (mg) of Methyltestosterone RS taken
C: Labeled amount (mg) of methyltestosterone (C_{18}H_{20}O_{2}) in 1 tablet

M_{S}: Amount (mg) of Methyltestosterone RS taken

Assay Weigh accurately the mass of not less than 20 Methyltestosterone Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 25 mg of methyltestosterone (C_{18}H_{20}O_{2}), add about 70 mL of methanol, shake for 30 minutes, and add methanol to make exactly 100 mL. Pipet 2 mL of this solution, add exactly 5 mL of the internal standard solution and methanol to make 50 mL, filter through a membrane filter (not exceeding 0.45 μm in pore size), and use the filtrate as the sample solution. Separately, weigh accurately about 20 mg of Methyltestosterone RS, previously dried in a desiccator (in vacuum, phosphorus (V) oxide) for 10 hours, dissolve in methanol to make exactly 200 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution, add methanol to make 50 mL, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions, and calculate the ratios, Q_{T} and Q_{S}, of the peak area of methyltestosterone to that of the internal standard.

Amount (mg) of methyltestosterone (C_{18}H_{20}O_{2})

\[M_{S} = M_{S} × A_{T}/A_{S} × V/100 = V/100 \]

M_{S}: Amount (mg) of Methyltestosterone RS taken

Internal standard solution—A solution of propyl parahydroxybenzoate in methanol (1 in 10,000).

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 241 nm).
Column: A stainless steel column 6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 35°C.
Mobile phase: A mixture of acetonitrile and water (11:9).
Flow rate: Adjust so that the retention time of methyltestosterone is about 10 minutes.

System suitability—
System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the internal standard and methyltestosterone are eluted in this order with the resolution between these peaks being not less than 9.
System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of methyltestosterone to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Tight containers.

Meticrane
メチクラン

Chemical Structure Image

C₁₀H₁₇NO₄S₂: 275.34
6-Methylthiochromane-7-sulfonamide 1,1-dioxide [1084-65-7]

Meticrane, when dried, contains not less than 98.0% of meticrane (C₁₀H₁₇NO₄S₂).

Description Meticrane occurs as white, crystals or crystalline powder.

It is freely soluble in N,N-dimethylformamide, slightly soluble in acetonitrile and in methanol, very slightly soluble in ethanol (95), and practically insoluble in water.

Melting point: about 234°C (with decomposition).

Identification (1) Determine the absorption spectrum of a solution of Meticrane in methanol (3 in 10,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Meticrane, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Purity (1) Ammonium <1.02>—Perform the test with 0.10 g of Meticrane. Prepare the control solution with 3.0 mL of Standard Ammonium Solution (not more than 0.03%).

(2) Heavy metals <1.07>—Proceed with 1.0 g of Meticrane according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(3) Arsenic <1.1D>—Prepare the test solution with 1.0 g of Meticrane according to Method 3, and perform the test (not more than 2 ppm).

(4) Related substances—Dissolve 50 mg of Meticrane in 50 mL of acetonitrile. To 5 mL of this solution add the mobile phase to make 25 mL, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL of each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine each peak area of both solutions by the automatic integration method: the total area of the peaks other than meticrane obtained from the sample solution is not larger than the peak area of meticrane from the standard solution.

Operating conditions 1—
Detector: An ultraviolet absorption photometer (wavelength: 230 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase: A mixture of water and acetonitrile (17:3).
Flow rate: Adjust so that the retention time of meticrane is about 7 minutes.

Time span of measurement: About 4 times as long as the retention time of meticrane, beginning after the solvent peak.

System suitability 1—
Test for required detectability: To exactly 2 mL of the standard solution add the mobile phase to make exactly 20 mL. Confirm that the peak area of meticrane obtained with 10 μL of this solution is equivalent to 7 to 13% of that with 10 μL of the standard solution.

System performance: Dissolve 10 mg each of Meticrane and caffeine in 100 mL of acetonitrile. To exactly 2 mL of this solution add the mobile phase to make exactly 10 mL. When the procedure is run with 10 μL of this solution under the above operating conditions 1, caffeine and meticrane are eluted in this order with the resolution between these peaks being not less than 10.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions 1, the relative standard deviation of the peak area of meticrane is not more than 2.0%.

Operating conditions 2—
Detector, column, and column temperature: Proceed as directed in the operating conditions 1.
Mobile phase: A mixture of water and acetonitrile (1:1).
Flow rate: Adjust so that the retention time of meticrane is about 2 minutes.

Time span of measurement: About 10 times as long as the retention time of meticrane, beginning after the solvent peak.

System suitability 2—
Test for required detectability: To exactly 2 mL of the standard solution add the mobile phase to make exactly 20 mL. Confirm that the peak area of meticrane obtained with 10 μL of this solution is equivalent to 7 to 13% of that with 10 μL of the standard solution.

System performance: Dissolve 20 mg each of Meticrane and methyl para-hydroxybenzoate in 100 mL of acetonitrile. To exactly 2 mL of this solution add the mobile phase to make exactly 10 mL. When the procedure is run with 10 μL of this solution under the above operating conditions 2, meticrane and methyl para-hydroxybenzoate are eluted in this order with the resolution between these peaks being not less than 4.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions 2, the relative standard deviation of the peak area of meticrane is not more than 2.0%.
Loss on drying <2.41> Not more than 0.5% (1 g, 105°C, 4 hours).
Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.5 g of Metildigoxin, previously dried, dissolve in 50 mL of N,N-dimethylformamide, and volume to 50 mL with the same solvent. Titrate with 0.1 mol/L potassium hydroxide-ethanol VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L potassium hydroxide-ethanol VS = 27.54 mg of C_{34}H_{46}NO_{3}S_{2}

Containers and storage Containers—Well-closed containers.

Metildigoxin
メチルジゴキシン

Metildigoxin contains not less than 96.0% and not more than 103.0% of metildigoxin (C_{34}H_{46}O_{14}·\frac{1}{2}C_{2}H_{5}O), calculated on the anhydrous basis.

Description Metildigoxin occurs as a white to light yellow-white crystalline powder.

It is freely soluble in N,N-dimethylformamide, in pyridine and in acetic acid (100), soluble in chloroform, sparingly soluble in methanol, slightly soluble in ethanol (95) and in acetone, and very slightly soluble in water.

It shows crystal polymorphism.

Identification (1) Dissolve 2 mg of Metildigoxin in 2 mL of acetic acid (100), shake well with 1 drop of iron (III) chloride TS, and add gently 2 mL of sulfuric acid to divide into two layers: a brown color develops at the interface, and a deep blue color gradually develops in the acetic acid layer.

(2) Dissolve 2 mg of Metildigoxin in 2 mL of 1,3-dinitrobenzene TS, add 2 mL of a solution of tetrachloroamphetamine hydroxide in ethanol (95) (1 in 200), and shake: a purple color gradually develops, and changes to blue-purple.

(3) Determine the absorption spectrum of a solution of Metildigoxin in methanol (1 in 50,000) as directed under Ultraviolet-visible Spectrophotometry <2.27>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Metildigoxin RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(4) Determine the infrared absorption spectrum of Metildigoxin as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of Metildigoxin RS: both spectra exhibit similar intensities of absorption at the same wave numbers. If any difference appears between the spectra, dissolve Metildigoxin and Metildigoxin RS in acetone, respectively, then evaporate the acetone to dryness, and repeat the test on the residues.

Optical rotation <2.49> [α]_{D}^{20}: +22.0° to +25.5° (1 g calculated on the anhydrous basis, pyridine, 10 mL, 100 mm).

Purity (1) Arsenic <1.17>—Prepare the test solution with 0.5 g of Metildigoxin according to Method 3, and perform the test (not more than 4 ppm).

(2) Related substances—Dissolve 10 mg of Metildigoxin in 10 mL of chloroform, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add chloroform to make exactly 50 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 20 μL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of 2-butanol and chloroform (3:1) to a distance of about 15 cm, and air-dry the plate. Spray evenly dilute sulfuric acid on the plate, and heat the plate at 110°C for 10 minutes: the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Acetone Weigh accurately about 0.1 g of Metildigoxin, dissolve in exactly 2 mL of the internal standard solution, add N,N-dimethylformamide to make 10 mL, and use this solution as the sample solution. Separately, weigh accurately about 0.4 g of acetone in a 50-mL volumetric flask containing about 10 mL of N,N-dimethylformamide, and add N,N-dimethylformamide to make 50 mL. Pipet 5 mL of this solution, add exactly 20 mL of the internal standard solution, and make 50 mL with N,N-dimethylformamide. Pipet 1 mL of each of the sample solution and standard solution as directed under Gas Chromatography <2.02> according to the following conditions, and calculate the ratios, Q_{M} and Q_{S}, of the peak area of acetone to that of the internal standard: the amount of acetone is between 2.0% and 5.0%.

Amount (%) of acetone = \frac{M_{S}}{M_{T}} \times \frac{Q_{S}}{Q_{M}}

M_{S}: Amount (g) of acetone taken
M_{T}: amount (g) of Metildigoxin taken

Internal standard solution—A solution of t-butyl alcohol in N,N-dimethylformamide (1 in 1000).

Operating conditions—

Detector: A hydrogen flame-ionization detector.
Column: A glass column about 2 mm in inside diameter and 1 to 2 m in length, packed with porous ethylvinylbenzene-divinylbenzene copolymer for gas chromatography (150 to 180 μm in particle diameter).
Column temperature: A constant temperature between 170°C and 230°C.
Carrier gas: Nitrogen.
Flow rate: Adjust so that the retention time of acetone is about 2 minutes.
Selection of column: Proceed with 1 μL of the standard
solution under the above operating conditions, and calculate the resolution. Use a column giving elution of acetone and t-butyl alcohol in this order with the resolution between these peaks being not less than 2.0.

Water <2.48> Not more than 3.0% (0.3 g, volumetric titration, direct titration).

Residue on ignition <2.44> Not more than 0.1% (0.5 g).

Assay Weigh accurately 0.1 g each of Metildigoxin and Metildigoxin RS (separately, determine the water <2.48> in the same manner as Metildigoxin), and dissolve each in methanol to make exactly 50 mL. Pipet 5 mL each of the solutions, add methanol to each to make exactly 100 mL, and use these solutions as the sample solution and the standard solution, respectively. Pipet 5 mL each of the standard solution and standard solution, add 15 mL of 2,4,6-trinitrophenol-ethanol TS and 2 mL of sodium hydroxide TS to each, shake well, add methanol to make exactly 25 mL, and allow to stand at 20 ± 0.5°C for 20 minutes. Perform the test with these solutions as directed under Ultraviolet-visible Spectrophotometry <2.24> using a solution prepared by mixing 15 mL of 2,4,6-trinitrophenol-ethanol TS and 2 mL of sodium hydroxide TS and adding methanol to make exactly 25 mL as the blank. Determine the maximum absorbances, A_1 and A_3, of the subsequent solutions obtained from the sample solution and the standard solution, respectively, by measuring every 5 minutes, at 495 nm.

$$\text{Amount (mg) of metildigoxin (C}_{22}\text{H}_{36}\text{O}_{16}\cdot \frac{1}{2}\text{C}_{2}\text{H}_{5}\text{O}} = M_s \times \frac{A_1}{A_3}$$

M_s: Amount (mg) of Metildigoxin RS taken, calculated on the anhydrous basis.

Containers and storage Containers—Tight containers.

Metoclopramide

メトクロプラミド

C_{18}H_{22}ClN_3O_2: 299.80
4-Amino-5-chloro-N-[2-(diethylamino)ethyl]-2-methoxybenzamide [364-62-5]

Metoclopramide, when dried, contains not less than 99.0% of metoclopramide (C_{18}H_{22}ClN_3O_2).

Description Metoclopramide occurs as white, crystals or a crystalline powder, and is odorless.

It is freely soluble in acetic acid (100), soluble in methanol and in chloroform, sparingly soluble in ethanol (95), in acetic anhydride and in acetone, very slightly soluble in diethyl ether, and practically insoluble in water.

It dissolves in dilute hydrochloric acid.

Identification (1) Dissolve 10 mg of Metoclopramide in 1 mL of dilute hydrochloric acid and 4 mL of water: the solution responds to Qualitative Tests <1.09> for Primary Aromatic Amines.

(2) Dissolve 10 mg of Metoclopramide in 5 mL of dilute hydrochloric acid and 20 mL of water, and to 5 mL of this solution add 1 mL of Dragendorff’s TS: a reddish orange precipitate is produced.

(3) Dissolve 0.1 g of Metoclopramide in 1 mL of 1 mol/L hydrochloric acid TS, and dilute with water to make 100 mL. To 1 mL of the solution add water to make 100 mL, determine the absorption spectrum of the solution as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

Melting point <2.60> 146 – 149°C

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Metoclopramide in 10 mL of 1 mol/L hydrochloric acid TS: the solution is clear and colorless.

(2) Heavy metals <1.07>—Proceed with 1.0 g of Metoclopramide as directed under Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(3) Arsenic <1.11>—Dissolve 1.0 g of Metoclopramide in 5 mL of 1 mol/L hydrochloric acid TS, and use this solution as the sample solution. Perform the test (not more than 2 ppm).

(4) Related substances—Dissolve 0.10 g of Metoclopramide in 10 mL of methanol, and use this solution as the sample solution. Dilute 1 mL of the sample solution, exactly measured, with methanol to make exactly 200 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.04>. Spot 10 µL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of 1-butanol and ammonia solution (28:19:1) to a distance of about 10 cm. Dry the plate, first in air and then at 80°C for 30 minutes. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying <2.41> Not more than 0.5% (1 g, 105°C, 3 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Dissolve about 0.4 g of Metoclopramide, previously dried and accurately weighed, in 50 mL of acetic acid (100), add 5 mL of acetic anhydride, and warm for 5 minutes. Allow to cool, and titrate <2.50> with 0.1 mol/L perchloric acid VS (indicator: 2 drops of crystal violet TS). Perform the blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 29.98 mg of C_{18}H_{22}ClN_3O_2

Containers and storage Containers—Well-closed containers.

Metoclopramide Tablets

メトクロプラミド錠

Metoclopramide Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of metoclopramide (C_{18}H_{22}ClN_3O_2: 299.80).

Method of preparation Prepare as directed under Tablets, with Metoclopramide.
Identification (1) To a quantity of powdered Metoclopramide Tablets, equivalent to 50 mg of Metoclopramide, add 15 mL of 0.5 mol/L hydrochloric acid TS, and heat in a water bath at 70°C for 15 minutes while frequent shaking. After cooling, centrifuge for 10 minutes, and to 5 mL of the supernatant liquid add 1 mL of 4-dimethylaminobenzaldehyde-hydrochloric acid TS: a yellow color develops.

(2) Determine the absorption spectrum of the sample solution obtained in the Assay as directed under Ultraviolet-visible Spectrophotometry λ_{max}: it exhibits maxima between 270 nm and 274 nm, and between 306 nm and 310 nm.

Uniformity of dosage units $\leq 6.0\%$ Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 tablet of Metoclopramide Tablets add 10 mL of 0.1 mol/L hydrochloric acid TS, disperse the particles by sonication, then add 0.1 mol/L hydrochloric acid TS to make exactly 25 mL, and centrifuge for 10 minutes. Pipet 4 mL of the supernatant liquid, add 0.1 mol/L hydrochloric acid TS to make exactly 500 mL, and dissolve in 0.1 mol/L hydrochloric acid TS to make exactly 500 mL. Pipet 4 mL of this solution, add 0.1 mol/L hydrochloric acid TS to make exactly 50 mL, and use this solution as the standard solution. Separate, weigh accurately about 80 mg of metoclopramide for assay, previously dried at 105°C for 3 hours, and dissolve in 0.1 mol/L hydrochloric acid TS to make exactly 500 mL. Pipet 4 mL of this solution, add 0.1 mol/L hydrochloric acid TS to make exactly 50 mL, and use this solution as the standard solution. Determine the absorbances, A_1 and A_2, of the sample solution and standard solution at 308 nm as directed under Ultraviolet-visible Spectrophotometry λ_{max}.

Amount (mg) of metoclopramide $\left(C_{14}H_{22}ClN_2O_2 \right)$

\[M_S = \frac{M_T \times A_1}{A_2} \times V \times 1000 \]

M_S: Amount (mg) of metoclopramide for assay taken

Dissolution Being specified separately when the drug is granted approval based on the Law.

Assay Weigh accurately not less than 20 Metoclopramide Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 75 mg of metoclopramide ($C_{14}H_{22}ClN_2O_2$), add 300 mL of 0.1 mol/L hydrochloric acid TS, shake for 1 hour, and add 0.1 mol/L hydrochloric acid TS to make exactly 500 mL. Centrifuge for 10 minutes, pipet 4 mL of the supernatant liquid, add 0.1 mol/L hydrochloric acid TS to make exactly 50 mL, and use this solution as the sample solution. Separate, weigh accurately about 80 mg of metoclopramide for assay, previously dried at 105°C for 3 hours, and dissolve in 0.1 mol/L hydrochloric acid TS to make exactly 500 mL. Pipet 4 mL of this solution, add 0.1 mol/L hydrochloric acid TS to make exactly 50 mL, and use this solution as the standard solution. Determine the absorbances, A_1 and A_2, of the sample solution and standard solution at 308 nm as directed under Ultraviolet-visible Spectrophotometry λ_{max}.

Amount (mg) of metoclopramide $\left(C_{14}H_{22}ClN_2O_2 \right)$

\[M_S = \frac{M_T \times A_1}{A_2} \]

M_S: Amount (mg) of metoclopramide for assay taken

Containers and storage Containers—Tight containers.
Metoprolol Tartrate Tablets

メトプロロール酒石酸塩錠

Metoprolol Tartrate Tablets contain not less than 93.0% and not more than 107.0% of the labeled amount of metoprolol tartrate [(C₁₅H₂₂NO₅)₂·C₄H₄O₄; 684.81].

Method of preparation Prepare as directed under Tablets, with Metoprolol Tartrate.

Identification To an amount of powdered Metoprolol Tartrate Tablets, equivalent to 10 mg of Metoprolol Tartrate Tablets, add 100 mL of ethanol (95), shake for 15 minutes, and filter. Determine the absorption spectrum of the filtrate as directed under Ultraviolet-visible Spectrophotometry 2.24> it exhibits its maxima between 274 nm and 278 nm and between 281 nm and 285 nm.

Uniformity of dosage units 5.02> Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement.

To 1 tablet of Metoprolol Tartrate Tablets add 1 mL of water for every 10 mg of Metoprolol Tartrate Tablets, shake for 20 minutes, then add 75 mL of ethanol (95), shake for 15 minutes, and add ethanol (95) to make exactly 100 mL, and centrifuge. Pipet V mL of the supernatant liquid, add ethanol (95) to make exactly V' mL so that each mL contains about 0.1 mg of metoprolol tartrate [(C₁₅H₂₂NO₅)₂·C₄H₄O₄], and use this solution as the sample solution. Separately, weigh accurately about 0.5 g of Metoprolol Tartrate Tablets, previously dried, dissolve in 50 mL of acetic acid (100), and titrate with 0.1 mol/L perchloric acid VS (potentiometric titration) to make 100 mL, and use this solution as the standard solution. Perform the test with exactly 50 μL of the standard solution and sample solution as directed under Liquid Chromatography 2.01> according to the following conditions, and determine the peak areas, A₁ and A₂, of metoprolol in each solution.

Dissolution rate (%) with respect to the labeled amount of metoprolol tartrate [(C₁₅H₂₂NO₅)₂·C₄H₄O₄] = M₂ × A₁/A₂ × V'/V × 1/C × 36

M₂: Amount (mg) of metoprolol tartrate for assay taken
C: Labeled amount (mg) of metoprolol tartrate [(C₁₅H₂₂NO₅)₂·C₄H₄O₄] in 1 tablet

Operating conditions— Proceed as directed in the operating conditions in the Assay.

System suitability—

System performance: When the procedure is run with 50 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of metoprolol are not less than 2000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 50 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of metoprolol is not more than 2.0%.

Assay Weigh accurately the mass of not less than 20 Metoprolol Tartrate Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 0.12 g of metoprolol tartrate [(C₁₅H₂₂NO₅)₂·C₄H₄O₄], add 60 mL of a mixture of ethanol (99.5) and 1 mol/L hydrochloric acid TS (100:1) and exactly 10 mL of the internal standard solution, shake for 15 minutes, and add the mixture of ethanol (99.5) and 1 mol/L hydrochloric acid TS (100:1) to make 100 mL. Centrifuge, and use the supernatant liquid as the sample solution. Separately, weigh accurately about 0.12 g of metoprolol tartrate for assay, previously dried in vacuum at 60°C for 4 hours, dissolve in 50 mL of the mixture of ethanol (99.5) and 1 mol/L hydrochloric acid TS (100:1), add exactly 10 mL of the internal standard solution, then add the mixture of ethanol (99.5) and 1 mol/L hydrochloric acid TS (100:1) to make 100 mL, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography 2.01> according to the following conditions, and calculate the ratios, Q₁ and Q₂, of the peak area of metoprolol to that of the internal standard.

Amount (mg) of metoprolol tartrate [(C₁₅H₂₂NO₅)₂·C₄H₄O₄] = M₂ × Q₁/Q₂

M₂: Amount (mg) of metoprolol tartrate for assay taken

Internal standard solution—A solution of ethyl parahy-
droxybenzoate in the mixture of ethanol (99.5) and 1 mol/L hydrochloric acid TS (100:1) (1 in 500).

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 274 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecysilanized silica gel for liquid chromatography (5 µm in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase: Dissolve 14.0 g of sodium perchlorate monohydrate in 1000 mL of water, and adjust to pH 3.2 with diluted perchloric acid (17 in 2000). To 750 mL of this solution add 250 mL of acetonitrile.
Flow rate: Adjust so that the retention time of metoprolol is about 8 minutes.
System suitability—
System performance: When the procedure is run with 10 µL of the standard solution under the above operating conditions, metoprolol and the internal standard are eluted in this order with the resolution between these peaks being not less than 5.
System repeatability: When the test is repeated 6 times with 10 µL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of metoprolol to that of the internal standard is not more than 1.0%.
Containers and storage—Well-closed containers.

Metronidazole

メトロニダゾール

C₇H₆N₃O₃: 171.15
2-(2-Methyl-5-nitro-1H-imidazol-1-yl)ethanol [443-48-1]

Metronidazole, when dried, contains not less than 99.0% and not more than 101.0% of metronidazole (C₇H₆N₃O₃).

Description—Metronidazole occurs as white to pale yellow-white, crystals or crystalline powder.
It is freely soluble in acetic acid (100), sparingly soluble in ethanol (99.5) and in acetone, and slightly soluble in water.
It dissolves in dilute hydrochloric acid.
It is colored to yellow-brown by light.

Identification—
(1) Determine the absorption spectrum of a solution of Metronidazole in 0.1 mol/L hydrochloric acid TS (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry C2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Metronidazole as directed in the potassium bromide disk method under Infrared Spectrophotometry C2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point 2.60> 159 – 163°C

Purity—(1) Heavy metals 1.07>—Proceed with 1.0 g of Metronidazole according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(2) 2-Methyl-5-nitroimidazol—Dissolve 0.10 g of Metronidazole in acetone to make exactly 10 mL, and use this solution as the sample solution. Separately, dissolve 20 mg of 2-methyl-5-nitroimidazole for thin-layer chromatography in acetone to make exactly 20 mL, then pipet 5 mL of this solution, add acetone to make exactly 100 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography 2.07. Spot 20 µL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Immediately develop the plate with a mixture of acetone, water and ethyl acetate (8:1:1) to a distance of about 15 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spot obtained from the sample solution corresponding to the spot from the standard solution is not more intense than the spot from the standard solution.

Loss on drying 2.41> Not more than 0.5% (1 g, in vacuum, silica gel, 24 hours).

Residue on ignition 2.44> Not more than 0.1% (1 g).

Assay—Weigh accurately about 0.2 g of Metronidazole, previously dried, and dissolve in 30 mL of acetic acid (100). Titrate 2.50> with 0.1 mol/L perchloric acid VS (indicator: 0.5 mL of p-naphtholbenzene TS) until the color of the solution changes from orange-yellow to green. Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 17.12 mg of C₇H₆N₃O₃

Containers and storage—Tight containers.
Storage—Light-resistant.

Metronidazole Tablets

メトロニダゾール錠

Metronidazole Tablets contain not less than 93.0% and not more than 107.0% of the labeled amount of metronidazole (C₇H₆N₃O₃; 171.15).

Method of preparation—Prepare as directed under Tablets, with Metronidazole.

Identification—(1) To an amount of powdered Metronidazole Tablets, equivalent to 0.1 g of Metronidazole, add 100 mL of 0.1 mol/L hydrochloric acid TS, and allow to stand for 30 minutes with occasional stirring. Then, shake vigorously, and centrifuge a part of this solution. To 1 mL of the supernatant liquid add 0.1 mol/L hydrochloric acid TS to make 100 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry 2.24: it exhibits a maximum between 275 nm and 279 nm.

(2) Shake vigorously a quantity of powdered Metronidazole Tablets, equivalent to 0.20 g of Metronidazole, with 20 mL of acetone for 10 minutes, centrifuge, and use the supernatant liquid as the sample solution. Separately, dissolve 0.10 g of metronidazole in 10 mL of acetone, and use this so-
Solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography

\[\text{Spot } 5 \mu \text{L each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography, develop the plate immediately with a mixture of acetone, water and ethyl acetate (8:1:1) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the } R^f \text{ value of the principal spots obtained from the sample solution and the standard solution is the same.}

Uniformity of dosage units (6.02) Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 tablet of Metronidazole Tablets add 25 mL of a mixture of water and methanol (1:1), shake vigorously for 25 minutes, and add the mixture of water and methanol (1:1) to make exactly 50 mL. Pipet 5 mL of this solution, and add a mixture of water and methanol (4:1) to make exactly 100 mL. Filter the solution through a membrane filter with pore size of 0.45 \(\mu \text{m}, \) discard the first 3 mL of the filtrate, and use the subsequent filtrate as the sample solution. Hereinafter, proceed as directed in the Assay.

Amount (mg) of metronidazole (C\(_6\)H\(_9\)N\(_3\)O\(_2\))

\[M_5 = M_5 \times A_5/A_S \times 10 \]

M5: Amount (mg) of metronidazole for assay taken

Dissolution (6.01) When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 90 minutes of Metronidazole Tablets is not less than 70%.

Start the test with 1 tablet of Metronidazole Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 \(\mu \text{m}. \) Discard not less than 10 mL of the first filtrate, pipet \(V \) mL of the subsequent filtrate, add water to make exactly \(V' \) mL so that each mL contains about 11 \(\mu \text{g} \) of metronidazole (C\(_6\)H\(_9\)N\(_3\)O\(_2\)), and use this solution as the sample solution. Separately, weigh accurately about 22 mg of metronidazole for assay, previously dried in vacuum with silica gel for 24 hours, dissolve in water to make exactly 100 mL. Pipet 5 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution. Determine the absorbances, \(A_T \) and \(A_S \), at 320 nm of the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry

\[\text{Dissolution rate (\% with respect to the labeled amount of metronidazole (C\(_6\)H\(_9\)N\(_3\)O\(_2\)) = } M_5 \times A_1/A_3 \times V'/V \times 1/C \times 45 \]

M5: Amount (mg) of metronidazole for assay taken

C: Labeled amount (mg) of metronidazole (C\(_6\)H\(_9\)N\(_3\)O\(_2\)) in 1 tablet

Assay Weigh accurately the mass of not less than 20 Metronidazole Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 0.25 g of metronidazole (C\(_6\)H\(_9\)N\(_3\)O\(_2\)), add 25 mL of a mixture of water and methanol (1:1), shake vigorously for 10 minutes, and add the mixture of water and methanol (1:1) to make exactly 50 mL. Pipet 5 mL of this solution, and add a mixture of water and methanol (4:1) to make exactly 100 mL. Filter this solution through a membrane filter with pore size of 0.45 \(\mu \text{m}, \) discard the first 3 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 25 mg of metronidazole for assay, previously dried in vacuum on silica gel for 24 hours, dissolve in the mixture of water and methanol (4:1) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 \(\mu \text{L} \) each of the sample solution and standard solution as directed under Liquid Chromatography (2.01) according to the following conditions, and determine the peak areas, \(A_T \) and \(A_S \), of metronidazole in each solution.

Amount (mg) of metronidazole (C\(_6\)H\(_9\)N\(_3\)O\(_2\))

\[M_5 = M_5 \times A_T/A_S \times 10 \]

M5: Amount (mg) of metronidazole for assay taken

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 320 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecysilanized silica gel for liquid chromatography (5 \(\mu \text{m} \) in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: A mixture of water and methanol (4:1).

Flow rate: Adjust so that the retention time of metronidazole is about 5 minutes.

System suitability—

System performance: When the procedure is run with 10 \(\mu \text{L} \) of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of metronidazole are not less than 3000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 10 \(\mu \text{L} \) of the standard solution under the above operating conditions, the relative standard deviation of the peak area of metronidazole is not more than 1.0%.

Containers and storage Containers—Tight containers.

Metyrapone

メチラポン

C\(_{14}\)H\(_{14}\)N\(_2\)O: 226.27
2-Methyl-1,2-di(pyridin-3-yl)propan-1-one [54-36-4]

Metyrapone, when dried, contains not less than 98.0% of metyrapone (C\(_{14}\)H\(_{14}\)N\(_2\)O).

Description Metyrapone occurs as a white to pale yellow crystalline powder. It has a characteristic odor and a bitter taste.

It is very soluble in methanol, in ethanol (95), in acetic anhydride, in chloroform, in diethyl ether and in nitrobenzene, and sparingly soluble in water.

It dissolves in 0.5 mol/L sulfuric acid TS.

Identification (1) Mix 5 mg of Metyrapone with 10 mg of 1-chloro-2,4-dinitrobenzene, melt by gently heating for 5 to 6 seconds, cool, and add 4 mL of potassium hydroxide ethanol TS: a dark red color develops.

(2) Determine the absorption spectrum of a solution of Metyrapone in 0.5 mol/L sulfuric acid TS (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry (2.24), and compare the spectrum with the Reference Spectrum:

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
both spectra exhibit similar intensities of absorption at the same wavelengths.

Melting point 2.60° 50 – 54°C

Purity (1) Clarity and color of solution—Dissolve 0.5 g of Metyrapone in 5 mL of methanol: the solution is clear and colorless to pale yellow.

(2) Heavy metals $<1.07^\circ$—Proceed with 2.0 g of Metyrapone according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(3) Arsenic $<1.1D^\circ$—Prepare the test solution with 1.0 g of Metyrapone, according to Method 3, and perform the test (not more than 2 ppm).

(4) Related substances—Dissolve 0.25 g of Metyrapone in 5 mL of methanol, and use this solution as the sample solution. Pipet 1 mL of the sample solution, and add methanol to make exactly 50 mL. Pipet 5 mL of this solution, add methanol to make exactly 50 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography $<2.03^\circ$. Spot 2 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of chloroform and methanol (15:1) to a distance of about 10 cm, and air-dry the plate for about 15 minutes. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution is not more intense than the spot from the standard solution.

Loss on drying $<2.41^\circ$ Not more than 0.5% (1 g, in vacuum, silica gel, 24 hours).

Residue on ignition $<2.44^\circ$ Not more than 0.1% (1 g).

Assay Weigh accurately about 0.2 g of Metyrapone, previously dried, dissolve in 10 mL of nitrobenzene and 40 mL of acetic anhydride, and titrate $<2.50^\circ$ with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 11.31 mg of C$_{17}$H$_{23}$N$_2$O

Containers and storage Containers—Tight containers.

Storage—Light-resistant.

Mexiletine Hydrochloride

メキシレチン塩酸塩

![Chemical Structure](image)

C$_{17}$H$_{23}$NO.HCl: 215.72

(2RS)-1-(2,6-Dimethylphenoxy)propan-2-ylamine monohydrochloride

[5370-01-4]

Mexiletine Hydrochloride, when dried, contains not less than 98.0% and not more than 102.0% of mexiletine hydrochloride (C$_{17}$H$_{17}$NO.HCl).

Description Mexiletine Hydrochloride occurs as a white powder.

It is freely soluble in water and in ethanol (95), and slightly soluble in acetonitrile.

It dissolves in 0.01 mol/L hydrochloric acid TS.

A solution of Mexiletine Hydrochloride (1 in 20) shows no optical rotation.

Mexiletine Hydrochloride shows crystal polymorphism.

Identification (1) Determine the absorption spectrum of a solution of Mexiletine Hydrochloride in 0.01 mol/L hydrochloric acid TS (1 in 2000) as directed under Ultraviolet-visible Spectrophotometry $<2.24^\circ$, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Mexiletine Hydrochloride RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Mexiletine Hydrochloride, previously dried, as directed in the potassium chloride disk method under Infrared Spectrophotometry $<2.25^\circ$, and compare the spectrum with the Reference Spectrum or the spectrum of dried Mexiletine Hydrochloride RS: both spectra exhibit similar intensities of absorption at the same wave numbers. If any difference appears between the spectra, recrystallize Mexiletine Hydrochloride from ethanol (95), filter, dry the crystals, and perform the test with the crystals.

(3) A solution of Mexiletine Hydrochloride (1 in 100) responds to Qualitative Tests $<1.09^\circ$ (2) for chloride.

pH $<2.54^\circ$ Dissolve 1.0 g of Mexiletine Hydrochloride in 10 mL of water: the pH of this solution is between 3.8 and 5.8.

Melting point 2.60° 200 – 204°C

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Mexiletine Hydrochloride in 10 mL of water: the solution is clear and colorless.

(2) Heavy Metals $<1.07^\circ$—Proceed with 2.0 g of Mexiletine Hydrochloride according to Method 1, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(3) Related substances—Dissolve 20 mg of Mexiletine Hydrochloride in 20 mL of the mobile phase, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add the mobile phase to make exactly 250 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL of each of the sample solution and standard solution as directed under Liquid Chromatography $<2.01^\circ$ according to the following conditions. Determine each peak area of both solutions by the automatic integration method: each peak area other than mexiletine obtained from the sample solution is not larger than the peak area of mexiletine from the standard solution.

Operating conditions—

Detector, column, column temperature, mobile phase, flow rate, and selection of column: Proceed as directed in the operating conditions in the Assay.

Detection sensitivity: Adjust so that the peak height of mexiletine obtained from 20 μL of the standard solution is between 5 mm and 10 mm.

Time span of measurement: About 3 times as long as the retention time of mexiletine, beginning after the solvent peak.

Loss on drying $<2.41^\circ$ Not more than 0.5% (1 g, 105°C, 3 hours).

Residue on ignition $<2.44^\circ$ Not more than 0.1% (1 g).

Assay Weigh accurately about 20 mg each of Mexiletine Hydrochloride and Mexiletine Hydrochloride RS, each previously dried, and dissolve each in the mobile phase to make
Miconazole

ミコナゾール

\[
\text{C}_{18}\text{H}_{17}\text{Cl}_{2}\text{N}_{3}\text{O} \quad \text{M} = 416.13
\]

1-[(2RS)-2-(2,4-Dichlorobenzoyloxy)-2-(2,4-dichlorophenyl)methyl]-1H-imidazole

\[22916-47-8\]

Miconazole, when dried, contains not less than 98.5% of miconazole (C\(_{18}\)H\(_{17}\)Cl\(_2\)N\(_3\)O).

Description Miconazole occurs as a white to pale yellow-white crystalline powder.

It is freely soluble in methanol, in ethanol (95) and in acetic acid (100), soluble in diethyl ether, and practically insoluble in water.

A solution of Miconazole in methanol (1 in 20) shows no optical rotation.

Identification (1) Determine the absorption spectrum of a solution of Miconazole in methanol (1 in 2500) as directed under Ultraviolet-visible Spectrophotometry \(<2.24\>\), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Miconazole, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry \(<2.25\>\), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point \(<2.60\> \quad 84 - 87^\circ C

Purity (1) Heavy metals \(<1.07\>\) — Proceed with 1.0 g of Miconazole according to Method 2, and perform the test. Prepare the control solution with 1.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Arsenic \(<1.17\>\) — Prepare the test solution with 1.0 g of Miconazole according to Method 3, and perform the test (not more than 2 ppm).

(3) Related substances—Dissolve 0.10 g of Miconazole in 10 mL of methanol, and use this solution as the sample solution. Pipet 1.0 mL of the sample solution, add methanol to make exactly 20 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography \(<2.08\>\). Spot 50 \(\mu L\) each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of hexane, chloroform, methanol and ammonia solution (28:60:30:10:1) to a distance of about 12 cm, and air-dry the plate. Allow the plate to stand in iodine vapor for 20 minutes: the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying \(<2.47\> \quad \text{Not more than 0.5\% \ (1 g, in vacuum, silica gel, 60\%, 3 hours).}

Residue on ignition \(<2.44\> \quad \text{Not more than 0.1\% \ (1 g).}

Assay Weigh accurately about 0.3 g of Miconazole, previously dried, dissolve in 40 mL of acetic acid (100), and titrate \(<2.50\>\) with 0.1 mol/L perchloric acid VS (indicator: 3 drops of \(p\)-naphtholbenzen TS) until the color of the solution changes from light yellow-brown to light yellow-green. Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 41.61 mg of \(\text{C}_{18}\text{H}_{17}\text{Cl}_{2}\text{N}_{3}\text{O}\)

Containers and storage Containers—Tight containers.
Miconazole Nitrate

ミコナゾール硝酸塩

C₁₃H₁₄Cl₂N₂O₆HNO₃; 479.14
1-[(2RS)-2-(2,4-Dichlorobenzyloxy)-2-(2,4-dichlorophenyl)ethyl]-1H-imidazole mononitrate

Miconazole Nitrate, when dried, contains not less than 98.5% of miconazole nitrate (C₁₃H₁₄Cl₂N₂O₆HNO₃).

Description Miconazole Nitrate occurs as a white crystalline powder.

It is freely soluble in N₂,N-dimethylformamide, sparingly soluble in methanol, slightly soluble in ethanol (95), in acetone and in acetic acid (100), and very slightly soluble in water and in diethyl ether.

Melting point: about 180°C (with decomposition).

Identification (1) To 2 mL of a solution of Miconazole Nitrate in methanol (1 in 100) add 2 mL of Reinecke salt TS: a light red precipitate is formed.

(2) Determine the absorption spectrum of a solution of Miconazole Nitrate in methanol (1 in 2500) as directed under Ultraviolet-visible Spectrophotometry 2.24, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(3) Perform the test with a solution of Miconazole Nitrate in methanol (1 in 100) as directed under Flame Coloration Test 1.04 (2): a green color appears.

(4) A solution of Miconazole Nitrate in methanol (1 in 100) responds to Qualitative Tests 1.09 for nitrate.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Miconazole Nitrate in 100 mL of methanol: the solution is clear and colorless.

(2) Chloride 1.03—Dissolve 0.10 g of Miconazole Nitrate in 6 mL of dilute nitric acid and N₂,N-dimethylformamide to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution as follows: to 0.25 mL of 0.01 mol/L hydrochloric acid VS add 6 mL of dilute nitric acid and N₂,N-dimethylformamide to make 50 mL (not more than 0.09%).

(3) Heavy metals 1.07—Proceed with 1.0 g of Miconazole Nitrate according to Method 2, and perform the test. Prepare the control solution with 1.0 mL of Standard Lead Solution (not more than 10 ppm).

(4) Arsenic 1.11—Prepare the test solution with 1.0 g of Miconazole Nitrate according to Method 3, and perform the test (not more than 2 ppm).

(5) Related substances—Dissolve 0.10 g of Miconazole Nitrate in 10 mL of methanol, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add methanol to make exactly 20 mL, pipet 1 mL of this solution, add methanol to make exactly 20 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography 2.03. Spot 50 μL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of hexane, chloroform, methanol and ammonia solution (28) (60:30:10:1) to a distance of about 12 cm, and air-dry the plate. Allow the plate in iodine vapor for 20 minutes: the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying 2.41 Not more than 0.5% (1 g, in vacuum, silica gel, 60°C, 3 hours).

Residue on ignition 2.44 Not more than 0.1% (1 g).

Assay Weigh accurately about 0.35 g of Miconazole Nitrate, previously dried, dissolve in 50 mL of acetic acid (100) by warming, cool, and titrate 2.50 with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 47.91 mg of C₁₃H₁₄Cl₂N₂O₆HNO₃.

Containers and storage Containers—Tight containers.
Storage—Light-resistant.

Micronomicin Sulfate

ミクロノマイシン硫酸塩

(Microcirus microporus) 2-Amino-2,3,4,6-tetradeoxy-6-methylamino-α-D-erythro-hexopyranosyl(1→4)-[3-deoxy-4-C-methyl-3-methylamino-β-L-arabinopyranosyl(1→6)]-2-deoxy-D-streptamine hemipentasulfate

(Micromonospora sagamiensis) (C₂₀H₂₁N₄O₁₂·5H₂SO₄; 1417.53)

2-Amino-2,3,4,6-tetradeoxy-6-methylamino-α-D-erythro-hexopyranosyl(1→4)-[3-deoxy-4-C-methyl-3-methylamino-β-L-arabinopyranosyl(1→6)]-2-deoxy-D-streptamine hemipentasulfate

[52093-21-7, Micronomicin]

Micronomicin Sulfate is the sulfate of an amino-glycoside substance having antibacterial activity produced by the growth of Micromonospora sagamiensis.

It contains not less than 590 μg (potency) and not more than 660 μg (potency) per mg, calculated on the anhydrous basis. The potency of Micronomicin Sulfate is expressed as mass (potency) of micronomicin (C₂₀H₂₁N₄O₁₂·5H₂SO₄: 463.57).

Description Micronomicin Sulfate occurs as a white to light yellow-white powder.

It is very soluble in water, sparingly soluble in ethylene glycol, and practically insoluble in methanol and in ethanol (99.5).
It is hygroscopic.
Identification (1) Dissolve 50 mg each of Micronomicin Sulfate and Micronomicin Sulfate RS in 10 mL of water, and use these solutions as the sample solution and the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography 2.07. Spot 5 μL of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ethanol (99.5), 1-butanol and ammonia solution (28) (10:8:7) to a distance of about 10 cm, and air-dry the plate. Spray evenly a solution of ninhydrin in a mixture of acetone and pyridine (25:1) (1 in 500), and heat the plate at 100°C for 10 minutes; the spots obtained from the sample solution and the standard solution are red-purple to red-brown and their Rf values are the same.

(2) To 5 mL of a solution of Micronomicin Sulfate (1 in 100) add 1 mL of barium chloride TS: a white precipitate is formed, and it does not dissolve by addition of dilute nitric acid.

Optical rotation <2.49> [α]D20: +110° to +130° (0.25 g calculated on the anhydrous basis, water, 25 mL, 100 mm).

pH <2.5> The pH of a solution obtained by dissolving 1.0 g of Micronomicin Sulfate in 10 mL of water is between 3.5 and 5.5.

Purity (1) Clarity and color of solution—Dissolve 1.5 g of Micronomicin Sulfate in 10 mL of water: the solution is clear and colorless to pale yellow.

(2) Heavy metals <1.07>—Proceed with 1.0 g of Micronomicin Sulfate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(3) Related substances—Dissolve 0.40 g of Micronomicin Sulfate in 10 mL of water, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add water to make exactly 200 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography 2.03. Spot 5 μL of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ethanol (99.5), 1-butanol and ammonia solution (28) (10:8:7) to a distance of about 10 cm, and air-dry the plate. Spray evenly a solution of ninhydrin in a mixture of acetone and pyridine (25:1) (1 in 500), and heat the plate at 100°C for 10 minutes; the spot other than the principal spot obtained from the sample solution is not more intense than the spot from the standard solution.

Water <2.48> Not more than 10.0% (0.2 g, volumetric titration, back titration). Use a mixture of methanol for water determination and ethylene glycol for water determination (1:1) instead of methanol for water determination.

Assay Perform the test according to the Cylinder-plate method as directed under Microbial Assay for Antibiotics <4.02> according to the following conditions.

(i) Test organism—Bacillus subtilis ATCC 6633
(ii) Culture medium—Use the medium in 1 under (i) Agar media for seed and base layer.
(iii) Standard solutions—Weigh accurately an amount of Micronomicin Sulfate RS, equivalent to about 20 mg (potency), dissolve in 0.1 mol/L phosphate buffer solution for antibiotics (pH 8.0) to make exactly 20 mL, and use this solution as the standard stock solution. Keep the standard stock solution at 5–15°C, and use within 30 days. Take exactly a suitable amount of the standard stock solution before use, add 0.1 mol/L phosphate buffer solution for antibiotics (pH 8.0) to make solutions so that each mL contains 2 μg (potency) and 0.5 μg (potency), and use these solutions as the high concentration standard solution and the low concentration standard solution, respectively.

(iv) Sample solutions—Weigh accurately an amount of Micronomicin Sulfate, equivalent to about 20 mg (potency), and dissolve in 0.1 mol/L phosphate buffer solution for antibiotics (pH 8.0) to make exactly 20 mL. Take exactly a suitable amount of this solution, add 0.1 mol/L phosphate buffer solution for antibiotics (pH 8.0) to make solutions so that each mL contains 2 μg (potency) and 0.5 μg (potency), and use these solutions as the high concentration sample solution and the low concentration sample solution, respectively.

Containers and storage Containers—Tight containers.

Midecamycin ミデカマイシン

Midecamycin is a macroline substance having antibacterial activity produced by the growth of Streptomyces mycarofaciens.

It contains not less than 950 μg (potency) and not more than 1020 μg (potency) per mg, calculated on the dried basis. The potency of Midecamycin is expressed as mass (potency) of midecamycin (C40H57NO15). Description Midecamycin occurs as a white crystalline powder.

It is very soluble in methanol, freely soluble in ethanol (95), and very slightly soluble in water.

Identification (1) Determine the absorption spectrum of a solution of Midecamycin in methanol (1 in 50,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Midecamycin RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Midecamycin as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of Midecamycin RS: both spectra exhibit similar intensities of absorption at the same wave numbers.
Melting point $\leq 2.60 \degree\C 153 - 158\degree\C$

Purity Heavy metals $\leq 1.0\%$—Proceed with 1.0 g of Midecamycin according to Method 2, and perform the test. Prepare the control solution with 3.0 mL of Standard Lead Solution (not more than 30 ppm).

Loss on drying $\leq 2.4\%$ Not more than 2.0\% (1.0 g, in vacuum not exceeding 0.67 kPa, 60\degree\C, 3 hours).

Residue on ignition $\leq 2.4\%$ Not more than 0.2\% (1 g).

Assay Perform the test according to the Cylinder-plate method as directed under Microbial Assay for Antibiotics $\leq 4.0\%$ according to the following conditions.

(i) Test organism—Bacillus subtilis ATCC 6633

(ii) Culture medium—Use the medium i in 1) under (1) Agar media for seed and base layer.

(iii) Standard solutions—Weigh accurately an amount of Midecamycin RS, previously dried, equivalent to about 20 mg (potency), dissolve in 10 mL of methanol, add water to make exactly 50 mL, and use this solution as the standard stock solution. Keep the standard stock solution at 5\degree\C or below and use within 7 days. Take exactly a suitable amount of the standard stock solution before use, add 0.1 mol/L phosphate buffer solution (pH 8.0) to make solutions so that each mL contains 20 \(\mu\)g (potency) and 5 \(\mu\)g (potency), and use these solutions as the high concentration standard solution and the low concentration standard solution, respectively.

(iv) Sample solutions—Weigh accurately an amount of Midecamycin, previously dried, equivalent to about 20 mg (potency), dissolve in 10 mL of methanol, and add water to make exactly 50 mL. Take exactly a suitable amount of the solution, add 0.1 mol/L phosphate buffer solution (pH 8.0) to make solutions so that each mL contains 20 \(\mu\)g (potency) and 5 \(\mu\)g (potency), and use these solutions as the high concentration sample solution and the low concentration sample solution, respectively.

Containers and storage Containers—Tight containers.

Midecamycin Acetate

ミデカマイシン酢酸エステル

\[
\begin{align*}
\text{C}_{36}\text{H}_{43}\text{NO}_{17} & : 898.04 \\
(3R,4S,5S,6R,8R,9R,10E,12E,15R) &-9\text{-Acetoxy-5-}[3\text{-O-acetyl-2,6-dideoxy-3-C-methyl-4-O-propanoyl-\alpha-L-}
\text{ribo-hexopyranosyl-(1\rightarrow4)-3,6-dideoxy-3-dimethylamino-
\beta-D-glucopyranosyloxy}-6\text{-formylmethyl-4-methoxy-8-methyl-3-propioxyhexadeca-10,12-dien-15-olide} \\
& \text{[55881-07-7]}
\end{align*}
\]

Midecamycin Acetate is a derivative of midecamycin.

It contains not less than 950 \(\mu\)g (potency) and not more than 1010 \(\mu\)g (potency) per mg, calculated on the dried basis. The potency of Midecamycin Acetate is expressed as mass (potency) of midecamycin acetate (\(\text{C}_{36}\text{H}_{43}\text{NO}_{17}\)).

Description Midecamycin Acetate occurs as white, crystals or crystalline powder.

It is sparingly soluble in methanol, slightly soluble in ethanol (95), and practically insoluble in water.

Identification (1) Determine the absorption spectrum of a solution of Midecamycin Acetate in methanol (1 in 50,000) as directed under Ultraviolet-visible Spectrophotometry $\leq 2.5\%$, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Midecamycin Acetate RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Midecamycin Acetate, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry $\leq 2.5\%$, and compare the spectrum with the Reference Spectrum or spectrum of dried Midecamycin Acetate RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Purity Heavy metals $\leq 1.0\%$—Proceed with 1.0 g of Midecamycin Acetate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

Loss on drying $\leq 2.4\%$ Not more than 2.0\% (1 g, in vacuum not exceeding 0.67 kPa, 60\degree\C, 3 hours).

Residue on ignition $\leq 2.4\%$ Not more than 0.2\% (1 g).

Assay Perform the test according to the Cylinder-plate method as directed under Microbial Assay for Antibiotics.
according to the following conditions.

(i) Test organism—Kocuria rhizophila ATCC 9341

(ii) Culture medium—Use the medium i in 3) under (1) Agar media for seed and base layer.

(iii) Standard solutions—Weigh accurately an amount of Midecamycin Acetate, previously dried, equivalent to about 25 mg (potency), and dissolve in methanol to make exactly 50 mL, and use this solution as the standard stock solution. Keep the standard stock solution at 5 – 15°C and use within 7 days. Take exactly a suitable amount of the standard stock solution before use, add 0.1 mol/L phosphate buffer solution (pH 4.5) to make solutions so that each mL contains 20 µg (potency) and 5 µg (potency), and use these solutions as the high concentration standard solution and the low concentration standard solution, respectively.

(iv) Sample solutions—Weigh accurately an amount of Midecamycin Acetate, previously dried, equivalent to about 25 mg (potency), and dissolve in methanol to make exactly 50 mL. Take exactly a suitable amount of the solution, add 0.1 mol/L phosphate buffer solution (pH 4.5) to make solutions so that each mL contains 20 µg (potency) and 5 µg (potency), and use these solutions as the high concentration sample solution and the low concentration sample solution, respectively.

Containers and storage Containners—Tight containers.

Miglitol

ミグリトール

![Chemical Structure of Miglitol]

C₂₇H₄₇NO₇: 207.22
(2R,3R,4R,5S)-1-(2-Hydroxyethyl)-2-(hydroxymethyl)piperidine-3,4,5-triol

[72432-03-2]

Miglitol contains not less than 98.0% and not more than 102.0% of miglitol (C₉H₁₇NO₅), calculated on the dried basis.

Description Miglitol is a white to pale yellowish white powder.

It is freely soluble in water, and practically insoluble in ethanol (99.5).

Identification (1) Determine the infrared absorption spectrum of Miglitol, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry 2.25, and compare the spectrum with the Reference Spectrum or the spectrum of previously dried Miglitol RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

(2) Dissolve 10 mg each of Miglitol and Miglitol RS in 1 mL of water, and use these solutions as the sample solution and the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography 2.03. Spot 10 µL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of methanol, ethyl acetate and diluted ammonia solution (28) (9 in 10) (2:2:1) to a distance of about 17 cm, and dry the plate at 105°C. Allow the plate to stand in iodine vapor; the principal spot obtained from the sample solution and the spot from the standard solution show a brown color and the same Rf value.

Optical rotation <2.40°> [α]D: -7.3 – 8.3° (1.2 g calculated on the dried basis, water, 50 mL, 100 mm).

Melting point <2.60°> 144 – 147°C

Purity (1) Clarity and color of solution—Dissolve 2.5 g of Miglitol in 50 mL of water, and use this solution as the test solution. Determine the turbidity of the test solution as directed under Turbidity Measurement 2.61: it exhibits no more turbidity than Reference suspension II, and has no more color than the following control solution.

Control solution: To a mix of 0.3 mL of Cobalt (II) Chloride CS and 1.2 mL of Iron (III) Chloride CS add 38.5 mL of diluted hydrochloric acid (1 in 100).

(2) Heavy metals—Dissolve 2.5 g of Miglitol in 25 mL of water, and use this solution as the sample solution. Separately, to 10 mL of a solution obtained by dissolving Standard Lead Stock Solution to 50-fold with water before use, add 2 mL of the sample solution, and use this solution as the control solution. To 12 mL of the sample solution and the control solution add 2 mL of hydrochloric acid-ammonium acetate buffer solution (pH 3.5) and 1.2 mL of thioacetamide TS, mix, allow to stand for 2 minutes, and observe vertically or horizontally both Nessler tubes against a white background: the color obtained with the sample solution is not more intense than that with the control solution (not more than 20 ppm).

(3) Related substances—Dissolve 0.19 g of Miglitol in 50 mL of the mobile phase, and use this solution as the sample solution. Perform the test with 20 µL of the sample solution as directed under Liquid Chromatography 2.01 according to the following conditions. Determine each peak area by the area percentage method: the amount of the peaks other than miglitol and the peaks mentioned above is not more than 0.2%, and the amount of the peaks other than miglitol and the peaks mentioned above is not more than 0.1%. The total amount of the peaks other than miglitol is not more than 0.5%. For the area of the peak, having the relative retention time of about 0.9 and about 1.5 to miglitol is not more than 0.2%, and the amount of the peaks other than miglitol and the peaks mentioned above is not more than 0.1%. The total amount of the peaks other than miglitol is not more than 0.5%. For the area of the peak, having the relative retention time of about 1.5, multiply the correction factor 4.1.

Operating conditions—
Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 3 times as long as the retention time of miglitol, beginning after the solvent peak.

System suitability—
Test for required detectability: To 1 mL of the sample solution add the mobile phase to make 100 mL, and use this solution as the solution for system suitability test. Pipet 1 mL of the solution for system suitability test, and add the mobile phase to make exactly 10 mL. Confirm that the peak area of miglitol obtained with 20 µL of this solution is equivalent to 7 to 13% of that with 20 µL of the solution for system suitability test.

System performance: When the procedure is run with 20 µL of the solution for system suitability test under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of miglitol are not less than 5000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 20 µL of the solution for system suitability test under the above operating conditions, the relative standard devia-
Miglitol Tablets

Miglitol Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of miglitol (C₈H₁₇NO₅) (207.22).

Method of preparation Prepare as directed under Tablets, with Miglitol.

Identification To a quantity of powdered Miglitol Tablets, equivalent to 0.1 g of Miglitol, add 50 mL of a mixture of acetonitrile and water (9:1), shake, centrifuge, and use the supernatant liquid as the sample solution. Separately, dissolve 50 mg of miglitol in a mixture of acetonitrile and water (9:1) to make 25 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography. Spot 10 μL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of methanol, ethyl acetate and diluted ammonia solution (28) (9:2:1) to a distance of about 8 cm, and air-dry the plate. Allow the plate to stand in iodine vapors: the principal spot obtained from the sample solution and the spot from the standard solution show a brown color and the same Rf value.

Uniformity of dosage units When the test is performed at 75 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 30 minutes of Miglitol Tablets is not less than 85%.

Start the test with 1 tablet of Miglitol Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet 5 mL of the subsequent filtrate, add water to make exactly 50 mL. Pipet 5 mL of this solution, add water to make exactly 200 mL and use this solution as the standard solution. Separately, weigh accurately about 1 mg of miglitol (C₈H₁₇NO₅), Centrifuge this solution, and use the supernatant liquid as the sample solution. Then, proceed as directed in the Assay.

Containers and storage Containers—Tight containers.
Migrenin

ミグレニン

Migrenin is composed of 90 parts of antipyrine, 9 parts of caffeine, and 1 part of citric acid in mass. Migrenin, when dried, contains not less than 87.0% and not more than 93.0% of antipyrine (C₁₁H₁₂N₂O₂: 188.23) and not less than 8.6% and not more than 9.5% of caffeine (C₉H₁₄N₄O₂: 194.19).

Description Migrenin occurs as a white, powder or crystaline powder. It is odorless and has a bitter taste. It is very soluble in water, freely soluble in ethanol (95% and in chloroform, and slightly soluble in diethyl ether.

The pH of a solution of 1.0 g of Migrenin in 10 mL of water is between 3.0 and 4.0. It is affected by moisture and light.

Identification (1) To 5 mL of a solution of Migrenin (1 in 100) add 2 drops of sodium nitrite TS and 1 mL of dilute sulfuric acid: a deep green color develops.

(2) To 5 mL of a solution of Migrenin (1 in 50) add 1 drop of hydrochloric acid and 0.2 mL of formaldehyde solution, heat in a water bath for 30 minutes, add an excess of ammonia TS, and filter. Acidify the filtrate with hydrochloric acid, shake with 3 mL of chloroform, and separate the chloroform layer. Evaporate the chloroform solution on a water bath, add 10 drops of hydrogen peroxide TS and 1 drop of hydrochloric acid to the residue, and evaporate on a water bath to dryness: the residue shows a yellow-red color. Invert the residue over a vessel containing 2 to 3 drops of ammonia TS: a red-purple color develops, disappearing on the addition of 2 to 3 drops of sodium hydroxide TS.

(3) A solution of Migrenin (1 in 10) responds to Qualitative Tests <1.09> for citrate.

Melting point <2.60> 104 – 110°C

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Migrenin in 40 mL of water: the solution is clear and colorless to pale yellow.

(2) Heavy metals <1.07>—Proceed with 1.0 g of Migrenin according to Method 1, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

Loss on drying <2.47> Not more than 0.5% (1 g, in vacuum, silica gel, 4 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay (1) Antipyrine—Weigh accurately about 0.25 g of Migrenin, previously dried in an iodine flask, dissolve in 25 mL of sodium acetate TS and, exactly 30 mL of 0.05 mol/L iodine VS, and allow to stand for 20 minutes with occasional shaking. Add 15 mL of chloroform to dissolve the precipitate so obtained, and titrate <2.50> the excess iodine with 0.1 mol/L sodium thiosulfate VS (indicator: 3 mL of starch TS). Perform a blank determination in the same manner. Each mL of 0.05 mol/L iodine VS = 9.411 mg of C₁₁H₁₂N₂O₂

(2) Caffeine—To about 1 g of Migrenin, previously dried and accurately weighed, add exactly 5 mL of the internal standard solution, dissolve in chloroform to make 10 mL, and use this solution as the sample solution. Separately, weigh accurately about 90 mg of Caffeine RS, previously dried at 80°C for 4 hours, add exactly 5 mL of the internal standard solution, dissolve in chloroform to make 10 mL, and use this solution as the standard solution. Perform the test with 1 mL each of the sample solution and standard solution as directed under Gas Chromatography <2.02> according to the following conditions, and calculate the ratios, Q₁ and Q₂, of the peak area of caffeine to that of the internal standard.

Amount (mg) of caffeine (C₁₁H₁₀N₄O₂) = Mₛ × Q₁/Qₛ

Mₛ: Amount (mg) of Caffeine RS taken

Internal standard solution—A solution of ethenamide in chloroform (1 in 50).

Operating conditions—
Detector: A hydrogen flame-ionization detector.
Minocycline Hydrochloride

Minocycline Hydrochloride is the hydrochloride of a derivative of tetracycline.

It contains not less than 890 µg (potency) and not more than 950 µg (potency) per mg, calculated on the anhydrous basis. The potency of Minocycline Hydrochloride is expressed as mass (potency) of minocycline (C_{16}H_{12}N_{2}O_{5}) = 457.48.

Description
Minocycline Hydrochloride occurs as a yellow crystalline powder.

It is freely soluble in N,N-dimethylformamide, soluble in methanol, sparingly soluble in water, and slightly soluble in ethanol (95).

Identification
(1) Determine the absorption spectrum of a solution of Minocycline Hydrochloride in a solution of hydrochloric acid in methanol (19 in 20,000) (1 in 62,500) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Minocycline Hydrochloride RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Minocycline Hydrochloride as directed in the potassium chloride disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of Minocycline Hydrochloride RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) A solution of Minocycline Hydrochloride (1 in 100) responds to Qualitative Tests <1.09> (2) for chloride.

pH
Dissolve 1.0 g of Minocycline Hydrochloride in 100 mL of water: the pH of the solution is between 3.5 and 4.5.

Purity
Clarity and color of solution—Dissolve 1.0 g of Minocycline Hydrochloride in 100 mL of water: the solution is clear, and when the test is performed within 1 hour after preparation of this solution, the absorbance of the solution at 560 nm, determined as directed under Ultraviolet-visible Spectrophotometry <2.24>, is not more than 0.06.

(2) Heavy metals—Proceed with 0.5 g of Minocycline Hydrochloride according to Method 2, and perform the test. Prepare the control solution with 2.5 mL of Standard Lead Solution (not more than 50 ppm).

(3) Related substances—Dissolve 50 mg of Minocycline Hydrochloride in 100 mL of the mobile phase, and use this solution as the sample solution. Perform the test, immediately after the preparation of the sample solution, with 20 µL of this sample solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine each peak area by the automatic integration method. Calculate the amount of each peak area by the area percentage method: the amount of epiminocycline is not more than 1.2%, the amount of each peak other than minocycline and epiminocycline is not more than 1.0%, and the total area of the peaks other than minocycline and epiminocycline is not more than 2.0%.

Operating conditions
Detector, column, column temperature, and mobile phase: Proceed as directed in the operating conditions in the Assay.

Flow rate: Adjust so that the retention time of minocycline is about 12 minutes. The retention time of epiminocycline is about 10 minutes under this condition.

Time span of measurement: About 2.5 times as long as the retention time of minocycline, beginning after the solvent peak.

System suitability
System performance: Proceed as directed in the system suitability in the Assay.

Test for required detectability: To exactly 2 mL of the sample solution add the mobile phase to make exactly 100 mL, and use this solution as the solution for system suitability test. Pipet 5 mL of the solution for system suitability test, and add the mobile phase to make exactly 100 mL. Confirm that the peak area of minocycline obtained with 20 µL of this solution is equivalent to 3.5 to 6.5% of that with 20 µL of the solution for system suitability test.

System repeatability: When the test is repeated 6 times with 20 µL of the solution for system suitability test under the above operating conditions, the relative standard deviation of the peak area of minocycline is not more than 2.0%.

Water
Not less than 4.3% and not more than 8.0% (0.3 g, volumetric titration, direct titration).

Residue on ignition
Not more than 0.5% (1 g).

Assay
Weigh accurately an amount of Minocycline Hydrochloride and Minocycline Hydrochloride RS, equivalent to about 50 mg (potency), dissolve each in the mobile phase to
make exactly 100 mL, and use these solutions as the sample solution and the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A_T and A_S, of minocycline in each solution.

Amount [μg (potency)] of minocycline ($C_{21}H_{27}N_2O_3$)

\[M_S = M_S \times A_T / A_S \times 1000 \]

M_S: Amount [μg (potency)] of Minocycline Hydrochloride RS taken

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 280 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: Adjust to pH 6.5 of a mixture of a solution of ammonium oxalate monohydrate (7 in 250), N,N-dimethylformamide and 0.1 mol/L disodium dihydrogen ethylenediamine tetracetate TS (11:5:4) with tetrabutylammonium hydroxide TS.

Flow rate: Adjust so that the retention time of minocycline is about 12 minutes.

System suitability—

System performance: Dissolve 50 mg of Minocycline Hydrochloride in 25 mL of water. Heat 5 mL of this solution on a water bath for 60 minutes, then add water to make 25 mL. When the procedure is run with 20 μL of this solution under the above operating conditions, epiminocycline and minocyline are eluted in this order with the resolution between these peaks being not less than 2.0.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of peak areas of minocycline is not more than 1.0%.

Containers and storage Containers—Tight containers. Storage—Light-resistant.

Minocycline Hydrochloride Granules

ミノサイクリン塩酸塩顆粒

Minocycline Hydrochloride Granules contain not less than 90.0% and not more than 110.0% of the labeled potency of minocycline ($C_{21}H_{27}N_2O_3$: 457.48).

Method of preparation Prepare as directed under Granules, with Minocycline Hydrochloride.

Identification To a quantity of Minocycline Hydrochloride Granules, equivalent to 10 mg (potency) of Minocycline Hydrochloride, add 625 mL of a solution of hydrochloric acid in methanol (19 in 20,000), shake thoroughly, and filter. Determine the absorption spectrum of the filtrate as directed under Ultraviolet-visible Spectrophotometry <2.24>:

\[M_S = M_S \times A_T / A_S \times V' / V \times 1/10 \]

M_S: Amount [mg (potency)] of Minocycline Hydrochloride RS taken

Dissolution<6.10> When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 15 minutes of Minocycline Hydrochloride Granules is not
less than 85%. Start the test with an accurately weighed amount of Minocycline Hydrochloride Granules, equivalent to about 20 mg (potency) of Minocycline Hydrochloride, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately an amount of Minocycline Hydrochloride RS, equivalent to about 22 mg (potency), and dissolve in water to make exactly 100 mL. Pipet 5 mL of this solution, add water to make exactly 50 mL, and use this solution as the standard solution. Determine the absorbances, A1 and A5, of the sample solution and standard solution at 348 nm as directed under Ultraviolet-visible Spectrophotometry <2.24>.

Dissolution rate (%) with respect to the labeled amount of minocycline (C15H11N2O4)

\[M_5 = \frac{M_5}{M_1} \times \frac{A_1}{A_5} \times 100 \]

M5: Amount [mg (potency)] of Minocycline Hydrochloride RS taken
M1: Amount (g) of Minocycline Hydrochloride Granules taken
C: Labeled amount [mg (potency)] of minocycline (C15H11N2O4) in 1 g

Assay Weigh accurately an amount of powdered Minocycline Hydrochloride Granules, equivalent to about 50 mg (potency) of Minocycline Hydrochloride, add the mobile phase, shake vigorously, and add the mobile phase to make exactly 100 mL. Centrifuge this solution, and use the supernatant liquid as the sample solution. Separately, weigh accurately an amount of Minocycline Hydrochloride RS, equivalent to about 25 mg (potency), dissolve in the mobile phase to make exactly 50 mL, and use this solution as the standard solution. Then, proceed as directed in the Assay under Minocycline Hydrochloride.

Amount [mg (potency)] of minocycline (C15H11N2O4)

\[M_5 = \frac{M_5}{M_1} \times \frac{A_1}{A_5} \times 2 \]

M5: Amount [mg (potency)] of Minocycline Hydrochloride RS taken

Containers and storage Containers—Tight containers.
Storage—Light-resistant.

Minocycline Hydrochloride for Injection

注射用ミノサイクリン塩酸塩

Minocycline Hydrochloride for Injection is a preparation for injection, which is dissolved before use. It contains not less than 90.0% and not more than 110.0% of the labeled potency of minocycline (C15H11N2O4: 457.48).

Method of preparation Prepare as directed under Injections, with Minocycline Hydrochloride.

Description Minocycline Hydrochloride for Injection occurs as a yellow to yellow-brown, powder or flakes.

Identification Dissolve 4 mg of Minocycline Hydrochloride for Injection in 250 mL of a solution of hydrochloric acid in methanol (19 in 20,000). Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.24>: it exhibits maxima between 221 nm and 225 nm, between 261 nm and 265 nm, and between 354 nm and 358 nm.

pH <2.5> The pH of a solution, prepared by dissolving an amount of Minocycline Hydrochloride for Injection, equivalent to 0.1 g (potency) of Minocycline Hydrochloride, in 10 mL of water is 2.0 to 3.5.

Purity Related substances—Conduct this procedure rapidly after the preparation of the sample solution. Take an amount of Minocycline Hydrochloride for Injection, equivalent to 0.1 g (potency) of Minocycline Hydrochloride, dissolve in the mobile phase to make 100 mL. To 25 mL of this solution, add the mobile phase to make 50 mL, and use this solution as the sample solution. Perform the test with 20 μL of the sample solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine each peak area by the automatic integration method. Calculate the amounts of each peak by the area percentage method: the amount of epiminocycline, having the relative retention time of about 0.83 to minocycline, is not more than 6.0%.

Operating conditions—
Detector, column, column temperature, mobile phase and flow rate: Proceed as directed in the operating conditions in the Assay under Minocycline Hydrochloride.

Sterility<4.06> Perform the test according to the Sterility Test of the Japanese Pharmacopoeia (See the General Notices S.)

Uniformity of dosage units<6.02> It meets the requirement of the Uniformity of dosage units test.

Foreign insoluble matter<6.06> Perform the test according to Method 2: it meets the requirement.

Water<2.48> Weigh accurately the mass of the content of one container of Minocycline Hydrochloride for Injection, dissolve in exactly 2 mL of methanol for water determination, and perform the test with exactly 1 mL of this solution as directed in the Volumetric titration (back titration): not more than 3.0%.

Bacterial endotoxins<4.01> Less than 1.25 EU/mg (potency).

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
tion. Weigh accurately an amount of the contents, equivalent to about 0.1 g (potency) of Minocycline Hydrochloride, dissolve in the mobile phase to make exactly 100 mL. Pipet 25 mL of this solution, add the mobile phase to make exactly 50 mL, and use this solution as the sample solution. Separately, weigh accurately an amount of Minocycline Hydrochloride RS, equivalent to about 25 mg (potency), dissolve in the mobile phase to make exactly 50 mL, and use this solution as the standard solution. Then, proceed as directed in the Assay under Minocycline Hydrochloride.

\[
\text{Amount [mg (potency)] of minocycline (C}_2\text{H}_2\text{N}_7\text{O}_3\text{)} = M_S \times A_L / A_S \times 4
\]

\[M_S: \text{Amount [mg (potency)] of Minocycline Hydrochloride RS taken}\]

Containers and storage—Containers—Hermetic containers.

Minocycline Hydrochloride Tablets

ミシサイクリン塩酸塗錠

Minocycline Hydrochloride Tablets contain not less than 90.0% and not more than 110.0% of the labeled potency of Minocycline (C\(_{23}\)H\(_{27}\)N\(_2\)O\(_3\)) 457.48).

Method of preparation—Prepare as directed under Tablets, with Minocycline Hydrochloride.

Identification—To a quantity of powdered Minocycline Hydrochloride Tablets, equivalent to 10 mg (potency) of Minocycline Hydrochloride, add 625 mL of a solution of hydrochloric acid in methanol (19 in 20,000), shake well, and filter. Determine the absorption spectrum of the filtrate as directed under Ultraviolet-visible Spectrophotometry <2.24>: it exhibits maxima at 225 nm and 225 nm, between 261 nm and 265 nm, and between 354 nm and 358 nm.

Purity—Related substances—Conduct this procedure rapidly after preparation of the sample solution. Powder not less than 5 Minocycline Hydrochloride Tablets. Weigh accurately a portion of the powder, equivalent to 50 mg (potency) of Minocycline Hydrochloride, add 60 mL of the mobile phase, shake vigorously, and add the mobile phase to make 100 mL. Centrifuge this solution, and use the supernatant liquid as the sample solution. Perform the test with 20 μL of the sample solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area by the automatic integration method. Calculate the amounts of these peaks by the area percentage method: the amount of the peak of epiminocycline, having the relative retention time of about 0.83 to minocycline, is not more than 2.0%.

Operating conditions—

Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay under Minocycline Hydrochloride.

Time span of measurement: About 2.5 times as long as the retention time of minocycline, beginning after the solvent peak.

System suitability—

System performance: Proceed as directed in the system suitability in the Assay under Minocycline Hydrochloride.

Test for required detectability: To 2 mL of the solution add the mobile phase to make 100 mL, and use this solution as the solution for system suitability test. Pipet 5 mL of the solution for system suitability test, and add the mobile phase to make exactly 100 mL. Confirm that the peak area of minocycline obtained with 20 μL of this solution is equivalent to 3.5 to 6.5% of that with 20 μL of the solution for system suitability test.

System repeatability: When the test is repeated 6 times with 20 μL of the solution for system suitability test under the above operating conditions, the relative standard deviation of the peak area of minocycline is not more than 2.0%.

Water—Not more than 12.0% (0.5 g of powdered Minocycline Hydrochloride Tablets, volumetric titration, back titration).

Uniformity of dosage units—Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement.

To 1 tablet of Minocycline Hydrochloride Tablets add 60 mL of the mobile phase, sonicate for 15 minutes, and add the mobile phase to make exactly V mL so that each mL contains about 0.5 mg (potency) of Minocycline Hydrochloride. Centrifuge this solution, and use the supernatant liquid as the sample solution. Then, proceed as directed in the Assay.

\[
\text{Amount [mg (potency)] of minocycline (C}_2\text{H}_2\text{N}_7\text{O}_3\text{)} = M_S \times A_L / A_S \times V / 50
\]

\[M_S: \text{Amount [mg (potency)] of Minocycline Hydrochloride RS taken}\]

Dissolution—When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 30 minutes of Minocycline Hydrochloride Tablets is not less than 85%.

Start the test with 1 tablet of Minocycline Hydrochloride Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 nm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add water to make exactly V mL so that each mL contains about 9 μg (potency) of Minocycline Hydrochloride, and use this solution as the sample solution. Separately, weigh accurately an amount of Minocycline Hydrochloride RS, equivalent to about 30 mg (potency), and dissolve in water to make exactly 100 mL. Pipet 4 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution. Perform the test with the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry <2.24>, and determine the absorbances, A\(_T\) and A\(_S\), at 348 nm.

Dissolution rate (%) with respect to the labeled amount of minocycline (C\(_{23}\)H\(_{27}\)N\(_2\)O\(_3\))

\[
\text{Amount [mg (potency)] of Minocycline Hydrochloride RS taken} = M_S \times A_T / A_S \times V / V \times 1 / C \times 36
\]

\[M_S: \text{Labeled amount [mg (potency)] of minocycline (C}_2\text{H}_2\text{N}_7\text{O}_3\text{)} in 1 tablet}\]

Assay—To a number of Minocycline Hydrochloride Tablets, equivalent to about 1 g (potency) of Minocycline Hydrochloride, add 120 mL of the mobile phase, sonicate for 15 minutes, and add the mobile phase to make exactly 200 mL. Centrifuge this solution, pipet 5 mL of the supernatant liquid, add the mobile phase to make exactly 50 mL, and use this solution as the sample solution. Separately, weigh accurately an amount of Minocycline Hydrochloride RS, equivalent to about 25 mg (potency), dissolve in the mobile phase to make exactly 50 mL, and use this solution as the standard solution. Then, proceed as directed in the Assay under
Minocycline Hydrochloride.

Amount [mg (potency)] of minocycline (C_{13}H_{27}N_{2}O_{3})

\[M_1 = \frac{m \times A_1}{A_2 \times 40} \]

\[M_2: \text{Amount [mg (potency)] of Minocycline Hydrochloride RS taken} \]

Containers and storage Containers—Tight containers.
Storage—Light-resistant.

Mitiglinide Calcium Hydrate

ミチダリニドルカルシウム水和物

\[
\text{C}_{38}\text{H}_{46}\text{CaN}_{2}\text{O}_{6}\cdot2\text{H}_{2}\text{O}: \text{704.91} \\
\text{Monocalcium bis(2S)-2-benzyl-4-[3aR,7aS)-octahydroisoindol-2-y1]-4-oxobutanolate dihydrate} \\
[207844-01-7]
\]

Mitiglinide Calcium Hydrate contains not less than 98.0% and not more than 102.0% of mitiglinide calcium hydrate (C_{38}H_{46}CaN_{2}O_{6}\cdot2H_{2}O).

Description Mitiglinide Calcium Hydrate occurs as a white powder.
It is freely soluble in methanol and in ethanol (99.5), and slightly soluble in water.
It shows crystal polymorphism.

Identification (1) Determine the absorption spectrum of a solution of Mitiglinide Calcium Hydrate in methanol (1 in 1000) as directed under Ultraviolet-visible Spectrophotometry \(<2.24\rangle\), and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Mitiglinide Calcium RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Mitiglinide Calcium Hydrate as directed in the paste method under Infrared Spectrophotometry \(<2.25\rangle\), and compare the spectrum with the Reference Spectrum or the spectrum of Mitiglinide Calcium RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) To 0.5 g of Mitiglinide Calcium Hydrate add 3 mL of 1 mol/L hydrochloric acid AS and 5 mL of diethyl ether, shake, then separate the aqueous layer, and neutralize with ammonia TS: the solution responds to Qualitative Tests \(<1.09\rangle\) (2) for calcium salt.

Optical rotation \(<2.49\rangle [\alpha]_D^2 + 8.4 – + 9.0^\circ (0.38 \text{ g} \text{ calculated on the anhydrous basis, methanol, 20 mL, 100 mm}).

Purity (1) Heavy metals \(<1.07\rangle\)—Place 1.0 g of Mitiglinide Calcium Hydrate in a crucible, cover the crucible loosely, and ignite at a low temperature until charred. After cooling, add 2 mL of nitric acid and 5 drops of sulfuric acid to the content of the crucible, heat carefully while white fumes are no longer evolved, and ignite between 500 and 600°C. After cooling, moisten the residue with a little amount of sulfuric acid, and incinerate again by ignition. After cooling, add 2 mL of hydrochloric acid, evaporate to dryness on a water bath, moisten the residue with 3 drops of hydrochloric acid, add 10 mL of boiling water, and heat for 2 minutes. Sonicate this solution, add 1 drop of phenolphthalein TS, drop ammonia TS until a slight red color develops, add 2 mL of dilute acetic acid, transfer to a centrifuge tube, centrifuge, and take the supernatant liquid. Wash the residue in the crucible with 15 mL of water, transfer to the former centrifuge tube, sonicate, centrifuge, and take the supernatant liquid. Repeat this operation with 15 mL of water in addition. Combine all the supernatant liquid obtained, put in a Nessler tube, and add water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(2) Related substances—To 0.10 g of Mitiglinide Calcium Hydrate add a mixture of water and acetonitrile (2:1), dissolve by sonication while occasional shaking, add the mixture of water and acetonitrile (2:1) to make 100 mL, and use this solution as the sample solution. Pipet 2 mL of the sample solution, add the mixture of water and acetonitrile (2:1) to make exactly 50 mL. Pipet 2.5 mL of this solution, add the mixture of water and acetonitrile (2:1) to make exactly 20 mL, and use this solution as the standard solution. Perform the test with exactly 15 \mu L each of the sample solution and standard solution as directed under Liquid Chromatography \(<2.01\rangle\) according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak other than mitiglinide obtained from the sample solution is not larger than 1/5 times the peak area of mitiglinide from the standard solution, and the total area of peaks other than mitiglinide from sample solution is not larger than 3/10 times the peak area of mitiglinide from the standard solution.

Operating conditions—

Detector, column, and column temperature: Proceed as directed in the operating conditions in the Assay.
Mobile phase: Adjust to pH 2.0 of a mixture of water, acetonitrile for liquid chromatography and n-amyl alcohol (66:33:1) with phosphoric acid.
Flow rate: Adjust so that the retention time of mitiglinide is about 12 minutes.
Time span of measurement: About 2 times as long as the retention time of mitiglinide, beginning after the solvent peak.

System suitability—

Test for required detectability: Pipet 5 mL of the standard solution, add a mixture of water and acetonitrile (2:1) to make exactly 50 mL. Confirm that the peak area of mitiglinide obtained with 15 \mu L of this solution is equivalent to 7 to 13 % of that with 15 \mu L of the standard solution.

System performance: When the procedure is run with 15 \mu L of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of mitiglinide are not less than 4000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 15 \mu L of the standard solution under the above operating conditions, the relative standard deviation of the peak area of mitiglinide is not more than 2.0%.

Water \(<2.48\rangle\ 4.5 – 6.0\% (50 \text{ mg}, \text{ coulometric titration}).

Assay Weigh accurately about 50 mg each of Mitiglinide Calcium Hydrate and Mitiglinide Calcium RS (separately determine the water \(<2.48\rangle\ in the same manner as Mitiglinide Calcium Hydrate), add a mixture of water and acetonitrile (2:1) to them, dissolve by sonication while occasional shaking, and add the mixture of water and acetonitrile (2:1) to...
Mitiglinide Calcium Tablets

ミチグリニドカルシウム錠

Mitiglinide Calcium Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of mitiglinide calcium hydrate (C₃₅H₄₃CaN₂O₆·2H₂O: 704.91).

Method of preparation Prepare as directed under Tablets, with Mitiglinide Calcium Hydrate.

Identification To 5 mL of the sample solution obtained in the Purity, add a mixture of water and acetonitrile (2:1) to make 10 mL, and use this solution as the sample solution. Separately, to 50 mg of mitiglinide calcium hydrate add the mixture of water and acetonitrile (2:1), dissolve by sonication while occasional shaking, add the mixture of water and acetonitrile (2:1) to make 100 mL, and use this solution as the standard solution. Perform the test with 15 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions: the principal peaks in the chromatograms obtained from the sample solution and standard solution show the same retention time, and both spectra of these peaks exhibit similar intensities of absorption at the same wavelengths.

Operating conditions— Column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Purity.

System suitability—

System performance: Proceed as directed in the system suitability in the Purity.

Purity Related substances—Take not less than 10 tablets of Mitiglinide Calcium Tablets, and powder. Weigh a portion of the powder, equivalent to 50 mg of Mitiglinide Calcium Hydrate, add 35 mL of a mixture of water and acetonitrile (2:1), sonicate while occasional shaking, add the mixture of water and acetonitrile (2:1) to make 50 mL, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 1 mL of the filtrate, and use the subsequent filtrate as the sample solution. Pipet 2 mL of the sample solution, add the mixture of water and acetonitrile (2:1) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 15 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area of both solutions by the automatic integration method: the area of the peak, having the relative retention time of about 0.2 to mitiglinide, obtained from the sample solution is not larger than 1/4 times the peak area of mitiglinide from the standard solution, and the area of peak other than mitiglinide and the peak mentioned above from the sample solution is not larger than 1/8 times the peak area of mitiglinide from the standard solution. In addition, the total area of the peaks other than mitiglinide from the sample solution is not larger than 1/2 times the peak area of mitiglinide from the standard solution.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 210 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with palmitamide propylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of 35°C.

Mobile phase: Adjust to pH 2.0 of a mixture of water, acetonitrile for liquid chromatography and n-amyl alcohol (62:37:1) with phosphoric acid.

Flow rate: Adjust so that the retention time of mitiglinide is about 7.5 minutes.

System suitability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the internal standard and mitiglinide are eluted in this order with the resolution between these peaks being not less than 10.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of mitiglinide is not more than 1.0%.

Containers and storage Containers—Well-closed containers.
factor of the peak of mitoglinide are not less than 3000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 15 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of mitoglinide is not more than 1.5%.

Uniformity of dosage unit: Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 tablet of Mitoglinide Calcium Tablets add a mixture of water and acetonitrile (2:1), add exactly V/10 mL of the internal standard solution, sonicate while occasional shaking, and then add the mixture of water and acetonitrile (2:1) to make V mL so that each mL contains about 0.1 mg of mitoglinide calcium hydrate (C$_{38}$H$_{64}$CaN$_{2}$O$_{6}$.2H$_{2}$O), and filter through a membrane filter with a pore size not exceeding 0.45 µm. Discard the first 1 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 50 mg of Mitoglinide Calcium RS (separately determine the water 2.48% in the same manner as mitoglinide calcium hydrate), add the mixture of water and acetonitrile (2:1), dissolve by sonication while occasional shaking, and add the mixture of water and acetonitrile (2:1) to make exactly 100 mL. Pipet 20 mL of this solution, add exactly 10 mL of the internal standard solution, add the mixture of water and acetonitrile (2:1) to make 100 mL, and use this solution as the standard solution. Perform the test with 5 µL each of the sample solution and standard solution as directed under Liquid Chromatography 2.01 according to the following conditions, and calculate the ratios, Q_1 and Q_2, of the peak area of mitoglinide to that of the internal standard.

Amount (mg) of mitoglinide calcium hydrate
\[
(C_{38}H_{64}CaN_2O_6.2H_2O) = M_x \times Q_2/Q_1 \times V/500 \times 1.054
\]

M_x: Amount (mg) of Mitoglinide Calcium RS taken, calculated on the anhydrous basis

Internal standard solution—A solution of 2-nitrophenol in acetonitrile (1 in 5000).

Operating conditions—
Proceed as directed in the operating conditions in the Assay under Mitoglinide Calcium Hydrate.

System suitability—
Proceed as directed in the operating conditions in the Assay.

Dissolution 6.10—When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 15 minutes of Mitoglinide Calcium Tablets is not less than 85%.

Start the test with 1 tablet of Mitoglinide Calcium Tablets, withdraw not less than 10 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 µm. Discard not less than 1 mL of the first filtrate, pipet V mL of the subsequent filtrate, add the mixture of water and acetonitrile (2:1) to make exactly V mL so that each mL contains about 5.6 µg of mitoglinide calcium hydrate (C$_{38}$H$_{64}$CaN$_{2}$O$_{6}$.2H$_{2}$O), and use this solution as the sample solution. Separately, weigh accurately about 25 mg of Mitoglinide Calcium RS (separately determine the water 2.48% in the same manner as Mitoglinide Calcium Hydrate), add the mixture of water and acetonitrile (2:1), dissolve by sonication while occasional shaking, and add the mixture of water and acetonitrile (2:1) to make exactly 100 mL. Pipet 2 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 50 µL each of the sample solution and standard solution as directed under Liquid Chromatography 2.01 according to the following conditions, and determine the peak areas, A_T and A_S, of mitoglinide in each solution.

Dissolution rate (%) with respect to the labeled amount of mitoglinide calcium hydrate (C$_{38}$H$_{64}$CaN$_{2}$O$_{6}$.2H$_{2}$O) = $M_x \times A_T/A_S \times V/V' \times 1/C \times 18 \times 1.054$

M_x: Amount (mg) of Mitoglinide Calcium RS taken, calculated on the anhydrous basis

C: Labeled amount (mg) of mitoglinide calcium hydrate (C$_{38}$H$_{64}$CaN$_{2}$O$_{6}$.2H$_{2}$O) in 1 tablet.

Operating conditions—
Proceed as directed in the operating conditions in the Assay under Mitoglinide Calcium Hydrate.

System suitability—
System performance: When the procedure is run with 50 µL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of mitoglinide are not less than 3000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 50 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of mitoglinide is not more than 1.5%.

Assay—Weigh accurately about 2 tablets of Mitoglinide Calcium Tablets and powder. Weigh accurately a portion of the powder, equivalent to about 10 mg of mitoglinide calcium hydrate (C$_{38}$H$_{64}$CaN$_{2}$O$_{6}$.2H$_{2}$O), add a mixture of water and acetonitrile (2:1), add exactly 10 mL of the internal standard solution, sonicate while occasional shaking, and then add the mixture of water and acetonitrile (2:1) to make exactly 100 mL, filter through a membrane filter with a pore size not exceeding 0.45 µm. Discard the first 1 mL of the filtrate, and use the subsequent filtrate as the standard solution. Separately, weigh accurately about 50 mg of Mitoglinide Calcium RS (separately determine the water 2.48% in the same manner as Mitoglinide Calcium Hydrate), add the mixture of water and acetonitrile (2:1), dissolve by sonication while occasional shaking, and add the mixture of water and acetonitrile (2:1) to make exactly 100 mL. Pipet 20 mL of this solution, add exactly 10 mL of the internal standard solution, sonicate while occasional shaking, and then add the mixture of water and acetonitrile (2:1) to make exactly 100 mL. Perform the test with 5 µL each of the sample solution and standard solution as directed under Liquid Chromatography 2.01 according to the following conditions, and calculate the ratios, Q_1 and Q_2, of the peak area of mitoglinide to that of the internal standard.

Amount (mg) of mitoglinide calcium hydrate
\[
(C_{38}H_{64}CaN_2O_6.2H_2O) = M_x \times Q_1/Q_2 \times V/V' \times 1/C \times 18 \times 1.054
\]

M_x: Amount (mg) of Mitoglinide Calcium RS taken, calculated on the anhydrous basis

Internal standard solution—A solution of 2-nitrophenol in acetonitrile (1 in 5000).

Operating conditions—
Proceed as directed in the operating conditions in the Assay under Mitoglinide Calcium Hydrate.

System suitability—
System performance: When the procedure is run with 5 µL...
of the standard solution under the above operating conditions, the internal standard and mitomigide are eluted in this order with the resolution between these peaks being not less than 10.

System repeatability: When the test is repeated 6 times with 5 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak of mitomigide to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Well-closed containers.

Mitomycin C

Mitomycin C is a substance having antitumor activity produced by the growth of Streptomyces caesipitossus.

It contains not less than 970 μg (potency) and not more than 1030 μg (potency) per mg, calculated on the dried basis. The potency of Mitomycin C is expressed as mass (potency) of mitomycin C (C15H18N6O5).

Description Mitomycin C occurs as blue-purple, crystals or crystalline powder.

It is freely soluble in N,N-dimethylacetamide, slightly soluble in water and in methanol, and very slightly soluble in ethanol (99.5).

Identification (1) Determine the absorption spectrum of a solution of Mitomycin C (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry 2.24, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Mitomycin C RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Mitomycin C as directed in the potassium bromide disk method under Infrared Spectrophotometry 2.25, and compare the spectrum with the Reference Spectrum or the spectrum of Mitomycin C RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Purity Related substances—Conduct this procedure rapidly after the sample and the standard solutions are prepared. Dissolve 50 mg of Mitomycin C in 10 mL of methanol, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add methanol to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography 2.01, according to the following conditions, and determine each peak area by the automatic integration method: each area of the peak other than mitomycin C obtained from the sample solution is not larger than the peak area of mitomycin C from the standard solution, and the total area of the peaks other than mitomycin C from the sample solution is not larger than 3 times the peak area of mitomycin C from the standard solution.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 254 nm).

Column: A stainless steel column 6 mm in inside diameter and 15 cm in length, packed with octadecysilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 30°C.

Mobile phase A: To 20 mL of 0.5 mol/L ammonium acetate TS add water to make 1000 mL. To 800 mL of this solution add 200 mL of methanol.

Mobile phase B: To 20 mL of 0.5 mol/L ammonium acetate TS add water to make 1000 mL. To this solution add 1000 mL of methanol.

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 10</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>10 – 30</td>
<td>100 → 0</td>
<td>0 → 100</td>
</tr>
<tr>
<td>30 – 45</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Flow rate: About 1.0 mL per minute.

Time span of measurement: About 2 times as long as the retention time of mitomycin C, beginning after the solvent peak.

System suitability—

Test for required detectability: Pipet 10 mL of the standard solution, and add methanol to make exactly 100 mL. Confirm that the peak area of mitomycin C obtained with 10 μL of this solution is equivalent to 7 to 13% of that with 10 μL of the standard solution.

System performance: Dissolve 25 mg of Mitomycin C and 40 mg of 3-ethoxy-4-hydroxybenzaldehyde in 50 mL of methanol. When the procedure is run with 10 μL of this solution under the above operating conditions, mitomycin C and 3-ethoxy-4-hydroxybenzaldehyde are eluted in this order with the resolution between these peaks being not less than 15.

System repeatability: When the test is repeated 3 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of mitomycin C is not more than 3.0%.

Loss on drying 2.41 Not more than 1.0% (0.1 g, reduced pressure not exceeding 0.67 kPa, 60°C, 3 hours).

Assay Weigh accurately an amount of Mitomycin C and Mitomycin C RS, equivalent to about 25 mg (potency), dissolve each in N,N-dimethylacetamide to make exactly 50 mL, and use these solutions as the sample solution and standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography 2.01, according to the following conditions, and determine the peak areas, A1 and A5, of mitomycin C in each solution.

Amount [μg (potency)] of mitomycin C (C15H18N6O5) = Ms × A1/A5 × 1000
Mitomycin C for Injection / Official Monographs

Mitomycin C for Injection

Mitomycin C for Injection is a preparation for injection, which is dissolved before use.

It contains not less than 90.0% and not more than 110.0% of the labeled potency of mitomycin C (C₁₅H₁₈N₂O₇; 334.33).

Method of preparation
Prepare as directed under Injections, with Mitomycin C.

Identification
Dissolve an amount of Mitomycin C for Injection, equivalent to 2 mg (potency) of Mitomycin C, in 200 mL of water, and determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.24> it exhibits maxima between 216 nm and 220 nm, and between 362 nm and 366 nm.

pH <2.54> The pH of a solution, prepared by dissolving 0.25 g of Mitomycin C for Injection in 20 mL of water, is 5.5 to 8.5.

Loss on drying <2.41> Not more than 1.0% (0.4 g, in vacuum not exceeding 0.67 kPa, phosphorus (V) oxide, 60°C, 3 hours).

Bacterial endotoxins <4.01> Less than 10 EU/mg (potency).

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To the content of 1 container of Mitomycin C for Injection add exactly 15 mL of methanol. Shake, centrifuge, and use the supernatant liquid as the sample solution. Separately, weigh accurately about 25 mg (potency) of Mitomycin C RS, add N,N-dimethylacetamide to make exactly 50 mL, and use this solution as the standard solution. Then, proceed as directed in the Assay under Mitomycin C.

Amount [mg (potency)] of mitomycin C (C₁₅H₁₈N₂O₇)

\[M₃ = \frac{A_T \times A_S \times V}{50} \]

M₃: Amount [mg (potency)] of Mitomycin C RS taken

Foreign insoluble matter <6.06> Perform the test according to Method 2: it meets the requirement.

Insoluble particulate matter <6.07> It meets the requirement.

Sterility <4.06> Perform the test according to the Membrane filtration method: it meets the requirement.

Assay
Weigh accurately the mass of the contents of not less than 10 containers of Mitomycin C for Injection. Weigh accurately an amount of the contents, equivalent to about 10 mg (potency) of Mitomycin C, add exactly 20 mL of N,N-dimethylacetamide, shake, centrifuge, and use the supernatant liquid as the sample solution. Separately, weigh accurately an amount of Mitomycin C RS, equivalent to about 25 mg (potency), dissolve in N,N-dimethylacetamide to make exactly 50 mL, and use this solution as the standard solution. Then, proceed as directed in the Assay under Mitomycin C.

Amount [mg (potency)] of mitomycin C (C₁₅H₁₈N₂O₇)

\[M₃ = \frac{A_T \times A_S \times 2}{5} \]

M₃: Amount [mg (potency)] of Mitomycin C RS taken

Containers and storage
Containers—Tight containers.

Mizoribine

Mizoribine occurs as a white to yellowish white crystalline powder. It is freely soluble in water, and practically insoluble in methanol and in ethanol (99.5).

Identification
Determine the absorption spectrum of a solution of Mizoribine (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Mizoribine RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Mizoribine.
Mizoribine as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of Mizoribine RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation <2.49> [α]_D^25^−41 to 27° (0.5 g calculated on the anhydrous basis, water, 25 mL, 100 mm).

Purity (1) Heavy metals <1.07>—Proceed with 1.0 g of Mizoribine according to Method 1, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(2) Related substances—Dissolve 0.10 g of Mizoribine in the mobile phase to make 50 mL, and use this solution as the sample solution. Pipet 5 mL of the sample solution, and add the mobile phase to make exactly 50 mL. Pipet 1 mL of this solution, add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 5 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions. Determine each peak area of both solutions by the automatic integration method: the areas of the peaks other than mizoribine obtained from the sample solution are not larger than the peak area of mizoribine from the standard solution.

Operating conditions—
- Column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.
- Detector: An ultraviolet absorption photometer (wavelength: 220 nm).
- Time span of measurement: About 3 times as long as the retention time of mizoribine, beginning after the solvent peak.

System suitability—
Test for required detectability: Pipet 1 mL of the standard solution, and add the mobile phase to make exactly 5 mL. Confirm that the peak area of mizoribine obtained with 5 μL of this solution is equivalent to 14 to 26% of that with 5 μL of the standard solution.

System performance: When the procedure is run with 5 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of mizoribine are not less than 10,000 and not more than 1.4, respectively.

System repeatability: When the test is repeated 6 times with 5 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of mizoribine is not more than 1.0%.

Residue on ignition <2.44> Not more than 0.5% (0.5 g, volumetric titration, direct titration).

Assay Weigh accurately about 0.1 g of Mizoribine, and dissolve in the mobile phase to make exactly 50 mL. Pipet 5 mL of this solution, add the mobile phase to make exactly 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 10 mg of Mizoribine RS (separately determine the water <2.48> using the same manner as Mizoribine, dissolve in the mobile phase to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly 5 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions, and determine the peak areas, A_T and A_S, of mizoribine in each solution.

\[
\text{Amount (mg) of mizoribine (C}_{25}\text{H}_{39}\text{N}_{13}\text{O}_{6}\text{) = } M_5 \times \frac{A_T}{A_S} \times 10
\]

Mizoribine Tablets

Mizoribine Tablets contain not less than 93.0% and not more than 107.0% of the labeled amount of mizoribine (C_{25}H_{39}N_{13}O_{6}: 259.22).

Method of preparation Prepare as directed under Tablets, with Mizoribine.

Identification To a quantity of powdered Mizoribine Tablets, equivalent to 0.1 g of Mizoribine, add 5 mL of water, shake, filter, and use the filtrate as the sample solution. Separately, dissolve 20 mg of Mizoribine RS in 1 mL of water, and use this solution as the standard solution. Perform the test with the sample solution and standard solution as directed under Thin-Layer Chromatography <2.03>. Spot 1 μL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Then develop the plate with a mixture of methanol, ammonia solution (28) and 1-propanol (2:1:1) to a distance of about 10 cm, and air-dry the plate. Allow the plate to stand in iodine vapor: the principal spot obtained from the sample solution and the spot from the standard solution show a red-brown color and the same Rf value.

Purity Related substances—To a quantity of powdered Mizoribine Tablets, equivalent to 0.10 g of Mizoribine, add 30 mL of the mobile phase, shake, then add the mobile phase to make 50 mL. Filter the solution through a membrane filter with a pore size not exceeding 0.5 μm and use the filtrate as the sample solution. Pipet 2 mL of the sample solution, add the mobile phase to make exactly 20 mL. Pipet 1 mL of the solution, add the mobile phase to make exactly 20 mL, and use this solution as the standard solution. Perform the test with exactly 5 μL each of the sample solution and
standard solution as directed under Liquid Chromatography as directed under Ultraviolet-visible Spectrophotometry. Determine each peak area by the automatic integration method: the area of the peak, having the relative retention time of about 0.3 to mizoribine, obtained from the sample solution is not larger than the peak area of mizoribine from the standard solution, and the area of the peak other than mizoribine and the peak mentioned above is not larger than 2/5 times the peak area of mizoribine from the standard solution.

Operating conditions—
Column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay under Mizoribine.
Detector: An ultraviolet absorption photometer (wavelength: 220 nm).
Time span of measurement: About 3 times as long as the retention time of mizoribine, beginning after the solvent peak.
System suitability—
Test for required detectability: To exactly 1 mL of the standard solution add the mobile phase to make exactly 5 mL. Confirm that the peak area of mizoribine obtained with 5 μL of this solution is equivalent to 14 to 26% of that with 5 μL of the standard solution.
System performance: When the procedure is run with 5 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of mizoribine are not less than 10,000 and not more than 1.4, respectively.
System repeatability: When the test is repeated 6 times with 5 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of mizoribine is not more than 2.0%.

Uniformity of dosage units <6.02> Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement.
To 1 tablet of Mizoribine Tablets add 50 mL of water, shake until the tablet is disintegrated, and add water to make exactly 100 mL. Filter the solution, discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add water to make exactly V’ mL so that each mL contains about 5 μg of mizoribine (C₈H₁₃N₂O₃), and use this solution as the sample solution. Then, proceed as directed in the Assay.

Amount of mizoribine (C₈H₁₃N₂O₃)

\[M_S \times A_T = \frac{A_T}{A_S} \times \frac{V}{V/V' \times 1/50} \]

Mₜ: Amount (mg) of Mizoribine RS taken, calculated on the anhydrous basis

Dissolution <6.07> When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 45 minutes of Mizoribine Tablets is not less than 80%.

Start the test with 1 tablet of Mizoribine Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.5 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add water to make exactly V’ mL so that each mL contains about 14 μg of mizoribine (C₈H₁₃N₂O₃), and use this solution as the sample solution. Separately, weigh accurately about 28 mg of Mizoribine RS (separately determine the water C₂H₂O₅ in the same manner as Mizoribine), and dissolve in water to make exactly 100 mL. Pipet 1 mL of this solution, add water to make exactly 20 mL, and use this solution as the standard solution. Determine the absorbances, Aₜ and Aₛ, at 279 nm of the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry.

Dissolution rate (%) with respect to the labeled amount of mizoribine (C₈H₁₃N₂O₃)

\[L_S = M_S \times \frac{A_T}{A_S} \times \frac{V}{V' \times 1/C \times 45} \]

Mₜ: Amount (mg) of Mizoribine RS taken, calculated on the anhydrous basis

C: Labeled amount (mg) of mizoribine (C₈H₁₃N₂O₃) in 1 tablet

Assay Weigh accurately not less than 20 Mizoribine Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 25 mg of mizoribine (C₈H₁₃N₂O₃), add 50 mL of water and shake, then add water to make exactly 100 mL. Filter the solution, discard not less than 10 mL of the first filtrate, pipet 2 mL of the subsequent filtrate, add water to make exactly 100 mL, and use this solution as the sample solution. Separately, weigh accurately about 25 mg of Mizoribine RS (separately determine the water C₂H₂O₅ in the same manner as Mizoribine), and dissolve in water to make exactly 100 mL. Pipet 2 mL of the solution, add water to make exactly 100 mL, and use this solution as the standard solution. Determine the absorbances, Aₜ and Aₛ, at 279 nm of the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry.

Amount (mg) of mizoribine (C₈H₁₃N₂O₃)

\[M_S = M_S \times \frac{A_T}{A_S} \times \frac{V}{V' \times 1/C \times 45} \]

Mₜ: Amount (mg) of Mizoribine RS taken, calculated on the anhydrous basis

Containers and storage Containers—Tight containers.

Montelukast Sodium

モンテルカストナトリウム

C₈H₁₃ClNaO₅S: 608.17
Monosodium [1-{[(1E)-1-[3-{1(E)-2-(7-chloroquinolin-2-yl)ethenyl]phenyl]-3-[2-(2-hydroxypropan-2-yl)phenyl]propyl}sulfanyl]methyl[cyclpropyl]acetate [151767-02-1]

Montelukast Sodium contains not less than 98.0% and not more than 102.0% of montelukast sodium (C₈H₁₃ClNaO₅S), calculated on the anhydrous and residual solvent-free basis.

Description Montelukast Sodium occurs as a white to pale yellow-white powder.
It is very soluble in methanol and in ethanol (99.5), and freely soluble in water.
It is hygroscopic.
It turns yellow on exposure to light.
It shows crystal polymorphism.

Identification (1) Place 0.1 g of Montelukast Sodium in a crucible, and ignite until a white residue is formed. To the
Determine the infrared absorption spectrum of Montelukast Sodium in a mixture of methanol and water (3:1) (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of Montelukast Sodium for Identification RS: both spectra exhibit similar intensities of absorption at the same wavelengths.

(3) Determine the infrared absorption spectrum of Montelukast Sodium as directed in the paste method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of Montelukast Sodium for Identification RS: both spectra exhibit similar intensities of absorption at the same wave numbers. Or, perform the test by the potassium bromide disk method or the ATR method, and compare the spectrum with the spectrum of Montelukast Sodium for Identification RS: both spectra exhibit similar intensities of absorption at the same wave numbers. If any difference appears between the spectra, dissolve Montelukast Sodium and Montelukast Sodium for Identification RS in tolueene, add heptane, shake, then allow to stand, and remove the supernatant liquid by decantation. Dry the residue at 75°C for 16 hours under reduced pressure, and perform the test by paste method, potassium bromide disk method or the ATR method.

Purity (1) Heavy metals—Dissolve 0.5 g of Montelukast Sodium in 20 mL of a mixture of acetic acid and water (4:1), and use this solution as the sample solution. Separately, take 0.5 mL of Standard Lead Solution, add 20 mL of the mixture of acetic acid and water (4:1), and use this solution as the standard solution. To the sample solution and the standard solution add 2 mL of acetate buffer solution (pH 3.5), and shake. To these solutions add 1.2 mL of thioacetamide-alcohol solution (1 mL of a 40% solution of thioacetamide in 96% alcohol, 0.2 mL of glycerin, and 0.2 mL of water), shake immediately, then allow to stand for 2 minutes, and filter through a membrane filter with a pore size 0.45 μm (about 13 mm in diameter). Compare the color on the membrane filters through which each solution is filtered: the color obtained from the sample solution is not darker than that obtained from the standard solution (not more than 10 ppm).

(2) Related substances—Conduct this procedure using light-resistant vessels. Dissolve 50 mg of Montelukast Sodium in 50 mL of a mixture of methanol and water (9:1), and use this solution as the sample solution. Perform the test with 10 μL of the sample solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area by the automatic integration method, and calculate the amounts of them by the area percentage method: the amount of the peak of the enantiomer having the relative retention time of about 0.7 to montelukast is not more than 0.2%.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 280 nm).
Column: A stainless steel column 4.0 mm in inside diameter and 15 cm in length, packed with o₂-acid glycoprotein binding silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 30°C.
Mobile phase A: Dissolve 2.3 g of ammonium acetate in 1000 mL of water, and adjust to pH 5.7 with acetic acid (100).
Mobile phase B: A mixture of methanol and acetonitrile (3:2).
Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 30</td>
<td>70 → 60</td>
<td>30 → 40</td>
</tr>
<tr>
<td>30 – 35</td>
<td>60</td>
<td>40</td>
</tr>
</tbody>
</table>

Flow rate: 0.9 mL per minute (the retention time of montelukast is about 25 minutes).

System suitability—
Test for required detectability: Pipet 1 mL of the sample solution, add the mixture of water and acetonitrile (1:1) to make exactly 100 mL. Pipet 1 mL of this solution, add the mixture of water and acetonitrile (1:1) to make exactly 10
When the procedure is run with 10 μL of this solution under the above operating conditions, the SN ratio of the peak of montelukast is not less than 10.

System performance: When the procedure is run with 10 μL of a solution of Montelukast Racemate for System Suitability RS in the mixture of water and acetonitrile (1:1) (1 in 10,000) under the above operating conditions, the resolution between the peak of montelukast and the enantiomer is not less than 2.9.

Water Not more than 4.0% (0.3 g, volumetric titration, direct titration).

Assay Conduct this procedure using light-resistant vessels. Weigh accurately about 50 mg of Montelukast Sodium, and dissolve in a mixture of methanol and water (9:1) to make exactly 50 mL. Pipet 10 mL of this solution, add the mixture of methanol and water (9:1) to make exactly 100 mL, and use this solution as the sample solution. Separately, weigh accurately about 26 mg of Montelukast Dicyclohexylamine RS, dissolve in the mixture of methanol and water (9:1) to make exactly 50 mL. Pipet 5 mL of this solution, add the mixture of methanol and water (9:1) to make exactly 20 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography System Suitability RS in the mixture of methanol and water (9:1) (1 in 1000) under the above operating conditions, the resolution between the peaks of related substance B and montelukast is not less than 2.5, and between the peaks of montelukast and related substance E is not less than 1.5.

System repeatability: When the test is repeated 5 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of montelukast is not more than 0.73%.

Containers and storage Containers—Light-resistant. Storage—Light-resistant.

Others

Related substance A: (1-[[1-[[1-[(1E)-2-(7-Chloroquinolin-2-yl)ethenyl]phenyl]-3-[2-(2-hydroxypropan-2-yl)phenyl]propyl]sulfanyl]methyl]cyclopropyl)acetic acid

Related substance B: [1-[[1R]-1-3-[[1E]-2-(7-Chloroquinolin-2-yl)ethenyl]phenyl]-3-[2-(2-hydroxypropan-2-yl)phenyl]propyl]sulfanyl)methyl]cyclopropyl]acetic acid

Montelukast Sodium Chewable Tablets

JP XVIII Official Monographs / Montelukast Sodium Chewable Tablets 1377

Related substance D:
\[1-\{(\text{1}R\text{-}(\text{1})\text{S}-\text{1}/\text{1})\text{-}(\text{Carboxymethyl})\text{cyclopropyl}(\text{methyl})\text{sulfanyl})\text{-2-} (\text{7-chloroquinolin}-2\text{-y})\text{ethyl}][\text{phenyl}]\text{-3-}[(\text{2-hydroxypropan}-2\text{-y})\text{phosphoryl}][\text{propyl}]\text{sulfanyl}[\text{methyl}[\text{cyclopropyl}]\text{acetic acid}

Related substance E:
\[1-\{(\text{1}R\text{-}(\text{1})\text{S}-\text{1}/\text{1})\text{-}(\text{2-Acetylphenyl})\text{-1-}[(\text{7-chloroquinolin}-2\text{-y})\text{ethyl}][\text{phenyl}]\text{-3-}[(\text{2-methylene})[\text{phenyl}][\text{propyl}]\text{sulfanyl}[\text{methyl}[\text{cyclopropyl}]\text{acetic acid}

Related substance F:
\[1-\{(\text{1}R\text{-}(\text{1})\text{S}-\text{1}/\text{1})\text{-}(\text{2-Acetylphenyl})\text{-1-}[(\text{2-Chloroquinolin}-2\text{-y})\text{ethyl}][\text{phenyl}]\text{-3-}[(\text{2-methylene})[\text{phenyl}][\text{propyl}]\text{sulfanyl}[\text{methyl}[\text{cyclopropyl}]\text{acetic acid}

Montelukast Sodium Chewable Tablets

Montelukast Sodium Chewable Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of montelukast (C₃₄H₃₆ClNO₆S: 586.18).

Method of preparation Prepare as directed under Chewable Tablets, with Montelukast Sodium.

Identification To an amount of powdered Montelukast Sodium Chewable Tablets, equivalent to 5 mg of montelukast (C₃₄H₃₆ClNO₆S), add 500 mL of a mixture of mehtanol and water (3:1), shake, and centrifuge. Determine the absorption spectrum of the supernatant liquid as directed under Ultraviolet-visible Spectrophotometry \(<2.01>\) it exhibits maxima between 281 nm and 285 nm, between 325 nm and 329 nm, between 343 nm and 347 nm and between 357 nm and 361 nm.

Purity Related substances—Use the sample solution obtained in the Assay as the sample solution. Pipet 1 mL of the sample solution, add a mixture of methanol and water (3:1) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 \(\mu\) L each of the sample solution and standard solution as directed under Liquid Chromatography \(<2.01>\) and determine each peak area by the automatic integration method: the total area of the two peaks of related substance A, having the relative retention time of about 0.45 to montelukast, obtained from the sample solution is not larger than 1.5 times the peak area of montelukast from the standard solution, the area of related substance B having the relative retention time of about 0.92 from the sample solution is not larger than 3/20 times the peak area of montelukast from the standard solution, and the area of the peaks other than montelukast and the peaks mentioned above from the sample solution is not larger than 1/10 times the peak area of montelukast from the standard solution. Furthermore, the total area of the peaks other than montelukast is not larger than 1.8 times the peak area of montelukast from the standard solution. However, the peaks of the related substances derived from Montelukast Sodium [having the relative retention time of about 1.04 (related substance E), about 1.16 (related substance C), about 1.18 (related substance D), about 1.24 and about 1.55 (related substance F)] are excluded. For the area of the peak, having the relative retention time of about 0.71, multiply the correction factor 0.6.

Operating conditions—

Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 1.5 times as long as the retention time of montelukast, beginning after the solvent peak.

System suitability—

System performance: Proceed as directed in the system suitability in the Assay.

Test for required detectability: Pipet 10 mL of the standard solution, and add a mixture of methanol and water (3:1) to make exactly 100 mL. When the procedure is run with 20 \(\mu\) L of this solution under the above operating conditions, the SN ratio of the peak of montelukast is not less than 10.

System repeatability: When the test is repeated 5 times with 20 \(\mu\) L of the standard solution under the above operating conditions, the relative standard deviation of the peak area of montelukast is not more than 2.0%.

Uniformity of dosage units \(<6.02>\) Perform the test according to the following method: it meets the requirement of the Content uniformity test.

Conduct this procedure using light-resistant vessels. To 1 tablet of Montelukast Sodium Chewable Tablets add 50 mL of water to disintegrate the tablet, add a suitable amount of methanol, and disperse the fine particles by sonicating. Add methanol to make exactly 200 mL, and centrifuge or filter. Pipet 5 mL of this solution, add a mixture of methanol and water (3:1) to make exactly 50 mL so that each mL contains about 25 \(\mu\) g of montelukast (C₃₄H₃₆ClNO₆S) and use this solution as the sample solution. Separately, weigh accurately about 33 mg of Montelukast Dicyclohexylamine RS, and dissolve in a mixture of methanol and water (3:1) to make exactly 200 mL. Pipet 20 mL of this solution, add a mixture of methanol and water (3:1) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 \(\mu\) L each of the sample solution and standard solution as directed under Liquid Chromatography \(<2.01>\) according to the following conditions, and determine the peak areas, \(A₁\) and \(A₅\), of montelukast in each solution.

\[
\text{Amount (mg) of montelukast (C₃₄H₃₆ClNO₆S)} = M₅ \times \frac{A₁}{A₅} \times \frac{V}{V₁} \times 1/5 \times 0.764
\]
Montelukast Sodium Chewable Tablets / Official Monographs

\[M_S \]: Amount (mg) of Montelukast Dicyclohexylamine RS taken

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 389 nm).

Column: A stainless steel column 3.0 mm in inside diameter and 10 cm in length, packed with phenylhexylsilanized silica gel for liquid chromatography (5 \(\mu m \) in particle diameter).

Column temperature: A constant temperature of about 50°C.

Mobile phase: A solution of trifluoroacetic acid in a mixture of water and acetonitrile for liquid chromatography (1:1) (1 in 500).

Flow rate: Adjust so that the retention time of montelukast is about 2 minutes.

System suitability—

System performance: When the procedure is run with 10 \(\mu L \) of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of montelukast are not less than 2000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 5 times with 10 \(\mu L \) of the standard solution under the above operating conditions, the relative standard deviation of the peak area of montelukast is not more than 1.0%.

Dissolution 6.10

When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of a solution of sodium lauryl sulfate (1 in 200) as the dissolution medium, the dissolution rate in 20 minutes of Montelukast Sodium Chewable Tablets is not less than 85%.

Conduct this procedure using light-resistant vessels. Start the test with 1 tablet of Montelukast Sodium Chewable Tablets, withdraw not less than 15 mL of the medium at the specified minute after starting the test, and centrifuge. Pipet \(V \) mL of the supernatant liquid, add the dissolution medium to make exactly \(V' \) mL so that each mL contains about 5.6 \(\mu g \) of montelukast (C\(_{35}\)H\(_{36}\)ClNO\(_3\)S), and use this solution as the sample solution. Separately, weigh accurately about 35 mg of Montelukast Dicyclohexylamine RS, dissolve in methanol to make exactly 100 mL. Pipet 2 \(\mu L \) of this solution, add the dissolution medium to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 50 \(\mu L \) each of the sample solution and standard solution as directed under Liquid Chromatography 2.07 according to the following conditions, and determine the peak areas, \(A_T \) and \(A_S \), of montelukast in each solution.

\[
\text{Dissolution rate (\%)} = \frac{M_S \times A_T/A_S \times V'/V \times 1/C \times 18 \times 0.764}{V}
\]

\[M_S \]: Amount (mg) of Montelukast Dicyclohexylamine RS taken

C: Labeled amount (mg) of montelukast (C\(_{35}\)H\(_{36}\)ClNO\(_3\)S) in 1 tablet

Operating conditions—

Proceed as directed in the operating conditions in the Uniformity of dosage units.

System suitability—

System performance: When the procedure is run with 50 \(\mu L \) of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of montelukast are not less than 2000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 5 times with 50 \(\mu L \) of the standard solution under the above operating conditions, the relative standard deviation of the peak area of montelukast is not more than 2.0%.

Assay—

Conduct this procedure using light-resistant vessels. Disintegrate 10 tablets of Montelukast Sodium Chewable Tablets in 150 mL of a mixture of methanol and water (3:1), disperse the fine particles by sonication, and add a mixture of methanol and water (3:1) to make exactly 200 mL, filter through a membrane filter with a pore size not exceeding 0.45 \(\mu m \). Discard the first 1 mL of the filtrate, pipet \(V \) mL of the subsequent filtrate, add a mixture of methanol and water (3:1) to make exactly \(V' \) mL so that each mL contains about 0.25 mg of montelukast (C\(_{35}\)H\(_{36}\)ClNO\(_3\)S), and use this solution as the sample solution. Separately, weigh accurately about 33 mg of Montelukast Dicyclohexylamine RS, and dissolve in a mixture of methanol and water (3:1) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 \(\mu L \) each of the sample solution and standard solution as directed under Liquid Chromatography 2.07 according to the following conditions, and determine the peak areas, \(A_T \) and \(A_S \), of montelukast in each solution.

\[
\text{Amount (mg) of montelukast (C}_{35}\text{H}_{36}\text{ClNO}_{3}\text{S) in 1 tablet} = M_S \times A_T/A_S \times V'/V \times 1/5 \times 0.764
\]

\[M_S \]: Amount (mg) of Montelukast Dicyclohexylamine RS taken

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 255 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 10 cm in length, packed with phenylhexylsilanized silica gel for liquid chromatography (3 \(\mu m \) in particle diameter).

Column temperature: A constant temperature of about 50°C.

Mobile phase A: A solution of trifluoroacetic acid (1 in 500).

Mobile phase B: A mixture of methanol and acetonitrile for liquid chromatography (3:2).

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 5</td>
<td>48 → 45</td>
<td>52 → 55</td>
</tr>
<tr>
<td>5 – 12</td>
<td>45</td>
<td>55</td>
</tr>
<tr>
<td>12 – 22</td>
<td>45 → 25</td>
<td>55 → 75</td>
</tr>
<tr>
<td>22 – 23</td>
<td>25</td>
<td>75</td>
</tr>
</tbody>
</table>

Flow rate: 1.5 mL per minute (the retention time of montelukast is about 14 minutes).

System suitability—

System performance: Take 10 mL of the standard solution in a transparent vessel, add 4 \(\mu L \) of hydrogen peroxide (30), and allow to stand under 4000 lx white light for 10 minutes. When the procedure is run with 20 \(\mu L \) of this solution under the above operating conditions, the resolution between the peak of related substance B, having a relative retention time of about 0.92 to montelukast and the peak of montelukast is not less than 1.5. And proceed with 20 \(\mu L \) of the standard solution under the above conditions, the number of theoretical plates and the symmetry factor of the peak of montelukast are not less than 5000 and not more than 2.5, respectively.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.)
Montelukast Sodium Granules

Montelukast Sodium Granules contain not less than 95.0% and not more than 105.0% of the labeled amount of montelukast \((C_{33}H_{33}ClNO_{3}S)\): 586.18.

Method of preparation Prepare as directed under Granules, with Montelukast Sodium.

Identification To an amount of Montelukast Sodium Granules, equivalent to 5 mg of montelukast \((C_{33}H_{33}ClNO_{3}S)\), add 500 mL of a mixture of methanol and water (3:1), shake, and centrifuge. Determine the absorption spectrum of the supernatant liquid as directed under Ultraviolet-visible Spectrophotometry 2.24: it exhibits maxima between 281 nm and 285 nm, between 325 nm and 329 nm, between 343 nm and 347 nm, and between 357 nm and 361 nm.

Purity Related substances—Use the sample solution obtained in the Assay as the sample solution. Pipet 1 mL of the sample solution, add a mixture of methanol and water (3:1) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 \(\mu\)L each of the sample solution and standard solution as directed under Liquid Chromatography 2.2.4: according to the following conditions, and determine each peak area by the automatic integration method: the total area of the two peaks of related substance A, having the relative retention time of about 0.45 to montelukast, obtained from the sample solution is not larger than the peak area of montelukast from the standard solution, and the peak area of related substance B, having the relative retention time of about 0.92, from the sample solution is not larger than 3/20 times the peak area of montelukast from the standard solution, and the area of the peak other than montelukast and the peaks mentioned above from the sample solution is not larger than 1/10 times the peak area of montelukast from the standard solution. Furthermore, the total area of the peaks other than montelukast from the sample solution is not larger than 1.2 times the peak area of montelukast from the standard solution. However, the peaks of the related substances derived from Montelukast Sodium [having the relative retention time of about 1.04 (related substance E), about 1.16 (related substance C), about 1.18 (related substance D), about 1.24 and about 1.55 (related substance F)] are excluded. For the area of the peak, having the relative retention time of about 0.71, multiply the correction factor 0.6.

Operating conditions—

Detector, column, column temperature, mobile phase and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 1.5 times as long as the retention time of montelukast, beginning after the solvent peak.

System suitability—

System performance: Proceed as directed in the system suitability in the Assay.

Test for required detectability: Pipet 10 mL of the standard solution, and add a mixture of methanol and water (3:1) to make exactly 100 mL. When the procedure is run with 20 \(\mu\)L of this solution under the above operating conditions, the SN ratio of the peak of montelukast is not less than 10.

System repeatability: When the test is repeated 5 times with 20 \(\mu\)L of the standard solution under the above operating conditions, the relative standard deviation of the peak area of montelukast is not more than 2.0%.

Uniformity of dosage unit 6.02

Perform the test according to the following method: Montelukast Sodium Granules in single-dose packages meet the requirement of the Content uniformity test.

Conduct this procedure using light-resistant vessels. To the total content of 1 package of Montelukast Sodium Granules add 130 mL of methanol, disperse the fine particles by sonication, and add methanol to make exactly 80 mL so that each mL contains about 20 \(\mu\)g of montelukast \((C_{33}H_{33}ClNO_{3}S)\). Centrifuge, and use the supernatant liquid as the sample solution. Separately, weigh accurately about 33 mg of Montelukast Dicyclohexylamine RS, and dissolve in methanol to make exactly 100 mL. Pipet 8 mL of this solution, add methanol to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 5 \(\mu\)L each of the sample solution and standard solution as directed under Liquid Chromatography 2.01: according to the following conditions, and determine the peak areas, \(A_F\) and \(A_S\), of montelukast in each solution.

\[
M_S = \frac{X}{A_F/A_S} \times V \times 0.674
\]

\(M_S\): Amount (mg) of Montelukast Dicyclohexylamine RS taken

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 389 nm).

Column: A stainless steel column 3.0 mm in inside diameter and 10 cm in length, packed with phenylated silica gel for liquid chromatography (5 \(\mu\)m in particle diameter).

Column temperature: A constant temperature of about 50°C.

Mobile phase: A solution of trifluoroacetic acid in a mixture of water and acetonitrile (1:1) (1 in 500).

Flow rate: Adjust so that the retention time of montelukast is about 2 minutes.

System suitability—

System performance: When the procedure is run with 5 \(\mu\)L of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of montelukast are not less than 1500 and not more than 1.5, respectively.

System repeatability: When the test is repeated 5 times with 5 \(\mu\)L of the standard solution under the above operating conditions, the relative standard deviation of the peak area of montelukast is not more than 1.0%.

Dissolution 6.10

When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of a solution of sodium lauryl sulfate (1 in 200) as the dissolution medium, the dissolution rate in 15 minutes of Montelukast Sodium Granules is not less than 85%.

Conduct this procedure using light-resistant vessels. Start the test with an accurately weighed amount of Montelukast...
Sodium Granules, equivalent to about 4 mg of montelukast (C₁₈H₂₉ClNO₅S), withdraw not less than 15 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 µm. Discard not less than 10 mL of the first filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 27 mg of Montelukast Dicyclohexylamine RS, and dissolve in methanol to make exactly 100 mL. Pipet 2 mL of this solution, add the dissolution medium to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 25 µL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A₁ and A₅, of montelukast in each solution.

Dissolution rate (%) with respect to the labeled amount of montelukast (C₁₈H₂₉ClNO₅S) = \(\frac{M_5}{M_T} \times \frac{A_T}{A_S} \times \frac{1}{C} \times 18 \times 0.764 \)

\(M_5: \) Amount (mg) of Montelukast Dicyclohexylamine RS taken

\(M_T: \) Amount (g) of Montelukast Sodium Granules taken

\(C: \) Labeled amount (mg) of montelukast (C₁₈H₂₉ClNO₅S) in 1 g

Operating conditions—

Proceed as directed in the operating conditions in the Uniformity of dosage units.

System suitability—

System performance: When the procedure is run with 25 µL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of montelukast are not less than 2000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 25 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of montelukast is not more than 1.0%.

Assay Conduct this procedure using light-resistant vessels. Weigh accurately an amount of Montelukast Sodium Granules, equivalent to about 48 mg of montelukast (C₁₈H₂₉ClNO₅S), and add exactly 200 mL of a mixture of methanol and water (3:1). Disperse the fine particles by sonicating, centrifuge, and use the supernatant liquid as the sample solution. Separately, weigh accurately about 33 mg of Montelukast Dicyclohexylamine RS, and dissolve in a mixture of methanol and water (3:1), shake, and centrifuge, and use the supernatant liquid as the standard solution. Perform the test with exactly 20 µL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A₁ and A₅, of montelukast in each solution.

\(\text{Amount (mg) of montelukast (C₁₈H₂₉ClNO₅S)} = M_5 \times A_T / A_S \times 2 \times 0.764 \)

\(M_5: \) Amount (mg) of Montelukast Dicyclohexylamine RS taken

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 255 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 10 cm in length, packed with phenylhexylsilanized silica gel for liquid chromatography (3 µm in particle diameter).

Column temperature: A constant temperature of about 50°C.

Mobile phase A: A solution of trifluoroacetic acid (1 in 500).

Mobile phase B: A mixture of methanol and acetonitrile (3:2).

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 5</td>
<td>48 → 45</td>
<td>52 → 55</td>
</tr>
<tr>
<td>5 - 12</td>
<td>45</td>
<td>55</td>
</tr>
<tr>
<td>12 - 22</td>
<td>45 → 25</td>
<td>55 → 75</td>
</tr>
<tr>
<td>22 - 23</td>
<td>25</td>
<td>75</td>
</tr>
</tbody>
</table>

Flow rate: 1.5 mL per minute (the retention time of montelukast is about 14 minutes).

System suitability—

System performance: Take 10 mL of the standard solution in a transparent vessel, add 4 µL of hydrogen peroxide (30), and allow to stand under 4000 lx white light for 10 minutes. When the procedure is run with 20 µL of this solution under the above operating conditions, the resolution between the peak of related substance B, having the relative retention time of about 0.92 to montelukast, and the peak of montelukast is not less than 1.5. And proceed with 20 µL of the standard solution under the above operating conditions, the number of the theoretical plates and the symmetry factor of the peak of montelukast are not less than 5000 and not more than 2.5, respectively.

System repeatability: When the test is repeated 5 times with 20 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of montelukast is not more than 1.0%.

Containers and storage Containers—Tight containers. Storage—Light-resistant.

Others Related substances A, B, C, D, E and F: Refer to them described in Montelukast Sodium.

Montelukast Sodium Tablets

モンテルカストナトリウム錠

Montelukast Sodium Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of montelukast (C₁₈H₂₉ClNO₅S: 586.18).

Method of preparation Prepare as directed under Tablets, with Montelukast Sodium.

Identification To an amount of powdered Montelukast Sodium Tablets, equivalent to 5 mg of montelukast (C₁₈H₂₉ClNO₅S), add 500 mL of a mixture of methanol and water (3:1), shake, and centrifuge. Determine the absorption spectrum of the supernatant liquid as directed under Ultraviolet-visible Spectrophotometry <2.24> : it exhibits maxima between 281 nm and 285 nm, between 325 nm and 329 nm, between 343 nm and 347 nm and between 357 nm and 361 nm.

Purity Related substances—Use the sample solution obtained in the Assay as the sample solution. Pipet 1 mL of the sample solution, add a mixture of methanol and water (3:1) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 µL each of the
sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine each peak area by the automatic integration method: the total area of the two peaks of related substance A, having the relative retention time of about 0.45 to montelukast, obtained from the sample solution is not larger than the peak area of montelukast from the standard solution, the area of related substance B having the relative retention time of about 0.92 from the sample solution is not larger than 3/20 times the peak area of montelukast from the standard solution, and the area of the peaks other than montelukast and the peaks mentioned above from the sample solution is not larger than 1/10 times the peak area of montelukast from the standard solution. Furthermore, the total area of the peaks other than montelukast from the sample solution is not larger than 1.2 times the peak area of montelukast from the standard solution. However, the peaks of the related substances derived from Montelukast Sodium having the relative retention time of about 1.04 (related substance E), about 1.16 (related substance C), about 1.18 (related substance D), about 1.24 and about 1.55 (related substance F) are excluded. For the area of the peak, having the relative retention time of about 0.71, multiply the correction factor 0.6.

Operating conditions—

Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 1.5 times as long as the retention time of montelukast, beginning after the solvent peak.

System suitability—

Test for required detectability: Pipet 10 mL of the standard solution, and add a mixture of methanol and water (3:1) to make exactly 100 mL. When the procedure is run with 20 µL of this solution under the above operating conditions, the SN ratio of the peak of montelukast is not less than 10.

System repeatability: When the test is repeated 5 times with 20 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of montelukast is not more than 2.0%.

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

Conduct this procedure using light-resistant vessels. To 1 tablet of Montelukast Sodium Tablets add 50 mL of water to disintegrate the tablet, add a suitable amount of methanol, and disperse the fine particles by sonication. Add methanol to make exactly 200 mL, and centrifuge or filter. Pipet 2 mL of this solution, add a mixture of methanol and water (3:1) to make exactly 200 mL of a solution of sodium lauryl sulfate (1 in 500) as the dissolution medium, the dissolution rate in 20 minutes of Montelukast Sodium Tablets is not less than 85%.

Conduct this procedure using light-resistant vessels. Start the test with 1 tablet of Montelukast Sodium Tablets, withdraw not less than 15 mL of the medium at the specified minute after starting the test, and centrifuge. Pipet V mL of the supernatant liquid, add the dissolution medium to make exactly V mL so that each mL contains about 5.6 µg of montelukast [(C_{15}H_{36}CINO_{2})S] and use this solution as the sample solution. Separately, weigh accurately about 35 mg of Montelukast Dicyclohexylamine RS, and dissolve in methanol to make exactly 100 mL. Pipet 2 mL of this solution, add the dissolution medium to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 50 µL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A_{T} and A_{S}, of montelukast in each solution.

\[M_S = M_T 	imes A_T / A_S \times V_t / V \times 1/C \times 18 \times 0.764 \]

\[M_T = Amount (mg) of Montelukast Dicyclohexylamine RS taken \]

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 389 nm).

Column: A stainless steel column 3.0 mm in inside diameter and 10 cm in length, packed with phenylated silica gel for liquid chromatography (5 µm in particle diameter).

Mobile phase: A solution of trifluoroacetic acid in a mixture of water and acetonitrile for liquid chromatography (1:1) (1 in 500).

Flow rate: Adjust so that the retention time of montelukast is about 2 minutes.

System suitability—

System performance: When the procedure is run with 50 µL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of montelukast are not less than 2000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 5 times with 10 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of montelukast is not more than 1.0%.

Dissolution <6.10> When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of a solution of sodium lauryl sulfate (1 in 200) as the dissolution medium, the dissolution rate in 20 minutes of Montelukast Sodium Tablets is not less than 85%.

Conduct this procedure using light-resistant vessels. Start the test with 1 tablet of Montelukast Sodium Tablets, withdraw not less than 15 mL of the medium at the specified minute after starting the test, and centrifuge. Pipet V mL of the supernatant liquid, add the dissolution medium to make exactly V mL so that each mL contains about 5.6 µg of montelukast [(C_{15}H_{36}CINO_{2})S], and use this solution as the sample solution. Separately, weigh accurately about 35 mg of Montelukast Dicyclohexylamine RS, and dissolve in methanol to make exactly 100 mL. Pipet 2 mL of this solution, add the dissolution medium to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 50 µL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A_{T} and A_{S}, of montelukast in each solution.

\[Dissolution rate (%) with respect to the labeled amount of montelukast (C_{15}H_{36}CINO_{2}S) = M_S \times A_T / A_S \times V_t / V \times 1/C \times 18 \times 0.764 \]

\[M_T = Amount (mg) of Montelukast Dicyclohexylamine RS taken \]

C: Labeled amount (mg) of montelukast (C_{15}H_{36}CINO_{2}S) in 1 tablet

Operating conditions—

Proceed as directed in the operating conditions in the Uniformity of dosage units.

System suitability—

System performance: When the procedure is run with 50 µL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of montelukast are not less than 2000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 5 times with 50 µL of the standard solution under the above operat-
ing conditions, the relative standard deviation of the peak area of montelukast is not more than 2.0%.

Assay Conduct this procedure using light-resistant vessels. Disintegrate 10 tablets of Montelukast Sodium Tablets in 150 mL of a mixture of methanol and water (3:1), disperse the fine particles by sonicating, and add a mixture of methanol and water (3:1) to make exactly 200 mL, filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 1 mL of the filtrate, pipet 5 mL of the subsequent filtrate, add a mixture of methanol and water (3:1) to make exactly 10 mL so that each mL contains about 0.25 mg of montelukast (C₁₅H₁₈ClNO₅S), and use this solution as the sample solution. Separately, weigh accurately about 33 mg of Montelukast Dicyclohexylamine RS, and dissolve in a mixture of methanol and water (3:1) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography \(<2.01> \) according to the following conditions, and determine the peak areas, \(A₁ \) and \(A₂ \), of montelukast in each solution.

Amount (mg) of montelukast (C₁₅H₁₈ClNO₅S) in 1 tablet

\[
M_s = \frac{M_x}{A_2/A_1} \times \frac{V'}{V} \times \frac{A_1}{A_2} \times \frac{S}{V} \times 0.764
\]

Where:
- \(M_x \): Mass of montelukast (C₁₅H₁₈ClNO₅S) in 1 tablet
- \(M_s \): Amount (mg) of Montelukast Dicyclohexylamine RS taken

Operating conditions—
- **Detector:** An ultraviolet absorption photometer (wavelength: 255 nm).
- **Column:** A stainless steel column 4.6 mm in inside diameter and 10 cm in length, packed with phenylhexylsilanized silica gel for liquid chromatography (3 μm in particle diameter).
- **Column temperature:** A constant temperature of about 50°C.
- **Mobile phase A:** A solution of trifluoroacetic acid (1 in 500).
- **Mobile phase B:** A mixture of methanol and acetonitrile for liquid chromatography (3:2).
- **Flowing of mobile phase:** Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 5</td>
<td>48 → 45</td>
<td>52 → 55</td>
</tr>
<tr>
<td>5 – 12</td>
<td>45</td>
<td>55</td>
</tr>
<tr>
<td>12 – 22</td>
<td>45 → 25</td>
<td>55 → 75</td>
</tr>
<tr>
<td>22 – 23</td>
<td>25</td>
<td>75</td>
</tr>
</tbody>
</table>

Flow rate: 1.5 mL per minute (the retention time of montelukast is about 14 minutes).

System suitability—
- **System performance:** Take 10 mL of the standard solution in a transparent vessel, add 4 μL of hydrogen peroxide (30), and allow to stand under 4000 lx white light for 10 minutes. When the procedure is run with 20 μL of this solution under the above operating conditions, the resolution between the peak of related substance B, having a relative retention time of about 0.92 to montelukast and the peak of montelukast is not less than 1.5. And proceed with 20 μL of the standard solution under the above conditions, the number of theoretical plates and the symmetry factor of the peak of montelukast are not less than 5000 and not more than 2.5, respectively.

System repeatability: When the test is repeated 5 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of montelukast is not more than 1.0%.

Containers and storage Containers—Tight containers.
Storage—Light-resistant.

Others
Related substances A, B, C, D, E and F: Refer to them described in Montelukast Sodium.

Morphine Hydrochloride Hydrate

Morphine Hydrochloride Hydrate contains not less than 98.0% and not more than 102.0% of morphine hydrochloride (C₁₇H₁₉NO₅.HCl: 321.80), calculated on the anhydrous basis.

Description
Morphine Hydrochloride Hydrate occurs as white, crystals or crystalline powder.
It is freely soluble in formic acid, soluble in water, sparingly soluble in methanol, and slightly soluble in ethanol (95).
It gradually becomes yellow-brown by light.

Identification (1) Determine the absorption spectrum of a solution of Morphine Hydrochloride Hydrate (1 in 10,000) as directed under Ultraviolet-visible Spectrophotometry \(<2.24> \), and compare the spectrum with the Reference Spectrum 1: both spectra exhibit similar intensities of absorption at the same wavelengths. Separately, determine the absorption spectrum of a solution of Morphine Hydrochloride Hydrate in dilute sodium hydroxide TS (1 in 10,000) as directed under Ultraviolet-visible Spectrophotometry \(<2.24> \), and compare the spectrum with the Reference Spectrum 2: both spectra exhibit similar intensities of absorption at the same wavelengths.

Optical rotation \(<2.4> \) \([\alpha]_{D}^{20} +111 -116^\circ \) (0.5 g calculated on the anhydrous basis, water, 25 mL, 100 mm).

pH \(<2.5> \) The pH of a solution obtained by dissolving 0.10 g of Morphine Hydrochloride Hydrate in 10 mL of water is between 4.0 and 6.0.

Purity (1) Clarity and color of solution—Dissolve 0.40 g of Morphine Hydrochloride Hydrate in 10 mL of water: the
JP XVIII
Official Monographs / Morphine Hydrochloride Injection 1383

Morphine Hydrochloride Injection

モルヒネ塩酸塩注射液

Morphine Hydrochloride Injection is an aqueous injection. It contains not less than 93.0% and not more than 107.0% of the labeled amount of morphine hydrochloride hydrate (C₁₇H₁₉NO₃·HCl·3H₂O: 375.84).

Method of preparation Prepare as directed under Injections, with Morphine Hydrochloride Hydrate.

Description Morphine Hydrochloride Injection is a clear, colorless or pale yellow-brown liquid. It gradually becomes yellow-brown by light.

pH: 2.5 – 5.0

Identification Take a volume of Morphine Hydrochloride Injection, equivalent to 0.04 g of Morphine Hydrochloride Hydrate, add water to make 20 mL, and use this solution as the sample solution. To 5 mL of the sample solution add water to make 100 mL, and determine the absorption spectrum as directed under Ultraviolet-visible Spectrophotometry <2.24>: it exhibits a maximum between 283 nm and 287 nm. And to 5 mL of the sample solution add dilute sodium hydroxide TS to make 100 mL, and determine the absorption spectrum as directed under Ultraviolet-visible Spectrophotometry <2.24>: it exhibits a maximum between 296 nm and 300 nm.

Bacterial endotoxins <4.01> Less than 1.5 EU/mg.

Extractable volume <5.05> It meets the requirement.

Foreign insoluble matter <6.06> Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter <6.07> It meets the requirement.

Sterility <4.06> Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Take exactly a volume of Morphine Hydrochloride Injection, equivalent to about 80 mg of morphine hydrochloride hydrate (C₁₇H₁₉NO₃·HCl·3H₂O), and add water to make exactly 20 mL. Pipet 5 mL of this solution, add exactly 10 mL of the internal standard solution and water to make 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 25 mg of morphine hydrochloride hydrate for assay, dissolve in exactly 10 mL of the internal standard solution, add water to make 50 mL, and use this solution as the standard solution. Perform the test with 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and calculate the ratios, Q₁ and Q₃, of the peak area of morphine to that of the internal standard.

Amount (mg) of morphine hydrochloride hydrate

\[
M₅ = Mₛ × Q₁/Q₃ × 4 × 1.168
\]

Mₛ: Amount (mg) of morphine hydrochloride hydrate for assay taken, calculated on the anhydrous basis

Internal standard solution—A solution of etilefrine hydrochloride (1 in 500).

Operating conditions—

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: Dissolve 1.0 g of sodium lauryl sulfate in 500 mL of diluted phosphoric acid (1 in 1000), and adjust the pH to 3.0 with sodium hydroxide TS. To 240 mL of this solution add 70 mL of tetrahydrofuran, and mix. To 5 mL of the sample solution add 70 mL of the internal standard solution and water to make 50 mL, and mix. To 5 mL of the internal standard solution add dilute sodium hydroxide TS to make 100 mL, and mix. To 1 mL of the sample solution and 1 mL of the internal standard solution add 70 mL of tetrahydrofuran, and mix. To 5 mL of the internal standard solution add 70 mL of tetrahydrofuran, and mix.

Flow rate: Adjust so that retention time of morphine is about 10 minutes.

System suitability—

System performance: When the procedure is run with 20 μL of thestandard solution under the above operating conditions, morphine and the internal standard are eluted in this order with the resolution between these peaks being not less than 3.
Morphine Hydrochloride Tablets

モルヒネ塩酸塩錠

Morphine Hydrochloride Tablets contain not less than 93.0% and not more than 107.0% of the labeled amount of morphine hydrochloride hydrate (C₁₇H₁₉NO₃.HCl.3H₂O: 375.84).

Method of preparation Prepare as directed under Tablets, with Morphine Hydrochloride Hydrate.

Identification Weigh a quantity of powdered Morphine Hydrochloride Tablets equivalent to 0.01 g of Morphine Hydrochloride Hydrate, add 100 mL of water, shake for 10 minutes, and filter. Determine the absorption spectrum of the filtrate as directed under Ultraviolet-visible Spectrophotometry 2.2.4:D: it exhibits a maximum between 283 nm and 287 nm. And weigh a quantity of powdered Morphine Hydrochloride Tablets equivalent to 0.01 g of Morphine Hydrochloride Hydrate, add 100 mL of dilute sodium hydroxide TS, shake for 10 minutes, and filter. Determine the absorption spectrum of the filtrate as directed under Ultraviolet-visible Spectrophotometry 2.2.4:D: it exhibits a maximum between 296 nm and 300 nm.

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 tablet of Morphine Hydrochloride Tablets add exactly 1 mL of the internal standard solution per 2 mg of morphine hydrochloride hydrate (C₁₇H₁₉NO₃.HCl.3H₂O), disperse the tablet into a small particles by sonicating, then sonicate for 15 minutes with occasional stirring, and add water to make V mL so that each mL contains about 0.4 mg of morphine hydrochloride hydrate (C₁₇H₁₉NO₃.HCl.3H₂O). Filter the solution, and use the filtrate as the sample solution. Then, proceed as directed in the Assay.

Amount (mg) of morphine hydrochloride hydrate
(C₁₇H₁₉NO₃.HCl.3H₂O) = Mₛ × Qₛ/Qₛ × V/50 × 1.168

Mₛ: Amount (mg) of morphine hydrochloride hydrate for assay taken, calculated on the anhydrous basis

Operating conditions— Proceed as directed in the operating conditions in the Assay.

System suitability—
System performance: When the procedure is run with 25 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of morphine are not less than 5000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 25 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of morphine is not more than 2.0%.

Assay Take not less than 20 Morphine Hydrochloride Tablets, weigh accurately, and powder. Weigh accurately a quantity of the powder, equivalent to about 20 mg of morphine hydrochloride hydrate (C₁₇H₁₉NO₃.HCl.3H₂O), add exactly 10 mL of the internal standard solution, extract the mixture by sonication for 10 minutes, and add water to make 50 mL. Filter this solution, and use the filtrate as the sample solution. Separately, weigh accurately about 25 mg of morphine hydrochloride hydrate for assay, dissolve in exactly 10 mL of the internal standard solution, add water to make 50 mL, and use this solution as the standard solution. Perform the test with 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography 2.2.1:D according to the following conditions, and calculate the ratios, Qₛ and Qₛₐ, of the peak area of morphine to that of the internal standard.

Amount (mg) of morphine hydrochloride hydrate
(C₁₇H₁₉NO₃.HCl.3H₂O) = Mₛ × Qₛ/Qₛ × V/50 × 1.168

Mₛ: Amount (mg) of morphine hydrochloride hydrate for assay taken, calculated on the anhydrous basis

Internal standard solution—A solution of etilefrine hydrochloride (1 in 500).

Operating conditions—
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase: Dissolve 1.0 g of sodium lauryl sulfate in 20 mL of water, and dissolve 0.2 g of sodiun hydroxide (1 in 500), and dilute to 100 mL with water.

Dissolution rate (%): it exhibits a maximum between 283 nm and 287 nm.

Dissolution rate (%) = Aₛ × Aₛ/₌ × 36 × 1.168

Mₛ: Amount (mg) of morphine hydrochloride hydrate for assay taken, calculated on the anhydrous basis

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratios of the peak area of morphine to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Hermetic containers, and colored containers may be used.
Storage—Light-resistant.
Morphine and Atropine Injection

モルヒネ・アトロピン注射液

Morphine and Atropine Injection is an aqueous injection.

It contains not less than 0.91 w/v% and not more than 1.09 w/v% of morphine hydrochloride hydrate (C_{17}H_{19}NO_{3}HCl·3H_{2}O: 375.84), and not less than 0.027 w/v% and not more than 0.033 w/v% of atropine sulfate hydrate [(C_{17}H_{23}NO_{3})_{2}·H_{2}SO_{4}·H_{2}O: 694.83].

Method of preparation

Morphine Hydrochloride Hydrate 10 g
Atropine Sulfate Hydrate 0.3 g
Water for Injection or Sterile Water

Prepare as directed under Injections, with the above ingredients.

Description Morphine and Atropine Injection is a clear, colorless liquid.

pH: 2.5 - 5.0

Identification To 2 mL of Morphine and Atropine Injection add 2 mL of ammonia TS, and extract with 10 mL of diethyl ether. Filter the extract with a filter paper, evaporate the filtrate on a water bath to dryness, dissolve the residue in 1 mL of ethanol (99.5), and use this solution as the sample solution. Separately, dissolve 0.1 g of morphine hydrochloride hydrate in 10 mL of water, perform with 2 mL of this solution the same procedure as used for preparation of the sample solution, and use the solution so obtained as the standard solution (1). Separately, dissolve 3 mg of atropine sulfate hydrate in 10 mL of water, perform with 2 mL of this solution the same procedure as used for preparation of the sample solution, and use the solution so obtained as the standard solution (2). Perform the test with these solutions as directed under Thin-layer Chromatography (2.6.7). Spot 10 μL each of the sample solution and standard solutions (1) and (2) on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of methanol and ammonia solution (28) (200:3) to a distance of about 10 cm, and air-dry the plate. Spray evenly Dragendorff’s TS on the plate: the two spots obtained from the sample solution show the same color tone and the same Rf value with either spot of orange color from the standard solution (1) or the standard solution (2) (morphine and atropine).

Extractable volume <6.05> It meets the requirement.

Assay (1) Morphine hydrochloride hydrate—Pipet 2 mL of Morphine and Atropine Injection, add exactly 10 mL of the internal standard solution, then add water to make 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 25 mg of morphine hydrochloride hydrate for assay, add exactly 10 mL of the internal standard solution to dissolve, then add water to make 50 mL, and use this solution as the standard solution. Perform the test with 20 μL of the sample solution and standard solution as directed under Liquid Chromatography (2.07) according to the following conditions, and calculate the ratios, Q_{1} and Q_{2}, of the peak area of morphine to that of the internal standard.

Amount (mg) of morphine hydrochloride hydrate (C_{17}H_{19}NO_{3}HCl·3H_{2}O) = M_{3} × Q_{1}/Q_{2} × 1.168

M_{3}: Amount (mg) of morphine hydrochloride hydrate for assay taken, calculated on the anhydrous basis

Internal standard solution—A solution of etilefrine hydrochloride (1 in 500).

Operating conditions—

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadeçylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: Dissolve 1.0 g of sodium lauryl sulfate in 500 mL of diluted phosphoric acid (1 in 1000), and adjust the pH with sodium hydroxide TS to 3.0. To 240 mL of this solution add 70 mL of tetrahydrofuran, and mix.

Flow rate: Adjust so that the retention time of morphine is about 10 minutes.

System suitability—

System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, morphine and the internal standard are eluted in this order with the resolution between these peaks being not less than 3.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratios of the peak area of morphine to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Tight containers.

Storage—Light-resistant.
eral standard.

\[
\text{Amount (mg) of atropine sulfate hydrate} \\
[C_{17}H_{23}NO_2S \cdot H_2SO_4 \cdot H_2O] \\
= M_s \times \frac{Q_s}{Q_h} \times 1/25 \times 1.027
\]

\(M_s\): Amount (mg) of Atropine Sulfate RS taken, calculated on the dried basis

Internal standard solution—A solution of etilefrine hydrochloride (1 in 12,500).

Operating conditions—
Column, column temperature, and mobile phase: Proceed as directed in the operating conditions in the Assay (1).

Detector: An ultraviolet absorption photometer (wavelength: 225 nm).

Flow rate: Adjust so that the retention time of morphine is about 7 minutes.

System suitability—
System performance: When the procedure is run with 20 \(\mu\)L of the sample solution under the above operating conditions, morphine, the internal standard and atropine are eluted in this order, and the resolution between morphine and the internal standard is not less than 3.

System repeatability: When the test is repeated 6 times with 20 \(\mu\)L of the standard solution under the above operating conditions, the relative standard deviation of the ratios of the peak area of atropine to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Hermetic containers, and colored containers may be used.
Storage—Light-resistant.

Morphine Sulfate Hydrate

モルヒネ硫酸塩水和物

\[
\text{(C}_{17}\text{H}_{23}\text{NO}_2\text{S} \cdot \text{H}_2\text{SO}_4 \cdot 5\text{H}_2\text{O}; \text{758.83} \\
(5R,6S)-4.5\text{-Epoxy}-17\text{-methyl}-7,8\text{-didehydromorphinan-3,6-diol} \\
\text{hemisulfate hemipentahydrate} \\
[6211-15-0]}
\]

Morphine Sulfate Hydrate contains not less than 98.0% and not more than 102.0% of morphine sulfate \([C_{17}H_{23}NO_2S \cdot H_2SO_4; \text{668.75}], \text{calculated on the anhydrous basis.}\]

Description Morphine Sulfate Hydrate occurs as a white, crystals or crystalline powder.

It is very soluble in formic acid, soluble in water, slightly soluble in methanol, and very slightly soluble in ethanol (99.5).

It dissolves in dilute sodium hydroxide TS.

Identification (1) Determine the absorption spectrum of a solution of Morphine Sulfate Hydrate (1 in 10,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum 1: both spectra exhibit similar intensities of absorption at the same wavelengths. Determine the absorption spectrum of a solution of Morphine Sulfate Hydrate in dilute sodium hydroxide TS (1 in 10,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum 2: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Morphine Sulfate Hydrate as directed in the paste method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) A solution of Morphine Sulfate Hydrate (1 in 25) responds to Qualitative Tests <1.09> (1) and (3) for sulfate.

Optical rotation \(<2.19> \text{[\(\alpha\)]}_D^{20} = -107 \text{ to } -112 \text{ (0.2 g calculated on the anhydrous basis, water, 20 mL, 100 mm).} \]

Purity (1) Acidity—Dissolve 0.5 g of Morphine Sulfate Hydrate in 15 mL of water, add 2 drops of methyl red TS, and neutralize with 0.02 mol/L sodium hydroxide VS: the necessary volume of 0.02 mol/L sodium hydroxide VS is not more than 0.50 mL.

(2) Ammonium—Being specified separately when the drug is granted approval based on the Law.

(3) Chloride—Dissolve 0.10 g of Morphine Sulfate Hydrate in 10 mL of water, add 1 mL of dilute nitric acid, then add 1 mL of silver nitrate TS: no turbidity is produced.

(4) Meconic acid—Dissolve 0.20 g of Morphine Sulfate Hydrate in 5 mL of water, add 5 mL of dilute hydrochloric acid and 2 drops of iron (III) chloride TS: no red color develops.

(5) Related substances—Dissolve 0.20 g of Morphine Sulfate Hydrate in 10 mL of diluted methanol (4 in 5), and use this solution as the sample solution. Pipet 1 mL of the sample solution, add diluted methanol (4 in 5) to make exactly 100 mL, and use this solution as the standard solution (1). Pipet 5 mL of the standard solution (1), add diluted methanol (4 in 5) to make exactly 10 mL, and use this solution as the standard solution (2). Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 10 \(\mu\)L each of the sample solution and the standard solutions (1) and (2) on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of acetone, ethanol (99.5) and ammonia solution (28) (21:14:3) to a distance of about 12 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spot at an \(Rf\) value of about 0.17 obtained from the sample solution is not more intense than the spot from the standard solution (1), and the spot other than the principle spot, the spot at an \(Rf\) value of about 0.17 and the spot at original point from the sample solution is not more intense than the spot from the standard solution (2).

Water \(<2.48> \text{11.0 to 13.0% (0.1 g, volumetric titration, direct titration).} \]

Residue on ignition \(<2.44> \text{Not more than 0.1% (0.5 g).} \]

Assay Weigh accurately about 0.5 g of Morphine Sulfate Hydrate, dissolve in 3 mL of formic acid, add 100 mL of a mixture of acetic anhydride and acetic acid (100) (7:3), and titrate \(<2.50>\) with 0.05 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.05 mol/L perchloric acid VS
\[
= 33.44 \text{ mg of } (C_{17}H_{23}NO_3S \cdot H_2SO_4)
\]

Containers and storage Containers—Tight containers.
Storage—Light-resistant.
Mosapride Citrate Hydrate

モサプリドクエン酸塩水和物

C₂₁H₂₅ClFN₂O₇·C₆H₅O₂·2H₂O: 650.05

4-Amino-5-chloro-2-ethoxy-N-[2(RS)-4-(4-fluorobenzyl)morpholin-2-yl]methyl]benzamide monocitrate dihydrate

[636582-62-2]

Mosapride Citrate Hydrate contains not less than 98.5% and not more than 101.0% of mosapride citrate (C₂₁H₂₅ClFN₂O₇·C₆H₅O₂: 614.02), calculated on the anhydrous basis.

Description Mosapride Citrate Hydrate occurs as a white to yellowish white crystalline powder. It is freely soluble in N,N-dimethylformamide and in acetic acid (100), sparingly soluble in methanol, slightly soluble in ethanol (99.5), and practically insoluble in water.

A solution of Mosapride Citrate Hydrate in N,N-dimethylformamide (1 in 20) shows no optical rotation.

Identification

1. Determine the absorption spectrum of a solution of Mosapride Citrate Hydrate in methanol (1 in 100,000) as directed under Ultra violet-visible Spectrophotometry 2.24, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

2. Determine the infrared absorption spectrum of Mosapride Citrate Hydrate as directed in the potassium bromide disk method under Infrared Spectrophotometry 2.25, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

3. A solution of Mosapride Citrate Hydrate in N,N-dimethylformamide (1 in 10) responds to the Qualitative Tests 1.09 (1) for citrate.

Purity

1. Heavy metals <1.07>—Proceed with 1.0 g of Mosapride Citrate Hydrate in a platinum crucible according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

2. Related substances—Dissolve 0.10 g of Mosapride Citrate Hydrate in 50 mL of methanol, and use this solution as the sample solution. Pipet 1 mL of the sample solution, and add methanol to make exactly 50 mL. Pipet 1 mL of this solution, add methanol to make exactly 20 mL, and use this solution as the standard solution. Perform the test with exactly 5 μL each of the sample solution and standard solution as directed under Liquid Chromatography 2.01 according to the following conditions. Determine each peak area by the automatic integration method: the area of the peak having the relative retention time of about 0.47 to mosapride obtained from the sample solution is not larger than 3 times the peak area of mosapride from the standard solution, and the area of each peak other than mosapride and the peak mentioned above from the sample solution is not larger than the peak area of mosapride from the standard solution. Furthermore, the total area of the peaks other than mosapride from the sample solution is not larger than 5 times the peak area of mosapride from the standard solution.

Operating conditions

- Detector: An ultraviolet absorption photometer (wavelength: 274 nm).
- Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
- Column temperature: A constant temperature of about 40°C.
- Mobile phase A: Dissolve 8.82 g of trisodium citrate dihydrate in 800 mL of water, adjust the pH to 4.0 with dilute hydrochloric acid, and add water to make 1000 mL.
- Mobile phase B: Acetonitrile.

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 35</td>
<td>80 → 45</td>
<td>20 → 55</td>
</tr>
</tbody>
</table>

Flow rate: 1.0 mL per minute.

Time span of measurement: For 35 minutes after injection, beginning after the solvent peak.

System suitability

- Test for required detectability: Pipet 4 mL of the standard solution, and add methanol to make exactly 20 mL. Confirm that the peak area of mosapride obtained with 5 μL of this solution is equivalent to 15 to 25% of that with 5 μL of the standard solution.

System performance: When the procedure is run with 5 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of mosapride are not less than 40,000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 5 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of mosapride is not more than 5.0%.

Water <2.48> 5.0 – 6.5% (0.5 g, volumetric titration, back titration).

Residue on ignition <2.44> Not more than 0.1% (1 g, platinum crucible).

Assay

Weigh accurately 0.5 g of Mosapride Citrate Hydrate, dissolve in 70 mL of acetic acid (100), and titrate <2.50> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 61.40 mg of C₂₁H₂₅ClFN₂O₇·C₆H₅O₂·2H₂O.

Containers and storage

Containers—Well-closed containers.
Mosapride Citrate Powder

モサプリドクエン酸塩散

Mosapride Citrate Powder contains not less than 93.0% and not more than 107.0% of the labeled amount of mosapride citrate (C₂₁H₂₅ClFN₃O₇·C₆H₄O₇·614.02).

Method of preparation Prepare as directed under Granules or Powders, with Mosapride Citrate Hydrate.

Identification (1) Powder Mosapride Citrate Powder. To a portion of the powder, equivalent to 10 mg of mosapride citrate (C₂₁H₂₅ClFN₃O₇·C₆H₄O₇), add 10 mL of dilute acetic acid, shake for 10 minutes, and filter. To 5 mL of the filtrate add 0.3 mL of Dragendorff’s TS: an orange precipitate is formed.

(2) Determine the absorption spectrum of the sample solution obtained in the Assay as directed under Ultraviolet-visible Spectrophotometry <2.24>: it exhibits maxima between 271 nm and 275 nm and between 306 nm and 310 nm.

Purity Related substances—Powder Mosapride Citrate Powder. To a portion of the powder, equivalent to 10 mg of mosapride citrate (C₂₁H₂₅ClFN₃O₇·C₆H₄O₇), moisten with 1 mL of water, then add 9 mL of methanol, shake for 20 minutes, centrifuge, and use the supernatant liquid as the sample solution. Pipet 1 mL of the sample solution, and add methanol to make exactly 20 mL. Pipet 2 mL of this solution, add methanol to make exactly 20 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL of each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions, and determine each peak area by the automatic integration method: the area of the two peaks, obtained in the Assay as directed under Ultraviolet-visible Spectrophotometry.<2.24>:

Amount (mg) of mosapride citrate (C₂₁H₂₅ClFN₃O₇·C₆H₄O₇) = Mₜ × Aₜ/AS × V/V × 1/50

Mₜ: Amount (mg) of mosapride citrate hydrate for assay taken, calculated on the anhydrous basis

Dissolution <6.10> When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of 0.1% fluid for dissolution test as the dissolution medium, the dissolution rate in 45 minutes of Mosapride Citrate Powder is not less than 70%.

Start the test with an amount of Mosapride Citrate Powder, equivalent to about 2.5 mg of mosapride citrate (C₂₁H₂₅ClFN₃O₇·C₆H₄O₇), withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 30 mg of mosapride citrate hydrate for assay (separately determine the water <2.48> in the same manner as Mosapride Citrate Hydrate), and dissolve in the mobile phase to make exactly 100 mL. Pipet 2 mL of this solution, add the mobile phase to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 50 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07>, and determine the peak areas, Aₜ and Aₛ, of mosapride in each solution.

Dissolution rate (%) with respect to the labeled amount of mosapride citrate (C₂₁H₂₅ClFN₃O₇·C₆H₄O₇) = Mₛ/Mₜ × Aₜ/AS × 1/C × 9

Mₛ: Amount (mg) of mosapride citrate hydrate for assay taken, calculated on the anhydrous basis
Mₜ: Amount (g) of Mosapride Citrate Powder taken
C: Labeled amount (mg) of mosapride citrate (C₂₁H₂₅ClFN₃O₇·C₆H₄O₇) in 1 g

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 274 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 30°C.

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of mosapride are not less than 40,000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of mosapride is not more than 3.0%.

Uniformity of dosage units <6.02> Perform the test according to the following method: the powder in single-dose packages meets the requirement of the Content uniformity test.

To the total amount of the content of 1 package of Mosapride Citrate Powder add 5 mL of water, and shake. Then, add 20 mL of methanol, shake for 20 minutes, and add methanol to make exactly 50 mL. Centrifuge this solution, pipet V mL of the supernatant liquid, add methanol to make exactly V mL so that each mL contains about 20 μg of mosapride citrate (C₂₁H₂₅ClFN₃O₇·C₆H₄O₇), and use this solution as the sample solution. Then, proceed as directed in the Assay.

Amount (mg) of mosapride citrate (C₂₁H₂₅ClFN₃O₇·C₆H₄O₇) = Mₛ × Aₛ/AS × V/V × 1/50

Mₛ: Amount (mg) of mosapride citrate hydrate for assay taken, calculated on the anhydrous basis

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 274 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 30°C.
Mobile phase: Dissolve 8.82 g of trisodium citrate dihydrate in 800 mL of water, adjust to pH 3.3 with dilute hydrochloric acid, and add water to make 1000 mL. To 240 mL of this solution add 90 mL of methanol and 70 mL of acetonitrile.

Flow rate: Adjust so that the retention time of mosapride is about 9 minutes.

System suitability—

System performance: When the procedure is run with 50 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of mosapride are not less than 4000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 50 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of mosapride is not more than 2.0%.

Assay Powder Mosapride Citrate Powder. Weigh accurately a portion of the powder, equivalent to about 10 mg of mosapride citrate (C₂₁H₂₂ClFN₃O₇·C₆H₅O₂), moisten with 2 mL of water, add 70 mL of methanol, shake for 20 minutes, then add methanol to make exactly 100 mL, and centrifuge. Pipet 10 mL of the supernatant liquid, add methanol to make exactly 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 53 mg of mosapride citrate hydrate for assay (separately determine the amount of mosapride citrate hydrate), and dissolve in methanol to make exactly 100 mL. To 240 mL of this solution add methanol to make exactly 50 mL, and use this solution as the standard solution. Pipet 10 mL of the supernatant liquid, add methanol to make exactly 20 mL. Pipet 2 mL of the sample solution, add methanol to make exactly 20 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area by the automatic integration method: the area of the peaks having the relative retention times of about 0.60 and about 0.85 to mosapride obtained from the sample solution is not larger than the peak area of mosapride from the standard solution, and the area of each peak other than mosapride and these peaks mentioned above from the sample solution is not larger than 1/2 times the peak area of mosapride from the standard solution. Furthermore, the total area of the peaks other than mosapride from the sample solution is not larger than 2 times the peak area of mosapride from the standard solution.

Operating conditions—

Detector, column, column temperature, mobile phases A and B, and flow rate: Proceed as directed in the operating conditions in the Purity (2) under Mosapride Citrate Hydrate.

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 40</td>
<td>85 → 45</td>
<td>15 → 55</td>
</tr>
</tbody>
</table>

Time span of measurement: For 40 minutes after injection, beginning after the solvent peak.

System suitability—

Test for required detectability: Pipet 1 mL of the standard solution, and add methanol to make exactly 25 mL. Confirm that the peak area of mosapride obtained with 10 μL of this solution is equivalent to 3.0 to 5.0% of that with 10 μL of the standard solution.

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of mosapride are not less than 40,000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of mosapride is not more than 3.0%.

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 tablet of Mosapride Citrate Tablets add 5 mL of water, and shake well to disintegrate. Add 20 mL of methanol, shake for 20 minutes, and add methanol to make exactly 50 mL. Centrifuge this solution, pipet V mL of the supernatant liquid, add methanol to make exactly V mL so that each mL contains about 20 μg of mosapride citrate (C₂₁H₂₂ClFN₃O₇·C₆H₅O₂), and use this solution as the sample solution. Proceed as directed in the Assay.

Amount (mg) of mosapride citrate (C₂₁H₂₂ClFN₃O₇·C₆H₅O₂) = M₅ × A₁/A₅ × V/V' × 1/50

M₅: Amount (mg) of mosapride citrate hydrate for assay taken, calculated on the anhydrous basis.

Containers and storage—Containers—Tight containers.

Mosapride Citrate Tablets

モサプリドクエン酸塩錠

Mosapride Citrate Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of mosapride citrate (C₂₁H₂₂ClFN₃O₇·C₆H₅O₂: 614.02).

Method of preparation—Prepare as directed under Tablets, with Mosapride Citrate Hydrate.

Identification (1) To an amount of powdered Mosapride Citrate Tablets, equivalent to 10 mg of mosapride citrate (C₂₁H₂₂ClFN₃O₇·C₆H₅O₂), add 10 mL of dilute acetic acid, shake for 10 minutes, and filter. To 5 mL of the filtrate add 0.3 mL of Dragendorff’s TS: an orange precipitate is formed.

(2) Determine the absorption spectrum of the sample solution obtained in the Assay as directed under Ultraviolet-visible Spectrophotometry <2.24>: it exhibits maxima between 271 nm and 275 nm, and between 306 nm and 310 nm.

Purity—Related substances—Powder not less than 20 tablets of Mosapride Citrate Tablets. Moisten a portion of the powder, equivalent to 10 mg of mosapride citrate (C₂₁H₂₂ClFN₃O₇·C₆H₅O₂), with 1 mL of water. Add 9 mL of methanol, shake for 20 minutes, centrifuge, and use the supernatant liquid as the sample solution. Pipet 1 mL of this solution, add methanol to make exactly 20 mL. Pipet 2 mL of the sample solution, add methanol to make exactly 20 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area by the automatic integration method: the area of the peaks having the relative retention times of about 0.60 and about 0.85 to mosapride obtained from the sample solution is not larger than the peak area of mosapride from the standard solution, and the area of each peak other than mosapride and these peaks mentioned above from the sample solution is not larger than 1/2 times the peak area of mosapride from the standard solution. Furthermore, the total area of the peaks other than mosapride from the sample solution is not larger than 2 times the peak area of mosapride from the standard solution.
Dissolution 6.102 When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of 2nd fluid for dissolution test as the dissolution medium, the dissolution rate in 45 minutes of Mosapride Citrate Tablets is not less than 80%.

Start the test with 1 tablet of Mosapride Citrate Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add the dissolution medium to make exactly V’ mL so that each mL contains about 2.8 μg of mosapride citrate (C₂₁H₂₅ClFN₃O₇.C₆H₂O₂), and use this solution as the sample solution. Separately, weigh accurately about 30 mg of mosapride citrate hydrate for assay (separately, determine the water ≈ 2.4% in the same manner as Mosapride Citrate Hydrate), and dissolve in methanol to make exactly 100 mL. Pipet 2 mL of this solution, add methanol to make exactly 50 mL, and use this solution as the standard solution. Perform the test with the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry <2.24>, and determine the absorbances, A₁ and A₅, at 273 nm.

Amount (mg) of mosapride citrate (C₂₁H₂₅ClFN₃O₇.C₆H₂O₂) = Mₛ x A₁ / A₅ x 1 / 5

Mₛ: Amount (mg) of mosapride citrate hydrate for assay taken, calculated on the anhydrous basis

Containers and storage Containers—Tight containers.

Freeze-dried Live Attenuated Mumps Vaccine

Freeze-dried Live Attenuated Mumps Vaccine is a dried preparation containing live attenuated mumps virus.

It conforms to the requirements of Freeze-dried Live Attenuated Mumps Vaccine in the Minimum Requirements of Biologic Products.

Description Freeze-dried Live Attenuated Mumps Vaccine becomes a clear, colorless, yellowish or reddish liquid on addition of solvent.

Mupirocin Calcium Hydrate

μピロシンカルシウム水和物

Mupirocin Calcium Hydrate is the calcium salt of a substance having antibacterial activity produced by the growth of Pseudomonas fluorescens.

It contains not less than 895 μg (potency) and not more than 970 μg (potency) per mg, calculated on the anhydrous basis. The potency of Mupirocin Calcium Hydrate is expressed as mass (potency) of mupirocin (C₃₅H₄₇O₁₆.2H₂O: 500.62).

Description Mupirocin Calcium Hydrate occurs as a white powder and has a bitter taste.

It is freely soluble in methanol, slightly soluble in water and in ethanol (95), and practically insoluble in diethyl ether.

Identification (I) To 1 mL of a solution of Mupirocin Calcium Hydrate in methanol (1 in 200) add 4 mL of hydroxylamine perchlorate-ethanol TS and 1 mL of N,N'-dicyclohexylcarbodiimide-ethanol TS, shake well, and allow

\[\text{C}_{35}\text{H}_{47}\text{CaO}_{16}.2\text{H}_2\text{O}: 1075.34\]

\[115074-43-6\]

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
to stand in lukewarm water for 20 minutes. After cooling, add 1 mL of iron (III) perchlorate-ethanol TS to the solution, and shake: a dark purple color develops.

(2) Determine the absorption spectrum of a solution of Mupirocin Calcium Hydrate (1 in 50,000) as directed under Ultraviolet-visible Spectrophotometry <2.24> it exhibits a maximum between 219 nm and 224 nm.

(3) Determine the infrared absorption spectrum of Mupirocin Calcium Hydrate as directed in the paste method under Infrared Spectrophotometry <2.25>; it exhibits absorption at the wave numbers of about 1708 cm⁻¹, 1648 cm⁻¹, 1558 cm⁻¹, 1231 cm⁻¹, 1151 cm⁻¹ and 894 cm⁻¹.

(4) A solution of Mupirocin Calcium Hydrate (3 in 1000) responds to Qualitative Tests <1.09> (3) for calcium salt.

Optical rotation <2.49> [α]D 20: −16° − 20° (1 g calculated on the anhydrous basis, methanol, 20 mL, 100 mm).

Purity (I) Related substances—Dissolve 50 mg of Mupirocin Calcium Hydrate in a mixture of 0.1 mol/L acetic acid-sodium acetate buffer solution (pH 4.0) and a solution of tetrahydrofuran (3 in 4) (1:1) to make 10 mL, and use this solution as the sample solution (1). Pipet 2 mL of the sample solution (1), add a mixture of 0.1 mol/L acetic acid-sodium acetate buffer solution (pH 4.0) and a solution of tetrahydrofuran (3 in 4) (1:1) to make exactly 100 mL, and use this solution as the sample solution (2). Prepare these sample solutions at a temperature between 4°C and 8°C. Perform the test with exactly 20 μL of the sample solution (1) and the sample solution (2) as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the areas of each peak of the sample solution (1) and the sample solution (2) by the automatic integration method. Calculate the amount of the related substances by the following formula: the amount of principal related substance (appeared at about 0.7 of the relative retention time to mupirocin) is not more than 4.0%, and the total amount of related substances (the total area of the peaks other than of the solvent and mupirocin) is not more than 6.0%.

\[
\begin{align*}
\text{Amount (\% of principal related substance)} &= \frac{A_m}{A + A_m} \times 100 \times \frac{P \times 10^6}{100 - \frac{A \times 10^6}{A + A_m}} \\
\text{Total amount (\% of related substances)} &= \frac{A_m}{A + A_m} \times 100 \times \frac{P \times 10^6}{100 - \frac{A \times 10^6}{A + A_m}}
\end{align*}
\]

\(A\): Total peak areas other than the solvent and mupirocin from the sample solution (1)

\(A_i\): Peak area of the relative retention time of about 0.7 to mupirocin from the sample solution (1)

\(A_m\): A value of 50 times of peak area of mupirocin from the sample solution (2)

\(P\): Potency per mg obtained from the assay

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 240 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase: Dissolve 7.71 g of ammonium acetate in 750 mL of water, adjust the pH to 5.7 with acetic acid (100), and add water to make 1000 mL. To 300 mL of this solution add 100 mL of tetrahydrofuran.
Flow rate: Adjust so that the retention time of mupirocin is about 12.5 minutes.

System suitability—
System performance: Dissolve about 20 mg of Mupirocin Lithium RS and about 5 mg of ethyl parahydroxybenzoate in a mixture of 0.1 mol/L acetic acid-sodium acetate buffer solution (pH 4.0) and a solution of tetrahydrofuran (3 in 4) (1:1) to make 200 mL. When the procedure is run with 20 μL of this solution under the above operating conditions, mupirocin and ethyl parahydroxybenzoate are eluted in this order with the resolution between these peaks being not less than 12.
System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak areas of mupirocin is not more than 1.0%.

Containers and storage—Containers—Tight containers.
Mupirocin Calcium Ointment

Mupirocin Calcium Ointment is an oily ointment preparation.

Mupirocin Calcium Ointment contains not less than 95.0% and not more than 105.0% of the labeled potency of mupirocin (C_{28}H_{44}O_{8}: 500.62).

Method of preparation Prepare as directed under Ointments, with Mupirocin Calcium Hydrate.

Identification To an amount of Mupirocin Calcium Ointment, equivalent to 10 mg (potency) of Mupirocin Calcium Hydrate, add 5 mL of water, and warm on a water bath at 60°C for 10 minutes while occasional shaking. After cooling, filter, and to 1 mL of the filtrate add water to make 100 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.24>: it exhibits a maximum between 220 nm and 224 nm.

Purity Related substances—To an amount of Mupirocin Calcium Ointment, equivalent to 50 mg (potency) of Mupirocin Calcium Hydrate, add 5 mL of diluted tetrahydrofuran (3 in 4), and shake vigorously. Then, add 5 mL of 0.1 mol/L acetic acid-sodium acetate buffer solution (pH 4.0), shake vigorously, filter through a glass wool filter, and use the filtrate as the sample solution. Pipet 2 mL of the sample solution, add a mixture of 0.1 mol/L acetic acid-sodium acetate buffer solution (pH 4.0) and diluted tetrahydrofuran (3 in 4) (1:1) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 µL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the area of the peak other than mupirocin obtained from the sample solution and the peak area of mupirocin from the standard solution by the automatic integration method. Calculate the amount of each related substance using the following equation: the amount of the related substance having the relative retention time of about 0.7 to mupirocin is not more than 4.0%, the amount of the related substance other than that is not more than 1.5%, and the total amount of the related substances is not more than 6.0%.

\[
\text{Amount} \,(\%) \, \text{of each related substance} = \frac{A}{(\Sigma A + A_m)} \times 100
\]

\[
\Sigma A: \text{Total area of the peaks other than mupirocin obtained from the sample solution.}
\]

\[
A_m: \text{Amount of 50 times the peak area of mupirocin obtained from the standard solution.}
\]

Operating conditions—

Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay under Mupirocin Calcium Hydrate.

Time span of measurement: About 5 times as long as the retention time of mupirocin, beginning after the solvent peak.

System suitability—

System performance: Proceed as directed in the system suitability in the Assay under Mupirocin Calcium Hydrate.

Test for required detectability: To exactly 1 mL of the standard solution add a mixture of 0.1 mol/L acetic acid-sodium acetate buffer solution (pH 4.0) and diluted tetrahydrofuran (3 in 4) (1:1) to make exactly 20 mL. Confirm that the peak area of mupirocin obtained with 20 µL of this solution is equivalent to 4 to 6% of that with 20 µL of the standard solution.

System repeatability: When the test is repeated 6 times with 20 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of mupirocin is not more than 2.0%.

Assay Weigh accurately an amount of Mupirocin Calcium Ointment, equivalent to about 2 mg (potency) of Mupirocin Calcium Hydrate, add exactly 10 mL of diluted tetrahydrofuran (3 in 4), and shake vigorously. To this solution add exactly 10 mL of 0.1 mol/L acetic acid-sodium acetate buffer solution (pH 4.0), shake vigorously, filter through a glass wool filter, and use the filtrate as the sample solution. Separately, weigh accurately an amount of Mupirocin Lithium RS, equivalent to about 20 mg (potency), dissolve in a mixture of 0.1 mol/L acetic acid-sodium acetate buffer solution (pH 4.0) and diluted tetrahydrofuran (3 in 4) (1:1) to make exactly 200 mL, and use this solution as the standard solution. Then, proceed as directed in the Assay under Mupirocin Calcium Hydrate.

\[
\text{Amount} \,(\text{mg (potency)}) \, \text{of mupirocin (C}_{28}\text{H}_{44}\text{O}_{8}) = M_5 \times A_{5}/A_{S} \times 1/10
\]

\[
M_5: \text{Amount (mg (potency)) of Mupirocin Lithium RS taken}
\]

Containers and storage Containers—Tight containers.

Nabumetone

Nabumetone is an oily ointment containing not less than 98.0% and not more than 101.0% of nabumetone (C_{15}H_{16}O_2), calculated on the anhydrous basis.

Description Nabumetone occurs as white to yellowish white, crystals or a crystalline powder. It is soluble in acetonitrile, sparingly soluble in methanol and in ethanol (99.5), and practically insoluble in water.

Identification (1) Determine the absorption spectrum of a solution of Nabumetone in methanol (1 in 30,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Nabumetone RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Nabumetone as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of Nabumetone RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point <2.60> 79 - 84°C
Purity (1) Heavy metals <1.0>—Proceed with 1.0 g of Nabumetone according to Method 2, and perform the test. Prepare the control solution with 1.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Related substances—Dissolve 20 mg of Nabumetone in 20 mL of acetonitrile, and use this solution as the sample solution. Pipet 5 mL of the sample solution, add acetonitrile to make exactly 50 mL. Pipet 1 mL of this solution, add acetonitrile to make exactly 20 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area of both solutions by the automatic integration method: the peak area of the related substance G obtained from the sample solution is not larger than 3/5 times the peak area of nabumetone from the standard solution, and each peak area other than nabumetone and the related substance G is not larger than 1/5 times the peak area of nabumetone from the standard solution. Furthermore, the total area of the peaks other than nabumetone from the sample solution is not larger than 1.6 times the peak area of nabumetone from the standard solution. For each peak area of the related substances A, B, C, D, E, F and G, which are having the relative retention time of about 0.73, 0.85, 0.93, 1.2, 1.9, 2.6 and 2.7 to nabumetone, multiply their correction factors 0.12, 0.94, 0.25, 0.42, 1.02, 0.91 and 0.1, respectively.

Operating conditions—
Detector, column, and column temperature: Proceed as directed in the operating conditions in the Assay.
Mobile phase A: A mixture of water and acetic acid (100) (999:1).
Mobile phase B: A mixture of acetonitrile and tetrahydrofuran (7:3).
Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 12</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>12 – 28</td>
<td>60 → 20</td>
<td>40 → 80</td>
</tr>
</tbody>
</table>

Flow rate: 1.3 mL per minute.
Time span of measurement: About 3 times as long as the retention time of nabumetone, beginning after the solvent peak.

System suitability—
System performance: Proceed as directed in the system suitability in the Assay.
Test for required detectability: Pipet 2 mL of the standard solution, and add acetonitrile to make exactly 10 mL. Confirm that the peak area of nabumetone obtained with 10 μL of this solution is equivalent to 14 to 26% of that with 10 μL of the standard solution.
System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of nabumetone is not more than 5.0%.

Water <2.42> Not more than 0.2% (1 g, volumetric titration, direct titration).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 20 mg each of Nabumetone and Nabumetone RS (separately determine the water <2.42> in the same manner as Nabumetone), dissolve them in acetonitrile to make exactly 20 mL, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak area, A₁ and A₅, of nabumetone in each solution.

Amount (mg) of nabumetone (C₁₅H₁₈O₂) = Mₛ × A₁/₅
Mₛ: Amount (mg) of Nabumetone RS taken, calculated on the anhydrous basis

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 254 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilylized silica gel for liquid chromatography (4 μm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase: To 600 mL of a mixture of water and acetic acid (100) (999:1) add 400 mL of a mixture of acetonitrile and tetrahydrofuran (7:3).
Flow rate: Adjust so that the retention time of nabumetone is about 10 minutes.

System suitability—
System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of nabumetone are not less than 6000 and not more than 1.5, respectively.
System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of nabumetone is not more than 1.0%.

Containers and storage Containers—Tight containers.

Nabumetone Tablets
ナブメトン錠

Nabumetone Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of nabumetone (C₁₅H₁₈O₂: 228.29).

Method of preparation Prepare as directed under Tablets, with Nabumetone.

Identification To a quantity of powdered Nabumetone Tablets, equivalent to 80 mg of Nabumetone, add 50 mL of methanol, shake for 10 minutes and centrifuge the solution. To 1 mL of the supernatant liquid, add methanol to make 50 mL, and determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.24>: it exhibits maxima between 259 nm and 263 nm, between 268 nm and 272 nm, between 316 nm and 320 nm, and between 330 nm and 334 nm.

Uniformity of dosage units <6.02> It meets the requirement of the Mass variation test.

Dissolution <6.10> When the test is performed at 75 revolutions per minute according to the Paddle method, using 900 mL of a solution prepared by dissolving 3 g of polysorbate 80 in water to make 100 mL as the dissolution medium, the dissolution rate in 60 minutes of Nabumetone Tablets is not less than 70%.
Start the test with 1 tablet of Nabumetone Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.5 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add a solution, prepared by adding to 20 mL of ethanol (99.5) the solution medium to make 50 mL, to make exactly V’ mL so that each mL contains about 89 μg of nabumetone (C₁₅H₁₈O₂), and use this solution as the sample solution. Separately, weigh accurately about 22 mg of Nabumetone RS (separately determine the water <2.48% in the same manner as Nabumetone), and dissolve in ethanol (99.5) to make exactly 100 mL. Pipet 10 mL of this solution, add the dissolution medium to make exactly 25 mL, and use this solution as the standard solution. Determine the absorbances, A₁ and A₅, at 331 nm of the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry <2.24>, using a solution prepared by adding to 20 mL of ethanol (99.5) the dissolution medium to make 50 mL as the blank.

Dissolution rate (%) with respect to the labeled amount of nabumetone (C₁₅H₁₈O₂)

\[M_S = \frac{M_5 \times A_1}{A_5 \times \frac{V'}{V} \times 1/C \times 360} \]

M₅: Amount (mg) of Nabumetone RS taken, calculated on the anhydrous basis

C: Labeled amount (mg) of nabumetone (C₁₅H₁₈O₂) in 1 tablet

Assay Weigh accurately the mass of not less than 20 tablets of Nabumetone Tablets, and weigh. Weigh accurately a portion of the powder, equivalent to about 0.2 g of nabumetone (C₁₅H₁₈O₂), add 10 mL of water and shake, add 40 mL of methanol, shake for 30 minutes, and then add methanol to make exactly 100 mL. Centrifuge this solution, pipet 5 mL of the supernatant liquid, add exactly 5 mL of the internal standard solution, then add methanol to make 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 40 mg of Nabumetone RS (separately determine the water <2.48% in the same manner as Nabumetone), dissolve by adding 50 mL of methanol and exactly 20 mL of the internal standard solution, then add methanol to make 200 mL, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and calculate the ratios, Q₁ and Q₅, of the peak area of nabumetone to that of the internal standard.

Amount (mg) of nabumetone (C₁₅H₁₈O₂)

\[M_S = \frac{M_5 \times Q_1}{Q_5 \times 5} \]

M₅: Amount (mg) of Nabumetone RS taken, calculated on the anhydrous basis

Internal standard solution—Dissolve 0.12 g of 2-ethylhexyl parahydroxybenzoate in methanol to make 100 mL.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 254 nm).

Column: A stainless steel column 4 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: A mixture of acetonitrile, water and acetic acid (100) (550:450:1).

Flow rate: Adjust so that the retention time of nabumetone is about 6 minutes.

System suitability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, nabumetone and the internal standard are eluted in this order with the resolution between these peaks being not less than 13.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of nabumetone to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Well-closed containers.

Nadolol ナドロール

C₁₅H₂₇NO₄: 309.40
R₁ = OH, R₂ = H
(2RS,3SR)-5-{[(2SR)-3-[(1,1-Dimethylethyl)amino]-2-hydroxypropyloxy]-1,2,3,4-tetrahydronaphthalene-2,3-diol
R₁ = H, R₂ = OH
(2RS,3SR)-5-{[(2RS)-3-[(1,1-Dimethylethyl)amino]-2-hydroxypropyloxy]-1,2,3,4-tetrahydronaphthalene-2,3-diol
[42200-33-9]

Nadolol, when dried, contains not less than 98.0% of nadolol (C₁₅H₂₇NO₄).

Description Nadolol occurs as a white to yellowish-brown-white crystalline powder.

It is freely soluble in methanol and in acetic acid (100), soluble in ethanol (95), and slightly soluble in water and in chloroform.

A solution of Nadolol in methanol (1 in 100) shows no optical rotation.

Melting point: about 137°C.

Identification

1 Determine the absorption spectrum of a solution of Nadolol in methanol (1 in 5000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

2 Determine the infrared absorption spectrum of Nadolol, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.23>; it exhibits absorption at the wave numbers of about 1585 cm⁻¹, 1460 cm⁻¹, 1092 cm⁻¹, 935 cm⁻¹ and 770 cm⁻¹.

Purity Heavy metals <1.07>—Proceed with 1.0 g of Nadolol according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

2 Related substances—Dissolve 0.5 g of Nadolol in 10 mL of a mixture of methanol and chloroform (1:1), and use this solution as the sample solution. Perform the test with
the sample solution as directed under Thin-layer Chromatography <2.24>. Spot 100 μL each of the sample solution and a mixture of methanol and chloroform (1:1) as a control solution with 25 mm each of width at an interval of about 10 mm on the starting line of a plate 0.25 mm in thickness of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of acetone, chloroform and diluted ammonia TS (1 in 3) (8:1:1) to a distance of about 15 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm), and confirm the positions of the principal spot and the spots other than the principal spot obtained from the sample solution. Scratch and collect the silica gel of the positions of the plate corresponding to the principal spot and the spots other than the principal spot. To the silica gel collected from the principal spot add exactly 30 mL of ethanol (95), and to the silica gel from the spots other than the principal spot add exactly 10 mL of ethanol (95). After shaking them for 60 minutes, centrifuge, and determine the absorbances of these supernatant liquids at 278 nm as directed under Ultraviolet-visible Spectrophotometry <2.24>. Separately, proceed in the same manner with each position of the silica gel from the control solution corresponding to the principal spot and the spots other than the principal spot of the sample solution, and perform a blank determination to make correction. Amount of the related substances calculated by the following equation is not more than 2.0%.

Amount (%) of related substances = \(\frac{A_b}{(A_s + 3A_d)} \times 100 \)

\(A_s \): Corrected absorbance of the principle spot
\(A_b \): Corrected absorbance of the spots other than the principle spot

Loss on drying <2.47> Not more than 0.1.0% (1 g, in vacuum, 60°C, 3 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Isomer ratio Prepare a paste with 0.01 g of Nadolol as directed in the paste method under Infrared Spectrophotometry <2.25> so that its transmittance at an absorption band at a wave number of about 1585 cm\(^{-1}\) is 25 to 30%, and determine the infrared absorption spectrum between 1600 cm\(^{-1}\) and 1100 cm\(^{-1}\). Determine the absorbances, \(A_{1265} \) and \(A_{1250} \), from the transmittances, \(T_{1265} \) and \(T_{1250} \), at wave numbers of about 1265 cm\(^{-1}\) (racemic substance A) and 1250 cm\(^{-1}\) (racemic substance B), respectively; the ratio \(A_{1265}/A_{1250} \) is between 0.72 and 1.08.

Assay Weigh accurately about 0.28 g of Nadolol, previously dried, dissolve in 50 mL of acetic acid (100), and titrate <2.50> with 0.1 mol/L perchloric acid VS until the color of the solution changes from purple through blue to green-blue (indicator: 3 drops of crystal violet TS). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 30.94 mg of C\(_7\)H\(_5\)NO\(_2\)

Containers and storage Containers—Tight containers. Storage—Light-resistant.
nafamostat from the sample solution is not larger than the peak area of nafamostat from the standard solution.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 260 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase: Dissolve 6.07 g of sodium 1-heptane sulfonate in 1000 mL of diluted acetic acid (100) (3 in 500). To 700 mL of this solution add 300 mL of acetonitrile.
Flow rate: Adjust so that the retention time of nafamostat is about 7 minutes.
Time span of measurement: About 4 times as long as the retention time of nafamostat, beginning after the solvent peak.

System suitability—
Test for required detectability: Pipet 5 mL of the standard solution, and add the mobile phase to make exactly 50 mL. Pipet 15 mL of this solution, and add the mobile phase to make exactly 100 mL. Confirm that the peak area of nafamostat obtained with 10 μL of this solution is equivalent to 1.1 to 1.9% of that with 10 μL of the standard solution.
System performance: Dissolve 0.1 g of nafamostat mesilate in the mobile phase to make 100 mL. To 10 mL of this solution add the mobile phase to make 100 mL. To 5 mL of this solution add 5 mL of a solution of 6-amidino-2-naphthol methanesulfonate in the mobile phase (1 in 20,000). When the procedure is run with 10 μL of this solution under the above operating conditions, 6-amidino-2-naphthol and nafamostat are eluted in this order with the resolution between these peaks being not less than 6.
System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of nafamostat is not more than 2.0%.

Loss on drying <2.41> Not more than 0.5% (1 g, 105°C, 3 hours).
Residue on ignition <2.44> Not more than 0.1% (1 g).
Assay Weigh accurately about 0.25 g of Nafamostat Mesilate, previously dried, dissolve in 4 mL of formic acid, add 50 mL of acetic anhydride, and titrate <2.59> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 26.98 mg of C_{19}H_{17}N_5O_2.2CH_3O_2S

Containers and storage Containers—Tight containers.

Naftopidil ナフトピジル

C_{24}H_{33}N_2O_3: 392.49
(2RS)-1-[4-(2-Methoxyphenyl)piperazin-1-yl]-3-(naphthalen-1-yl)oxy)propan-2-ol
[57149-07-2]

Naftopidil, when dried, contains not less than 99.0% and not more than 101.0% of naftopidil (C_{24}H_{33}N_2O_3).

Description Naftopidil occurs as a white crystalline powder.

It is very soluble in acetic anhydride, freely soluble in N,N-dimethylformamide and in acetic acid (100), slightly soluble in methanol and in ethanol (99.5), and practically insoluble in water.

It is gradually colored to light brown by light.

A solution of Naftopidil in N,N-dimethylformamide (1 in 10) shows no optical rotation.

Identification (1) Dissolve 50 mg of Naftopidil in 5 mL of acetic acid (100), and add 0.1 mL of Dragendorff’s TS: orange colored precipitates are produced.
(2) Determine the absorption spectrum of a solution of Naftopidil in methanol (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.
(3) Determine the infrared absorption spectrum of Naftopidil, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point <2.60> 126 - 129°C

Purity (1) Heavy metals <1.07>—Proceed with 2.0 g of Naftopidil according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).
(2) Related substances—Dissolve 0.1 g of Naftopidil in 60 mL of methanol, add diluted 0.1 mol/L potassium dihydrogen phosphate TS (pH 2.0) (1 in 2) to make 100 mL, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add a mixture of methanol and water (3:2) to make exactly 100 mL. Pipet 4 mL of this solution, add a mixture of methanol and water (3:2) to make exactly 20 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine each peak area by automatic integration method: each peak area other than naftopidil obtained from the sample solution is not larger than 3/4 times the peak area of naftopidil from the standard solution, and the total area of the peaks other than naftopidil from the sample solution is not larger than 2.5 times the peak area of naftopidil from the standard solution.
Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 283 nm).
Column: A stainless steel column 4.0 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase: Dissolve 6.80 g of potassium dihydrogen phosphate in 900 mL of water, adjust to pH 4.0 with diluted phosphoric acid (1 in 10), and add water to make 1000 mL. To 450 mL of this solution add 550 mL of methanol.
Flow rate: Adjust so that the retention time of naftopidil is about 10 minutes.
Time span of measurement: About 2 times as long as the retention time of naftopidil, beginning after the solvent peak.
System suitability—
Test for required detectability: Pipet 2.5 mL of the standard solution, add a mixture of methanol and water (3:2) to make exactly 10 mL. Confirm that the peak area of naftopidil obtained with 10 μL of this solution is equivalent to 17.5 to 32.5% of that with 10 μL of the standard solution.
System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of naftopidil are not less than 2500 and not more than 1.5, respectively.
System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of naftopidil is not more than 3.0%.
Loss on drying 😊 Not more than 0.5% (1 g, 105°C, 3 hours).
Residue on ignition 😊 Not more than 0.1% (1 g).
Assay Weigh accurately about 0.2 g of Naftopidil, previously dried, dissolve in 50 mL of acetic anhydride, and titrate with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.
Each mL of 0.1 mol/L perchloric acid VS = 39.25 mg of C₂₈H₃₃N₂O₃
Containers and storage Containers—Well-closed containers.
Storage—Light-resistant.

Naftopidil Orally Disintegrating Tablets

ナフトピジル口腔内崩壊錠

Naftopidil Orally Disintegrating Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of naftopidil (C₂₈H₃₃N₂O₃; 392.49).

Method of preparation Prepare as directed under Tablets, with Naftopidil.

Identification Powder Naftopidil Orally Disintegrating Tablets. To a portion of the powder, equivalent to 25 mg of Naftopidil add 100 mL of methanol, shake thoroughly, and filter through a membrane filter with a pore size not exceeding 0.45 μm. To 6 mL of the filtrate add methanol to make 50 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry 😊 it exhibits maxima between 281 nm and 285 nm, and between 318 nm and 322 nm.

Uniformity of dosage units 😊 Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement.

To 1 tablet of Naftopidil Orally Disintegrating Tablets add V/10 mL of water, disintegrate and disperse the tablet by sonication. To this solution add V/2 mL of methanol, shake thoroughly, then add methanol to make exactly V mL so that each mL contains about 0.25 mg of naftopidil (C₂₈H₃₃N₂O₃), and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 10 mL of the filtrate, pipet 6 mL of the subsequent filtrate, add methanol to make exactly 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 50 mg of naftopidil for assay, previously dried at 105°C for 3 hours, dissolve in methanol to make exactly 100 mL. Pipet 3 mL of this solution, add methanol to make exactly 50 mL, and use this solution as the standard solution. Determine the absorbances, A₁ and A₅, at 283 nm of the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry, and calculate:

\[
\text{Amount (mg) of naftopidil (C₂₈H₃₃N₂O₃) = } \frac{M_s \times A_f}{A_s \times V/200}
\]

Mₕ: Amount (mg) of naftopidil for assay taken

Disintegration Being specified separately when the drug is granted approval based on the Law.

Dissolution 😊 When the test is performed at 50 revolution per minute according to the Paddle method, using 900 mL of 0.05 mol/L acetic acid-sodium acetate buffer solution (pH 4.0) as the dissolution medium, the dissolution rate in 30 minutes of Naftopidil Orally Disintegrating Tablets is not less than 75%.

Start the test with 1 tablet of Naftopidil Orally Disintegrating Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add the dissolution medium to make exactly V mL so that each mL contains about 28 μg of naftopidil (C₂₈H₃₃N₂O₃), and use this solution as the sample solution. Separately, weigh accurately about 28 mg of naftopidil for assay, previously dried at 105°C for 3 hours, dissolve in 50 mL of methanol, then add the dissolution medium to make exactly 100 mL. Pipet 5 mL of this solution, add the dissolution medium to make exactly 50 mL, and use this solution as the standard solution. Determine the absorbances, A₁ and A₅, at 283 nm of the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry, and calculate the dissolution medium as the control.

Dissolution rate (%) with respect to the labeled amount of naftopidil (C₂₈H₃₃N₂O₃) = \(\frac{M_s \times A_f}{A_s \times V/1/C \times 90} \)

Mₕ: Amount (mg) of naftopidil for assay taken

C: Labeled amount (mg) of naftopidil (C₂₈H₃₃N₂O₃) in 1 tablet

Assay Weigh accurately the mass of not less than 20 Naftopidil Orally Disintegrating Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 50 mg of naftopidil (C₂₈H₃₃N₂O₃), add 30 mL of meth-
anol, shake thoroughly, add diluted 0.1 mol/L potassium dihydrogen phosphate TS (pH 2.0) (1 in 2) to make exactly 50 mL, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 10 mL of the filtrate, pipet 10 mL of the subsequent filtrate, add exactly 10 mL of the internal standard solution, add a mixture of methanol and water (3:2) to make 100 mL, and use this solution as the sample solution. Separately, weigh accurately about 50 mg of naftopidil for assay, previously dried at 105°C for 3 hours, dissolve in 30 mL of methanol, add diluted 0.1 mol/L potassium dihydrogen phosphate TS (pH 2.0) (1 in 2) to make exactly 50 mL. Pipet 10 mL of this solution, add exactly 10 mL of the internal standard solution, add a mixture of methanol and water (3:2) to make 100 mL, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions, and calculate the ratios, Q₂ and Q₃ of the peak area of naftopidil to that of the internal standard.

Amount (mg) of naftopidil \((C_3H_2N_2O_3) = M_S × Q_2/Q_3 \)

\(M_S: \) Amount (mg) of naftopidil for assay taken

Internal standard solution—A solution of butyl parahydroxybenzoate in a mixture of methanol and water (3:2) (3 in 2000).

Operating conditions—

Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Purity (2) under Naftopidil.

System suitability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, naftopidil and the internal standard are eluted in this order with the resolution between these peaks being not less than 4.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of naftopidil to that of the internal standard is not more than 1.0%.

Containers and storage—Containers—Well-closed containers.

Storage—Light-resistant.

Naftopidil Tablets

ナフトピジル錠

Naftopidil Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of naftopidil \((C_3H_2N_2O_3): 392.49 \).

Method of preparation—Prepare as directed under Tablets, with Naftopidil.

Identification—Powder Naftopidil Tablets. To a portion of the powder, equivalent to 25 mg of Naftopidil, add 100 mL of methanol, shake thoroughly, and centrifuge, if necessary. Filter the supernatant liquid through a membrane filter with a pore size not exceeding 0.45 μm. To 6 mL of the filtrate, add methanol to make 50 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.24>; it exhibits maxima between 281 nm and 285 nm, and between 318 nm and 322 nm.

Uniformity of dosage units <6.02> Perform the test according to the following method; it meets the requirement of the Content uniformity test.

To 1 tablet of Naftopidil Tablets add \(V/10 \) mL of water, disintegrate and disperse the tablet with the aid of ultrasonic waves. To this dispersed solution add \(V/2 \) mL of methanol, shake thoroughly, add methanol to make exactly \(V \) mL so that each mL contains about 0.25 mg of naftopidil \((C_3H_2N_2O_3) \). Centrifuge this solution, if necessary, filter the supernatant liquid through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 10 mL of the filtrate, pipet 6 mL of the subsequent filtrate, add methanol to make exactly 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 50 mg of naftopidil for assay, previously dried at 105°C for 3 hours, dissolve in methanol to make exactly 100 mL. Pipet 3 mL of this solution, add methanol to make exactly 50 mL, and use this solution as the standard solution. Determine the absorbances, \(A_1 \) and \(A_3 \), at 283 nm of the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry <2.24>.

\[\text{Amount (mg) of naftopidil (C}_3\text{H}_2\text{N}_2\text{O}_3) = M_S × A_1/A_3 × V/200 \]

\(M_S: \) Amount (mg) of naftopidil for assay taken

Dissolution <6.10> When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of 0.05 mol/L acetic acid-sodium acetate buffer solution (pH 4.0) as the dissolution medium, the dissolution rate in 15 minutes of 25-mg and 50-mg tablet and in 30 minutes of 75-mg tablet is not less than 75%.

Start the test with 1 tablet of Naftopidil Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet \(V/2 \) mL of the subsequent filtrate, add the dissolution medium to make exactly \(V \) mL so that each mL contains about 28 μg of naftopidil \((C_3H_2N_2O_3) \), and use this solution as the sample solution. Separately, weigh accurately about 28 mg of naftopidil for assay, previously dried at 105°C for 3 hours, dissolve in 50 mL of methanol, and add the dissolution medium to make exactly 100 mL. Pipet 5 mL of this solution, add the dissolution medium to make exactly 50 mL, and use this solution as the standard solution. Determine the absorbances, \(A_1 \) and \(A_3 \), at 283 nm of the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry <2.24>, using the dissolution medium as the control.

Dissolution rate (%) with respect to the labeled amount of naftopidil \((C_3H_2N_2O_3) = M_S × A_1/A_3 × V/200 \)

\(M_S: \) Amount (mg) of naftopidil for assay taken

C: Labeled amount (mg) of naftopidil \((C_3H_2N_2O_3) \) in 1 tablet

Assay—Weigh accurately the mass of not less than 20 Naftopidil Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 50 mg of naftopidil \((C_3H_2N_2O_3) \), add 30 mL of methanol, shake thoroughly, and add diluted 0.1 mol/L potassium dihydrogen phosphate TS (pH 2.0) (1 in 2) to make exactly 50 mL. Centrifuge this solution, if necessary, filter the supernatant liquid through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 10 mL of the filtrate, pipet 10 mL of the subsequent filtrate, add exactly 10 mL of the internal standard solution, add a mixture of methanol and water (3:2) to make
100 mL, and use this solution as the sample solution. Separately, weigh accurately about 50 mg of naftopidil for assay, previously dried at 105°C for 3 hours, dissolve in 30 mL of methanol, add diluted 0.1 mol/L potassium dihydrogen phosphate TS (pH 2.0) (1 in 2) to make exactly 50 mL. Pipet 10 mL of this solution, add exactly 10 mL of the internal standard solution, make a mixture of methanol and water (3:2) to make 100 mL, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography 2.01 according to the following conditions, and calculate the ratios, Q₁ and Q₃ of the peak area of naftopidil to that of the internal standard.

Amount (mg) of naftopidil \((C_{24}H_{28}N_2O_3) = M_S \times Q_3/Q_S \)

\(M_S \): Amount (mg) of naftopidil for assay taken

Internal standard solution—A solution of butyl para-hydroxybenzoate in a mixture of methanol and water (3:2) (3 in 2000).

Operating conditions—
Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Purity (2) on Naftopidil.

System suitability—
System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, naftopidil and the internal standard are eluted in this order with the resolution between these peaks being not less than 4.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of naftopidil to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Well-closed containers.

Storage—Light-resistant.

Nalidixic Acid

ナルジクス酸

\[
\text{C}_{12}\text{H}_{17}\text{N}_{2}\text{O}_{3}: \text{232.24}
\]

1-Ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carboxylic acid

[389-08-2]

Nalidixic Acid, when dried, contains not less than 99.0% and not more than 101.0% of nalidixic acid \((C_{12}H_{17}N_2O_3) \).

Description Nalidixic Acid occurs as white to light yellow, crystals or crystalline powder.

It is sparingly soluble in \(N,N \)-dimethylformamide, very slightly soluble in ethanol \((99.5) \), and practically insoluble in water.

It dissolves in sodium hydroxide TS.

Identification (1) Determine the absorption spectrum of a solution of Nalidixic Acid in 0.01 mol/L sodium hydroxide TS (1 in 200,000) as directed under Ultraviolet-visible Spectrophotometry 2.24, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Nalidixic Acid, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry 2.25, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point \(2.60 \to 225 \to 231^\circ \text{C} \)

Purity (1) Chloride \(<1.0\% \)—To 2.0 g of Nalidixic Acid add 50 mL of water, warm at 70°C for 5 minutes, cool quickly, and filter. To 25 mL of the filtrate add 6 mL of dilute nitric acid and water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution with 0.35 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.012%).

(2) Heavy metals \(<1.0\% \)—Proceed with 1.0 g of Nalidixic Acid according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(3) Related substances—Dissolve 20 mg of Nalidixic Acid in 20 mL of 0.01 mol/L sodium hydroxide TS. To 5 mL of this solution, add water to make 10 mL, and use this solution as the sample solution. Pipet 2 mL of the sample solution, add water to make exactly 1000 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL of each of the sample solution and standard solution as directed under Liquid Chromatography 2.01 according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak other than nalidixic acid obtained from the sample solution is not larger than the peak area of nalidixic acid from the standard solution, and the total area of the peaks other than nalidixic acid from the sample solution is not larger than 2.5 times the peak area of nalidixic acid from the standard solution.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 260 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography \((5 \mu \text{m in particle diameter}) \).

Column temperature: A constant temperature of about 40°C.

Mobile phase: Dissolve 6.24 g of sodium dihydrogen phosphate dihydrate in 950 mL of water, adjust the pH to 2.8 with phosphoric acid, and add water to make 1000 mL. To 300 mL of this solution add 200 mL of methanol.

Flow rate: Adjust so that the retention time of nalidixic acid is about 19 minutes.

Time span of measurement: About 3 times as long as the retention time of nalidixic acid, beginning after the solvent peak.

System suitability—
Test for required detectability: Pipet 5 mL of the standard solution, and add water to make exactly 10 mL. Confirm that the peak area of nalidixic acid obtained with 10 μL of this solution is equivalent to 40 to 60% of that with 10 μL of the standard solution.

System performance: Dissolve 25 mg of methyl parahydroxybenzoate in 100 mL of a mixture of water and methanol \((1:1) \). To 1 mL of this solution add water to make 10 mL. To 5 mL of this solution add 5 mL of the standard solution. When the procedure is run with 10 μL of this solution under the above operating conditions, methyl parahydroxy-
Determine the infrared absorption spectrum of Naphazoline Hydrochloride occurs as a white to slightly yellowish white, crystalline powder. It is odorless, and has a bitter taste.

It is freely soluble in water, soluble in methanol, slightly soluble in ethanol (99.5) and in acetic acid (100), and very slightly soluble in acetic anhydride.

It is hygroscopic.

It is gradually colored by light.

Identification (1) Determine the absorption spectrum of a solution of Naphazoline Hydrochloride (1 in 10,000) as directed under Ultraviolet-visible Spectrophotometry <224>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Naphazoline Hydrochloride, previously dried, as directed in the potassium chloride disk method under Infrared Spectrophotometry <225>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) A solution of Naphazoline Hydrochloride (1 in 50) responds to Qualitative Tests <1.09> (2) for chloride.

Optical rotation <2.49> [αd]252° -170° -181° (0.25 g calculated on the dried basis, water, 10 mL, 100 mm).

pH <2.54> Dissolve 0.10 g of Naphazoline Hydrochloride in 10 mL of freshly boiled and cooled water: the pH of the solution is between 4.5 and 5.5.

Purity Related substances—Conduct this procedure as rapidly as possible without exposure to light, using light-resistant containers. Dissolve 0.08 g of Naphazoline Hydrochloride in 10 mL of methanol, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add methanol to make exactly 200 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.07>. Spot 10 μL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop with a mixture of ammonia-saturated 1-butanol TS and methanol (20:1) to a distance of about 12 cm, and air-dry the plate. Spray evenly iron (III) chloride-potassium hexacyanoferrate (III) TS on the plate: the number of the spot other than the principal spot from the sample solution is not more than 1 and it is not more intense than the spot from the standard solution.

Assay Weigh accurately about 0.3 g of Nalidixic Acid, previously dried, as directed in the General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.)

C19H15N2O3.HCl: 363.84

(5R,14S)-17-Allyl-4,5-epoxy-3,14-dihydroxymorphinan-6-one monohydrochloride [357-08-4]

Naloxone Hydrochloride contains not less than 98.5% of naloxone hydrochloride (C19H19NO4.HCl), calculated on the dried basis.

Description Naloxone Hydrochloride occurs as white to yellowish white, crystals or crystalline powder.

It is freely soluble in water, soluble in methanol, slightly soluble in ethanol (99.5) and in acetic acid (100), and very slightly soluble in acetic anhydride.

It is hygroscopic.

It is gradually colored by light.

Identification (1) Determine the absorption spectrum of a solution of Naloxone Hydrochloride (1 in 10,000) as directed under Ultraviolet-visible Spectrophotometry <224>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Naloxone Hydrochloride, previously dried, as directed in the potassium chloride disk method under Infrared Spectrophotometry <225>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) A solution of Naloxone Hydrochloride (1 in 50) responds to Qualitative Tests <1.09> (2) for chloride.

Optical rotation <2.49> [αd]252° -170° -181° (0.25 g calculated on the dried basis, water, 10 mL, 100 mm).

pH <2.54> Dissolve 0.10 g of Naloxone Hydrochloride in 10 mL of freshly boiled and cooled water: the pH of the solution is between 4.5 and 5.5.

Purity Related substances—Conduct this procedure as rapidly as possible without exposure to light, using light-resistant containers. Dissolve 0.08 g of Naloxone Hydrochloride in 10 mL of methanol, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add methanol to make exactly 200 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.07>. Spot 10 μL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop with a mixture of ammonia-saturated 1-butanol TS and methanol (20:1) to a distance of about 12 cm, and air-dry the plate. Spray evenly iron (III) chloride-potassium hexacyanoferrate (III) TS on the plate: the number of the spot other than the principal spot from the sample solution is not more than 1 and it is not more intense than the spot from the standard solution.

Loss on drying <2.41> Not more than 2% (0.1 g, 105°C, 5 hours).

Residue on ignition <2.44> Not more than 0.2% (1 g).

Residue on ignition <2.44> Not more than 0.2% (1 g).

Loss on drying <2.41> Not more than 2% (0.1 g, 105°C, 5 hours). Use a desiccator (phosphorus (V) oxide) for cooling.

Residue on ignition <2.44> Not more than 0.2% (0.1 g).

Loss on drying <2.41> Not more than 2% (0.1 g, 105°C, 5 hours). Use a desiccator (phosphorus (V) oxide) for cooling.

Purity Related substances—Conduct this procedure as rapidly as possible without exposure to light, using light-resistant containers. Dissolve 0.08 g of Naloxone Hydrochloride in 10 mL of methanol, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add methanol to make exactly 200 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.07>. Spot 10 μL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop with a mixture of ammonia-saturated 1-butanol TS and methanol (20:1) to a distance of about 12 cm, and air-dry the plate. Spray evenly iron (III) chloride-potassium hexacyanoferrate (III) TS on the plate: the number of the spot other than the principal spot from the sample solution is not more than 1 and it is not more intense than the spot from the standard solution.
Hydrochloride (1 in 100) add 5 mL of bromine TS, and boil: a deep purple color develops.

(2) To 30 mL of a solution of Naphazoline Hydrochloride (1 in 100) add 2 mL of sodium hydroxide TS, and extract with two 25-mL portions of diethyl ether. Evaporate the combined diethyl ether extracts to dryness with the aid of a current of air. Dry the residue at 80°C for 1 hour: the residue melts <2.60> between 117°C and 120°C.

(3) Dissolve 0.02 g of the residue obtained in (2) in 2 to 3 drops of dilute hydrochloric acid and 5 mL of water, and add 2 mL of Reinecke salt TS: a red-purple, crystalline precipitate is formed.

(4) A solution of Naphazoline Hydrochloride (1 in 10) responds to Qualitative Tests <1.09> for chloride.

pH <2.54> Dissolve 0.10 g of Naphazoline Hydrochloride in 10 mL of freshly boiled and cooled water: the pH of the solution is between 5.0 and 7.0.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Naphazoline Hydrochloride in 10 mL of water: the solution is clear and colorless.

(2) Heavy metals <1.07>—Proceed with 1.0 g of Naphazoline Hydrochloride according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

Loss on drying <2.41> Not more than 0.5% (1 g, 105°C, 2 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.4 g of Naphazoline Hydrochloride, previously dried, dissolve in 50 mL of a mixture of acetic anhydride and acetic acid (100) (7:3), and titrate <2.50> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 24.67 mg of C₁₇H₁₄N₂.HCl

Containers and storage Containers—Tight containers. Storage—Light-resistant.

Naphazoline Nitrate

ナファゾリン硝酸塩

C₁₇H₁₄N₂.HNO₃: 273.29
2-{(Naphthalen-1-ylmethyl)-4,5-dihydro-1H-imidazole mononitrate [5144-52-5]

Naphazoline Nitrate, when dried, contains not less than 98.5% of naphazoline nitrate (C₁₇H₁₄N₂.HNO₃).

Description Naphazoline Nitrate occurs as a white crystalline powder. It is odorless, and has a bitter taste. It is freely soluble in acetic acid (100), soluble in ethanol (95), sparingly soluble in water, slightly soluble in acetic anhydride, and practically insoluble in diethyl ether.

Identification (1) To 10 mL of a solution of Naphazoline Nitrate (1 in 100) add 5 mL of bromine TS, and boil: a deep purple color develops.

(2) To 20 mL of a solution of Naphazoline Nitrate (1 in 100) add 5 mL of sodium hydroxide TS, and extract with two 25-mL portions of diethyl ether. Combine the diethyl ether extracts, evaporate to dryness with the aid of a current of air, and dry the residue at 80°C for 1 hour: the residue so obtained melts <2.60> between 117°C and 120°C.

(3) A solution of Naphazoline Nitrate (1 in 20) responds to Qualitative Tests <1.09> for nitrate.

pH <2.54> Dissolve 0.1 g of Naphazoline Nitrate in 10 mL of freshly boiled and cooled water: the pH of the solution is between 5.0 and 7.0.

Melting point <2.60> 167 – 170°C

Purity (1) Clarity and color of solution—Dissolve 0.5 g of Naphazoline Nitrate in 50 mL of water: the solution is clear and colorless.

(2) Heavy metals <1.07>—Proceed with 1.0 g of Naphazoline Nitrate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

Loss on drying <2.41> Not more than 0.5% (1 g, 105°C, 2 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.4 g of Naphazoline Nitrate, previously dried, dissolve in 50 mL of a mixture of acetic anhydride and acetic acid (100) (4:1), and titrate <2.50> with 0.1 mol/L perchloric acid VS (indicator: 3 drops of crystal violet TS). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 27.33 mg of C₁₆H₁₈N₂.HNO₃

Containers and storage Containers—Tight containers. Storage—Light-resistant.

Naphazoline and Chlorpheniramine Solution

ナファゾリン・クロルフェニラミン液

Naphazoline and Chlorpheniramine Solution contains not less than 0.045 w/v% and not more than 0.055 w/v% of naphazoline nitrate (C₁₇H₁₄N₂.HNO₃: 273.29), and not less than 0.09 w/v% and not more than 0.11 w/v% of chlorpheniramine maleate (C₁₆H₁₅CN₂.C₂H₅O₃: 390.86).

Method of preparation

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naphazoline Nitrate</td>
<td>0.5 g</td>
</tr>
<tr>
<td>Chlorpheniramine Maleate</td>
<td>1 g</td>
</tr>
<tr>
<td>Chlorobutanol</td>
<td>2 g</td>
</tr>
<tr>
<td>Glycerin</td>
<td>50 mL</td>
</tr>
<tr>
<td>Purified Water or Purified Water in Containers</td>
<td>a sufficient quantity</td>
</tr>
</tbody>
</table>

To make 1000 mL

Dissolve, and mix the above ingredients.

Description Naphazoline and Chlorpheniramine Solution is a clear, colorless liquid.

Identification (1) To 20 mL of Naphazoline and Chlorpheniramine Solution add 2 mL of a solution of potassium
Naproxen / Official Monographs

hydroxide (7 in 10) and 5 mL of pyridine, and heat at 100°C for 5 minutes: a red color is produced (chlorobutanol).

2) Place 10 mL of Naphazoline and Chlorpheniramine Solution in a glass-stoppered test tube, add 10 mL of ethanol (95), 2 mL of sodium hydroxide TS and 1 mL of a solution of copper (II) chloride dihydrate in ethanol (95) (1 in 10), and shake: a blue color is produced (glycerin).

3) To 20 mL of Naphazoline and Chlorpheniramine Solution add 5 mL of sodium hydroxide TS, extract with 10 mL of diethyl ether, and separate the diethyl ether layer. Take 5 mL of this solution, distil off the solvent, dissolve the residue in 5 mL of methanol, and use this solution as the sample solution. Separately, dissolve 0.01 g each of naphazoline nitrate and Chlorpheniramine Maleate RS in 10 mL and 5 mL of methanol, respectively, and use these solutions as standard solutions (1) and (2). Perform the test with these solutions as directed under Thin-layer Chromatography \(<2.05>\). Spot 5 μL each of the sample solution and standard solutions on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of chloroform, methanol, acetone and ammonia solution (28) (73:15:10:2) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): two spots obtained from the sample solution exhibit the same RF values as the spots from standard solutions (1) and (2). Spray evenly Dragendorff’s TS on the plate: the spots from standard solutions (1) and (2) and the corresponding spot from the sample solutions reveal an orange color.

Assay Pipet 4 mL of Naphazoline and Chlorpheniramine Solution, add exactly 4 mL of the internal standard solution, then add water to make 10 mL, and use this solution as the sample solution. Weigh accurately about 50 mg of naphazoline nitrate for assay, dried at 105°C for 2 hours, and about 0.1 g of Chlorpheniramine Maleate RS, dried at 105°C for 3 hours, dissolve in water to make exactly 100 mL. Pipet 4 mL of this solution, add exactly 4 mL of the internal standard solution, then add water to make 10 mL, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solutions as directed under Liquid Chromatography \(<2.01>\) according to the following conditions, and calculate the ratios, \(Q_{Tb}\) and \(Q_{Sa}\), of the peak height of naphazoline and chlorpheniramine to that of the internal standard of the sample solution, and the ratios, \(Q_{Sb}\) and \(Q_{Sb}\), of the peak height of naphazoline and chlorpheniramine to that of the internal standard of the standard solution.

\[
\text{Amount (mg) of naphazoline nitrate (C_{14}H_{14}N_2·HNO_3)} = M_{Sa} \times \frac{Q_{Tb}}{Q_{Sa}} \times 1/25
\]

\[
\text{Amount (mg) of chlorpheniramine maleate (C_{16}H_{20}ClIN_2·C_4H_8O_4)} = M_{Sb} \times \frac{Q_{Tb}}{Q_{Sb}} \times 1/25
\]

\(M_{Sa}\): Amount (mg) of naphazoline nitrate for assay taken

\(M_{Sb}\): Amount (mg) of Chlorpheniramine Maleate RS taken

Internal standard solution—A solution of ethenzamide in methanol (1 in 1000).

Operating conditions—Detector: An ultraviolet absorption photometer (wavelength: 254 nm).

Column: A stainless steel column, about 4 mm in inside diameter and 25 to 30 cm in length, packed with octadeccylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Naproxen, when dried, contains not less than 98.5% of naproxen (C_{14}H_{13}O_3).

Description Naproxen occurs as white, crystals or crystalline powder. It is odorless.

It is freely soluble in acetone, soluble in methanol, in ethanol (99.5) and in chloroform, sparingly soluble in diethyl ether, and practically insoluble in water.

It dissolves in sodium hydroxide TS.

Identification (1) Dissolve 0.01 g of Naproxen in 5 mL of methanol, add 5 mL of water, then add 2 mL of potassium iodide TS and 5 mL of a solution of potassium iodate (1 in 100), and shake: a yellow to yellow-brown color develops. To this solution add 5 mL of chloroform, and shake: a light red-purple color develops in the chloroform layer.

(2) To 1 mL of a solution of Naproxin in ethanol (99.5) (1 in 300) add 4 mL of hydroxylamine perchlorate-ethanol TS and 1 mL of NaOCl-dicyclohexylcarbodiimide-ethanol TS, shake well, and allow to stand in lukewarm water for 20 minutes. After cooling, add 1 mL of iron (III) perchlorate-ethanol TS, and shake: a red-purple color develops.

(3) Determine the absorption spectrum of a solution of Naproxen in ethanol (99.5) (1 in 50,000) as directed under Ultraviolet-visible Spectrophotometry \(<2.24>\), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(4) Determine the infrared absorption spectrum of Naproxen, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry \(<2.25>\), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation \(<2.49>\) \([\alpha]_D^22\): +63.0 - +68.5° (after drying, 0.1 g, chloroform, 10 mL, 100 mm).

Melting point \(<2.60>\) 154 - 158°C

Purity (1) Clarity and color of solution—Dissolve 2.0 g of Naproxen in 20 mL of acetone: the solution is clear. Per-
form the test with this solution as directed under Ultraviolet-visible Spectrophotometry <2.24>: the absorbance at 400 nm is not more than 0.070.

(2) Heavy metals <1.07>-Proceed with 2.0 g of Naproxen according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(3) Arsenic <1.11>-Prepare the test solution with 2.0 g of Naproxen according to Method 3, and perform the test (not more than 1 ppm).

(4) Related substances—Conduct this procedure without exposure to light, using light-resistant vessels. Dissolve 0.10 g of Naproxen in 10 mL of a mixture of ethanol (99.5) and chloroform (1:1), and use this solution as the sample solution. Pipet 2 mL of the sample solution, and add a mixture of ethanol (99.5) and chloroform (1:1) to make exactly 100 mL. Pipet 5 mL of this solution, add a mixture of ethanol (99.5) and chloroform (1:1) to make exactly 30 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.63>.

Spot 10 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of hexane, dichloromethane, tetrahydrofuran, and acetic acid (100) (50:30:17:3) to a distance of about 12 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot and the spot of the starting point obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying <2.41> Not more than 0.5% (1 g, 105°C, 3 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.5 g of Naproxen, previously dried, add 100 mL of diluted methanol (4 in 5), dissolve by gentle warming if necessary, and titrate <2.50> with 0.1 mol/L sodium hydroxide VS (indicator: 3 drops of phenolphthalein TS). Perform a blank determination in the same manner, and compare these chromatograms: the similar peaks appear at the same retention times, and not more than 2.44 times higher.

Each mL of 0.1 mol/L sodium hydroxide VS = 23.03 mg of C₁₇H₁₉O₃

Containers and storage Containers—Well-closed containers.

Storage—Light-resistant.

Nartograstim (Genetical Recombination)

ナルトグラスチム (遺伝子組換え)

Nartograstim (Genetical Recombination) is an aqueous solution in which a desired product is a recombinant human granulocyte colony-stimulating factor (G-CSF) analog. It is N-methionylated, and threonine, leucine, glycine, proline and cysteine residues at the positions, 1, 3, 4, 5 and 17 of G-CSF are substituted by alanine, threonine, tyrosine, arginine and serine, respectively. It is a glycoprotein consisting of 175 amino acid residues.

It contains not less than 0.9 mg and not more than 2.1 mg of protein per mL, and not less than 4.0 × 10⁸ units per mg of protein.

Description Nartograstim (Genetical Recombination) occurs as a clear and colorless, liquid.

Identification (1) To a suitable amount of Nartograstim (Genetical Recombination) add tris-sodium chloride buffer solution (pH 8.0) so that each mL contains 1 μg of protein, and use this solution as the sample solution. Put 0.1 mL of the sample solution in the well of a 96-well microplate, allow to stand at 5°C for not less than 10 hours, then remove the liquid, and wash the well. Then to the well add 0.25 mL of blocking TS for nartograstim test, and allow to stand at room temperature for 1 hour. Remove the blocking TS, add 0.1 mL of rabbit anti-nartograstim antibody TS to the well, and shake gently at room temperature for 3 hours. Remove the rabbit anti-nartograstim antibody TS, and wash the well. Then, add 0.1 mL of peroxidase labeled anti-rabbit antibody TS, shake gently at room temperature for 2 hours, remove the TS, and wash the well. Then, add 0.1 mL of 2,2’-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt TS, allow to stand at room temperature for 10 minutes, add 0.1 mL of a solution of oxalic acid dihydrate (1 in 50), and name this well as the sample well. Separately, proceed with 0.1 mL of tris-sodium chloride buffer solution (pH 8.0) in the same manner as for the sample solution, and name the well so obtained as the control well. When compare the sample well and the control well, the sample well reveals a green color, while the control well reveals no color.

Washing procedure of well: To the well add 0.25 mL of washing fluid for nartograstim test, allow to stand for 3 minutes, and remove the washing fluid. Repeat this procedure 2 times more.

(2) To a suitable amount of Nartograstim (Genetical Recombination) add water so that each mL contains 1 mg of protein. Replace the solvent of 2 mL of this solution with tris-calcium chloride buffer solution (pH 6.5). To 0.5 mL of the solution so obtained add 0.5 mL of tris-calcium chloride buffer solution (pH 6.5) and 5 μL of thermolysin solution (1 in 1000), allow to stand at 37°C for 21 hours, and use this solution as the sample solution. Separately, proceed with 2 mL of Nartograstim RS in the same manner as for the sample solution, and use the solution so obtained as the standard solution. Perform the test with 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.02> according to the following conditions, and compare these chromatograms: the similar peaks appear at the same retention times.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 220 nm).

Column: A stainless steel column 6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 35°C.

Mobile phase A: A mixture of water and trifluoroacetic acid (1000:1).

Mobile phase B: A mixture of acetonitrile, water and trifluoroacetic acid (900:100:1).

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.
Flow rate: 1.0 mL per minute.

System suitability—

System performance: When the procedure is run with 20 μL of the standard solution under the above conditions, the number of the peak which shows not less than 1.6 of the resolution between the adjacent peaks is not less than 15.

Molecular mass

To a suitable amount of Nartograstim (Genetical Recombination) add reduction buffer solution for nartograstim sample so that each mL contains about 0.5 mg of protein, and use this solution as the sample solution. Separately, to 50 μL of molecular mass marker for nartograstim test add reduction buffer solution for nartograstim sample to make 1.0 mL, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution, both previously warmed at 40°C for 15 minutes, by SDS polyacrylamide gel electrophoresis, using buffer solution for SDS polyacrylamide gel electrophoresis and polyacrylamide gel for nartograstim. After electrophoresis, immerse the gel in a solution of coomassie brilliant blue R-250 in a mixture of water, ethanol (95) and acetic acid (100) (5:4:1) (1 in 1000), and stir gently at room temperature for not less than 12 hours. Then, destain the gel with a mixture of water, ethanol (95) and acetic acid (100) (13:5:2), and dry the gel under reduced pressure. Prepare a calibration curve from the migration distance of the molecular mass markers of the standard solution by plotting the migration distance on the horizontal axis and logarhythm of the molecular mass on the vertical axis. Calculate the molecular mass of the sample solution from the calibration curve: the molecular mass of the main band is between 17,000 and 19,000.

Compositions ratio of related substance

Being specified separately when the drug is granted approval based on the Law.

pH 2.5 to 7.0 – 7.5

Purity

(1) Related substances—To a suitable amount of Nartograstim (Genetical Recombination) add the buffer solution for nartograstim sample so that each mL contains about 0.5 mg of protein, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add the buffer solution for nartograstim sample to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution by SDS polyacrylamide gel electrophoresis, using buffer solution for SDS polyacrylamide gel electrophoresis and polyacrylamide gel for nartograstim. After electrophoresis, immerse the gel in a solution of coomassie brilliant blue R-250 in a mixture of water, ethanol (95) and acetic acid (100) (5:4:1) (1 in 1000), and stir gently at room temperature for not less than 12 hours. Then, destain the gel with a mixture of water, ethanol (95) and acetic acid (100) (13:5:2), and dry the gel under reduced pressure. Determine the areas of the colored bands obtained from the sample solution and standard solution by a densitometer at the measurement wavelength 560 nm and the control wavelength 400 nm: the total area of the band other than the principal band obtained from the sample solution is not larger than the band area from the standard solution.

(2) Host cell protein—Being specified separately when the drug is granted approval based on the Law.

(3) Host cell DNA—Being specified separately when the drug is granted approval based on the Law.

Bacterial endotoxins < 0.01 μg

Assay

(1) Protein content—To exactly V1 mL of Nartograstim (Genetical Recombination) add exactly V2 mL of water so that each mL contains about 0.5 mg of protein, and centrifuge. Determine the absorbance, A, of the supernatant liquid at the absorption maximum at about 280 nm as directed under Ultraviolet-visible Spectrophotometry 2.2.4.

Amount (mg) of protein in 1 mL of Nartograstim (Genetical Recombination)

\[
A/8.71 \times (V_1 + V_2)/V_1 \times 10^{7.81}
\]

Specific absorbance

(2) Specific activity—To a suitable exact amount of Nartograstim (Genetical Recombination) add potency measuring medium for nartograstim test so that the potency is equivalent to 50% to 150% of the relative potency of the standard solution according to the expected potency, and use this solution as the sample solution. Separately, to a suitable exact amount of Nartograstim RS add an exact amount of the potency measuring medium for nartograstim test so that each mL contains exactly 1.2 × 10⁶ units of nartograstim, and use this solution as the standard solution. Culture NFS-60 cells with subculture medium for nartograstim test, centrifuge the medium, remove the supernatant liquid by suction, and wash the cells with the potency measuring medium for nartograstim test. Repeat the washing procedure twice more, prepare two cell suspensions, containing 8 × 10⁶ cells per mL and 4 × 10⁶ cells per mL in the potency measuring medium for nartograstime test, and use these solutions as the cell suspension (1) and (2), respectively. In 8 wells of the 12th column of a 8 × 12 well-microplate put 50 μL each of the cell suspension (1), and in all wells of the 1st to 11th columns put 50 μL each of the cell suspension (2). Where, the wells of the 1st and 8th lines are not used for the test. To the wells of the 2nd to 4th lines of the 12th column add 50 μL each of the standard solution, and to the wells of 5th to 7th lines of the 12th column add 50 μL each of the sample solution. From the wells of the 12th column take 50 μL each of the content liquid and transfer to the corresponding wells of the 1st column. Then, from the wells of the 1st column take 50 μL each of the content liquid and transfer to the corresponding wells of the 2nd column. Proceed in the same way sequentially to the 10th column to prepare two-fold serial dilution wells. The wells of the 11th column are not performed any process. Incubate the plate under the atmosphere of 5 vol% carbon dioxide at 37°C for about 40 hours. After incubation, add to the all wells 10 μL each of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetraazolium bromide TS, and allow to stand under the atmosphere of 5 vol% carbon dioxide at 37°C for 4 – 6 hours. Add 0.125 mL of dimethylsulfoxide, shake for 5 to 10 minutes, then determine the absorbances of all wells at 550 nm and 660 nm, A₁ and A₂, using a spectrophotometer for microplate, and calculate the difference, (A₁ - A₂). Divide by 6 the total of the differences (A₁ - A₂) of six wells of the 11th and the 1st column, which were added the standard solution, and use the value so obtained as the 50% absorbance, A₅₀. Determine the dilution index numbers (column number) of the two serial wells of the sample solution and standard solution, they are corresponding to just the before and after of the 50% absorbance (A₅₀), n₁₁, n₇₋₂ and n₁₁, n₅₋₂, respectively, where n₁₁ < n₇₋₂ and

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.)
Nartograstim for Injection (Genetical Recombination)

Method of preparation Prepare as directed under Injections, with Nartograstim (Genetical Recombination).

Description Nartograstim for Injection (Genetical Recombination) occurs as white, masses or powder.

Identification Dissolve the content of 1 package of Nartograstim for Injection (Genetical Recombination) in 1 mL of tris-sodium chloride buffer solution (pH 8.0). To a suitable amount of this solution add tris-sodium chloride buffer solution (pH 8.0) so that each mL contains 1 µg of Nartograstim (Genetical Recombination), and use this solution as the sample solution. Then, proceed with the sample solution as directed in the Identification (1) under Nartograstim (Genetical Recombination).

pH Being specified separately when the drug is granted approval based on the Law.

Purity (1) Clarity and color of solution—A solution of Nartograstim for Injection (Genetical Recombination) in water, containing 100 µg of Nartograstim (Genetical Recombination) in each mL, is clear and colorless.

(2) Lactose conjugate—Being specified separately when the drug is granted approval based on the Law.

Water Not more than 3.0% (50 mg, coulometric titration).

Bacterial endotoxins Less than 0.62 EU/µg.

Uniformity of dosage units It meets the requirement of the Mass variation test.

Foreign insoluble matter Perform the test according to Method 2, using 3 mL of water for injection per 1 Nartograstim for Injection (Genetical Recombination) to dissolve the content: it meets the requirement.

Insoluble particulate matter It meets the requirement.

Sterility Perform the test according to the Membrane filtration method, using the sample solution prepared by dissolving the sample in water in a concentration to be used for the injection: it meets the requirement.

Specific activity Nartograstim for Injection (Genetical Recombination), when perform the assay and the following test, contains not less than 4.0 × 10⁶ units of nartograstim (genetical recombinant) per mg nartograstim (genetical recombinant).

Wash out each content of 10 Nartograstim for Injection (Genetical Recombination) with a suitable amount of potency measuring medium for nartograstim test, wash the empty containers with the same medium, combine all washings, and add the same medium to make exactly 50 mL. To an exact amount of this solution add the same medium so that the concentration of nartograstim (genetical recombinant) is equivalent to 50% to 150% of that of the standard solution, and use this solution as the sample solution. Separately, weigh accurately a suitable amount of Nartograstim RS, dissolve in the potency measuring medium for nartograstim test so that each mL contains exactly 1.2 × 10⁶ units of nartograstim according to the labeled unit, and use this solution as the standard solution. Then, determine the nartograstim potency (unit) in 1 Nartograstim for Injection (Genetical Recombination) by proceeding as directed in the Assay (2) under Nartograstim (Genetical Recombination), and calculate the ratio against the amount of nartograstim obtained in the Assay.

Nartograstim (genetical recombinant) potency (unit) in 1 Nartograstim for Injection (Genetical Recombination) = S × mean relative potency of the sample solution × d × 5

S: Concentration (unit/mL) of the standard solution

D: Dilution factor for the sample solution

5: Amount (mL) of the medium used to dissolve per 1 sample

Relative activity of sample solution = \[
\frac{2^n}{\sum 2^n \times \frac{1}{3}}
\]

a: \(n_{11} + (A_{11} - A_{50})/(A_{11} - A_{12})\)

b: \(n_{51} + (A_{51} - A_{50})/(A_{51} - A_{52})\)

System suitability—Proceed as directed in the system suitability in the Assay (2) under Nartograstim (Genetical Recombination).

Assay Weigh accurately the mass of each content of not
less than 10 Nartograstim for Injection (Genetical Recombination). Weigh accurately an amount of the content, equivalent to about 0.25 mg of Nartograstim (Genetical Recombination), dissolve in exactly 5 mL of the mobile phase, and use this solution as the sample solution. Separately, dissolve a suitable amount of Nartograstim RS in the mobile phase so that each mL contains about 50 μg of nartograstim, and use this solution as the standard solution. Perform the test with exactly 100 μL of each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A₁ and A₂, of nartograstim in each solution.

Amount (μg) of nartograstim (genetical recombination) in 1 Nartograstim for Injection (Genetical Recombination) = M₂ × A₁/A₂ × M/M₁ × 5

M₂: Amount (μg) of nartograstim in 1 mL of the standard solution
M: Mean mass (mg) of each content
M₁: Amount (mg) of Nartograstim for Injection (Genetical Recombination) taken

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 280 nm).
Column: A stainless steel column 7.8 mm in inside diameter and 30 cm in length, packed with porous silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase: Dissolve 15.6 g of sodium dihydrogen phosphate dihydrate and 1.0 g of sodium lauryl sulfate in 700 mL of water, adjust to pH 6.5 with sodium hydroxide TS, and add water to make 1000 mL.
Flow rate: Adjust so that the retention time of nartograstim is about 16 minutes.
System performance: When the procedure is run with 100 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of nartograstim are not less than 3000 and not more than 2.0, respectively.
System repeatability: When the test is repeated 6 times with 100 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of nartograstim is not more than 1.5%.

Containers and storage—Containers—Hermetic containers.
Storage—Light-resistant, and at a temperature not exceeding 10°C.

Nateglinide
ナテグリニド

\[
\text{C}_{19}\text{H}_{22}\text{NO}_4: 317.42
\]

\[N-[\text{trans}-4-(1-\text{Methylethyl})\text{cyclohexanecarbonyl]-d-phenylalanine}\]

[105816-04-4]

Nateglinide, when dried, contains not less than 98.0% and not more than 102.0% of nateglinide (C_{19}H_{27}NO_3).

Description
Nateglinide occurs as a white crystalline powder.
It is freely soluble in methanol and in ethanol (99.5), sparingly soluble in acetonitrile, and practically insoluble in water.
It dissolves in dilute sodium hydroxide TS.
It shows crystal polymorphism.

Identification (1)
Determine the absorption spectrum of a solution of Nateglinide in methanol (1 in 1000) as directed under Ultraviolet-visible Spectrophotometry <2.2>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Nateglinide RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Nateglinide as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.2>, and compare the spectrum with the Reference Spectrum or the spectrum of Nateglinide RS: both spectra exhibit similar intensities of absorption at the same wave numbers. If any difference appears between the spectra, recrystallize the sample and the reference standard according to the method otherwise specified, filter and dry the crystals, and perform the test with the crystals.

Optical rotation <2.49> [α]_D^2: −36.5 – −40.0° (after drying, 0.2 g, dilute sodium hydroxide TS, 20 mL, 100 mm).

Purity (1)
Heavy metals <1.07>—Proceed with 2.0 g of Nateglinide according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Related substances—Dissolve 0.25 g of Nateglinide in 20 mL of acetonitrile. To 4 mL of this solution add the mobile phase to make 25 mL, and use this solution as the sample solution. Pipet 2.5 mL of the sample solution, and add the mobile phase to make exactly 50 mL. Pipet 2 mL of this solution, add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak other than nateglinide obtained from the sample solution is not larger than the peak area of nateglinide from the standard solution.

Operating conditions—
Detector, column, column temperature, mobile phase, and...
flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 4 times as long as the retention time of nateglinide, beginning after the solvent peak.

System suitability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of nateglinide are not less than 6000 and not more than 1.2, respectively.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of nateglinide is not more than 2.0%.

Loss on drying <2.41> Not more than 0.2% (1 g, 105°C, 2 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.1 g of Nateglinide, previously dried, and dissolve in acetonitrile to make exactly 20 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution, add the mobile phase to make 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 50 mg of Nateglinide RS, previously dried, and dissolve in acetonitrile to make exactly 20 mL. Pipet 10 mL of this solution, add exactly 5 mL of the internal standard solution, add the mobile phase to make 50 mL, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and calculate the ratios, \(Q_T\) and \(Q_S\), of the peak area of nateglinide to that of the internal standard.

\[
\text{Amount (mg) of nateglinide (C}_{19}\text{H}_{27}\text{NO}_{3}) = M_S \times Q_T/Q_S \times 2
\]

\(M_S\): Amount (mg) of Nateglinide RS taken

Internal standard solution—A solution of propyl parahydroxybenzoate in the mobile phase (1 in 500).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 210 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: Adjust 0.05 mol/L sodium dihydrogen phosphate TS to pH 2.5 with phosphoric acid. To 550 mL of this solution add 450 mL of acetonitrile for liquid chromatography.

Flow rate: Adjust so that the retention time of nateglinide is about 10 minutes.

System suitability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the internal standard and nateglinide are eluted in this order with the resolution between these peaks being not less than 19.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of nateglinide to that of the internal standard is not more than 1.0%.

Nateglinide Tablets

Nateglinide Tablets contain not less than 96.0% and not more than 104.0% of the labeled amount of nateglinide (C_{19}H_{27}NO_{3}; 317.42).

Method of preparation Prepare as directed under Tablets, with Nateglinide.

Identification To an amount of powdered Nateglinide Tablets, equivalent to 20 mg of Nateglinide, add 20 mL of methanol, shake, and filter. Determine the absorption spectrum of the filtrate as directed under Ultraviolet-visible Spectrophotometry <2.24>: it exhibits maxima between 246 nm and 250 nm, between 251 nm and 255 nm, between 257 nm and 261 nm and between 262 nm and 266 nm.

Uniformity of dosage units <6.02> Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement.

To 1 tablet of Nateglinide Tablets add 10 mL of 0.05 mol/L sodium dihydrogen phosphate TS adjusted to pH 2.5 with phosphoric acid, shake to disintegrate the tablet, and disperse to fine particles by sonication. Add exactly 3V/5 mL of the internal standard solution, add 3V/5 mL of acetonitrile, shake for 10 minutes, and add acetonitrile to make V mL so that each mL contains about 0.6 mg of nateglinide (C_{19}H_{27}NO_{3}). Filter the solution through a membrane filter with a pore size not exceeding 0.45 μm, and discard the first 5 mL of the filtrate. To 8 mL of the subsequent filtrate add the mobile phase to make 10 mL, and use this solution as the sample solution. Separately, weigh accurately about 50 mg of Nateglinide RS, previously dried at 105°C for 2 hours, and dissolve in acetonitrile to make exactly 10 mL. Pipet 6 mL of this solution, add exactly 3 mL of the internal standard solution, and add the mobile phase to make 25 mL. To 8 mL of this solution add the mobile phase to make 20 mL, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01>, and calculate the ratios, \(Q_T\) and \(Q_S\), of the peak area of nateglinide to that of the internal standard.

\[
\text{Amount (mg) of nateglinide (C}_{19}\text{H}_{27}\text{NO}_{3}) = M_S \times Q_T/Q_S \times 3V/250
\]

\(M_S\): Amount (mg) of Nateglinide RS taken

Internal standard solution—A solution of propyl parahydroxybenzoate in acetonitrile (1 in 250).

Operating conditions—

Proceed as directed in the operating conditions in the Assay.

System suitability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the internal standard and nateglinide are eluted in this order with the resolution between these peaks being not less than 19.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of nateglinide to that of the internal standard
is not more than 1.0%.

Dissolution If the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of 2nd fluid for dissolution test as the dissolution medium, the dissolution rate in 45 minutes of a 30-mg tablet and that in 30 minutes of a 90-mg tablet of Nateglinide Tablets is not less than 75%, respectively.

Start the test with 1 tablet of Nateglinide Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 5 mL of the filtrate, pipet 5 mL of the subsequent filtrate, add the dissolution medium to make exactly V mL so that each mL contains about 33 μg of nateglinide (C₁₉H₂₂N₂O₅), and use this solution as the sample solution. Separately, weigh accurately about 33 mg of Nateglinide RS, previously dried at 105°C for 2 hours, and dissolve in acetonitrile to make exactly 100 mL. Pipet 5 mL of this solution, add the mobile phase to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under **Ultraviolet-visible Spectrophotometry** according to the following conditions, and determine the peak areas, A₁ and Aₚ, of nateglinide in each solution.

\[
\text{Dissolution rate (％) with respect to the labeled amount of nateglinide (C₁₉H₂₂N₂O₅)} = \frac{Mₚ}{Mₗ} \times \frac{A₁}{Aₚ} \times \frac{V/1}{V/1} \times \frac{1}{C} \times 90
\]

Operating conditions—
Proceed as directed in the operating conditions in the **Assay**.

System suitability—
System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of nateglinide are not less than 8000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of nateglinide to that of the internal standard is not more than 1.0%.

Containers and storage — Containers—Tight containers.

Neostigmine Methylsulfate

ネオスチグミンメチル硫酸塩

\[
\text{C₁₉H₂₁N₂O₅S: 334.39} \\
3-(\text{Dimethylcarbamoyloxy})-\text{N,N,N,-trimethylanilinium methyl sulfate} \text{ [51-60-5]}
\]

Neostigmine Methylsulfate, when dried, contains not less than 98.0% and not more than 102.0% of neostigmine methylsulfate (C₁₉H₂₂N₂O₅S).

Description Neostigmine Methylsulfate occurs as a white crystalline powder.

It is very soluble in water, and freely soluble in acetonitrile and in ethanol (95).

Identification (1) Determine the absorption spectrum of a solution of Neostigmine Methylsulfate (1 in 2000) as directed under **Ultraviolet-visible Spectrophotometry** (2.24), and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Neostigmine Methylsulfate RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of...
Neostigmine Methylsulfate as directed in the potassium bromide disk method under Infrared Spectrophotometry (2.25), and compare the spectrum with the Reference Spectrum or the spectrum of dried Neostigmine Methylsulfate RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

pH (2.44) Dissolve 1.0 g of Neostigmine Methylsulfate in 10 mL of freshly boiled and cooled water: the pH of the solution is between 3.0 and 5.0.

Melting point (2.60) 145 – 149°C

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Neostigmine Methylsulfate in 10 mL of water: the solution is clear and colorless.

(2) Sulfate—Dissolve 0.20 g of Neostigmine Methylsulfate in 10 mL of water, add 1 mL of dilute hydrochloric acid and 1 mL of barium chloride TS: no turbidity is produced immediately.

(3) Dimethylaminophenol—Dissolve 0.10 g of Neostigmine Methylsulfate in 5 mL of water, add 1 mL of sodium hydroxide TS, and while cooling with ice, add 1 mL of diazobenzenesulfonic acid TS: no color develops.

Loss on drying (2.41) Not more than 1.0% (1 g, 105°C, 3 hours).

Residue on ignition (2.44) Not more than 0.1% (1 g).

Assay Weigh accurately about 25 mg each of Neostigmine Methylsulfate and Neostigmine Methylsulfate RS, previously dried, dissolve each in the mobile phase to make exactly 50 mL, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography (2.24) according to the following conditions, and determine the peak areas, A_1 and A_2, of neostigmine in each solution.

Amount (mg) of neostigmine methylsulfate ($C_{13}H_{22}N_2O_6S$) = $M_S \times A_1/A_2$

M_S: Amount (mg) of Neostigmine Methylsulfate RS taken

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 259 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilylized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: Dissolve 3.12 g of sodium dihydrogenphosphate dihydrate in 1000 mL of water, adjust to pH 3.0 with phosphoric acid, and add 0.871 g of sodium 1-pentanesulfonate to dissolve. To 890 mL of this solution add 1 mL of acetonitrile.

Flow rate: Adjust so that the retention time of neostigmine is about 9 minutes.

System suitability—

System performance: Dissolve 25 mg of Neostigmine Methylsulfate and 4 mg of dimethylaminophenol in 50 mL of the mobile phase. When the procedure is run with 10 μL of this solution under the above operating conditions, dimethylaminophenol and neostigmine are eluted in this order with the resolution between these peaks being not less than 6.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak areas of neostigmine methylsulfate is not more than 1.0%.

Containers and storage Containers—Tight containers.

Neostigmine Methylsulfate Injection

ネオスチグミンメチル硫酸塩注射液

Neostigmine Methylsulfate Injection is an aqueous injection.

It contains not less than 93.0% and not more than 107.0% of the labeled amount of neostigmine methylsulfate ($C_{13}H_{22}N_2O_6S$: 334.39).

Method of preparation Prepare as directed under Injections, with Neostigmine Methylsulfate.

Description Neostigmine Methylsulfate Injection is a clear, colorless liquid.

It is slowly affected by light.

pH: 5.0 – 6.5

Identification Take a volume of Neostigmine Methylsulfate Injection, equivalent to 5 mg of neostigmine methylsulfate, add water to make 10 mL if necessary, and determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry (2.24): it exhibits a maximum between 257 nm and 261 nm.

Bacterial endotoxins (4.01) Less than 5 EU/mg.

Extractable volume (6.05) It meets the requirement.

Foreign insoluble matter (6.06) Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter (6.07) It meets the requirement.

Sterility (4.06) Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Use Neostigmine Methylsulfate Injection as the sample solution. Separately, weigh accurately about 25 mg of Neostigmine Methylsulfate RS, previously dried at 105°C for 3 hours, dissolve in the mobile phase to make exactly 50 mL, and use this solution as the standard solution. Proceed as directed in the Assay under Neostigmine Methylsulfate.

Amount (mg) of neostigmine methylsulfate ($C_{13}H_{22}N_2O_6S$) = $M_S \times A_1/A_2$

M_S: Amount (mg) of Neostigmine Methylsulfate RS taken

Containers and storage Containers—Hermetic containers.

Storage—Light-resistant.
Nicardipine Hydrochloride

Nicardipine Hydrochloride

ニカルジピン塩酸塩

![Chemical Structure](image)

\[
\text{C}_{26}\text{H}_{30}\text{N}_{2}\text{O}_{6}\cdot\text{HCl}: 515.99
\]

2-[Benzyl(methyl)amino]ethyl methyl (4RS)-2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate monohydrochloride

[54527-84-3]

Nicardipine hydrochloride, when dried, contains not less than 98.5% of nicardipine hydrochloride (C_{26}H_{30}N_{2}O_{6}.HCl).

Description Nicardipine Hydrochloride occurs as a slightly greenish yellow crystalline powder.

It is freely soluble in methanol and in acetic acid (100), sparingly soluble in ethanol (99.5), and slightly soluble in water, in acetonitrile and in acetic anhydride.

A solution of Nicardipine Hydrochloride in methanol (1 in 20) shows no optical rotation.

It is gradually affected by light.

Identification (1) Determine the absorption spectrum of a solution of Nicardipine Hydrochloride in ethanol (99.5) (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

Identification (2) Determine the infrared absorption spectrum of Nicardipine Hydrochloride, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Identification (3) Dissolve 0.02 g of Nicardipine Hydrochloride in 10 mL of water and 3 mL of nitric acid: the solution responds to Qualitative Tests <1.09> for chloride.

Melting point <2.60> 167 - 171°C

Purity (1) Heavy metals <1.07>—Proceed with 1.0 g of Nicardipine Hydrochloride according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(2) Related substances—Conduct this procedure without exposure to light, using light-resistant vessels. Dissolve 0.10 g of Nicardipine Hydrochloride in 50 mL of the mobile phase, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add the mobile phase to make exactly 50 mL, then take exactly 1 mL of this solution, add the mobile phase to make exactly 10 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions. Determine each peak area of both solutions by the automatic integration method: the area of each peak other than nicardipine obtained from the sample solution is not larger than the peak area of nicardipine from the standard solution, and the total area of each peak other than nicardipine is not larger than 2 times the peak area of nicardipine from the standard solution.

Operating conditions—

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecysilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 30°C.

Mobile phase: A mixture of a solution of perchloric acid (43 in 50,000) and acetonitrile (3:2).

Flow rate: Adjust so that the retention time of nicardipine is about 6 minutes.

Time span of measurement: About 4 times as long as the retention time of nicardipine, beginning after the solvent peak.

System suitability—

Test for required detectability: To exactly 2 mL of the standard solution add the mobile phase to make exactly 20 mL. Confirm that the peak area of nicardipine obtained with 10 μL of this solution is equivalent to 8 to 12% of that with 10 μL of the standard solution.

System performance: Dissolve 2 mg each of Nicardipine Hydrochloride and nifedipine in 50 mL of the mobile phase. When the procedure is run with 10 μL of this solution under the above operating conditions, nicardipine and nifedipine are eluted in this order with the resolution between these peaks being not less than 3.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak areas of nicardipine is not more than 3.

Loss on drying <2.41> Not more than 1.0% (1 g, 105°C, 2 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Conduct this procedure without exposure to light, using light-resistant vessels. Weigh accurately about 0.9 g of Nicardipine Hydrochloride, previously dried, dissolve in 100 mL of a mixture of acetic anhydride and acetic acid (100) (7:3), and titrate <2.50> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 51.60 mg of C_{26}H_{30}N_{2}O_{6}.HCl

Containers and storage Containers—Well-closed containers.

Storage—Light-resistant.

Nicardipine Hydrochloride Injection

ニカルジピン塩酸塩注射液

Nicardipine Hydrochloride Injection is an aqueous injection.

It contains not less than 93.0% and not more than 107.0% of the labeled amount of nicardipine hydrochloride (C_{26}H_{30}N_{2}O_{6}.HCl: 515.99).

Method of preparation Prepare as directed under Injections, with Nicardipine Hydrochloride.

Description Nicardipine Hydrochloride Injection occurs as
a clear, pale yellow liquid.
It is gradually changed by light.

Identification To a volume of Nicardipine Hydrochloride Injection, equivalent to 1 mg of Nicardipine Hydrochloride, add ethanol (99.5) to make 100 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry. \(\text{Q2.247} \): it exhibits maxima between 235 nm and 239 nm, and between 351 nm and 355 nm. \(\text{pH} < 2.54 \): 3.0 – 4.5

Purity Related substances—Conduct the procedure without exposure to light, using light-resistant vessels. To a volume of Nicardipine Hydrochloride Injection, equivalent to 5 mg of Nicardipine Hydrochloride, add the mobile phase to make 10 mL, and use this solution as the sample solution. To exactly 2 mL of the sample solution add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 \(\mu \)L of each of the sample solution and standard solution as directed under Liquid Chromatography \(\text{Q2.017} \) according to the following conditions, and determine the peak areas of these solutions by the automatic integration method: the areas of the peaks other than nicardipine obtained from the sample solution are not larger than the peak area of nicardipine from the standard solution, and the total of the areas of the peaks other than nicardipine is not larger than 2 times of the peak area of nicardipine from the standard solution.

Operating conditions

- **Detector**, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.
- **Time span of measurement**: About 3 times as long as the retention time of nicardipine, beginning after the solvent peak.
- **System suitability**
 - **System performance**: Proceed as directed in the system suitability in the Assay.
 - **Test for required detectability**: To exactly 2 mL of the standard solution add the mobile phase to make exactly 20 mL. Confirm that the peak area of nicardipine obtained with 10 \(\mu \)L of this solution is equivalent to 8 to 12% of that with 10 \(\mu \)L of the standard solution.
 - **System repeatability**: When the test is repeated 5 times with 10 \(\mu \)L of the standard solution under the above operating conditions, the relative standard deviation of the peak areas of nicardipine is not more than 1.0%.

Bacterial endotoxins Less than 8.33 EU/mg.

Extractable volume It meets the requirement.

Foreign insoluble matter Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter It meets the requirement.

Sterility Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Conduct the procedure without exposure to light, using light-resistant vessels. To an exact volume of Nicardipine Hydrochloride Injection, equivalent to about 2 mg of nicardipine hydrochloride (C\(_{29}\)H\(_{28}\)BrN\(_{2}\)O\(_{4}\)HCl), add exactly 5 mL of the internal standard solution and methanol to make 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 50 mg of nicardipine hydrochloride for assay, previously dried at 105°C for 2 hours, dissolve in methanol to make exactly 50 mL. Pipet 2 mL of this solution, add exactly 5 mL of the internal standard solution and methanol to make 50 mL, and use this solution as the standard solution. Perform the test with 10 \(\mu \)L each of the sample solution and standard solution as directed under Liquid Chromatography \(\text{Q2.017} \) according to the following conditions, and calculate the ratios, \(Q_1 \) and \(Q_3 \), of the peak area of nicardipine to that of the internal standard.

\[
\text{Amount (mg) of nicardipine hydrochloride (C}_{29}\text{H}_{28}\text{BrN}_{2}\text{O}_{4}\text{HCl)} = M_1 \times Q_1 / Q_3 \times 1/25
\]

\(M_1 \): Amount (mg) of nicardipine hydrochloride for assay taken

Internal standard solution A solution of di-n-butyl phtthalate in methanol (1 in 625).

Operating conditions

- **Detector**: An ultraviolet absorption photometer (wavelength: 254 nm).
- **Column**: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 \(\mu \)m in particle diameter).
- **Column temperature**: A constant temperature of about 40°C.
- **Mobile phase**: Dissolve 1.36 g of potassium dihydrogen phosphate in water to make 1000 mL. To 320 mL of this solution add 680 mL of methanol.
- **Flow rate**: Adjust so that the retention time of nicardipine is about 8 minutes.

System suitability

- **System performance**: When the procedure is run with 10 \(\mu \)L of the standard solution under the above operating conditions, nicardipine and the internal standard are eluted in this order with the resolution between these peaks being not less than 6.
- **System repeatability**: When the test is repeated 5 times with 10 \(\mu \)L of the standard solution under the above operating conditions, the relative standard deviation of the peak areas of nicardipine is not more than 1.0%.

Containers and storage Containers—Hermetic containers. Colored containers may be used.

Storage—Light-resistant.

Nicergoline

ニセルゴリン

\[
C_{29}H_{28}BrN_2O_4; \quad 484.39
\]

\([\text{8F},10S)-10-\text{Methoxy}-1,6-\text{dimethylergolin-8-yl}]-\text{methyl}
\]

5-bromopyridine-3-carboxylate

\[\text{[27848-84-6]}\]

Nicergoline, when dried, contains not less than 98.5% and not more than 101.0% of nicergoline (C\(_{29}\)H\(_{28}\)BrN\(_{2}\)O\(_{4}\)).
Nicergoline Powder

Description
Nicergoline occurs as white to light yellow, crystals or crystalline powder.
It is soluble in acetonitrile, in ethanol (99.5) and in acetic anhydride, and practically insoluble in water.
It is gradually colored to light brown by light.
Melting point: about 136°C (with decomposition).

Identification
(1) Determine the absorption spectrum of a solution of Nicergoline in ethanol (99.5) (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry 2.2.23, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Nicergoline as directed in the potassium bromide disk method under Infrared Spectrophotometry 2.2.27, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation 2.49 \([\alpha]D^0_20 +5.2 +6.2^\circ\) (after drying, 0.5 g, ethanol (95), 10 mL, 100 mm).

Purity
(1) Heavy metals 1.07—Proceed with 2.0 g of Nicergoline according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Related substances—Dissolve 25 mg of Nicergoline in 25 mL of acetonitrile, and use this solution as the sample solution. Pipet 1 mL of the sample solution, and add acetonitrile to make exactly 100 mL. Pipet 10 mL of this solution, add acetonitrile to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly 20 \(\mu\)L each of the sample solution and standard solution as directed under Liquid Chromatography 2.0.17 according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak, having the relative retention time of about 0.5 to nicergoline obtained from the sample solution, is not larger than 4 times the peak area of nicergoline from the standard solution, and the area of the peak other than nicergoline and the peak mentioned above from the sample solution is not larger than 2.5 times the peak area of nicergoline from the standard solution. The peak which area is larger than the peak area of nicergoline from the standard solution is not more than two peaks, and the total area of the peaks other than nicergoline from the sample solution is not larger than 7.5 times the peak area of nicergoline from the standard solution.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 288 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecysilizedan silica gel for liquid chromatography (5 \(\mu\)m in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase: Adjust the pH of 0.05 mol/L potassium dihydrogen phosphate TS to 7.0 with triethylamine. To 350 mL of this solution add 350 mL of methanol and 300 mL of acetonitrile.
Flow rate: Adjust so that the retention time of nicergoline is about 25 minutes.
Time span of measurement: About 2 times as long as the retention time of nicergoline, beginning after the solvent peak.

System suitability—
Test for required detectability: To 1 mL of the sample solution add acetonitrile to make exactly 50 mL, and use this solution as the solution for system suitability test. Pipet 5 mL of the solution for system suitability test, and add acetonitrile to make exactly 100 mL. Confirm that the peak area of nicergoline obtained with 20 \(\mu\)L of this solution is equivalent to 3 to 7% of that with 20 \(\mu\)L of the solution for system suitability test.

System performance: When the procedure is run with 20 \(\mu\)L of the sample solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of nicergoline are not less than 8000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 20 \(\mu\)L of the standard solution under the above operating conditions, the relative standard deviation of the peak area of nicergoline is not more than 4.0%.

Loss on drying 2.41 Not more than 0.5% (2 g, in vacuum, 60°C, 2 hours).

Residue on ignition 2.44 Not more than 0.1% (1 g).

Assay
Weigh accurately about 0.4 g of Nicergoline, previously dried, add 10 mL of acetic anhydride, and warm to dissolve. After cooling, add 40 mL of nitrobenzene, and titrate 2.50 with 0.1 mol/L perchloric acid VS until the color of the solution changes to blue-green from red through a blue-purple (indicator: 10 drops of neutral red TS). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 24.22 mg of \(C_{32}H_{38}BrN_2O_3\)

Containers and storage
Containers—Well-closed containers.
Storage—Light-resistant.

Nicergoline Powder

ニセルゴリン散

Nicergoline Powder contains not less than 95.0% and not more than 105.0% of the labeled amount of nicergoline (\(C_{32}H_{38}BrN_2O_3\); 484.39).

Method of preparation
Prepare as directed under Granules or Powders, with Nicergoline.

Identification
Vigorously shake for 10 minutes a quantity of Nicergoline Powder, equivalent to 10 mg of Nicergoline, with 20 mL of diluted ethanol (4 in 5), and centrifuge for 10 minutes. To 2 mL of the supernatant liquid add ethanol (99.5) to make 100 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry 2.2.27: it exhibits maxima between 226 nm and 230 nm, and between 286 nm and 290 nm.

Purity
Related substances—Perform the test with 20 \(\mu\)L of the sample solution obtained in the Assay as directed under Liquid Chromatography 2.0.17 according to the following conditions. Determine each peak area by the automatic integration method, and calculate the amount of substances other than nicergoline by the area percentage method: the total amount of them is not more than 2.0%.

Operating conditions—
Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.
Time span of measurement: About 2 times as long as the retention time of nicergoline, beginning after the solvent peak.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
Nicergoline Tablets

System suitability—

System performance: Proceed as directed in the system suitability in the Assay.

Test for required detectability: To 1 mL of the standard solution obtained in the Assay add a mixture of acetonitrile and water (17:3) to make 50 mL, and use this solution as the solution for system suitability test. Pipet 5 mL of the solution for system suitability test, add the mixture of acetonitrile and water (17:3) to make exactly 100 mL. Confirm that the peak area of nicergoline obtained with 20 μL of this solution is equivalent to 3 to 7% of that with 20 μL of the solution for system suitability test.

System repeatability: When the test is repeated 6 times with 20 μL of the solution for system suitability test under the above operating conditions, the relative standard deviation of the peak area of nicergoline is not more than 1.5%.

Uniformity of dosage units</6.02> The Nicergoline Powder in single-dose packages meets the requirement of the Mass variation test.

Dissolution</6.10> When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water for dissolution test as the dissolution medium, the dissolution rate in 15 minutes of Nicergoline Powder is not less than 80%.

Start the test with an accurately weighed amount of Nicergoline Powder, equivalent to about 5 mg of nicergoline (C₉₃H₆₆Br₅N₅O₅), withdraw not less than about 20 mL of the medium at the specified minute after starting the test, and filter through a laminated polyester fiber. Discard not less than 10 mL of the first filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 50 mg of nicergoline for assay, previously dried in vacuum at 60°C for 2 hours, and dissolve in 0.1 mol/L hydrochloric acid TS to make exactly 50 mL. Pipet 5 mL of this solution, and add the dissolution medium to make exactly 100 mL. Pipet 10 mL of this solution, add the dissolution medium to make exactly 100 mL, and use this solution as the standard solution. Determine the absorbances at 225 nm, Aₐ, and at 250 nm, A₂₄, of the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry <2.24>, using the dissolution medium as the blank.

Dissolution rate (%) with respect to the labeled amount of nicergoline (C₉₃H₆₆Br₅N₅O₅)

\[\text{Dissolution rate} = \frac{M_s}{M_l} \times \left(\frac{A_{15} - A_{12}}{A_{25} - A_{23}} \right) \times \frac{1}{C} \times 9 \]

where:
- \(M_s \): Amount (mg) of nicergoline for assay taken
- \(M_l \): Amount (g) of Nicergoline Powder taken
- \(C \): Labeled amount (mg) of nicergoline (C₉₃H₆₆Br₅N₅O₅) in 1 g

Assay Weigh accurately a quantity of Nicergoline Powder, equivalent to about 20 mg of nicergoline (C₉₃H₆₆Br₅N₅O₅), add exactly 20 mL of a mixture of acetonitrile and water (17:3), vigorously shake for 10 minutes, centrifuge for 10 minutes, and use the supernatant liquid as the sample solution. Separately, weigh accurately about 20 mg of nicergoline for assay, previously dried in vacuum at 60°C for 2 hours, and in exactly 20 mL of the mixture of acetonitrile and water (17:3), and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions, and determine the peak areas, \(A_1 \) and \(A_2 \), of nicergoline in each solution.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 288 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: Adjust the pH of 0.05 mol/L potassium dihydrogen phosphate TS to 7.0 with triethylamine. To 350 mL of this solution add 350 mL of methanol and 300 mL of acetonitrile.

Flow rate: Adjust so that the retention time of nicergoline is about 25 minutes.

System suitability—

System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of nicergoline are not less than 8000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of nicergoline is not more than 1.0%.

Containers and storage Containers—Tight containers. Storage—Light-resistant.

Nicergoline Tablets

ニセルゴリン錠

Nicergoline Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of nicergoline (C₉₃H₆₆Br₅N₅O₅: 484.39).

Method of preparation Prepare as directed under Tablets, with Nicergoline.

Identification Take a quantity of powdered Nicergoline Tablets, equivalent to 10 mg of Nicergoline, add 20 mL of ethanol (99.5%), shake vigorously for 10 minutes, and filter through a 0.45-μm pore-size membrane filter. To 2 mL of the filtrate add ethanol (99.5) to make 100 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.24>: it exhibits maxima between 226 nm and 230 nm, and between 286 nm and 290 nm.

Purity Related substances—Perform the test with 20 μL of the sample solution obtained in the Assay as directed under Liquid Chromatography <2.07> according to the following conditions. Determine each peak area by the automatic integration method, and calculate the amount of substances other than nicergoline by the area percentage method: the total amount of them is not more than 2.0%.

Operating conditions—

Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 2 times as long as the retention time of nicergoline, beginning after the solvent peak.
System suitability—

System performance: Proceed as directed in the system suitability in the Assay.

Test for required detectability: To 1 mL of the standard solution obtained in the Assay add a mixture of acetonitrile and water (17:3) to make 50 mL, and use this solution as the solution for system suitability test. Pipet 5 mL of the solution for system suitability test, add the mixture of acetonitrile and water (17:3) to make exactly 100 mL. Confirm that the peak area of niceritrol obtained with 20 μL of this solution is equivalent to 3 to 7% of that with 20 μL of the solution for system suitability test.

System repeatability: When the test is repeated 6 times with 20 μL of the solution for system suitability test under the above operating conditions, the relative standard deviation of the peak area of niceritrol is not more than 1.5%.

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 tablet of Niceritrol Tablets add exactly 25 mL of diluted ethanol (4 in 5), disperse to fine particles by sonication, and shake for 5 minutes. Centrifuge this solution for 10 minutes, pipet 4 mL of the supernatant liquid, add diluted ethanol (4 in 5) to make exactly 25 mL, and use this solution as the sample solution. Separately, weigh accurately about 10 mg of niceritrol for assay, previously dried in vacuum at 60°C for 2 hours, and dissolve in exactly 25 mL of diluted ethanol (4 in 5). Pipet 4 mL of this solution, add diluted ethanol (4 in 5) to make exactly 50 mL, and use this solution as the standard solution. Determine the absorbances at 288 nm, A₁₁ and A₁₂, and at 340 nm, A₂₁ and A₂₂, of the sample solution and the standard solution as directed under Ultraviolet-visible Spectrophotometry <2.24>.

\[
M₅ = M₄ \times \frac{(A₁₁ - A₁₂)/(A₅₁ - A₅₂)}{1/2}
\]

M₅: Amount (mg) of niceritrol for assay taken

Dissolution Being specified separately when the drug is allowed approval based on the Law.

Assay Weigh accurately the mass of not less than 20 Niceritrol Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 20 mg of niceritrol (C₂₉H₂₃BrN₄O₅), add exactly 20 mL of a mixture of acetonitrile and water (17:3), vigorously shake for 10 minutes, centrifuge for 10 minutes, and use the supernatant liquid as the sample solution. Separately, weigh accurately about 20 mg of niceritrol for assay, previously dried in vacuum at 60°C for 2 hours, and dissolve in exactly 20 mL of the mixture of acetonitrile and water (17:3), and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A₁ and A₅, of niceritrol in each solution.

Amount (mg) of niceritrol (C₂₉H₂₃BrN₄O₅) = \(M₅ \times \frac{A₁}{A₅}\)

M₅: Amount (mg) of niceritrol for assay taken

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 288 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadeclcyanosilazand silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: Adjust the pH of 0.05 mol/L potassium dihydrogen phosphate TS to 7.0 with triethylamine. To 350 mL of this solution add 350 mL of methanol and 300 mL of acetonitrile.

Flow rate: Adjust so that the retention time of niceritrol is about 25 minutes.

System suitability—

System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of niceritrol are not less than 8000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of niceritrol is not more than 1.0%.

Containers and storage Containers—Tight containers.

Niceritrol

ニセリトロール

C₂₉H₂₃N₄O₅: 556.52
Pentaerythritol tetranicotinate

[5868-05-3]

Niceritrol, when dried, contains not less than 99.0% of niceritrol (C₂₉H₂₃N₄O₅).

Description Niceritrol occurs as a white to pale yellow-white powder. It is odorless, and has a slightly bitter taste.

It is freely soluble in chloroform, soluble in N,N-dimethylformamide, very slightly soluble in ethanol (95), and practically insoluble in water and in diethyl ether.

Identification (1) Determine the absorption spectrum of a solution of Niceritrol in 0.1 mol/L hydrochloric acid TS (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Niceritrol, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point <2.60> 162 – 165°C

Purity (1) Chloride <1.02>—To 2.0 g of Niceritrol add 50 mL of water, and warm at 70°C for 20 minutes, while shaking occasionally. After cooling, filter, and to 25 mL of the filtrate add 6 mL of dilute nitric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 1.0 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.036%).

(2) Heavy metals <1.07>—Proceed with 1.0 g of Niceritrol according to Method 2, and perform the test. Pre-
pare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

3. Arsenic 《1.17》—Prepare the test solution with 1.0 g of Niceritrol according to Method 3, and perform the test. Use 10 mL of a solution of magnesium nitrate hexahydrate in ethanol (95) (1 in 10) (not more than 2 ppm).

4. Pyridine—Dissolve 0.5 g of Niceritrol in N,N-dimethylformamide to make exactly 10 mL, and use this solution as the sample solution. Separately, weigh accurately about 0.1 g of pyridine, and add N,N-dimethylformamide to make exactly 100 mL. Pipet 1 mL of this solution, add N,N-dimethylformamide to make exactly 100 mL, then pipet 0.5 mL of this solution, add N,N-dimethylformamide to make exactly 10 mL, and use this solution as the standard solution. Perform the test with exactly 2 μL each of the sample solution and standard solution as directed under Gas Chromatography 《2.02》 according to the following conditions. Determine each peak area of pyridine in both solutions: the peak area of pyridine obtained from the sample solution is not larger than the peak area of pyridine from the standard solution.

Operating conditions
- Detector: A hydrogen flame-ionization detector.
- Column: A column 3 mm in inside diameter and 3 m in length, packed with polyethylene glycol 20M for gas chromatography coated at the ratio of 10% on acid-treated and silanized siliceous earth for gas chromatography (150 to 180 μm in particle diameter).
- Column temperature: A constant temperature of about 160°C.
- Carrier gas: Nitrogen.
- Flow rate: Adjust so that the retention time of pyridine is about 2 minutes.

System suitability
- System performance: When the procedure is run with 2 μL of the standard solution under the above operating conditions, the number of theoretical plates of the peak of pyridine is not less than 1500.
- System repeatability: When the test is repeated 6 times with 2 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak areas of pyridine is not more than 3.0%.

5. Free acids—Transfer about 1 g of Niceritrol, weighed accurately, to a separator, dissolve in 20 mL of chloroform, and extract with 20 mL and then 10 mL of water while shaking well. Combine the whole extracts, and titrate 《2.50》 with 0.01 mol/L sodium hydroxide VS (indicator: 3 drops of phenolphthalein TS). Perform a blank determination in the same manner, and make any necessary correction, and calculate the amount of free acid by the following equation: it is not more than 0.1%.

\[
\text{Each mL of 0.01 mol/L sodium hydroxide VS} = 1.231 \text{ mg of } C_{34}H_{32}N_4O_4
\]

6. Related substances—Dissolve 0.10 g of Niceritrol in 10 mL of chloroform, and use this solution as the sample solution. Pipet 1 mL of the sample solution, and add chloroform to make exactly 20 mL. Pipet 2 mL of this solution, add chloroform to make exactly 20 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography 《2.02》. Spot 10 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of chloroform and ethanol (95) (4:1) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying 《2.4l》 Not more than 0.5% (1 g, 105°C, 3 hours).

Residue on ignition 《2.41》 Not more than 0.1% (1 g).

Assay Weigh accurately about 1 g of Niceritrol, previously dried, add exactly 25 mL of 0.5 mol/L sodium hydroxide VS, boil gently for 20 minutes under a reflux condenser with a carbon dioxide absorber (soda lime). After cooling, titrate 《2.50》 immediately the excess sodium hydroxide with 0.5 mol/L hydrochloric acid VS (indicator: 3 drops of phenolphthalein TS). Perform a blank determination in the same manner.

\[
\text{Each mL of 0.5 mol/L sodium hydroxide VS} = 69.57 \text{ mg of } C_{34}H_{32}N_4O_4
\]

Containers and storage Containers—Well-closed containers.

Nicomol

![Structure of Nicomol](image)

C_{34}H_{32}N_4O_4: 640.64
(2-Hydroxycyclohexane-1,1,3,3-tetrayl)tetramethyl tetracnicotinate

 Nhật Bản: Nicomol, when dried, contains not less than 98.0% of nicomol (C_{34}H_{32}N_4O_4).

Description Nicomol occurs as a white crystalline powder. It is odorless and tasteless. It is soluble in chloroform, and practically insoluble in water, in ethanol (95) and in diethyl ether. It dissolves in dilute hydrochloric acid and in dilute nitric acid.

Identification

1. Mix 0.01 g of Nicomol with 0.02 g of 1-chloro-2,4-dinitrobenzene, add 2 mL of dilute ethanol, heat in a water bath for 5 minutes, cool, and add 4 mL of potassium hydroxide-ethanol TS: a dark red color develops.

2. Dissolve 0.1 g of Nicomol in 5 mL of dilute hydrochloric acid, and add 5 drops of Reinecke salt TS: a light red precipitate is formed.

3. Determine the absorption spectrum of a solution of Nicomol in 1 mol/L hydrochloric acid TS (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry 《2.21》, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

4. Determine the infrared absorption spectrum of Nicomol, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry 《2.25》, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.
Nicomol Tablets

Nicomol Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of nicomol (C_{34}H_{32}N_{9}O_{9}: 640.64).

Method of preparation Prepare as directed under Tablets, with Nicomol.

Identification To a portion of powdered Nicomol Tablets, equivalent to 0.5 g of Nicomol, add 20 mL of chloroform, shake, and filter. Evaporate the filtrate on a water bath to dryness. Proceed with the residue as directed in the Identification (1) and (2) under Nicomol.

Uniformity of dosage units <6.02> It meets the requirement of the Mass variation test.

Dissolution <6.10> When the test is performed at 75 revolutions per minute according to the Paddle method, using 900 mL of 1st fluid for dissolution test as the dissolution medium, the dissolution rate in 60 minutes of Nicomol Tablets is not less than 75%.

Start the test with 1 tablet of Nicomol Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.8 µm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add the dissolution medium to make exactly V mL so that each mL contains about 18 µg of nicomol (C_{34}H_{32}N_{9}O_{9}), and use this solution as the sample solution. Separately, weigh accurately about 0.1 g of nicomol for assay, previously dried at 105°C for 4 hours, dissolve in the dissolution medium to make exactly 100 mL, and pipet 2 mL of this solution, add the dissolution medium to make exactly 100 mL, and use this solution as the standard solution. Determine the absorbances, A_r and A_s, of the sample solution and standard solution at 262 nm as directed under Ultraviolet-visible Spectrophotometry <2.24>.

Dissolution rate (%) with respect to the labeled amount of nicomol (C_{34}H_{32}N_{9}O_{9})

\[M_s \times \frac{A_r}{A_s} \times \frac{V}{V} \times \frac{1}{C} \times 18 \]

M_s: Amount (mg) of nicomol for assay taken

C: Labeled amount (mg) of nicomol (C_{34}H_{32}N_{9}O_{9}) in 1 tablet

Assay Weigh accurately not less than 20 Nicomol Tablets and powder. Weigh accurately a portion of the powder, equivalent to about 1 g of nicomol (C_{34}H_{32}N_{9}O_{9}), add 100 mL of 1 mol/L hydrochloric acid TS, shake well, add water to make exactly 500 mL, and filter. Discard the first 50 mL of the filtrate, pipet 2 mL of the subsequent filtrate, add 50 mL of 1 mol/L hydrochloric acid TS and water to make exactly 250 mL, and use this solution as the sample solution. Separately, weigh accurately about 80 mg of nicomol for assay, previously dried at 105°C for 4 hours, dissolve in 50 mL of 1 mol/L hydrochloric acid TS, and add water to make exactly 100 mL. Pipet 2 mL of this solution, add 20 mL of 1 mol/L hydrochloric acid TS and water to make exactly 100 mL, and use this solution as the standard solution. Determine the absorbances, A_r and A_s, of the sample solution and standard solution at 262 nm as directed under Ultraviolet-visible Spectrophotometry <2.24>.

\[M_e \times \frac{A_r}{A_s} \times 25/2 \]

M_e: Amount (mg) of nicomol (C_{34}H_{32}N_{9}O_{9}) for assay taken

Containers and storage Containers—Tight containers.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
Nicorandil

ニコランジル

C₉H₉N₂O₃: 211.17
N-[2-(Nitroxy)ethyl]pyridine-3-carboxamide

[85/41-46-0]

Nicorandil contains not less than 98.5% and not more than 101.0% of nicorandil (C₉H₉N₂O₃), calculated on the anhydrous basis.

Description
Nicorandil occurs as white crystals. It is freely soluble in methanol, in ethanol (99.5) and in acetic acid (100), soluble in acetic anhydride, and sparingly soluble in water.

Melting point: about 92°C (with decomposition).

Identification
(1) Determine the absorption spectrum of a solution of Nicorandil (1 in 50,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Nicorandil as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Purity
(1) Sulfate <1.14>—Dissolve 2.0 g of Nicorandil in 20 mL of dilute ethanol, add 1 mL of dilute hydrochloric acid and water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution with 0.40 mL of 0.005 mol/L sulfuric acid VS, 20 mL of dilute ethanol and 1 mL of dilute hydrochloric acid, and dilute with water to make 50 mL (not more than 0.010%).

(2) Heavy metals <1.07>—Proceed with 2.0 g of Nicorandil according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(3) Related substances—Dissolve 20 mg of Nicorandil in 10 mL of the mobile phase, and use this solution as the sample solution. Perform the test with 10 μL of the sample solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine each peak area by the automatic integration method: the peak area of N-(2-hydroxyethyl)isonicotinamide nitric ester, having the relative retention time of about 0.86 to nicorandil, is not more than 0.5% of the peak area of nicorandil, the area of all other peaks is less than 0.1%, and the sum area of the peaks other than nicorandil and N-(2-hydroxyethyl)isonicotinamide nitric ester is not more than 0.25% of the total peak area.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 254 nm).
Column: A stainless steel column 4 mm in inside diameter and 25 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase: A mixture of water, tetrahydrofuran, triethylamine and trifluoroacetic acid (982:10:5:3).

Flow rate: Adjust so that the retention time of nicorandil is about 18 minutes.
Time span of measurement: About 3 times as long as the retention time of nicorandil, beginning after the solvent peak.

System suitability—
Test for required detectability: Measure exactly 1 mL of the sample solution, add the mobile phase to make exactly 500 mL, and use this solution as the solution for system suitability test. Pipet 1 mL of the solution for system suitability test, and add the mobile phase to make exactly 20 mL. Confirm that the peak area of nicorandil obtained with 10 μL of this solution is equivalent to 2 to 8% of that with 10 μL of the solution for system suitability test.

System performance: Dissolve 10 mg of N-(2-hydroxyethyl)isonicotinamide nitric ester in the mobile phase to make 100 mL. To 1 mL of this solution add 10 mL of the sample solution. When the procedure is run with 10 μL of this solution under the above operating conditions, N-(2-hydroxyethyl)isonicotinamide nitric ester and nicorandil are eluted in this order with the resolution between these peaks being not less than 3.0.

System repeatability: When the test is repeated 6 times with 10 μL of the solution for system suitability test under the above operating conditions, the relative standard deviation of the peak area of nicorandil is not more than 1.5%.

Water <2.48> Not more than 0.1% (2 g, volumetric titration, direct titration).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay
Weigh accurately about 0.3 g of Nicorandil, dissolve in 30 mL of a mixture of acetic anhydride and acetic acid (100) (7:3), and titrate <2.50> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 21.12 mg of C₉H₉N₂O₃

Containers and storage
Containers—Tight containers.
Storage—At a temperature between 2°C and 8°C.

Nicotinamide

ニコチン酸アミド

C₉H₆N₂O: 122.12
Pyridine-3-carboxamide
[98-92-0]

Nicotinamide, when dried, contains not less than 98.5% and not more than 102.0% of nicotinamide (C₉H₆N₂O).

Description
Nicotinamide occurs as white, crystals or crystalline powder. It is odorless, and has a bitter taste.
It is freely soluble in water and in ethanol (95), and slightly soluble in diethyl ether.

Identification
(1) Mix 5 mg of Nicotinamide with 0.01 g of 1-chloro-2,4-dinitrobenzene, heat gently for 5 to 6 seconds, and fuse the mixture. Cool, and add 4 mL of potassium hydroxide-ethanol TS: a red color is produced.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.)
(2) To 0.02 g of Nicotinamide add 5 mL of sodium hydroxide TS, and boil carefully: the gas evolved turns moistened red litmus paper blue.

(3) Dissolve 0.02 g of Nicotinamide in water to make 1000 mL. Determine the absorption spectrum of the solution as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Nicotinamide RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

pH <2.54> Dissolve 1.0 g of Nicotinamide in 20 mL of water: the pH of this solution is between 6.0 and 7.5.

Melting Point <2.60> 128 - 131°C

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Nicotinamide in 20 mL of water: the solution is clear and colorless.

(2) Chloride <1.03>—Take 0.5 g of Nicotinamide, and perform the test. Prepare the control solution with 0.30 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.021%).

(3) Sulfate <1.14>—Take 1.0 g of Nicotinamide, and perform the test. Prepare the control solution with 0.40 mL of 0.005 mol/L sulfuric acid VS (not more than 0.019%).

(4) Heavy metals <1.07>—Proceed with 1.0 g of Nicotinamide according to Method 1, and perform the test. Prepare the control solution with 3.0 mL of Standard Lead Solution (not more than 30 ppm).

(5) Readily carbonizable substances <1.15>—Take 0.20 g of Nicotinamide, and perform the test. The solution has no more color than Matching Fluid A.

Loss on Drying <2.41> Not more than 0.5% (1 g, in vacuum, silica gel, 4 hours).

Residue on Ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 25 mg each of Nicotinamide and Nicotinamide RS, both previously dried, dissolve separately in 3 mL of water, and add the mobile phase to make exactly 100 mL. Pipet 8 mL each of these solutions, and add the mobile phase to make exactly 50 mL. Pipet 5 mL each of these solutions, add exactly 5 mL of the internal standard solution, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.20> according to the following conditions, and calculate the ratios, Q1 and Q2, of the peak area of nicotinamide to that of the internal standard.

Amount (g) of nicotinamide \((\text{C}_{6}\text{H}_{4}\text{N}_{2}\text{O}) = M_s \times Q_1 / Q_2\)

\(M_s\): Amount (mg) of dried Nicotinamide RS taken

Internal Standard Solution—A solution of nicotinic acid (1 in 25,000).

Operating Conditions—

Detector: An ultraviolet absorption photometer (wavelength: 254 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: Dissolve 1 g of sodium 1-heptane sulfonate in water to make 1000 mL. To 700 mL of this solution add 300 mL of methanol.

Flow rate: Adjust so that the retention time of nicotinamide is about 7 minutes.

System Suitability—

System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the internal standard and nicotinamide are eluted in this order with the resolution between these peaks being not less than 5.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of nicotinamide to that of the internal standard is not more than 1.0%.

Containers and Storage—Containers—Tight containers.

Nicotinic Acid

ニコチン酸

![Nicotinic Acid Structure](image)

\(\text{C}_{6}\text{H}_{4}\text{NO}_{2}: \text{123.11}\)

Pyridine-3-carboxylic acid

[59-67-6]

Nicotinic Acid, when dried, contains not less than 99.5% of nicotinic acid \((\text{C}_{6}\text{H}_{4}\text{NO}_{2})\).

Description Nicotinic Acid occurs as white, crystals or crystalline powder. It is odorless, and has a slightly acid taste.

It is sparingly soluble in water, slightly soluble in ethanol (95), and very slightly soluble in diethyl ether. It dissolves in sodium hydroxide TS and in sodium carbonate TS.

Identification (1) Triturate 5 mg of Nicotinic Acid with 0.01 g of 1-chloro-2,4-dinitrobenzene, and fuse the mixture by gentle heating for 5 to 6 seconds. Cool, and add 4 mL of potassium hydroxide-ethanol TS: a dark red color is produced.

(2) Dissolve 0.02 g of Nicotinic Acid in water to make 1000 mL. Determine the absorption spectrum of the solution as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Nicotinic Acid RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

pH <2.54> Dissolve 0.20 g of Nicotinic Acid in 20 mL of water: the pH of this solution is between 3.0 and 4.0.

Melting Point <2.60> 234 - 238°C

Purity (1) Clarity and color of solution—Dissolve 0.20 g of Nicotinic Acid in 20 mL of water: the solution is clear and colorless.

(2) Chloride <1.03>—Perform the test with 0.5 g of Nicotinic Acid. Prepare the control solution with 0.30 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.021%).

(3) Sulfate <1.14>—Dissolve 1.0 g of Nicotinic Acid in 3 mL of dilute hydrochloric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 0.40 mL of 0.005 mol/L sulfuric acid VS and 3 mL of dilute hydrochloric acid, and dilute...
with water to make 50 mL (not more than 0.019%).

(4) Nitro compounds—Dissolve 1.0 g of Nicotinic Acid in 8 mL of sodium hydroxide TS, and add water to make 20 mL: the solution has no more color than Matching Fluid A.

(5) Heavy metals <1.07>—Proceed with 1.0 g of Nicotinic Acid according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

Loss on drying <2.41> Not more than 0.5% (1 g, 105°C, 1 hour).

Residue on ignition <2.45> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.3 g of Nicotinic Acid, previously dried, dissolve in 50 mL of water, and titrate <2.50> with 0.1 mol/L sodium hydroxide VS (indicator: 5 drops of phenolphthalein TS).

Each mL of 0.1 mol/L sodium hydroxide VS = 12.31 mg of C₆H₅NO₂

Containers and storage Containers—Well-closed containers.

Nicotinic Acid Injection

ニコチン酸注射液

Nicotinic Acid Injection is an aqueous injection.

It contains not less than 95.0% and not more than 110.0% of the labeled amount of nicotinic acid (C₆H₅NO₂: 123.11).

Method of preparation Prepare as directed under Injections, with Nicotinic Acid. It may contain Sodium Carbonate or Sodium Hydroxide as a solubilizer.

Description Nicotinic Acid Injection is a clear, colorless liquid.

pH: 5.0 – 7.0

Identification (1) To a volume of Nicotinic Acid Injection, equivalent to 0.1 g of Nicotinic Acid, add 0.3 mL of dilute hydrochloric acid, and evaporate on a water bath to 2 mL. After cooling, collect the crystals formed, wash with small portions of ice-cold water until the last washing shows no turbidity on the addition of silver nitrate TS, and dry at 105°C for 1 hour: the crystals melt <2.60> between 234°C and 238°C. With the crystals, proceed as directed in the Identification (1) under Nicotinic Acid.

(2) Dissolve 0.02 g of the dried crystals obtained in (1) in water to make 1000 mL, and determine the absorption spectrum as directed under Ultraviolet-visible Spectrophotometry <2.24>: it exhibits a maximum between 261 nm and 263 nm, and a minimum between 235 nm and 239 nm. Separately, determine the absorbances of this solution, A₁ and A₂, at each wavelength of maximum and minimum absorption, respectively: the ratio A₂/A₁ is between 0.35 and 0.39.

Bacterial endotoxins <4.01> Less than 3.0 EU/mg.

Extractable volume <6.05> It meets the requirement.

Foreign insoluble matter <6.06> Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter <6.07> It meets the requirement.

Sterility <4.06> Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Measure exactly a volume of Nicotinic Acid Injection, equivalent to about 0.1 g of nicotinic acid (C₆H₅NO₂), and add the mobile phase to make exactly 100 mL. Pipet 10 mL of this solution, add exactly 10 mL of the internal standard solution, then add the mobile phase to make 100 mL, and use this solution as the sample solution. Separately, weigh accurately about 0.1 g of Nicotinic Acid RS, previously dried at 105°C for 1 hour, and dissolve in the mobile phase to make exactly 100 mL. Pipet 10 mL of this solution, add exactly 10 mL of the internal standard solution, then add the mobile phase to make 100 mL, and use this solution as the standard solution. Perform the test with 10 µL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions, and calculate the ratios, Q₁ and Q₅, of the peak area of nicotinic acid to that of the internal standard.

\[
S = \frac{M_S}{Q_S} = \frac{M_S}{Q_S}
\]

M₅: Amount (mg) of Nicotinic Acid RS taken

Internal standard solution—A solution of caffeine in the mobile phase (1 in 1000).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 260 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 35°C.

Mobile phase: Dissolve 1.1 g of sodium 1-octane sulfonate in a mixture of 0.05 mol/L sodium dihydrogenphosphate TS (pH 3.0) and methanol (4:1) to make 1000 mL.

Flow rate: Adjust so that the retention time of caffeine is about 9 minutes.

System suitability—

System performance: When the procedure is run with 10 µL of the standard solution under the above operating conditions, nicotinic acid and the internal standard are eluted in this order with the resolution between these peaks being not less than 10.

System repeatability: When the test is repeated 6 times with 10 µL of the standard solution under the above operating conditions, the relative standard deviation of the ratios of the peak area of nicotinic acid to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Hermetic containers.
Nifedipine

ニフェジピン

C_{17}H_{18}N_{2}O_{3}: 346.33
Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate
[21829-25-4]

Nifedipine contains not less than 98.0% and not more than 102.0% of nifedipine (C_{17}H_{18}N_{2}O_{3}), calculated on the dried basis.

Description Nifedipine occurs as a yellow crystalline powder. It is odorless and tasteless. It is freely soluble in acetone and in dichloromethane, sparingly soluble in methanol, in ethanol (95) and in acetic acid (100), slightly soluble in diethyl ether, and practically insoluble in water.

It is affected by light.

Identification (1) Dissolve 0.05 g of Nifedipine in 5 mL of ethanol (95), and add 5 mL of hydrochloric acid and 2 g of zinc powder. Allow to stand for 5 minutes, and filter: the filtrate responds to Qualitative Tests <1.09> for primary aromatic amines, developing a red-purple color.

(2) Determine the absorption spectrum of a solution of Nifedipine in methanol (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(3) Determine the infrared absorption spectrum of Nifedipine, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point <2.60> 172 – 175°C

Purity (1) Clarity and color of solution—Dissolve 0.5 g of Nifedipine in 5 mL of acetone: the solution is clear and yellow.

(2) Chloride <1.09>—To 2.5 g of Nifedipine add 12 mL of dilute acetic acid and 13 mL of water, and heat to boil. After cooling, filter, and discard the first 10 mL of the filtrate. To 5 mL of the subsequent filtrate add 6 mL of dilute nitric acid and water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution with 0.30 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.021%).

(3) Sulfate <1.14>—To 4 mL of the filtrate obtained in (2) add 1 mL of dilute hydrochloric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 0.45 mL of 0.005 mol/L sulfuric acid VS (not more than 0.054%).

(4) Heavy metals <1.07>—Proceed with 2.0 g of Nifedipine according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(5) Arsenic <1.15>—Prepare the test solution with 1.0 g of Nifedipine according to Method 3, and perform the test (not more than 2 ppm).

(6) Basic substances—The procedure should be performed under protection from light in light-resistant vessels. Dissolve 5.0 g of Nifedipine in 80 mL of a mixture of acetone and acetic acid (100) (5:3), and titrate <2.5D> with 0.02 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction. Not more than 1.9 mL of 0.02 mol/L perchloric acid VS is consumed.

(7) Dimethyl-2,6-dimethyl-4-(2-nitrophenyl)-3,5-pyridinedicarboxylate—The procedure should be performed under protection from light in light-resistant vessels. Dissolve 0.15 g of Nifedipine in dichloromethane to make exactly 10 mL, and use this solution as the sample solution. Separately, dissolve 10 mg of dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-3,5-pyridine-dicarboxylate for thin-layer chromatography in exactly 10 mL of dichloromethane. Measure exactly 1 mL of this solution, add dichloromethane to make exactly 20 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.08>. Spot 10 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of cyclohexane and ethyl acetate (3:2) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spot obtained from the sample solution, corresponding to that from the standard solution, is not more intense than the spot from the standard solution.

Loss on drying <2.4> Not more than 0.5% (0.5 g, 105°C, 2 hours).

Residue on ignition <2.4> Not more than 0.1% (1 g).

Assay The procedure should be performed under protection from light in light-resistant vessels. Weigh accurately about 0.12 g of Nifedipine, and dissolve in methanol to make exactly 200 mL. Measure exactly 5 mL of this solution, and add methanol to make exactly 100 mL. Determine the absorbance A of this solution at the wavelength of maximum absorption at about 350 nm as directed under Ultraviolet-visible Spectrophotometry <2.24>.

Amount (mg) of nifedipine (C_{17}H_{18}N_{2}O_{3})

= A/142.3 × 40,000

Containers and storage Containers—Tight containers. Storage—Light-resistant.

Nifedipine Delayed-release Fine Granules

ニフェジピン腸溶細粒

Nifedipine Delayed-release Fine Granules contain not less than 95.0% and not more than 105.0% of the labeled amount of nifedipine (C_{17}H_{18}N_{2}O_{3}: 346.33).

Method of preparation Prepare as directed under Granules, with Nifedipine.

Identification Conduct this procedure without exposure to light, using light-resistant vessels. Shake for 15 minutes a quantity of powdered Nifedipine Delayed-release Fine Granules, equivalent to 3 mg of Nifedipine, with 100 mL of meth-
When the tests are performed at 50 °C so that each mL contains about 0.1 mg of nifedipine (C_{17}H_{18}N_{2}O_{3}). Filter this solution through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 10 mL of the filtrate, pipet 5 mL of the subsequent filtrate, and use this solution as the sample solution. Separately, weigh accurately about 50 mg of nifedipine for assay, previously dried at 105°C for 2 hours, and dissolve in methanol to make exactly 50 mL. Pipet 5 mL of this solution, add methanol to make exactly 100 mL, and use this solution as the standard solution. Then, proceed as directed in the Assay.

\[
\text{Amount (mg) of nifedipine (C}_{17}\text{H}_{18}\text{N}_{2}\text{O}_{3}) = M_s \times A_T/A_S \times V/500
\]

\(M_s \): Amount (mg) of nifedipine for assay taken

Dissolution \(<6.010\)** Perform the test according to the following method: the Granules in single-dose packages meet the requirement of the Uniformity content test.

Conduct this procedure without exposure to light, using light-resistant vessels. To the total content of 1 package of Nifedipine Delayed-release Fine Granules add 50 mL of a mixture of methanol and water (9:1), sonicate for 15 minutes with occasional shaking, and shake for further 15 minutes. Then, add methanol to make exactly 10 mL so that each mL contains about 0.1 mg of nifedipine (C_{17}H_{18}N_{2}O_{3}). Filter this solution through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 10 mL of the filtrate, pipet 5 mL of the subsequent filtrate, add methanol to make exactly 10 mL, and use this solution as the sample solution. Separately, weigh accurately about 50 mg of nifedipine for assay, previously dried at 105°C for 2 hours, and dissolve in methanol to make exactly 50 mL. Pipet 5 mL of this solution, add methanol to make exactly 100 mL, and use this solution as the standard solution. Then, proceed as directed in the Assay.

\[
\text{Amount (mg) of nifedipine (C}_{17}\text{H}_{18}\text{N}_{2}\text{O}_{3}) = M_s \times A_T/A_S \times V/500
\]

\(M_s \): Amount (mg) of nifedipine for assay taken

Operating conditions— Proceed as directed in the operating conditions in the Assay.

System suitability—

System performance: When the procedure is run with 50 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of nifedipine are not less than 4000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 50 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of nifedipine is not more than 1.0%.

Assay— Conduct this procedure without exposure to light, using light-resistant vessels. Weigh accurately a portion of powdered Nifedipine Delayed-release Fine Granules, equivalent to about 10 mg of nifedipine (C_{17}H_{18}N_{2}O_{3}), add 50 mL of a mixture of methanol and water (9:1), shake vigorously for 15 minutes, and add methanol to make exactly 100 mL. Filter this solution through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 10 mL of the filtrate, pipet 5 mL of the subsequent filtrate, add methanol to make exactly 10 mL, and use this solution as the sample solution. Separately, weigh accurately about 50 mg of nifedipine for assay, previously dried at 105°C for 2 hours, and dissolve in methanol to make exactly 50 mL. Pipet 5 mL of this solution, add methanol to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.017> according to the following conditions, and determine the peak areas, \(A_T \) and \(A_S \), of nifedipine in each solution.

\[
\text{Amount (mg) of nifedipine (C}_{17}\text{H}_{18}\text{N}_{2}\text{O}_{3}) = M_s \times A_T/A_S \times 1/5
\]

\(M_s \): Amount (mg) of nifedipine for assay taken

System repeatability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of nifedipine are not less than 4000 and not more than 1.2, respectively.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of nifedipine is not more than 1.0%.

Storage— Light-resistant.
Nifedipine Extended-release Capsules

ニフェジピン徐放カプセル

Nifedipine Extended-release Capsules contain not less than 93.0% and not more than 107.0% of the labeled amount of nifedipine (C_{17}H_{18}N_{2}O_{3}: 346.33).

Method of preparation Prepare as directed under Capsules, with Nifedipine.

Identification Conduct this procedure without exposure to light, using light-resistant vessels. Take out the content of Nifedipine Extended-release Capsules, and powder. To an amount of the powder, equivalent to 3 mg of Nifedipine, add 100 mL of methanol, shake for 15 minutes, and centrifuge. Determine the absorption spectrum of the supernatant liquid so obtained as directed under Ultraviolet-visible Spectrophotometry 2.24: it exhibits a broad absorption maximum between 335 nm and 356 nm.

Uniformity of dosage units Perform the test according to the following method: it meets the requirement of the Content uniformity test.

Conduct this procedure without exposure to light, using light-resistant vessels. To the total content of 1 capsule of Nifedipine Extended-release Capsules, add 50 mL of a mixture of methanol and water (9:1), sonicate for 15 minutes with occasional shaking, and shake for further 15 minutes. Then, add methanol to make exactly V mL so that each mL contains about 0.1 mg of nifedipine (C_{17}H_{18}N_{2}O_{3}). Filter this solution through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 10 mL of the filtrate, pipet 5 mL of the subsequent filtrate, add methanol to make exactly 10 mL, and use this solution as the sample solution. Separately, weigh accurately about 50 mg of nifedipine for assay, previously dried at 105°C for 2 hours, and dissolve in methanol to make exactly 50 mL. Pipet 5 mL of this solution, add methanol to make exactly 100 mL, and use this solution as the standard solution. Then, proceed as directed in the Assay.

Amount (mg) of nifedipine (C_{17}H_{18}N_{2}O_{3})

\[M_3 = M_s \times \frac{A_s}{A_T} \times \frac{V}{500} \]

Disintegration Being specified separately when the drug is granted approval based on the Law.

Assay Conduct this procedure without exposure to light, using light-resistant vessels. Take out the contents of not less than 20 Nifedipine Extended-release Capsules, weigh accurately the mass of the contents, and powder. Weigh accurately a portion of the powder, equivalent to about 10 mg of nifedipine (C_{17}H_{18}N_{2}O_{3}), add 50 mL of a mixture of methanol and water (9:1), shake vigorously for 15 minutes, and add methanol to make exactly 100 mL. Filter this solution through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 10 mL of the filtrate, pipet 5 mL of the subsequent filtrate, add methanol to make exactly 10 mL, and use this solution as the sample solution. Separately, weigh accurately about 50 mg of nifedipine for assay, previously dried at 105°C for 2 hours, and dissolve in methanol to make exactly 50 mL. Pipet 5 mL of this solution, add methanol to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography 2.01 according to the following conditions, and determine the peak areas, A_T and A_s, of nifedipine in each solution.

Amount (mg) of nifedipine (C_{17}H_{18}N_{2}O_{3})

\[M_3 = M_s \times \frac{A_T}{A_s} \times \frac{1}{5} \]

Operating conditions—

Detector An ultraviolet absorption photometer (wavelength: 230 nm).

Column A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature A constant temperature of about 40°C.

Mobile phase Adjust to pH 6.1 of a mixture of methanol and dilute 0.05 mol/L disodium hydrogen phosphate TS (1 in 5) (11:9) with phosphoric acid.

Flow rate Adjust so that the retention time of nifedipine is about 6 minutes.

System suitability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of nifedipine are not less than 4000 and not more than 1.2, respectively.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of nifedipine is not more than 1.0%.

Containers and storage Containers—Tight containers.

Storage—Light-resistant.

Nifedipine Fine Granules

ニフェジピン細粒

Nifedipine Fine Granules contain not less than 95.0% and not more than 105.0% of the labeled amount of nifedipine (C_{17}H_{18}N_{2}O_{3}: 346.33).

Method of preparation Prepare as directed under Granules, with Nifedipine.

Identification Conduct this procedure without exposure to light, using light-resistant vessels. Shake for 15 minutes a quantity of powdered Nifedipine Fine Granules, equivalent to 6 mg of Nifedipine, with 200 mL of methanol, and centrifuge. Determine the absorption spectrum of the supernatant liquid so obtained as directed under Ultraviolet-visible Spectrophotometry 2.24: it exhibits a broad absorption maximum between 335 nm and 356 nm.

Uniformity of dosage units Perform the test according to the following method: the Granules in single-dose packages meet the requirement of the Content uniformity test.

Conduct this procedure without exposure to light, using light-resistant vessels. To the total content of 1 package of Nifedipine Fine Granules add 50 mL of a mixture of methanol and water (9:1), sonicate for 15 minutes with occasional shaking, and shake for further 15 minutes. Then, add methanol to make exactly V mL so that each mL contains about 0.1 mg of nifedipine (C_{17}H_{18}N_{2}O_{3}). Filter this solution through a membrane filter with a pore size not exceeding 0.45 μm.
Nilvadipine

Conduct this procedure without exposure to light, and not exceed 0.45 mg of nifedipine (C₁₇H₁₉N₂O₆) in each solution.

Amount (mg) of nifedipine (C₁₇H₁₉N₂O₆)
\[
= M \times A \times A_5 \times V \times \text{solution volume} \\
M: \text{Amount (mg) of nifedipine for assay taken}
\]

Dissolution 6Cl0D When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 15 minutes of Nifedipine Fine Granules is not less than 85%.

Conduct this procedure without exposure to light, using light-resistant vessels. Start the test with an accurately weighted amount of Nifedipine Fine Granules, equivalent to about 10 mg of nifedipine (C₁₇H₁₉N₂O₆), withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 µm. Discard not less than 10 mL of the first filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 28 mg of nifedipine for assay, previously dried at 105°C for 2 hours, dissolve in 50 mL of methanol, and add water to make exactly 100 mL. Pipet 2 mL of this solution, add water to make exactly 50 mL, and add methanol to make exactly 100 mL, and use this solution as the standard solution. Then, proceed as directed in the Assay.

Amount (mg) of nifedipine (C₁₇H₁₉N₂O₆)
\[
= M \times A \times A_5 \times V \times 500 \\
M_5: \text{Amount (mg) of nifedipine for assay taken}
\]

Operating conditions—
Proceed as directed in the operating conditions under the Assay.

System suitability—
System performance: When the procedure is run with 10 µL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of nifedipine are not less than 4000 and not more than 1.2, respectively.

System repeatability: When the test is repeated 6 times with 10 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of nifedipine is not more than 1.0%.

Containers and storage Containers—Tight containers.
Storage—Light-resistant.

Nilvadipine

ニルバジピン

C₁₉H₁₉N₂O₆: 385.37
3-Methyl 5-(1-methylethyl) (4RS)-2-cyano-6-methyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate [75530-68-6]

Nilvadipine contains not less than 98.0% and not more than 102.0% of nilvadipine (C₁₉H₁₉N₂O₆), and the enantiomer.

It is freely soluble in acetonitrile, soluble in methanol, sparingly soluble in ethanol (99.5), and practically insoluble in water.

A solution of Nilvadipine in acetonitrile (1 in 20) shows no optical rotation.
Identification (1) Determine the absorption spectrum of a solution of Nilvadipine in ethanol (99.5%) (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry $\leq 2.42\lambda$, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Nilvadipine RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Nilvadipine as directed in the potassium bromide disk method under Infrared Spectrophotometry $\leq 2.25\lambda$, and compare the spectrum with the Reference Spectrum or the spectrum of Nilvadipine RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point $\geq 167 \degree C$ - $\leq 171 \degree C$

Purity (1) Heavy metals $\leq 0.07\%$—Proceed with 2.0 g of Nilvadipine according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Related substances—Dissolve 20 mg of Nilvadipine in 20 mL of acetonitrile, and use this solution as the sample solution. Perform the test with 5 μL of the sample solution as directed under Liquid Chromatography $\leq 2.0\%$ according to the following conditions. Determine each peak area by the automatic integration method, and calculate the amount them by the area percentage method: the amount of each related substance is not more than 0.3%, and the total of them is not more than 0.5%.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 254 nm).
Column: A stainless steel column 4 mm in inside diameter and 25 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 25°C.
Flow rate: Adjust so that the retention time of nilvadipine is about 12 minutes.
Time span of measurement: About 2.5 times as long as the retention time of nilvadipine, beginning after the solvent peak.
System suitability—
Test for required detectability: To 1 mL of the sample solution, add acetonitrile to make 100 mL, and use this solution as the solution for system suitability test. Pipet 1 mL of the solution for system suitability test, and add acetonitrile to make exactly 10 mL. Confirm that the peak area of nilvadipine obtained with 5 μL of this solution is equivalent to 7 to 13% of that with 5 μL of the solution for system suitability test.
System performance: When the procedure is run with 5 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of nilvadipine is not less than 3000 and not more than 1.3, respectively.
System repeatability: Pipet 1 mL of the solution for system suitability test, and add acetonitrile to make exactly 10 mL. When the test is repeated 6 times with 5 μL of this solution under the above operating conditions, the relative standard deviation of the peak area of nilvadipine is not more than 1.5%.

Loss on drying $\leq 2.4\%$ — Not more than 0.1% (1 g, 105°C, 2 hours).
Residue on ignition $\leq 2.4\%$ — Not more than 0.1% (1 g).

Assay Weigh accurately about 25 mg each of Nilvadipine and Nilvadipine RS, dissolve in methanol to make exactly 25 mL. Pipet 10 mL each of these solutions, add exactly 20 mL of the internal standard solution, 20 mL of water and methanol to make 100 mL, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with 5 μL each of the sample solution and standard solution as directed under the Liquid Chromatography $\leq 2.0\%$ according to the following conditions, and calculate the ratios, Q_1 and Q_2, of the peak area of nilvadipine to that of the internal standard.

Amount (mg) of nilvadipine (C$_{19}$H$_{20}$N$_3$O$_8$) = $M_S \times Q_1/Q_2$

M_S: Amount (mg) of Nilvadipine RS taken

Internal standard solution—A solution of acenaphthene in methanol (1 in 200).

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 254 nm).
Column: A stainless steel column 4 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase: Dissolve 2.5 g of diammonium hydrogen phosphate in 1000 mL of water, add 10 mL of tetrabutylammonium hydroxide TS, adjust the pH to 7.0 with diluted phosphoric acid (1 in 10), and add 900 mL of acetonitrile.
Flow rate: Adjust so that the retention time of nilvadipine is about 12 minutes.

System suitability—
System performance: When the procedure is run with 5 μL of the standard solution under the above operating conditions, nilvadipine and the internal standard are eluted in this order with the resolution between these peaks being not less than 8.
System repeatability: When the test is repeated 6 times with 5 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of nilvadipine to that of the internal standard is not more than 1.0%.

Containers and storage — Containers—Well-closed containers.

Nilvadipine Tablets

ニルバジピン錠

Nilvadipine Tablets contain not less than 93.0% and not more than 107.0% of the labeled amount of nilvadipine (C$_{19}$H$_{20}$N$_3$O$_8$: 385.37).

Method of preparation — Prepare as directed under Tablets, with Nilvadipine.

Identification To a quantity of powdered Nilvadipine Tablets, equivalent to 1 mg of Nilvadipine, add 100 mL of ethanol (99.5%), shake for 10 minutes, centrifuge, and use the supernatant liquid as the sample solution. Determine the absorption spectrum of the sample solution as directed under Ultraviolet-visible Spectrophotometry $\leq 2.24\%$: it exhibits a maximum between 239 nm and 243 nm and a maximum having a broad-ranging absorption between 371 nm and 381 nm.

Uniformity of dosage units $\leq 0.02\%$ — Perform the test according to the following method: it meets the requirement of the
Content uniformity test.

To 1 tablet of Nilvadipine Tablets add V mL of a mixture of acetonitrile and water (7:3) so that each mL of the solution contains about 0.2 mg of nilvadipine ($C_{18}H_{19}N_{3}O_{3}$), add exactly V mL of the internal standard solution, and disperse the particles by sonicating. Centrifuge for 10 minutes, and use the supernatant liquid as the sample solution. Separately, weigh accurately about 20 mg of Nilvadipine RS, dissolve in the mixture of acetonitrile and water (7:3) to make exactly 20 mL. Pipet 5 mL of this solution, add exactly 25 mL of the internal standard solution and the mixture of acetonitrile and water (7:3) to make 50 mL, and use this solution as the standard solution. Proceed as directed in the Assay.

\[
\text{Amount (mg) of nilvadipine (} C_{18}H_{19}N_{3}O_{3} \text{)} = \frac{M_S \times Q_t}{Q_S} \times \frac{V}{100}
\]

M_S: Amount (mg) of Nilvadipine RS taken

Internal standard solution—A solution of acenaphthene in acetonitrile (1 in 500).

Dissolution 56.10 When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 30 minutes of Nilvadipine Tablets is not less than 85%.

Start the test with 1 tablet of Nilvadipine Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.5 μm. Discard not less than 10 mL of the first filtrate, pipet 10 mL of the subsequent filtrate, add exactly 1 mL of methanol, and use this solution as the sample solution. Separately, weigh accurately an amount of Nilvadipine RS, equivalent to 10 times the labeled amount of Nilvadipine Tablets, and dissolve in methanol to make exactly 50 mL. Pipet 5 mL of this solution, and add methanol to make exactly 100 mL. Pipet 1 mL of this solution, add exactly 10 mL of water, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography 2.01 according to the following conditions, and determine the peak areas, A_I and A_S, of nilvadipine in each solution.

Dissolution rate (%) with respect to the labeled amount of nilvadipine ($C_{18}H_{19}N_{3}O_{3}$)

\[
= \frac{M_S \times A_I}{A_S} \times 1/C \times 9
\]

M_S: Amount (mg) of Nilvadipine RS taken

C: Labeled amount (mg) of nilvadipine ($C_{18}H_{19}N_{3}O_{3}$) in 1 tablet

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 254 nm).

Column: A stainless steel column 4 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: A mixture of phosphate buffer solution (pH 7.4), methanol and acetonitrile (7:7:6).

Flow rate: Adjust so that the retention time of nilvadipine is about 5 minutes.

System suitability—

System performance: When the procedure is run with 5 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of nilvadipine is not more than 1.5%.

Assay Weigh accurately not less than 20 Nilvadipine Tablets, and powder. Weigh accurately an amount of the powder, equivalent to about 5 mg of nilvadipine ($C_{18}H_{19}N_{3}O_{3}$), add 10 mL of a mixture of acetonitrile and water (7:3) and exactly 25 mL of the internal standard solution, shake for 15 minutes, and add the mixture of acetonitrile and water (7:3) to make 50 mL. Centrifuge, and use the supernatant liquid as the sample solution. Separately, weigh accurately about 20 mg of Nilvadipine RS, dissolve in the mixture of acetonitrile and water (7:3) to make exactly 20 mL. Pipet 5 mL of this solution, add exactly 25 mL of the internal standard solution and the mixture of acetonitrile and water (7:3) to make 50 mL, and use this solution as the standard solution. Perform the test with 5 μL each of the sample solution and standard solution as directed under Liquid Chromatography 2.01 according to the following conditions, and calculate the ratios, Q_I and Q_S, of the peak area of nilvadipine to that of the internal standard.

\[
\text{Amount (mg) of nilvadipine (} C_{18}H_{19}N_{3}O_{3} \text{)} = \frac{M_S \times Q_I}{Q_S} \times 1/4
\]

M_S: Amount (mg) of Nilvadipine RS taken

Internal standard solution—A solution of acenaphthene in acetonitrile (1 in 500).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 254 nm).

Column: A stainless steel column 4 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: Dissolve 2.5 g of diammonium hydrogen phosphate in 1000 mL of water, add 10 mL of tetrabutylammonium hydroxide TS, adjust the pH to 7.0 with diluted phosphoric acid (1 in 10), and add 900 mL of acetonitrile.

Flow rate: Adjust so that the retention time of nilvadipine is about 12 minutes.

System suitability—

System performance: When the procedure is run with 5 μL of the standard solution under the above operating conditions, nilvadipine and the internal standard are eluted in this order with the resolution between these peaks being not less than 8.

System repeatability: When the test is repeated 6 times with 5 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of nilvadipine is not more than 1.0%.

Containers and storage Containers—Well-closed containers.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
Nitrazepam

ニトラゼパム

\[\text{C}_{13}\text{H}_{14}\text{N}_{2}\text{O}_{3} \cdot 281.27 \]

7-Nitro-5-phenyl-1,3-dihydro-2H-1,4-benzodiazepin-2-one

[146-22-5]

Nitrazepam, when dried, contains not less than 99.0% of Nitrazepam (C₁₃H₁₄N₂O₃).

Description Nitrazepam occurs as white to light yellow, crystals or crystalline powder. It is odorless.

It is freely soluble in acetic acid (100), soluble in acetone and in chloroform, slightly soluble in methanol, in ethanol (95) and in ethanol (99.5), very slightly soluble in diethyl ether, and practically insoluble in water.

Melting point: about 227°C (with decomposition).

Identification (1) To 3 mL of a solution of Nitrazepam in methanol (1 in 500) add 0.1 mL of sodium hydroxide TS: a yellow color is produced.

(2) To 0.02 g of Nitrazepam add 15 mL of dilute hydrochloric acid, boil for 5 minutes, cool, and filter: the filtrate responds to Qualitative Tests <1.09> for primary aromatic amines.

(3) Neutralize 0.5 mL of the filtrate obtained in (2) with sodium hydroxide TS, add 2 mL of ninhydrin TS, and heat on a water bath: a purple color is produced.

(4) Determine the absorption spectrum of a solution of Nitrazepam in ethanol (99.5) (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

Purity (1) Clarity and color of solution—Dissolve 0.1 g of Nitrazepam in 20 mL of acetone: the solution is clear and pale yellow to light yellow in color.

(2) Heavy metals <1.07>—Proceed with 1.0 g of Nitrazepam according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(3) Arsenic <1.1D>—Prepare the test solution with 1.0 g of Nitrazepam according to Method 3, and perform the test (not more than 2 ppm).

(4) Related substances—Dissolve 0.25 g of Nitrazepam in 10 mL of mixture of methanol and chloroform (1:1), and use this solution as the sample solution. Pipet 1 mL of the sample solution, add a mixture of methanol and chloroform (1:1) to make exactly 20 mL, pipet 2 mL of this solution, add a mixture of methanol and chloroform (1:1) to make exactly 50 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.00>. Spot 10 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of nitromethane and ethyl acetate (17:3) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying <2.41> Not more than 0.5% (1 g, 105°C, 4 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.4 g of Nitrazepam, previously dried, and dissolve in 40 mL of acetic acid (100). Titrate <2.50> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 28.13 mg of C₁₃H₁₄N₂O₃

Containers and storage Containers—Tight containers. Storage—Light-resistant.

Nitrendipine

ニトレジピン

\[\text{C}_{15}\text{H}_{20}\text{N}_{2}\text{O}_{3} \cdot 360.36 \]

3-Ethyl 5-methyl (4RS)-2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate

[39562-70-4]

Nitrendipine, when dried, contains not less than 98.5% and not more than 101.0% of nitrendipine (C₁₅H₂₀N₂O₃).

Description Nitrendipine occurs as a yellow crystalline powder.

It is soluble in acetonitrile, sparingly soluble in methanol and in ethanol (99.5), and practically insoluble in water.

It is gradually colored to brownish yellow by light.

A solution of Nitrendipine in acetonitrile (1 in 50) shows no optical rotation.

Identification (1) Determine the absorption spectrum of a solution of Nitrendipine in methanol (1 in 80,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Nitrendipine as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point <2.60> 157 – 161°C

Purity (1) Heavy metals <1.07>—Proceed with 2.0 g of Nitrendipine according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Related substances—Conduct this procedure rapidly using light-resistant vessels. Dissolve 40 mg of Nitrendipine
in 5 mL of acetonitrile, add the mobile phase to make 25 mL, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test immediately with exactly 10 µL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions. Determine each peak area by the automatic integration method, and calculate the amount of related substances by the following equation: the amount of the related substance, having the relative retention time of about 0.8 to nitrendipine, is not more than 1.0%, the related substance, having the relative retention time of about 1.3, is not more than 0.25%, and other related substances are not more than 0.2%, respectively. The total amount of the related substances other than nitrendipine is not more than 2.0%.

Amount (%) of related substance = \(\frac{A_z}{A_s} \)

\(A_1 \): Each peak area other than nitrendipine obtained from the sample solution

\(A_s \): Peak area of nitrendipine obtained from the standard solution

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 254 nm).
Column: A stainless steel column 6 mm in inside diameter and 15 cm in length, packed with octadecysilanized silica gel for liquid chromatography (5 µm in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase: A mixture of water, tetrahydrofuran and acetonitrile (14:6:5).
Flow rate: Adjust so that the retention time of nitrendipine is about 12 minutes.
Time span of measurement: About 2.5 times as long as the retention time of nitrendipine, beginning after the solvent peak.
System suitability—
Test for required detectability: To exactly 2 mL of the standard solution add the mobile phase to make exactly 10 mL. Confirm that the peak area of nitrendipine obtained with 10 µL of this solution is equivalent to 14 to 26% of that with 10 µL of the standard solution.
System performance: Dissolve 10 mg of Nitrendipine and 3 mg of propyl parahydroxybenzoate in 5 mL of acetonitrile, and add the mobile phase to make 100 mL. When the procedure is run with 5 µL of this solution under the above operating conditions, propyl parahydroxybenzoate and nitrendipine are eluted in this order with the resolution between these peaks being not less than 6.
System repeatability: When the test is repeated 6 times with 10 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of nitrendipine is not more than 2.0%.
Loss on drying <2.41> Not more than 0.5% (1 g, 105°C, 2 hours).
Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.3 g of Nitrendipine, previously dried, dissolve in 60 mL of a solution of sulfuric acid in ethanol (99.5) (3 in 100), add 50 mL of water, and titrate <2.50> with 0.1 mol/L serium (IV) tetraammonium sulfate VS until the red-orange color of the solution vanishes (indicator: 3 drops of 1,10-phenanthroline TS). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L serium (IV) tetraammonium sulfate VS = 18.02 mg of \(\text{C}_{18}\text{H}_{20}\text{N}_{6}\text{O}_{6} \)

Containers and storage Containers—Tight containers. Storage—Light-resistant.

Nitrendipine Tablets

Nitrendipine Tablets contain not less than 93.0% and not more than 107.0% of the labeled amount of nitrendipine (\(\text{C}_{18}\text{H}_{20}\text{N}_{6}\text{O}_{6} \) : 360.36).

Method of preparation Prepare as directed under Tablets, with Nitrendipine.

Identification Shake a quantity of powdered Nitrendipine Tablets, equivalent to 5 mg of Nitrendipine, with 70 mL of methanol, then add methanol to make 100 mL, and centrifuge. To 5 mL of the supernatant liquid add methanol to make 20 mL, and determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.24>: it exhibits maxima between 234 nm and 238 nm, and between 350 nm and 354 nm.

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

Conduct this procedure using light-resistant vessels. To 1 tablet of Nitrendipine Tablets add 15 mL of diluted acetonitrile (4 in 5), stir until the tablet is completely disintegrated, and further stir for 10 minutes. Add diluted acetonitrile (4 in 5) to make exactly 20 mL, and centrifuge. Pipet \(V \) mL of the supernatant liquid, equivalent to about 1 mg of nitrendipine (\(\text{C}_{18}\text{H}_{20}\text{N}_{6}\text{O}_{6} \)), add exactly 5 mL of the internal standard solution, then add diluted acetonitrile (4 in 5) to make 25 mL, and use this solution as the sample solution. Proceed as directed in the Assay.

Amount (mg) of nitrendipine (\(\text{C}_{18}\text{H}_{20}\text{N}_{6}\text{O}_{6} \)) = \(M_3 \times \frac{Q_s}{Q_t} \times \frac{1}{V} \times \frac{1}{5} \)

\(M_3 \): Amount (mg) of nitrendipine for assay taken

Internal standard solution—A solution of propyl parahydroxybenzoate in diluted acetonitrile (4 in 5) (1 in 10,000).

Dissolution <6.10> When the test is performed at 100 revolutions per minute according to the Paddle method, using 900 mL of the dissolution medium containing 3 g of polysorbate 80 in 5 L of water for 5-mg tablet and the dissolution medium containing 3 g of polysorbate 80 in 2000 mL of water for 10-mg tablet, the dissolution rate in 45 minutes of Nitrendipine Tablets is not less than 70%.

Conduct this procedure using light-resistant vessels. Start the test with 1 tablet of Nitrendipine Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 µm. Discard not less than 10 mL of the first filtrate, pipet the subsequent \(V' \) mL, add the dissolution medium to make exactly \(V' \) mL, the each mL contains about 5.6 µg of nitrendipine (\(\text{C}_{18}\text{H}_{20}\text{N}_{6}\text{O}_{6} \)), and use this solution as the sample solution. Separately, weigh accurately about 28 mg of nitrendipine for assay, previously dried at 105°C for 2 hours, dissolve in methanol to make exactly 100 mL, then pipet 5 mL of this solution, and add the dissolution medium to make exactly 50 mL. Pipet 5 mL of
this solution, add the dissolution medium to make exactly 25 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.02> according to the following conditions, and determine the peak areas, A_T and A_S, of nitrendipine in each solution.

Dissolution rate (%) with respect to the labeled amount of nitrendipine (C$_{18}$H$_{20}$N$_2$O$_4$) = $M_S/ M_5 \times A_T/A_S \times V'V/V \times 1/C \times 18$

M_5: Amount (mg) of nitrendipine for assay taken
C: Labeled amount (mg) of nitrendipine (C$_{18}$H$_{20}$N$_2$O$_4$) in 1 tablet

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 356 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecysilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase: A mixture of water, tetrahydrofuran and acetonitrile (14:6:5).
Flow rate: Adjust so that the retention time of nitrendipine is about 9 minutes.

System suitability—

System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of nitrendipine are not less than 5000 and not more than 2.0, respectively.
System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of nitrendipine is not more than 2.0%.

Assay Conduct this procedure using light-resistant vessels. To 20 tablets of Nitrendipine Tablets add 150 mL of diluted acetonitrile (4 in 5), stir until the tablets completely disintegrate, and stir for further 10 minutes. Add diluted acetone (4 in 5) to make exactly 200 mL, and centrifuge. Pipet a volume of the supernatant liquid, equivalent to about 2 mg of nitrendipine (C$_{18}$H$_{20}$N$_2$O$_4$), add exactly 10 mL of the internal standard solution and diluted acetonitrile (4 in 5) to make 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 0.1 g of nitrendipine for assay, previously dried at 105°C for 2 hours, and dissolve in diluted acetonitrile (4 in 5) to make exactly 200 mL. Pipet 4 mL of this solution, add exactly 10 mL of the internal standard solution and diluted acetonitrile (4 in 5) to make 50 mL, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.02> according to the following conditions, and calculate the ratios, Q_T and Q_S, of the peak area of nitrendipine to that of the internal standard.

\[
\text{Amount (mg) of nitrendipine (C}_{18}\text{H}_{20}\text{N}_2\text{O}_4) = M_S \times Q_T/Q_S \times 1/50
\]

M_S: Amount (mg) of nitrendipine for assay taken

Internal standard solution—A solution of propyl parahydroxybenzoate in diluted acetonitrile (4 in 5) (1 in 10,000).
Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 254 nm).
Column: A stainless steel column 6 mm in inside diameter and 15 cm in length, packed with octadecysilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase: A mixture of water, tetrahydrofuran and acetonitrile (14:6:5).
Flow rate: Adjust so that the retention time of nitrendipine is about 12 minutes.

System suitability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the internal standard and nitrendipine are eluted in this order with the resolution between these peaks being not less than 6.
System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of nitrendipine is not more than 1.0%.

Containers and storage Containers—Tight containers.
Storage—Light-resistant.

Nitrogen

窒素

N$_2$: 28.01

Nitrogen is the nitrogen produced by the air liquefaction separation method. It contains not less than 99.5 vol% of nitrogen (N$_2$).

Description Nitrogen is a colorless gas at room temperature and under atmospheric pressure, and is odorless.

1 mL of Nitrogen dissolves in 65 mL of water and in 9 mL of ethanol (95) at 20°C and at a pressure of 101.3 kPa.

Another 1000 mL of Nitrogen at 0°C and at a pressure of 101.3 kPa weighs 1.251 g.

Identification Introduce 1 mL each of Nitrogen and Nitrogen into a gas-measuring tube or syringe for gas chromatography from a cylinder with a pressure-reducing valve, through a directly connected polyvinyl chloride or stainless steel tube. Perform the test with these gases as directed under Gas Chromatography <2.02> according to the following conditions: the principal peak in the chromatogram obtained form Nitrogen has the same retention time as that from nitrogen.

Operating conditions—

Proceed as directed in the operating conditions in the Assay.

Purity Oxygen—The peak area of oxygen obtained from Nitrogen in the Assay is not larger than 1/2 times that from the standard gas mixture.

Assay Introduce 1.0 mL of Nitrogen into a gas-measuring tube or syringe for gas chromatography from a cylinder with a pressure-reducing valve, through a directly connected polyvinyl chloride or stainless steel tube. Perform the test with this gas as directed under Gas Chromatography <2.02> according to the following conditions. Measure the peak area A_T of oxygen. Separately, introduce 1.0 mL of oxygen into the gas mixer, add carrier gas to make exactly 100 mL, mix thoroughly, and use this as the standard gas mixture. Proceed with 1.0 mL of this mixture in the same manner under Nitrogen, and measure the peak area A_S of oxygen.
Nitroglycerin Tablets

Nitroglycerin Tablets contain not less than 80.0% and not more than 120.0% of the labeled amount of nitroglycerin (C₃H₅N₃O₉), 227.09.

Identification
(1) Weigh a quantity of powdered Nitroglycerin Tablets, equivalent to 6 mg of nitroglycerin (C₃H₅N₃O₉), shake thoroughly with 12 mL of diethyl ether, filter, and use the filtrate as the sample solution. Evaporate 5 mL of the sample solution, dissolve the residue in 1 to 2 drops of sulfuric acid, and add 1 drop of diphenylamine TS: a deep blue color develops.

(2) Evaporate 5 mL of the sample solution obtained in (1), add 5 drops of sodium hydroxide TS, heat over a low flame, and concentrate to about 0.1 mL. Cool, heat the residue with 0.02 g of potassium hydrogen sulfate: the odor of acrolein is perceptible.

Purity
Free nitrate ion—Transfer an accurately measured quantity of powdered Nitroglycerin Tablets, equivalent to 20 mg of nitroglycerin (C₃H₅N₃O₉), to a separator, add 40 mL of isopropyl ether and 40 mL of water, shake for 10 minutes, and allow the layers to separate. Collect the aqueous layer, add 40 mL of isopropyl ether, shake for 10 minutes, collect the aqueous layer, filter, and use the filtrate as the sample solution. Separately, transfer 10 mL of Standard Nitric Acid Solution to a separator, add 30 mL of water and 40 mL of the isopropyl ether layer of the first extraction of the sample solution, shake for 10 minutes, continue the procedure in the same manner as the sample solution, and use the sample solution so obtained as the standard solution. Transfer 20 mL of each of the sample solution and the standard solution to Nessler tubes, respectively, shake well with 30 mL of water and 0.06 g of Griess-Romijn’s nitric acid reagent, allow to stand for 30 minutes, and observe the tubes horizontally: the sample solution has no more color than the standard solution.

Disintegration
It meets the requirement, provided that the time limit of the test is 2 minutes, and the use of the disks is omitted.

Assay
Weigh accurately and disintegrate, by soft pressing, not less than 20 Nitroglycerin Tablets. Weigh accurately a portion of the powder, equivalent to about 3.5 mg of nitroglycerin (C₃H₅N₃O₉), add exactly 50 mL of acetic acid (100), shake for 1 hour, filter, and use this filtrate as the sample solution. Separately, weigh accurately about 90 mg of potassium nitrate, previously dried at 105°C for 4 hours, dissolve in 5 mL of water, and add acetic acid (100) to make exactly 100 mL. Pipet 5 mL of the solution, add acetic acid (100) to make exactly 100 mL, and use this solution as the standard solution. Measure exactly 2 mL each of the sample solution and the standard solution, add 2 mL each of salicylic acid TS shake, allow to stand for 15 minutes, and add 10 mL each of water. Render the solution alkaline with about 12 mL of a solution of sodium hydroxide (2 in 5) while cooling in ice, and add water to make exactly 50 mL. Perform the test with these solutions as directed under Ultraviolet-visible Spectrophotometry <224>, using a solution, prepared with 2 mL of acetic acid (100) in the same manner, as the blank. Determine the absorbances, Aₜ and Aₛ, of the subsequent solutions of the sample solution and the standard solution at 410 nm, respectively.

\[
\text{Amount (mg) of nitroglycerin (C₃H₅N₃O₉) = Mₛ × Aₜ / Aₛ × V / 2000 × 0.749}
\]

Mₛ: Amount (mg) of potassium nitrate taken

Calculate the average content from the contents of 10 tablets: it meets the requirements of the test when each content deviates from the average content by no more than 25%. When there is 1 tablet showing a deviation exceeding 25% and not exceeding 30%, determine the content of an additional 20 tablets in the same manner. Calculate the standard deviation from the new average of all 30 tablets: it meets the requirements of the test when 1 tablet may deviate from the average content by between 25% and 30%, but no tablet deviates by more than 30%.

Operating conditions—
Detector: A thermal-conductivity detector.
Column: A column 3 mm in inside diameter and 3 m in length, packed with zeolite for gas chromatography (250 to 355 μm in particle diameter; 0.5 mm in pore size).
Column temperature: A constant temperature of about 50°C.
Carrier gas: Hydrogen or helium.
Flow rate: Adjust so that the retention time of oxygen is about 3 minutes.
System suitability—
System performance: Introduce 1.0 mL of oxygen into the gas mixer, add Nitrogen to make 100 mL, and mix thoroughly. When the procedure is run with 1.0 mL of this mixture under the above operating conditions, oxygen and nitrogen are eluted in this order with the resolution between these peaks being not less than 1.5.
System repeatability: When the test is repeated 5 times with 1.0 mL of the standard gas mixture under the above conditions, the relative standard deviation of the peak area of oxygen is not more than 2.0%.

Containers and storage
Containers—Pressure-resistant cylinders.
Storage—Not exceeding 40°C.
Nitrous Oxide

亜酸化窒素

N₂O: 44.01

Nitrous Oxide contains not less than 97.0 vol% of nitrous oxide (N₂O).

Description

Nitrous Oxide is a colorless gas at room temperature and at atmospheric pressure, and is odorless. 1 mL of Nitrous Oxide dissolves in 1.5 mL of water and in 0.4 mL of ethanol (95%) at 20°C and at a pressure of 101.3 kPa. It is soluble in diethyl ether and in fatty oils. 1000 mL of Nitrous Oxide at 0°C and at a pressure of 101.3 kPa weighs about 1.96 g.

Identification

(1) A glowing splinter of wood held in Nitrous Oxide: it bursts into flame immediately.

(2) Transfer 1 mL each of Nitrous Oxide and nitrous oxide directly from metal cylinders with a pressure-reducing valve to gas measuring tubes or syringes for gas chromatography, using a polyvinyl chloride induction tube. Perform the test with these gases as directed under Gas Chromatography <2.02> according to the operating conditions of the Assay: the retention time of the main peak in the chromatogram obtained with Nitrous Oxide coincides with that in the chromatogram obtained with nitrous oxide.

Purity

Maintain the containers of Nitrous Oxide between 18°C and 22°C for more than 6 hours before the test, and correct the volume at 20°C and at a pressure of 101.3 kPa.

(1) Acidity or alkalinity—To 400 mL of freshly boiled and cooled water add 0.3 mL of methyl red TS and 0.3 mL of bromothymol blue TS, and boil for 5 minutes. Transfer 50 mL of this solution to each of three Nessler tubes marked A, B, and C. Add 0.10 mL of 0.01 mol/L hydrochloric acid VS to tube A, 0.20 mL of 0.01 mol/L hydrochloric acid VS to tube B, stopper each of the tubes, and cool. Pass 1000 mL of Nitrous Oxide through the solution in tube A for 15 minutes, employing delivery tube with an orifice approximately 1 mm in diameter and extending to within 2 mm of the bottom of the Nessler tube: the color of the solution in tube A is never deeper orange-red than that of the solution in tube B and not deeper yellow-green than that of the solution in tube C.

(2) Carbon dioxide—Pass 1000 mL of Nitrous Oxide through 50 mL of barium hydroxide TS in a Nessler tube, in the same manner as directed in (1): any turbidity produced does not exceed that produced in the following control solution.

Control solution: To 50 mL of barium hydroxide TS in a Nessler tube add 1 mL of a solution of 0.1 g of sodium hydroxide carbonate in 100 mL of freshly boiled and cooled water.

(3) Oxidizing substances—Transfer 15 mL of potassium iodide-starch TS to each of two Nessler tubes marked A and B, add 1 drop of acetic acid (100) to each of the tubes, shake, and use these as solution A and solution B, respectively. Pass 2000 mL of Nitrous Oxide through solution A for 30 minutes in the same manner as directed in (1): the color of solution A is the same as that of the stoppered, untreated solution B.

(4) Potassium permanganate-reducing substance—Pour 50 mL of water into each of two Nessler tubes marked A and B, add 0.10 mL of 0.02 mol/L potassium permanganate VS to each of the tubes, and use these as solution A and solution B, respectively. Pass 1000 mL of Nitrous Oxide through solution A in the manner as directed in (1): the color of solution A is the same as that of solution B.

(5) Chloride—Pour 50 mL of water into each of two Nessler tubes marked A and B, add 0.5 mL of silver nitrate TS to each of the tubes, shake, and use these as solution A and solution B, respectively. Pass 1000 mL of Nitrous Oxide through solution A in the same manner as directed in (1): the turbidity of solution A is the same as that of solution B.

(6) Carbon monoxide—Introduce 5.0 mL of Nitrous Oxide into a gas-cylinder or a syringe for gas chromatography from a metal cylinder holding gas under pressure and fitted with a pressure-reducing valve, through a directly connected polyvinyl tube. Perform the test with this under Gas Chromatography <2.02> according to the following conditions: no peak is observed at the same retention time as that of carbon monoxide.

Operating conditions—

Detector: A thermal conductivity detector.

Column: A column about 3 mm in inside diameter and about 3 m in length, packed with 300 to 500 μm zeolite for gas chromatography (0.5 mm in pore size).

Column temperature: A constant temperature of about 50°C.

Carrier gas: Hydrogen or helium.

Flow rate: Adjust so that the retention time of carbon monoxide is about 20 minutes.

Selection of column: To 0.1 mL each of carbon monoxide and air in a gas mixer add carrier gas to make 100 mL, and mix well. Proceed with 5.0 mL of the mixed gas under the above operating conditions. Use a column giving well-resolved peaks of oxygen, nitrogen and carbon monoxide in this order.

Detection sensitivity: Adjust the sensitivity so that the peak height of carbon monoxide obtained from 5.0 mL of the mixed gas used in the selection of column is about 10 cm.

Assay

Withdraw Nitrous Oxide as directed in the Purity.

Introduce 1.0 mL of Nitrous Oxide into a gas-measuring tube or syringe for gas chromatography from a metal cylinder under pressure through a pressure-reducing valve and a directly connected polyvinyl tube. Perform the test with this solution as directed under Gas Chromatography <2.02> according to the following conditions, and determine the peak area Aₕ of air. Separately, introduce 3.0 mL of nitrogen into a gas mixer, add carrier gas to make exactly 100 mL, mix thoroughly, and use this as the standard mixed gas. Proceed with 1.0 mL of this mixture as directed in the case of Nitrous Oxide, and determine the peak area Aₕ of nitrogen in the same manner.
Nizatidine

ニザチジン

C$_{13}$H$_{23}$N$_2$O$_5$S$_2$: 331.46
(1EZ)-N-[(2-[(Dimethylamino)methyl][thiazol-4-yl]methyl)sulfanyl][ethyl]-N'-methyl-2-nitroethene-1,1-diamine
[76963-41-2]

Nizatidine, when dried, contains not less than 98.0% and not more than 101.0% of nizatidine (C$_{13}$H$_{23}$N$_2$O$_5$S$_2$).

Description
Nizatidine occurs as a white to pale yellow-white crystalline powder, and has a characteristic odor. It is soluble in methanol, sparingly soluble in water, and slightly soluble in ethanol (99.5).

Identification (1) Determine the absorption spectrum of a solution of Nizatidine in methanol (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Nizatidine RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Nizatidine, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of dried Nizatidine RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point <2.60> 130 – 135°C (after drying).

Purity (1) Heavy metals <1.07>—Proceed with 2.0 g of Nizatidine according to Method 4, and perform the test using 3 mL of sulfuric acid. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Related substances—Dissolve 50 mg of Nizatidine in 10 mL of a mixture of the mobile phase A and mobile phase B (19:6), and use this solution as the sample solution. Pipet 3 mL of the sample solution, add the mixture of the mobile phase A and mobile phase B (19:6) to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 50 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area from both solutions by the automatic integration method: the area of the peaks other than nizatidine obtained from the sample solution is not larger than 1/5 times the nizatidine from the standard solution. Furthermore, the total of the areas of peaks other than the nizatidine from the sample solution is not larger than the peak area of nizatidine from the standard solution.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 254 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase A: Dissolve 5.9 g of ammonium acetate in 100 mL of a mixture of the mobile phase A and mobile phase B (19:6) to make exactly 200 mL, and adjust to pH 7.5 with acetic acid (100).

Mobile phase B: Methanol.

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 3</td>
<td>76</td>
<td>24</td>
</tr>
<tr>
<td>3 – 20</td>
<td>76 → 50</td>
<td>24 → 50</td>
</tr>
<tr>
<td>20 – 45</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Flow rate: 1.0 mL per minute.

Time span of measurement: About 3 times as long as the retention time of nizatidine, beginning after the solvent peak.

System suitability—
Test for required detectability: Pipet 5 mL of the standard solution, and add a mixture of the mobile phase A and mobile phase B (19:6) to make exactly 25 mL. Confirm that the peak area of nizatidine obtained with 50 μL of this solution is equivalent to 15 to 25% of that with 50 μL of the standard solution.

System performance: When the procedure is run with 50 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of nizatidine are not less than 20,000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 50 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of nizatidine is not more than 2.0%.

Loss on drying <2.41> Not more than 0.5% (2 g, 100°C, 1 hour).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 15 mg each of Nizatidine and Nizatidine RS, both previously dried, dissolve each in...
the mobile phase to make exactly 50 mL, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography C2.01 according to the following conditions. Determine the peak area, \(A_T \) and \(A_S \), of nizatidine in each solution.

\[
\text{Amount (mg) of nizatidine (C}_12\text{H}_21\text{N}_2\text{O}_5\text{S}_2) = M_S \times A_T/A_S
\]

\[
M_S: \text{Amount (mg) of Nizatidine RS taken}
\]

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 254 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: Dissolve 5.9 g of ammonium acetate in 760 mL of water, add 1 mL of diethylamine, and adjust to pH 7.5 with acetic acid (100). To this solution add 240 mL of methanol.

Flow rate: Adjust so that the retention time of nizatidine is about 10 minutes.

System suitability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peaks of nizatidine are not less than 5000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of nizatidine is not more than 1.0%.

Containers and storage—Tight containers.

Nizatidine Capsules

ニザチジンカプセル

Nizatidine Capsules contain not less than 95.0% and not more than 105.0% of the labeled amount of nizatidine (C\(_{12}\)H\(_{21}\)N\(_2\)O\(_5\)S\(_2\)): 331.46.

Method of preparation

Prepare as directed under Capsules, with Nizatidine.

Identification

Take out the contents of Nizatidine Capsules, and powder. To a portion of the powder, equivalent to about 0.15 g of nizatidine (C\(_{12}\)H\(_{21}\)N\(_2\)O\(_5\)S\(_2\)), add exactly 50 mL of the mobile phase, shake vigorously for 10 minutes, and centrifuge. Pipet 5 mL of the supernatant liquid, add exactly 5 mL of the internal standard solution, add the mobile phase to make 50 mL, and use this solution as the sample solution. Perform the test as directed under Ultraviolet-visible Spectrophotometry C2.24, and determine the absorbances, \(A_T \) and \(A_S \), at 314 nm.

Uniformity of dosage units C.02 Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement.

Take out the contents from 1 capsule of Nizatidine Capsules, add the mobile phase to make exactly \(V \) mL so that each mL contains about 1.5 mg of nizatidine (C\(_{12}\)H\(_{21}\)N\(_2\)O\(_5\)S\(_2\)). After shaking vigorously for 10 minutes, centrifuge. Pipet 10 mL of the supernatant liquid, add exactly 5 mL of the internal standard solution and add the mobile phase to make 50 mL, and use this solution as the sample solution. Then, proceed as directed in the Assay.

\[
\text{Amount (mg) of nizatidine (C}_{12}\text{H}_{21}\text{N}_2\text{O}_5\text{S}_2) = M_S \times \frac{Q_T}{Q_S} \times V/10
\]

\[
M_S: \text{Amount (mg) of Nizatidine RS taken}
\]

Internal standard solution—A solution of phenol in the mobile phase (1 in 100).

Dissolution C.01 When the test is performed at 50 revolutions per minute according to the Paddle method using a sinker, using 900 mL of water as the dissolution medium, the dissolution rate in 15 minutes of Nizatidine Capsules is not less than 80%.

Start the test with 1 capsule of Nizatidine Capsules, withdraw not less than 10 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 2 mL of the first filtrate, pipet \(V \) mL of the subsequent filtrate, and add water to make exactly \(V \) mL so that each mL contains about 10 μg of nizatidine (C\(_{12}\)H\(_{21}\)N\(_2\)O\(_5\)S\(_2\)). Use this solution as the sample solution. Separately, weigh accurately about 25 mg of Nizatidine RS, previously dried at 100°C for 1 hour, and dissolve in water to make exactly 100 mL. Pipet 2 mL of this solution, add water to make exactly 50 mL, and use this solution as the standard solution. Perform the test with the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry C2.24, and determine the absorbances, \(A_T \) and \(A_S \), at 314 nm.

\[
\text{Dissolution rate (\%)} = \frac{A_T}{A_S} \times \frac{V}{10} \times 1/C \times 36
\]

\[
M_S: \text{Amount (mg) of Nizatidine RS taken}
\]

\[
C: \text{Labeled amount (mg) of nizatidine (C}_{12}\text{H}_{21}\text{N}_2\text{O}_5\text{S}_2) in 1 capsule}
\]

Assay

Take out the contents of not less than 10 Nizatidine Capsules, weigh accurately the mass of the contents, and powder. Weigh accurately a portion of the powder, equivalent to about 0.15 g of nizatidine (C\(_{12}\)H\(_{21}\)N\(_2\)O\(_5\)S\(_2\)), add exactly 50 mL of the mobile phase, shake vigorously for 10 minutes, and centrifuge. Pipet 5 mL of the supernatant liquid, add exactly 5 mL of the internal standard solution, add the mobile phase to make 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 15 mg of Nizatidine RS, previously dried at 100°C for 1 hour, and dissolve in 30 mL of the mobile phase, add exactly 5 mL of the internal standard solution, add the mobile phase to make 50 mL, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography C2.01 according to the following conditions, and calculate the ratios, \(Q_T \) and \(Q_S \), of the peak area of nizatidine to that of the internal standard.

\[
\text{Amount (mg) of nizatidine (C}_{12}\text{H}_{21}\text{N}_2\text{O}_5\text{S}_2) = M_S \times \frac{Q_T}{Q_S} \times 10
\]

\[
M_S: \text{Amount (mg) of Nizatidine RS taken}
\]

Internal standard solution—A solution of phenol in the mobile phase (1 in 100).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 254 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 40°C.

System suitability

System performance: When the procedure is run with 10 μL of the sample solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peaks of nizatidine are not less than 5000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of nizatidine is not more than 1.0%.

Containers and storage—Tight containers.
Noradrenaline Injection

Norepinephrine Injection

Noradrenaline Injection

Norepinephrine Injection

Noradrenaline Injection is an aqueous injection. It contains not less than 90.0% and not more than 110.0% of the labeled amount of *d*-norepinephrine hydrochloride monohydrate (C_{10}H_{15}NO_3·HCl·H_2O: 169.18).

Method of preparation Dissolve Noradrenaline in 0.01 mol/L hydrochloric acid TS, and prepare as directed under Injections.

Description Norepinephrine Injection is a clear, colorless liquid. It gradually becomes a pale red color by light and by air. pH: 2.3 – 5.0

Identification Transfer a volume of Noradrenaline Injection, equivalent to 1 mg of Noradrenaline, to each of two test tubes A and B, and add 1 mL of water to each tube. Add 10 mL of potassium hydrogen phthalate buffer solution (pH 3.5) to A, and 10 mL of phosphate buffer solution (pH 6.5) to B. To each of these solutions add 1.0 mL of iodine TS, allow to stand for 5 minutes, and determine the absorbance of the solution at 310 nm as directed under Ultraviolet-visible Spectrophotometry 2.2.4[‡]: the absorbance is not more than 0.1.

Purity Arterenone—Measure a volume of Noradrenaline Injection, equivalent to 10 mg of Noradrenaline, add water to make exactly 20 mL, and determine the absorbance of this solution at 310 nm as directed under Ultraviolet-visible Spectrophotometry 2.2.4[‡]: the absorbance is not more than 0.10.

Containers and storage Containers—Tight containers.

JP XVIII

40°C.

Mobile phase: Dissolve 5.9 g of ammonium acetate in 760 mL of water, add 1 mL of diethylamine, and adjust to pH 7.5 with acetic acid (100). To this solution add 240 mL of methanol.

Flow rate: Adjust so that the retention time of nizatidine is about 10 minutes.

System suitability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the internal standard and nizatidine are eluted in this order with the resolution between these peaks being not less than 3.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of nizatidine to that of the internal standard is not more than 1.0%.

Noradrenaline

Norepinephrine

![Chemical Structure](image)

C_{10}H_{15}NO_3: 169.18

4-[(1RS)-2-Amino-1-hydroxyethyl]benzene-1,2-diol [51-41-2]

Noradrenaline, when dried, contains not less than 98.0% of *d*-noradrenaline (C_{10}H_{15}NO_3).

Description Noradrenaline occurs as a white to light brown or slightly reddish brown crystalline powder. It is freely soluble in acetic acid (100), very slightly soluble in water, and practically insoluble in ethanol (95).

It dissolves in dilute hydrochloric acid.

It gradually changes to brown by air and by light.

Identification (1) Determine the absorption spectrum of a solution of Noradrenaline in 0.1 mol/L hydrochloric acid TS (3 in 100,000) as directed under Ultraviolet-visible Spectrophotometry 2.2.3[‡], and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(2) Determine the infrared absorption spectrum of Noradrenaline, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry 2.2.5[‡], and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Purity (1) Clarity and color of solution—Dissolve 0.10 g of Noradrenaline in 10 mL of 0.1 mol/L hydrochloric acid TS, and add water to make 100 mL: the solution is clear and colorless.

(2) Arterenone—Dissolve 50 mg of Noradrenaline in 0.01 mol/L hydrochloric acid TS to make exactly 100 mL. Determine the absorbance of the solution at 310 nm as directed under Ultraviolet-visible Spectrophotometry 2.2.4[‡]:

is not more than 0.1.

(3) Adrenaline—Dissolve 10.0 mg of Noradrenaline in 2.0 mL of dilute acetic acid (100) (1 in 2). Pipet 1 mL of this solution, add water to make 10 mL, then mix with 0.3 mL of a solution of sodium nitrite (1 in 100), and observe after 1 minute: the solution has no more color than the following control solution.

Control solution: Dissolve 2.0 mg of Adrenaline Bitartrate RS for Purity and 90 mg of Noradrenaline Bitartrate RS in water to make exactly 10 mL. Pipet 1 mL of this solution, add 1.0 mL of dilute acetic acid (100) (1 in 2) and water to make 10 mL, and proceed in the same manner.

Loss on drying 2.4[‡] Not more than 0.1% (1 g, in vacuum, silica gel, 18 hours).

Residue on ignition 2.4[‡] Not more than 0.1% (1 g).

Assay Weigh accurately about 0.3 g of Noradrenaline, previously dried, dissolve in 50 mL of acetic acid for nonaqueous titration by warming, if necessary, and titrate 2.5[‡] with 0.1 mol/L perchloric acid VS until the color of the solution changes from blue-purple through blue to blue-green (indicator: 2 drops of crystal violet TS). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 16.92 mg of C_{10}H_{15}NO_3.

Containers and storage Containers—Tight containers.

Storage—Light-resistant, under nitrogen atmosphere, and in a cold place.
Norethisterone / Official Monographs

(2) Adrenaline—Measure a volume of Noradrenaline Injection, equivalent to 5 mg of Noradrenaline, add 1 mL of diluted acetic acid (100) (1 in 2) and water to make exactly 10 mL, and proceed as directed in the Purity (3) under Noradrenaline.

Bacterial endotoxins <4.01> Less than 300 EU/mg.

Extractable volume <6.07> It meets the requirement.

Foreign insoluble matter <6.08> Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter <6.07> It meets the requirement.

Sterility <4.06> Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Pipet a volume of Noradrenaline Injection, equivalent to about 5 mg of dl-noradrenaline (C_{16}H_{17}NO_3), add water to make exactly 25 mL, and use this solution as the sample solution. Separately, weigh accurately about 0.2 g of Norethisterone, add 0.5 g, acetone, 25 mL, and proceed as directed in the Purity (3) under Noradrenaline.

Containers—Hermetic containers, It meets the requirement.

Containers—Tight containers.

Loss on drying <2.41> Not more than 0.5% (0.5 g, in vacuum, silica gel, 4 hours).

Residue on ignition <2.44> Not more than 0.1% (0.5 g).

Assay Weigh accurately about 0.2 g of Norethisterone, previously dried, dissolve in 40 mL of tetrahydrofuran, add 10 mL of a solution of silver nitrate (1 in 20), and titrate <2.50> with 0.1 mol/L sodium hydroxide VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L sodium hydroxide VS = 29.84 mg of C_{16}H_{19}O_2

Containers and storage Containers—Hermetic containers, and colored containers may be used.

Storage—Light-resistant.

Norfloxacin / Official Monographs

Norfloxacin, when dried, contains not less than 99.0% of norfloxacin (C_{18}H_{18}FN_3O_3).

Description Norfloxacin occurs as a white to pale yellow crystalline powder.

It is freely soluble in acetic acid (100), slightly soluble in ethanol (95) and in acetone, very slightly soluble in methanol, and practically insoluble in water.

It dissolves in dilute hydrochloric acid TS and in sodium hydroxide TS.

It is hygroscopic.

It is gradually colored by light.

Identification (1) Dissolve 0.01 g of Norfloxacin in a solution of sodium hydroxide (1 in 250) to make 100 mL. To 5 mL of this solution add a solution of sodium hydroxide (1 in 250) to make 100 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry (2.24), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation <2.43> [α]_D^20 = −32.5 to −37.5 (after drying, 0.25 g, acetone, 25 mL, 100 mm).

Melting point <2.60> 203 – 209°C

Loss on drying <2.41> Not more than 0.5% (0.5 g, in vacuum, silica gel, 4 hours).

Residue on ignition <2.44> Not more than 0.1% (0.5 g).

Loss on drying <2.41> Not more than 0.5% (0.5 g, in vacuum, silica gel, 4 hours).

Residue on ignition <2.44> Not more than 0.1% (0.5 g).

Assay Weigh accurately about 0.2 g of Norethisterone, previously dried, dissolve in 40 mL of tetrahydrofuran, add 10 mL of a solution of silver nitrate (1 in 20), and titrate <2.50> with 0.1 mol/L sodium hydroxide VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L sodium hydroxide VS = 29.84 mg of C_{16}H_{19}O_2

Containers and storage Containers—Tight containers.

Storage—Light-resistant.

Norfloxacin / Official Monographs

Norfloxacin, when dried, contains not less than 99.0% of norfloxacin (C_{18}H_{18}FN_3O_3).

Description Norfloxacin occurs as a white to pale yellow crystalline powder.

It is freely soluble in acetic acid (100), slightly soluble in ethanol (95) and in acetone, very slightly soluble in methanol, and practically insoluble in water.

It dissolves in dilute hydrochloric acid TS and in sodium hydroxide TS.

It is hygroscopic.

It is gradually colored by light.

Identification (1) Dissolve 0.01 g of Norfloxacin in a solution of sodium hydroxide (1 in 250) to make 100 mL. To 5 mL of this solution add a solution of sodium hydroxide (1 in 250) to make 100 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry (2.24), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation <2.43> [α]_D^20 = −32.5 to −37.5 (after drying, 0.25 g, acetone, 25 mL, 100 mm).

Melting point <2.60> 203 – 209°C

Loss on drying <2.41> Not more than 0.5% (0.5 g, in vacuum, silica gel, 4 hours).

Residue on ignition <2.44> Not more than 0.1% (0.5 g).

Loss on drying <2.41> Not more than 0.5% (0.5 g, in vacuum, silica gel, 4 hours).

Residue on ignition <2.44> Not more than 0.1% (0.5 g).

Assay Weigh accurately about 0.2 g of Norethisterone, previously dried, dissolve in 40 mL of tetrahydrofuran, add 10 mL of a solution of silver nitrate (1 in 20), and titrate <2.50> with 0.1 mol/L sodium hydroxide VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L sodium hydroxide VS = 29.84 mg of C_{16}H_{19}O_2

Containers and storage Containers—Tight containers.

Storage—Light-resistant.

Norfloxacin / Official Monographs

Norfloxacin, when dried, contains not less than 99.0% of norfloxacin (C_{18}H_{18}FN_3O_3).

Description Norfloxacin occurs as a white to pale yellow crystalline powder.

It is freely soluble in acetic acid (100), slightly soluble in ethanol (95) and in acetone, very slightly soluble in methanol, and practically insoluble in water.

It dissolves in dilute hydrochloric acid TS and in sodium hydroxide TS.

It is hygroscopic.

It is gradually colored by light.

Identification (1) Dissolve 0.01 g of Norfloxacin in a solution of sodium hydroxide (1 in 250) to make 100 mL. To 5 mL of this solution add a solution of sodium hydroxide (1 in 250) to make 100 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry (2.24), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation <2.43> [α]_D^20 = −32.5 to −37.5 (after drying, 0.25 g, acetone, 25 mL, 100 mm).

Melting point <2.60> 203 – 209°C

Loss on drying <2.41> Not more than 0.5% (0.5 g, in vacuum, silica gel, 4 hours).

Residue on ignition <2.44> Not more than 0.1% (0.5 g).

Assay Weigh accurately about 0.2 g of Norethisterone, previously dried, dissolve in 40 mL of tetrahydrofuran, add 10 mL of a solution of silver nitrate (1 in 20), and titrate <2.50> with 0.1 mol/L sodium hydroxide VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.
photometry $<2.20>$, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave lengths.

2. Dissolve a suitable amount of Norfloxacin in a suitable amount of acetone, evaporate the acetone under reduced pressure, and dry the residue. Determine the infrared absorption spectrum of the residue so obtained as directed in the potassium bromide disk method under Infrared Spectrophotometry $<2.25>$, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Purity (1) Sulfate $<1.14>$—Dissolve 1.0 g of Norfloxacin in 7 mL of 0.5 mol/L sodium hydroxide TS and 23 mL of water, and add 1 drop of phenolphthalein TS. Add gradually diluted hydrochloric acid (1 in 3) to this solution until the red color disappears, then add 0.5 mL of dilute hydrochloric acid, and cool in ice for 30 minutes. Filter through a glass filter (G4), and wash the residue with 10 mL of water. Combine the filtrate and the washing, and add 1 mL of dilute hydrochloric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution as follows. To 0.50 mL of 0.005 mol/L sulfuric acid VS add 7 mL of 0.5 mol/L sodium hydroxide TS and 1 drop of phenolphthalein TS, add diluted hydrochloric acid (1 in 3) until the red color disappears, then add 1.5 mL of dilute hydrochloric acid, 1 or 2 drops of bromophenol blue TS and water to make 50 mL (not more than 0.024%).

(2) Heavy metals $<1.07>$—Proceed with 2.0 g of Norfloxacin according to Method 2, and perform the test. Prepare the control solution with 3.0 mL of Standard Lead Solution (not more than 15 ppm).

(3) Arsenic $<1.17>$—Prepare the test solution with 1.0 g of Norfloxacin according to Method 3, and perform the test (not more than 2 ppm).

(4) Related substances—Conduct this procedure without exposure to light, using light-resistant vessels. Dissolve 0.10 g of Norfloxacin in 50 mL of a mixture of methanol and acetone (1:1), and use this solution as the sample solution. Pipet 1 mL of the sample solution, add a mixture of methanol and acetone (1:1) to make exactly 100 mL. Pipet 2 mL of this solution, add a mixture of methanol and acetone (1:1) to make exactly 10 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography $<2.03>$. Spot 20 μL of each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography (5 to 7 μm in particle diameter). Develop with a mixture of methanol, chloroform, toluene, diethylamine and water (20:20:10:7:4) to a distance of about 9 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm and 366 nm): the number of the spot other than the principal spot obtained from the sample solution is not more than 2 and they are not more intense than the spot from the standard solution.

Loss on drying $<2.41>$ Not more than 1.0% (1 g, 105°C, 2 hours).

Residue on ignition $<2.44>$ Not more than 0.1% (1 g).

Assay Weigh accurately about 0.5 g of Norfloxacin, previously dried, dissolve in 50 mL of acetic acid (100), and titrate $<2.50>$ with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 31.93 mg of $C_{21}H_{25}FN_{2}O_{3}$

Containers and storage Containers—Tight containers. Storage—Light-resistant.

Norgestrel

ノルゲストレル

$C_{28}H_{35}O_2$: 312.45
13-Ethyl-17-hydroxy-18,19-dinor-17α-pregn-4-en-20-yn-3-one
[6533-00-2]

Norgestrel, when dried, contains not less than 98.0% of norgestrel ($C_{28}H_{35}O_2$).

Description Norgestrel occurs as white, crystals or crystaline powder.

It is soluble in tetrahydrofuran and in chloroform, sparingly soluble in ethanol (95), slightly soluble in diethyl ether, and practically insoluble in water.

Identification (1) Dissolve 1 mg of Norgestrel in 2 mL of ethanol (95), and add 1 mL of sulfuric acid: a red-purple color develops. With this solution, examine under ultraviolet light (main wavelength: 365 nm): the solution shows a red-orange fluorescence.

(2) Determine the infrared absorption spectrum of Norgestrel, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry $<2.25>$, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point $<2.60>$ 206 – 212°C

Purity (1) Heavy metals $<1.07>$—Take 1.0 g of Norgestrel, heat gently to carbonize, cool, add 10 mL of a solution of magnesium nitrate hexahydrate in ethanol (95) (1 in 10), and ignite the ethanol to burn. After cooling, add 1 mL of sulfuric acid, proceed with this solution according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(2) Related substances—Dissolve 30 mg of Norgestrel in 5 mL of chloroform, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add chloroform to make exactly 100 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography $<2.03>$. Spot 10 μL of each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography (5 to 7 μm in particle diameter). Develop with a mixture of dichloromethane and ethyl acetate (2:1) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying $<2.41>$ Not more than 0.5% (1 g, 105°C, 3 hours).

Residue on ignition $<2.44>$ Not more than 0.2% (0.5 g).

Assay Weigh accurately about 0.2 g of Norgestrel, previ-
Norgestrel and Ethinylestradiol Tablets

ノルゲストレル・エチニルエストラジオール錠

Norgestrel and Ethinylestradiol Tablets contain not less than 90.0% and not more than 110.0% of the labeled amount of norgestrel (C_{21}H_{28}O_{2}: 312.45) and ethinylestradiol (C_{28}H_{36}O_{2}: 296.40).

Method of preparation Prepare as directed under Tablets, with Norgestrel and Ethinylestradiol.

Identification (1) To a quantity of powdered Norgestrel and Ethinylestradiol Tablets, equivalent to 10 mg of Norgestrel add 10 mL of ethyl acetate, shake for 10 minutes, and filter. To 2 mL of the filtrate add 6 mL of sodium hydroxide TS, shake vigorously, and centrifuge. Take 1 mL of the ethyl acetate layer, evaporate on a water bath to dryness, dissolve the residue in 2 mL of ethanol (95), and add 1 mL of sulfuric acid: a red-purple color develops. Examine under ultraviolet light (main wavelength: 365 nm): two spots obtained from norgestrel and ethinylestradiol. (ethinylestradiol).

(2) Take 1 mL of the filtrate obtained in (1), evaporate on a water bath to dryness, add 1 mL of boric acid-methanol buffer solution to the residue, shake, and cool in ice. Add 1 mL of ice-cold diazo TS, shake, add 1 mL of sodium hydroxide TS, and shake: a red-orange color develops (ethinylestradiol).

(3) Use the filtrate obtained in (1) as the sample solution. Separately, dissolve 10 mg of Norgestrel RS and 1 mg of Ethinylestradiol RS, respectively, in 10 mL of ethyl acetate, and use these solutions as the standard solution (1) and the standard solution (2). Perform the test with these solutions as directed under Thin-layer Chromatography <2.05>. Spot 20 μL each of the sample solution and standard solutions (1) and (2) on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of pentane and ethyl acetate (3:2) to a distance of about 7 cm, and air-dry the plate. Spray evenly a solution of p-toluenesulfonylic acid monohydrate in ethanol (95) (1 in 5) on the plate, and heat the plate at 105°C for 5 minutes. Examine under ultraviolet light (main wavelength: 365 nm): two spots obtained from the sample solution show the similar color tone and Rf value to each spot from the standard solutions (1) and (2).

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

Add 2 mL of diluted methanol (7 in 10) to 1 tablet of Norgestrel and Ethinylestradiol Tablets, add exactly 2 mL of the internal standard solution, shake for 20 minutes, and centrifuge. Filter the supernatant liquid through a membrane filter with a pore size of not more than 0.2 μm, and use this filtrate as the sample solution. Separately, weigh accurately quantities of Norgestrel RS and of Ethinylestradiol RS, equivalent to 100 times each of the labeled amounts, dissolve in diluted methanol (7 in 10) to make exactly 200 mL. Pipet 2 mL of this solution, add exactly 2 mL of the internal standard solution, and use this solution as the standard solution. Perform the test with 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Calculate the ratios, Q_{Ta} and Q_{Tb}, of the peak areas of norgestrel and ethinylestradiol to the peak area of the internal standard of the sample solution and also the ratios, Q_{Sa} and Q_{Sb}, of the peak areas of norgestrel and ethinylestradiol to the peak area of the internal standard of the standard solution. Then, proceed as directed in the Assay.

Amount (mg) of norgestrel (C_{21}H_{28}O_{2})
= M_{Sa} \times Q_{Ta} / Q_{Sa} \times 1/100

Amount (mg) of ethinylestradiol (C_{28}H_{36}O_{2})
= M_{Sb} \times Q_{Tb} / Q_{Sb} \times 1/100

M_{Sa}: Amount (mg) of Norgestrel RS taken
M_{Sb}: Amount (mg) of Ethinylestradiol RS taken

Internal standard solution—A solution of diphenyl in diluted methanol (7 in 10) (1 in 50,000).

Operating conditions—
Proceed as directed in the operating conditions in the Assay.

System suitability—
Proceed as directed in the system suitability in the Assay.

Dissolution <6.10> When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 45 minutes of Norgestrel and Ethinylestradiol Tablets is not less than 70%.

Start the test with 1 tablet of Norgestrel and Ethinylestradiol Tablets, withdraw not less than 50 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.8 μm. Discard not less than 10 mL of the first filtrate, pipet exactly V mL of the subsequent filtrate, equivalent to about 17 μg of norgestrel (C_{21}H_{28}O_{2}) and about 1.7 μg of ethinylestradiol (C_{28}H_{36}O_{2}), transfer into a chromatography column [prepared by packing 0.36 g of octadecylsilanized silica gel for pretreatment (55 to 105 μm in particle diameter) in a tube about 1 cm in inside diameter]. After washing the column with 15 mL of water, elute with 3 mL of methanol, and evaporate the effluent in a water bath to dryness at about 40°C with the aid of a current air. Dissolve the residue in exactly 2 mL of diluted methanol (7 in 10), and use this solution as the sample solution. Separately, weigh accurately about 25 mg of Norgestrel RS and about 2.5 mg of Ethinylestradiol RS, dissolve in diluted methanol (7 in 10) to make exactly 100 mL, then pipet 3 mL of this solution, add diluted methanol (7 in 10) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 50 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine the peak areas, A_{Tb} and A_{Sa}, of norgestrel and ethinylestradiol from the sample solution, and the peak areas, A_{Sb} and A_{Sb}, of norgestrel and ethinylestradiol from the standard solution.

Dissolution rate (%) with respect to the labeled amount of norgestrel (C_{21}H_{28}O_{2})
= M_{Sa} \times A_{Tb} / A_{Sa} \times 1/V \times 1/C_a \times 54
Nortriptyline Hydrochloride

A solution of Nortriptyline Hydrochloride (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry responds to Qualitative Tests <2.24> according to the following conditions.

Operating conditions—

Ethinylestradiol—A fluorophotometer (excitation wavelength: 281 nm, fluorescence wavelength: 305 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecysilicized silica gel for liquid chromatography (10 μm in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase: A mixture of acetonitrile and water (11:9).
Flow rate: Adjust so that the retention time of norgestrel is about 10 minutes.

System suitability—
Performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratios of the peak area of ethinylestradiol and norgestrel to that of the internal standard are not more than 1.0%, respectively.

Containers and storage—Containers—Tight containers.

C_{9}H_{12}N.HCl: 299.84
3-(10,11-Dihydro-5H-dibenzo[a,d]cyclohepten-5-ylidene)-N-methylpropylamine monohydrochloride [894-71-3]

Nortriptyline Hydrochloride, when dried, contains not less than 98.5% of nortriptyline hydrochloride (C_{21}H_{21}N.HCl).

Description—Nortriptyline Hydrochloride occurs as a white to yellowish white crystalline powder. It is odorless, or has a faint, characteristic odor.

It is freely soluble in acetic acid (100) and in chloroform, soluble in ethanol (95), sparingly soluble in water, and practically insoluble in diethyl ether.

The pH of a solution of 1.0 g of Nortriptyline Hydrochloride in 100 mL of water is about 5.5.

Melting point: 215 ~ 220°C

Identification (1) To 5 mL of a solution of Nortriptyline Hydrochloride (1 in 100) add 1 mL of bromine TS: the color of the test solution disappears.

(2) To 5 mL of a solution of Nortriptyline Hydrochloride (1 in 100) add 1 to 2 drops of a solution of quinhydrone in methanol (1 in 40): a red color gradually develops.

(3) Determine the absorption spectrum of a solution of Nortriptyline Hydrochloride (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(4) Determine the infrared absorption spectrum of Nortriptyline Hydrochloride, previously dried, as directed in the potassium chloride disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(5) A solution of Nortriptyline Hydrochloride (1 in 100) responds to Qualitative Tests <1.09> for chloridie.

Purity (1) Clarity and color of solution—Dissolve 0.10 g of Nortriptyline Hydrochloride in 10 mL of water: the solution is clear and colorless to very light yellow.

(2) Heavy metals <1.07>—Proceed with 1.0 g of Nortriptyline Hydrochloride according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 2 ppm).

(3) Arsenic <1.17>—Prepare the test solution with 1.0 g of Nortriptyline Hydrochloride according to Method 3, and perform the test (not more than 2 ppm).

(4) Related substances—Dissolve 0.50 g of Nortriptyline

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.)
Hydrochloride in 20 mL of chloroform, and use this solution as the sample solution. Pipet 2 mL of the sample solution, and add chloroform to make exactly 100 mL. Pipet 5 mL of this solution, add chloroform to make exactly 50 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 4 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of cyclohexane, methanol and diethylamine (8:1:1) to a distance of about 15 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying <2.4i> Not more than 0.5% (1 g, 105°C, 2 hours).

Residue on ignition <2.4i> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.5 g of Nortriptyline Hydrochloride, previously dried, dissolve in 5 mL of acetic acid (100), add 50 mL of acetic anhydride, and titrate <2.50> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 29.98 mg of C19H23N.HCl

Containers and storage Containers—Well-closed containers.

Storage—Light-resistant.

Nortriptyline Hydrochloride Tablets

Nortriptyline Hydrochloride Tablets

Nortriptyline Hydrochloride Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of nortriptyline (C19H23N): 263.38.

Method of preparation Prepare as directed under Tablets, with Nortriptyline Hydrochloride.

Identification (1) Determine the absorption spectrum of the sample solution obtained in the Assay as directed under Ultraviolet-visible Spectrophotometry <2.24>, using diluted 0.1 mol/L hydrochloric acid TS (1 in 50) as the blank: it exhibits a maximum between 237 nm and 241 nm.

(2) To a quantity of powdered Nortriptyline Hydrochloride Tablets, equivalent to 10 mg of nortriptyline (C19H23N), add 10 mL of ethanol (99.5), shake thoroughly, centrifuge, and use the supernatant liquid as the sample solution. Separately, dissolve 11 mg of nortriptyline hydrochloride in 10 mL of ethanol (99.5), and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 10 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of 1-butanol, water and acetic acid (100) (4:1:1) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the principal spot obtained from the sample solution and the spot from the standard solution show the same RT value.

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 tablet of Nortriptyline Hydrochloride Tablets add a suitable volume of 0.1 mol/L hydrochloric acid TS, disperse the fine particles by sonicating, add a suitable volume of 0.1 mol/L hydrochloric acid TS, sonicate, and extract for 15 minutes while occasional shaking. Shake for 15 minutes, and add 0.1 mol/L hydrochloric acid TS to make exactly V mL so that each mL contains about 0.5 mg of nortriptyline (C19H23N). Centrifuge this solution, pipet 2 mL of the supernatant liquid, add water to make exactly 100 mL, and use this solution as the sample solution. Then, proceed as directed in the Assay.

\[
\text{Amount (mg) of nortriptyline (C}_{19}\text{H}_{23}\text{N)} = M_5 \times A_T/A_S \times V/50 \times 0.878
\]

\[
M_S: \text{Amount (mg) of nortriptyline hydrochloride for assay taken}
\]

Dissolution <6.10> When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rates in 30 minutes of a 10-mg tablet and a 25-mg tablet are not less than 70% and not less than 80%, respectively.

Start the test with 1 tablet of Nortriptyline Hydrochloride Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add water to make exactly V’ mL so that each mL contains about 11 μg of nortriptyline (C19H23N), and use this solution as the sample solution. Separately, weigh accurately about 25 mg of nortriptyline hydrochloride for assay, previously dried at 105°C for 2 hours, and dissolve in water to make exactly 100 mL. Pipet 5 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution. Determine the absorbances, A_T and A_S, of the sample solution and standard solution at 239 nm as directed under Ultraviolet-visible Spectrophotometry <2.24>.

Dissolution rate (%) with respect to the labeled amount of nortriptyline (C19H23N) = \(M_5 \times A_T/A_S \times V'/V \times 1/C \times 45 \times 0.878 \)

\[
M_S: \text{Amount (mg) of nortriptyline hydrochloride for assay taken}
\]

C: Labeled amount (mg) of nortriptyline hydrochloride in 1 tablet

Assay Weigh accurately the mass of not less than 20 tablets of Nortriptyline Hydrochloride Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 50 mg of nortriptyline (C19H23N), add 50 mL of 0.1 mol/L hydrochloric acid TS, sonicate, and extract for 15 minutes while occasional shaking. Shake for 15 minutes, and add 0.1 mol/L hydrochloric acid TS to make exactly 100 mL. Centrifuge this solution, pipet 2 mL of the supernatant liquid, add water to make exactly 100 mL, and use this solution as the sample solution. Separately, weigh accurately about 28 mg of nortriptyline hydrochloride for assay, previously dried at 105°C for 2 hours, and dissolve in 0.1 mol/L hydrochloric acid TS to make exactly 100 mL. Pipet 2 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution. Determine the absorbances, A_T and A_S, of the sample solution and standard solution at 239 nm as directed under Ultraviolet-visible Spectrophotometry <2.24>, using diluted 0.1 mol/L hydrochloric acid TS (1 in 50) as the blank.
Noscapine

Description
Noscapine occurs as white, crystals or crystalline powder. It is odorless and tasteless.

It is very soluble in acetic acid (100%), slightly soluble in ethanol (95%) and in diethyl ether, and practically insoluble in water.

Identification (1)
Determine the absorption spectrum of a solution of Noscapine in methanol (1 in 20,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

Identification (2)
Determine the infrared absorption spectrum of Noscapine, previously dried, as directed in the potassium bromide disk method under the Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation <2.49> $[d]_D^20: +42$ to $+48^\circ$ (after drying, 0.5 g, 0.1 mol/L hydrochloric acid TS, 25 mL, 100 nm).

Melting point <2.60> 174 – 177°C

Purity (1)
According to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

Purity (2)
Heavy metals <1.07>—Proceed with 2.0 g of Noscapine according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

Purity (3)
Morphine—Dissolve 10 mg of Noscapine in 1 mL of water and 5 mL of 1-nitroso-2-phenyl TS with shaking, add 2 mL of a solution of potassium nitrate (1 in 10), and warm at 40°C for 2 minutes. Add 1 mL of a solution of sodium nitrite (1 in 5000), and warm at 40°C for 5 minutes.

After cooling, shake the solution with 10 mL of chloroform, centrifuge, and collect the aqueous layer: the solution so obtained has no more color than a pale red.

Purity (4)
Related substances—Dissolve 0.7 g of Noscapine in 50 mL of acetone, and use this solution as the sample solution. Pipet 5 mL of the sample solution, add acetone to make exactly 50 mL. Pipet 5 mL of this solution, add acetone to make exactly 100 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.07>. Spot 10 µL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of acetone, toluene, ethanol (99.5%) and ammonia solution (28) (60:60:9:2) to a distance of about 10 cm, and air-dry the plate. Spray evenly dilute bismuth nitrate-potassium iodide TS for spraying on the plate: the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying <2.4f> Not more than 0.5% (2 g, 105°C, 4 hours).

Residue on ignition <2.44f> Not more than 0.1% (1 g).

Assay
Weigh accurately about 0.8 g of Noscapine, previously dried, dissolve in 30 mL of acetic acid (100) and titrate with 0.1 mol/L perchloric acid VS (indicator: 3 drops of crystal violet TS). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 41.34 mg of C$_2$H$_{23}$NO$_3$.

Containers and storage
Containers—Well-closed containers.

Storage—Light-resistant.

Noscapine Hydrochloride Hydrate

Description
Noscapine Hydrochloride Hydrate occurs as colorless or white, crystals or crystalline powder. It is odorless, and has a bitter taste.

It is freely soluble in water, in acetic anhydride, and in acetic acid (100), soluble in ethanol (95), and practically insoluble in diethyl ether.

Identification (1)
To 1 mg of Noscapine Hydrochloride Hydrate add 1 drop of formaldehyde-sulfuric acid TS: a pur-
Nystatin / Official Monographs

Nystatin

Nystatin is a mixture of polyene macrolide substances having antifungal activity produced by the growth of Streptomyces noursei.

It contains not less than 4600 units (potency) per mg, calculated on the dried basis. The potency of Nystatin is expressed as the unit of nystatin (C₄₄H₇₂N₇O₁₇) 926.09, and one unit corresponds to 0.27 μg of nystatin (C₄₄H₇₂N₇O₁₇).

Description Nystatin occurs as a white to light yellow-brown powder.

It is soluble in formamide, sparingly soluble in methanol, slightly soluble in ethanol (95), and very slightly soluble in water.

It dissolves in sodium hydroxide TS.

Identification (1) Dissolve 1 mg of Nystatin in 5 mL of water and 1 mL of sodium hydroxide TS, heat for 2 minutes, and cool. To this solution add 3 mL of a solution of 4-aminoacetophenone in methanol (1 in 200) and 1 mL of hydrochloric acid: a red-purple color develops.

(2) To 10 mg of Nystatin add 50.25 mL of a mixture of diluted methanol (4 in 5) and sodium hydroxide TS (200:1), heat at not exceeding 50°C to dissolve, then add diluted methanol (4 in 5) to make 500 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry 2.24ⁱ, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Nystatin RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

Purity Heavy metals <i>1.07</i>—Proceed with 1.0 g of Nystatin according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

Loss on drying <i>2.41</i> Not more than 5.0% (0.3 g, in vacuum, 60°C, 3 hours).

Assay

Weigh accurately about 0.5 g of Nystatin Hydrochloride Hydrate, previously dried at 40°C for 2 hours in vacuum (not more than 0.67 kPa), dissolve in formamide to make a solution of 30,000 units per mL, and use this solution as the sample stock solution. Take exactly a suitable amount of the sample stock solution, add phosphate buffer solution (pH 6.0) to make solutions so that each mL contains 300 units and 150 units, and use these solutions as the high concentration standard solution and the low concentration standard solution, respectively.

(i) Test organism—Saccharomyces cerevisiae ATCC 9763

(ii) Culture medium—Use the medium 2) under (1) Agar media for seed and base layer.

(iii) Standard solutions—Use a light-resistant container. Weigh accurately an amount of Nystatin RS equivalent to about 60,000 units, previously dried at 40°C for 2 hours in vacuum (not more than 0.67 kPa), dissolve in formamide to make a solution of 3000 units per mL, and use this solution as the standard stock solution. Keep the standard stock solution at 5°C or below and use within 3 days. Take exactly a suitable amount of the standard stock solution before use, add phosphate buffer solution (pH 6.0) to make solutions so that each mL contains 300 units and 150 units, and use these solutions as the high concentration standard solution and the low concentration standard solution, respectively.

(iv) Sample solutions—Use a light-resistant container. Weigh accurately an amount of Nystatin equivalent to about 60,000 units, dissolve in formamide to make a solution of 3000 units per mL, and use this solution as the sample stock solution. Take exactly a suitable amount of the sample stock solution, add phosphate buffer solution (pH 6.0) to make solutions so that each mL contains 300 units and 150 units, and use these solutions as the high concentration sample solution and the low concentration sample solution, respectively.

Containers and storage Containers—Tight containers.

Storage—Light-resistant, and in a cold place.
Ofloxacin

オフロキサシン

C_{18}H_{20}FN_{3}O_{4}: 361.37
(3RS)-9-Fluoro-3-methyl-10-(4-methylpiperazin-1-yl)-7-oxo-2,3-dihydro-7H-pyrido[1,2,3-de][1,4]benzoxazine-6-carboxylic acid

[82419-36-1]

Ofloxacin, when dried, contains not less than 99.0% and not more than 101.0% of ofloxacin (C_{18}H_{20}FN_{3}O_{4}).

Description Ofloxacin occurs as pale yellowish white to light yellow-white, crystals or crystalline powder.

It is freely soluble in acetic acid (100), slightly soluble in water, and very slightly soluble in acetonitrile and in ethanol (99.5).

A solution of Ofloxacin in sodium hydroxide TS (1 in 20) does not show optical rotation.

It is changed in color by light.

Melting point: about 265°C (with decomposition).

Identification (1) Determine the absorption spectrum of a solution of Ofloxacin in 0.1 mol/L hydrochloric acid TS (1 in 150,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Ofloxacin as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Purity (1) Heavy metals <1.07>—Proceed with 2.0 g of Ofloxacin according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Related substances—Conduct this procedure without exposure to light. Dissolve 10 mg of Ofloxacin in 50 mL of a mixture of water and acetonitrile (6:1), and use this solution as the sample solution. Pipet 1 mL of the sample solution, and add a mixture of water and acetonitrile (6:1) to make exactly 20 mL. Pipet 1 mL of this solution, add a mixture of water and acetonitrile (6:1) to make exactly 10 mL, and use this solution as the standard solution. Perform the test with exactly 10 µL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak other than ofloxacin obtained from the sample solution is not larger than 2/5 times the peak area of ofloxacin from the standard solution, and the total area of the peaks other than ofloxacin is not larger than the peak area from the standard solution.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 294 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 µm in particle diameter).

Column temperature: A constant temperature of about 45°C.

Mobile phase: Dissolve 7.0 g of sodium perchlorate monohydrate and 4.0 g of ammonium acetate in 1300 mL of water, adjust the pH to 2.2 with phosphoric acid, and add 240 mL of acetonitrile.

Flow rate: Adjust so that the retention time of ofloxacin is about 20 minutes.

Time span of measurement: About 1.8 times as long as the retention time of ofloxacin, beginning after the solvent peak.

System suitability—

Test for required detectability: Pipet 1 mL of the standard solution, and add a mixture of water and acetonitrile (6:1) to make exactly 20 mL. Confirm that the peak area of ofloxacin obtained with 10 µL of this solution is equivalent to 4 to 6% of that with 10 µL of the standard solution.

System performance: To 0.5 mL of the sample solution add 1 mL of a solution of ofloxacin demethyl substance in a mixture of water and acetonitrile (6:1) (1 in 20,000) and a mixture of water and acetonitrile (6:1) to make 100 mL. When the procedure is run with 10 µL of this solution under the above operating conditions, ofloxacin demethyl substance and ofloxacin are eluted in this order with the resolution between these peaks being not less than 2.5.

System repeatability: When the test is repeated 6 times with 10 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of ofloxacin is not more than 2.0%.

Loss on drying <2.41> Not more than 0.2% (1 g, 105°C, 4 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.3 g of Ofloxacin, previously dried, dissolve in 100 mL of acetic acid (100), and titrate <2.50> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 36.14 mg of C_{18}H_{20}FN_{3}O_{4}

Containers and storage Containers—Tight containers. Storage—Light-resistant.
Olmesartan Medoxomil
オルメサルタン メドキソミル

C₂₉H₃₉N₆O₆: 558.59
(5-Methyl-2-oxo-1,3-dioxol-4-yl)methyl 4-(2-hydroxypropan-2-yl)-2-propyl-1-[(2'-1H-tetrazol-5-yl)biphenyl-
4-yl]methyl-1H-imidazole-5-carboxylate
[144689-63-4]

Olmesartan Medoxomil contains not less than 98.5% and not more than 101.5% of olmesartan medoxomil (C₂₉H₃₉N₆O₆), calculated on the anhydrous and residual solvent-free basis.

Description Olmesartan Medoxomil occurs as a white to pale yellow-white crystalline powder. It is insoluble in water.

Identification (1) Determine the absorption spectrum of a solution of Olmesartan Medoxomil in acetoniitrile (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Olmesartan Medoxomil RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Olmesartan Medoxomil as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of Olmesartan Medoxomil RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Purity (1) Heavy metals <1.07>—Proceed with 2.0 g of Olmesartan Medoxomil according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Related substances—Dissolve 20 mg of Olmesartan Medoxomil in 20 mL of acetoniitrile, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add acetoniitrile to make 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 µL of each of the sample solution and standard solution as directed under Liquid Chromatography <2.08> according to the following conditions, and determine each peak area by the automatic integration method: the areas of the peaks, having the relative retention times of about 0.2 and about 1.6 to olmesartan medoxomil, obtained from the sample solution are not larger than 2/5 times and 3/10 times the peak area of olmesartan medoxomil from the standard solution, respectively, the area of the peaks other than olmesartan medoxomil and the peaks mentioned above from the sample solution is not larger than 1/10 times the peak area of olmesartan medoxomil from the standard solution, and the total area of these peaks is not larger than 3/10 times the peak area of olmesartan medoxomil from the standard solution.

In addition, the total area of the peaks other than olmesartan medoxomil from the sample solution is not larger than 4/5 times the peak area of olmesartan medoxomil from the standard solution. For the areas of the peaks, having the relative retention times of about 0.2 and about 1.6 to olmesartan medoxomil, multiply their correction factors 0.65 and 1.39, respectively.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 250 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 10 cm in length, packed with octylsilanized silica gel for liquid chromatography (3.5 µm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase A: Dissolve 2.04 g of potassium dihydrogen phosphate in water to make 1000 mL, and adjust to pH 3.5 with a solution prepared by dissolving 1.73 g of phosphoric acid in water to make 1000 mL. To 400 mL of this solution add 100 mL of acetonitrile.
Mobile phase B: Dissolve 2.04 g of potassium dihydrogen phosphate in water to make 1000 mL, and adjust to pH 3.5 with a solution prepared by dissolving 1.73 g of phosphoric acid in water to make 1000 mL. To 100 mL of this solution add 400 mL of acetonitrile.
Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 10</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>10 – 35</td>
<td>75 → 0</td>
<td>25 → 100</td>
</tr>
<tr>
<td>35 – 45</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Flow rate: 1.0 mL per minute.
Time span of measurement: For 45 minutes after injection, beginning after the solvent peak.

System suitability—
Test for required detectability: Pipet 1 mL of the standard solution, add acetoniitrile to make exactly 20 mL. Confirm that the peak area of olmesartan medoxomil obtained with 10 µL of this solution is equivalent to 3.5 to 6.5% of that with 10 µL of the standard solution.

System performance: When the procedure is run with 10 µL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of olmesartan medoxomil are not less than 5000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 10 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of olmesartan medoxomil is not more than 2.0%.

Water <2.48> Not more than 0.5% (0.5 g, coulometric titration).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 50 mg each of Olmesartan Medoxomil and Olmesartan Medoxomil RS (separately determine the water <2.49> and the residual solvent in the same manners as Olmesartan Medoxomil), dissolve them separately in a mixture of acetoniitrile and water (4:1) to make exactly 50 mL. Pipet 5 mL of each of these solutions, add exactly
5 mL of the internal standard solution, add a mixture of water and acetonitrile (3:2) to make 100 mL, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and calculate the ratios, Q_1 and Q_2, of the peak area of olmesartan medoxomil to that of the internal standard.

Amount (mg) of olmesartan medoxomil (C$_{29}$H$_{30}$N$_4$O$_3$) = $M_S \times Q_2/Q_1$

M_S: Amount (mg) of Olmesartan Medoxomil RS taken, calculated on the anhydrous and residual solvent-free basis

Internal standard solution—A solution of isobutyl parahydroxybenzoate in a mixture of water and acetonitrile (3:2) (1 in 2000).

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 250 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase: Dissolve 2.04 g of potassium dihydrogen phosphate in water to make 1000 mL, and adjust to pH 3.4 with a solution prepared by dissolving 1.73 g of phosphoric acid in water to make 1000 mL. To 330 mL of this solution add 170 mL of acetonitrile.
Flow rate: Adjust so that the retention time of olmesartan medoxomil is about 16 minutes.

System suitability—
System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, olmesartan medoxomil and the internal standard are eluted in this order with the resolution between these peaks being not less than 4.
System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of olmesartan medoxomil to that of the internal standard is not more than 0.5%.

Containers and storage Containers—Well-closed containers.

Olmesartan Medoxomil Tablets

オルメサルタン メドキソミル錠

Olmesartan Medoxomil Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of olmesartan medoxomil (C$_{29}$H$_{30}$N$_4$O$_3$; 558.59).

Method of preparation Prepare as directed under Tablets, with Olmesartan Medoxomil.

Identification To a quantity of powdered Olmesartan Medoxomil Tablets, equivalent to 20 mg of Olmesartan Medoxomil, add 60 mL of a mixture of acetonitrile and water (3:2), sonicate for 10 minutes, and add a mixture of acetonitrile and water (3:2) to make 100 mL. Centrifuge this solution, to 5 mL of the supernatant liquid add a mixture of acetonitrile and water (3:2) to make 100 mL, and determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.2.42>: it exhibits a maximum between 255 nm and 259 nm.

Purity Related substances—To a quantity of powdered Olmesartan Medoxomil Tablets, equivalent to 20 mg of Olmesartan Medoxomil, add 20 mL of a mixture of acetonitrile and water (9:1), sonicate for 15 minutes, centrifuge, and filter the supernatant liquid through a membrane filter with a pore size not exceeding 0.5 μm. Discard the first 5 mL of the filtrate, and use the subsequent filtrate as the sample solution. Pipet 1 mL of the sample solution, add a mixture of acetonitrile and water (9:1) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area by the automatic integration method: the areas of the peaks, having the relative retention time of about 0.2 and about 1.6 to olmesartan medoxomil, obtained from the sample solution are not larger than 3/5 times the peak area of olmesartan medoxomil from the standard solution, and the area of the peak other than olmesartan medoxomil and the peaks mentioned above from the sample solution is not larger than 1/5 times the peak area of olmesartan medoxomil from the standard solution. Furthermore, the total area of the peaks other than olmesartan medoxomil from the sample solution is not larger than 1.4 times the peak area of olmesartan medoxomil from the standard solution. For the areas of the peaks, having the relative retention time of about 0.7 and about 3.4 to olmesartan medoxomil, multiply their collection factors, 0.65 and 1.39, respectively.

Operating conditions—
Detector, column, column temperature, mobile phase, flowing of mobile phase, and flow rate: Proceed as directed in the operating conditions in the Purity (2) under Olmesartan Medoxomil.

Time span of measurement: For 45 minutes after injection, beginning after the solvent peak.

System suitability—
Test for required detectability: To exactly 1 mL of the standard solution add a mixture of acetonitrile and water (9:1) to make exactly 20 mL. Confirm that the peak area of olmesartan medoxomil obtained with 10 μL of this solution is equivalent to 3.5 to 6.5% of that with 10 μL of the standard solution.

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of olmesartan medoxomil are not less than 5500 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of olmesartan medoxomil is not more than 2.0%.

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 tablet of Olmesartan Medoxomil Tablets add 5V/7 mL of a mixture of acetonitrile and water (3:2) and exactly V/10 mL of the internal standard solution. Sonicate for 10 minutes with occasional stirring, and add a mixture of acetonitrile and water (3:2) to make V mL so that each mL contains about 0.2 mg of olmesartan medoxomil (C$_{29}$H$_{30}$N$_4$O$_3$). Centrifuge this solution, to 5 mL of the supernatant liquid add a mixture of acetonitrile and water (3:2) to make 25 mL, and use this solution as the sample solution. Then, proceed.
Olopatadine Hydrochloride / Official Monographs

as directed in the Assay.

Amount (mg) of olmesartan medoxomil (C_{29}H_{32}N_{2}O_{3})
= M_{a} \times \frac{Q_{0}}{Q_{a}} \times \frac{V}{200}

M_{a}: Amount (mg) of Olmesartan Medoxomil RS taken, calculated on the anhydrous and residual solvent-free basis

Internal standard solution—A solution of isobutyl para-hydroxybenzoate in a mixture of acetonitrile and water (3:2) (1 in 1000).

Dissolution When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of 2nd fluid for dissolution test as the dissolution medium, the dissolution rates in 30 minutes of 5-mg, 10-mg and 20-mg tablets are not less than 80%, and that in 30 minutes of 40-mg tablet is not less than 75%.

Start the test with 1 tablet of Olmesartan Medoxomil Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add the dissolution medium to make exactly V mL, and the residual solvent in the same manner as Olmesartan Medoxomil (C_{29}H_{32}N_{2}O_{3}), and use this solution as the sample solution. Separately, weigh accurately about 40 mg of Olmesartan Medoxomil RS (separately, determine the water C, and after cooling add ethanol (99.5) to make exactly 20 mL. Pipet 5 mL of this solution, add ethanol (99.5) to make exactly 50 mL. Then, pipet 5 mL of this solution, add the dissolution medium to make exactly 200 mL, and use this solution as the standard solution.

Dissolution rate (%) with respect to the labeled amount of olmesartan medoxomil (C_{29}H_{32}N_{2}O_{3})
= M_{b} \times \frac{A_{1}}{A_{3}} \times \frac{V'}{V} \times \frac{1}{C} \times \frac{45}{4}

M_{b}: Amount (mg) of Olmesartan Medoxomil RS taken, calculated on the anhydrous and residual solvent-free basis

C: Labeled amount (mg) of olmesartan medoxomil (C_{29}H_{32}N_{2}O_{3}) in 1 tablet

Assay Weigh accurately the mass of not less than 20 Olmesartan Medoxomil Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 20 mg of olmesartan medoxomil (C_{29}H_{32}N_{2}O_{3}), add 70 mL of a mixture of acetonitrile and water (3:2) and exactly 10 mL of the internal standard solution. Sonicate for 15 minutes with occasional stirring, and add a mixture of acetonitrile and water (3:2) to make 100 mL. Centrifuge this solution, to 5 mL of the supernatant liquid add a mixture of acetonitrile and water (3:2) to make 25 mL, and use this solution as the sample solution. Separately, weigh accurately about 40 mg of Olmesartan Medoxomil RS (separately determine the water C, and the residual solvent in the same manner as Olmesartan Medoxomil (C_{29}H_{32}N_{2}O_{3}), dissolve in 60 mL of a mixture of acetonitrile and water (3:2), add exactly 20 mL of the internal standard solution, then add a mixture of acetonitrile and water (3:2) to make 100 mL. To 5 mL of this solution add a mixture of acetonitrile and water (3:2) to make 50 mL, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.06> according to the following conditions, and calculate the ratios, Q_{0} and Q_{a}, of the peak area of olmesartan medoxomil to that of the internal standard.

Amount (mg) of olmesartan medoxomil (C_{29}H_{32}N_{2}O_{3})
= M_{b} \times \frac{Q_{0}}{Q_{a}} \times \frac{1}{2}

M_{b}: Amount (mg) of Olmesartan Medoxomil RS taken, calculated on the anhydrous and residual solvent-free basis

Internal standard solution—A solution of isobutyl para-hydroxybenzoate in a mixture of acetonitrile and water (3:2) (1 in 1000).

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 250 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase: Dissolve 2.04 g of potassium dihydrogen phosphate in water to make 1000 mL, and adjust to pH 3.4 with a solution prepared by dissolving 1.73 g of phosphoric acid in water to make 1000 mL. To 330 mL of this solution add 170 mL of acetonitrile.
Flow rate: Adjust so that the retention time of olmesartan medoxomil is about 16 minutes.
System suitability—
System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, olmesartan medoxomil and the internal standard are eluted in this order with the resolution between these peaks being not less than 4.
System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviations of the ratio of the peak area of olmesartan medoxomil to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Tight containers.

Olopatadine Hydrochloride

オロパタジン塩酸塩

C_{21}H_{32}NO_{3}.HCl: 373.87

[11-[(1Z)-3-(Dimethylamino)propylidene]-6,11-dihydrodibenzo[b,e]oxepin-2-yl]acetic acid monohydrochloride

[14062-76-6] Olopatadine Hydrochloride, when dried, contains not less than 99.0% and not more than 101.0% of olopatadine hydrochloride (C_{21}H_{32}NO_{3}.HCl).

Description Olopatadine Hydrochloride occurs as white,
crystals or crystalline powder. It is very soluble in formic acid, sparingly soluble in water, and very slightly soluble in ethanol (99.5%).

It dissolves in 0.01 mol/L hydrochloric acid TS.

The pH of a solution obtained by dissolving 1.0 g of Olopatadine Hydrochloride in 100 mL of water is 2.3 to 3.3. Melting point: about 250°C (with decomposition).

Identification (1) Determine the absorption spectrum of a solution of Olopatadine Hydrochloride in 0.01 mol/L hydrochloric acid TS (1 in 40,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Olopatadine Hydrochloride as directed in the potassium chlorid disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) To 5 mL of a solution of Olopatadine Hydrochloride (1 in 100) add 1 mL of dilute nitric acid: this solution responds to Qualitative Tests <1.09> (2) for chloride.

Purity (1) Heavy metals <1.07>—Proceed with 2.0 g of Olopatadine Hydrochloride according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Related substances—Dissolve 50 mg of Olopatadine Hydrochloride in 100 mL of a mixture of 0.05 mol/L phosphate buffer solution (pH 3.5) and acetonitrile (3:2), and use this solution as the sample solution. Pipet 1 mL of the sample solution, add a mixture of 0.05 mol/L phosphate buffer solution (pH 3.5) and acetonitrile (3:2) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak other than olopatadine obtained from the sample solution is not larger than 1/10 times the peak area of olopatadine from the standard solution.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 299 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octylsialized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase: Dissolve 2.3 g of sodium lauryl sulfate in a mixture of 0.05 mol/L phosphate buffer solution (pH 3.5) and acetonitrile (11:9) to make 1000 mL.
Flow rate: Adjust so that the retention time of olopatadine is about 11 minutes.
Time span of measurement: About 2 times as long as the retention time of olopatadine, beginning after the solvent peak.

System suitability—
Test for required detectability: Pipet 1 mL of the standard solution, add a mixture of 0.05 mol/L phosphate buffer solution (pH 3.5) and acetonitrile (3:2) to make exactly 20 mL. Confirm that the peak area of olopatadine obtained with 20 μL of this solution is equivalent to 3.5 to 6.5% of that with 20 μL of the standard solution.

System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of olopatadine are not less than 8000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of olopatadine is not more than 2.0%.

Loss on drying <2.4i>—Not more than 0.3% (1 g, 105°C, 3 hours).
Residue on ignition <2.4i>—Not more than 0.1% (1 g).

Assay Weigh accurately about 0.5 g of Olopatadine Hydrochloride, previously dried, dissolve in 3 mL of formic acid, add 50 mL of a mixture of acetic anhydride and acetic acid (100) (7:3), and titrate <2.5> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 37.39 mg of C₂₃H₂₃NO₃.HCl

Containers and storage Containers—Well-closed containers.

Olopatadine Hydrochloride Tablets
オロパタジン塩酸塩錠

Olopatadine Hydrochloride Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of olopatadine hydrochloride (C₂₃H₂₃NO₃.HCl: 373.87).

Method of preparation Prepare as directed under Tablets, with Olopatadine Hydrochloride.

Identification Shake well a quantity of powdered Olopatadine Hydrochloride Tablets, equivalent to 5 mg of Olopatadine Hydrochloride, with 100 mL of 0.01 mol/L hydrochloric acid TS, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Determine the absorption spectrum of the filtrate as directed under Ultraviolet-visible Spectrophotometry <2.24>: it exhibits a maximum between 295 nm and 299 nm.

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 tablet of Olopatadine Hydrochloride Tablets add 4V/5 mL of a mixture of 0.05 mol/L phosphate buffer solution (pH 3.5) and acetonitrile (3:2). To this solution add exactly V/10 mL of the internal standard solution, shake well, and add a mixture of 0.05 mol/L phosphate buffer solution (pH 3.5) and acetonitrile (3:2) to make V mL so that each mL contains about 50 μg of olopatadine hydrochloride (C₂₃H₂₃NO₃.HCl). Filter this solution through a membrane filter with a pore size not exceeding 0.45 μm, and use this filtrate as the sample solution. Then, proceed as directed in the Assay.

Amount (mg) of olopatadine hydrochloride (C₂₃H₂₃NO₃.HCl) = M₀ × Q₀/ Q₁ × V/1000
M₀: Amount (mg) of olopatadine hydrochloride for assay taken

Internal standard solution—A solution of doxepin hydrochloride in a mixture of 0.05 mol/L phosphate buffer solu
Weigh accurately the mass of not less than 20 × 1/2 m L of olopatadine hydrochloride, when dried, contains not less than 99.0% and not more than 101.0% of omeprazole (C17H20N2O4S). Description Omeprazole occurs as a white to yellowish white crystalline powder.

It is freely soluble in N,N-dimethylformamide, sparingly soluble in ethanol (99.5%), and practically insoluble in water. A solution of Omeprazole in N,N-dimethylformamide (1 in 25) shows no optical rotation.

It gradually turns yellowish white on exposure to light.
Melting point: about 150°C (with decomposition).

Identification (1) Add phosphate buffer solution (pH 7.4) to 1 mL of a solution of Omeprazole in ethanol (99.5) (1 in 1000) to make 50 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Omeprazole as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Purity (1) Clarity and color of solution—Dissolve 0.5 g of Omeprazole in 25 mL of N,N-dimethylformamide: the solution is clear and colorless or light yellow. Perform the test with this solution as directed under Ultraviolet-visible Spectrophotometry <2.24>: the absorbance at 420 nm is not more than 0.3.

(2) Heavy metals <1.07>—Proceed with 2.0 g of Omeprazole according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(3) Related substances—Conduct the procedure soon after preparation of the sample solution. Dissolve 50 mg of Omeprazole in 50 mL of the mobile phase, and use this solution as the sample solution. Perform the test with 10 μL of the sample solution as directed under Liquid Chromatography <5.2> according to the following conditions. Determine each of the peak areas of the sample solution by the automatic integration method, and calculate the amounts of them by the area percentage method: the amount of the peaks other than omeprazole is not more than 0.1%, and the total amount of the peaks other than omeprazole is not more than 0.5%.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 280 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octylsilylated silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase: Dissolve 2.83 g of disodium hydrogen phosphate dodecahydrate and 0.21 g of sodium dihydrogen phosphate dihydrate in water to make 1000 mL. If necessary, adjust the pH to 7.6 with diluted phosphoric acid (1 in 100). Add 11 volumes of acetonitrile to 29 volumes of this solution.
Flow rate: Adjust so that the retention time of omeprazole is about 8 minutes.
Time span of measurement: About 10 times as long as the retention time of omeprazole, beginning after the solvent peak.
System suitability—
Test for required detectability: Pipet 5 mL of the sample solution, and add the mobile phase to make exactly 100 mL. Pipet 5 mL of this solution, add the mobile phase to make exactly 50 mL, and use this solution as the solution for system suitability test. Pipet 5 mL of the solution for system suitability test, and add the mobile phase to make exactly 25 mL. Confirm that the peak area of omeprazole obtained with 10 μL of this solution is equivalent to 15 to 25% of that with 10 μL of the solution for system suitability test.
System performance: Dissolve 10 mg of Omeprazole and 25 mg of 1,2-dinitrobenzene in 5 mL of sodium borate solution (19 in 5000) and 95 mL of ethanol (99.5). When the procedure is run with 10 μL of this solution under the above conditions, omeprazole and 1,2-dinitrobenzene are eluted in this order with the resolution between these peaks being not less than 10.

System repeatability: When the test is repeated 6 times with 10 μL of the solution for system suitability test under the above operating conditions, the relative standard deviation of the peak area of omeprazole is not more than 2.0%.

Loss on drying <2.41> Not more than 0.2% (1 g, in vacuum, phosphorus (V) oxide, 50°C, 2 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.4 g of Omeprazole, previously dried, dissolve in 70 mL of N,N-dimethylformamide, and titrate <2.50> with 0.1 mol/L tetramethylammonium hydroxide VS (potentiometric titration). Separately, perform a blank determination in the same manner on a solution consisting of 70 mL of N,N-dimethylformamide and 12 mL of water, and make any necessary correction.

Each mL of 0.1 mol/L tetramethylammonium hydroxide VS = 34.54 mg of C₁₇H₁₉N₂O₄S

Containers and storage Containers—Tight containers.
Storage—Light-resistant, in a cold place.

Omeprazole Delayed-release Tablets

オメプラゾール腸溶錠

Omeprazole Delayed-release Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of omeprazole (C₁₇H₁₉N₂O₄S: 345.42).

Method of preparation Prepare as directed under Tablets, with Omeprazole.

Identification Powder Omeprazole Delayed-release Tablets. To a portion of the powder, equivalent to 10 mg of Omeprazole, add 10 mL of ethanol (95), shake for 10 minutes, and centrifuge. To 1 mL of the supernatant liquid add phosphate buffer solution (pH 7.4) to make 50 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.24>: it exhibits maxima between 273 nm and 277 nm, and between 299 nm and 303 nm.

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.
To 1 tablet of Omeprazole Delayed-release Tablets add V/20 mL of a solution of sodium tetraborate decahydrate (19 in 5000), and shake thoroughly to disintegrate the tablet. Then, proceed as directed in the Assay.

\[
\text{Amount (mg) of omeprazole (C₁₇H₁₉N₂O₄S)} = M_s \times Q_r / Q_s \times V / 50
\]

Mₚ: Amount (mg) of omeprazole for assay taken

Internal standard solution—A solution of 1,2-dinitrobenzene in ethanol (95) (1 in 400).

Dissolution <6.10> When the tests are performed at 50 revolutions per minute according to the Paddle method, using 900 mL each of 1st fluid for dissolution test and 2nd fluid for dissolution test as the dissolution medium, the dis-
solution rates of 10-mg tablet and 20-mg tablet in 120 minutes of the test using the 1st fluid for dissolution test are not more than 5%, respectively, and those of 10-mg tablet in 20 minutes and 20-mg tablet in 15 minutes of the test using the 2nd fluid for dissolution test are not less than 85%, respectively.

Start the test with 1 tablet of Omeprazole Delayed-release Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add the dissolution medium to make exactly V mL so that each mL contains about 11 μg of opium alkaloids (C17H19N3O3S), and use this solution as the sample solution. Separately, weigh accurately about 22 mg of omeprazole for assay, previously dried in vacuum at 50°C using phosphorus (V) oxide as desiccant for 2 hours, and dissolve in ethanol (95) to make exactly 100 mL. Pipet 5 mL of this solution, add the dissolution medium to make exactly 100 mL, and use this solution as the standard solution. Determine the absorbances, A1 and A2, of the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry (2.2.20) at 323 nm when the test is performed using the 1st fluid as the dissolution medium and at 293 nm when the test is performed using the 2nd fluid as the dissolution medium, using the dissolution medium as the blank.

\[
M_S = V_0 \times \frac{A_1}{A_2} \times \frac{V/V}{C} \times 45
\]

M5: Amount (mg) of omeprazole for assay taken
C: Labeled amount (mg) of omeprazole (C17H19N3O3S) in 1 tablet

Assay

To 20 Omeprazole Delayed-release Tablets add V/20 mL of a solution of sodium tetraborate decahydrate (19 in 5000), shake to disintegrate. To this solution add 3V/5 mL of ethanol (95), shake for 15 minutes, then add ethanol (95) to make exactly V mL so that each mL contains about 0.4 mg of omeprazole (C17H19N3O3S), and centrifuge. Pipet 10 mL of the supernatant liquid, add exactly 4 mL of the internal standard solution, add a mixture of ethanol (95) and a solution of sodium tetraborate decahydrate (19 in 5000) (19:1) to make 20 mL, and use this solution as the sample solution. Separately, weigh accurately about 22 mg of omeprazole for assay, previously dried in vacuum at 50°C using phosphorus (V) oxide as desiccant for 2 hours, and dissolve in ethanol (95) to make exactly 100 mL. Pipet 5 mL of this solution, add the dissolution medium to make exactly 100 mL, and use this solution as the standard solution. Determine the absorbances, A1 and A2, of the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry (2.2.20) at 323 nm when the test is performed using the 1st fluid as the dissolution medium and at 293 nm when the test is performed using the 2nd fluid as the dissolution medium, using the dissolution medium as the blank.

\[
M_5 = V_0 \times \frac{A_1}{A_2} \times \frac{V/V}{C} \times 1000
\]

M5: Amount (mg) of omeprazole for assay taken

Internal standard solution—A solution of 1,2-dinitrobenzene in ethanol (95) (1 in 400).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 280 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octysilylized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: Dissolve 2.83 g of disodium hydrogen phosphate dodecahydrate and 0.21 g of sodium dihydrogen phosphate dihydrate in water to make 1000 mL, and adjust to pH 7.6 with diluted phosphoric acid (1 in 100). To 290 mL of this solution add 110 mL of acetonitrile.

Flow rate: Adjust so that the retention time of omeprazole is about 8 minutes.

System suitability—

System performance: When the procedure is run with 5 μL of the standard solution under the above operating conditions, omeprazole and the internal standard are eluted in this order in the retention times of these peaks being not less than 10.

System reproducibility: When the test is repeated 6 times with 5 μL of the standard solution under the above operating conditions, relative standard deviation of the ratio of the peak area of omeprazole to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Tight containers.

Opium Alkaloids Hydrochlorides

アヘンアルカロイド塩酸塩

Opium Alkaloids Hydrochlorides consist of the hydrochlorides of some of the main alkaloids obtained from opium.

It contains not less than 47.0% and not more than 52.0% of morphine (C17H19N3O3S): 285.34, and not less than 35.0% and not more than 41.0% of other opium alkaloids.

Description Opium Alkaloids Hydrochlorides occur as a white to light brown powder.

It is soluble in water, and slightly soluble in ethanol (99.5).

It is colored by light.

Identification (1) Dissolve 0.1 g of Opiyum Alkaloids Hydrochlorides in 10 mL of diluted ethanol (1 in 2), and use this solution as the sample solution. Separately, dissolve 60 mg of Morphine Hydrochloride Hydrate, 40 mg of Noscapine Hydrochloride Hydrate, 10 mg of Codein Phosphate Hydrate and 10 mg of Papaverine Hydrochloride in 10 mL each of diluted ethanol (1 in 2), and use these solutions as the standard solutions (1), (2), (3) and (4), respectively. Perform the test with these solutions as directed under Thin-layer Chromatography (2.2.20). Spot 20 μL each of the sample solution and standard solutions on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of acetone, toluene, ethanol (99.5) and ammonium solution (28) (20:20:3:1) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): each spot obtained from the sample solution is the same in color tone and Rf value with the corresponding spot from the standard solutions (1), (2), (3) and (4) (morphine, noscapine, codeine and papaverine).

(2) A solution of Opium Alkaloids Hydrochlorides (1 in 50) responds to Qualitative Tests (1.09) (2) for chloride.

pH (2.4.5) Dissolve 1.0 g of Opium Alkaloids Hydrochlorides in 50 mL of water: the pH of the solution is between
Purity (1) Clarity and color of solution—Dissolve 0.5 g of Opium Alkaloids Hydrochlorides in 10 mL of water: the solution is clear, and its absorbance <2.24 at 420 nm is not more than 0.20.

(2) Meconic acid—Dissolve 0.1 g of Opium Alkaloids Hydrochlorides in 2 mL of water, and pour into a polyethylene column 1 cm in inside diameter, packed with about 0.36 g of aminopropylsilanized silica gel for pretreatment (55 – 105 μm in particle diameter) and previously washed through with 5 mL of water. Then, wash the column with 5 mL of water, 5 mL of methanol and 10 mL of 0.1 mol/L hydrochloric acid in this order, then elute with 2 mL of 1 mol/L hydrochloric acid, and use the eluate as the test solution. To the test solution add 2 mL of dilute sodium hydroxide TS and 1 drop of iron (III) chloride TS: no red color develops.

Loss on drying <2.47> Not more than 6.0% (0.5 g, 120°C, 8 hours).

Residue on ignition <2.44> Not more than 0.5% (0.5 g).

Assay Weigh accurately about 0.1 g of Opium Alkaloids Hydrochlorides, and dissolve in water to make exactly 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 60 mg of morphine hydrochloride hydrate for assay, dissolve in water to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas of morphine, codeine, papaverine, thebaine, narceine and noscapine, A_{T1}, A_{T2}, A_{T3}, A_{T4}, A_{T5} and A_{T6}, from the sample solution, and the peak area of morphine, A_{S}, from the standard solution.

\[
\text{Amount (mg) of morphine (C_{17}H_{19}NO_3)} = M_S \times \frac{A_{T1}}{A_S} \times 0.887
\]

\[
\text{Amount (mg) of other opium alkaloids} = M_S \times \left\{\frac{A_{T2} + 0.29 A_{T3} + 0.20 A_{T4} + 0.19 A_{T5} + A_{T6}}{A_S}\right\} \times 0.887
\]

\[M_S: \text{Amount (mg) of morphine hydrochloride hydrate for assay taken, calculated on the anhydrous basis.}\]

The relative retention time of codeine, papaverine, thebaine, narceine and noscapine to morphine obtained under the following operating conditions are as follows.

<table>
<thead>
<tr>
<th>Component</th>
<th>Relative retention time</th>
</tr>
</thead>
<tbody>
<tr>
<td>codeine</td>
<td>1.1</td>
</tr>
<tr>
<td>papaverine</td>
<td>1.9</td>
</tr>
<tr>
<td>thebaine</td>
<td>2.5</td>
</tr>
<tr>
<td>narceine</td>
<td>2.8</td>
</tr>
<tr>
<td>noscapine</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Operating conditions—
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase: Dissolve 1.0 g of sodium lauryl sulfate in 500 mL of diluted phosphoric acid (1 in 1000), and adjust the pH to 3.0 with sodium hydroxide TS. To 240 mL of this solution add 70 mL of tetrahydrofuran, and mix.

Flow rate: Adjust so that the retention time of morphine is about 10 minutes.

System suitability—
System performance: Dissolve 60 mg of Morphine Hydrochloride Hydrate, 10 mg of Codeine Phosphate Hydrate, 10 mg of Papaverine Hydrochloride, and 40 mg of Noscapine Hydrochloride Hydrate in water to make 50 mL. When the procedure is run with 20 μL of this solution under the above operating conditions, morphine, codeine, papaverine and noscapine are eluted in this order with the complete separation between these peaks and with the resolution between the peaks of morphine and codeine being not less than 1.5.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of morphine is not more than 1.0%.

Containers and storage Containers—Tight containers. Storage—Light-resistant.

Opium Alkaloids Hydrochlorides Injection

アヘンアルカロイド塩酸塩注射液

Opium Alkaloids Hydrochlorides Injection is an aqueous injection.
It contains not less than 0.90 w/v% and not more than 1.10 w/v% of morphine (C_{17}H_{19}NO_3: 285.34).

Method of preparation
Opium Alkaloids Hydrochlorides 20 g
Water for Injection or Sterile Water for Injection in Containers a sufficient quantity
To make 1000 mL

Prepare as directed under Injections, with the above ingredients.

Description Opium Alkaloids Hydrochlorides Injection is a clear, colorless or light brown liquid.
It is affected by light.
\[\text{pH: } 2.5 – 3.5\]

Identification To 1 mL of Opium Alkaloids Hydrochlorides Injection add 1 mL of ethanol (99.5), mix, and use this solution as the sample solution, and proceed as directed in the Identification (1) under Opium Alkaloids Hydrochlorides.

Extractable volume <6.05> It meets the requirement.

Assay Pipet 2 mL of Opium Alkaloids Hydrochlorides Injection, add exactly 10 mL of the internal standard solution and water to make 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 25 mg of morphine hydrochloride hydrate for assay, and dissolve in exactly 10 mL of the internal standard solution, add water to make 50 mL, and use this solution as the standard solution. Perform the test with 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and calculate the ratios, Q_1 and Q_2, of the peak area of morphine to that of the internal standard.

\[
\text{Amount (mg) of morphine (C_{17}H_{19}NO_3)} = M_S \times \frac{Q_1}{Q_2 \times 0.887}
\]
Opium Alkaloids and Atropine Injection

アヘンアルコイド・アトロピン注射液

Opium Alkaloids and Atropine Injection is an aqueous injection.

It contains not less than 0.90 w/v% and not more than 1.10 w/v% of morphine (C₁₇H₂₉NO₃: 285.34), and not less than 0.027 w/v% and not more than 0.033 w/v% of atropine sulfate hydrate [(C₁₇H₂₃NO₃)₂·H₂SO₄·H₂O: 694.84].

Method of preparation

Opium Alkaloids Hydrochlorides 20 g
Atropine Sulfate Hydrate 0.3 g
Water for Injection or Sterile Water

Prepared as directed under Injections, with the above ingredients.

Describe

Opium Alkaloids and Atropine Injection is a colorless or light brown, clear liquid.

It is affected by light.

pH: 2.5 - 3.5

Identification (1) To 1 mL of Opium Alkaloids and Atropine Injection add 1 mL of ethanol (99.5), mix, and use this solution as the sample solution. Proceed with the sample solution as directed in the Identification (1) under Opium Alkaloids Hydrochlorides.

(2) To 2 mL of Opium Alkaloids and Atropine Injection add 2 mL of ammonia TS, extract with 10 mL of diethyl ether, and filter the diethyl ether layer. Evaporate the filtrate on a water bath to dryness, add 1 mL of ethanol (99.5) to the residue, and heat to dissolve. Allow to stand this solution in an ice water for 30 minutes with occasional shaking. After crystals are formed, use the supernatant liquid as the sample solution. Separately, dissolve 0.03 g of Atropine Sulfate RS in 100 mL of water, proceed with 2 mL of this solution in the same manner as for the sample solution, and use a solution so obtained as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography \(<2.05> \). Spot 10 μL of each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of methanol and ammonia water (28) (200:3) to a distance of about 10 cm, and air-dry the plate. Spray evenly Dragendorff’s TS for spraying on the plate; a spot of about 0.2 RF value among the several spots obtained from the sample solution and an orange colored spot from the standard solution show the same color tone, and have the same RI value (atropine).

Extractable volume \(<6.05> \) It meets the requirements.

Assay (1) Morphin—Pipet 2 mL of Opium Alkaloids and Atropine Injection, add exactly 10 mL of the internal standard solution, then add water to make 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 25 mg of morphine hydrochloride hydrate for assay, dissolve in exactly 10 mL of the internal standard solution, then add water to make 50 mL, and use this solution as the standard solution. Perform the test with 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography \(<2.05> \) according to the following conditions, and calculate the ratio, \(Q_1 \) and \(Q_2 \), of the peak area of morphine to that of the internal standard.

\[
M_S = \frac{M_5 \times Q_2}{Q_S \times 0.887}
\]

Where

- \(M_5 \): Amount (mg) of morphine hydrochloride hydrate for assay taken, calculated on the anhydrous basis
- \(M_S \): Amount (mg) of morphine hydrochloride hydrate for assay taken, calculated on the anhydrous basis
- \(Q_1 \): Test solution
- \(Q_2 \): Standard solution
- \(Q_S \): Amount (mg) of morphine hydrochloride hydrate for standard solution taken, calculated on the anhydrous basis

Internal standard solution—A solution of etilefrine hydrochloride (1 in 500).

Operating conditions—

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: Dissolve 1.0 g of sodium lauryl sulfate in 500 mL of diluted phosphoric acid (1 in 1000), and adjust the pH to 3.0 with sodium hydroxide TS. To 240 mL of this solution add 70 mL of tetrahydrofuran, and mix.

Flow rate: Adjust so that the retention time of morphine is about 10 minutes.

System suitability—

System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, morphine and the internal standard are eluted in this order with the resolution between these peaks being not less than 3.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratios
of the peak area of morphine to that of the internal standard is not more than 2.0%.

(2) Atropine sulfate hydrate—Pipet 2 mL of Opium Alkaloids and Atropine Injection, add exactly 2 mL of the internal standard solution, and add 10 mL of dilute hydrochloric acid (1 in 10). Shake this solution with two 10-mL portions of dichloromethane. Remove the dichloromethane layer, to the water layer add 2 mL of ammonia TS, immediately add 20 mL of dichloromethane, shake vigorously, filter the dichloromethane extract through filter paper on which 5 g of anhydrous sodium sulfate is placed, and evaporate the filtrate to dryness under reduced pressure. To the residue add 0.5 mL of 1,2-dichloroethane and 0.5 mL of bis-trimethylsilyl acetamide, stopper tightly, warm in a water bath at 60°C for 15 minutes, and use this solution as the sample solution. Separately, weigh accurately about 30 mg of Atropine Sulfate RS (determine separately the loss on drying $<2.4\%$) under the same conditions as Atropine Sulfate Hydrate, and dissolve in water to make exactly 100 mL. Pipet 2 mL of this solution, and add exactly 2 mL of the internal standard solution. Proceed with this solution in the same manner as directed for the sample solution, and use this solution as the standard solution. Perform the test with 2 μL each of the sample solution and standard solution as directed under Gas Chromatography $<2.02>$ according to the following conditions, and calculate the ratios, Q_T and Q_S, of the peak area of atropine to that of the internal standard.

\[
\text{Amount (mg) of atropine sulfate hydrate} = M_S \times \frac{Q_T}{Q_S} \times \frac{1}{50} \times 1.027
\]

M_S: Amount (mg) of Atropine Sulfate RS taken, calculated on the dried basis

Internal standard solution—A solution of homatropine hydrobromide (1 in 4000).

Operating conditions—
Detector: A hydrogen flame-ionization detector.
Column: A glass column 3 mm in inside diameter and 1.5 m in length, packed with 180 to 250 μm siliceous earth for gas chromatography coated in 1 to 3% with 50% phenylmethyl silicone polymer for gas chromatography.
Column temperature: A constant temperature of about 210°C.
Carrier gas: Nitrogen or helium.
Flow rate: Adjust so that the retention time of atropine is about 5 minutes.

System suitability—
System performance: When the procedure is run with 2 μL of the standard solution under the above operating conditions, the internal standard and atropine are eluted in this order with the resolution between these peaks being not less than 3.
System repeatability: When the test is repeated 5 times with 2 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratios of the peak area of atropine to that of the internal standard is not more than 2.0%.

Containers and storage—Hermetic containers, and colored containers may be used.
Storage—Light-resistant.

Opium Alkaloids and Scopolamine Injection

アヘンアルコイド・スコポラミン注射液

Opium Alkaloids and Scopolamine Injection is an aqueous injection.

It contains not less than 1.80 w/v% and not more than 2.20 w/v% of morphine ($C_{17}H_{21}NO_3$; 285.34) and not less than 0.054 w/v% and not more than 0.066 w/v% of scopolamine hydrobromide hydrate ($C_{17}H_{21}NO_3\cdot HBr\cdot 3H_2O$; 438.31).

Method of preparation

Opium Alkaloids Hydrochlorides	40 g
Scopolamine Hydrobromide Hydrate	0.6 g
Water for Injection or Sterile Water	a sufficient quantity

To make 1000 mL

Prepare as directed under Injections, with the above ingredients.

Description—Opium Alkaloids and Scopolamine Injection is a clear, colorless to light brown liquid.

It is affected by light.

pH: 2.5 - 3.5

Identification (1)—To 1 mL of Opium Alkaloids and Scopolamine Injection add 1 mL of water and 2 mL of ethanol (99.5), mix, and use this solution as the sample solution. Proceed with the sample solution as directed in the Identification (1) under Opium Alkaloids Hydrochlorides.

(2) To 1 mL of Opium Alkaloids and Scopolamine Injection add 1 mL of water and 2 mL of ammonia TS, extract with 10 mL of diethyl ether, and filter the diethyl ether layer. Evaporate the filtrate on a water bath to dryness, add 1 mL of ethanol (99.5) to the residue, and heat to dissolve. Allow to stand this solution in an ice water for 30 minutes with occasional shaking. After crystals are formed, use the supernatant liquid as the sample solution. Separately, dissolve 0.03 g of Scopolamine Hydrobromide RS in 100 mL of water. To 2 mL of this solution add 2 mL of ammonia TS, proceed with this solution in the same manner as for the sample solution, and use a solution so obtained as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography $<2.07>$. Spot 10 μL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of methanol and ammonia water (28) (200:3) to a distance of about 10 cm, and air-dry the plate. Spray evenly Dragendorff’s TS for spraying on the plate: a spot with an R_T value of about 0.7 among the several spots obtained from the sample solution and an orange colored spot from the standard solution show the same color tone, and have the same R_T value (scopolamine).

Extractable volume $<6.05>$—It meets the requirements.

Assay (1)—Morphine—Pipet 1 mL of Opium Alkaloids and Scopolamine Injection, add 10 mL of the internal standard solution and water to make 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 25 mg of morphine hydrochloride hydrate for assay, dissolve in exactly 10 mL of the internal standard solution, add water to make 50 mL, and use this solution as the standard solution. Perform the test with 20 μL each of the sample solution
and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and calculate the ratios, \(Q_1 \) and \(Q_2 \), of the peak area of morphine to that of the internal standard.

\[
\text{Amount (mg) of morphine (C}_17\text{H}_{19}\text{NO}_3) = M_S \times Q_1 / Q_2 \times 0.887
\]

\(M_S \): Amount (mg) of morphine hydrochloride hydrate for assay taken, calculated on the anhydrous basis

\text{Internal standard solution—A solution of etilefrin hydrochloride (1 in 500).}

\text{Operating conditions—}

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 \(\mu \)m in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: Dissolve 1.0 g of sodium lauryl sulfate in 500 mL of diluted phosphoric acid (1 in 1000), and adjust the pH to 3.0 with sodium hydroxide TS. To 240 mL of this solution add 70 mL of tetrahydrofuran, and mix.

Flow rate: Adjust so that the retention time of morphine is about 10 minutes.

\text{System suitability—}

System performance: When the procedure is run with 20 \(\mu \)L of the standard solution under the above operating conditions, morphine and the internal standard are eluted in this order with the resolution between these peaks being not less than 3.

System repeatability: When the test is repeated 6 times with 20 \(\mu \)L of the standard solution under the above operating conditions, the relative standard deviation of the ratios of the peak area of morphine to that of the internal standard is not more than 2.0%.

(2) Scopolamine hydrobromide hydrate—Pipet 2 mL of Opium Alkaloids and Scopolamine Injection, and add exactly 2 mL of the internal standard solution. To this solution add 10 mL of diluted hydrochloric acid (1 in 10), and shake with two 10-mL portions of dichloromethane. Remove the dichloromethane layer, to the water layer add 2 mL of ammonia TS, add immediately 20 mL of dichloromethane, shake vigorously, filter the dichloromethane extract through a filter paper on which 5 g of anhydrous sodium sulfate is placed, and evaporate the filtrate to dryness under reduced pressure. To the residue add 0.5 mL of 1,2-dichloroethane and 0.5 mL of bis-trimethyl silyl acetamide, stopper tightly, warm in a water bath at 60°C for 15 minutes, and use this solution as the sample solution. Separately, weigh accurately about 60 mg of Scopolamine Hydrobromide RS (determine separately the loss on drying <2.47> under the same conditions as Scopolamine Hydrobromide Hydrate), and dissolve in water to make exactly 100 mL. Pipet 2 mL of this solution, add exactly 2 mL of the internal standard solution. Proceed with this solution in the same manner as for the sample solution, and use thus obtained solution as the standard solution. Perform the test with 2 \(\mu \)L each of the sample solution and standard solution as directed under Gas Chromatography <2.02> according to the following conditions, and calculate the ratios, \(Q_1 \) and \(Q_2 \), of the peak area of scopolamine to that of the internal standard.

\[
\text{Amount (mg) of scopolamine hydrobromide hydrate (C}_19\text{H}_{21}\text{NO}_4\text{HBr.3H}_2\text{O}) = M_S \times Q_1 / Q_2 \times 1 / 50 \times 1.141
\]

\(M_S \): Amount (mg) of Scopolamine Hydrobromide RS taken, calculated on the dried basis

\text{Internal standard solution—A solution of homatropine hydrobromide (1 in 4000).}

\text{Operating conditions—}

Detector: A hydrogen flame-ionization detector.

Column: A glass column 3 mm in inside diameter and 1.5 m in length, packed with 180 to 250 \(\mu \)m siliceous earth for gas chromatography coated in 1 to 3% with 50% phenylmethyl silicone polymer for gas chromatography.

Column temperature: A constant temperature of about 210°C.

Carrier gas: Nitrogen or helium.

Flow rate: Adjust so that the retention time of scopolamine is about 8 minutes.

\text{System suitability—}

System performance: When the procedure is run with 2 \(\mu \)L of the standard solution under the above operating conditions, the internal standard and scopolamine are eluted in this order with the resolution between these peaks being not less than 6.

System repeatability: When the test is repeated 5 times with 2 \(\mu \)L of the standard solution under the above operating conditions, the relative standard deviation of the ratios of the peak area of scopolamine to that of the internal standard is not more than 2.0%.

\text{Containers and storage—Containers—Hermetic containers, and colored containers may be used. Storage—Light-resistant.}

\textbf{Weak Opium Alkaloids and Scopolamine Injection}

弱アヘンアルカロイド・スコポラミン注射液

Weak Opium Alkaloids and Scopolamine Injection is an aqueous injection.

It contains not less than 0.90 w/v% and not more than 1.10 w/v% of morphine (C\text{17}H\text{19}NO3: 285.34) and not less than 0.027 w/v% and not more than 0.033 w/v% of scopolamine hydrobromide hydrate (C\text{19}H\text{21}NO\text{4}H\text{Br.3H}_2\text{O}: 438.31).

\textbf{Method of preparation}

\begin{align*}
\text{Opium Alkaloids Hydrochlorides} & \quad 20 \text{ g} \\
\text{Scopolamine Hydrobromide Hydrate} & \quad 0.3 \text{ g} \\
\text{Water for Injection or Sterile Water} & \quad \text{a sufficient quantity}
\end{align*}

To make 1000 mL

Prepare as directed under Injections, with the above ingredients.

\textbf{Description—} Weak Opium Alkaloids and Scopolamine Injection is a clear, colorless or light brown liquid.

It is affected by light.

\textbf{pH:} 2.5 – 3.5

\textbf{Identification (1)—} To 1 mL of Weak Opium Alkaloids and Scopolamine Injection add 1 mL of ethanol (99.5), mix, and use this solution as the sample solution. Proceed with the sample solution as directed in the Identification (1) under Opium Alkaloids Hydrochlorides.

(2) To 2 mL of Weak Opium Alkaloids and Scopolamine
Injection add 2 mL of ammonia TS, extract with 10 mL of diethyl ether, and filter the diethyl ether layer. Evaporate the filtrate on a water bath to dryness, add 1 mL of ethanol (99.5) to the residue, and heat to dissolve. Allow to stand this solution in an ice water for 30 minutes with occasional shaking. After crystals are formed, use the supernatant liquid as the sample solution. Separately, dissolve 0.03 g of Scopolamine Hydrobromide RS in 100 mL of water, proceed with 2 mL of this solution in the same manner as for the sample solution, and use a solution so obtained as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography \(<2.03\). Spot 10 \(\mu\)L each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of methanol and ammonia water (28:200:3) to a distance of about 10 cm, and air-dry the plate. Spray evenly Dragendorff’s TS for spraying on the plate: a spot with an RF value of about 0.7 among the several spots from the sample solution and an orange colored spot from the standard solution show the same color tone, and have the same RF value (scopolamine).

Extractable volume \(<6.05\) It meets the requirements.

Assay (1) Morphine— Pipet 2 mL of Weak Opium Alkaloids and Scopolamine Injection, add exactly 10 mL of the internal standard solution and water to make 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 25 mg of morphine hydrochloride hydrate for assay, dissolve in exactly 10 mL of the internal standard solution, add water to make 50 mL, and use this solution as the standard solution. Perform the test with 20 \(\mu\)L each of the sample solution and standard solution as directed under Liquid Chromatography \(<2.02\) according to the following conditions, and calculate the ratios, \(Q_1\) and \(Q_3\), of the peak area of morphine to that of the internal standard.

\[
\text{Amount (mg) of morphine (C_{17}H_{19}NO_3)} = M_S \times Q_1 \times Q_3 \times 0.887
\]

\(M_S\): Amount (mg) of morphine hydrochloride hydrate for assay taken, calculated on the anhydrous basis

Internal standard solution— A solution of etilefrin hydrochloride (1 in 500).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 285 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 \(\mu\)m in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: Dissolve 1.0 g of sodium lauryl sulfate in 500 mL of diluted phosphoric acid (1 in 1000), and adjust the pH to 3.0 with sodium hydroxide TS. To 240 mL of this solution add 70 mL of tetrahydrofuran, and mix.

Flow rate: Adjust so that the retention time of morphine is about 10 minutes.

System suitability—

System performance: When the procedure is run with 20 \(\mu\)L of the standard solution under the above operating conditions, morphine and the internal standard are eluted in this order with the resolution between these peaks being not less than 3.

System repeatability: When the test is repeated 6 times with 20 \(\mu\)L of the standard solution under the above operating conditions, the relative standard deviation of the ratios of the peak area of morphine to that of the internal standard is not more than 2.0%.

(2) Scopolamine hydrobromide hydrate—Pipet 4 mL of Weak Opium Alkaloids and Scopolamine Injection, and add exactly 2 mL of the internal standard solution. To this solution add 10 mL of diluted dilute hydrochloric acid (1 in 10), and shake with two 10-mL portions of dichloromethane. Remove the dichloromethane layer, to the water layer add 2 mL of ammonia TS, add immediately 20 mL of dichloromethane, shake vigorously, filter the dichloromethane extract through a filter paper on which 5 g of anhydrous sodium sulfate is placed, and evaporate the filtrate to dryness under reduced pressure. To the residue add 0.5 mL of 1,2-dichloroethane and 0.5 mL of bis-trimethyl silyl acetamide, stopper tightly, warm in a water bath at 60°C for 15 minutes, and use this solution as the sample solution. Separately, weigh accurately about 60 mg of Scopolamine Hydrobromide RS (separately determine the loss on drying \(<2.41\) under the same conditions as Scopolamine Hydrobromide Hydrate), and dissolve in water to make exactly 100 mL. Pipet 2 mL of this solution, add exactly 2 mL of the internal standard solution. Proceed with this solution in the same manner as for the sample solution, and use so obtained solution as the standard solution. Perform the test with 2 \(\mu\)L each of the sample solution and standard solution as directed under Gas Chromatography \(<2.02\) according to the following conditions, and calculate the ratios, \(Q_1\) and \(Q_3\), of the peak area of scopolamine to that of the internal standard.

\[
\text{Amount (mg) of scopolamine hydrobromide hydrate (C_{17}H_{21}NO_3.HBr.3H_2O)} = M_S \times Q_1 / Q_3 \times 1/50 \times 1.141
\]

\(M_S\): Amount (mg) of Scopolamine Hydrobromide RS taken, calculated on the dried basis

Internal standard solution— A solution of homatropine hydrobromide (1 in 4000).

Operating conditions—

Detector: A hydrogen flame-ionization detector.

Column: A glass column 3 mm in inside diameter and 1.5 m in length, packed with 180 to 250 \(\mu\)m siliceous earth for gas chromatography coated in 1 to 3% with 50% phenylmethyl silicone polymer for gas chromatography.

Column temperature: A constant temperature of about 210°C.

Carrier gas: Nitrogen or helium.

Flow rate: Adjust so that the retention time of scopolamine is about 8 minutes.

System suitability—

System performance: When the procedure is run with 2 \(\mu\)L of the standard solution under the above operating conditions, the internal standard and scopolamine are eluted in this order with the resolution between these peaks being not less than 6.

System repeatability: When the test is repeated 5 times with 2 \(\mu\)L of the standard solution under the above operating conditions, the relative standard deviation of the ratios of the peak area of scopolamine to that of the internal standard is not more than 2.0%.

Containers and storage Containers—Hermetic containers, and colored containers may be used.

Storage— Light-resistant.
Orciprenaline Sulfate

オルシプレナリン硫酸塩

\[
(C_11H_{17}NO_3)_2\cdot H_2SO_4: 520.59
\]

5-\{(1RS)-1-Hydroxy-2-[\{(1-methylethyl)amino\}ethyl]benzene-1,3-diol hemisulfate

[5874-97-5]

Orciprenaline Sulfate contains not less than 98.5% of orciprenaline sulfate \([C_11H_{17}NO_3H_2SO_4]_2\), calculated on the dried basis.

Description Orciprenaline Sulfate occurs as white, crystals or crystalline powder.

It is freely soluble in water, slightly soluble in ethanol (95) and in acetic acid (100), and practically insoluble in diethyl ether.

A solution of Orciprenaline Sulfate (1 in 20) shows no optical rotation.

Melting point: about 220°C (with decomposition).

Identification (1) Determine the absorption spectrum of a solution of Orciprenaline Sulfate in 0.01 mol/L hydrochloric acid TS (1 in 10,000) as directed under Ultraviolet-visible Spectrophotometry 2.24, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Orciprenaline Sulfate, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry 2.25: it exhibits absorption at the wave numbers of about 1607 cm\(^{-1}\), 1153 cm\(^{-1}\), 1131 cm\(^{-1}\) and 1110 cm\(^{-1}\).

(3) A solution of Orciprenaline Sulfate (1 in 100) responds to Qualitative Tests 1.09 for sulfate.

pH 2.54 Dissolve 1.0 g of Orciprenaline Sulfate in 10 mL of water: the pH of this solution is between 4.0 and 5.5.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Orciprenaline Sulfate in 10 mL of water: the solution is clear, and has no more color than the following control solution.

Control solution: To 3 mL of Matching Fluid T add 1 mL of diluted hydrochloric acid (1 in 40).

(2) Heavy metals 1.07—Proceed with 2.0 g of Orciprenaline Sulfate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(3) Orciprenalolone—Dissolve 0.200 g of Orciprenaline Sulfate in 0.01 mol/L hydrochloric acid TS to make exactly 20 mL. Perform the test with this solution as directed under Ultraviolet-visible Spectrophotometry 2.24: the absorbance at 328 nm is not more than 0.075.

Loss on drying 2.41 Not more than 1.5% (1 g, in vacuum, 105°C, 4 hours).

Residue on ignition 2.44 Not more than 0.1% (1 g).

Assay Weigh accurately about 0.7 g of Orciprenaline Sulfate, dissolve in 100 mL of acetic acid (100) by warming on a water bath, and titrate 2.30 with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 52.06 mg of \((C_11H_{17}NO_3H_2SO_4)_2\).

Containers and storage Containers—Tight containers.

Storage—Light-resistant.

Oxapium Iodide

オキサピウムヨウ化物

\[
C_{22}H_{14}INO_3: 471.42
\]

1-(2-Cyclohexyl-2-phenyl-1,3-dioxolan-4-ylmethyl)-1-methylpiperidinium iodide

[6577-41-9]

Oxapium Iodide, when dried, contains not less than 98.5% of oxapium iodide \((C_{22}H_{14}INO_3)\).

Description Oxapium Iodide occurs as a white crystalline powder.

It is soluble in acetonitrile, in methanol and in ethanol (95), slightly soluble in water, in acetic anhydride and in acetic acid (100), and practically insoluble in diethyl ether.

A solution of Oxapium Iodide in methanol (1 in 100) does not show optical rotation.

Identification (1) Determine the infrared absorption spectrum of Oxapium Iodide, previously dried, as directed in the paste method under Infrared Spectrophotometry 2.25, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(2) Dissolve 0.1 g of Oxapium Iodide in 10 mL of methanol, and add 2 mL of dilute nitric acid and 2 mL of silver nitrate TS: a greenish yellow precipitate is formed.

Melting point 2.60 198 – 203°C

Purity (1) Heavy metals 1.07—Proceed with 1.0 g of Oxapium Iodide according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(2) Related substances—Dissolve 0.05 g of Oxapium Iodide in 100 mL of a mixture of water and acetonitrile (1:1), and use this solution as the sample solution. Pipet 1 mL of the sample solution, add a mixture of water and acetonitrile (1:1) to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly 50 μL each of the sample solution and standard solution as directed under Liquid Chromatography 2.01 according to the following conditions. Determine each peak area of each solution by the automatic integration method: the total area of the peaks other than oxapium obtained from the sample solution is not larger than the area of the peak of oxapium from the standard solution.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 254 nm).

Column: A stainless steel column about 4 mm in inside di-
ameter and about 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of 20°C to 30°C.

Mobile phase: To 57 mL of acetic acid (100) and 139 mL of triethylamine add water to make 1000 mL. To 50 mL of this solution add 500 mL of acetonitril, 10 mL of dilute acetic acid and 440 mL of water.

Flow rate: Adjust so that the retention time of oxapium is about 4 minutes.

Selection of column: Dissolve 0.05 g of Oxapium Iodide and 3 mg of benzophenone in 100 mL of the mobile phase. Proceed with 20 μL of this solution under the above operating conditions, and calculate the resolution. Use a column giving elution of oxapium and benzophenone in this order with the resolution between these peaks being not less than 5.

Detection sensitivity: Adjust the detection sensitivity so that the peak height of oxapium obtained from 50 μL of the standard solution composes 5 to 15% of the full scale.

Time span of measurement: About 6 times as long as the retention time of oxapium, beginning after the peak of iodide ion.

Loss on drying <2.41> Not more than 0.5% (1 g, 105°C, 4 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.7 g of Oxapium Iodide, previously dried, dissolve in 50 mL of a mixture of acetic anhydride and acetic acid (100) (9:1), and titrate <2.50> with 0.1 mol/L perchloric acid VS (potentiometric titration, platinum electrode). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 47.14 mg of C2H3I4NO2

Containers and storage Containers—Tight containers.

Storage—Light-resistant.

Oxaprozin

オキサプロジン

[21256-18-8]

C18H15NO3: 293.32
3-(4,5-Diphenyloxazol-2-yl)propanoic acid

Oxaprozin, when dried, contains not less than 98.5% of oxaprozin (C18H15NO3).

Description Oxaprozin occurs as a white to yellowish white crystalline powder.

It is sparingly soluble in methanol and in ethanol (95), slightly soluble in diethyl ether, and practically insoluble in water.

It is gradually affected by light.

Identification Determine the infrared absorption spectrum of Oxaprozin, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Absorbance <2.24> ε 1% 254 nm: 455 – 495 (after drying, 10 mg, methanol, 1000 mL).

Melting point <2.60> 161 – 165°C

Purity (1) Heavy metals <1.07>—Proceed with 2.0 g of Oxaprozin according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Arsenic <1.11>—Prepare the test solution with 2.0 g of Oxaprozin according to Method 3, and perform the test (not more than 1 ppm).

(3) Related substances—Dissolve 0.10 g of Oxaprozin in 10 mL of methanol, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add methanol to make exactly 100 mL, and use this solution as the standard solution (1). Pipet 5 mL, 3 mL and 1 mL of the standard solution (1), add methanol to each to make exactly 10 mL, and use these solutions as the standard solutions (2), (3) and (4), respectively. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 10 μL each of the sample solution and standard solutions (1), (2), (3) and (4) on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate and acetic acid (100) (99:1) to a distance of about 15 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the total intensity of the spots other than the principal spot obtained from the sample solution is not more than 1.0% calculated on the basis of intensities of the spots from the standard solutions (1), (2), (3) and (4).

Loss on drying <2.41> Not more than 0.3% (1 g, 105°C, 2 hours).

Residue on ignition <2.44> Not more than 0.3% (1 g).

Assay Weigh accurately about 0.5 g of Oxaprozin, previously dried, dissolve in 50 mL of ethanol (95), and titrate <2.50> with 0.1 mol/L sodium hydroxide VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L sodium hydroxide VS = 29.33 mg of C18H15NO3

Containers and storage Containers—Tight containers.

Storage—Light-resistant.
Oxazolam

オキサゾラム

C_10H_17ClN_2O_3: 328.79
10-Chloro-2-methyl-11b-phenyl-2,3,7,11b-
tetrahydro[1,3]oxazolo[3,2-d][1,4]benzodiazepin-
6(SH)-one
[24143-17-7]

Oxazolam, when dried, contains not less than 99.0% of oxazolam (C_{18}H_{17}ClN_2O_2).

Description Oxazolam occurs as white, crystals or crystalline powder. It is odorless and tasteless.

It is freely soluble in acetic acid (100), soluble in 1,4-dioxane and in dichloromethane, slightly soluble in ethanol (95) and in diethyl ether, and practically insoluble in water.

It dissolves in dilute hydrochloric acid.

It gradually changes in color by light.

Melting point: about 187°C (with decomposition).

Identification (1) Dissolve 0.01 g of Oxazolam in 10 mL of ethanol (95) by heating, and add 1 drop of hydrochloric acid: a light yellow color develops, and the solution shows a yellow-green fluorescence under ultraviolet light (main wavelength: 365 nm). Add 1 mL of sodium hydroxide TS to this solution: the color and fluorescence of this solution disappear immediately.

(2) Dissolve 0.01 g of Oxazolam in 5 mL of dilute hydrochloric acid by heating in a water bath for 10 minutes. After cooling, 1 mL of this solution responds to Qualitative Tests <1.08> for primary aromatic amines.

(3) Place 2 g of Oxazolam in a 200-mL flask, add 50 mL of ethanol (95) and 25 mL of 6 mol/L hydrochloric acid TS, and boil under a reflux condenser for 5 hours. After cooling, neutralize with a solution of sodium hydroxide (1 in 4), and extract with 30 mL of dichloromethane. Dehydrate with 3 g of anhydrous sodium sulfate, filter, and evaporate the dichloromethane of the filtrate. Dissolve the residue in 20 mL of methanol by heating on a water bath, and cool immediately in an ice bath. Collect the crystals, and dry in vacuum at 60°C for 1 hour: the crystals melt <2.60> between 96°C and 100°C.

(4) Determine the absorption spectrum of a solution of Oxazolam in ethanol (95) (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(5) Proceed with Oxazolam as directed under Flame Coloration Test <1.06> (2), and perform the test: a green color appears.

Absorbance <2.24> \(E_{1\%}^{1\text{cm}} \) (246 nm): 410 - 430 (after drying, 1 mg, ethanol (95), 100 mL).

Purity (1) Chloride <1.07>—To 1.0 g of Oxazolam add 50 mL of water, allow to stand for 1 hour with occasional shaking, and filter. To 25 mL of this filtrate add 6 mL of dilute nitric acid and water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution with 0.20 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.014%).

(2) Heavy metals <1.07>—Proceed with 1.0 g of Oxazolam according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(3) Arsenic <1.17>—Place 1.0 g of Oxazolam in a Kjeldahl flask, add 5 mL of sulfuric acid and 5 mL of nitric acid, and heat gently. Repeat the addition of 2 to 3 mL of nitric acid at times, and continue to heat until a colorless to light yellow solution is obtained. After cooling, add 15 mL of saturated ammonium oxalate monohydrate solution, heat the solution until dense white fumes are evolved, and evaporate to a volume of 2 to 3 mL. After cooling, dilute with water to 10 mL, and perform the test with this solution as the test solution (not more than 2 ppm).

(4) Related substances—Dissolve 0.05 g of Oxazolam in 10 mL of dichloromethane, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add dichloromethane to make exactly 200 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.60>. Spot 10 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Immediately air-dry, develop the plate with a mixture of toluene and acetone (8:1) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying <2.44> Not more than 0.5% (1 g, 105°C, 3 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.65 g of Oxazolam, previously dried, dissolve in 100 mL of a mixture of acetic acid (100) and 1,4-dioxane (1:1). Titrate <2.50> with 0.1 mol/L perchloric acid VS until the color of the solution changes from purple through blue to blue-green (indicator: 2 drops of crystal violet TS). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 32.88 mg of C_{18}H_{17}ClN_2O_2.

Containers and storage Containers—Tight containers. Storage—Light-resistant.
Oxethazaine

オキセサゼイン

\[\text{C}_{28} \text{H}_{28} \text{N}_{12} \text{O}_{14}: \text{467.64} \]

2,2'-[2-Hydroxyethyliminobis[N-(1,1-dimethyl-2-phenylethyl)]-N-methylacetamide]

[126-27-2]

Oxethazaine, when dried, contains not less than 98.5% of oxethazaine (\(\text{C}_{28}\text{H}_{41}\text{N}_{3}\text{O}_{2}\)).

Description Oxethazaine occurs as a white or pale yellow-white crystalline powder.

It is very soluble in acetic acid (100), freely soluble in methanol and in ethanol (95), sparingly soluble in diethyl ether, and practically insoluble in water.

Identification (1) Determine the absorption spectrum of a solution of Oxethazaine in ethanol (95) (1 in 2500) as directed under Ultraviolet-visible Spectrophotometry \(<2.24>\), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Oxethazaine as directed in the potassium bromide disk method under Infrared Spectrophotometry \(<2.25>\), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point \(<2.60>\ 101 - 104^\circ\text{C} \)

Purity (1) Chloride \(<1.02>\—Dissolve 1.0 g of Oxethazaine in 20 mL of ethanol (95), add 6 mL of dilute nitric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 0.30 mL of 0.01 mol/L hydrochloric acid VS, 20 mL of ethanol (95), 6 mL of dilute nitric acid and water to make 50 mL (not more than 0.011%).

(2) Heavy metals \(<1.07>\—Proceed with 2.0 g of Oxethazaine according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(3) Related substances—Dissolve 0.04 g of Oxethazaine in 10 mL of ethanol (95), and use this solution as the sample solution. Pipet 1 mL of the sample solution, add ethanol (95) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography \(<2.03>\). Spots 10 \(\mu\text{L} \) each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of isopropyl ether, tetrahydrofuran, methanol and ammonia solution (28:24:10:5:1) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

(4) 2-Aminoethanol—To 1.0 g of Oxethazaine add methanol to make exactly 10 mL, then add 0.1 mL of a solution of 1-fluoro-2,4-dinitrobenzene in methanol (1 in 25), shake well, and heat at 60°C for 20 minutes: the solution has no more color than the following control solution.

Control solution: To 0.10 g of 2-aminoethanol add methanol to make exactly 200 mL, pipet 1 mL of this solution, and add methanol to make exactly 10 mL. Proceed as directed above.

Loss on drying \(<2.41>\ Not more than 0.5% (1 g, in vacuum, 60°C, 3 hours).

Residue on ignition \(<2.44>\ Not more than 0.1% (1 g).

Assay Weigh accurately about 0.9 g of Oxethazaine, previously dried, dissolve in 50 mL of acetic acid (100), and titrate \(<2.50>\ with 0.1 mol/L perchloric acid VS (indicator: 2 drops of crystal violet TS). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 46.76 mg of \(\text{C}_{28}\text{H}_{41}\text{N}_{3}\text{O}_{2}\).

Containers and storage Containers—Tight containers.

Oxprenolol Hydrochloride

オクスプレノール塩酸塩

\[\text{C}_{15}\text{H}_{23}\text{NO}_{3}\cdot\text{HCl}: 301.81 \]

(2RS)-1-[2-(Allyloxy)phenoxy]-3-(1-methyl ethyl)aminopropan-2-ol monohydrochloride

[6452-73-9]

Oxprenolol Hydrochloride, when dried, contains not less than 98.5% of oxprenolol hydrochloride (\(\text{C}_{15}\text{H}_{23}\text{NO}_{3}\cdot\text{HCl}\)).

Description Oxprenolol Hydrochloride occurs as a white crystalline powder.

It is very soluble in water, freely soluble in ethanol (95) and in acetic acid (100), slightly soluble in acetic anhydride, and practically insoluble in diethyl ether.

Identification (1) To 2 mL of a solution of Oxprenolol Hydrochloride (1 in 100) add 1 drop of copper (II) sulfate TS and 2 mL of sodium hydroxide TS: a blue-purple color develops. To this solution add 1 mL of diethyl ether, shake well, and allow to stand: a red-purple color develops in the diethyl ether layer, and a blue-purple color develops in the water layer.

(2) To 3 mL of a solution of Oxprenolol Hydrochloride (1 in 150) add 3 drops of Reinecke salt TS: a light red precipitate is formed.

(3) Determine the infrared absorption spectrum of Oxprenolol Hydrochloride, previously dried, as directed in the potassium chloride disk method under Infrared Spectrophotometry \(<2.25>\), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(4) A solution of Oxprenolol Hydrochloride (1 in 50) responds to Qualitative Tests \(<1.09>\ for chloride.

pH \(<2.42>\—Dissolve 1.0 g of Oxprenolol Hydrochloride in 10 mL of water: the pH of this solution is between 4.5 and
Oxybuprocaine Hydrochloride / Official Monographs

6.0.

Melting point <2.60> 107 – 110°C

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Oxprenolol Hydrochloride in 10 mL of water: the solution is clear and colorless.

(2) Heavy metals <1.07>—Proceed with 2.0 g of Oxprenolol Hydrochloride according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(3) Arsenic <1.11>—Prepare the test solution with 1.0 g of Oxprenolol Hydrochloride according to Method 3, and perform the test (not more than 2 ppm).

(4) Related substances—Dissolve 0.25 g of Oxprenolol Hydrochloride in 10 mL of water, and use this solution as the sample solution. Pipet 4 mL of the sample solution, and add water to make exactly 100 mL. Pipet 5 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.05>.

Spot 10 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate in a developing chamber saturated with ammonia vapor with a mixture of chloroform, ethanol (95) and formic acid (7:2:1) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying <2.41> Not more than 0.5% (1 g, 80°C, 3 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.6 g of Oxprenolol Hydrochloride, previously dried, dissolve in 50 mL of a mixture of acetic anhydride and acetic acid (100) (7:3), and titrate <2.50> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 30.18 mg of C₁₇H₁₃NO₃.HCl

Containers and storage Containers—Tight containers.

Oxybuprocaine Hydrochloride

Benoxinate Hydrochloride

オキシブプロカイン塩酸塩

C₁₇H₂₃N₂O₃·HCl: 344.88
2-(Diethylamino)ethyl 4-amino-3-butyloxybenzoate monohydrochloride [5987-82-6]

Oxybuprocaine Hydrochloride, when dried, contains not less than 99.0% of oxybuprocaine hydrochloride (C₁₇H₂₈N₂O₃·HCl).

Description Oxybuprocaine Hydrochloride occurs as white, crystals or crystalline powder. It is odorless, and has a saline taste. It exhibits anesthetic properties when placed on the tongue.

It is very soluble in water, freely soluble in ethanol (95) and in chloroform, and practically insoluble in diethyl ether.

The pH of a solution of 1.0 g of Oxybuprocaine Hydrochloride in 10 mL of water is between 5.0 and 6.0.

It is gradually colored by light.

Identification (1) Dissolve 10 mg of Oxybuprocaine Hydrochloride in 1 mL of dilute hydrochloric acid and 4 mL of water. This solution responds to Qualitative Tests <1.09> for primary aromatic amines.

(2) Dissolve 0.1 g of Oxybuprocaine Hydrochloride in 8 mL of water, and add 3 mL of ammonium thioycanate TS: an oily substance is produced. Rub the inner surface of the container with a glass rod: white crystals are formed. Collect the crystals so obtained, recrystallize from water, and dry in a desiccator (in vacuum, phosphorus (V) oxide) for 5 hours:

the crystals melt <2.60> between 103°C and 106°C.

(3) Determine the absorption spectrum of a solution of Oxybuprocaine Hydrochloride (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.32>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(4) A solution of Oxybuprocaine Hydrochloride (1 in 10) responds to Qualitative Tests <1.09> for chloride.

Melting point <2.60> 158 – 162°C

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Oxybuprocaine Hydrochloride in 10 mL of water: the solution is clear and colorless.

(2) Heavy metals <1.07>—Proceed with 1.0 g of Oxybuprocaine Hydrochloride according to Method 1, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(3) Related substances—Dissolve 0.25 g of Oxybuprocaine Hydrochloride in 10 mL of chloroform, and use this solution as the sample solution. Pipet 1 mL of the sample solution, and add chloroform to make exactly 20 mL. Pipet 1 mL of this solution, add chloroform to make exactly 50 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.05>.

Spot 10 μL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of chloroform, ethanol (95) and formic acid (7:2:1) to a distance of about 10 cm, and air-dry the plate. Spray evenly 4-dimethylaminobenzaldehyde TS for spraying on the plate: the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying <2.41> Not more than 0.5% (1 g, 105°C, 2 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.6 g of Oxybuprocaine Hydrochloride, previously dried, dissolve in 50 mL of a mixture of acetic anhydride and acetic acid (100) (7:3), and titrate <2.50> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 34.49 mg of C₁₇H₂₈N₂O₃·HCl

Containers and storage Containers—Well-closed contain-
Oxycodone Hydrochloride Hydrate

オキシコドン塩酸塩水和物

C₁₈H₂₆NO₅·HCl·3H₂O: 405.87
(5R)-4,5-Epoxy-14-hydroxy-3-methoxy-17-methylmorphinan-6-one monohydrochloride trihydrate [124-90-3, anhydride]

Oxycodone Hydrochloride Hydrate contains not less than 98.0% and not more than 101.0% of oxycodone hydrochloride (C₁₈H₂₆NO₅·HCl: 351.83), calculated on the anhydrous basis.

Description

Oxycodone Hydrochloride Hydrate occurs as a white crystalline powder.

It is freely soluble in water, in methanol and in acetic acid (100), sparingly soluble in ethanol (95), slightly soluble in acetic anhydride.

The pH of a solution dissolved 1.0 g of Oxycodone Hydrochloride Hydrate in 10 mL of water is between 3.8 and 5.8.

It is affected by light.

Identification

1. Determine the absorption spectrum of a solution of Oxycodone Hydrochloride Hydrate (1 in 10,000) as directed under Ultraviolet-visible Spectrophotometry, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

2. Determine the infrared absorption spectrum of Oxycodone Hydrochloride Hydrate as directed in the potassium bromide disk method under Infrared Spectrophotometry, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

3. A solution of Oxycodone Hydrochloride Hydrate (1 in 50) responds to Qualitative Tests 1.09 (2) for chloride.

Optical rotation

\[\angle \beta_{D} = -140^\circ \text{ to } -149^\circ \text{ (0.5 g calculated on the anhydrous basis, water, 25 mL, 100 mm).} \]

Purity

1. Clarity and color of solution—Dissolve 0.5 g of Oxycodone Hydrochloride Hydrate in 10 mL of water: the solution is clear and colorless.

2. Related substances—Dissolve 26 mg of Oxycodone Hydrochloride Hydrate in 20 mL of the mobile phase A, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add the mobile phase A to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 50 \(\mu \text{L} \) each of the sample solution and standard solution as directed under Liquid Chromatography 2.01 according to the following conditions. Determine each peak area by the automatic integration method: the area of the peak other than oxycodone obtained from the sample solution is not larger than 3/5 times the peak area of oxycodone from the standard solution. For the area of the peak, having the relative retention time of about 1.8 to oxycodone, multiply the correction factor 0.17.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 280 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 10 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (3 \(\mu \text{m} \) in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase A: Dissolve 1.0 g of sodium lauryl sulfate in 500 mL of diluted phosphoric acid (1 in 1000), and adjust to pH 3.0 with sodium hydroxide TS. To 4 volumes of this solution add 1 volume of tetrahydrofuran for liquid chromatography.

Mobile phase B: Dissolve 1.0 g of sodium lauryl sulfate in 500 mL of diluted phosphoric acid (1 in 1000), and adjust to pH 3.0 with sodium hydroxide TS. To 1 volume of this solution add 1 volume of tetrahydrofuran for liquid chromatography.

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 30</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>30 – 70</td>
<td>100 (\rightarrow) 0</td>
<td>0 (\rightarrow) 100</td>
</tr>
</tbody>
</table>

Flow rate: 1.0 mL per minute.

Time span of measurement: About 5 times as long as the retention time of oxycodone, beginning after the solvent peak.

System suitability—

Test for required detectability: Pipet 2.5 mL of the standard solution, add the mobile phase A to make exactly 50 mL. Confirm that the peak area of oxycodone obtained with 50 \(\mu \text{L} \) of this solution is equivalent to 3.5 to 6.5% of that with 50 \(\mu \text{L} \) of the standard solution.

System performance: When the procedure is run with 50 \(\mu \text{L} \) of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of oxycodone are not less than 3000 and between 0.7 and 1.3, respectively.

System repeatability: When the test is repeated 6 times with 50 \(\mu \text{L} \) of the standard solution under the above operating conditions, the relative standard deviation of the peak area of oxycodone is not more than 2.0%.

Water

\[\angle \beta_{D} = 12 – 15\% \text{ (0.2 g, volumetric titration, direct titration).} \]

Residue on ignition

Not more than 0.1% (0.5 g).

Assay

Weigh accurately about 0.5 g of Oxycodone Hydrochloride Hydrate, dissolve in 50 mL of a mixture of acetic anhydride and acetic acid (100) (7:3), and titrate 2.500 with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 35.18 mg of C₁₈H₂₆NO₅·HCl

Containers and storage—Containers—Tight containers.

Storage—Light-resistant.
Compound Oxycodone Injection

複方オキシコドン注射液

Compound Oxycodone Injection is an aqueous injection.

It contains not less than 0.74 w/v% and not more than 0.86 w/v% of oxycodone hydrochloride hydrate (C18H21NO3.HCl.H2O: 405.87), and not less than 0.18 w/v% and not more than 0.22 w/v% of hydrocotarnine hydrochloride hydrate (C15H32NO5.HCl.H2O: 275.73).

Method of preparation

Oxycodone Hydrochloride Hydrate	8 g
Hydrocotarnine Hydrochloride Hydrate	2 g
Water for Injection or Sterile Water for Injection in Containers	a sufficient quantity

To make 1000 mL

Prepare as directed under Injections, with the above ingredients.

Description

Compound Oxycodone Injection is a clear, colorless to pale yellow liquid.

It is affected by light.

pH: 2.5 – 4.0

Identification

(1) To 1 mL of Compound Oxycodone Injection add 1 mL of 2,4-dinitrophenylhydrazine-ethanol TS: a yellow precipitate is formed (oxycodone).

(2) Evaporate 1 mL of Compound Oxycodone Injection on a water bath. Dissolve the residue in 2 mL of sulfuric acid: a yellow color is produced. Heat the solution: it changes to red, and then to deep orange-red (hydrocotarnine).

(3) Evaporate 1 mL of Compound Oxycodone Injection on a water bath. Dissolve the residue in 3 mL of sulfuric acid, add 2 drops of a solution of tannic acid in ethanol (95) (1 in 20), and allow to stand: a deep green color is produced (hydrocotarnine).

Extractable volume

It meets the requirement.

Assay

Pipet 2 mL of Compound Oxycodone Injection, add exactly 10 mL of the internal standard solution, and use this solution as the sample solution. Separately, weigh accurately about 0.4 g of oxycodone hydrochloride hydrate for assay (separately determine the water $<2.48\%$ in the same manner as Oxycodone Hydrochloride Hydrate) and about 0.1 g of hydrocotarnine hydrochloride hydrate for assay previously dried at 105°C for 3 hours, and dissolve in water to make exactly 50 mL. Pipet 2 mL of this solution, add exactly 10 mL of the internal standard solution, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography $<2.017\%$ according to the following conditions. Calculate the ratios, Q_{wa} and Q_{wb}, of the peak area of oxycodone and hydrocotarnine to that of the internal standard obtained from the sample solution, and the ratios, Q_{sa} and Q_{sb}, of the peak area of oxycodone and hydrocotarnine to that of the internal standard from the standard solution.

Amount (mg) of oxycodone hydrochloride hydrate

$$Q_{sa} \times 1/25 \times 1.154$$

Amount (mg) of hydrocotarnine hydrochloride hydrate

$$Q_{sb} \times 1/25 \times 1.154$$

M_{sa}: Amount (mg) of oxycodone hydrochloride hydrate for assay taken, calculated on the anhydrous basis

M_{sb}: Amount (mg) of hydrocotarnine hydrochloride hydrate for assay taken

Internal standard solution—Dissolve 0.02 g of phenacetin in 10 mL of ethanol (95), and add water to make 100 mL.

Operating conditions—

Column: A stainless steel column about 4 mm in inside diameter and about 15 cm in length, packed with octadecylsilanized polyvinyl alcohol gel polymer for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: To 500 mL of 0.05 mol/L disodium hydrogen phosphate TS add 0.05 mol/L sodium dihydrogen phosphate TS, and adjust the pH to 8.0. To 300 mL of this solution add 200 mL of acetonitrile, and mix.

Flow rate: Adjust so that the retention time of oxycodone is about 8 minutes.

Selection of column: Proceed with 10 μL of the standard solution under the above operating conditions, and use a column giving elution of the internal standard, oxycodone and hydrocotarnine in this order, with complete separation of these peaks.

Containers and storage—Containers—Hermetic containers, and colored containers may be used.

Storage—Light-resistant.

Compound Oxycodone and Atropine Injection

複方オキシコドン・アトロピン注射液

Compound Oxycodone and Atropine Injection is an aqueous injection.

It contains not less than 0.74 w/v% and not more than 0.86 w/v% of oxycodone hydrochloride hydrate (C18H21NO3.HCl.H2O: 405.87), not less than 0.18 w/v% and not more than 0.22 w/v% of hydrocotarnine hydrochloride hydrate (C15H32NO5.HCl.H2O: 275.73), and not less than 0.027 w/v% and not more than 0.033 w/v% of atropine sulfate hydrate [(C23H32NO4S.H2SO4.H2O: 694.83).

Method of preparation

Oxycodone Hydrochloride Hydrate	8 g
Hydrocotarnine Hydrochloride Hydrate	2 g
Atropine Sulfate Hydrate	0.3 g
Water for Injection or Sterile Water for Injection in Containers	a sufficient quantity

To make 1000 mL

Prepare as directed under Injections, with the above ingredients.

Description

Compound Oxycodone and Atropine Injection is a colorless or pale yellow, clear liquid.

It is affected by light.

pH: 2.5 – 4.0

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.)
Identification (1) To 1 mL of Compound Oxycodone and Atropine Injection add 1 mL of 2,4-dinitrophenylhydrazine–ethanol TS: a yellow precipitate is formed (oxycodone).

(2) Evaporate 1 mL of Compound Oxycodone and Atropine Injection on a water bath, and dissolve the residue in 2 mL of sulfuric acid: a yellow color is produced. Heat the solution: it changes to red, and then to deep orange-red (hydrobromide).

(3) Evaporate 1 mL of Compound Oxycodone and Atropine Injection on a water bath. Dissolve the residue in 3 mL of sulfuric acid, add 2 drops of a solution of tannic acid in ethanol (95) (1 in 20), and allow to stand: a deep green color is produced (hydrocortaronine).

(4) To 1 mL of Compound Oxycodone and Atropine Injection add 0.5 mL of 2,4-dinitrophenylhydrazine–ethanol TS, and allow to stand for 1 hour. Centrifuge, and add acetone to the supernatant liquid until no more precipitate is produced. Allow to stand for 20 minutes, and centrifuge. To the supernatant liquid add potassium hydroxide TS until the liquid is light purple. Shake the liquid with 5 mL of dichloromethane, and separate the dichloromethane layer. Take 0.5 mL of the dichloromethane layer, and evaporate to dryness on a water bath. Add 5 drops of fuming nitric acid to the residue, and evaporate to dryness on a water bath. Cool, dissolve the residue in 1 mL of N,N-dimethylformamide, and add 6 drops of tetraethylammonium hydroxide TS: a red-purple color is produced (atropine).

Extractable volume \(< 6.0\) It meets the requirement.

Assay (1) Oxycodone hydrochloride hydrate and hydrocortaronine hydrochloride hydrate—Pipet 2 mL of Compound Oxycodone and Atropine Injection, add exactly 10 mL of the internal standard solution, and use this solution as the sample solution. Separately, weigh accurately about 0.4 g of oxycodone hydrochloride hydrate for assay (separately determine the water \(< 2.48\) in the same manner as Oxycodone Hydrochloride Hydrate) and about 0.1 g of hydrocortaronine hydrochloride hydrate for assay previously dried at 105°C for 3 hours, and dissolve in water to make exactly 50 mL. Pipet 2 mL of this solution, add exactly 10 mL of the internal standard solution, and use this solution as the standard solution. Perform the test with 10 µL each of the sample solution and standard solution as directed under Liquid Chromatography \(2.02\) according to the following conditions. Calculate the ratios, \(Q_{T1}\) and \(Q_{T2}\), of the peak area of oxycodone and hydrocortaronine to that of the internal standard obtained from the sample solution, and the ratios, \(Q_{S1}\) and \(Q_{S2}\), of the peak area of oxycodone and hydrocortaronine to that of the internal standard from the standard solution.

\[
\text{Amount (mg) of oxycodone hydrochloride hydrate } (C_{18}H_{23}NO_2.HCl.3H_2O) = M_S \times Q_{T1}/Q_{S1} \times 1/25 \times 1.154
\]

\[
\text{Amount (mg) of hydrocortaronine hydrochloride hydrate } (C_{18}H_{23}NO_3.HCl.3H_2O) = M_S \times Q_{T2}/Q_{S2} \times 1/25 \times 1.070
\]

\(M_{S1}\): Amount (mg) of oxycodone hydrochloride hydrate for assay taken, calculated on the anhydrous basis

\(M_{S2}\): Amount (mg) of hydrocortaronine hydrochloride hydrate for assay taken

Internal standard solution—Dissolve 0.02 g of phenacetin in 10 mL of ethanol (95), and add water to make 100 mL.

Operating conditions—

The \(J P\) Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.)
Oxydol

オキシドール

Oxydol contains not less than 2.5 w/v% and not more than 3.5 w/v% of hydrogen peroxide (H₂O₂: 34.01). It contains suitable stabilizers.

Description Oxydol occurs as a clear, colorless liquid. It is odorless or has an odor resembling that of ozone.

It gradually decomposes upon standing or upon vigorous agitation.

It rapidly decomposes when in contact with oxidizing substances as well as reducing substances.

It, when alkalized, decomposes with effervescence.

It is affected by light.

pH: 3.0 – 5.0

Specific gravity d₂₀: about 1.01

Identification 1 mL of Oxydol responds to Qualitative Tests <1.09> for peroxide.

Purity (1) Acidity—To 25.0 mL of Oxydol add 2 drops of phenolphthalein TS and 2.5 mL of 0.1 mol/L sodium hydroxide VS: a red color develops.

(2) Heavy metals <1.07>—To 5.0 mL of Oxydol add 20 mL of water and 2 mL of ammonia TS, evaporate on a water bath to dryness, dissolve the residue in 2 mL of dilute acetic acid by heating, add water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution with 2.5 mL of Standard Lead Solution, 2 mL of dilute acetic acid and water to make 50 mL (not more than 5 ppm).

(3) Arsenic <1.11>—To 1.0 mL of Oxydol add 1 mL of ammonia TS, evaporate on a water bath to dryness, take the residue, prepare the test solution according to Method 1, and perform the test (not more than 2 ppm).

(4) Organic stabilizer—Extract 100 mL of Oxydol with 50-mL, 25-mL and 25-mL portions of a mixture of chloroform and diethyl ether (3:2) successively, combine the extracts in a tared vessel, and evaporate the combined extract on a water bath. Dry the residue over silica gel to constant mass: the mass of the residue is not more than 50 mg.

(5) Nonvolatile residue—Evaporate 20.0 mL of Oxydol on a water bath to dryness, and determine the mass of the residue.

Assay Pipet 1.0 mL of Oxydol, transfer it to a flask containing 10 mL of water and 10 mL of dilute sulfuric acid, and titrate <2.50> with 0.02 mol/L potassium permanganate VS.

Each mL of 0.02 mol/L potassium permanganate VS = 1.701 mg of H₂O₂.

Containers and storage Containers—Tight containers. Storage—Light-resistant, and not exceeding 30°C.

Oxygen

酸素

O₂: 32.00

Oxygen is oxygen produced by the air liquification separation method.

It contains not less than 99.5 v/v% of oxygen (O₂).

Description Oxygen is a colorless gas under atmospheric pressure, and is odorless.

1 mL of Oxygen dissolves in 32 mL of water, and in 7 mL of ethanol (95) at 20°C and at a pressure of 101.3 kPa. 1000 mL of Oxygen at 0°C and at a pressure of 101.3 kPa weighs 1.429 g.

Identification Transfer 1 mL each of Oxygen and oxygen gas for assay and oxygen gas for assay are delivered individually into an appa-
ratus via a sample gas-introducing system and a switching valve. An apparatus with a pressure detector of magnetic force method has an introducing system not only for the above gases but also for oxygen reference gas for assay. Each gas is delivered at the flow rate specified for the apparatus under control of a flow meter and a manometer.

(ii) Procedure—Inject oxygen zero gas for assay into the apparatus at the set flow rate, and set the zero after reaching a stable indication. Then inject oxygen span gas for assay at the specified flow rate, and set the span after reaching a stable indication. Confirm that both these indicated values after the settings are within the specification of the apparatus to confirm the suitability of the apparatus. Stop injecting each calibration gas, inject the sample gas at the specified flow rate, and read the indication \(V \) (vol\%).

\[
\text{Volume (vol\%)} \times 100 = V \text{ (vol\%)}
\]

When the apparatus is controlled by periodic calibration, determine appropriately the frequency of calibration according to the apparatus manufacturer’s recommendations, past control records, or statistical methods, and maintain the environment for use and the conditions of injection of the sample gas within the range recommended by the apparatus manufacturer.

Containers and storage Containers—Cylinders. Storage—Not exceeding 40°C.

Oxymetholone

オキシメトロン

C\(_{21}\)H\(_{35}\)O\(_3\): 332.48
17β-Hydroxy-2-hydroxymethylene-17α-methyl-5α-androstan-3-one

[434-07-1]

Oxymetholone, when dried, contains not less than 97.0% and not more than 103.0% of oxymetholone (C\(_{21}\)H\(_{35}\)O\(_3\)).

Description Oxymetholone occurs as a white to pale yellow-white crystalline powder. It is odorless.

It is freely soluble in chloroform, soluble in 1,4-dioxane, sparingly soluble in methanol, in ethanol (95) and in acetone, slightly soluble in diethyl ether, and practically insoluble in water.

It is gradually colored and decomposed by light.

Identification (1) Dissolve 2 mg of Oxymetholone in 1 mL of ethanol (95), and add 1 drop of iron (III) chloride TS: a purple color develops.

(2) Dissolve 0.01 g of Oxymetholone in methanol to make 50 mL. To 5 mL of the solution add 5 mL of sodium hydroxide-methanol TS and methanol to make 50 mL. Determine the absorption spectrum of the solution as directed under Ultraviolet-visible Spectrophotometry 2.24, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(3) Determine the infrared absorption spectrum of Oxymetholone as directed in the potassium bromide disk method under Infrared Spectrophotometry 2.25, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation 2.49° \([\alpha]^{25}_D = +34 \pm 38 \) (after drying, 0.2 g, 1,4-dioxane, 10 mL, 100 mm).

Melting point 2.60° 175 – 182°C

Purity (1) Clarity and color of solution—Dissolve 0.5 g of Oxymetholone in 25 mL of 1,4-dioxane: the solution is clear, and shows a colorless to pale yellow color.

(2) Related substances—Dissolve 50 mg of Oxymetholone in 5 mL of chloroform, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add chloroform to make exactly 200 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography 2.67. Spot 10 \(\mu \)L each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography, and air-dry the spot. Develop immediately the plate with a mixture of toluene and ethanol (99.5) (49:1) to a distance of about 12 cm, and air-dry the plate. Spray evenly vanillin-sulfuric acid TS on the plate, and heat the plate at 100°C for 3 to 5 minutes: any spot other than the principal spot and starting point obtained from the sample solution is not more intense than the spot from the standard solution.

Loss on drying 2.47° Not more than 1.0% (0.5 g, in vacuum, phosphorus (V) oxide, 4 hours).

Residue on ignition 2.44° Not more than 0.1% (0.5 g).

Assay Weigh accurately about 40 mg of Oxymetholone, previously dried, and dissolve in methanol to make exactly 50 mL. Pipet 5 mL of this solution, and add methanol to make exactly 50 mL. To exactly measured 5 mL of this solution add 5 mL of sodium hydroxide-methanol TS and methanol to make exactly 50 mL. Determine the absorbance \(A \) of this solution at the wavelength of maximum absorption at about 315 nm as directed under Ultraviolet-visible Spectrophotometry 2.24, using a solution, prepared by adding methanol to 5 mL of sodium hydroxide-methanol TS to make 50 mL, as the blank.

\[
\text{Amount (mg) of oxymetholone (C}_{21}\text{H}_{35}\text{O}_3) = A/541 \times 50,000
\]

Containers and storage Containers—Tight containers. Storage—Light-resistant.
Oxytetracycline Hydrochloride

オキシテトラサイクリン塩酸塩

Description
Oxytetracycline Hydrochloride is the hydrochloride of a tetracycline substance having antibacterial activity produced by the growth of *Streptomyces rimosus*.

It contains not less than 880 µg (potency) and not more than 945 µg (potency) per mg, calculated on the dried basis. The potency of Oxytetracycline Hydrochloride is expressed as mass (potency) of oxytetracycline (C$_{22}$H$_{24}$N$_2$O$_{8}$: 460.43).

Identification (1) Determine the absorption spectrum of a solution of Oxytetracycline Hydrochloride in 0.1 mol/L hydrochloric acid TS (1 in 50,000) as directed under Ultraviolet-visible Spectrophotometry <2.26> and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Oxytetracycline Hydrochloride RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wave numbers.

(2) Determine the infrared absorption spectrum of Oxytetracycline Hydrochloride, previously dried, as directed in the potassium chloride disk method under Infrared Spectrophotometry with the potassium chloride disk method under Infrared Spectrophotometry 2.25, and compare the spectrum with the Reference Spectrum or the spectrum of Oxytetracycline Hydrochloride RS: both spectra exhibit similar intensities of absorption at the same wave numbers. If any difference appears between the spectra, dissolve the sample and the Reference Standard separately in methanol, evaporate the solvent, and perform the test with the residues.

(3) Dissolve 20 mg of Oxytetracycline Hydrochloride in 3 mL of water, and add 1 drop of silver nitrate TS: a white turbidity is produced.

Optical rotation <2.49> $[\alpha]_D^20 = -188$ to -200° (0.25 g calculated on the dried basis, 0.1 mol/L hydrochloric acid, 25 mL, 100 mm).

Purity (1) Heavy metals <1.07>—Proceed with 0.5 g of Oxytetracycline Hydrochloride according to Method 2, and perform the test. Prepare the control solution with 2.5 mL of Standard Lead Solution (not more than 50 ppm).

(2) Related substances—Dissolve 20 mg of Oxytetracycline Hydrochloride in 0.1 mol/L hydrochloric acid TS to make exactly 25 mL, and use this solution as the sample solution. Separately, dissolve 20 mg of 4-epi-oxytetracycline in 0.01 mol/L hydrochloric acid TS to make exactly 25 mL, and use this solution as 4-epi-oxytetracycline stock solution. Separately, dissolve 20 mg of tetracycline hydrochloride in 0.01 mol/L hydrochloric acid TS to make exactly 25 mL, and use this solution as tetracycline hydrochloride stock solution. Perform the test with exactly 25 µL of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine each peak area by the automatic integration method: the peak areas of 4-epi-oxytetracycline and tetracycline obtained from the sample solution are not larger than each of the peak area from the standard solution, and the total area of the peaks, α-apooxytetracycline having the relative retention time of about 2.1 to oxytetracycline, β-apooxytetracycline and the peaks, which appear between α-apooxytetracycline and β-apooxytetracycline, are not larger than the peak area of β-apooxytetracycline from the standard solution.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 254 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with styrene-divinylbenzene copolymer for liquid chromatography (8 µm in particle diameter).
Column temperature: A constant temperature of about 60°C.
Mobile phase A: Mix 60 mL of 0.33 mol/L potassium dihydrogen phosphate TS, 100 mL of a solution of tetrabutylammonium hydrogen sulfate (1 in 100), 10 mL of a solution of disodium dihydrogen ethylenediamine tetracetate dihydrate (1 in 2500) and 200 mL of water, and adjust the pH to 7.5 with 2 mol/L sodium hydroxide TS. To this solution add 30 g of t-butyl alcohol and water to make 1000 mL.
Mobile phase B: Mix 60 mL of 0.33 mol/L potassium dihydrogen phosphate TS, 50 mL of a solution of tetrabutylammonium hydrogen sulfate (1 in 100), 10 mL of a solution of disodium dihydrogen ethylenediamine tetracetate dihydrate (1 in 2500) and 200 mL of water, and adjust the pH to 7.5 with 2 mol/L sodium hydroxide TS. To this solution add 100 g of t-butyl alcohol and water to make 1000 mL.
Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 20</td>
<td>10 → 20</td>
<td>90 → 80</td>
</tr>
<tr>
<td>20 – 35</td>
<td>10 → 20</td>
<td>90 → 80</td>
</tr>
</tbody>
</table>

Flow rate: 1.0 mL per minute.
Time span of measurement: About 3.5 times as long as the retention time of oxytetracycline, beginning after the solvent peak.
System suitability—
Test for required detectability: Pipet 1 mL of 4-epi-oxytetracycline stock solution to make exactly 25 mL, and use this solution as 4-epi-oxytetracycline peak solution.
Oxytocin

オキシトシン

C_{37}H_{63}N_{12}O_{12}S_2: 1007.19
[50-56-6]

Oxytocin is synthetic human oxytocin, and is a peptide consisting of 9 amino acid residues.

It contains not less than 540 oxytocin Units and not more than 600 oxytocin Units per mg, calculated on the anhydrous and residual acetic acid-free basis.

Description

Oxytocin occurs as a white powder.

It is very soluble in water, and freely soluble in ethanol (99.5).

It dissolves in hydrochloric acid TS.

The pH of a solution prepared by dissolving 0.10 g of Oxytocin in 10 mL of freshly boiled and cooled water is between 4.0 and 6.0.

It is hygroscopic.

Identification

Determine the absorption spectrum of a solution of Oxytocin (1 in 2000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

Constituent amino acids

Put about 1 mg of Oxytocin in a test tube for hydrolysis, add 6 mol/L hydrochloric acid TS to dissolve, replace the air in the tube with Nitrogen, seal the tube under reduced pressure, and heat at 110 to 115°C for 16 hours. After cooling, open the tube, evaporate the hydrolyzate to dryness under reduced pressure, add 2 mL of 0.02 mol/L hydrochloric acid TS to dissolve the residue, and use this solution as the sample solution. Separately, weigh accurately about 27 mg of L-aspartic acid, about 24 mg of L-threonine, about 21 mg of L-serine, about 29 mg of L-glutamic acid, about 23 mg of L-proline, about 15 mg of glycine, about 18 mg of L-alanine, about 23 mg of L-valine, about 48 mg of L-cystine, about 30 mg of methionine, about 26 mg of L-isoleucine, about 26 mg of L-leucine, about 36 mg of L-tyrosine, about 33 mg of phenylalanine, about 37 mg of L-lysine hydrochloride, about 42 mg of L-histidine hydrochloride monohydrate and about 42 mg of L-arginine hydrochloride, dissolve them in 10 mL of 1 mol/L hydrochloric acid TS, and add water to make exactly 100 mL. Pipet 5 mL of this solution, add water to make exactly 20 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07>.

System suitability—

System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of oxytocycline is not more than 1.0%.

Storage—Light-resistant.
according to the following conditions, and calculate the respective molar ratios with respect to leucine: 0.95 – 1.05 for aspartic acid, 0.95 – 1.05 for glutamic acid, 0.95 – 1.05 for proline, 0.95 – 1.05 for glycine, 0.80 – 1.10 for isoleucine, 0.80 – 1.05 for tyrosine and 0.80 – 1.05 for cystine, and not more than 0.01 each for others.

Operating conditions—
Detector: A visible spectrophotometer (wavelength: 440 nm and 570 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 8 cm in length, packed with strongly acidic ion-exchange resin for liquid chromatography (Na type) composed with a sulfonated polystyrene copolymer (3 μm in particle diameter).
Column temperature: A constant temperature of about 57°C.
Chemical reaction bath temperature: A constant temperature of about 130°C.
Color developing time: About 1 minute.
Mobile phase: Prepare mobile phases A, B and C according to the following table.

<table>
<thead>
<tr>
<th>Mobile phase</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citric acid monohydrate</td>
<td>19.80 g</td>
<td>22.00 g</td>
<td>6.10 g</td>
</tr>
<tr>
<td>Trisodium citrate dihydrate</td>
<td>6.19 g</td>
<td>7.74 g</td>
<td>26.67 g</td>
</tr>
<tr>
<td>Sodium chloride</td>
<td>5.66 g</td>
<td>7.07 g</td>
<td>54.35 g</td>
</tr>
<tr>
<td>Ethanol (99.5)</td>
<td>260.0 mL</td>
<td>20.0 mL</td>
<td>—</td>
</tr>
<tr>
<td>Benzyl alcohol</td>
<td>—</td>
<td>—</td>
<td>5.0 mL</td>
</tr>
<tr>
<td>Thiodiglycol</td>
<td>5.0 mL</td>
<td>5.0 mL</td>
<td>—</td>
</tr>
<tr>
<td>Lauromacrogol solution (1 in 4)</td>
<td>4.0 mL</td>
<td>4.0 mL</td>
<td>4.0 mL</td>
</tr>
<tr>
<td>Caprylic acid</td>
<td>0.1 mL</td>
<td>0.1 mL</td>
<td>0.1 mL</td>
</tr>
<tr>
<td>Water</td>
<td>a sufficient amount</td>
<td>a sufficient amount</td>
<td>a sufficient amount</td>
</tr>
<tr>
<td>Total amount</td>
<td>2000 mL</td>
<td>1000 mL</td>
<td>1000 mL</td>
</tr>
</tbody>
</table>

Flowing of mobile phase: Control the gradient by mixing the mobile phases A, B and C as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
<th>Mobile phase C (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 9</td>
<td>—</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9 – 25</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>25 – 61</td>
<td>0</td>
<td>100 → 0</td>
<td>0 – 100</td>
</tr>
<tr>
<td>61 – 80</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Reaction reagent: Mix 407 g of lithium acetate dihydrate, 245 mL of acetic acid (100) and 801 mL of 1-methoxy-2-propanol, add water to make 2000 mL, stir for more than 10 minutes while passing Nitrogen, and use this solution as Solution A. Separately, to 195 mL of 1-methoxy-2-propanol, add water to make 2000 mL, stir for more than 10 minutes while passing Nitrogen, and use this solution as Solution B. Mix Solution A and Solution B before use.
Flow rate of mobile phase: About 0.26 mL per minute.
Flow rate of reaction reagent: About 0.3 mL per minute.
System suitability—
System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of acetic acid to that of the internal standard is not more than 1.5, 1.4 and 1.2, respectively.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of acetic acid to that of the internal standard is not more than 2.0%.

(2) Related substances—Dissolve 25 mg of Oxytocin in 100 mL of the mobile phase A, and use this solution as the sample solution. Perform the test with 50 μL of the sample solution as directed under Liquid Chromatography <2.01> according to the following conditions, determine each peak area by the automatic integration method, and calculate the amount of them by the area percentage method: the amount of each peak other than Oxytocin is not more than 1.5%, and the total of them is not more than 5.0%.
Operating conditions—
Detector, column, column temperature, mobile phase, flowing of mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 2.5 times as long as the retention time of oxytocin.

System suitability—
Test for required detectability: Measure exactly 1 mL of the sample solution, add the mobile phase A to make exactly 100 mL, and use this solution as the solution for system suitability test. Pipet 1 mL of the solution for system suitability test, and add the mobile phase A to make exactly 10 mL. Confirm that the peak area of oxytocin obtained with 50 μL of this solution is equivalent to 5 to 15% of that with 50 μL of the solution for system suitability test.

System performance: Dissolve an adequate amount of oxytocin and vasopressin in the mobile phase A, so that each mL contains about 0.1 mg each of them. When the procedure is run with 50 μL of this solution under the above operating conditions, vasopressin and oxytocin are eluted in this order with the resolution between these peaks being not less than 14, and the symmetry factor of the peak of oxytocin is not more than 1.5.

System repeatability: When the test is repeated 6 times with 50 μL of the solution for system suitability test under the above operating conditions, the relative standard deviation of the peak area of oxytocin is not more than 2.0%.

Water <2.45> Not more than 5.0% (50 mg, coulometric titration).

Assay Weigh accurately an amount of Oxytocin, equivalent to about 13,000 Units, dissolve in the mobile phase A to make exactly 100 mL, and use this solution as the sample solution. Separately, dissolve 1 bottle of the Oxytocin RS in the mobile phase A to make a known concentration solution containing each mL contains about 130 Units, and use this solution as the standard solution. Perform the test with exactly 25 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A_T and A_S, of oxytocin in each solution.

Units per mg of Oxytocin, calculated on the anhydrous and residual acetic acid-free basis
\[M_s = \frac{M_T}{A_T/A_S} \times 100 \]

M_s: Units per mL of the standard solution
M_T: Amount (mg) of Oxytocin taken, calculated on the anhydrous and residual acetic acid-free basis

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 220 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadeylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase A: Dissolve 15.6 g of sodium dihydrogen phosphate dihydrate in 1000 mL of water.

Mobile phase B: A mixture of water and acetonitrile (1:1). Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 30</td>
<td>70 → 40</td>
<td>30 → 60</td>
</tr>
<tr>
<td>30 – 30.1</td>
<td>40 → 70</td>
<td>60 → 30</td>
</tr>
<tr>
<td>30.1 – 45</td>
<td>70</td>
<td>30</td>
</tr>
</tbody>
</table>

Flow rate: 1.0 mL per minute.

System suitability—
System performance: Dissolve an adequate amount of oxytocin and vasopressin in the mobile phase A, so that each mL contains about 0.1 mg each of them. When the procedure is run with 25 μL of this solution under the above operating conditions, vasopressin and oxytocin are eluted in this order with the resolution between these peaks being not less than 14, and the symmetry factor of the peak of oxytocin is not more than 1.5.

System repeatability: When the test is repeated 6 times with 25 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of oxytocin is not more than 1.0%.

Containers and storage Containers—Tight containers.
Storage—At 2 to 8°C.

Oxytocin Injection

オキシトシン注射液

Oxytocin Injection is an aqueous injection.
It contains not less than 90.0% and not more than 110.0% of the labeled oxytocin Units.

Method of preparation Prepare as directed under Injections, with Oxytocin.

Description Oxytocin Injection is a colorless, clear liquid.

pH <2.5> 2.5 – 4.5

Bacterial endotoxins <4.0> Less than 10 EU/oxytocin Unit.

Extractable volume <6.0> It meets the requirement.

Foreign insoluble matter <6.0> Perform the test according to the Method 1: it meets the requirement.

Insoluble particulate matter <6.0> It meets the requirement.

Sterility <4.0> Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Measure exactly a portion of Oxytocin Injection according to the labeled Units, dilute with the diluent so that each mL contains about 1 Unit, and use this solution as the sample solution. Separately, dissolve 1 bottle of Oxytocin RS in the mobile phase A to make exactly 20 mL. Pipet a suitable volume of this solution, dilute with the diluent to make a known concentration solution so that each mL contains about 1 Unit, and use this solution as the standard solution. Perform the test with exactly 100 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A_T and A_S, of oxytocin in each solution.

Units per mL of Oxytocin Injection
\[M_s = \frac{M_T}{A_T/A_S} \times \frac{b}{a} \]

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
Ozagrel Sodium / Official Monographs

JP XVIII

\[\text{C}_{14} \text{H}_{19} \text{N}_{2} \text{O}_{4} \] 250.23

Monosodium (2E)-3-[4-(1H-imidazol-1-ylmethyl)phenyl]prop-2-enoo".t (189224-26-8)

Ozagrel Sodium, when dried, contains not less than 98.0%, and not more than 102.0% of ozagrel sodium (C\textsubscript{14}H\textsubscript{19}N\textsubscript{2}O\textsubscript{4}).

Description Ozagrel Sodium occurs as white, crystals or crystalline powder.

It is freely soluble in water, soluble in methanol, and practically insoluble in ethanol (99.5).

Identification (1) Determine the absorption spectrum of a solution of Ozagrel Sodium (1 in 200,000) as directed under Ultraviolet-visible Spectrophotometry \(<2.54\rangle\), and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Ozagrel Sodium RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Ozagrel Sodium as directed in the potassium bromide disk method under Infrared Spectrophotometry \(<2.25\rangle\), and compare the spectrum with the Reference Spectrum or the spectrum of Ozagrel Sodium RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) A solution of Ozagrel Sodium (1 in 20) responds to Qualitative Tests \(<1.09\rangle\) for sodium salt.

pH \(<2.54\rangle\). The pH of a solution prepared by dissolving 0.5 g of Ozagrel Sodium in 10 mL of water is between 9.5 and 10.5.

Purity (1) Clarity and color of solution—Dissolve 0.5 g of Ozagrel Sodium in 10 mL of water: the solution is clear and colorless.

(2) Chloride \(<1.03\rangle\). Dissolve 2.0 g of Ozagrel Sodium in 30 mL of water, add 1 mL of acetic acid (100) and water to make 50 mL, shake, and allow to stand for 30 minutes. Filter the solution, discard the first 5 mL of the filtrate, and to 25 mL of the subsequent filtrate add 6 mL of dilute nitric acid and water to make 50 mL. Perform the test with this solution as the test solution. Prepare the control solution as follows: To 0.35 mL of 0.01 mol/L hydrochloric acid VS add 0.5 mL of acetic acid (100), 6 mL of dilute nitric acid and water to make 50 mL (not more than 0.012%).

(3) Heavy metals \(<1.07\rangle\). Proceed with 2.0 g of Ozagrel Sodium according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(4) Related substances—Dissolve 50 mg of Ozagrel Sodium in 100 mL of the mobile phase, and use this solution as the sample solution. Perform the test with 5 \(\mu\)L of the sample solution as directed under Liquid Chromatography \(<2.01\rangle\) according to the following conditions. Determine each peak area by the automatic integration method, and calculate the amount of them by the area percentage method: each of the amount other than ozagrel is not more than 0.2%, and the total amount other than ozagrel is not more than 0.5%.

Operating conditions—

Column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Detector: An ultraviolet absorption photometer (wavelength: 220 nm).

Time span of measurement: About 2 times as long as the retention time of ozagrel, beginning after the solvent peak.

System suitability—

Test for required detectability: Pipet 1 mL of the sample solution, and add the mobile phase to make exactly 200 mL, and use this solution as the solution for system suitability test. Pipet 2 mL of the solution for system suitability test, and add the mobile phase to make exactly 10 mL. Confirm that the peak area of ozagrel obtained with 5 \(\mu\)L of this solution is equivalent to 15 to 25% of that with 5 \(\mu\)L of the solution for system suitability test.

System performance: When the procedure is run with 5 \(\mu\)L of the solution for system suitability test under the above operating conditions, the number of theoretical plates and the

System performance—

Column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Detector: An ultraviolet absorption photometer (wavelength: 220 nm).

Time span of measurement: About 2 times as long as the retention time of ozagrel, beginning after the solvent peak.

System suitability—

Test for required detectability: Pipet 1 mL of the sample solution, and add the mobile phase to make exactly 200 mL, and use this solution as the solution for system suitability test. Pipet 2 mL of the solution for system suitability test, and add the mobile phase to make exactly 10 mL. Confirm that the peak area of ozagrel obtained with 5 \(\mu\)L of this solution is equivalent to 15 to 25% of that with 5 \(\mu\)L of the solution for system suitability test.
system symmetry factor of the peak of ozagrel are not less than 6000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 5 μL of the solution for system suitability test under the above operating conditions, the relative standard deviation of the peak area of ozagrel is not more than 2.0%.

Loss on drying <2.4> Not more than 0.5% (1 g, 105°C, 4 hours).

Assay Weigh accurately about 25 mg each of Ozagrel Sodium and Ozagrel Sodium RS, both previously dried, and dissolve each in methanol to make exactly 25 mL. Pipet 5 mL each of these solutions, add exactly 5 mL of the internal standard solution, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with 1 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.0> according to the following conditions, and calculate the ratios, Q₁ and Qₛ, of the peak area of ozagrel to that of the internal standard.

Amount (mg) of ozagrel sodium \((C_{13}H_{11}N_2NaO_2) \)

\[
M_S = M_S \times Q_S / Q_S
\]

Internal standard solution—A solution of benzoic acid in methanol (1 in 100).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 272 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilylized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: A mixture of a solution of ammonium acetate (3 in 1000) and methanol (4:1).

Flow rate: Adjust so that the retention time of ozagrel is about 10 minutes.

System suitability—

System performance: When the procedure is run with 1 μL of the standard solution under the above operating conditions, the internal standard and ozagrel are eluted in this order with the resolution between these peaks being not less than 2.0, and the symmetry factor of the peak of ozagrel is not more than 2.0.

System repeatability: When the test is repeated 6 times with 1 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of ozagrel to that of the internal standard is not more than 1.0%.

Containers and storage—Containers—Tight containers.

Ozagrel Sodium Injection

オザグレルナトリウム注射液

Ozagrel Sodium Injection is an aqueous injection. It contains not less than 95.0% and not more than 105.0% of the labeled amount of ozagrel sodium \((C_{13}H_{11}N_2NaO_2) \): 250.23.

Method of preparation Prepare as directed under Injections, with Ozagrel Sodium.

Description Ozagrel Sodium Injection occurs as a clear and colorless liquid.

Identification To a suitable volume of Ozagrel Sodium Injection add water so that each mL contains 5 μg of Ozagrel Sodium. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.2<: it exhibits a maximum between 269 nm and 273 nm.

pH Being specified separately when the drug is granted approval based on the Law.

Purity Related substance—To a suitable volume of Ozagrel Sodium Injection add the mobile phase so that each mL contains 0.4 mg of Ozagrel Sodium, and use this solution as the sample solution. Then, proceed as directed in the Purity (4) under Ozagrel Sodium.

Bacterial endotoxins <4.0> Less than 3.7 EU/mg.

Extractable volume <6.0> It meets the requirement.

Foreign insoluble matter <6.0> Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter <6.0> It meets the requirement.

Sterility <4.0> Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Perform the test following the test 1). The test 2) may be performed instead of 1), if possible.

1) To exactly a volume of Ozagrel Sodium Injection, equivalent to about 4 mg of ozagrel sodium \((C_{13}H_{11}N_2NaO_2) \), add exactly 5 mL of the internal standard solution and methanol to make 100 mL, and use this solution as the sample solution. Separately, weigh accurately about 40 mg of Ozagrel Sodium RS, previously dried at 105°C for 4 hours, and dissolve in methanol to make exactly 50 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution, add 10 mL of water, then add methanol to make 100 mL, and use this solution as the standard solution. Then, proceed as directed in the Assay under Ozagrel Sodium.

Amount (mg) of ozagrel sodium \((C_{13}H_{11}N_2NaO_2) \)

\[
M_S = M_S \times Q_S / Q_S \times 1 / 10
\]

2) To exactly a volume of Ozagrel Sodium Injection, equivalent to about 20 mg of ozagrel sodium \((C_{13}H_{11}N_2NaO_2) \) add water to make exactly 10 mL. Pipet 1 mL of this solution, add exactly 2 mL of the internal standard solution, add 1 mL of water, and use this solution as the sample solution. Separately, weigh accurately about 25 mg of Ozagrel Sodium RS, previously dried at 105°C for 4 hours, and dissolve in methanol to make exactly 25 mL. Pipet 1 mL of this solution, add exactly 1 mL of the internal standard solution, and use this solution as the standard solution. Then, proceed as directed in the Assay under Ozagrel Sodium.

Amount (mg) of ozagrel sodium \((C_{13}H_{11}N_2NaO_2) \)

\[
M_S = M_S \times Q_S / Q_S \times 4 / 5
\]

Containers and storage—Containers—Hermetic containers.
Ozagrel Sodium for Injection

Ozagrel Sodium for Injection is a preparation for injection, which is dissolved before use.

It contains not less than 95.0% and not more than 105.0% of the labeled amount of ozagrel sodium (C₁₃H₁₁N₂NaO₂: 250.23).

Method of preparation
Prepared as directed under Injections, with Ozagrel Sodium.

Description
Ozagrel Sodium for Injection occurs as white, masses or powder.

Identification
Dissolve an amount of Ozagrel Sodium for Injection, equivalent to 0.20 g of Ozagrel Sodium, in the mobile phase to make 200 mL. To 5 mL of this solution add the mobile phase to make 20 mL, and use this solution as the sample solution. Then, proceed as directed in the Purity (4) under Ozagrel Sodium.

Bacterial endotoxins
Less than 3.7 EU/mg.

Uniformity of dosage units
It meets the requirement of the Mass variation test.

Foreign insoluble matter
Perform the test according to Method 2: it meets the requirements.

Insoluble particulate matter
It meets the requirement.

Sterility
Perform the test according to the Membrane filtration method: it meets the requirement.

Assay
Take a number of Ozagrel Sodium for Injection, equivalent to about 0.4 g of ozagrel sodium (C₁₃H₁₁N₂NaO₂), and dissolve all the contents in water to make exactly 200 mL. Pipet 5 mL of this solution, add exactly 10 mL of the internal standard solution and 5 mL of water, mix, and use this solution as the sample solution. Separately, weigh accurately about 25 mg of Ozagrel Sodium RS, previously dried at 105°C for 2 hours, and dissolve in methanol to make exactly 25 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution, and use this solution as the standard solution. Then, proceed as directed in the Assay under Ozagrel Sodium.

Amount (mg) of ozagrel sodium (C₁₃H₁₁N₂NaO₂)

\[M_5 = \frac{M_9 \times Q_1}{Q_2} \times 16 \]

M₅: Amount (mg) of Ozagrel Sodium RS taken

Internal standard solution—A solution of benzoic acid in methanol (1 in 100).

Containers and storage
Containers—Hermetic containers.

Pancreatin

パンクレアチン

Pancreatin is a substance containing enzymes prepared from the pancreas of edible animals, mostly the hog, and has amylolytic, proteolytic and lipolytic activities.

It contains not less than 2800 starch saccharifying activity units, not less than 28,000 proteolytic activity units, and not less than 960 lipolytic activity units per g.

It is usually diluted with suitable excipients.

Description
Pancreatin occurs as a white to light yellow powder. It has a characteristic odor.

Purity
(1) Rancidity—Pancreatin has no unpleasant or rancid odor and is tasteless.
(2) Fat—Add 20 mL of diethyl ether to 1.0 g of Pancreatin, extract with occasional shaking for 30 minutes, and filter. Wash the residue with 10 mL of diethyl ether, combine the washing with the filtrate, evaporate the diethyl ether, and dry the residue at 105°C for 2 hours: the mass of the residue does not exceed 20 mg.

Loss on drying
Not more than 4.0% (1 g, in vacuum, phosphorus (V) oxide, 24 hours).

Residue on ignition
Not more than 5% (1 g).

Assay
(1) Starch digestive activity
(i) Substrate solution—Use potato starch TS for amylolytic activity test, prepared by adding 10 mL of phosphate buffer solution for pancreatin instead of 10 mL of 1 mol/L acetic acid-sodium acetate buffer solution (pH 5.0).
(ii) Sample solution—Weigh accurately about 0.1 g of Pancreatin, add a suitable amount of ice-cold water, stir, and add ice-cold water to make exactly 100 mL. Pipet 10 mL of this solution, and add ice-cold water to make exactly 100 mL.

(2) Protein digestive activity
(i) Substrate solution—Use the substrate solution described in 2.3. (ii) of 2. Assay for protein digestive activity under Digestion Test after adjusting the pH to 8.5.
(ii) Sample solution—Weigh accurately about 0.1 g of Pancreatin, add a suitable amount of ice-cold water, stir, and add ice-cold water to make exactly 200 mL.

(iii) Procedure—Proceed as directed in 2. Assay for protein digestive activity under Digestion Test, using trichloroacetic acid TS B as the precipitation reagent.

(3) Fat digestive activity
(i) Emulsifier—Prepare with 18 g of polyvinyl alcohol I and 2 g of polyvinyl alcohol II as directed in 3. Assay for fat digestive activity under Digestion Test.

(ii) Substrate solution—Use the substrate solution described in 3. Assay for fat digestive activity under the Digestion Test.

(iii) Sample solution—Weigh accurately about 0.1 g of Pancreatin, add a suitable amount of ice-cold water, stir, and add ice-cold water to make exactly 100 mL.

(iv) Procedure—Proceed as directed in 3. Assay for fat digestive activity under Digestion Test, using phosphate buffer solution (pH 8.0) as the buffer solution.
Containers and storage Containers—Tight containers. Storage—Not exceeding 30°C.

Pancuronium Bromide

パンクロニウム臭化物

C₁₅H₁₆Br₂N₂O₄: 732.67
1,1’-3α,17β-Diacetoxy-5α-androstan-2β,16β-diylibis(1-methylpiperidinium) dibromide [15500-66-0]

Pancuronium Bromide contains not less than 98.0% and not more than 102.0% of pancuronium bromide (C₁₅H₁₆Br₂N₂O₄), calculated on the anhydrous basis.

Description Pancuronium Bromide occurs as a white crystalline powder.

It is very soluble in water, and freely soluble in ethanol (95) and in acetic anhydride.

It is hygroscopic.

Identification (1) Determine the infrared absorption spectrum of Pancuronium Bromide as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(2) A solution of Pancuronium Bromide (1 in 100) responds to Qualitative Tests <1.09>(1) for bromide.

Optical rotation <2.49> [α]D²₅: +38– +42° (0.75 g calculated on the anhydrous basis, water, 25 mL, 100 mm).

pH <2.50> The pH of a solution of Pancuronium Bromide (1 in 100) is between 4.5 and 6.5.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Pancuronium Bromide in 10 mL of water: the solution is clear and colorless.

(2) Related substances—Dissolve 50 mg of Pancuronium Bromide in 5 mL of ethanol (95), and use this solution as the sample solution. Pipet 1 mL of the sample solution, add ethanol (95) to make exactly 100 mL, and use this solution as the standard solution (1). Separately, weigh exactly 5 mg of dacuronium bromide for thin-layer chromatography, add ethanol (95) to make exactly 25 mL, and use this solution as the standard solution (2). Perform the test with these solutions as directed under Thin-Layer Chromatography <2.02>.

Spot 2 µL each of the sample solution and standard solutions (1) and (2) on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of 2-propanol, acetone, nitrile and a solution of sodium iodide (1 in 5) (17:2:1) to a distance of about 12 cm, and air-dry the plate. Spray evenly a solution of sodium nitrite in methanol (1 in 100) on the plate, allow to stand for 2 minutes, and spray evenly potassium bismuth iodide TS on the plate: a spot obtained from the sample solution, corresponding to that from the standard solution (2), has no more color than that from the standard solution (2), and the spots other than the principal spot and the above mentioned spot from the sample solution have no more color than the spot from the standard solution (1).

Water <2.48> Not more than 8.0% (0.3 g, volumetric titration, direct titration).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.2 g of Pancuronium Bromide, dissolve in 50 mL of acetic anhydride by warming, and titrate <2.50> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 36.63 mg of C₁₅H₁₆Br₂N₂O₄

Containers and storage Containers—Tight containers. Storage—Light-resistant.

Panipenem

パニペネム

C₁₅H₁₃N₂O₅S: 339.41
(5R,65S)-6-[(1R)-1-Hydroxyethyl]-3-[(3S)-1-(1-iminoethyl)pyrrolidin-3-ylsulfanyl]-7-oxo-1-azabicycle[3.2.0]hept-2-ene-2-carboxylic acid [87726-17-8]

Panipenem contains not less than 900 µg (potency) and not more than 1010 µg (potency) per mg, calculated on the anhydrous and residual solvent-free basis. The potency of Panipenem is expressed as mass (potency) of panipenem (C₁₅H₁₃N₂O₅S).

Description Panipenem occurs as a white to light yellow, crystalline powder or mass.

It is very soluble in water, freely soluble in methanol, slightly soluble in ethanol (99.5), and practically insoluble in diethyl ether.

It is hygroscopic.

It deliquesces in the presence of moisture.

Identification (1) Dissolve 20 mg of Panipenem in 2 mL of water, add 1 mL of hydroxylammonium chloride-ethanol TS, allow to stand for 3 minutes, add 1 mL of acidic ammonium iron (III) sulfate TS, and shake: a red-brown color develops.

(2) Determine the absorption spectrum of a solution of Panipenem in 0.02 mol/L 3-(N-morpholino)propanesulfonic acid buffer solution (pH 7.0) (1 in 50,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave lengths.

(3) Determine the infrared absorption spectrum of Panipenem as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation <2.49> [α]D²₅: +55– +65° (0.1 g calculated on the anhydrous and residual solvent-free basis, 0.1 mol/L.
3-(N-morpholinopropanesulfonic acid buffer solution (pH 7.0), 10 mL, 100 mm).

pH Dissolve 0.5 g of Panipenem in 10 mL of water: the pH of the solution is between 4.5 and 6.5.

Purity (1) Clarity and color of solution—Dissolve 0.30 g of Panipenem in 40 mL of water, and observe immediately: the solution is clear and its absorbance at 400 nm determined as directed under Ultraviolet-visible Spectrophotometry <2.4> is not more than 0.4.

(2) Heavy metals <1.07>—Proceed with 1.0 g of Panipenem according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(3) Related substances—Keep the sample solution at 5°C or below. Dissolve 50 mg of Panipenem in 50 mL of water, and use this solution as the sample solution. Perform the test with 10 μL of the sample solution as directed under Liquid Chromatography <2.07> according to the following conditions. Determine each peak area by the automatic integration method, and calculate the amount of them by the area percentage method: the amount of the peak other than panipenem is not more than 2.0%, and the total amount of the peaks other than panipenem is not more than 6.0%.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 220 nm).

Column: A stainless steel column 4 mm in inside diameter and 25 cm in length, packed with octadecylsilanized porous glass for liquid chromatography (7 μm in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase A: Dissolve 3.12 g of sodium dihydrogen phosphate dihydrate in 700 mL of water, adjust to pH 8.0 with dilute sodium hydroxide TS, then add water to make 1000 mL, and add 20 mL of acetonitrile.

Mobile phase B: Dissolve 3.12 g of sodium dihydrogen phosphate dihydrate in 700 mL of water, adjust to pH 8.0 with dilute sodium hydroxide TS, then add water to make 1000 mL. To 750 mL of this solution add 250 mL of acetonitrile.

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 15</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>15 – 50</td>
<td>100 → 0</td>
<td>0 → 100</td>
</tr>
</tbody>
</table>

Flow rate: 1.0 mL per minute (the retention time of panipenem is about 16 minutes).

Time span of measurement: For 50 minutes after injection, beginning after the solvent peak.

System suitability—

Test for required detectability: Use a solution of Panipenem (1 in 100,000) as the solution for system suitability test. Pipet 1 mL of the solution for system suitability test, add water to make exactly 10 mL. Confirm that the peak area of panipenem obtained with 10 μL of this solution is equivalent to 7 to 13% of that with 10 μL of the solution for system suitability test.

System performance: When the procedure is run with 10 μL of the solution for system suitability test under the above conditions, the number of theoretical plates and the symmetry factor of the peak of panipenem are not less than 3000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 10 μL of the solution for system suitability test under the above conditions, the relative standard deviation of the peak area of panipenem is not more than 2.0%.

Water Weigh accurately about 0.5 g of Panipenem, transfer to a 15-mL narrow-mouthed cylindrical glass bottle, add exactly 2 mL of the internal standard solution to dissolve, seal tightly a rubber stopper with aluminum cap, and use this solution as the sample solution. Separately, weigh accurately 2 g of water, and add the internal standard solution to make exactly 100 mL. Pipet 5 mL and 10 mL of this solution, add the internal standard solution to make exactly 20 mL, and use these solutions as the standard solution (1) and the standard solution (2). Perform the test with 1 μL of the sample solution and standard solutions (1) and (2) as directed under Gas Chromatography <2.02> according to the following conditions, and calculate the ratios, Q1, Q2, and Q3, of the peak area of water to that of the internal standard. Calculate the amount of water by the following formula: water is not more than 5.0%.

\[
\text{Amount of water} = M_S/M_I \times (Q_1 + Q_2S_2) - 2Q_2S_2)/2(Q_2S_2 - Q_3S_3) \times 1/100 \times 100
\]

\[
M_S: \text{Amount (g) of water taken}.
\]

Operating conditions—

Detector: A thermal conductivity detector.

Column: A glass column 3 mm in inside diameter and 2 m in length, packed with porous ethyl vinylbenzene-divinylbenzene copolymer for gas chromatography (150 to 180 μm in particle diameter).

Column temperature: A constant temperature of about 125°C.

Carrier gas: Helium.

Flow rate: Adjust so that the retention time of acetonitrile is about 8 minutes.

System suitability—

System performance: When the procedure is run with 1 μL of the standard solution (2) under the above operating conditions, water, methanol, and the internal standard are eluted in this order with the resolution between the peaks of water and internal standard being not less than 10.

System repeatability: When the test is repeated 6 times with 1 μL of the standard solution (2) under the above operating conditions, the relative standard deviation of the ratios of the peak area of water to that of the internal standard is not more than 5.0%.

Residue on ignition <2.4> Not more than 0.5% (1 g).

Assay Conduct this procedure within 30 minutes after preparation of the sample and standard solutions. Weigh accurately an amount of Panipenem and Panipenem RS, equivalent to about 0.1 g (potency), dissolve them separately in 0.02 mol/L 3-(N-morpholinopropanesulfonic acid buffer solution (pH 7.0) to make exactly 100 mL. Pipet 5 mL each of these solutions, add exactly 5 mL of the internal standard solution, add 0.02 mol/L 3-(N-morpholinopropanesulfonic acid buffer solution (pH 7.0) to make 20 mL, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with 10 μL of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions,
Panipenem and Betamipron for Injection

注射用パニペネム・ベタミプロン

Panipenem and Betamipron for Injection is a preparation for injection which is dissolved before use.

It contains not less than 90.0% and not more than 105.0% of the labeled potency of panipenem (C₁₇H₁₅N₃O₈S: 339.41), and not less than 95.0% and not more than 105.0% of labeled amount of betamipron (C₁₀H₁₁N₃O₅S: 193.20).

Method of preparation Prepare as directed under Injections, with Panipenem and Betamipron.

Description Panipenem and Betamipron for Injection occurs as two layers of upper and lower. The former occurs pale yellowish white to light yellow, masses or masses containing powder, and the latter white, masses or masses containing powder.

It is deliquescent.

Identification (1) Powder Panipenem and Betamipron for Injection, weigh a portion of the powder, equivalent to 40 mg (potency) of Panipenem, dissolve in 4 mL of water, add 1 mL of hydroxylammonium chloride-ethanol TS, allow to stand for 3 minutes, add 1 mL of acidic ammonium iron (III) sulfate TS, and shake: a red-brown color develops (panipenem).

(2) Powder Panipenem and Betamipron for Injection. Dissolve a portion of the powder, equivalent to 50 mg of Betamipron, in 4 mL of diluted methanol (1 in 2), and use this solution as the sample solution. Separately, dissolve 12 mg of betamipron in 1 mL of diluted methanol (1 in 2), and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography C2.07. Spot 1 µL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of ethanol (99.5) and triethylamine (19:1) to a distance of about 8 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the principal spot obtained from the sample solution and the spot from the standard solution show the same Rf value (betamipron).

pH The pH of a solution of an amount of Panipenem and Betamipron for Injection, equivalent to 0.5 mg (potency) of Panipenem, in 100 mL of isotonic sodium chloride solution is 5.8 to 7.8.

Purity (1) Clarity and color of solution—A solution of an amount of Panipenem and Betamipron for Injection, equivalent to 0.5 g (potency) of Panipenem, in 10 mL of water is clear, and has no more color than Matching Fluid J.

(2) Related substances—After preparation of the sample solution, keep it at not exceeding 5°C and use within 60 minutes. Take 1 container of Panipenem and Betamipron for Injection, dissolve in water so that each mL contains 1 mg (potency) of panipenem, and use this solution as the sample solution. Perform the test with 10 µL of the sample solution as directed under Liquid Chromatography C2.01 according to the following conditions, and determine each peak area by the automatic integration method, and calculate the amount of them by the area percentage method: the amount of each peak other than panipenem and betamipron is not more than 8.0%, and the total amount of peaks other than panipenem and betamipron is not more than 13.0%.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 220 nm).

Column: A stainless steel column 4.6 mm in inside diameter, 15 cm in length, packed with octadecysilanized silica gel for liquid chromatography (3 µm in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase A: A mixture of 0.02 mol/L phosphate buffer (pH 8.0) and acetonitrile (100:1).

Mobile phase B: A mixture of 0.02 mol/L phosphate buffer (pH 8.0) and acetonitrile (3:1).

Flowing of mobile phase: Control the gradient by mixing the mobile phase A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 22</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>22 - 25</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>25 - 30</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>30 - 35</td>
<td>90</td>
<td>15</td>
</tr>
<tr>
<td>35 - 40</td>
<td>85</td>
<td>15</td>
</tr>
<tr>
<td>40 - 50</td>
<td>77</td>
<td>23</td>
</tr>
<tr>
<td>50 - 55</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Flow rate: 1.0 mL per minute.
Time span of measurement: About 3 times as long as the retention time of panipenem.

System suitability—

Test for required detectability: Use the diluted sample solution (1 in 100) as the solution for system suitability test. Pipet 1 mL of the solution for system suitability test, add water to make exactly 10 mL. Confirm that the peak area of panipenem obtained with 10 μL of this solution is equivalent to 7 to 13% of that with 10 μL of the solution for system suitability test.

System performance: When the procedure is run with 10 μL of the solution for system suitability test under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of panipenem are not less than 4000 and 0.8 to 1.2, respectively.

System repeatability: When the test is repeated 3 times with 10 μL of the solution for system suitability test under the above operating conditions, the relative standard deviation of the peak area of panipenem is not more than 0.95%.

Bacterial endotoxins <4.01> Less than 0.15 EU/mg (potency).

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of Content uniformity test.

After preparation of the sample solution and standard solution, keep them at not exceeding 5°C. Dissolve the content of 1 container of Panipenem and Betamipron for Injection in 0.02 mol/L 3-(N-morpholino)propanesulfonic acid buffer solution (pH 7.0) to make exactly 50 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution, add 0.02 mol/L 3-(N-morpholino)propanesulfonic acid buffer solution (pH 7.0) to make 20 mL, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.017> according to the following conditions, and calculate the ratios, \(Q_{S1} \) and \(Q_{S2} \), of the peak areas of panipenem and betamipron to that of the internal standard obtained from the sample solution, and the ratios, \(Q_{S31} \) and \(Q_{S32} \), of the peak areas of panipenem and betamipron to that of the internal standard obtained from the standard solution.

\[
\begin{align*}
\text{Amount (mg [potency]) of panipenem} & \quad = M_{S1} \times Q_{S1}/Q_{S1} \times 25/V \\
\text{Amount (mg) of betamipron} & \quad = M_{S2} \times Q_{S2}/Q_{S2} \times 25/V \\
M_{S1}: \quad \text{Amount [mg (potency)] of Panipenem RS taken} \\
M_{S2}: \quad \text{Amount (mg) of betamipron for assay taken, calculated on the anhydrous basis} \\
\end{align*}
\]

Internal standard solution—A solution of sodium p-styrenesulfonate in 0.02 mol/L 3-(N-morpholino)propanesulfonic acid buffer solution (pH 7.0) (1 in 10,000).

Foreign insoluble matter <6.06> Perform the test according to the following method: it meets the requirement.

Insoluble particulate matter <6.07> It meets the requirement.

Sterility <4.06> Perform the test according to the Membrane filtration method: it meets the requirement.

Assay After preparation of the sample solution and standard solution, keep them at not exceeding 5°C. Dissolve the total amount of the contents of 10 containers of Panipenem and Betamipron for Injection in 0.02 mol/L 3-(N-morpholino)propanesulfonic acid buffer solution (pH 7.0) to make exactly 500 mL. Take exactly \(V \) mL of this solution, equivalent to about 50 mg (potency) of Panipenem, add 0.02 mol/L 3-(N-morpholino)propanesulfonic acid buffer solution (pH 7.0) to make exactly 50 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution, add 0.02 mol/L 3-(N-morpholino)propanesulfonic acid buffer solution (pH 7.0) to make 20 mL, and use this solution as the sample solution. Separately, weigh accurately about 50 mg (potency) of Panipenem RS and about 50 mg of betamipron for assay (separately determine the water <2.4B> in the same manner as Betamipron), dissolve in 0.02 mol/L 3-(N-morpholino)propanesulfonic acid buffer solution (pH 7.0) to make exactly 50 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution, add 0.02 mol/L 3-(N-morpholino)propanesulfonic acid buffer solution (pH 7.0) to make 20 mL, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.017> according to the following conditions, and calculate the ratios, \(Q_{S1} \) and \(Q_{S2} \), of the peak areas of panipenem and betamipron to that of the internal standard obtained from the sample solution, and the ratios, \(Q_{S31} \) and \(Q_{S32} \), of the peak areas of panipenem and betamipron to that of the internal standard obtained from the standard solution.

\[
\begin{align*}
\text{Amount [mg (potency)] of panipenem} & \quad = M_{S1} \times Q_{S1}/Q_{S31} \times 25/V \\
\text{Amount (mg) of betamipron} & \quad = M_{S2} \times Q_{S2}/Q_{S32} \times 25/V \\
M_{S1}: \quad \text{Amount [mg (potency)] of Panipenem RS taken} \\
M_{S2}: \quad \text{Amount (mg) of betamipron for assay taken, calculated on the anhydrous basis} \\
\end{align*}
\]

Shelf life 24 months after preparation.
Pantethine

パントチン

\[
\text{C}_{22}\text{H}_{33}\text{N}_{5}\text{O}_{6}\text{S}_2: 554.72}
\]

\[
\text{Bis(2-[3-([2R]-2,4-dihydroxy-3,3'-dimethylbutanoylamino)propanoylamino)ethyl) disulfide [16816-67-4]}
\]

Pantethine is an aqueous solution containing 80% of pantethine. Pantethine contains not less than 98.0% of pantethine \((\text{C}_{22}\text{H}_{33}\text{N}_{5}\text{O}_{6}\text{S}_2)\), calculated on the anhydrous basis.

Description Pantethine is a clear, colorless to pale yellow viscous liquid.

It is miscible with water, with methanol and with ethanol (95).

It is decomposed by light.

Identification (1) To 0.7 g of Pantethine add 5 mL of sodium hydroxide TS, shake, and add 1 to 2 drops of copper (II) sulfate TS: a blue-purple color develops.

(2) To 0.7 g of Pantethine add 3 mL of water, shake, add 0.1 g of zinc powder and 2 mL of acetic acid (100), and boil for 2 to 3 minutes. After cooling, add 1 to 2 drops of sodium pentacyanonitrosylferrate (III) TS: a red-purple color develops.

(3) To 1.0 g of Pantethine add 500 mL of water, and shake. To 5 mL of this solution add 3 mL of 1 mol/L hydrochloric acid TS, and heat on a water bath for 30 minutes. After cooling, add 7 mL of a solution of hydroxyammonium chloride in sodium hydroxide TS (3 in 140), and allow to stand for 5 minutes. Add 3 drops of 2,4-dinitrophenol TS, and add 1 mL of hydrochloric acid TS dropwise until the solution has no color, and then add 1 mL of iron (III) chloride TS: a red-purple color develops.

Optical rotation \(2.49\langle [\alpha]_D \rangle^2: +15.0 - +18.0^\circ\) (1 g calculated on the anhydrous basis, water, 25 mL, 100 mm).

Purity (1) Heavy metals \(1.07 - <2.03\): The pH of a solution of 1.0 g of Papaverine Hydrochloride, when dried, contains not less than 98.5% of papaverine hydrochloride (\(\text{C}_{21}\text{H}_{21}\text{NO}_{4}\text{HCl}\)).

Residue on Ignition \(2.50\langle [\alpha]_D \rangle^2\): Not more than 0.1% (2 g).

Stability Papaverine Hydrochloride, when dried, contains not less than 98.5% of papaverine hydrochloride \((\text{C}_{21}\text{H}_{21}\text{NO}_{4}\text{HCl})\).

Description Papaverine Hydrochloride occurs as white crystals or crystalline powder.

It is sparingly soluble in water and in acetic acid (100), slightly soluble in ethanol (95), and practically insoluble in acetic anhydride and in diethyl ether.

The pH of a solution of 1.0 g of Papaverine Hydrochloride in 50 mL of water is between 3.0 and 4.0.

Identification (1) To 1 mg of Papaverine Hydrochloride add 1 drops of formaldehyde-sulfuric acid TS: a colorless to light yellow-green color is produced, and it gradually changes to deep red, then to brown.

(2) Dissolve 0.02 g of Papaverine Hydrochloride in 1 mL of water, and add 3 drops of sodium acetate TS: a white precipitate is produced.

(3) Dissolve 1 mg of Papaverine Hydrochloride in 3 mL of acetic anhydride and 5 drops of sulfuric acid, heat in a
water bath for 1 minute, and examine under ultraviolet light (main wavelength: 365 nm): the solution shows a yellow-green fluorescence.

(4) Dissolve 0.1 g of Papaverine Hydrochloride in 10 mL of water, make alkaline with ammonia TS, and shake with 10 mL of diethyl ether. Draw off the diethyl ether layer, wash with 5 mL of water, and filter. Evaporate the filtrate on a water bath, and dry the residue at 105°C for 3 hours: the residue so obtained melts (2.60°) between 145°C and 148°C.

(5) Alkalinify a solution of Papaverine Hydrochloride (1 in 50) with ammonia TS, and filter the precipitate. Acidify the filtrate with dilute nitric acid: the solution responds to Qualitative Tests (1.09°) (2) for chloride.

Purity

(1) Clarity and color of solution—Dissolve 0.10 g of Papaverine Hydrochloride in 10 mL of water: the solution is clear and colorless.

(2) Morphine—Dissolve 10 mg of Papaverine Hydrochloride in 1 mL of water, add 5 mL of 1-nitroso-2-naphthol TS and 2 mL of a solution of potassium nitrate (1 in 10), and warm at 40°C for 2 minutes. Add 1 mL of a solution of sodium nitrate (1 in 5000), and warm at 40°C for 5 minutes. After cooling, shake the mixture with 10 mL of chloroform, centrifuge, and separate the aqueous layer: the solution so obtained has no more color than a pale red color.

(3) Readily carbonizable substances (1.15°)—Perform the test with 0.12 g of Papaverine Hydrochloride: the solution has no more color than Matching Fluid S or P.

Loss on drying (2.41°) Not more than 1.0% (1 g, 105°C, 4 hours).

Residue on ignition (2.44°) Not more than 0.2% (1 g).

Assay Weigh accurately about 0.5 g of Papaverine Hydrochloride, previously dried, dissolve in 100 mL of a mixture of acetic anhydride and acetic acid (100) (7:3) by warming, cool, and titrate (2.50°) with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 37.59 mg of C$_{20}$H$_{21}$NO$_4$.HCl

Containers and storage Containers—Tight containers. Storage—Light-resistant.

Papaverine Hydrochloride Injection

パパベリン塩酸塩注射液

Papaverine Hydrochloride Injection is an aqueous injection.

It contains not less than 95.0% and not more than 105.0% of the labeled amount of papaverine hydrochloride (C$_{20}$H$_{21}$NO$_4$.HCl: 375.85).

Method of preparation Prepare as directed under Injections, with Papaverine Hydrochloride.

Description Papaverine Hydrochloride Injection is a clear, colorless liquid.

pH: 3.0 – 5.0

Identification

(1) To 1 mL of Papaverine Hydrochloride Injection add 3 drops of sodium acetate TS: a white precipitate is produced.

(2) Dilute a volume of Papaverine Hydrochloride Injection, equivalent to 0.1 g of Papaverine Hydrochloride, with water to 10 mL, render the solution alkaline with ammonia TS, and shake with 10 mL of diethyl ether. Draw off the diethyl ether layer, wash with 5 mL of water, and filter. Evaporate the filtrate on a water bath to dryness, and dry the residue at 105°C for 3 hours: the residue so obtained melts (2.60°) between 145°C and 148°C.

(3) Proceed with 1 mg each of the residue obtained in (2) as directed in the Identification (1) and (3) under Papaverine Hydrochloride.

(4) Alkalinify 2 mL of Papaverine Hydrochloride Injection with ammonia TS, filter the precipitate off, and acidity the filtrate with dilute nitric acid: the solution responds to Qualitative Tests (1.09°) (2) for chloride.

Bacterial endotoxins (4.06°) Less than 6.0 EU/mg.

Extractable volume (5.05°) It meets the requirement.

Foreign insoluble matter (6.06°) Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter (6.07°) It meets the requirement.

Sterility (4.06°) Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Dilute an exactly measured volume of Papaverine Hydrochloride Injection, equivalent to about 0.2 g of papaverine hydrochloride (C$_{20}$H$_{21}$NO$_4$.HCl), with water to 10 mL, render the solution alkaline with ammonia TS, and extract with 20-mL, 15-mL, 10-mL and 10-mL portions of chloroform. Combine the extracts, wash with 10 mL of water, and re-extract the washings with two 5-mL portions of chloroform. Combine all the chloroform extracts, and distil the chloroform on a water bath. Dissolve the residue in 30 mL of acetic acid (100), and titrate (2.50°) with 0.05 mol/L perchloric acid VS (indicator: 2 drops of crystal violet TS). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.05 mol/L perchloric acid VS = 18.79 mg of C$_{20}$H$_{21}$NO$_4$.HCl

Containers and storage Containers—Hermetic containers. Storage—Light-resistant.

Paraffin

パラフィン

Paraffin is a mixture of solid hydrocarbons obtained from petroleum.

Description Paraffin occurs as a colorless or white, more or less transparent, crystalline mass. It is odorless and tasteless.

It is sparingly soluble in diethyl ether and practically insoluble in water, in ethanol (95) and in ethanol (99.5).

Specific gravity d_2^{10}° about 0.92 (proceed as directed in 4.2. in 4. Specific gravity under Fats and Fatty Oils Test (1.15°)).

Identification

(1) Heat Paraffin strongly in a porcelain dish, and ignite: it burns with a bright flame and the odor of paraffin vapor is perceptible.

(2) Heat 0.5 g of Paraffin with 0.5 g of sulfur with shaking carefully: the odor of hydrogen sulfide is perceptible.

Melting point (2.60°) 50 – 75°C (Method 2).
Purity (1) Acidity or alkalinity—Boil 10.0 g of Paraffin with 10 mL of hot water and 1 drop of phenolphthalein TS in a water bath for 5 minutes, and shake vigorously: a red color is not produced. Add 0.20 mL of 0.02 mol/L sodium hydroxide VS to this solution, and shake: a red color is produced.

(2) Heavy metals <1.07>—Ignite 2.0 g of Paraffin in a crucible, first moderately until charred, then between 450°C and 550°C to ash. Cool, add 2 mL of hydrochloric acid, and evaporate on a water bath to dryness. To the residue add 2 mL of dilute acetic acid and water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution as follows: to 2.0 mL of Standard Lead Solution add 2 mL of dilute acetic acid and water to make 50 mL (not more than 10 ppm).

(3) Arsenic <1.17>—Prepare the test solution with 1.0 g of Paraffin according to Method 3, and perform the test (not more than 2 ppm).

(4) Sulfur compounds—To 4.0 g of Paraffin add 2 mL of ethanol (99.5), further add 2 drops of a clear saturated solution of lead (II) oxide in a solution of sodium hydroxide (1 in 5), and heat for 10 minutes at 70°C with occasional shaking: no dark brown color develops in the aqueous layer. Add 5 mL of sulfuric acid for readily carbonizable substances, and warm at 70°C for 5 minutes in a water bath. Remove the tube from the water bath, immediately shake vigorously and vertically for 3 seconds, and warm for 1 minute in a water bath at 70°C. Repeat this procedure 5 times: the color of the sulfuric acid layer is not darker than that of the following control solution.

Control solution: Add 1.5 mL of Cobalt (II) Chloride CS, 0.5 mL of Copper (II) Sulfate CS and 5 mL of liquid paraffin to 3.0 mL of Iron (III) Chloride CS, and shake vigorously.

Containers and storage Containers—Well-closed containers.

Liquid Paraffin

液動パラフィン

Liquid Paraffin is a mixture of liquid hydrocarbons obtained from petroleum.

Tocopherols of a suitable form may be added at a concentration not exceeding 0.001% as a stabilizer.

Description Liquid Paraffin is a colorless, transparent, oily liquid, nearly free from fluorescence. It is odorless and tasteless.

It is freely soluble in diethyl ether, very slightly soluble in ethanol (99.5), and practically insoluble in water and in ethanol (95).

Boiling point: above 300°C.

Identification (1) Heat Liquid Paraffin strongly in a porcelain dish, and fire: it burns with a bright flame and the odor of paraffin vapor is perceptible.

(2) Heat 0.5 of Liquid Paraffin with 0.5 g of sulfur with shaking carefully: the odor of hydrogen sulfide is perceptible.

Specific gravity <2.50> d_20^0 = 0.860 – 0.890

Viscosity <2.53> Not less than 37 mm²/s (Method 1, 37.8°C).

Purity (1) Odor—Transfer a suitable amount of Liquid Paraffin to a small beaker, and heat on a water bath: a foreign odor is not perceptible.

(2) Acidity or alkalinity—Shake vigorously 10 mL of Liquid Paraffin with 10 mL of hot water and 1 drop of phenolphthalein TS: no red color develops. Shake this solution with 0.20 mL of 0.02 mol/L sodium hydroxide VS: a red color develops.

(3) Heavy metals <1.07>—Ignite 2.0 g of Liquid Paraffin in a crucible, first moderately until charred, then between 450°C and 550°C to ash. Cool, add 2 mL of hydrochloric acid, and evaporate on a water bath to dryness. To the residue add 2 mL of dilute acetic acid and water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution as follows: to 2.0 mL of Standard Lead Solution add 2 mL of dilute acetic acid and water to make 50 mL (not more than 10 ppm).

(4) Arsenic <1.17>—Prepare the test solution with 1.0 g of Liquid Paraffin, according to Method 3 except that after addition of 10 mL of a solution of magnesium nitrate hexahydrate in ethanol (95) (1 in 50), add 1.5 mL of hydrogen peroxide (30), fire to burn, and perform the test (not more than 2 ppm).

(5) Solid paraffin—Transfer 50 mL of Liquid Paraffin, previously dried at 105°C for 2 hours, to a Nessler tube, and cool in ice water for 4 hours: the turbidity produced, if any, is not deeper than that of the following control solution.

Control solution: To 1.5 mL of 0.01 mol/L hydrochloric acid VS add 6 mL of dilute nitric acid and water to make 50 mL, add 1 mL of silver nitrate TS, and allow to stand for 5 minutes.

(6) Sulfur compounds—Prepare a saturated solution of lead (II) oxide in a solution of sodium hydroxide (1 in 5), and mix 2 drops of this clear solution with 4.0 mL of Liquid Paraffin and 2 mL of ethanol (99.5). Heat at 70°C for 10 minutes with frequent shaking, and cool: no dark brown color develops.

(7) Polycyclic aromatic hydrocarbons—Take 25 mL of Liquid Paraffin by a 25-mL measuring cylinder, transfer to a 1000-mL separator, and wash out the cylinder with 25 mL of hexane for ultraviolet-visible spectrophotometry. Combine the washings with the liquid in the separator, and shake vigorously. Shake this solution vigorously for 2 minutes with 5.0 mL of dimethylsulfoxide for ultraviolet-visible spectrophotometry, and allow to stand for 15 minutes. Transfer the lower layer to a 50-mL separator, add 2 mL of hexane for ultraviolet-visible spectrophotometry, shake vigorously for 2 minutes, and allow to stand for 2 minutes. Transfer the lower layer to a 10-mL glass-stoppered centrifuge tube, and centrifuge between 2500 revolutions per minute and 3000 revolutions per minute for about 10 minutes, and use the clear solution obtained as the sample solution. Transfer 25 mL of hexane for ultraviolet-visible spectrophotometry to another 50-mL separator, shake vigorously for 2 minutes with 5.0 mL of dimethylsulfoxide for ultraviolet-visible spectrophotometry, and allow to stand for 2 minutes. Transfer the lower layer to a 10-mL glass-stoppered centrifuge tube, and centrifuge between 2500 revolutions per minute and 3000 revolutions per minute for about 10 minutes, and use the clear solution thus obtained as a control solution. Immediately determine the absorbance of the sample solution using the control solution as the blank as directed under Ultraviolet-visible Spectrophotometry <2.24>: not more than 0.10 at the wavelength region between 260 nm and 350 nm.

(8) Readily carbonizable substances—Transfer 5 mL of Liquid Paraffin to a Nessler tube, and add 5 mL of sulfuric acid for readily carbonizable substances. After heating in a
Light Liquid Paraffin

Light Liquid Paraffin is a mixture of liquid hydrocarbons obtained from petroleum.

Tocopherols of a suitable form may be added at a concentration not exceeding 0.001% as a stabilizer.

Description Light Liquid Paraffin is a clear, colorless oily liquid, nearly free from fluorescence. It is odorless and tasteless.

It is freely soluble in diethyl ether, and practically insoluble in water and in ethanol (95%).

Boiling point: above 300°C.

Purity

1. **Odor**—Transfer a suitable amount of Light Liquid Paraffin to a Nessler tube, and add 5 mL of sulfuric acid: perceptible.

2. **Acidity or alkalinity**—Shake vigorously 10 mL of Light Liquid Paraffin with 10 mL of hot water and 1 drop of phenolphthalein TS: no red color develops. Shake this solution with 0.20 mL of 0.02 mol/L sodium hydroxide VS: a red color develops.

3. **Heavy metals**—Ignite 2.0 g of Light Liquid Paraffin in a crucible, first moderately until charred, then between 450°C and 550°C to ash. Cool, add 2 mL of hydrochloric acid, and evaporate on a water bath to dryness. To the residue add 2 mL of dilute acetic acid and water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution as follows: to 2.0 mL of Standard Lead Solution add 2 mL of dilute acetic acid and water to make 50 mL (not more than 10 ppm).

4. **Arsenic**—Prepare the test solution with 1.0 g of Light Liquid Paraffin according to Method 3, and perform the test (not more than 2 ppm).

5. **Solid paraffin**—Transfer 50 mL of Light Liquid Paraffin, previously dried at 105°C for 2 hours, to a Nessler tube, and cool in ice water for 4 hours: the turbidity produced, if any, is not deeper than that of the following control solution.

Control solution: To 1.5 mL of 0.01 mol/L hydrochloric acid VS add 6 mL of dilute nitric acid and water to make 50 mL, add 1 mL of silver nitrate TS, and allow to stand for 5 minutes.

6. **Sulfur compounds**—Prepare a saturated solution of lead (II) oxide in a solution of sodium hydroxide (1 in 5), and mix 2 drops of this clear solution with 4.0 mL of Light Liquid Paraffin and 2 mL of ethanol (99.5). Heat at 70°C for 10 minutes with frequent shaking, and cool: no dark brown color develops.

7. **Polycyclic aromatic hydrocarbons**—Take 25 mL of Light Liquid Paraffin by a 25-mL measuring cylinder, transfer to a 100-mL separator, and wash out the cylinder with 25 mL of hexane for ultraviolet-visible spectrophotometry. Combine the washings with the liquid in the separator, and shake vigorously. Shake this solution vigorously for 2 minutes with 5.0 mL of dimethylsulfoxide for ultraviolet-visible spectrophotometry, and allow to stand for 15 minutes. Transfer the lower layer to a 50-mL separator, add 2 mL of hexane for ultraviolet-visible spectrophotometry, shake vigorously for 2 minutes, and allow to stand for 2 minutes. Transfer the lower layer to a glass-stoppered 10-mL centrifuge tube, and centrifuge between 2500 revolutions per minute and 3000 revolutions per minute for about 10 minutes, and use the clear solution so obtained as the sample solution. Separately, transfer 25 mL of hexane for ultraviolet-visible spectrophotometry to a 50-mL separator, add 5.0 mL of dimethylsulfoxide for ultraviolet-visible spectrophotometry, shake vigorously for 2 minutes, and allow to stand for 2 minutes. Transfer the lower layer to a glass-stoppered 10-mL centrifuge tube, centrifuge between 2500 revolutions per minute and 3000 revolutions per minute for about 10 minutes, and use the clear solution so obtained as a control solution. Immediately determine the absorbance of the sample solution using the control solution as the blank as directed under Ultraviolet-Visible Spectrophotometry <2.2>A: not more than 0.10 at the wavelength region between 260 nm and 350 nm.

8. **Readily carbonizable substances**—Transfer 5 mL of Light Liquid Paraffin to a Nessler tube, and add 5 mL of sulfuric acid for readily carbonizable substances. After heating in a water bath for 2 minutes, remove the tube from the water bath, and immediately shake vigorously and vertically for 5 seconds. Repeat this procedure four times: the liquid paraffin layer remains unchanged in color, and the sulfuric acid layer has no more color than the following control solution.

Control solution: Mix 3.0 mL of Iron (III) Chloride CS with 1.5 mL of Cobalt (II) Chloride CS and 0.50 mL of Copper (II) Sulfate CS.

Containers and storage Containers—Tight containers.

帕拉ホルムアルデヒド

Paraformaldehyde contains not less than 95.0% of formaldehyde (CH₂O: 30.03).

Description Paraformaldehyde occurs as a white powder. It has a slight odor of formaldehyde, but a very strong irritating odor is perceptible when it is heated.

It is practically insoluble in water, in ethanol (95%) and in diethyl ether.

It dissolves in hot water, in hot dilute hydrochloric acid, in sodium hydroxide TS and in ammonia TS. It sublimes at about 100°C.
Identification (1) Dissolve 0.1 g of Paraformaldehyde in 5 mL of ammonia TS, add 5 mL of silver nitrate TS, shake, and add 3 mL of a solution of sodium hydroxide (1 in 10): a mirror of metallic silver is immediately formed on the sides of the container.

(2) Add a solution of 0.04 g of salicylic acid in 5 mL of sulfuric acid to 0.02 g of Paraformaldehyde, and warm slowly: a persistent, dark red color is produced.

Purity (1) Clarity and color of solution—Dissolve 0.20 g of Paraformaldehyde in 10 mL of ammonia TS: the solution is clear and colorless.

(2) Acidity or alkalinity—To 0.5 g of Paraformaldehyde add 10 mL of water, shake vigorously for 1 minute, and filter: the filtrate is neutral.

(3) Chloride <1.02>—Dissolve 1.5 g of Paraformaldehyde in 75 mL of water and 7.5 mL of sodium carbonate TS, evaporate on a water bath to dryness, and ignite at about 500°C. Dissolve the residue in 15 mL of water, filter if necessary, neutralize with dilute nitric acid (3 in 10), and add 6 mL of dilute nitric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution as follows: to 0.25 mL of a 0.01 mol/L hydrochloric acid VS add 7.5 mL of sodium carbonate TS, a volume of diluted nitric acid (3 in 10) required for neutralization of the sample, 6 mL of dilute nitric acid and water to make 50 mL (not more than 0.006%).

(4) Sulfate <1.14>—Dissolve 1.5 g of Paraformaldehyde in 45 mL of water and 4.5 mL of sodium carbonate TS, evaporate on a water bath to dryness, and ignite at about 500°C. Dissolve the residue in 15 mL of water, filter if necessary, neutralize the diluted hydrochloric acid (3 in 5), and boil for 5 minutes. After cooling, add 1 mL of dilute hydrochloric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution as follows: to 4.5 mL of sodium carbonate TS add an equal volume of diluted hydrochloric acid (3 in 5) for the neutralization of the sample and 15 mL of water, and boil for 5 minutes. After cooling, add 0.35 mL of 0.005 mol/L sulfuric acid VS, 1 mL of dilute hydrochloric acid and water to make 50 mL (not more than 0.011%).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Dissolve about 50 mg of Paraformaldehyde, accurately weighed, in 10 mL of potassium hydroxide TS in an iodine flask. Add 40 mL of water and an exactly measured 50 mL of 0.05 mol/L iodine VS, stopper, and allow to stand for 5 minutes. Then add 5 mL of dilute hydrochloric acid, stopper immediately, allow to stand for 15 minutes, and titrate <2.50> the excess iodine with 0.1 mol/L sodium thiosulfate VS (indicator: 1 mL of starch TS). Perform a blank determination in the same manner.

Each mL of 0.05 mol/L iodine VS = 1.501 mg of CH₂O.

Containers and storage Containers—Tight containers.

Dental Paraformaldehyde Paste

Method of preparation

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paraformaldehyde, finely powdered</td>
<td>35 g</td>
</tr>
<tr>
<td>Procaine Hydrochloride, finely powdered</td>
<td>35 g</td>
</tr>
<tr>
<td>Hydrous Lanolin</td>
<td>a sufficient quantity</td>
</tr>
</tbody>
</table>

```
Prepare as directed under Ointments, with the above ingredients.
```

Description Dental Paraformaldehyde Paste is yellowish white in color. It has a characteristic odor.

Identification (1) To 0.15 g of Dental Paraformaldehyde Paste add 20 mL of diethyl ether and 20 mL of 0.5 mol/L sodium hydroxide TS, shake well, separate the water layer, and dilute with water to make 100 mL. To 1 mL of this solution add 10 mL of acetylacetone TS, and heat on a water bath for 10 minutes: a yellow color is produced (paraformaldehyde).

(2) To the diethyl ether layer obtained in (1) add 5 mL of dilute hydrochloric acid and 20 mL of water, shake well, and separate the water layer: the solution responds to Qualitative Tests <1.09> for primary aromatic amines (procaine hydrochloride).

(3) To 0.15 g of Dental Paraformaldehyde Paste add 25 mL of diethyl ether and 25 mL of water, shake, separate the water layer, filter, and use the filtrate as the sample solution. Separately, dissolve 0.01 g of procaine hydrochloride in 5 mL of water, and use this solution as standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.05>. Spot 5 μL each of the sample solution and standard solution on a plate of silica gel with a fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate, ethanol (99.5%) and ammonia solution (28) (50:5:1) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): spots obtained from the sample solution and standard solution show the same Rf value.

Containers and storage Containers—Tight containers.
Parnaparin Sodium

パルナパリンナトリウム

Parnaparin Sodium is a low-molecular heparin sodium obtained by depolymerization, with hydrogen peroxide and copper (II) acetate or with sodium hypochlorite, of heparins sodium from the healthy edible porcine intestinal mucosa. The mass-average molecular mass ranges between 4500 and 6500.

The potency is not less than 70 low-molecular-mass-heparin units and not more than 95 low-molecular-mass-heparin units of anti-factor Xa activity per mg, calculated on the dried basis.

Description Parnaparin Sodium occurs as a white or light yellow powder.

It is freely soluble in water, and practically insoluble in ethanol (99.5).

It is hygroscopic.

Identification (1) Mix 0.1 mL of a solution of Parnaparin Sodium (1 in 20) and 10 mL of a solution of tritoluidine blue O (1 in 100,000), and shake the mixture: the blue color of solution immediately changes to purple.

(2) A solution of Parnaparin Sodium (1 in 20) responds to Qualitative Tests <1.09> for sodium salt.

pH <2.54> Dissolve 0.1 g of Parnaparin Sodium in 10 mL of water: the pH of this solution is between 6.0 and 8.0.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Parnaparin Sodium in 10 mL of water: the solution is clear and colorless or pale yellow.

(2) Heavy metals <1.07>—Proceed with 1.0 g of Parnaparin Sodium according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

Loss on drying <2.41> Not more than 8.0% (0.2 g, in vacuum, phosphorus (V) oxide, 60°C, 3 hours).

Molecular mass Calculate the molecular mass of Parnaparin Sodium by the following methods: The mass-average molecular mass ranges between 4500 and 6500.

(i) Creation of calibration curve—Weigh 20 mg of low-molecular mass heparin for calibration of molecular mass, and dissolve it in 2.0 mL of the mobile phase as the standard solution. Perform the test with 50 μL of the standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine the peak height, _H_UV, in chromatogram obtained by the ultraviolet absorption photometer, and determine the peak height, _H_t, in chromatogram obtained by the differential refractometer. Calculate the ratio of _H_UV to _H_t, _H_t/H_UV, at each peak. Assume the molecular mass in the 4th peak from the low molecular mass in chromatogram obtained by the ultraviolet absorption photometer as 2400, and make the calculation of the standard coefficient from dividing 2400 by the _H_t/H_UV at the corresponding peak. Make the calculation to multiply the _H_t/H_UV at each peak by the standard coefficient, and determine the molecular mass of each peak by the calculation. Prepare the calculation curve by plotting the logarithm of molecular masses at each peak on the vertical axis and the retention time on the chromatogram obtained by the differential refractometer on the horizontal axis.

Operating conditions

Detector: An ultraviolet absorption photometer (wavelength: 234 nm) and a differential refractometer.

Column: Connect 2 stainless steel columns which are 7.5 mm in inside diameter and 30 cm in length, and are packed with porous silica gel for liquid chromatography; one column, the molecular mass of limited size exclusion is about 500,000; the other, the molecular mass of limited size exclusion is about 100,000. Connect a pump, the about 500,000-molecular mass of limited size exclusion column, the about 100,000-molecular mass of limited size exclusion column, the ultraviolet absorption photometer and the differential refractometer in this order.

Column temperature: A constant temperature of about 40°C.

Mobile phase: Dissolve 28.4 g of sodium sulfate anhydride in 1000 mL of water, and 5.0 with 0.05 mol/L sulfuric acid TS.

Flow rate: 0.5 mL per minute.

System suitability

System performance: When the procedure is run with 50 μL of the standard solution under the above operating conditions, confirm that more than 10 peaks in chromatogram obtained as directed under either the Ultraviolet-visible Spectrophotometry, or the Differential Refractometry are observed.

System repeatability: When the tests repeated 6 times with 50 μL of the standard solution under the above operating conditions, relative standard deviation of the 4th peak height in chromatogram (_H_UV and _H_t) is not more than 3.0%.

(ii) Determination of molecular mass—Dissolve the 20 mg of Parnaparin Sodium with 2.0 mL of mobile phase, and use this solution as the sample solution. Perform the test with 50 μL of the sample solution as directed under Liquid Chromatography <2.01> according to the following conditions. Divide the main peak observed between 30 minutes and 45 minutes to 30 sec-interval fractions, and determine the strength of differential refractometer of each 30 sec-interval fraction. Determine the molecular mass of each fraction using the calibration curve and the retention time of each fraction. Determine the mean of molecular mass in the entire peak using the strength of differential refractometer and the molecular mass in every fractions.

Mean molecular mass of parnaparin sodium

\[
M = \frac{\Sigma (n_i M_i)}{\Sigma n_i}
\]

\(n_i\): The differential refractometer strength of fraction i in the main peak of chromatogram

\(M_i\): Molecular mass of fraction i in main peak

Operating conditions

Detector: A differential refractometer.

Column, column temperature, mobile phase, and flow
rate: Proceed as directed in the operating conditions in (i) Creation of calibration curve.

System suitability—

Proceed as directed in (i) Creation of calibration curve.

Distribution of molecular mass The molecular mass of Parnaparin Sodium is calculated as directed in the determination of molecular mass and the distribution of molecular mass is calculated by the following equation: the molecular mass of not less than 80% parnaparin sodium is between 1500 and 10,000.

\[\text{Distribution of molecular mass (\%)} = \left(\frac{\Sigma n_i}{\Sigma n} \right) \times 100 \]

\(n_i \): The differential refractometer strength of fraction i in the main peak of chromatogram

\(\Sigma n_i \): Sum of differential refractometer strength in the each fraction between 1500 and 10,000 molecular mass in the main peak

The degree of sulfate ester Dissolve 0.5 g of Parnaparin Sodium with 10 mL of water. Treat the solution with 5 mL of a strongly basic ion exchange resin, and subsequently with 10 mL of a strongly acidic ion exchange resin. Dilute the solution with water to 50 mL, and titrate 2.50 mL with 0.1 mol/L Sodium hydroxide VS (potentiometric titration). Calculate the degree of sulfate ester of Parnaparin Sodium from the equivalence point by the following equation; it is between 2.0 and 2.4.

The degree of sulfate ester

\[\text{the first equivalence point (mL)/[the second equivalence point (mL) – first equivalence point (mL)]} \]

Total nitrogen Weigh accurately about 0.10 g of Parnaparin Sodium which is dried, and perform the test as directed under Nitrogen Determination <1.00B: it contains not less than 1.9% and not more than 2.3% of nitrogen (N:14.01).

Anti-factor IIa activity Determine the potency of anti-factor IIa activity of Parnaparin Sodium according to the following method, it contains not less than 35 and not more than 60 low-molecular-mass-heparin unit per mg, calculated on the dried basis.

(i) Standard solution—Dissolve Low-molecular Mass Heparin RS in isotonic sodium chloride solution to make solutions which contain 0.1, 0.2 and 0.3 low-molecular-mass-heparin unit (anti-factor IIa activity) in 1 mL, respectively.

(ii) Sample solution—Weigh accurately about 50 mg of Parnaparin Sodium, and dissolve it in isotonic sodium chloride solution to make a solution which contains 7 µg parnaparin sodium in 1 mL.

(iii) Procedure—To each plastic tube add 0.10 mL of either the sample solution or the standard solution, separately. Subsequently to the every tubes add 0.70 mL of Tris-buffered solution (pH 8.4), 0.10 mL of anti-thrombin III TS, and 0.10 mL of normal human plasma, and mix them. To another plastic tube transfer 0.20 mL of these solutions, separately, and incubate for accurate 3 minutes at 37 ± 1°C. Next, to each tube add 0.10 mL of facter Xa TS and mix it, to permit to stand 37 ± 1°C accurately for 30 seconds, and immediately add 0.20 mL of chromogenic synthetic substrate solution (3 in 4000) and mix it, and subsequently incubate accurately for 3 min at 37 ± 1°C. To each test tube add 0.30 mL of diluted acetic acid (100) solution (1 in 2) to stop the reaction. Separately, to plastic tube add 0.10 mL of isotonic sodium chloride solution, 0.70 mL of Tris-buffered solution (pH 8.4), 0.10 mL of anti-thrombin III TS, and 0.10 mL of normal human plasma to every tubes, and mix well. To another plastic tube transfer 0.20 mL of the solution, separately, and add both 0.30 mL of water and 0.30 mL of diluted acetic acid (100) (1 in 2). Determine the absorbance of both the sample solution and the standard solution at 405 nm as directed under Ultraviolet-visible Spectrophotometry <2.2D> using a solution obtained from this solution as the blank.

(iv) Calculation method—Determine the low-molecular-mass unit (anti-factor Xa activity) of the sample solution using the calibration curve prepared from the absorbance of the standard solutions and their logarithmic concentrations, and calculate the low-molecular-mass unit (anti-factor Xa activity) in 1 mg of Parnaparin Sodium.

Low-molecular-mass-heparin unit (anti-factor Xa activity) in 1 mg of Parnaparin Sodium

\[= \text{the low-molecular-mass-heparin unit (anti-factor Xa activity) in 1 mL of the sample solution} \times \frac{b}{a} \]

a: Amount (mg) of Parnaparin Sodium taken

b: The total volume (mL) in which Parnaparin Sodium has been dissolved with isotonic sodium chloride solution for the preparation of sample solution
Paroxetine Hydrochloride Hydrate

パロキセチン塩酸塩水和物

C₁₀H₁₈FNO₃·HCl·½H₂O: 374.83
(3S,4R)-3-[(1,3-Benzodioxol-5-yl oxy)methyl]-4-(4-fluorophenyl)piperidine monohydrochloride hemihydrate

[110429-35-1]

Paroxetine Hydrochloride Hydrate contains not less than 98.5% and not more than 101.5% of paroxetine hydrochloride (C₁₀H₁₈FNO₃·HCl: 365.83), calculated on the anhydrous basis.

Description Paroxetine Hydrochloride Hydrate occurs as a white crystalline powder.

It is freely soluble in methanol, soluble in ethanol (99.5), and slightly soluble in water.

Optical rotation [α] D: -83 to -93° (0.1 g calculated on the anhydrous basis, ethanol (99.5), 20 mL, 100 mm).

Melting point: about 140°C (with decomposition).

Identification (1) Determine the absorption spectrum of a solution of Paroxetine Hydrochloride Hydrate in ethanol (99.5) (1 in 20,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Paroxetine Hydrochloride RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Paroxetine Hydrochloride Hydrate as directed in the potassium chloride disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of Paroxetine Hydrochloride RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) A solution of Paroxetine Hydrochloride Hydrate (1 in 500) responds to Qualitative Tests <1.09> for chloride.

Purity (1) Heavy metals <1.07>—Proceed with 1.0 g of Paroxetine Hydrochloride Hydrate according to Method 4, and perform the test. Use a solution of magnesium nitrate hexahydrate in ethanol (95) (1 in 30). Prepare the control solution with 1.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) 4-(4-Fluorophenyl)-1-methyl-1,2,3,6-tetrahydropyridine—Dissolve 0.42 g of Paroxetine Hydrochloride Hydrate in 10 mL of a mixture of water and acetonitrile (4:1), and use this solution as the sample solution. Pipet 1 mL of the sample solution, and add a mixture of water and acetonitrile (4:1) to make exactly 100 mL. Pipet 1 mL of this solution, and add a mixture of water and acetonitrile (4:1) to make exactly 100 mL. Pipet 2 mL of this solution, add a mixture of water and acetonitrile (4:1) to make exactly 20 mL, and use this solution as the standard solution. Perform the test with exactly 75 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area by the automatic integration method: the area of the peak, having the relative retention time of about 0.8 to paroxetine, obtained from the sample solution is not larger than the peak area of paroxetine from the standard solution. The area of the peak, having the relative retention time of about 0.8 to paroxetine, multiply the correction factor 0.86.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 242 nm).

Column: A stainless steel column 4.0 mm in inside diameter and 25 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 30°C.

Mobile phase A: Dissolve 30 g of sodium perchlorate monohydrate in 900 mL of water, add 3.5 mL of phosphoric acid, 2.4 mL of triethylamine and water to make 1000 mL, and then adjust to pH 2.0 with phosphoric acid or triethylamine.

Mobile phase B: Acetonitrile.

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 20</td>
<td>85 → 80</td>
<td>15 → 20</td>
</tr>
<tr>
<td>20 – 27</td>
<td>80 → 55</td>
<td>20 → 45</td>
</tr>
<tr>
<td>27 – 36</td>
<td>55</td>
<td>45</td>
</tr>
</tbody>
</table>

Flow rate: 1.5 mL per minute.

System suitability—

System performance: When the procedure is run with 75 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of paroxetine are not less than 100,000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 75 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of paroxetine is not more than 5.0%.

(3) Related substances—Dissolve 20 mg of Paroxetine Hydrochloride Hydrate in 20 mL of a mixture of water and tetrahydrofuran (9:1), and use this solution as the sample solution. Pipet 1 mL of the sample solution, and add a mixture of water and tetrahydrofuran (9:1) to make exactly 100 mL. Pipet 1 mL of this solution, and add a mixture of water and tetrahydrofuran (9:1) to make exactly 10 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area by the automatic integration method: the area of the peak other than paroxetine obtained from the sample solution is not larger than the peak area of paroxetine from the standard solution. For the areas of the peaks, having the relative retention time of about 0.29, about 0.66, about 0.73, about 0.85, about 0.91, about 1.14, about 1.51, and about 1.84 to paroxetine, multiply their correction factors 0.46, 0.82, 1.10, 0.95, 0.93, 0.82, 1.55, and 1.54, respectively.

Operating conditions—

Paroxetine Hydrochloride Tablets

JP XVIII Official Monographs / Paroxetine Hydrochloride Tablets 1483

Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octysilansilanized silica gel for liquid chromatography (5 μm particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase A: A mixture of water, tetrahydrofuran and trifluoroacetic acid (180:20:1).

Mobile phase B: A mixture of acetonitrile, tetrahydrofuran and trifluoroacetic acid (180:20:1).

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 30</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>30 – 50</td>
<td>80 → 20</td>
<td>20 → 80</td>
</tr>
<tr>
<td>50 – 60</td>
<td>20</td>
<td>80</td>
</tr>
</tbody>
</table>

Flow rate: 1.0 mL per minute.

Time span of measurement: For 60 minutes after injection, beginning after the solvent peak.

System suitability—

System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of paroxetine are not less than 5000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of paroxetine is not more than 2.0%.

Water 2.48: 2.0 – 3.0% (0.2 g, volumetric titration, direct titration).

Residue on ignition 2.48: Not more than 0.1% (1 g, platinum crucible).

Assay Weigh accurately about 50 mg each of Paroxetine Hydrochloride Hydrate and Paroxetine Hydrochloride RS (separately determine the water 2.48 in the same manner as Paroxetine Hydrochloride Hydrate), dissolve them separately in water to make exactly 100 mL, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography 2.01 according to the following conditions, and determine the peak areas, A1 and A2, of paroxetine in each solution.

\[
\text{Amount (mg) of paroxetine hydrochloride} = M_S \times A_1 / A_2
\]

M_S: Amount (mg) of Paroxetine Hydrochloride RS taken, calculated on the anhydrous basis

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 295 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with trimethylsilanized silica gel for liquid chromatography (5 μm particle diameter).

Column temperature: A constant temperature of about 30°C.

Mobile phase: Dissolve 3.85 g of ammonium acetate in 1000 mL of water, and adjust to pH 4.5 with acetic acid (100). To 600 mL of this solution, add 400 mL of acetonitrile and 10 mL of triethylamine, then adjust to pH 5.5 with acetic acid (100).

Flow rate: Adjust so that the retention time of paroxetine is about 9 minutes.

System suitability—

System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of paroxetine are not less than 5000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of paroxetine is not more than 1.0%.

Containers and storage Containers—Tight containers.

Paroxetine Hydrochloride Tablets

パラキセチン塩酸塩錠

Paroxetine Hydrochloride Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of paroxetine (C_{19}H_{25}FNO_{3}·HCl: 329.37).

Method of preparation Prepare as directed under Tablets,
with Paroxetine Hydrochloride Hydrate.

Identification Powder Paroxetine Hydrochloride Tablets. To a portion of the powder, equivalent to 10 mg of paroxetine (C₁₉H₂₃FNO₃), add 140 mL of ethanol (99.5), sonicate for 5 minutes, add ethanol (99.5) to make 200 mL, and filter. Determine the absorption spectrum of the filtrate as directed under Ultraviolet-visible Spectrophotometry <2.24> it exhibits maxima between 233 nm and 237 nm, between 263 nm and 267 nm, between 269 nm and 273 nm, and between 293 nm and 297 nm.

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 tablet of Paroxetine Hydrochloride Tablets add V/5 mL of 0.1 mol/L hydrochloric acid TS, disintegrate by sonication for 10 minutes, add 3V/5 mL of a mixture of water and 2-propanol (1:1), and sonicate for 20 minutes. To this solution add a mixture of water and 2-propanol (1:1) to make exactly V mL so that each mL contains about 0.2 mg of paroxetine (C₁₉H₂₃FNO₃), filter through a membrane filter with a pore size not exceeding 0.45 μm, and use the filtrate as the sample solution. Then, proceed as directed in the Assay.

\[
\text{Amount (mg) of paroxetine (C}_{19}\text{H}_{23}\text{FNO}_3) = \frac{M_s \times A_T}{A_S} \times \frac{V}{\text{mg}} \times 0.900
\]

Dissolution <6.1D> When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of 1st fluid for dissolution test as the dissolution medium, the dissolution rate in 45 minutes of 5-mg and 10-mg tablet is not less than 80%, and of 20-mg tablet is not less than 75%.

Start the test with 1 tablet of Paroxetine Hydrochloride Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add the dissolution medium to make exactly V mL so that each mL contains about 5.6 μg of paroxetine (C₁₉H₂₃FNO₃), and use this solution as the sample solution. Separately, weigh accurately about 23 mg of Paroxetine Hydrochloride RS (separately determine the water <2.48> in the same manner as Paroxetine Hydrochloride Hydrate), and dissolve in 20 mL of 0.1 mol/L hydrochloric acid TS, add a mixture of water and 2-propanol (1:1) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 25 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, Aₗ and Aₛ, of paroxetine in each solution.

\[
\text{Amount (mg) of paroxetine (C}_{19}\text{H}_{23}\text{FNO}_3) = \frac{M_s \times A_T}{A_S} \times \frac{V}{\text{mg}} \times 0.900
\]

Operating conditions—

System suitability—

System performance: When the procedure is run with 25 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of paroxetine are not less than 5000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 25 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of paroxetine is not more than 2.0%.

Assay Weigh accurately the mass of not less than 20 Paroxetine Hydrochloride Tablets, and weigh accurately a portion of the powder, equivalent to about 20 mg of paroxetine (C₁₉H₂₃FNO₃), add 20 mL of 0.1 mol/L hydrochloric acid TS, sonicate for 10 minutes. To this solution add 60 mL of a mixture of water and 2-propanol (1:1), and sonicate for 20 minutes. Then add a mixture of water and 2-propanol (1:1) to make exactly 100 mL, filter through a membrane filter with a pore size not exceeding 0.45 μm, and use the filtrate as the sample solution. Separately, weigh accurately about 23 mg of Paroxetine Hydrochloride RS (separately determine the water <2.48> in the same manner as Paroxetine Hydrochloride Hydrate), and dissolve in 20 mL of 0.1 mol/L hydrochloric acid TS, add a mixture of water and 2-propanol (1:1) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 25 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, Aₗ and Aₛ, of paroxetine in each solution.

Operating conditions—

System performance—

System performance: When the procedure is run with 25 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of paroxetine are not less than 5000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 25 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of paroxetine is not more than 2.0%.

Containers and storage Containers—Well-closed containers.
Pazufloxacin Mesilate

パズフロキサシンメシル酸塩

C₁₆H₁₂FN₂O₆·CH₂O₃S: 414.41
(3S)-10-(1-Aminocyclopropyl)-9-fluoro-3-methyl-7-oxo-2,3-dihydro-7H-pyrido[1,2,3-de][1,4]benzoxazine-6-carboxylic acid monomethanesulfonate [163680-77-1]

Pazufloxacin Mesilate, when dried, contains not less than 98.0% and not more than 102.0% of pazufloxacin mesilate (C₁₆H₁₂FN₂O₆·CH₂O₃S).

Description Pazufloxacin Mesilate occurs as a white to light yellow crystalline powder. It is freely soluble in water, and slightly soluble in ethanol (99.5). It dissolves in sodium hydroxide TS.

The pH of a solution prepared by dissolving 0.4 g of Pazufloxacin Mesilate in 10 mL of water is between 3.0 and 4.0. Melting point: about 258°C (with decomposition). It shows crystal polymorphism.

Identification (1) Determine the absorption spectrum of a solution of Pazufloxacin Mesilate in a mixture of methanol and 1 mol/L hydrochloric acid TS (49:1) (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Pazufloxacin Mesilate RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Pazufloxacin Mesilate, previously dried, as directed in the paste method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of dried Pazufloxacin Mesilate RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) Pazufloxacin Mesilate responds to Qualitative Tests <1.09> for mesilate.

Optical rotation <2.49> [α]₁₀ºD: −61° to −65° (after drying, 0.2 g, sodium hydroxide TS, 20 mL, 100 mm).

Purity (1) Heavy metals <1.07>—Proceed with 1.0 g of Pazufloxacin Mesilate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(2) Related substances—Dissolve 26 mg of Pazufloxacin Mesilate in 100 mL of the mobile phase, and use this solution as the sample solution. Perform the test with 20 μL of the sample solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area by the automatic integration method, and calculate the amounts of them by the area percentage method: the amount of the peak other than pazufloxacin is not more than 0.10%. For the area of the peak, having the relative retention time of about 2.7 to pazufloxacin, multiply the correction factor, 1.6.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 254 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecysilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase: Dissolve 1.08 g of sodium 1-octanesulfonate in 1000 mL of a mixture of diluted phosphoric acid (1 in 1000) and acetonitrile (39:11).
Flow rate: Adjust so that the retention time of pazufloxacin is about 8 minutes.
Time span of measurement: About 6 times as long as the retention time of pazufloxacin, beginning after the solvent peak.

System suitability—
Test for required detectability: To 1 mL of the sample solution add the mobile phase to make 100 mL, and use this solution as the solution for system suitability test. Pipet 1 mL of the solution for system suitability test, and add the mobile phase to make exactly 10 mL. Confirm that the peak area of pazufloxacin obtained with 20 μL of this solution is equivalent to 7 to 13% of that with 20 μL of the solution for system suitability test.

System performance: When the procedure is run with 20 μL of the solution for system suitability test under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of pazufloxacin are not less than 2500 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 20 μL of the solution for system suitability test under the above operating conditions, the relative standard deviation of the peak area of pazufloxacin is not more than 2.0%.

Loss on drying <2.41> Not more than 0.5% (1 g, 105°C, 3 hours).

Residue on ignition <2.44> Not more than 0.1% (0.2 g, platinum crucible).

Assay Weigh accurately about 26 mg each of Pazufloxacin Mesilate and Pazufloxacin Mesilate RS, both previously dried, dissolve each in water to make exactly 100 mL. Pipet 5 mL each of these solutions, add exactly 5 mL of the internal standard solution, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and calculate the ratios, Qₜ and Qₛ, of the peak area of pazufloxacin to that of the internal standard.

\[
\text{Amount (mg) of pazufloxacin mesilate} \quad (C₁₆H₁₂FN₂O₆·CH₂O₃S) = Mₛ \times Qₜ/Qₛ
\]

Mₛ: Amount (mg) of Pazufloxacin Mesilate RS taken

Internal standard solution—A solution of acetonilide in the mobile phase (3 in 10,000).

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 254 nm).
Column: A stainless steel column 4 mm in inside diameter and 25 cm in length, packed with octadecysilanized silica gel for liquid chromatography (10 μm in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase: To 200 mL of water add gradually 30 mL
of methanesulfonic acid while ice-cooling, then add 30 mL of triethylamine in the same manner, and add water to make 300 mL. To 50 mL of this solution add 150 mL of acetonitrile, 35 mL of 1 mol/L dipotassium hydrogen phosphate TS for buffer solution and water to make 1000 mL.

Flow rate: Adjust so that the retention time of pazufloxacin is about 5 minutes.

System suitability—
System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, pazufloxacin and the internal standard are eluted in this order with the resolution between these peaks being not less than 3.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of pazufloxacin to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Tight containers.

Pazufloxacin Mesilate Injection

パズフロキサシンメシル酸塩注射液

Pazufloxacin Mesilate Injection is an aqueous injection. It contains not less than 95.0% and not more than 105.0% of the labeled amount of pazufloxacin mesilate (C₁₀H₁₀FN₃O₄·CH₃O₃S: 414.41).

Method of preparation Prepare as directed under Injections, with Pazufloxacin Mesilate.

Description Pazufloxacin Mesilate Injection is a clear, colorless liquid.

Identification To a volume of Pazufloxacin Mesilate Injection, equivalent to 20 mg of Pazufloxacin Mesilate, add a mixture of methanol and 1 mol/L hydrochloric acid TS (49:1) to make 100 mL. To 5 mL of this solution add a mixture of methanol and 1 mol/L hydrochloric acid TS (49:1) to make 100 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry 2.2.4: it exhibits maxima between 237 nm and 241 nm, between 314 nm and 324 nm, between 328 nm and 332 nm, and between 343 nm and 347 nm.

pH Being specified separately when the drug is granted approval based on the Law.

Bacterial endotoxins Less than 0.30 EU/mg.

Extractable volume It meets the requirement.

Foreign insoluble matter Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter It meets the requirement.

Sterility Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Pipet a volume of Pazufloxacin Mesilate Injection, equivalent to about 12 mg of pazufloxacin mesilate (C₁₀H₁₀FN₃O₄·CH₃O₃S), and add water to make exactly 50 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution, and use this solution as the sample solution. Separately, weigh accurately about 23 mg of Pazufloxacin Mesilate RS, previously dried at 105°C for 3 hours, and add water to make exactly 100 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography 2.2.12 according to the following conditions, and calculate the ratios, Q₀ and Q₁, of the peak area of pazufloxacin to that of the internal standard.

Amount (mg) of pazufloxacin mesilate

\[M_5 = \frac{M_o \times Q_1}{Q_0} \times 1/2 \]

M₅: Amount (mg) of Pazufloxacin Mesilate RS taken

Internal standard solution—A solution of acetanilide in the mobile phase (3 in 10,000).

Operating conditions—
Proceed as directed in the operating conditions in the Assay under Pazufloxacin Mesilate.

System suitability—
System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, pazufloxacin and acetanilide are eluted in this order with the resolution between these peaks being not less than 3.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of pazufloxacin to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Hermetic containers. Plastic containers for aqueous injections may be used.

Storage—Light-resistant.

Pemirolast Potassium

ペミロラストカリウム

C₁₀H₁₀KN₄O: 266.30
Monopotasium 5-(9-methyl-4-oxo-4H-pyrido[1,2-a]pyrimidin-3-yl)-1H-tetrazol-1-ide [100299-08-9]

Pemirolast Potassium contains not less than 98.5% and not more than 101.0% of pemirolast potassium (C₁₀H₄KN₄O), calculated on the anhydrous basis.

Description Pemirolast Potassium occurs as a light yellow crystalline powder. It is freely soluble in water, slightly soluble in methanol, and very slightly soluble in ethanol (99.5).

It dissolves in potassium hydroxide TS.

Melting point: about 322°C (with decomposition).

Identification (1) Determine the absorption spectrum of a solution of Pemirolast Potassium in diluted potassium hydroxide TS (1 in 10,000) (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry 2.2.4, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Pemirolast Potassium RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.
(2) Determine the infrared absorption spectrum of Pemirolast Potassium as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of Pemirolast Potassium RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) Pemirolast Potassium responds to Qualitative Tests <1.09> (1) for potassium salt.

Purity (1) Clarity of solution—A solution obtained by dissolving 0.5 g of Pemirolast Potassium in 10 mL of water is clear.

(2) Heavy metals <1.07>—Proceed with 0.5 g of Pemirolast Potassium according to Method 2, and perform the test. Prepare the control solution with 1.0 mL of Standard Lead Solution (not more than 20 ppm).

(3) Related substances—Dissolve 50 mg of Pemirolast Potassium in 50 mL of a mixture of phosphate buffer solution (pH 8.0) and methanol (3:2), and use this solution as the sample solution. Pipet 2 mL of the sample solution, and add a mixture of phosphate buffer solution (pH 8.0) and methanol (3:2) to make exactly 100 mL. To exactly 2.5 mL of this solution add a mixture of phosphate buffer solution (pH 8.0) and methanol (3:2) to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area by the automatic integration method: the area of the peak other than pemirolast obtained from the sample solution is not larger than the peak area of pemirolast from the standard solution.

Operating conditions—
Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 9 times as long as the retention time of pemirolast.

System suitability—
Test for required detectability: To exactly 5 mL of the standard solution add a mixture of phosphate buffer solution (pH 8.0) and methanol (3:2) to make exactly 25 mL. Confirm that the peak area of pemirolast obtained with 10 μL of this solution is equivalent to 15 to 25% of that with 10 μL of the standard solution.

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of pemirolast are not less than 3000 and not more than 1.7, respectively.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of pemirolast is not more than 2.0%.

Water <2.48> Not more than 0.5% (0.1 g, coulometric titration).

Assay Weigh accurately about 50 mg each of Pemirolast Potassium and Pemirolast Potassium RS (separately determine the water <2.48> in the same manner as Pemirolast Potassium), dissolve in a mixture of phosphate buffer solution (pH 8.0) and methanol (3:2) to make them exactly 50 mL. Pipet 5 mL each of these solutions, add exactly 5 mL of the internal standard solution, then add a mixture of phosphate buffer solution (pH 8.0) and methanol (3:2) to make 50 mL, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and calculate the ratios, Q_T and Q_S, of the peak area of pemirolast to that of the internal standard.

\[M_S = \frac{Q_T}{Q_S} \]

Amount (mg) of pemirolast potassium (C_{10}H_{17}K_{10}O) = \[S \times M_S \]

Containers and storage—Containers—Tight containers. Storage—Light-resistant.

Pemirolast Potassium Ophthalmic Solution

ペミロラストカリウム点眼液

Pemirolast Potassium Ophthalmic Solution is an aqueous ophthalmic preparation. It contains not less than 95.0% and not more than 105.0% of the labeled amount of pemirolast potassium (C_{10}H_{17}K_{10}O: 266.30).

Method of preparation—Prepare as directed under Ophthalmic Liquids and Solutions, with Pemirolast Potassium.

Description—Pemirolast Potassium Ophthalmic Solution is a clear, colorless liquid.

Identification—To a volume of Pemirolast Potassium Ophthalmic Solution, equivalent to 1 mg of Pemirolast Potassium, add diluted 0.1 mol/L phosphate buffer solution for antibiotics (pH 8.0) (1 in 10) to make 100 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.24>; it exhibits maxima between 255 nm and 259 nm, and between 355 nm and 359 nm.

Osmotic pressure ratio—Being specified separately when the drug is granted approval based on the Law.
Purity Related substances—To a volume of Pemirolast Potassium Ophthalmic Solution, equivalent to 2 mg of Pemirolast Potassium, add 1 mL of methanol and diluted 0.1 mol/L phosphate buffer solution for antibiotics (pH 8.0) (1 in 10) to make 5 mL, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add 20 mL of methanol and diluted 0.1 mol/L phosphate buffer solution for antibiotics (pH 8.0) (1 in 10) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area by the automatic integration method: the area of the peak other than pemirolast obtained from the sample solution is not larger than 3/10 times the peak area of pemirolast from the standard solution, and the total area of the peaks other than pemirolast from the sample solution is not larger than the peak area of pemirolast from the standard solution.

Operating conditions—
Detector: An ultraviolet spectrophotometer (wavelength: 260 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase A: A mixture of trifluoroacetic acid TS and methanol (4:1).
Mobile phase B: A mixture of methanol and trifluoroacetic acid TS (3:2).
Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 60</td>
<td>100 → 0</td>
<td>0 → 100</td>
</tr>
</tbody>
</table>

Flow rate: Adjust so that the retention time of pemirolast is about 19 minutes.
Time span of measurement: About 3 times as long as the retention time of pemirolast, beginning after the solvent peak.

System suitability—
Test for required detectability: Pipet 2 mL of the standard solution, and add diluted 0.1 mol/L phosphate buffer solution for antibiotics (pH 8.0) (1 in 10) to make exactly 20 mL. Confirm that the peak area of pemirolast obtained with 10 μL of this solution is equivalent to 7 to 13% of that with 10 μL of the standard solution.

System performance: Dissolve 10 mg of pemirolast potassium in 10 mL of diluted 0.1 mol/L phosphate buffer solution for antibiotics (pH 8.0) (1 in 10), transfer this solution to a colorless test tube, and illuminate with a D65 fluorescent lamp (3000 lx) for 72 hours. To 2 mL of this solution add 1 mL of methanol and diluted 0.1 mol/L phosphate buffer solution for antibiotics (pH 8.0) (1 in 10) to make 5 mL. When the procedure is run with 10 μL of this solution under the above operating conditions, the resolution between the peak, having the relative retention time about 0.9 to pemirolast, and the peak of pemirolast is not less than 3.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of pemirolast is not more than 2.0%.

Foreign insoluble matter <6.11> It meets the requirement.

Insoluble particulate matter <6.08> It meets the requirement.

Sterility <4.06> Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Pipet a volume of Pemirolast Potassium Ophthalmic Solution, equivalent to 2 mg of pemirolast potassium (C_{16}H_{25}KN_{2}O), add exactly 2 mL of the internal standard solution, then add a mixture of diluted 0.1 mol/L phosphate buffer solution for antibiotics (pH 8.0) (1 in 10) and methanol (3:2) to make 20 mL, and use this solution as the sample solution. Separately, weigh accurately about 50 mg of Pemirolast Potassium RS (separately determine the water <2.45> in the same manner as Pemirolast Potassium), and dissolve in water to make exactly 50 mL. Pipet 2 mL of this solution, add exactly 2 mL of the internal standard solution, then add a mixture of diluted 0.1 mol/L phosphate buffer solution for antibiotics (pH 8.0) (1 in 10) and methanol (3:2) to make 20 mL, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Calculate the ratios, Q₁ and Q₂, of the peak area of pemirolast to that of the internal standard.

Amount (mg) of pemirolast potassium (C_{16}H_{25}KN_{2}O) = Mₛ × Q₁/Q₂ × 1/25

Mₛ: Amount (mg) of Pemirolast Potassium RS taken, calculated on the anhydrous basis

Internal standard solution—A solution of ethyl aminobenzoate in methanol (1 in 1000).

Operating conditions—
Detector: An ultraviolet spectrophotometer (wavelength: 260 nm).
Column: A stainless steel column 3.9 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (4 μm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase: A mixture of water, methanol and acetic acid (100:30:20:1).
Flow rate: Adjust so that the retention time of pemirolast is about 4 minutes.

System suitability—
System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, pemirolast and the internal standard are eluted in this order with the resolution between these peaks being not less than 6.
System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of pemirolast to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Tight containers.
Pemirolast Potassium for Syrup

シロップ用ペミロラストカリウム

Pemirolast Potassium for Syrup is a preparation for syrup, which is dissolved before use.

It contains not less than 95.0% and not more than 105.0% of the labeled amount of pemirolast potassium (C₁₀H₇KN₆O: 266.30).

Method of preparation Prepare as directed under Preparations for Syrups, with Pemirolast Potassium.

Identification Determine the absorption spectrum of the sample solution obtained in the Assay as directed under Ultraviolet-visible Spectrophotometry (2.24): it exhibits maxima between 255 nm and 259 nm, and between 355 nm and 359 nm.

pH Being specified separately when the drug is granted approval based on the Law.

Uniformity of dosage units (6.02) Perform the test according to the following method: Pemirolast Potassium for Syrup in single-dose packages meet the requirement of the Content uniformity test.

Dissolve the total amount of the content of 1 package of Pemirolast Potassium for Syrup in water to make exactly V mL so that each mL contains about 50 μg of pemirolast potassium (C₁₀H₇KN₆O). Pipet 10 mL of this solution, add water to make exactly 50 mL, and use this solution as the sample solution. Then, proceed as directed in the Assay.

Amount (mg) of pemirolast potassium (C₁₀H₇KN₆O) = \(M_s \times A_f / A_s \times V / 400 \)

\(M_s \): Amount (mg) of Pemirolast Potassium RS taken, calculated on the anhydrous basis

Assay Powder Pemirolast Potassium for Syrup. Weigh accurately a portion of the powder, equivalent to about 5 mg of pemirolast potassium (C₁₀H₇KN₆O), and dissolve in water to make exactly 100 mL. Pipet 10 mL of this solution, add water to make exactly 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 20 mg of Pemirolast Potassium RS (separately determine the water (2.49) in the same manner as Pemirolast Potassium), and dissolve in water to make exactly 100 mL. Pipet 5 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution. Determine the absorbances, \(A_f \) and \(A_s \), at 355 nm of the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry (2.24).

Amount (mg) of pemirolast potassium (C₁₀H₇KN₆O) = \(M_s \times A_f / A_s \times 1/4 \)

\(M_s \): Amount (mg) of Pemirolast Potassium RS taken, calculated on the anhydrous basis

Containers and storage Containers—Tight containers.

Storage—Light-resistant.

Pemirolast Potassium Tablets

ペミロラストカリウム錠

Pemirolast Potassium Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of pemirolast potassium (C₁₀H₇KN₆O: 266.30).

Method of preparation Prepare as directed under Tablets, with Pemirolast Potassium.

Identification Determine the absorption spectrum of the sample solution obtained in the Assay as directed under Ultraviolet-visible Spectrophotometry (2.24): it exhibits maxima between 255 nm and 259 nm, and between 355 nm and 359 nm.

Uniformity of dosage units (6.02) Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 tablet of Pemirolast Potassium Tablets add 50 mL of water for 5 mg of pemirolast potassium (C₁₀H₇KN₆O), and shake to disintegrate the tablet completely. Then, add water to make exactly V mL so that each mL contains about 50 μg of pemirolast potassium (C₁₀H₇KN₆O), and filter. Discard the first 10 mL of the filtrate, pipet 10 mL of the subsequent filtrate, add 1 mL of diluted potassium hydroxide TS (1 in 100), add water to make exactly 50 mL, and use this solution as the sample solution. Then, proceed as directed in the Assay.

Amount (mg) of pemirolast potassium (C₁₀H₇KN₆O) = \(M_s \times A_f / A_s \times V / 400 \)

\(M_s \): Amount (mg) of Pemirolast Potassium RS taken, calculated on the anhydrous basis

Dissolution (6.10) When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of disodium hydrogen phosphate-citric acid buffer solution (pH 5.0) as the dissolution medium, the dissolution rate in 45 minutes of a 5-mg tablet is not less than 75%, and that in 60 minutes of a 10-mg tablet is not less than 70%.

Start the test with 1 tablet of Pemirolast Potassium Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, and add the dissolution medium to make exactly V mL so that each mL contains about 5.6 μg of pemirolast potassium (C₁₀H₇KN₆O). Pipet 4 mL of this solution, add exactly 2 mL of diluted potassium hydroxide TS (1 in 10), and use this solution as the sample solution. Separately, weigh accurately about 28 mg of Pemirolast Potassium RS (separately determine the water (2.49) in the same manner as Pemirolast Potassium), dissolve in water to make exactly 100 mL. Pipet 5 mL of this solution, add water to make exactly 50 mL. Pipet 5 mL of this solution, add water to make exactly 25 mL. Pipet 4 mL of this solution, add exactly 2 mL of diluted potassium hydroxide TS (1 in 10), and use this solution as the standard solution. Then, proceed as directed in the Assay.

Dissolution rate (%): with respect to the labeled amount of pemirolast potassium (C₁₀H₇KN₆O) = \(M_s \times A_f / A_s \times V / V \times 1/C \times 18 \)

\(M_s \): Amount (mg) of Pemirolast Potassium RS taken, calculated on the specified basis.
culated on the anhydrous basis

C: Labeled amount (mg) of pemirolast potassium (C\textsubscript{10}H\textsubscript{15}KN\textsubscript{4}O) in 1 tablet

Assay Accurately weigh the mass of not less than 20 Penirolast Potassium Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 5 mg of penirolast potassium (C\textsubscript{10}H\textsubscript{15}KN\textsubscript{4}O), add 50 mL of water, shake thoroughly for 20 minutes, then add water to make exactly 100 mL. Filter, discard the first 10 mL of the filtrate, pipet 10 mL of the subsequent filtrate, add 1 mL of dilute potassium hydroxide TS (1 in 100), add water to make exactly 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 20 mg of Penirolast Potassium RS (separately determine the water <2.48> in the same manner as Penirolast Potassium), and dissolve in water to make exactly 100 mL. Pipet 5 mL of this solution, add 1 mL of dilute potassium hydroxide TS (1 in 100), add water to make exactly 100 mL, and use this solution as the standard solution. Determine the absorbances, A\textscript{T} and A\textscript{S}, at 357 nm of the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry <2.24>, using water as the blank.

Amount (mg) of pemirolast potassium (C\textsubscript{10}H\textsubscript{15}KN\textsubscript{4}O) = M\textsubscript{S} × A\textscript{T}/A\textscript{S} × 1/4

M\textsubscript{S}: Amount (mg) of Penirolast Potassium RS taken, calculated on the anhydrous basis

Containers and storage Containers—Tight containers. Storage—Light-resistant.

Penbutolol Sulfate

ペンブトロール硫酸塩

(C\textsubscript{21}H\textsubscript{29}NO\textsubscript{2})\textsubscript{2}·H\textsubscript{2}SO\textsubscript{4}·2H\textsubscript{2}O: 680.94
(2S)-3-(2-Cyclopentylphenoxy)-1-(1,1-dimethylethyl)aminopropan-2-ol hemisulfate

[38363-32-5]

Penbutolol Sulfate, when dried, contains not less than 98.5% of penbutolol sulfate [(C\textsubscript{10}H\textsubscript{29}NO\textsubscript{2})\textsubscript{2}·H\textsubscript{2}SO\textsubscript{4}].

Description Penbutolol Sulfate occurs as a white crystalline powder.

It is very soluble in acetic acid (100), freely soluble in methanol, sparingly soluble in ethanol (95), slightly soluble in water, and practically insoluble in acetic anhydride and in diethyl ether.

Identification (1) Determine the absorption spectrum of a solution of Penbutolol Sulfate in methanol (1 in 10,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(2) Dissolve 0.1 g of Penbutolol Sulfate in 25 mL of water by warming, and cool: this solution responds to Qualitative Tests <1.09> for sulfate.

Optical rotation [\(\alpha\)]\textsubscript{D}: 23° – 25° (after drying, 0.2 g, methanol, 20 mL, 100 mm).

Melting point 213 – 217°C

Purity (1) Heavy metals <1.07>—Proceed with 2.0 g of Penbutolol Sulfate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Arsenic <1.17>—Proceed the test solution with 1.0 g of Penbutolol Sulfate according to Method 4, and perform the test (not more than 2 ppm).

(3) Related substances—Dissolve 0.8 g of Penbutolol Sulfate in 10 mL of methanol, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add methanol to make exactly 200 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.07>. Spot 10 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of 2-propanol, ethanol (95) and ammonia solution (28) (85:12:3) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying <2.41> Not more than 0.5% (0.5 g, 105°C, 3 hours).

Residue on ignition <2.44> Not more than 0.2% (1 g).

Assay Weigh accurately about 0.8 g of Penbutolol Sulfate, previously dried, dissolve in 50 mL of a mixture of acetic anhydride and acetic acid (100) (7:3), and titrate <2.50> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 68.09 mg of (C\textsubscript{10}H\textsubscript{29}NO\textsubscript{2})\textsubscript{2}·H\textsubscript{2}SO\textsubscript{4}

Containers and storage Containers—Well-closed containers.
Pentazocine

ペントゾシン

C₂₉H₂₆NO: 285.42
(2RS,6RS,11RS)-6,11-Dimethyl-3-(3-methylbut-2-en-1-yl)-1,2,3,4,5,6-hexahydro-2,6-methano-3-benzoazocin-8-ol
[359-83-1]

Pentazocine, when dried, contains not less than 99.0% of pentazocine (C₂₉H₂₆NO).

Description Pentazocine occurs as a white to pale yellow-white, crystalline powder. It is odorless.

It is freely soluble in acetic acid (100) and in chloroform, soluble in ethanol (95), sparingly soluble in diethyl ether and practically insoluble in water.

Identification (1) To 1 mg of Pentazocine add 0.5 mL of formaldehyde-sulfuric acid TS: a deep red color is produced, and it changes to grayish brown immediately.

(2) Dissolve 5 mg of Pentazocine in 5 mL of sulfuric acid, add 1 drop of iron (III) chloride TS, and heat in a water bath for 2 minutes: the color of the solution changes from light yellow to deep yellow. Shake the solution with 1 drop of nitric acid: the solution remains yellow in color.

(3) Determine the absorption spectrum of a solution of Pentazocine in 0.01 mol/L hydrochloric acid TS (1 in 10,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

Absorbance <2.24> E₁%₁₅₅ (278 nm): 67.5 – 71.5 (after drying, 0.1 g, 0.01 mol/L hydrochloric acid TS, 1000 mL).

Melting point <2.69> 150 – 158°C

Purity (1) Clarity and color of solution—Dissolve 0.10 g of Pentazocine in 20 mL of 0.01 mol/L hydrochloric acid TS: the solution is clear and colorless.

(2) Heavy metals <1.07>—Proceed with 1.0 g of Pentazocine according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(3) Arsenic <1.11>—Prepare the test solution with 1.0 g of Pentazocine according to Method 3, and perform the test with a solution of magnesium nitrate hexahydrate in ethanol (95) (1 in 10) (not more than 2 ppm).

(4) Related substances—Dissolve 0.20 g of Pentazocine in 10 mL of chloroform, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add chloroform to make exactly 100 mL, and use this solution as the standard solution. Perform the test with the test solutions as directed under Thin-layer Chromatography <2.02>. Spot 10 μL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of chloroform, methanol and isopropanol (94:3:3) to a distance of about 13 cm, and air-dry the plate. Allow to stand for 5 minutes in iodine vapor: any spot other than the principal spot obtained from the sample solution is not more intense than the spot from the standard solution.

Loss on drying <2.41> Not more than 0.5% (1 g, in vacuum, phosphorus (V) oxide, 60°C, 5 hours).

Residue on ignition <2.44> Not more than 0.2% (1 g).

Assay Weigh accurately about 0.5 g of Pentazocine, previously dried, dissolve in 50 mL of acetic acid (100), and titrate <2.59> with 0.1 mol/L perchloric acid VS (indicator: 2 drops of crystal violet TS). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 25.54 mg of C₂₉H₂₆NO

Containers and storage Containers—Well-closed containers.

Pentobarbital Calcium

ペントバルビタールカルシウム

C₂₉H₂₆CaN₄O₆: 490.61
Monocalcium bis[(3-ethyl-5-[(1RS)-1-methylbutyl]-4,6-dioxo-1,4,5,6-tetrahydropyrimidin-2-olate] [76-74-4, Pentobarbital]

Pentobarbital Calcium contains not less than 98.0% and not more than 102.0% of pentobarbital calcium (C₂₉H₂₆CaN₄O₆), calculated on the dried basis.

Description Pentobarbital Calcium occurs as a white powder.

It is sparingly soluble in water, slightly soluble in ethanol (95), and practically insoluble in acetonitrile.

A solution of Pentobarbital Calcium (1 in 100) shows no optical rotation.

Identification (1) Determine the infrared absorption spectrum of Pentobarbital Calcium as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(2) To 1 g of Pentobarbital Calcium add 5 mL of ethanol (95) and 5 mL of dilute hydrochloric acid, dissolve by warming with shaking, shake with 5 mL of dilute hydrochloric acid and 10 mL of water, allow to cool, and filter. To the filtrate add 1 drop of methyl red TS, and add ammonia TS until a slight yellow color develops: the solution responds to Qualitative Tests <1.09> (1), (2) and (3) for calcium salt.

Purity (1) Chloride <1.03>—To 1.0 g of Pentobarbital Calcium add 5 mL of ethanol (95) and 2.5 mL of dilute nitric acid, dissolve by warming with shaking, cool, add water to make 50 mL, shake well, and filter. Discard the first 10 mL of the filtrate, and to 15 mL of the subsequent filtrate add 6 mL of dilute nitric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution as follows: To 0.30 mL of 0.01 mol/L hy-
dichromic acid VS add 1.5 mL of ethanol (95), 6 mL of dilute nitric acid and water to make 50 mL (not more than 0.035%).

(2) Heavy metals <1.07>—To 2.0 g of Pentobarbital Calcium add 5 mL of ethanol (95) and 5 mL of dilute hydrochloric acid, dissolve by warming with shaking, cool, add water to make 80 mL, shake well, and filter. Discard the first 10 mL of the filtrate, to 40 mL of the subsequent filtrate add 1 drop of phenolphthalein TS, add dropwise ammonia TS until a pale red color develops, and add 2 mL of dilute acetic acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution as follows: To 2.5 mL of ethanol (95) add 2.5 mL of dilute hydrochloric acid and water to make 30 mL. Add 1 drop of phenolphthalein TS, add dropwise ammonia TS until a pale red color develops, then add 2.0 mL of Standard Lead Solution, 2 mL of dilute acetic acid and water to make 50 mL (not more than 20 ppm).

(3) Related substances—Dissolve 10 mg of Pentobarbital Calcium in 100 mL of water, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add water to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the areas of each peak by the automatic integration method: the area of any peak other than the peak of pentobarbital obtained from the sample solution is not larger than 3/10 times the peak area of pentobarbital from the standard solution, and the total of these peak areas is not larger than the peak area of pentobarbital from the standard solution.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 210 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase: Dissolve 1.36 g of potassium dihydrogen phosphate in 1000 mL of water, and adjust to pH 4.0 with dilute phosphoric acid (1 in 10). To 650 mL of this solution add 350 mL of acetonitrile for liquid chromatography.
Flow rate: Adjust so that the retention time of pentobarbital is about 7 minutes.

System suitability—
System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, pentobarbital and the internal standard are eluted in this order with the resolution between these peaks being not less than 5.
System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratios of the peak area of pentobarbital to that of the internal standard is not more than 1.0%.

Containers and storage—Well-closed containers.

Pentobarbital Calcium Tablets

ペントバルビタールカルシウム錠

Pentobarbital Calcium Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of pentobarbital calcium (C₅₂H₇₅CaN₄O₄: 490.61).

Method of preparation Prepare as directed under Tablets, with Pentobarbital Calcium.

Identification To a quantity of powdered Pentobarbital Calcium Tablets, equivalent to 5.6 mg of Pentobarbital Calcium, add 60 mL of water, shake thoroughly, then add water to make 100 mL, and filter. To 6 mL of the filtrate add dilute sodium hydroxide TS to make 20 mL, and determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.24>: it exhibits a maximum between 240 nm and 244 nm.

Uniformity of dosage unit <6.02> Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement.

To 1 tablet of Pentobarbital Calcium Tablets add exactly 1/10 mL of the internal standard solution, add 60 mL of water, shake vigorously until the tablet is completely disintegrating, and then filter. Perform the test with 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and calculate the ratios, Q₁ and Q₂, of the peak area of pentobarbital to that of the internal standard.

\[M_s = M_b \times \frac{Q_2}{Q_1} \times 1.084 \]

Where:
- \(M_b \): Amount (mg) of pentobarbital calcium \((C_{62}H_{95}CaN_4O_4) \)
- \(M_s \): Amount (mg) of Pentobarbital RS taken
treated, then add water to make 100 mL, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 10 mL of the filtrate, to 2 mL of the subsequent filtrate add water to make V mL so that each mL contains about 10 μg of pentobarbital calcium (C₂H₄CaN₄O₆), and use this solution as the sample solution. Then, proceed as directed in the Assay.

Amount (mg) of pentobarbital calcium (C₂H₄CaN₄O₆) in 1 tablet

\[M_o = \frac{Q_o \times V}{25 \times 1.084} \]

\(M_o \): Amount (mg) of Pentobarbital RS taken

Internal standard solution—Dissolve 0.5 g of isopropyl parahydroxybenzoate in 20 mL of acetonitrile for liquid chromatography, and add water to make 200 mL.

Dissolution 6.10 When the test is performed at 50 revolu
tions per minute according to the Paddle method, using 900 mL of 2nd fluid for dissolution test as the dissolution medium, the dissolution rate in 15 minutes of Pentobarbital Calcium Tablets is not less than 80%.

Start the test with 1 tablet of Pentobarbital Calcium Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add the dissolution medium to make exactly V mL so that each mL contains about 56 μg of pentobarbital calcium (C₂H₄CaN₄O₆). Pipet 3 mL of this solution, add dilute sodium hydroxide TS to make exactly 10 mL, and use this solution as the sample solution. Separately, weigh accurately about 26 mg of Pentobarbital RS, previously dried at 105°C for 2 hours, dissolve in 2 mL of ethanol (99.5), and add water to make exactly 100 mL. Pipet 4 mL of this solution, and add the dissolution medium to make exactly 20 mL. Pipet 3 mL of this solution, add dilute sodium hydroxide TS to make exactly 10 mL, and use this solution as the standard solution. Determine the absorbances, A₁ and Aₕ, of the sample solution and standard solution at 241 nm as directed under Ultraviolet-visible Spectrophotometry 2.25b, using a solution, prepared by adding dilute sodium hydroxide TS to 3 mL of the dissolution medium to make 10 mL, as the blank.

Dissolution rate (%) with respect to the labeled amount of pentobarbital calcium (C₂H₄CaN₄O₆)

\[M_o = \frac{Q_o \times V}{25 \times 1.084} \]

\(M_o \): Amount (mg) of Pentobarbital RS taken

C: Labeled amount (mg) of pentobarbital calcium (C₂H₄CaN₄O₆) in 1 tablet

Assay To 20 Pentobarbital Calcium Tablets add 120 mL of water, shake vigorously for 10 minutes, then add water to make exactly 200 mL, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 10 mL of the filtrate, pipet 5 mL of the subsequent filtrate, add exactly V/10 mL of the internal standard solution, and add water to make V mL so that each mL contains about 0.5 mg of pentobarbital calcium (C₂H₄CaN₄O₆). To 2 mL of this solution, add water to make 100 mL, and use this solution as the sample solution. Separately, weigh accurately about 23 mg of Pentobarbital RS, previously dried at 105°C for 2 hours, dissolve in 10 mL of acetonitrile for liquid chromatography, add exactly 5 mL of the internal standard solution, and add water to make 50 mL. To 2 mL of this solution add water to make 100 mL, and use this solution as the standard solution. Perform the test with 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography 2.011 according to the following conditions, and calculate the ratios, Q₁ and Qₕ, of the peak area of pentobarbital to that of the internal standard.

Amount (mg) of pentobarbital calcium (C₂H₄CaN₄O₆) in 1 tablet

\[M_o \times Q_1/\frac{Q_h}{\times V/25 \times 1.084} \]

\(M_o \): Amount (mg) of Pentobarbital RS taken

Internal standard solution—Dissolve 0.5 g of isopropyl parahydroxybenzoate in 20 mL of acetonitrile for liquid chromatography, and add water to make 200 mL.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 210 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecysilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: Dissolve 1.36 g of potassium dihydrogen phosphate in 1000 mL of water, and adjust to pH 4.0 with diluted phosphoric acid (1 in 10). To 650 mL of this solution add 350 mL of acetonitrile for liquid chromatography.

Flow rate: Adjust so that the retention time of pentobarbital is about 7 minutes.

System suitability—

System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, pentobarbital and the internal standard are eluted in this order with the resolution between these peaks being not less than 5.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of pentobarbital to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Tight containers.

Pentoxyverine Citrate

ペントキシベリンクエン酸塩

![Structure of Pentoxyverine Citrate](image)

C₁₀H₁₃N₄O₇, C₆H₆O₂**: 525.59
2-[2-(Diethylamino)ethoxy]ethyl 1-phenylcyclopentanecarboxylate monocitrate

Pentoxyverine Citrate, when dried, contains not less than 98.5% of pentoxyverine citrate (C₁₀H₁₃(NO₃). C₆H₆O₂).

Description Pentoxyverine Citrate occurs as a white crystalline powder. It is very soluble in acetic acid (100), freely soluble in water and in ethanol (95), and practically insoluble in diethyl ether.

Identification (1) Dissolve 0.1 g of Pentoxyverine Citrate in 10 mL of water, and add 10 mL of Reinecke salt TS: a light red precipitate is formed.

(2) Determine the infrared absorption spectrum of Pen-
Peplomycin Sulfate

ペプロマイシン硫酸塩

C₄₈H₈₈N₁₅O₃₁S₂; H₂SO₄; 1571.67
N¹-[3-[(1S)-(1-Phenylethyl)amino]propyl]bleomycinamide monosulfate
[70384-29-7]

Peplomycin Sulfate is the sulfate of a substance having antitumor activity produced by the growth of *Streptomyces verticillus*.

It contains not less than 865 µg (potency) and not more than 1010 µg (potency) per mg, calculated on the dried basis. The potency of Peplomycin Sulfate is expressed as mass (potency) of peplomycin (C₆₁H₈₈N₁₅O₃₁S₂; 1473.59).

Description Peplomycin Sulfate occurs as a white to light yellow-white powder.

It is freely soluble in water, and practically insoluble in ethanol (95).

It is hygroscopic.

Identification (1) To 4 mg of Peplomycin Sulfate add 5 µL of copper (II) sulfate TS, and dissolve in water to make 100 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Peplomycin Sulfate RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Peplomycin Sulfate as directed in the paste method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of Peplomycin Sulfate RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) Dissolve 10 mg each of Peplomycin Sulfate and Peplomycin Sulfate RS in 6 mL of water, add 0.5 mL of a solution of copper (II) sulfate pentahydrate (1 in 125), and use these solutions as the sample solution and the standard solution, respectively. Perform the test with 10 µL each of the sample solution and standard solution as directed under Infrared Spectrophotometry <2.01> according to the following conditions: the retention time of the principal peak in the chromatogram obtained from the sample solution is the same as that in the chromatogram from the standard solution.

Operating conditions
- Detector, column, column temperature, mobile phase
stock solution, mobile phase A, mobile phase B, flowing of mobile phase, and flow rate: Proceed as directed in the operating conditions in the Purity (3).

(4) A solution of Peplomycin Sulfate (1 in 200) responds to Qualitative Tests (1.099) (1) and (2) for sulfate.

Optical rotation <2.49> [α]_D^2: −2.0 to −5.0° (0.1 g calculated on the dried basis, 0.1 mol/L phosphate buffer solution (pH 5.3), 10 mL, 100 mm).

pH <2.54> The pH of a solution obtained by dissolving 0.10 g of Peplomycin Sulfate in 20 mL of water is between 4.5 and 6.0.

Purity (1) Clarity and color of solution—Dissolve 80 mg of Peplomycin Sulfate in 4 mL of water: the solution is clear and colorless.

(2) Copper—Dissolve exactly 75 mg of Peplomycin Sulfate in 10 mL of dilute nitric acid (1 in 100), and use this solution as the sample solution. Separately, to 5.0 mL of Standard Copper Stock Solution add dilute nitric acid (1 in 100) to make exactly 100 mL. To 3.0 mL of this solution add dilute nitric acid (1 in 100) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with the sample solution and standard solution as directed under Atomic Absorption Spectrophotometry <2.23> according to the following conditions: the absorbance of the sample solution is not more than that of the standard solution (not more than 200 ppm).

Gas: Combustible gas—Acetylene.
Supporting gas—Air.
Wavelength: 324.8 nm.

(3) Related substances—Dissolve about 10 mg of Peplomycin Sulfate in 6 mL of water, add 0.5 mL of a solution of copper (II) sulfate pentahydrate (1 in 125), and use this solution as the sample solution. Perform the test with 10 μL of the sample solution as directed under Liquid Chromatography <2.07> according to the following conditions. Determine the areas of the peaks, appeared after the peak of copper sulfate, by the automatic integration method, and calculate the amounts of them by the area percentage method: the total amount of the peaks other than peplomycin is not more than 7.0%.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 254 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (7 μm in particle diameter).
Column temperature: A constant temperature of about 40°C.

Mobile phase stock solution: Dissolve 0.96 g of sodium 1-pentanesulfonate and 1.86 g of disodium dihydrogen ethylenediamine tetraacetate dihydrate in 1000 mL of water and 5 mL of acetic acid (100), and adjust the pH to 4.3 with ammonia TS.

Mobile phase A: A mixture of mobile phase stock solution and methanol (9:1).

Mobile phase B: A mixture of mobile phase stock solution and methanol (3:2).

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 60</td>
<td>100 → 0</td>
<td>0 → 100</td>
</tr>
<tr>
<td>60 - 75</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Flow rate: 1.2 mL per minute.
Time span of measurement: As long as 20 minutes after elution of peplomycin, beginning after the peak of copper sulfate.

System suitability—
Test for required detectability: Measure exactly 1 mL of the sample solution, add water to make exactly 10 mL, and use this solution as the solution for system suitability test. Pipet 1 mL of the solution for system suitability test, and add water to make exactly 10 mL. Confirm that the peak area of peplomycin obtained with 10 μL of this solution is equivalent to 7 to 13% of that with 10 μL of the solution for system suitability test.

System performance: When the procedure is run with 10 μL of the sample solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of peplomycin are not less than 30,000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 10 μL of the sample solution under the above operating conditions, the relative standard deviation of the peak area of peplomycin is not more than 2.0%.

Loss on drying <2.41> Not more than 3.0% (60 mg, in vacuum, phosphorus (V) oxide, 60°C, 3 hours). Handle the sample avoiding absorption of moisture.

Assay Weigh accurately an amount of Peplomycin Sulfate and Peplomycin Sulfate RS, both previously dried, equivalent to about 50 mg (potency), dissolve them separately in the mobile phase to make exactly 100 mL. Pipet 4 mL each of these solutions, add exactly 10 mL of the internal standard solution, then add the mobile phase to make 50 mL, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with 1 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions, and calculate the ratios, Q₂ and Q₃, of the peak area of peplomycin to that of the internal standard.

Amount [µg (potency)] of peplomycin sulfate

\[
(C_{60}H_{84}N_6O_{33}S_2\cdot H_2SO_4) = M_S \times Q_2/Q_3 \times 1000
\]

M₅: Amount [µg (potency)] of Peplomycin Sulfate RS taken

Internal standard solution—A solution of 1-aminonaphthalene in mobile phase (1 in 20,000).

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 254 nm).
Column: A stainless steel column 3.0 mm in inside diameter and 5 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (2.2 μm in particle diameter).
Column temperature: A constant temperature of about 40°C.

Mobile phase: Dissolve 0.96 g of sodium 1-pentane sulfonate and 1.86 g of disodium dihydrogen ethylenediamine tetraacetate dihydrate in 1000 mL of water, add 5 mL of acetic acid (100), and adjust to pH 4.3 with ammonia TS. To 650 mL of this solution add 350 mL of methanol.
Peplomycin Sulfate for Injection

Peplomycin Sulfate for Injection is a preparation for injection which is dissolved before use.

It contains not less than 90.0% and not more than 115.0% of the labeled potency of peplomycin (C₂₈H₄₈N₁₃O₁₂S₂: 1473.59).

Method of preparation Prepare as directed under Injections, with Peplomycin Sulfate.

Identification Take an amount of Peplomycin Sulfate for Injection, equivalent to 10 mg (potency) of Peplomycin Sulfate, and dissolve in 15 mL of Copper (II) sulfate TS and water to make 2 mL. Apply this solution to the column (prepared by filling a 15 mm inside diameter and 15 cm long chromatography tube with 15 mL of strongly basic ion exchange resin (Cl type) for column chromatography (75 – 150 μm in particle diameter) and run off. Then wash the column using water at 2.5 mL per minute, collect about 30 mL of the effluent. Add water to the effluent to make 250 mL, and determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry 2.24: it exhibits maxima between 242 nm and 246 nm, and between 291 nm and 295 nm. Further determine the absorbances A₁ and A₂, at 243 nm and 293 nm, respectively: the ratio A₁/A₂ is 1.20 to 1.30.

Osmotic pressure ratio Being specified separately when the drug is granted approval based on the Law.

pH 2.2-5.4. The pH of a solution prepared by dissolving an amount of Peplomycin Sulfate for Injection, equivalent to 50 mg (potency) of Peplomycin Sulfate, in 10 mL of water is 4.5 to 6.0.

Purity Clarity and color of solution—A solution prepared by dissolving an amount of Peplomycin Sulfate for Injection, equivalent to 10 mg (potency) of Peplomycin Sulfate, in 10 mL of water is clear and colorless.

Loss on drying 2.41. Not more than 4.0% (60 mg, in vacuum, phosphorus (V) oxide, 60°C, 3 hours). Perform the sampling preventing from moisture absorption.

Bacterial endotoxins 4.01 Less than 1.5 EU/mg (potency).

Uniformity of dosage units 6.02. It meets the requirement of the Mass variation test.

Foreign insoluble matter 6.06. Perform the test according to Method 2: it meets the requirement.

Insoluble particulate matter 6.07. It meets the requirement.

Sterility 4.06 Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Perform the test according to the Cylinder-plate method as directed under Microbial Assay for Antibiotics 4.02 according to the following conditions.

(i) Test organism—Mycobacterium smegmatis ATCC 607

(ii) Agar media for base layer, seed and transferring test organisms—

Glycerin 10.0 g
Pepitone 10.0 g
Meat extract 10.0 g
Sodium chloride 3.0 g
Agar 15.0 g
Water 1000 mL

Mix all the ingredients, and sterilize. Adjust to pH 6.9 to 7.1 with sodium hydroxide TS after sterilization.

(iii) Liquid media for suspending the test organism

Glycerin 10.0 g
Pepitone 10.0 g
Meat extract 10.0 g
Sodium chloride 3.0 g
Water 1000 mL

Mix all the components, and sterilize. Adjust to pH 6.9 to 7.1 with sodium hydroxide TS after sterilization.

(iv) Preparation of seeded agar layer—Cultivate the test organism on the slant of the agar medium for transferring the test organism at 27°C for 40 to 48 hours, then inoculate the test organism thus obtained in 100 mL of the liquid media for suspending the test organism, cultivate with shaking at between 25°C and 27°C for 5 days, and use this as the suspension of test organism. Store the suspension of test organism at a temperature not exceeding 5°C, and use within 14 days. Add 0.5 mL of the suspension of test organism in 100 mL of the agar medium for seed previously kept at 48°C, mix thoroughly, and use as the seeded agar layer.

(v) Preparation of cylinder-agar plate—Proceed as directed in 1.7. Preparation of cylinder-agar plates under the Microbial Assay for Antibiotics, dispensing 5.0 mL of agar medium for base layer and 8.0 mL of the agar medium for seed into the Petri dish.

(vi) Standard solutions—Weigh accurately an amount of Peplomycin Sulfate RS, equivalent to about 20 mg (potency), dissolve in 0.1 mol/L phosphate buffer solution (pH 6.8) to make exactly 100 mL, and use this solution as the standard stock solution. Keep the standard stock solution at 5°C or below, and use within 15 days. Measure exactly a suitable amount of the standard stock solution before use, add 0.1 mol/L phosphate buffer solution (pH 6.8) to make solutions so that each mL contains 4 µg (potency) and 2 µg (potency), and use these solutions as the high concentration standard solution and low concentration standard solution, respectively.

(vii) Sample solutions—Weigh accurately the mass of the contents of not less than 10 containers of Peplomycin Sulfate for Injection. Weigh accurately an amount of the contents, equivalent to about 10 mg (potency) of Peplomycin Sulfate, dissolve in 0.1 mol/L phosphate buffer solution (pH 6.8) to make exactly 100 mL. Measure exactly a suitable amount of this solution, add 0.1 mol/L phosphate buffer so-
Perphenazine Tablets

Perphenazine Tablets contain not less than 90.0% and not more than 110.0% of the labeled amount of perphenazine (C_{21}H_{26}ClN_{2}O_{3}: 403.97).

Method of preparation Prepare as directed under Tablets, with Perphenazine.

Identification (1) Shake well a quantity of powdered Perphenazine Tablets, equivalent to 25 mg of Perphenazine, with 10 mL of methanol, and filter. Evaporate 2 mL of the filtrate on a water bath to dryness. With the residue, proceed as directed in the Identification (1) under Perphenazine.

(2) Add 5 mL of the filtrate obtained in (1) to 10 mL of a warm solution of 2,4,6-trinitrophenol in methanol (1 in 25), and proceed as directed in the Identification (2) under Perphenazine.

(3) Determine the absorption spectrum of the filtrate obtained in the Assay as directed under Ultraviolet-visible Spectrophotometry <2.24>, it exhibits a maximum between 309 nm and 313 nm. Add 30 mL of methanol to another 10 mL of the filtrate, and determine the absorption spectrum: it exhibits a maximum between 256 nm and 260 nm.

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

Disintegrate 1 tablet of Perphenazine Tablets by shaking with 5 mL of water, shake well with 70 mL of methanol, and
add methanol to make exactly 100 mL. Centrifuge this solution, pipet V mL of the supernatant liquid, add methanol to make exactly V mL of a solution containing about 4 μg of perphenazine (C₂₁H₂₅ClN₂O₂) in each mL, and use this solution as the sample solution. Separately, weigh accurately about 10 mg of Perphenazine RS, previously dried in vacuum over phosphorus (V) oxide at 65°C for 4 hours, dissolve in methanol to make exactly 250 mL. Pipet 5 mL of this solution, add methanol to make exactly 50 mL, and use this solution as the standard solution. Determine the absorbances, A₁ and A₅, of the sample solution and standard solution at 258 nm as directed under Ultraviolet-visible Spectrophotometry 2.24.

Amount (mg) of perphenazine (C₂₁H₂₅ClN₂O₂) = M₅ \times A₁/₅ \times V/V \times 1/25

M₅: Amount (mg) of Perphenazine RS taken

Dissolution C₆.H₇0 When the test is performed at 100 revolutions per minute according to the Paddle method, using 900 mL of 2nd fluid for dissolution test as the dissolution medium, the dissolution rate in 90 minutes of Perphenazine Tablets is not less than 70%.

Start the test with 1 tablet of Perphenazine Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.8 μm. Discard not less than 10 mL of the first filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 10 mg of Perphenazine RS, previously dried in vacuum with phosphorus (V) oxide at 65°C for 4 hours, dissolve in 5 mL of 0.1 mol/L hydrochloric acid TS, and add the dissolution medium to make exactly 250 mL. Pipet 5 mL of this solution, add the dissolution medium to make exactly 100 mL, and use this solution as the standard solution. Determine the absorbances, A₁ and A₅, of the sample solution and standard solution at 258 nm as directed under Ultraviolet-visible Spectrophotometry 2.24.

Dissolution rate (%) with respect to the labeled amount of perphenazine (C₂₁H₂₅ClN₂O₂) = M₅ \times A₁/₅ \times 1/C \times 18

M₅: Amount (mg) of Perphenazine RS taken

C: Labeled amount (mg) of perphenazine (C₂₁H₂₅ClN₂O₂) in 1 tablet

Assay Weigh accurately and powder not less than 20 Perphenazine Tablets. Weigh accurately a portion of the powder, equivalent to about 4 mg of perphenazine (C₂₁H₂₅ClN₂O₂), add 70 mL of methanol, shake well, and add methanol to make exactly 100 mL. Filter the solution, and discard the first 20 mL of the filtrate. Pipet 5 mL of the subsequent filtrate, add methanol to make exactly 50 mL, and use this solution as the sample solution. Weigh accurately about 10 mg of Perphenazine RS, previously dried in vacuum over phosphorus (V) oxide at 65°C for 4 hours, and dissolve in methanol to make exactly 250 mL. Pipet 5 mL of this solution, add methanol to make exactly 50 mL, and use this solution as the standard solution. Determine the absorbances, A₁ and A₅, of the sample solution and standard solution at 258 nm as directed under Ultraviolet-visible Spectrophotometry 2.24.

Amount (mg) of perphenazine (C₂₁H₂₅ClN₂O₂) = M₅ \times A₁/₅ \times 2/5

M₅: Amount (mg) of Perphenazine RS taken

Containers and storage Containers—Tight containers.

Storage—Light-resistant.

Perphenazine Maleate

ペルフェナジンマレイン酸塩

C₂₁H₂₅ClN₂O₂-2C₂H₂O₄: 636.11
2-[(2-Chloro-10H-phenothiazin-10-yl)propyllpiperazin-1-yl]ethanol dimaleate
[58-39-9, Perphenazine]

Perphenazine Maleate, when dried, contains not less than 98.0% of perphenazine maleate (C₂₁H₂₅ClN₂O₂. 2C₂H₂O₄).

Description Perphenazine Maleate occurs as a white to light yellow powder. It is odorless.

It is sparingly soluble in acetic acid (100), slightly soluble in water and in ethanol (95), and practically insoluble in chloroform.

It dissolves in dilute hydrochloric acid.

It is gradually colored by light.

Melting point: about 175°C (with decomposition).

Identification (1) Dissolve 8 mg of Perphenazine Maleate in 5 mL of sulfuric acid: a red color is produced, which becomes deep red-purple on warming.

(2) Dissolve 0.3 g of Perphenazine Maleate in 3 mL of dilute hydrochloric acid, add 2 mL of water and 3 mL of ammonia solution (28), shake, and extract with three 10-mL portions of chloroform. [Reserve the aqueous layer, and use for test (5)]. Evaporate the combined chloroform extracts on a water bath to dryness, dissolve the residue in 20 mL of methanol, and pour into 10 mL of a warm solution of 2,4,6-trinitrophenol in methanol (1 in 25). Allow to stand for 4 hours, collect the crystals, wash with a small amount of methanol, and dry at 105°C for 1 hour: the crystals melt <2.60> between 237°C and 244°C (with decomposition).

(3) Determine the absorption spectrum of a solution of Perphenazine Maleate (1 in 20,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum 1: both spectra exhibit similar intensities of absorption at the same wavelengths. Separately, to 10 mL of the solution add 30 mL of water. Determine the absorption spectrum of the solution as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum 2: both spectra exhibit similar intensities of absorption at the same wavelengths.

(4) Perform the test with Perphenazine Maleate as directed under Flame Coloration Test <1.0> (2): a green color appears.

(5) Evaporate the aqueous layer reserved in (2) to dryness. To the residue add 1 mL of dilute sulfuric acid and 5 mL of water, and extract with four 25-mL portions of diethyl ether. Combine the diethyl ether extracts, and evaporate in a water bath at about 35°C with the aid of a current of air: the residue melts <2.60> between 128°C and 136°C.

Purity (1) Heavy metals <1.0>—Proceed with 2.0 g of perphenazine maleate according to Method 2, and perform
the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Arsenic <11D>—Prepare the test solution with 1.0 g of Perphenazine Maleate according to Method 3, and perform the test (not more than 2 ppm).

Loss on drying <2.4> Not more than 0.5% (1 g, 105°C, 3 hours).

Residue on ignition <2.4> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.5 g of Perphenazine Maleate, previously dried, dissolve in 70 mL of acetic acid (100), and titrate <2.5> with 0.1 mol/L perchloric acid VS until the color of the solution changes from purple through blue to blue-green (indicator: 3 drops of crystal violet TS). Perform a blank determination in the same manner, and make any necessary correction.

$\text{Each mL of 0.1 mol/L perchloric acid VS} = 31.81 \text{ mg of } \text{C}_2\text{H}_5\text{ClN}_4\text{OS.2C}_2\text{H}_4\text{O}_4$

Containers and storage Containers—Well-closed containers.

Storage—Light-resistant.

Perphenazine Maleate Tablets

ペルフェナジンメライン酸塩

Perphenazine Maleate Tablets contain not less than 93.0% and not more than 107.0% of the labeled amount of perphenazine maleate (C$_2$H$_5$ClN$_4$OS.2C$_2$H$_4$O$_4$; 636.11).

Method of preparation Prepare as directed under Tablets, with Perphenazine Maleate.

Identification (1) Shake a sample of powdered Perphenazine Maleate Tablets, equivalent to 0.04 g of Perphenazine Maleate, with 3 mL of dilute hydrochloric acid and 30 mL of water, centrifuge. Filter the supernatant liquid, add 3 mL of ammonia solution (28) to the filtrate, and with three 10-mL portions of chloroform. Reserve the aqueous layer, and use for test (4). Wash the combined chloroform layers with two 5-mL portions of water, and separate the chloroform layer. Evaporate 6 mL of the chloroform solution on a water bath to dryness. Proceed with the residue as directed in the Identification (1) under Perphenazine Maleate.

(2) Evaporate 20 mL of the chloroform solution obtained in (1) on a water bath to dryness, dissolve the residue in 20 mL of methanol, and filter, if necessary. Warm the filtrate, add 5 mL of a warm solution of 2,4,6-trinitrophenol in methanol (1 in 25), allow to stand for 4 hours, and proceed as directed in the Identification (2) under Perphenazine Maleate.

(3) To 2 mL of the filtrate obtained in the Assay add water to make 50 mL. Determine the absorption spectrum of the solution as directed under Ultraviolet-visible Spectrophotometry <2.24>; it exhibits maxima between 253 nm and 257 nm and between 303 nm and 313 nm.

(4) Filter, if necessary, the aqueous layer reserved in (1), evaporate the filtrate to make about 5 mL, add 2 mL of dilute sulfuric acid, and extract with two 10-mL portions of diethyl ether. Combine the diethyl ether extracts, evaporate on a water bath to dryness, dissolve the residue in 5 mL of sulfuric acid TS, and add 1 to 2 drops of potassium permanganate TS: the red color of potassium permanganate fades immediately.

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirements of the Content uniformity test.

Disintegrate 1 tablet of Perphenazine Maleate Tablets by shaking with 15 mL of 0.1 mol/L hydrochloric acid TS, shake vigorously with 50 mL of methanol, add water to make exactly 100 mL, and centrifuge. Pipet V mL of the supernatant liquid, add water to make exactly V mL of a solution containing about 6 mg of perphenazine maleate (C$_2$H$_5$ClN$_4$OS.2C$_2$H$_4$O$_4$) in each mL, and use this solution as the sample solution. Separately, weigh accurately 30 mg of perphenazine maleate for assay, previously dried at 105°C for 3 hours, dissolve in 15 mL of 0.1 mol/L hydrochloric acid TS and 50 mL of methanol, and add water to make exactly 250 mL, and use this solution as the standard solution. Determine the absorbances, A$_1$ and A$_2$, of the sample solution and standard solution at 255 nm as directed under Ultraviolet-visible Spectrophotometry <2.24>, using water as the blank.

Amount (mg) of perphenazine maleate

$$M_5 = \frac{A_5}{A_1/A_2} \times V/V \times 1/50$$

M$_5$: Amount (mg) of perphenazine maleate for assay taken

Dissolution <6.10> When the test is performed at 75 revolutions per minute according to the Paddle method, using 900 mL of 2nd fluid for dissolution test as the dissolution medium, the dissolution rate in 30 minutes of Perphenazine Maleate Tablets is not less than 70%.

Conduct this procedure without exposure to light. Start the test with 1 tablet of Perphenazine Maleate Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add the dissolution medium to make exactly V mL so that each mL contains about 3.5 μg of perphenazine maleate (C$_2$H$_5$ClN$_4$OS.2C$_2$H$_4$O$_4$), and use this solution as the sample solution. Separately, weigh accurately about 28 mg of perphenazine maleate for assay, previously dried at 105°C for 3 hours, dissolve in 10 mL of 0.1 mol/L hydrochloric acid TS, and add the dissolution medium to make exactly 200 mL. Pipet 5 mL of this solution, add the dissolution medium to make exactly 200 mL, and use this solution as the standard solution. Determine the absorbances, A$_1$ and A$_2$, at 255 nm of the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry <2.24>.

Dissolution rate (%) with respect to the labeled amount of perphenazine maleate (C$_2$H$_5$ClN$_4$OS.2C$_2$H$_4$O$_4$)

$$M_5 = \left(\frac{A_5}{A_1/A_2} \times \frac{V/V}{1/50} \times 1/50 \right) \times \frac{C}{C_1}$$

M$_5$: Amount (mg) of perphenazine maleate for assay taken

C: Labeled amount (mg) of perphenazine maleate (C$_2$H$_5$ClN$_4$OS.2C$_2$H$_4$O$_4$) in 1 tablet

Assay Weigh accurately and powder not less than 20 Perphenazine Maleate Tablets. Weigh accurately a portion of the powder, equivalent to about 40 mg of perphenazine maleate (C$_2$H$_5$ClN$_4$OS.2C$_2$H$_4$O$_4$), shake well with 15 mL of 1 mol/L hydrochloric acid TS and 50 mL of methanol, add water to make exactly 100 mL, and filter. Discard the first 20
Adsorbed Purified Pertussis Vaccine

 Adsorbed Purified Pertussis Vaccine is a liquid for injection prepared by adding an aluminum salt to a liquid containing the protective antigen of *Bordetella pertussis* to make the antigen insoluble.

It conforms to the requirements of Adsorbed Purified Pertussis Vaccine in the Minimum Requirements for Biological Products.

Description Adsorbed Purified Pertussis Vaccine forms a homogeneous, white turbidity on shaking.

Pethidine Hydrochloride

Pethidine Hydrochloride, when dried, contains not less than 98.0% of pethidine hydrochloride \((C_{19}H_{22}NO_2 \cdot HCl) \).

Description Pethidine Hydrochloride occurs as a white crystalline powder. It is very soluble in water and in acetic acid (100), freely soluble in ethanol (95), sparingly soluble in acetic anhydride, and practically insoluble in diethyl ether.

The pH of a solution dissolved 1.0 g of Pethidine Hydrochloride in 20 mL of water is between 3.8 and 5.8.

Identification (1) Determine the absorption spectrum of a solution of Pethidine Hydrochloride (1 in 2000) as directed under Ultraviolet-visible Spectrophotometry 2.24, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Pethidine Hydrochloride, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry 2.25, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) A solution of Pethidine Hydrochloride (1 in 50) responds to Qualitative Tests 1.099 (2) for chloride.

Melting point 2.60 187 – 189°C

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Pethidine Hydrochloride in 10 mL of water: the solution is clear and colorless.

(2) Sulfate 1.147—Perform the test with 0.20 g of Pethidine Hydrochloride. Prepare the control solution with 1.0 mL of 0.005 mol/L sulfuric acid VS (not more than 0.24%).

(3) Related substances—Dissolve 0.05 g of Pethidine Hydrochloride in 20 mL of the mobile phase, and use this solution as the standard solution. Pipet 1 mL of the sample solution, add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography 2.01 according to the following conditions. Determine each peak area obtained from both solutions by the automatic integration method: the total area of the peaks other than pethidine obtained from the sample solution is not larger than the peak area of pethidine from the standard solution.

Operating conditions—

- Detector: An ultraviolet absorption photometer (wavelength: 257 nm).
- Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
- Column temperature: A constant temperature of about 40°C.
- Mobile phase: Dissolve 2.0 g of sodium lauryl sulfate in 1000 mL of diluted phosphoric acid (1 in 1000), adjust the pH to 3.0 with sodium hydroxide TS, and to 550 mL of this solution add 450 mL of acetonitrile.
- Flow rate: Adjust so that the retention time of pethidine is about 7 minutes.
- Time span of measurement: About 2 times as long as the retention time of pethidine, beginning after the solvent peak.

System suitability—

- Test for required detectability: To exactly 2 mL of the standard solution add the mobile phase to make exactly 20 mL. Confirm that the peak area of pethidine obtained with 20 μL of this solution is equivalent to 5 to 15% of that with 20 μL of the standard solution.

- System performance: To 2 mL each of the sample solution and a solution of isoamyl parahydroxybenzoate in the mobile phase (1 in 50,000) add the mobile phase to make 10 mL. When the procedure is run with 20 μL of this solution according to the above operating conditions, pethidine and isoamyl parahydroxybenzoate are eluted in this order with the resolution between these peaks being not less than 2.0.

- System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak...
area of pethidine is not more than 2.0%.

Loss on drying <2.4% Not more than 0.5% (1 g, 105°C, 3 hours).

Residue on ignition <2.4% Not more than 0.1% (0.5 g).

Assay Weigh accurately about 0.5 g of Pethidine Hydrochloride, previously dried, dissolve in 50 mL of a mixture of acetic anhydride and acetic acid (100) (7:3), and titrate <2.50% with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 28.38 mg of C₁₅H₂₁NO₂·HCl

Containers and storage Containers—Tight containers. Storage—Light-resistant.

Pethidine Hydrochloride Injection

ペチジン塩酸塩注射液

Pethidine Hydrochloride Injection is an aqueous injection.

It contains not less than 95.0% and not more than 105.0% of the labeled amount of pethidine hydrochloride (C₁₅H₂₁NO₂·HCl: 283.79).

Method of preparation Prepare as directed under Injections, with Pethidine Hydrochloride.

Description Pethidine Hydrochloride Injection is a clear, colorless liquid. It is affected by light.

pH 4.0 – 6.0

Identification Take a volume of Pethidine Hydrochloride Injection equivalent to 0.1 g of Pethidine Hydrochloride, and add water to make 200 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.24%: it exhibits maxima between 250 nm and 254 nm, between 255 nm and 259 nm, and between 261 nm and 265 nm.

Bacterial endotoxins <4.0% Less than 6.0 EU/mg.

Extractable volume <6.0% It meets the requirement.

Foreign insoluble matter <6.0% Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter <6.0% It meets the requirement.

Sterility <4.0% Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Measure exactly a volume of Pethidine Hydrochloride Injection, equivalent to about 0.1 g of pethidine hydrochloride (C₁₅H₂₁NO₂·HCl), add exactly 10 mL of the internal standard solution, and add the mobile phase to make 50 mL. To 5 mL of this solution add the mobile phase to make 20 mL, and use this solution as the sample solution. Separately, weigh accurately about 0.1 g of pethidine hydrochloride for assay, previously dried at 105°C for 3 hours, add exactly 10 mL of the internal standard solution, and add the mobile phase to make 50 mL. To 5 mL of this solution add the mobile phase to make 20 mL, and use this solution as the standard solution. Perform the test with 20 μL of the sample solution and standard solution as directed under Liquid Chromatography <2.0% according to the following conditions, and calculate the ratios, Q₁ and Q₂, of the peak area of pethidine to that of the internal standard.

Amount (mg) of pethidine hydrochloride (C₁₅H₂₁NO₂·HCl) = M₅ × Q₁/Q₂

M₅: Amount (mg) of pethidine hydrochloride for assay taken

Internal standard solution—A solution of isoamyl parahydroxybenzoate in the mobile phase (1 in 12,500).

Operating conditions—

Detector An ultraviolet absorption photometer (wavelength: 257 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilylated silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: Dissolve 2.0 g of sodium lauryl sulfate in 1000 mL of diluted phosphoric acid (1 in 1000), adjust the pH to 3.0 with sodium hydroxide TS, and to 550 mL of this solution add 450 mL of acetonitrile.

Flow rate: Adjust so that the retention time of pethidine is about 7 minutes.

System suitability—

System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, pethidine and the internal standard are eluted in this order with the resolution between these peaks being not less than 2.0.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratios of the peak area of pethidine to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Hermetic containers, and colored containers may be used.

Storage—Light-resistant.

White Petrolatum

白色ワセリン

White Petrolatum is a decolorized and purified mixture of hydrocarbons obtained from petroleum.

Description White Petrolatum is a white to pale yellow, homogeneous, unctuous mass. It is odorless and tasteless.

It is practically insoluble in water, in ethanol (95) and in ethanol (99.5).

It dissolves in diethyl ether making a clear liquid or producing slight insoluble substances.

It becomes a clear liquid when warmed.

Melting point <2.60% 38 – 60°C (Method 3).

Purity (1) Color—Melt White Petrolatum by warming, and pour 5 mL of it into a test tube, and keep the content in a liquid condition: the liquid has no more color than the following control solution, when observed transversely from side against a white background.

Control solution: Add 3.4 mL of water to 1.6 mL of Iron (III) Chloride CS.

(2) Acidity or alkalinity—To 35.0 g of White Petrolatum add 100 mL of hot water, shake vigorously for 5 minutes, and then draw off the aqueous layer. Treat the White
Petrolatum layer in the same manner using two 50-mL portions of hot water. To the combined aqueous layer add 1 drop of phenolphthalein TS, and boil: no red color is produced. Further add 2 drops of methyl orange TS: no red color is produced.

3) Heavy metals \(<1.07\) — Prepare the test solution with 1.0 g of White Petrolatum according to Method 2, and perform the test. Prepare the control solution with 3.0 mL of Standard Lead Solution (not more than 30 ppm).

4) Arsenic \(<0.1D\) — Prepare the test solution with 1.0 g of White Petrolatum, according to Method 3, and perform the test. Add 10 mL of a solution of magnesium nitrate hexahydrate in ethanol (95) (1 in 50), then add 1.5 mL of hydrogen peroxide (30), and fire to burn (not more than 2 ppm).

5) Sulfur compound — Add 2 mL of ethanol (99.5) and 2 drops of sodium hydroxide solution (1 in 5) saturated with lead (II) oxide, warm the mixture for 10 minutes at about 70°C with frequent shaking, and allow to cool: no dark color is produced.

(6) Organic acids — To 100 mL of dilute ethanol add 1 drop of phenolphthalein TS, and titrate with 0.01 mol/L sodium hydroxide VS, until the color of the solution changes to light red. Mix this solution with 20.0 g of White Petrolatum, and boil for 10 minutes under a reflux condenser. Add 2 to 3 drops of phenolphthalein TS to the mixture and 0.40 mL of 0.1 mol/L sodium hydroxide VS with vigorous shaking: the color of the solution remains red.

(7) Fats and fatty oils or resins — Add 1.0 g of White Petrolatum and 50 mL of sodium hydroxide solution (1 in 5), and boil for 30 minutes under a reflux condenser. Cool the mixture, separate the aqueous layer, and filter, if necessary. To the aqueous layer add 200 mL of dilute sulfuric acid: neither oily matter nor precipitate is produced.

Residue on ignition \(<2.44\) — Not more than 0.05% (2 g).

Containers and storage — Tight containers.

Hydrophilic Petrolatum

Method of preparation

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>White Beeswax</td>
<td>80 g</td>
</tr>
<tr>
<td>Stearyl Alcohol or Cetanol</td>
<td>30 g</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>30 g</td>
</tr>
<tr>
<td>White Petrolatum</td>
<td>a sufficient quantity</td>
</tr>
</tbody>
</table>

To make 1000 g

Melt and mix Stearyl Alcohol or Cetanol, White Beeswax and White Petrolatum on a water bath. Add Cholesterol, and melt completely by stirring. Stop warming, and stir until the mixture congeals.

Description Hydrophilic Petrolatum is white in color. It has a slight, characteristic odor. When mixed with an equal volume of water, it retains the consistency of ointment.

Containers and storage — Tight containers.

Yellow Petrolatum

Description

Yellow Petrolatum is a purified mixture of hydrocarbons obtained from petroleum.

Purity

1. Color — Melt Yellow Petrolatum by warming, and pour 5 mL of it into a test tube, and keep the content in a liquid condition: the liquid has no more color than the following control solution, when observed transversely from side against a white background.

Control solution: To 3.8 mL of Iron (III) Chloride CS add 1.2 mL of Cobalt (II) Chloride CS.

2. Acidity or alkalinity — To 35.0 g of Yellow Petrolatum add 100 mL of hot water, shake vigorously for 5 minutes, and then draw off the aqueous layer. Treat the Yellow Petrolatum layer in the same manner using two 50-mL portions of hot water. To the combined aqueous layer add 1 drop of phenolphthalein TS, and boil: no red color is produced. Further add 2 drops of methyl orange TS: no red color is produced.

3. Heavy metals \(<1.07\) — Prepare the test solution with 1.0 g of Yellow Petrolatum according to Method 2, and perform the test. Prepare the control solution with 3.0 mL of Standard Lead Solution (not more than 30 ppm).

4. Arsenic \(<0.1D\) — Prepare the test solution with 1.0 g of Yellow Petrolatum, according to Method 3, and perform the test. Add 10 mL of a solution of magnesium nitrate hexahydrate in ethanol (95) (1 in 50), then add 1.5 mL of hydrogen peroxide (30), and fire to burn (not more than 2 ppm).

5. Sulfur compound — To 4.0 g of Yellow Petrolatum add 2 mL of ethanol (99.5) and 2 drops of sodium hydroxide solution (1 in 5) saturated with lead (II) oxide, warm the mixture for 10 minutes at about 70°C with frequent shaking, and allow to cool: no dark color is produced.

6. Organic acids — To 100 mL of dilute ethanol add 1 drop of phenolphthalein TS, and titrate with 0.01 mol/L sodium hydroxide VS, until the color of the solution changes to light red. Mix this solution with 20.0 g of Yellow Petrolatum, and boil for 10 minutes under a reflux condenser. Add 2 to 3 drops of phenolphthalein TS to the mixture and 0.40 mL of 0.1 mol/L sodium hydroxide VS with vigorous shaking: the color of the solution remains red.

7. Fats and fatty oils or resins — Add 10.0 g of White Petrolatum, according to Method 3, and perform the test. Add 10 mL of a solution of magnesium nitrate hexahydrate in ethanol (95) (1 in 50), then add 1.5 mL of hydrogen peroxide (30), and fire to burn (not more than 2 ppm).

Residue on ignition \(<2.44\) — Not more than 0.05% (2 g).

Containers and storage — Tight containers.
Petroleum Benzin
石油ベンジン

Petroleum Benzin is a mixture of low-boiling point hydrocarbons from petroleum.

Description Petroleum Benzin occurs as a colorless, clear, volatile liquid. It shows no fluorescence. It has a characteristic odor.

It is miscible with ethanol (99.5) and with diethyl ether.
It is practically insoluble in water.
It is very flammable.

Specific gravity d_{20}^{20}: 0.65 – 0.71

Purity (1) Acid—Shake vigorously 10 mL of Petroleum Benzin with 5 mL of water for 2 minutes, and allow to stand: the separated aqueous layer does not change moistened blue litmus paper to red.

(2) Sulfur compounds and reducing substances—To 10 mL of Petroleum Benzin add 2.5 mL of ammonia-ethanol TS and 2 to 3 drops of silver nitrate TS, and warm the mixture at about 50°C for 5 minutes, protected from light: no brown color develops.

(3) Fatty oil and sulfur compounds—Drop and evaporate 10 mL of Petroleum Benzin in small portions on odorless filter paper spread on a previously warmed glass plate: no spot or no foreign odor is perceptible.

(4) Benzene—Warm 5 drops of Petroleum Benzin with 2 mL of sulfuric acid and 0.5 mL of nitric acid for about 10 minutes, allow to stand for 30 minutes, transfer the mixture to a porcelain dish, and dilute with water: no odor of nitrobenzene is perceptible.

(5) Residue on evaporation—Evaporate 140 mL of Petroleum Benzin on a water bath to dryness, and heat the residue at 105°C to constant mass: the mass is not more than 1 mg.

(6) Readily carbonizable substances—Shake vigorously 5 mL of Petroleum Benzin with 5 mL of sulfuric acid for readily carbonizable substances for 5 minutes in a Nessler tube, and allow to stand: the sulfuric acid layer has no more color than Matching Fluid A.

Distilling range $<2.5\rightarrow$ 50 – 80°C, not less than 90 vol%.

Containers and storage Containers—Tight containers.
Storage—Remote from fire, and not exceeding 30°C.

Phenethicillin Potassium
フェネチシリンカリウム

Phenethicillin Potassium contains not less than 1400 units and not more than 1480 units per mg, calculated on the dried basis. The potency of Phenethicillin Potassium is expressed as unit based on the amount of phenethicillin potassium (C$_{17}$H$_{18}$KN$_2$O$_5$S). One unit of Phenethicillin Potassium is equivalent to 0.68 μg of phenethicillin potassium (C$_{17}$H$_{18}$KN$_2$O$_5$S).

Description Phenethicillin Potassium occurs as a white to light yellow-white crystalline powder.
It is freely soluble in water, and slightly soluble in ethanol (99.5).

Identification (1) Determine the absorption spectrum of Phenethicillin Potassium (1 in 5000) as directed under Ultraviolet-visible Spectrophotometry $<2.24>$, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Phenethicillin Potassium as directed in the potassium bromide disk method under Infrared Spectrophotometry $<2.25>$, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) Phenethicillin Potassium responds to Qualitative Tests $<1.09>$ (1) for potassium salt.

Optical rotation $<2.49>$ [α]$_{D}^20$: +217 – +244° (1 g calculated on the dried basis, phosphate TS, 100 mL, 100 mm).

L-α-Phenethicillin potassium Dissolve about 50 mg of Phenethicillin Potassium in the mobile phase to make 50 mL, and use this solution as the sample solution. Perform the test with 10 μL of the sample solution as directed under Liquid Chromatography $<2.07>$ according to the following conditions, and determine the peak areas, A_B and A_T, of d-α-phenethicillin and L-α-phenethicillin by the automatic integration method: $A_L/(A_B + A_T)$ is between 0.50 and 0.70.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 254 nm).
Column: A stainless steel column 6 mm in inside diameter and 15 cm in length, packed with octadecysilazanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 30°C.
Mobile phase: Adjust the pH of a mixture of diammonium hydrogen phosphate (1 in 150) and acetonitrile (41:10) to 7.0 with phosphoric acid.
Flow rate: Adjust so that the retention time of L-α-phenethicillin is about 25 minutes.

System suitability—
System performance: When the procedure is run with 10 μL of the sample solution under the above operating conditions, the relative standard deviation of the peak area of L-α-phenethicillin is not more than 2.0%.

Purity (1) Heavy metals $<1.07>$—Proceed with 1.0 g of Phenethicillin Potassium according to Method 2, and perform the test. Prepare the control solution with 1.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Arsenic $<1.17>$—Prepare the test solution with 1.0 g of Phenethicillin Potassium according to Method 4 and, perform the test (not more than 2 ppm).

(3) Related substances—Dissolve 50 mg of Phenethicillin Potassium in 50 mL of the mobile, and use this solution as
the sample solution. Pipet 1 mL of the sample solution, add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.05> according to the following conditions, and determine each peak area by the automatic integration method: the total of the peak areas other than δ-α-phenethicillin and l-α-phenethicillin obtained from the sample solution is not larger than 5 times the total of the peak areas of δ-α-phenethicillin and l-α-phenethicillin from the standard solution.

System suitability—

System performance, and system repeatability: Proceed as directed in the system suitability in the l-α-Phenethicillin potassium.

Test for required detectability: Measure exactly 2 mL of the standard solution, and add the mobile phase to make exactly 10 mL. Confirm that the peak area of l-α-phenethicillin obtained with 10 μL of this solution is equivalent to 14 to 26% of that with 10 μL of the standard solution.

Loss on drying <2.47> Not more than 1.0% (0.1 g, in vacuum, 60°C, 3 hours).

Assay Weigh accurately an amount of Phenethicillin Potassium RS, equivalent to about 40,000 units, dissolve each in phosphate buffer solution (pH 6.0) to make exactly 20 mL, and use these solutions as the sample solution and the standard solution, respectively. Pipet 2 mL each of these solutions in 100-mL glass-stoppered flasks, add 2.0 mL of sodium hydroxide TS to them, and allow to stand for exactly 15 minutes. To them add 2.0 mL of diluted hydrochloric acid (1 in 10) and exactly 10 mL of 0.005 mol/L iodine VS, and allow them to stand for exactly 15 minutes. Add 0.2 – 0.5 mL of starch TS, and titrate <2.50> with 0.01 mol/L sodium thiosulfate VS until the color of the solution disappears. Separately, to exactly 2 mL each of the sample solution and standard solution add exactly 10 mL of 0.005 mol/L iodine VS, and then proceed in the same manner as above without allowing to stand for 15 minutes as a blank determination, and make any necessary correction. Determine the volumes, V₁ and V₅, of 0.005 mol/L iodine VS consumed in the sample solution and standard solution.

Amount (unit) of phenethicillin potassium (C₁₅H₁₅KN₂O₄S) = Mₛ × V₁ / V₅

Mₛ: Amount (unit) of Phenethicillin Potassium RS taken

Containers and storage Containers—Well-closed containers.

Phenobarbital フェノバルビタール

C₁₅H₁₂N₂O₂: 232.24
5-Ethyl-5-phenylpyrimidine-2,4,6(1H,3H,5H)-trione [50-06-6]

Phenobarbital, when dried, contains not less than 99.0% and not more than 101.0% of phenobarbital (C₁₅H₁₂N₂O₂).

Description Phenobarbital occurs as white, crystals or crystalline powder.

It is very soluble in N,N-dimethylformamide, freely soluble in ethanol (95) and in acetone, sparingly soluble in acetonitrile, and very slightly soluble in water.

It dissolves in sodium hydroxide TS.

The pH of a saturated solution of Phenobarbital is between 5.0 and 6.0.

Identification (1) Determine the absorption spectrum of a solution of Phenobarbital in boric acid-potassium chloride-sodium hydroxide buffer solution (pH 9.6) (1 in 100,000) as directed in Ultraviolet-visible Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Phenobarbital as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelength numbers.

Melting point <2.60> 175 – 179°C

Purity (1) Clarity and color of solution—Dissolve 0.5 g of Phenobarbital in 5 mL of sodium hydroxide TS: the solution is clear and colorless.

(2) Chloride <1.03>—Dissolve 0.30 g of Phenobarbital in 20 mL of acetone, and add 6 mL of dilute nitric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution as follows: take 0.30 mL of 0.01 mol/L hydrochloric acid VS, 20 mL of acetone and 6 mL of dilute nitric acid, and add water to make 50 mL (not more than 0.035%).

(3) Heavy metals <1.07>—Proceed with 1.0 g of Phenobarbital according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead solution (not more than 20 ppm).

(4) Phenylbarbituric acid—Boil 1.0 g of Phenobarbital with 5 mL of ethanol (95) for 3 minutes: the solution is clear.

(5) Related substances—Dissolve 0.10 g of Phenobarbital in 100 mL of acetonitrile, and use this solution as the sample solution. Pipet 2 mL of the sample solution, add acetonitrile to make exactly 100 mL. Pipet 5 mL of this solution, add acetonitrile to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.03> according to the following conditions, and determine each
peak area of both solutions by the automatic integration method: the area of the peak other than phenobarbital obtained from the sample solution is not larger than the peak area of phenobarbital from the standard solution.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 210 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 45°C.
Mobile phase: A mixture of water and acetonitrile (11:9).
Flow rate: Adjust so that the retention time of phenobarbital is about 5 minutes.
Time span of measurement: About 12 times as long as the retention time of phenobarbital, beginning after the solvent peak.

System suitability—
Test for required detectability: Pipet 5 mL of the standard solution, and add acetonitrile to make exactly 20 mL. Confirm that the peak area of phenobarbital obtained with 10 μL of this solution is equivalent to 20 to 30% of that with 10 μL of the standard solution.
System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of phenobarbital are not less than 3000 and not more than 2.0, respectively.
System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of phenobarbital is not more than 3.0%.

Loss on drying <2.41> Not more than 1.0% (1 g, 105°C, 2 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.5 g of Phenobarbital, previously dried, dissolve in 50 mL of N,N-dimethylformamide, and titrate <2.50> with 0.1 mol/L potassium hydroxide-ethanol VS until the color of the solution change from yellow to yellow-green (indicator: 1 mL of alizarin yellow GG-thymolphthalein TS). Perform a blank determination using a mixture of 50 mL of N,N-dimethylformamide and 22 mL of ethanol (95%) in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L potassium hydroxide-ethanol VS = 23.22 mg of C₁₉H₂₆N₂O₃

Containers and storage Containers—Well-closed containers.

10% Phenobarbital Powder

フェノバルビタール散 10%

10% Phenobarbital Powder contains not less than 9.3% and not more than 10.7% of phenobarbital (C₁₉H₂₆N₂O₃; 232.24).

Method of preparation

<table>
<thead>
<tr>
<th>Phenobarbital</th>
<th>100 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starch, Lactose Hydrate or their mixture</td>
<td>a sufficient quantity</td>
</tr>
</tbody>
</table>

Prepare as directed under Granules or Powders, with the above ingredients.

Identification (1) Determine the absorption spectrum of the sample solution obtained in the Assay as directed under Ultraviolet-visible Spectrophotometry <2.24> it exhibits a maximum between 238 nm and 242 nm.

Identification (2) To 6 g of 10% Phenobarbital Powder add 150 mL of ethanol, shake well, and filter. Condense the filtrate on a water bath to about 5 mL, and add about 50 mL of water, filter to collect the formed crystals, and dry them at 105°C for 2 hours. Determine the infrared absorption spectrum of the crystals as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Dissolution <6.10> When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 30 minutes of 10% Phenobarbital Powder is not less than 80%.

Start the test with an accurately weighted about 0.3 g of 10% Phenobarbital Powder, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet 5 mL of the subsequent filtrate, add exactly 10 mL of boric acid-potassium chloride-sodium hydroxide buffer solution (pH 9.6) and use this solution as the sample solution. Separately, weigh accurately about 17 mg of phenobarbital for assay, previously dried at 105°C for 2 hours, and dissolve in water to make exactly 100 mL. Pipet 5 mL of this solution, and add water to make exactly 25 mL. Pipet 5 mL of this solution, add exactly 10 mL of boric acid-potassium chloride-sodium hydroxide buffer solution (pH 9.6) and water (2:1) as the blank, and determine the absorbances, A₁ and A₅, at 240 nm.

Dissolution rate (%) with respect to the labeled amount of phenobarbital (C₁₉H₂₆N₂O₃) = Mₛ/Mₐ × A₁/A₅ × 1/C × 180

Mₛ: Amount (mg) of phenobarbital for assay taken
Mₐ: Amount (g) of 10% Phenobarbital Powder taken
C: Labeled amount (mg) of phenobarbital (C₁₉H₂₆N₂O₃) in 1 g

Assay Weigh accurately about 0.2 g of 10% Phenobarbital
Powder, dissolve in a boric acid-potassium chloride-sodium hydroxide buffer solution (pH 9.6) to make exactly 100 mL. Pipet 5 mL of this solution, add a boric acid-potassium chloride-sodium hydroxide buffer solution (pH 9.6) to make exactly 100 mL, and use this solution as the sample solution. Separately, weigh accurately about 20 mg of phenobarbital for assay, previously dried at 105°C for 2 hours, and add a boric acid-potassium chloride-sodium hydroxide buffer solution (pH 9.6) to make exactly 100 mL. Pipet 5 mL of this solution, add a boric acid-potassium chloride-sodium hydroxide buffer solution (pH 9.6) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with the sample solution and standard solution as directed under Spectrophotometry 2.2.4, using a mixture of boric acid-potassium chloride-sodium hydroxide buffer solution (pH 9.6) as the blank, and determine the absorbances, \(A_T \) and \(A_S \), at 240 nm.

Amount (mg) of phenobarbital (\(\text{C}_12\text{H}_12\text{N}_2\text{O}_3 \))

\[M_S = \frac{M_S \times A_T}{A_S} \]

\(M_S \): Amount (mg) of phenobarbital for assay taken

Containers and storage
Containers—Well-closed containers.

Phenobarbital Tablets

フェノバルビタール錠

Phenobarbital Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of phenobarbital (\(\text{C}_12\text{H}_12\text{N}_2\text{O}_3 \); 232.24).

Method of preparation
Prepare as directed under Tablets, with Phenobarbital.

Identification
To a quantity of powdered Phenobarbital Tablets, equivalent to 20 mg of Phenobarbital, add 20 mL of boric acid-potassium chloride-sodium hydroxide buffer solution (pH 9.6), shake, and centrifuge. To 1 mL of the supernatant liquid add boric acid-potassium chloride-sodium hydroxide buffer solution (pH 9.6) to make 100 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry 2.2.4: it exhibits a maximum between 238 nm and 242 nm.

Uniformity of dosage units
Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement.

To 1 tablet of Phenobarbital Tablets add exactly \(V \) mL of a mixture of water and acetonitrile (1:1) so that each mL contains about 1 mg of phenobarbital (\(\text{C}_12\text{H}_12\text{N}_2\text{O}_3 \)), sonicate to disintegrate, shake for 10 minutes, and centrifuge. Pipet 1 mL of the supernatant liquid, add a mixture of water and acetonitrile (1:1) to make exactly 20 mL, and use this solution as the sample solution. Then, proceed as directed in the Assay.

Amount (mg) of phenobarbital (\(\text{C}_12\text{H}_12\text{N}_2\text{O}_3 \))

\[M_S = \frac{M_S \times A_T}{A_S} \times \frac{30}{V} \]

\(M_S \): Amount (mg) of phenobarbital for assay taken

Dissolution
When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 30 minutes of Phenobarbital Tablets is not less than 75%.

Start the test with 1 tablet of Phenobarbital Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet \(V \) mL of the subsequent filtrate, and add water to make exactly \(V \) mL so that each mL contains about 33 μg of phenobarbital (\(\text{C}_12\text{H}_12\text{N}_2\text{O}_3 \)). Pipet 5 mL of this solution, add exactly 10 mL of boric acid-potassium chloride-sodium hydroxide buffer solution (pH 9.6), and use this solution as the sample solution. Separately, weigh accurately about 17 mg of phenobarbital for assay, previously dried at 105°C for 2 hours, and dissolve in water to make exactly 100 mL. Pipet 5 mL of this solution, add exactly 10 mL of boric acid-potassium chloride-sodium hydroxide buffer solution (pH 9.6), and use this solution as the standard solution. Determine the absorbances, \(A_T \) and \(A_S \), at 240 nm of the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry 2.2.4, using a mixture of boric acid-potassium chloride-sodium hydroxide buffer solution (pH 9.6) and water (2:1) as the blank.

Dissolution rate (%): With respect to the labeled amount

\[M_S = \frac{M_S \times A_T}{A_S} \times \frac{V/V \times 1/C \times 180}{C} \]

\(M_S \): Amount (mg) of phenobarbital for assay taken

C: Labeled amount (mg) of phenobarbital (\(\text{C}_12\text{H}_12\text{N}_2\text{O}_3 \)) in 1 tablet

Assay
Weigh accurately the mass of not less than 20 tablets of Phenobarbital Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 30 mg of phenobarbital (\(\text{C}_12\text{H}_12\text{N}_2\text{O}_3 \)), add exactly 30 mL a mixture of water and acetonitrile (1:1), shake for 10 minutes, and centrifuge. Pipet 1 mL of the supernatant liquid, add a mixture of water and acetonitrile (1:1) to make exactly 20 mL, and use this solution as the sample solution. Separately, weigh accurately about 30 mg of phenobarbital for assay, previously dried at 105°C for 2 hours, and dissolve in exactly 30 mL of a mixture of water and acetonitrile (1:1). Pipet 1 mL of this solution, add a mixture of water and acetonitrile (1:1) to make exactly 20 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL of each of the sample solution and standard solution as directed under Liquid Chromatography 2.2.17 according to the following conditions, and determine the peak areas, \(A_T \) and \(A_S \), of phenobarbital in each solution.

Amount (mg) of phenobarbital (\(\text{C}_12\text{H}_12\text{N}_2\text{O}_3 \))

\[M_S = \frac{M_S \times A_T}{A_S} \times \frac{V}{30} \]

\(M_S \): Amount (mg) of phenobarbital for assay taken

Operating conditions
Detector: An ultraviolet absorption photometer (wavelength: 210 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 45°C.
Mobile phase: A mixture of water and acetonitrile for liquid chromatography (11:9).
Flow rate: Adjust so that the retention time of phenobarbital is about 3 minutes.
System suitability
System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of phenobarbital are not less than 3000.
Phenol

液状フェノール

C₆H₅O: 94.11
Phenol
[108-95-2]

Phenol contains not less than 98.0% of phenol (C₆H₅O).

Description Phenol occurs as colorless to slightly red, crystals or crystalline masses. It has a characteristic odor. It is very soluble in ethanol (95%) and in diethyl ether, and soluble in water. Phenol (10 g) is liquefied by addition of 1 mL of water. The color changes gradually through red to dark red by light or air. It cauterizes the skin, turning it white.

Identification (1) Add 1 drop of iron (III) chloride TS to 10 mL of a solution of Phenol (1 in 100): a blue-purple color develops.

(2) Add bromine TS dropwise to 5 mL of a solution of Phenol (1 in 10,000): a white precipitate is produced, which at first dissolves with shaking, but becomes permanent as excess of the reagent is added.

Purity (1) Clarity and color of solution and acidity or alkalinity—Dissolve 1.0 g of Phenol in 15 mL of water: the solution is clear, and neutral or only faintly acid. Add 2 drops of methyl orange TS: no red color develops.

(2) Residue on evaporation—Weigh accurately about 5 g of Phenol, evaporate on a water bath, and dry the residue at 105°C for 1 hour: the mass is not more than 0.05% of the mass of the sample.

Assay Dissolve about 1.5 g of Phenol, accurately weighed, in water to make exactly 1000 mL. Transfer exactly 25 mL of this solution to an iodine flask, add exactly 30 mL of 0.05 mol/L bromine VS, then 5 mL of hydrochloric acid, and immediately stopper the flask. Shake the flask repeatedly for 30 minutes, allow to stand for 15 minutes, then add 7 mL of potassium iodide TS, at once stopper the flask, and shake well. Add 1 mL of chloroform, stopper the flask, and shake thoroughly. Titrate with 0.1 mol/L sodium thiosulfate VS (indicator: 1 mL of starch TS). Perform a blank determination in the same manner.

Each mL of 0.05 mol/L bromine VS = 1.569 mg of C₆H₅O

Containers and storage Containers—Tight containers. Storage—Light-resistant.

Liquefied Phenol

液状フェノール

Liquefied Phenol is Phenol maintained in a liquid condition by the presence of 10% of Water, Purified Water or Purified Water in Containers. It contains not less than 88.0% of phenol (C₆H₅O: 94.11).

Description Liquefied Phenol is a colorless or slightly reddish liquid. It has a characteristic odor. It is miscible with ethanol (95%), with diethyl ether and with glycerin. A mixture of equal volumes of Liquefied Phenol and glycerin is miscible with water. The color changes gradually to dark red on exposure to light or air. It cauterizes the skin, turning it white.

Identification (1) Add 1 drop of iron (III) chloride TS to 10 mL of a solution of Liquefied Phenol (1 in 100): a blue-purple color develops.

(2) Add bromine TS dropwise to 5 mL of a solution of Liquefied Phenol (1 in 10,000): a white precipitate is produced, which at first dissolves with shaking, but becomes permanent as excess of the reagent is added.

Boiling point <2.57> Not more than 182°C.

Purity (1) Clarity and color of solution and acidity or alkalinity—Dissolve 1.0 g of Liquefied Phenol in 15 mL of water: the solution is clear, and neutral or only faintly acid. Add 2 drops of methyl orange TS: no red color develops.

(2) Residue on evaporation—Weigh accurately about 5 g of Liquefied Phenol, evaporate on a water bath, and dry the residue at 105°C for 1 hour: the mass is not more than 0.05% of the mass of the sample.

Assay Dissolve about 1.7 g of Liquefied Phenol, accurately weighed, in water to make exactly 1000 mL. Transfer exactly 25 mL of this solution to an iodine flask, add exactly 30 mL of 0.05 mol/L bromine VS, then 5 mL of hydrochloric acid, and immediately stopper the flask. Shake the flask repeatedly for 30 minutes, allow to stand for 15 minutes, then add 7 mL of potassium iodide TS, at once stopper the flask, and shake well. Add 1 mL of chloroform, stopper the flask, and shake thoroughly. Titrate with 0.1 mol/L sodium thiosulfate VS (indicator: 1 mL of starch TS). Perform a blank determination in the same manner.

Each mL of 0.05 mol/L bromine VS = 1.569 mg of C₆H₅O

Containers and storage Containers—Tight containers. Storage—Light-resistant.

Phenol for Disinfection

消毒用フェノール

Phenol for Disinfection contains not less than 95.0% of phenol (C₆H₅O: 94.11).

Description Phenol for Disinfection occurs as colorless to slightly, red crystals, crystalline masses, or liquid containing...
these crystals. It has a characteristic odor.

It is very soluble in ethanol (95) and in diethyl ether, and freely soluble in water.

Phenol for Disinfection (10 g) is liquefied by addition of 1 mL of water.

It cauterizes the skin, turning it white.

Congealing point: about 30°C.

Identification (1) To 10 mL of a solution of Phenol for Disinfection (1 in 100) add 1 drop of iron (III) chloride TS: a blue-purple color is produced.

(2) To 5 mL of a solution of Phenol for Disinfection (1 in 10,000) add bromine TS dropwise: a white precipitate is formed, and it dissolves at first upon shaking but becomes permanent as excess of the reagent is added.

Purity (1) Clarity of solution—Dissolve 1.0 g of Phenol for Disinfection in 15 mL of water: the solution is clear.

Residue on evaporation—Weigh accurately about 5 g of Phenol for Disinfection, evaporate on a water bath, and dry the residue at 105°C for 1 hour: the mass is not more than 0.10% of the mass of the sample.

Assay Dissolve about 1 g of Phenol for Disinfection, accurately weighed, in water to make exactly 1000 mL. Pipet 25 mL of the solution into an iodine flask, add exactly 30 mL of 0.05 mol/L bromine VS and 5 mL of hydrochloric acid, stopper immediately, shake for 30 minutes and allow to stand for 15 minutes. Add 7 mL of potassium iodide TS, stopper immediately, shake well, and titrate 0.25 mol/L the liberated iodine with 0.1 mol/L sodium thiosulfate VS (indicator: 1 mL of starch TS). Perform a blank determination in the same manner.

Each mL of 0.05 mol/L bromine VS = 1.569 mg of C₆H₅O:

Containers and storage Containers—Tight containers.

Phenolated Water for Disinfection
消毒用フェノール水

Phenolated Water for Disinfection contains not less than 2.8 w%/v% and not more than 3.3 w%/v% of phenol (C₆H₅O: 94.11).

Method of preparation

Phenol for Disinfection 31 g
Water, Purified Water or Purified Water in Containers a sufficient quantity

To make 1000 mL

Mix the above ingredients.

Description Phenolated Water for Disinfection is a clear, colorless liquid, having the odor of phenol.

Identification (1) Add 1 drop of iron (III) chloride TS to 10 mL of Phenolated Water for Disinfection: a blue-purple color develops.

(2) Proceed with 5 mL of a solution of Phenolated Water for Disinfection (1 in 200) as directed in the Identification (2) under Phenol for Disinfection.

Assay Take exactly 5 mL of Phenolated Water for Disinfection, add water to make exactly 100 mL, then pipet 25 mL of the solution into an iodine flask, and proceed as directed in the Assay under Phenol for Disinfection.

Each mL of 0.05 mol/L bromine VS = 1.569 mg of C₆H₅O:

Containers and storage Containers—Tight containers.

Dental Phenol with Camphor
歯科用フェノール・カンフル

Method of preparation

Phenol 35 g
d-or dl-Camphor 65 g

To make 100 g

Mix Phenol by warming, add d-Camphor or dl-Camphor, and mix.

Description Dental Phenol with Camphor is a colorless or light red liquid. It has a characteristic odor.

Containers and storage Containers—Light-resistant.
Phenol and Zinc Oxide Liniment

フェノール・亜鉛華リニメント

Method of preparation

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquefied Phenol</td>
<td>22 mL</td>
</tr>
<tr>
<td>Powdered Tragacanth</td>
<td>20 g</td>
</tr>
<tr>
<td>Carmellose Sodium</td>
<td>30 g</td>
</tr>
<tr>
<td>Glycerin</td>
<td>30 mL</td>
</tr>
<tr>
<td>Zinc Oxide</td>
<td>100 g</td>
</tr>
<tr>
<td>Purified Water or Purified Water in Containers</td>
<td>a sufficient quantity</td>
</tr>
</tbody>
</table>

Mix Liquefied Phenol, Glycerin and Purified Water or Purified Water in Containers, add Powdered Tragacanth in small portions by stirring, and allow the mixture to stand overnight. To the mixture add Carmellose Sodium in small portions by stirring to make a pasty mass, add Zinc Oxide in small portions, and mix. Less than 5 g of Powdered Tragacanth or Carmellose Sodium can be replaced by each other to make 50 g in total.

Description Phenol and Zinc Oxide Liniment is a white pasty mass. It has a slight odor of phenol.

Identification (1) Shake well 1 g of Phenol and Zinc Oxide Liniment with 10 mL of diethyl ether, and filter. To the filtrate add 10 mL of dilute sodium hydroxide TS, shake well, and separate the water layer. To 1 mL of the water layer add 1 mL of sodium nitrite TS and 1 mL of dilute hydrochloric acid, shake, and add 3 mL of sodium hydroxide TS: a yellow color develops (phenol).

(2) Place 1 g of Phenol and Zinc Oxide Liniment in a porcelain crucible, heat gradually raising the temperature until the content is charred, and then ignite it strongly: a yellow color develops, and disappears on cooling. To the residue add 10 mL of water and 5 mL of dilute hydrochloric acid, shake well, and filter. To the filtrate add 2 to 3 drops of potassium hexacyanoferrate (II) TS: a white precipitate is produced (zinc oxide).

(3) Shake 0.5 g of Phenol and Zinc Oxide Liniment with 1 mL of water and 5 mL of chloroform, separate the chloroform layer, and use this solution as the sample solution. Separately, dissolve 0.01 g of phenol in 5 mL of chloroform, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography. Spot 0.5 µL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate, ethanol (99.5) and ammonia solution (28) (50:5:1) to a distance of about 10 cm, and air-dry the plate. Allow the plate to stand in iodine vapor: the spots obtained from the sample solution and the standard solution show the same Rf value.

Containers and storage Containers—Tight containers.

Phenolsulfonphthalein

フェノールスルホンフタレイン

Phenolsulfonphthalein, when dried, contains not less than 98.0% of phenolsulfonphthalein (C_{19}H_{14}O_5S).

Description Phenolsulfonphthalein occurs as a vivid red to dark red crystalline powder.

It is very slightly soluble in water and in ethanol (95).

It dissolves in sodium hydroxide TS.

Identification (1) Dissolve 5 mg of Phenolsulfonphthalein in 2 to 3 drops of sodium hydroxide TS, add 2 mL of 0.05 mol/L bromine VS and 1 mL of dilute sulfuric acid, shake well, and allow to stand for 5 minutes. Render the solution alkaline with sodium hydroxide TS: a deep blue-purple color develops.

(2) Dissolve 0.01 g of Phenolsulfonphthalein in diluted sodium carbonate TS (1 in 10) to make 200 mL. To 5 mL of this solution add diluted sodium carbonate TS (1 in 10) to make 100 mL. Perform the test with this solution as directed under Ultraviolet-visible Spectrophotometry, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

Purity (1) Insoluble substances—To about 1 g of Phenolsulfonphthalein, accurately weighed, add 20 mL of a solution of sodium hydrogen carbonate (1 in 40). Allow the mixture to stand for 1 hour with frequent shaking, dilute with water to 100 mL, and allow to stand for 24 hours. Collect the insoluble substances using a tared glass filter (G4), wash with 25 mL of a solution of sodium hydrogen carbonate (1 in 100) and with five 5-mL portions of water, and dry at 105°C for 1 hour: the mass of the residue is not more than 0.2%.

(2) Related substances—Dissolve 0.10 g of Phenolsulfonphthalein in 5 mL of dilute sodium hydroxide TS, and use this solution as the sample solution. Pipet 0.5 mL of the sample solution, add dilute sodium hydroxide TS to make exactly 100 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography. Spot 10 µL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of t-amyl alcohol, acetic acid (100) and water (4:1:1) to a distance of about 15 cm, and air-dry the plate. After allowing the plate to stand in an ammonia vapor, examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying <2.4% Not more than 1.0% (1 g, silica gel, 4 hours).

Residue on ignition <2.4% Not more than 0.2% (1 g).
Phenolsulfonphthalein Injection

フェノールスルホンフタレイン注射液

Phenolsulfonphthalein Injection is an aqueous injection.

It contains not less than 0.54 w/v% and not more than 0.63 w/v% of phenolsulfonphthalein (C_{19}H_{14}O_{3}S: 354.38).

Method of preparation

Phenolsulfonphthalein	6 g	
Sodium Chloride	9 g	
Sodium Bicarbonate	1.43 g	
(or Sodium Hydroxide)	0.68 g	
Water for Injection or Sterile Water	for Injection in Containers	a sufficient quantity

To make 1000 mL

Prepare as directed under Injections, with the above ingredients.

Description Phenolsulfonphthalein Injection is a clear, orange-yellow to red liquid.

Identification To 1 mL of Phenolsulfonphthalein Injection add 2 to 3 drops of sodium hydroxide TS, and proceed as directed in the Identification (1) under Phenolsulfonphthalein.

pH <2.54 6.0 – 7.6

Bacterial endotoxins <4.01 Less than 7.5 EU/mg.

Extractable volume <6.05 It meets the requirement.

Foreign insoluble matter <6.06 Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter <6.07 Perform the test according to Method 2: it meets the requirement.

Sterility <4.06 Perform the test according to the Membrane filtration method: it meets the requirement.

Sensitivity To 1.0 mL of Phenolsulfonphthalein Injection add 5 mL of water. To 0.20 mL of this solution add 50 mL of freshly boiled and cooled water and 0.40 mL of 0.01 mol/L sodium hydroxide VS: a deep red-purple color develops, and it changes to light yellow on the addition of 0.40 mL of 0.005 mol/L sulfuric acid VS.

Assay Pipet 5 mL of Phenolsulfonphthalein Injection, and add a solution of anhydrous sodium carbonate (1 in 100) to make exactly 250 mL. Pipet 5 mL of this solution, add a solution of anhydrous sodium carbonate (1 in 100) to make exactly 200 mL, and use this solution as the sample solution. Separately, weigh accurately about 30 mg of phenolsulfonphthalein for assay, previously dried in a desiccator (silica gel) for 4 hours, and dissolve in a solution of anhydrous sodium carbonate (1 in 100) to make exactly 250 mL. Pipet 5 mL of this solution, add a solution of anhydrous sodium carbonate (1 in 100) to make exactly 200 mL, and use this solution as the standard solution. Determine the absorbances, A_T and A_S, of the sample solution and standard solution at 559 nm as directed under Ultraviolet-visible Spectrophotometry $<2.26>$.

\[
\text{Amount (mg) of phenolsulfonphthalein (} C_{19}H_{14}O_{3}S \text{)} = M_S \times A_T/A_S
\]

M_S: Amount (mg) of phenolsulfonphthalein for assay taken.

Containers and storage Containers—Well-closed containers.

L-Phenylalanine

L-フェニルアラニン

C_{9}H_{11}NO_{2}: 165.19

(2S)-2-Amino-3-phenylpropanoic acid

[63-91-2]

L-Phenylalanine, when dried, contains not less than 98.5% of L-phenylalanine (C_{9}H_{11}NO_{2}).

Description L-Phenylalanine occurs as white, crystals or crystalline powder. It is odorless or has a faint characteristic odor, and has a slightly bitter taste.

It is freely soluble in formic acid, sparingly soluble in water, and practically insoluble in ethanol (95).

It dissolves in dilute hydrochloric acid.

Identification Determine the infrared absorption spectrum of L-Phenylalanine, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry $<2.25>$, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation $<2.49>$ $[\alpha]_D^{20}: -33.0 - -35.5^\circ$ (after drying, 0.5 g, water, 25 mL, 100 mm).

pH <2.54 Dissolve 0.20 g of L-Phenylalanine in 20 mL of water: the pH of this solution is between 5.3 and 6.3.

Purity (1) Clarity and color of solution—Dissolve 0.5 g of L-Phenylalanine in 10 mL of 1 mol/L hydrochloric acid TS: the solution is clear and colorless.

(2) Chloride $<1.05>$—Perform the test with 0.5 g of L-Phenylalanine. Prepare the control solution with 0.30 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.021%).

(3) Sulfate $<1.14>$—Perform the test with 0.6 g of L-Phenylalanine. Prepare the control solution with 0.35 mL of 0.005 mol/L sulfuric acid VS (not more than 0.028%).

(4) Ammonium $<1.02>$—Perform the test with 0.25 g of L-Phenylalanine. Prepare the control solution with 5.0 mL of Standard Ammonium Solution (not more than 0.02%).
(5) Heavy metals 《1.07》—Dissolve 1.0 g of 1-Phenylalanine in 40 mL of water and 2 mL of dilute acetic acid by warming, cool, and add water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution as follows: to 2.0 mL of Standard Lead Solution add 2 mL of dilute acetic acid and water to make 50 mL (not more than 20 ppm).

(6) Arsenic 《1.10》—Dissolve 1.0 g of 1-Phenylalanine in 5 mL of dilute hydrochloric acid and 15 mL of water, and perform the test with this solution as the test solution (not more than 2 ppm).

(7) Related substances—Dissolve 0.1 g of 1-Phenylalanine in 25 mL of water, and use this solution as the sample solution. Pipet 1 mL of the sample solution, and add water to make exactly 50 mL. Pipet 5 mL of this solution, add water to make exactly 20 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography 《2.03》. Spot 5 μL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of 1-butanol, water and acetic acid (100) (3:1:1) to a distance of about 10 cm, and dry the plate at 80°C for 30 minutes. Spray evenly a solution of ninhydrin in acetone (1 in 50) on the plate, and heat the plate at 80°C for 5 minutes: the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying 《2.41》 Not more than 0.30% (1 g, 105°C, 3 hours).

Residue on ignition 《2.44》 Not more than 0.1% (1 g).

Assay Weigh accurately about 0.17 g of 1-Phenylalanine, previously dried, and dissolve in 3 mL of formic acid, acid 50 mL of acetic acid (100), and titrate 《2.50》 with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

\[
\text{Each mL of 0.1 mol/L perchloric acid VS} \times 16.52 \text{ mg of } \text{C}_9\text{H}_8\text{N}_2\text{O}_2
\]

Containers and storage Containers—Tight containers.

Phenylbutazone

フェニルプタゾン

C_{18}H_{14}N_2O_2: 308.37

4-Butyl-1,2-diphenylpyrazolidine-3,5-dione [50-33-9]

Phenylbutazone, when dried, contains not less than 99.0% of phenylbutazone (C_{18}H_{14}N_2O_2).

Description Phenylbutazone occurs as a white to pale yellow-white crystalline powder. It is odorless, and is at first tasteless but leaves a slightly bitter aftertaste.

It is freely soluble in acetone, soluble in ethanol (95) and in diethyl ether, and practically insoluble in water.

Identification 《1.07》

(1) Clarity of solution—Dissolve 1.0 g of Phenylbutazone (C_{18}H_{14}N_2O_2) in 20 mL of sodium hydroxide solution (2 in 25), and allow to stand at 25 ± 1°C for 3 hours: the solution is clear. Determine the absorbance of this solution at 420 nm as directed under Ultraviolet-visible Spectrophotometry 《2.24》: it is not more than 0.05.

(2) Heavy metals 《1.07》—Proceed with 2.0 g of Phenylbutazone according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(3) Arsenic 《1.10》—Prepare the test solution with 1.0 g of phenylbutazone, according to Method 3, and perform the test (not more than 2 ppm).

(4) Readily carbonizable substances—Dissolve 1.0 g of Phenylbutazone in 20 mL of sulfuric acid, and allow to stand at 25 ± 1°C for exactly 30 minutes: the solution is clear. Determine the absorbance of this solution at 420 nm as directed under Ultraviolet-visible Spectrophotometry 《2.24》: it is not more than 0.10.

Loss on drying 《2.41》 Not more than 0.5% (1 g, in vacuum, silica gel, 4 hours).

Residue on ignition 《2.44》 Not more than 0.1% (1 g).

Assay Weigh accurately about 0.5 g of Phenylbutazone, previously dried, dissolve in 25 mL of acetone, and titrate 《2.50》 with 0.1 mol/L sodium hydroxide VS until the solution shows a blue color which persists for 15 seconds (indicator: 5 drops of bromothymol blue TS). Perform a blank determination with a mixture of 25 mL of acetone and 16 mL of water in the same manner, and make any necessary correction.

\[
\text{Each mL of 0.1 mol/L sodium hydroxide VS} \times 30.84 \text{ mg of } \text{C}_9\text{H}_8\text{N}_2\text{O}_2
\]

Containers and storage Containers—Tight containers.

It dissolves in sodium hydroxide TS.

Purity 《1.07》

(1) Clarity of solution—Dissolve 1.0 g of Phenylbutazone add 1 mL of acetic acid (100) and 1 mL of hydrochloric acid, and heat on a water bath under a reflux condenser for 30 minutes. Add 10 mL of water, and cool with ice water. Filter, and to the filtrate add 3 to 4 drops of sodium nitrite TS. To 1 mL of this solution add 1 mL of 2-naphthol TS and 3 mL of chloroform, and shake: a deep red color develops in the chloroform layer.

(2) Dissolve 1 mg of Phenylbutazone in 10 mL of dilute sodium hydroxide TS, and dilute with water to make 100 mL. Determine the absorption spectrum of the solution as directed under Ultraviolet-visible Spectrophotometry 《2.24》, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

Melting point 《2.60》 104 – 107°C

Description Phenylbutazone occurs as a white to pale yellow-white crystalline powder. It is odorless, and is at first tasteless but leaves a slightly bitter aftertaste.

It is freely soluble in acetone, soluble in ethanol (95) and in diethyl ether, and practically insoluble in water.

JP XVIII

Official Monographs / Phenylbutazone 1511

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.)
Phenylephrine Hydrochloride

フェニレフリン塩酸塩

C₆H₁₁NO₂·HCl: 203.67
(1R)-1-(3-Hydroxyphenyl)-2-methylaminoethanol monohydrochloride
[61-76-7]

Phenylephrine Hydrochloride, when dried, contains not less than 98.0% and not more than 102.0% of phenylephrine hydrochloride (C₆H₁₁NO₂·HCl).

Description Phenylephrine Hydrochloride occurs as white crystals or crystalline powder. It is odorless, and has a bitter taste.

It is very soluble in water, freely soluble in ethanol (95), and practically insoluble in diethyl ether.

The pH of a solution of 1.0 g of Phenylephrine Hydrochloride in 100 mL of water is 4.5 to 5.5.

Identification (1) To 1 mL of a solution of Phenylephrine Hydrochloride (1 in 100) add 1 drop of copper (II) sulfate TS and 1 mL of a solution of sodium hydroxide (1 in 5): a blue color is produced. To the solution so obtained add 1 mL of diethyl ether, and shake vigorously: no blue color develops in the diethyl ether layer.

(2) To 1 mL of a solution of Phenylephrine Hydrochloride (1 in 100) add 1 drop of iron (III) chloride TS: a persistent purple color is produced.

(3) Dissolve 0.3 g of Phenylephrine Hydrochloride in 3 mL of water, add 1 mL of ammonia TS, and rub the inner side of the test tube with a glass rod: a precipitate is produced. Collect the precipitate, wash with a few drops of ice-cold water, and dry at 105°C for 2 hours: it melts <2.60°C between 170°C and 177°C.

(4) A solution of Phenylephrine Hydrochloride (1 in 100) responds to Qualitative Tests <1.09> (2) for chloride.

Optical rotation <2.49> [α]D₉: −42.0°−−47.5° (after drying, 0.5 g, water, 10 mL, 100 mm).

Melting point <2.60> 140−145°C

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Phenylephrine Hydrochloride in 10 mL of water: the solution is clear and colorless.

(2) Sulfate <1.14>—Take 0.5 g of Phenylephrine Hydrochloride, and perform the test. Prepare the control solution with 0.50 mL of 0.005 mol/L sulfuric acid VS (not more than 0.048%).

(3) Ketone—Dissolve 0.20 g of Phenylephrine Hydrochloride in 1 mL of water, and add 2 drops of sodium pentacyanonitrosylferrate (III) TS, 1 mL of sodium hydroxide TS and then 0.6 mL of acetic acid (100): the solution has no more color than the following control solution.

Control solution: Prepare as directed above without Phenylephrine Hydrochloride.

Loss on drying <2.41> Not more than 0.5% (1 g, 105°C, 2 hours).

Residue on ignition <2.42> Not more than 0.2% (1 g).

Assay Weigh accurately about 0.1 g of Phenylephrine Hydrochloride, previously dried, dissolve in 40 mL of water contained in an iodine flask, add exactly measured 50 mL of 0.05 mol/L bromine VS, then add 5 mL of hydrochloric acid, and immediately stopper tightly. Shake the mixture, and allow to stand for 15 minutes. To this solution add 10 mL of potassium iodide TS carefully, stopper tightly immediately, shake thoroughly, allow to stand for 5 minutes, and titrate <2.50> with 0.1 mol/L sodium thiosulfate VS (indicator: 1 mL of starch TS). Perform a blank determination in the same manner.

Each mL of 0.05 mol/L bromine VS = 3.395 mg of C₆H₁₁NO₂·HCl

Containers and storage Containers—Tight containers.

Phenytoin

フェニトイン

C₁₅H₁₂N₂O₅: 252.27
5,5-Diphenylimidazolidine-2,4-dione
[57-41-0]

Phenytoin, when dried, contains not less than 99.0% of phenytoin (C₁₅H₁₂N₂O₅).

Description Phenytoin occurs as a white, crystalline powder or granules. It is odorless and tasteless.

It is sparingly soluble in ethanol (95) and in acetone, slightly soluble in diethyl ether, and practically insoluble in water.

It dissolves in sodium hydroxide TS.

Melting point: about 296°C (with decomposition).

Identification (1) Dissolve 0.02 g of Phenytoin in 2 mL of ammonia TS, and add 5 mL of silver nitrate TS: a white precipitate is produced.

(2) Boil a mixture of 0.01 g of Phenytoin, 1 mL of ammonia TS and 1 mL of water, and add dropwise 2 mL of a mixture prepared from 50 mL of a solution of copper (II) sulfate pentahydrate (1 in 20) and 10 mL of ammonia TS: a red, crystalline precipitate is produced.

(3) Heat 0.1 g of Phenytoin with 0.2 g of sodium hydroxide, and fuse: the gas evolved turns moistened red litmus paper blue.

(4) Add 3 mL of chlorinated lime TS to 0.1 g of Phenytoin, shake for 5 minutes, and dissolve the oily precipitate in 15 mL of hot water. After cooling, add 1 mL of dilute hydrochloric acid dropwise, then add 4 mL of water. Filter the white precipitate thus obtained, wash with water, and press it with dry filter paper to remove the accompanying water. Dissolve the precipitate with 1 mL of chloroform, add 5 mL of diluted ethanol (9 in 10), and rub the inner surface of the flask to produce a white, crystalline precipitate. Collect the precipitate, wash with ethanol (95), and dry: the melting point <2.60> is between 165°C and 169°C.

Purity (1) Clarity and color of solution—Dissolve 0.20 g of Phenytoin in 10 mL of 0.2 mol/L sodium hydroxide VS: the solution is clear and colorless. Then heat the solution: no
Phenytoin Powder
フェニトイン散

Phenytoin Powder contains not less than 95.0% and not more than 105.0% of the labeled amount of phenytoin (C_{12}H_{14}N_{2}O_{2}: 252.27).

Method of preparation Prepare as directed under Granules or Powders, with Phenytoin.

Identification Weigh a portion of Phenytoin Powder, equivalent to 0.3 g of Phenytoin, stir well with two 100-mL portions of diethyl ether, and extract. Combine the diethyl ether extracts, and filter. Evaporate the filtrate on a water bath to dryness, and proceed with the residue as directed in the Identification under Phenytoin.

Dissolution Being specified separately when the drug is granted approval based on the Law.

Assay Weigh accurately an amount of Phenytoin Powder, equivalent to about 50 mg of phenytoin (C_{12}H_{14}N_{2}O_{2}), add 30 mL of methanol, sonicate for 15 minutes with occasional shaking, shake for another 10 minutes, and add methanol to make exactly 50 mL. Centrifuge this solution, pipet 5 mL of the supernatant liquid, add exactly 5 mL of the internal standard solution, and use this solution as the sample solution.

Separately, weigh accurately about 25 mg of phenytoin for assay, previously dried at 105°C for 2 hours, and dissolve in methanol to make exactly 25 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography 2.017 according to the following conditions, and calculate the ratios, Q_T and Q_S, of the peak area of phenytoin to that of the internal standard.

\[
M_S = \frac{M_T \times Q_T}{Q_S} \times 2
\]

Containers and storage Containers—Well-closed containers.

Phenytoin Tablets
フェニトイン錠

Phenytoin Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of phenytoin (C_{12}H_{14}N_{2}O_{2}: 252.27).

Method of preparation Prepare as directed under Tablets, with Phenytoin.

Identification Weigh a portion of powdered Phenytoin Tablets, equivalent to about 0.3 g of Phenytoin, transfer to a separator, and add 1 mL of dilute hydrochloric acid and 10 mL of water. Extract with 100 mL of diethyl ether, then with four 25-mL portions of diethyl ether. Combine the extracts, evaporate the diethyl ether on a water bath, and dry the residue at 105°C for 2 hours. Proceed with the residue as directed in the Identification under Phenytoin.

Uniformity of dosage units (≤0.2%) Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement.
To 1 tablet of Phenytoin Tablets add 3 V/5 mL of a mixture of water and acetonitrile (1:1), sonicate for 15 minutes with occasional shaking, shake for another 10 minutes, and add a mixture of water and acetonitrile (1:1) to make exactly V mL so that each mL contains about 1 mg of phenytoin (C₁₅H₁₂N₂O₂). Centrifuge this solution, pipet 5 mL of the supernatant liquid, add exactly 5 mL of the internal standard solution, and use this solution as the sample solution. Proceed as directed in the Assay.

\[
\text{Amount (mg) of phenytoin (C₁₅H₁₂N₂O₂)} = M_S \times \frac{Q_I}{Q_S} \times \frac{V}{25}
\]

\(M_S\): Amount (mg) of phenytoin for assay taken

Internal standard solution—A solution of propyl parahydroxybenzoate in the mobile phase (1 in 25,000).

Dissolution Being specified separately when the drug is granted approval based on the Law.

Assay Weigh accurately the mass of not less than 20 Phenytoin Tablets, and powder in an agate mortar. Weigh accurately a portion of the powder, equivalent to about 50 mg of phenytoin (C₁₅H₁₂N₂O₂), add 30 mL of a mixture of water and acetonitrile (1:1), sonicate for 15 minutes with occasional shaking, shake for another 10 minutes, and add a mixture of water and acetonitrile (1:1) to make exactly 50 mL. Centrifuge this solution, pipet 5 mL of the supernatant liquid, add exactly 5 mL of the internal standard solution, and use this solution as the sample solution. Proceed as directed in the Identification under Phenytoin. Separately, weigh accurately about 25 mg of phenytoin for assay, previously dried at 105°C for 2 hours, and dissolve in a mixture of water and acetonitrile (1:1) to make exactly 25 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography (2.07) according to the following conditions, and calculate the ratios, \(Q_I\) and \(Q_S\), of the peak area of phenytoin to that of the internal standard.

\[
\text{Amount (mg) of phenytoin (C₁₅H₁₂N₂O₂)} = M_S \times \frac{Q_I}{Q_S} \times 2
\]

\(M_S\): Amount (mg) of phenytoin for assay taken

Internal standard solution—A solution of propyl parahydroxybenzoate in the mobile phase (1 in 25,000).

Operating conditions—
- Detector: An ultraviolet absorption photometer (wavelength: 258 nm).
- Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadeclsilanized silica gel for liquid chromatography (5 μm in particle diameter).
- Column temperature: A constant temperature of about 40°C.
- Mobile phase: A mixture of methanol and 0.02 mol/L phosphate buffer solution (pH 3.5) (11:9).
- Flow rate: Adjust so that the retention time of phenytoin is about 5 minutes.

System suitability—
- System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the phenytoin and the internal standard are eluted in this order with the resolution between these peaks being not less than 8.
- System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of phenytoin to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Well-closed containers.

Phenytoin Sodium for Injection

注射用フェニトインナトリウム

C₁₅H₁₂N₂O₄Na₂: 274.25

Monosodium 5,5-diphenyl-4-oximidazolidin-2-olate [630-92-3]

Phenytoin Sodium for Injection is a preparation for injection which is dissolved before use.

When dried, it contains not less than 98.5% of phenytoin sodium (C₁₅H₁₁N₂NaO₂), and contains not less than 92.5% and not more than 107.5% of the labeled amount of phenytoin sodium (C₁₅H₁₁N₂NaO₄).

Method of preparation Prepare as directed under Injections.

Description Phenytoin Sodium for Injection occurs as white, crystals or crystalline powder. It is odorless.

It is soluble in water and in ethanol (95), and practically insoluble in chloroform and in diethyl ether.

The pH of a solution of 1.0 g of Phenytoin Sodium for Injection in 20 mL of water is about 12.

It is hygroscopic.

A solution of Phenytoin Sodium for Injection absorbs carbon dioxide gradually when exposed to air, and a crystalline precipitate of phenytoin is produced.

Identification (1) With the residue obtained in the Assay, proceed as directed in the Identification under Phenytoin.

(2) Ignite 0.5 g of Phenytoin Sodium for Injection, cool, and dissolve the residue in 10 mL of water: the solution changes red litmus paper to blue, and responds to Qualitative Tests (1.09) (1) for sodium salt.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Phenytoin Sodium for Injection in 20 mL of freshly boiled and cooled water in a glass-stoppered test tube: the solution is clear and colorless. If any turbidity is produced, add 4.0 mL of 0.1 mol/L sodium hydroxide VS: the solution becomes clear and colorless.

(2) Heavy metals (1.07)—Proceed with 1.0 g of Phenytoin Sodium for Injection according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

Loss on drying (2.41) Not more than 2.5% (1 g, 105°C, 4 hours).

Assay Weigh accurately the content of not less than 10 containers of Phenytoin Sodium for Injection, transfer about 0.3 g of the content, previously dried and accurately weighed, to a separator, dissolve in 50 mL of water, add 10 mL of dilute hydrochloric acid, and extract with 100 mL of diethyl ether, then with four 25-mL portions of diethyl ether. Combine the diethyl ether extracts, and evaporate on a water bath. Dry the residue at 105°C for 2 hours, and weigh it as

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, **General Notices**, **General Rules for Crude Drugs**, **General Rules for Preparations**, and **General Tests for their conformity to the Japanese Pharmacopoeia**. (See the General Notices S.)
the mass of phenytoin (C₁₅H₁₂N₂O₂: 252.27).

Amount (mg) of phenytoin sodium (C₁₅H₁₁N₂NaO₂) = amount (mg) of phenytoin (C₁₅H₁₂N₂O₂) × 1.087

Containers and storage Containers—Hermetic containers.

Phytonadione

Vitamin K₁

Phytonadione contains not less than 97.0% and not more than 102.0% of phytonadione (C₁₃H₁₄O₂).

Description Phytonadione is a clear yellow to orange-yellow viscous liquid.

It is miscible with isooctane.

It is soluble in ethanol (99.5), and practically insoluble in water.

It decomposes gradually and changes to a red-brown by light.

Specific gravity ρ₃₀: about 0.967

Identification (1) Determine the absorption spectrum of a solution of Phytonadione in isooctane (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum 1: both spectra exhibit similar intensities of absorption at the same wavelengths. Separately, determine the absorption spectrum of a solution of Phytonadione in isooctane (1 in 10,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum 2: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Phytonadione as directed in the liquid film method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Refractive index <2.45> ρ₃₀: 1.525 – 1.529

Purity (1) Ratio of absorbances—Determine the absorbances, A₁, A₂, and A₃, of a solution of Phytonadione in isooctane (1 in 100,000) at 248.5 nm, 253.5 nm and 269.5 nm, respectively, as directed under Ultraviolet-visible Spectrophotometry <2.24>; the ratio A₁/A₃ is between 0.69 and 0.73, and the ratio A₂/A₁ is between 0.74 and 0.78. Determine the absorbances, A₁, and A₃, of a solution of Phytonadione in isooctane (1 in 10,000) at 284.5 nm and 326 nm, respectively: the ratio A₂/A₃ is between 0.28 and 0.34.

(2) Heavy metals <1.07>—Carbonize 1.0 g of Phytonadione by gentle heating. Cool, add 10 mL of a solution of magnesium nitrate hexahydrate in ethanol (95) (1 in 10), and ignite the ethanol to burn. Cool, add 1 mL of sulfuric acid, proceed according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(3) Menadione—Dissolve 20 mg of Phytonadione in 0.5 mL of a mixture of water and ethanol (95) (1:1), add 1 drop of a solution of 3-methyl-1-phenyl-5-pyrazole in ethanol (95) (1 in 20) and 1 drop of ammonia solution (28), and allow to stand for 2 hours: no blue-purple color develops.

Isomer ratio Conduct this procedure rapidly and without exposure to light. Dissolve 30 mg of Phytonadione in 50 mL of the mobile phase. To 4 mL of this solution add the mobile phase to make 25 mL. To 10 mL of this solution add the mobile phase to make 25 mL, and use this solution as the sample solution. Perform the test with 50 μL of the sample solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas of Z-isomer and E-isomer, A₁Z and A₁E: A₁Z/(A₁Z + A₁E) is between 0.05 and 0.18.

Operating conditions—

Proceed as directed in the operating conditions in the Assay.

System suitability—

System performance: When the procedure is run with 50 μL of the sample solution under the above operating conditions, Z-isomer and E-isomer are eluted in this order with the resolution between these peaks being not less than 1.5.

System repeatability: When the test is repeated 6 times with 50 μL of the sample solution under the above operating conditions, the relative standard deviation of the total area of the peaks of Z-isomer and E-isomer is not more than 2.0%.

Assay Conduct this procedure rapidly and without exposure to light. Weigh accurately about 30 mg each of Phytonadione and Phytonadione RS, and dissolve each in the mobile phase to make exactly 50 mL. Pipet 4 mL each of these solutions, and add the mobile phase to make exactly 25 mL. To exactly 10 mL each of these solutions add exactly 7 mL of the internal standard solution and the mobile phase to make 25 mL, and use these as the sample solution and the standard solution, respectively. Perform the test with 50 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and calculate the ratios, Q₁ and Q₅, of the total area of the peaks of Z-isomer and E-isomer to the peak area of the internal standard.

Amount (mg) of phytonadione (C₁₃H₁₄O₂) = Mₛ × Q₁/Q₅

Mₛ: Amount (mg) of Phytonadione RS taken

Internal standard solution—A solution of cholesterol benzoate in the mobile phase (1 in 400).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 254 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with porous silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 30°C.

Mobile phase: A mixture of hexane and n-amyl alcohol (4000 : 3).

Flow rate: Adjust so that the retention time of the peak of E-isomer of phytonadione is about 25 minutes.

System suitability—

System performance: When the procedure is run with 50 μL of the standard solution under the above operating conditions, the internal standard, Z-isomer and E-isomer are
eluted in this order with the resolution between the peaks of Z-isomer and E-isomer being not less than 1.5.

System repeatability: When the test is repeated 6 times with 50 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the total area of the peaks of Z-isomer and E-isomer to the peak area of the internal standard is not more than 1.0%.

Containers and storage

Containers—Tight containers.
Storage—Light-resistant, at a cold place or in containers in which air has been displaced by Nitrogen.

Pilocarpine Hydrochloride

ピロカルピン塩酸塩

C₁₅H₁₈N₂O₄·HCl: 244.72
(3S,4R)-3-Ethyl-4-(1-methyl-1H-imidazol-5-ylmethyl)-4,5-dihydrofuran-2(3H)-one monohydrochloride

[54-71-7]

Pilocarpine Hydrochloride, when dried, contains not less than 99.0% of pilocarpine hydrochloride (C₁₅H₁₈N₂O₄·HCl).

Description

Pilocarpine Hydrochloride occurs as colorless crystals or white powder. It is odorless, and has a slightly bitter taste.

It is very soluble in acetic acid (100), freely soluble in water, in methanol and in ethanol (95), soluble in acetic anhydride, and practically insoluble in diethyl ether.

The pH of a solution of 1.0 g of Pilocarpine Hydrochloride in 10 mL of water is between 3.5 and 4.5.

It is hygroscopic.

It is affected by light.

Identification

1) Dissolve 0.1 g of Pilocarpine Hydrochloride in 5 mL of water, add 1 drop of dilute nitric acid, 1 mL of hydrogen peroxide TS, 1 mL of chloroform and 1 drop of a potassium dichromate solution (1 in 300), and shake the mixture vigorously: a violet color develops in the aqueous layer.

(2) To 1 mL of a solution of Pilocarpine Hydrochloride (1 in 20) add 1 mL of dilute nitric acid and 2 to 3 drops of silver nitrate TS: a white precipitate or opalescence is produced in the aqueous layer.

Melting point

<2.60> 200 – 203°C

Purity

1) Sulfate—Dissolve 0.5 g of Pilocarpine Hydrochloride in 20 mL of water, and use this solution as the sample solution. To 5.0 mL of the sample solution add 1 mL of dilute hydrochloric acid and 0.5 mL of barium chloride TS: no turbidity is produced.

2) Nitrate—To 2.0 mL of the sample solution obtained in (1) add 2 mL of iron (II) sulfate TS, and superimpose the mixture upon 4 mL of sulfuric acid: no dark brown color develops at the zone of contact.

3) Related substances—Dissolve 0.3 g of Pilocarpine Hydrochloride in 10 mL of methanol, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add methanol to make exactly 100 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.01>.

Spot 10 μL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography.

Develop the plate with a mixture of chloroform, methanol and ammonia TS (85:14:2) to a distance of about 13 cm, and dry the plate at 105°C for 10 minutes. Cool, and spray evenly bismuth potassium iodide TS on the plate: the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

(4) Readily carbonizable substances <1.15>—Take 0.25 g of Pilocarpine Hydrochloride, and perform the test: the solution has no more color than Matching Fluid B.

Loss on drying

<2.41> Not more than 3.0% (1 g, 105°C, 2 hours).

Residue on ignition

<2.44> Not more than 0.5% (0.1 g).

Assay

Weigh accurately about 0.5 g of Pilocarpine Hydrochloride, previously dried, dissolve in 50 mL of a mixture of acetic anhydride and acetic acid (100) (7:3), and titrate with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 24.47 mg of C₁₅H₁₈N₂O₄·HCl

Containers and storage

Containers—Tight containers.
Storage—Light-resistant.

Pilocarpine Hydrochloride Tablets

ピロカルピン塩酸塩錠

Pilocarpine Hydrochloride Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of pilocarpine hydrochloride (C₁₅H₁₈N₂O₄·HCl: 244.72).

Method of preparation

Prepare as directed under Tablets, with Pilocarpine Hydrochloride.

Identification

Perform the test with 10 μL each of the sample solution and the standard solution, both obtained in the assay, as directed under Liquid Chromatography <2.05> according to the following conditions: the principal peaks in the chromatograms obtained from the sample solution and standard solution show the same retention time, and both ratios of intensities of absorption at the same wavelengths.

Operating conditions—

Column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

System suitability—

System performance: Proceed as directed in the system suitability in the Assay.

Purity

Related substances—Use the sample solution obtained in the Assay as the sample solution. Pipet 1 mL of the sample solution, add phosphate buffer solution (pH 4.0) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following
conditions, and determine each peak area by the automatic integration method: the area of the two peaks, having the relative retention time of about 0.78 and about 0.92 to pilocarpine, obtained from the sample solution is not larger than the peak area of pilocarpine from the standard solution, the area of the peak other than pilocarpine and the peaks mentioned above from the sample solution is not larger than 1/5 times the peak area of pilocarpine from the standard solution, and the total area of the peaks other than pilocarpine from the sample solution is not larger than 2 times the peak area of pilocarpine from the standard solution.

System suitability—
Test for required detectability: To exactly 2 mL of the standard solution add phosphate buffer solution (pH 4.0) to make exactly 20 mL. Confirm that the peak area of pilocarpine obtained with 10 μL of this solution is equivalent to 7 ± 13% of that with 10 μL of the standard solution.

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of pilocarpine are not less than 3000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of pilocarpine is not more than 1.0%.

Dissolution—When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of 2nd fluid for dissolution test as the dissolution medium, the dissolution rate in 900 mL of the 2nd fluid for dissolution test as the dissolution medium is not less than 80%.

Start the test with 1 tablet of Pilocarpine Hydrochloride Tablets, withdraw not less than 10 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 3 mL of the first filtrate, pipet 5 mL of the subsequent filtrate, add the dissolution medium to make exactly 20 mL so that each mL contains about 5.6 μg of pilocarpine hydrochloride ([C₆H₁₁N₂O₂.HCl]₄), and use this solution as the sample solution. Separately, weigh accurately about 50 mg of pilocarpine hydrochloride for assay, previously dried at 105°C for 2 hours, and dissolve in the dissolution medium to make exactly 100 mL. Pipet 2 mL of this solution, add the dissolution medium to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 50 μL each of the sample solution and standard solution as directed under Liquid Chromatography. According to the following conditions, and determine the peak areas, A₁ and A₃, of pilocarpine in each solution.

Dissolution rate (%): with respect to the labeled amount of pilocarpine hydrochloride ([C₆H₁₁N₂O₂.HCl]₄)

\[M_2 \times \frac{A_1}{A_3} \times \frac{V}{V \times 1/C \times 9} \]

M₂: Amount (mg) of pilocarpine hydrochloride for assay taken
C: Labeled amount (mg) of pilocarpine hydrochloride ([C₆H₁₁N₂O₂.HCl]₄) in 1 tablet

Operating conditions—
Proceed as directed in the operating conditions in the Assay.

System suitability—
System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of pilocarpine are not less than 3000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of pilocarpine is not more than 1.0%.

Assay—To 20 Pilocarpine Hydrochloride Tablets add a suitable amount of phosphate buffer solution (pH 4.0), shake until the tablets are completely disintegrated, then add phosphate buffer solution (pH 4.0) to make exactly 50 mL so that each mL contains about 0.4 mg of pilocarpine hydrochloride ([C₆H₁₁N₂O₂.HCl]₄), and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 3 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 40 mg of pilocarpine hydrochloride for assay, previously dried at 105°C for 2 hours, dissolve in phosphate buffer solution (pH 4.0)
to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL of each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A₁ and A₂, of pilocarpine in each solution.

\[
\text{Amount (mg) of pilocarpine hydrochloride} = M_s \times \frac{A_1}{A_2} \times \frac{V}{2000}
\]

M_s: Amount (mg) of pilocarpine hydrochloride for assay taken

Operating conditions
- **Detector:** An ultraviolet absorption photometer (wavelength: 215 nm).
- **Column:** A stainless steel column 3.9 mm in inside diameter and 30 cm in length, packed with phenylated silica gel for liquid chromatography (10 μm in particle diameter).
- **Column temperature:** A constant temperature of about 25°C.
- **Mobile phase:** To 1000 mL of 0.05 mol/L potassium dihydrogen phosphate TS add phosphoric acid to adjust to pH 2.5. To this solution add 5.0 mL of triethylamine, and adjust to pH 2.5 with phosphoric acid.
- **Flow rate:** Adjust so that the retention time of pilocarpine is about 12 minutes.

System suitability
- **System performance:** When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of pilocarpine are not less than 3000 and not more than 2.0, respectively.
- **System repeatability:** When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of pilocarpine is not more than 1.0%.

Containers and storage
Containers—Tight containers.

Pilsicainide Hydrochloride Hydrate

Pilsicainide Hydrochloride Hydrate contains not less than 99.0% and not more than 101.0% of pilsicainide hydrochloride hydrate (C₁₇H₂₃N₂O₄·HCl·1/2H₂O).

Description
Pilsicainide Hydrochloride Hydrate occurs as white, crystals or crystalline powder. It is very soluble in acetic acid (100), and freely soluble in water, in methanol and in ethanol (99.5).

It dissolves in 0.1 mol/L hydrochloric acid TS.

Identification (1)
Determine the absorption spectrum of a solution of Pilsicainide Hydrochloride Hydrate in 0.1 mol/L hydrochloric acid TS (1 in 2000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

Operating conditions
- **Detector:** An ultraviolet absorption photometer (wavelength: 215 nm).
- **Mobile phase:** To 1000 mL of 0.05 mol/L potassium dihydrogen phosphate TS add phosphoric acid to adjust to pH 2.5. To this solution add 5.0 mL of triethylamine, and adjust to pH 2.5 with phosphoric acid.
- **Flow rate:** Adjust so that the retention time of pilocarpine is about 12 minutes.

System suitability
- **System performance:** When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of pilocarpine are not less than 3000 and not more than 2.0, respectively.
- **System repeatability:** When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of pilocarpine is not more than 1.0%.

Containers and storage
Containers—Tight containers.
add 40 mL of acetic anhydride, and titrate with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 31.79 mg of C_{17}H_{22}N_{2}O.HCl \cdot \frac{1}{2}H_{2}O

Containers and storage Containers—Tight containers.

Pilsicainide Hydrochloride Capsules

ビルシカイニド塩酸塩カプセル

Pilsicainide Hydrochloride Capsules contain not less than 95.0% and not more than 105.0% of the labeled amount of pilsicainide hydrochloride hydrate (C_{17}H_{22}N_{2}O.HCl \cdot \frac{1}{2}H_{2}O; 317.85).

Method of preparation Prepare as directed under Capsules, with Pilsicainide Hydrochloride Hydrate.

Identification Take out the contents of Pilsicainide Hydrochloride Capsules, to a quantity of the content, equivalent to 50 mg of Pilsicainide Hydrochloride Hydrate, add 10 mL of water, and shake well. Centrifuge this solution, and filter the supernatant liquid through a membrane filter with a pore size not exceeding 0.45 \mu m. To 1 mL of the filtrate, add 1 mL of 1 mol/L hydrochloric acid TS and 8 mL of water. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry (2.24); it exhibits maxima between 261 nm and 265 nm, and between 268 nm and 272 nm.

Uniformity of dosage units (6.02) Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement. To 1 capsule of Pilsicainide Hydrochloride Capsules, add water, and shake to disperse the content of the capsule uniformly while warming in a water bath. After cooling, add exactly V mL of the internal standard solution so that 0.2 mL of the internal standard solution is added for each mg of pilsicainide hydrochloride hydrate (C_{17}H_{22}N_{2}O.HCl \cdot \frac{1}{2}H_{2}O), then, add water so that each mL contains about 0.5 mg of pilsicainide hydrochloride hydrate (C_{17}H_{22}N_{2}O.HCl \cdot \frac{1}{2}H_{2}O). To 5 mL of this solution, add water so that each mL contains about 28 \mu g of pilsicainide hydrochloride hydrate (C_{17}H_{22}N_{2}O.HCl \cdot \frac{1}{2}H_{2}O), and use this solution as the sample solution. Perform the test with exactly 20 \mu L of each of the sample solution and standard solution as directed under Liquid Chromatography (2.01) according to the following conditions, and determine the peak areas, A_T and A_S, of pilsicainide in each solution.

\[M_S = \frac{A_T/A_S \times V/V' \times 1/C \times 90}{M} \]

M_s: Amount (mg) of pilsicainide hydrochloride hydrate for assay taken
C: Labeled amount (mg) of pilsicainide hydrochloride hydrate (C_{17}H_{22}N_{2}O.HCl \cdot \frac{1}{2}H_{2}O) in 1 capsule

Operating conditions—Proceed as directed in the operating conditions in the Assay.

System suitability—

System performance: When the procedure is run with 20 \mu L of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of pilsicainide are not less than 4000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 20 \mu L of the standard solution under the above operating conditions, the relative standard deviation of the peak area of pilsicainide is not more than 1.0%.

Assay Take out the contents of not less than 20 Pilsicainide Hydrochloride Capsules, weigh accurately the mass of the contents, and powder. Weigh accurately a portion of the powder, equivalent to about 50 mg of pilsicainide hydrochloride hydrate (C_{17}H_{22}N_{2}O.HCl \cdot \frac{1}{2}H_{2}O), add 50 mL of water and shake well. After adding exactly 10 mL of the internal standard solution, add water to make 100 mL. To 5 mL of this solution add water to make 50 mL, and filter the solution. Discard the first 10 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 50 mg of pilsicainide hydrochloride hydrate for assay, dissolve in exactly 10 mL of the internal standard solution, and add water to make 100 mL. To 5 mL of this solution add water to make 50 mL, and use this solution as the standard solution. Perform the test with 20 \mu L of each of the sample solution and standard solution as directed under Liquid Chromatography (2.01) according to the following conditions, and calculate the ratios, Q_T and Q_S, of the peak area of pilsicainide to that of the internal standard.

\[M_S = \frac{Q_T/Q_S}{M} \]

M_s: Amount (mg) of pilsicainide hydrochloride hydrate for assay taken

Internal Standard Solution—Dissolve 2.5 g of lidocaine for assay in 20 mL of 0.5 mol/L hydrochloric acid TS, and add water to make 1000 mL.

Dissolution (6.10) When the test is performed at 50 revolutions per minute according to the Paddle method using the sinker, using 900 mL of water as the dissolution medium, the dissolution rate in 30 minutes of Pilsicainide Hydrochloride Capsules is not less than 85%.

Start the test with 1 capsule of Pilsicainide Hydrochloride Capsules, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 \mu m. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add water to make exactly V mL so that each mL contains about 28 \mu g of pilsicainide hydrochloride hydrate (C_{17}H_{22}N_{2}O.HCl \cdot \frac{1}{2}H_{2}O), and use this solution as the sample solution. Separately, weigh accurately about 28 \mu g of pilsicainide hydrochloride hydrate for assay, dissolve in water to make exactly 100 mL. Pipet 5 mL of this solution, add water to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly 20 \mu L of each of the sample solution and standard solution as directed under Liquid Chromatography (2.01) according to the following conditions, and determine the peak areas, A_T and A_S, of pilsicainide in each solution.
Operating conditions—
Detector: An ultraviolet absorption photometer (wave-length: 210 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadeclisilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of around 40°C.
Mobile phase: To 750 mL of water add 5 mL of triethylamine, adjust the pH to 4.0 with phosphoric acid, and add water to make 1000 mL. To this solution, add 200 mL of acetonitrile for liquid chromatography.
Flow rate: Adjust so that the retention time of pilsicainide is about 5 minutes.

System suitability—
System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the internal standard and pilsicainide are eluted in this order with the resolution between these peaks being not less than 2.0.
System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of pilsicainide to that of the internal standard is not more than 1.0%.

Containers and storage—Containers—Tight containers.

Pimaricin

Natamycin

ピマリシン

\[
\text{C}_{33}\text{H}_{52}\text{NO}_{13}: \text{665.73} \\
(1\text{R}^*, 3\text{R}^*, 5\text{R}^*, 7\text{R}^*, 8\text{E}, 12\text{R}^*, 14\text{E}, 16\text{E}, 18\text{E}, 20\text{E}, 22\text{R}^*, 24\text{S}^*, 25\text{R}^*, 26\text{S}^*)-(3\text{-Amino-3,6-dideoxy-β-D-mannopyranosyloxy})-1,3,26-trihydroxy-12-methyl-10-oxo-6,11,28-trioxastricyclo[22.3.1.0^{25}]octa-8,14,16,18,20-pentaene-25-carboxylic acid} \\
[7681-93-8]
\]

Pimaricin is a polyene macrolide substance having antifungal activity produced by the growth of *Streptomyces natalensis*.

It contains not less than 900 μg (potency) and not more than 1020 μg (potency) per mg, calculated on the anhydrous basis. The potency of Pimaricin is expressed as mass (potency) of pimaricin (C\text{33}H\text{52}NO\text{13}).

Description—Pimaricin occurs as white to yellow-white crystalline powder.

It is slightly soluble in methanol and in acetic acid (100), and practically insoluble in water and in ethanol (99.5).

Identification (1) To 3 mg of Pimaricin add 1 mL of hydrochloric acid, and mix: a blue-purple color appears.

(2) Dissolve 5 mg of Pimaricin in a solution of acetic acid (100) in methanol (1 in 100) to make 1000 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry (2.2.24), and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Pimaricin RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

Optical rotation \(<\text{1.0} > \)—Proceed with 1.0 g of Pimaricin according to Method 4, and perform the test. Prepare the control solution with 3.0 mL of Standard Lead Solution (not more than 30 ppm).

(2) Related substances—Dissolve 20 mg of Pimaricin in methanol to make 100 mL, and use this solution as the sample solution. Perform the test with 10 μL of the sample solution as directed under Liquid Chromatography \(<\text{2.01} > \) according to the following conditions, and determine the total area of the peaks other than pimaricin by the automatic integration method. Calculate the amount of the peaks by the area percentage method: not more than 4.0%.

Operating conditions—
Detector: An ultraviolet absorption photometer (wave-length: 303 nm).
Column: A stainless steel column 3.9 mm in inside diameter and 30 cm in length, packed with octadeclisilanized silica gel for liquid chromatography (10 μm in particle diameter).
Column temperature: A constant temperature of around 40°C.
Mobile phase: Dissolve 1.0 g of ammonium acetate in 1000 mL of a mixture of water, methanol and tetrahydrofuran (47:44:2).
Flow rate: Adjust so that the retention time of pimaricin is about 10 minutes.

Time span of measurement: About 3 times as long as the retention time of pimaricin.

System suitability—
Test for required detectability: Measure exactly 1 mL of the sample solution, add methanol to make exactly 100 mL, and use this solution as the solution for system suitability test. Pipet 1 mL of the solution for system suitability test, and add methanol to make exactly 10 mL. Confirm that the peak area of pimaricin obtained with 10 μL of this solution is equivalent to 7 to 13% of that with 10 μL of the solution for system suitability test.

System performance: When the procedure is run with 10 μL of the solution for system suitability test under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of pimaricin are not less than 1500 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 10 μL of the solution for system suitability test under the above operating conditions, the relative standard deviation of the peak area of pimaricin is not more than 2.0%.

Water \(<\text{2.487} > \) Between 6.0% and 9.0% (0.2 g, volumetric titration, direct titration).

Assay—Weigh accurately an amount of Pimaricin and Pimaricin RS, equivalent to about 25 mg (potency), and dissolve each in methanol to make exactly 100 mL. Pipet 2 mL of each of these solutions, add a solution of acetic acid (100) in methanol (1 in 100) to make exactly 100 mL, and use these solutions as the sample solution and standard solution. Determine the absorbances at 295.5 nm, \(A_{11} \) and \(A_{33} \), at 303 nm, \(A_{12} \) and \(A_{32} \), and at 311 nm, \(A_{13} \) and \(A_{33} \), of the sample
solution and standard solution as directed under Ultraviolet-visible Spectrophotometry <2.24>.

\[
A_{12} = \frac{A_{11} + A_{13}}{2}
\]
\[
A_{22} = \frac{A_{21} + A_{23}}{2}
\]

\[
M_S = \frac{A_{22}}{A_{12}} \times 1000
\]

Containers and storage Containers—Tight containers. Storage—Light resistant.

Pimozide

ピモジド

C₂₈H₂₈F₂N₆O: 461.55
1-[4-(4,4-Bis(4-fluorophenyl)butyl)piperidin-4-yl]-1,3-dihydro-2H-benzimidazol-2-one
[2062-78-4]

Pimozide contains not less than 98.5% and not more than 101.0% of pimozide (C₂₈H₂₈F₂N₆O).

Description Pimozide occurs as a white to pale yellow-white powder.

It is freely soluble in acetic acid (100), slightly soluble in methanol and in ethanol (99.5), and practically insoluble in water.

Identification (1) Determine the absorption spectrum of a solution of Pimozide in methanol (1 in 25,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Pimozide as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point <2.60> 216 - 220°C

Purity (1) Heavy metals <1.07>—Proceed with 2.0 g of Pimozide according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution by using 5 mL of sulfuric acid (not more than 10 ppm).

(2) Arsenic <1.11>—Prepare the test solution with 1.0 g of Pimozide according to Method 3, and perform the test (not more than 2 ppm).

(3) Related substances—Dissolve 0.10 g of Pimozide in 10 mL of methanol, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add methanol to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.017> according to the following conditions. Determine each peak area of both solutions by the automatic integration method: the area of the peak other than the peak of pimozide obtained from the sample solution is not larger than the peak area of pimozide from the standard solution, and the total area of the peaks other than the peak of pimozide from the sample solution is not larger than 1.5 times of the peak area of pimozide from the standard solution.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 280 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 10 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (3 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase A: Dissolve 2.5 g of ammonium acetate and 8.5 g of tetrahydroammonium hydrogensulfate in water to make 1000 mL.

Mobile phase B: Acetonitrile.

Flowing of mobile phase; Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 10</td>
<td>80 → 70</td>
<td>20 → 30</td>
</tr>
<tr>
<td>10 - 15</td>
<td>70</td>
<td>30</td>
</tr>
</tbody>
</table>

Flow rate: 2.0 mL per minute.

Time span of measurement: 1.5 times as long as the retention time of pimozide.

System suitability—

Test for required detectability: Pipet 1 mL of the standard solution, and add methanol to make exactly 10 mL. Confirm that the peak area of pimozide obtained with 10 μL of this solution is equivalent to 8 to 12% of that with 10 μL of the standard solution.

System performance: Dissolve 5 mg of Pimozide and 2 mg of mebendazole in methanol to make 100 mL. When the procedure is run with 10 μL of this solution under the above operating conditions, mebendazole and pimozide are eluted in this order with the resolution between these peaks being not less than 5.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of pimozide is not more than 2.0%.

Loss on drying <2.41> Not more than 0.5% (1 g, 105°C, 3 hours).

Residue on ignition <2.24> Not more than 0.1% (1 g).

Assay Weigh accurately about 70 mg of Pimozide, previously dried, dissolve in 25 mL of acetic acid for nonaqueous titration, and titrate <2.30> with 0.02 mol/L perchloric acid VS (indicator: 2 drops of crystal violet TS). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.02 mol/L perchloric acid VS = 9.231 mg of C₂₈H₂₈F₂N₆O

Containers and storage Containers—Well-closed containers.
Pindolol

ピンドロール

C₁₄H₂₃N₂O₂: 248.32
(2RS)-1-(1H-Indol-4-yloxy)-3-(1-methylethyl)aminopropan-2-ol
[13523-86-9]

Pindolol, when dried, contains not less than 98.5% of pindolol (C₁₄H₂₃N₂O₂).

Description Pindolol occurs as a white crystalline powder. It has a slight, characteristic odor.

It is sparingly soluble in methanol, slightly soluble in ethanol (95), and practically insoluble in water and in diethyl ether.

It dissolves in dilute sulfuric acid and in acetic acid (100).

Identification (1) To 1 mL of a solution of Pindolol in methanol (1 in 10,000) add 1 mL of a solution of 1-(4-pyridyl)-pyridinium chloride hydrochloride (1 in 1000) and 1 mL of sodium hydroxide TS, then add 1 mL of hydrochloric acid: a blue to blue-purple color, changing to red-purple, is produced.

(2) Dissolve 0.05 g of Pindolol in 1 mL of dilute sulfuric acid, and add 1 mL of Reinecke salt TS: a light red precipitate is produced.

(3) Determine the absorption spectrum of a solution of Pindolol in methanol (1 in 50,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(4) Determine the infrared absorption spectrum of Pindolol, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Absorbance <2.24> $E_{1\text{cm}}^{1\text{%}}$ (264 nm): 333 – 350 (10 mg, methanol, 500 mL).

Melting point <2.60> 169 – 173°C

Purity (1) Clarity and color of solution—Dissolve 0.5 g of Pindolol in 10 mL of acetic acid (100), and observe immediately: the solution is clear, and has no more color than the following control solution.

Control solution: Measure accurately 4 mL of Matching Fluid A, add exactly 6 mL of water, and mix.

(2) Heavy metals <1.07>—Proceed with 1.0 g of Pindolol according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 2 ppm).

(3) Arsenic <1.12>—Prepare the test solution with 1.0 g of Pindolol according to Method 3, and perform the test (not more than 2 ppm).

(4) Related substances—Dissolve 0.10 g of Pindolol in 10 mL of methanol, and use this solution as the sample solution. Pipet 2 mL of the sample solution, and add methanol to make exactly 100 mL. Pipet 5 mL of this solution, add methanol to make exactly 20 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.67>. Spot 5 μL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of chloroform, acetone and isopropylamine (5:4:1) to a distance of about 12 cm, and air-dry the plate. Spray evenly diluted sulfuric acid (3 in 5) and a sodium nitrite solution (1 in 50) on the plate: the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying <2.41> Not more than 0.5% (1 g, 105°C, 4 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.5 g of Pindolol, previously dried, dissolve in 80 mL of methanol, and titrate <2.50> with 0.1 mol/L hydrochloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L hydrochloric acid VS = 24.83 mg of C₁₄H₂₃N₂O₂

Containers and storage Containers—Tight containers. Storage—Light-resistant.

Pioglitazone Hydrochloride

ピオグリタゾン塩酸塩

C₁₉H₂₈N₂O₅·HCl: 392.90
(5RS)-5-[4-[2-(5-Ethylpyridin-2-yl)ethoxy]benzyl]thiazolidine-2,4-dione monohydrochloride
[112529-15-4]

Pioglitazone Hydrochloride contains not less than 99.0% and not more than 101.0% of pioglitazone hydrochloride (C₁₉H₂₈N₂O₅·HCl), calculated on the anhydrous basis.

Description Pioglitazone Hydrochloride occurs as white, crystals or crystalline powder.

It is soluble in N,N-dimethylformamide and in methanol, slightly soluble in ethanol (99.5), and practically insoluble in water.

It dissolves in 0.1 mol/L hydrochloric acid TS.

A solution of Pioglitazone Hydrochloride in N,N-dimethylformamide (1 in 20) shows no optical rotation.

Identification (1) Determine the absorption spectrum of a solution of Pioglitazone Hydrochloride in 0.1 mol/L hydrochloric acid TS (1 in 50,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Pioglitazone Hydrochloride RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Pioglitazone Hydrochloride as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>,
and compare the spectrum with the Reference Spectrum or the spectrum of Pioglitazone Hydrochloride RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) Dissolve 50 mg of Pioglitazone Hydrochloride in 1 mL of nitric acid, and add 4 mL of dilute nitric acid: the solution responds to Qualitative Tests <1.09> (2) for chloride.

Purity (1) Heavy metals <1.07>—Proceed with 1.0 g of Pioglitazone Hydrochloride according to Method 4, and perform the test. After incineration, use 3 mL of hydrobromic acid instead of 3 mL of hydrochloric acid. Prepare the control solution with 1.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Related substances—Dissolve 20 mg of Pioglitazone Hydrochloride in 20 mL of methanol, add the mobile phase to make 100 mL, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add the mobile phase to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 40 μL of each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area of both solutions by the automatic integration method: the area of the peaks, having the relative retention times of about 0.7, about 1.4 and about 3.0 to pioglitazone obtained from the sample solution, is not larger than 2/5 times the peak area of pioglitazone from the standard solution, and the area of each peak other than pioglitazone and those peaks mentioned above from the sample solution is smaller than 1/5 times the peak area of pioglitazone from the standard solution. Furthermore, the total area of the peaks other than pioglitazone from the sample solution is not larger than the peak area of pioglitazone from the standard solution.

Operating conditions—

Detector, column, column temperature, mobile phase and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 4 times as long as the retention time of pioglitazone, beginning after the solvent peak.

System suitability—

Test for required detectability: Pipet 1 mL of the standard solution, and add the mobile phase to make exactly 10 mL. Confirm that the peak area of pioglitazone obtained with 40 μL of this solution is equivalent to 7 to 13% of that with 40 μL of the standard solution.

System performance: Dissolve 50 mg of Pioglitazone Hydrochloride in 10 mL of a solution of benzophenone in methanol (1 in 750), and add methanol to make 100 mL. To 1 mL of this solution add the mobile phase to make 20 mL. When the procedure is run with 40 μL of this solution under the above operating conditions, pioglitazone and benzophenone are eluted in this order with the resolution between these peaks being not less than 10.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of pioglitazone is not more than 1.0%.

Containers and storage Containers—Well-closed containers.

Pioglitazone Hydrochloride Tablets

ピオグリタゾン塩酸塩

Pioglitazone Hydrochloride Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of pioglitazone hydrochloride (C₁₉H₂₉N₂O₅S·HCl: 392.90).

Method of preparation Prepare as directed under Tablets, with Pioglitazone Hydrochloride.

Identification To an amount of powdered Pioglitazone Hydrochloride Tablets, equivalent to 2.8 mg of Pioglitazone Hydrochloride, add 100 mL of 0.1 mol/L hydrochloric acid TS, shake, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Determine the absorption spectrum of the filtrate as directed under Ultraviolet-visible Spectrophotometry <2.24>: it exhibits a maximum between 267 nm and 271 nm.

Uniformity of dosage units <6.02> Perform the Mass variation test, or the Content uniformity test according to the fol-
ollowing method: it meets the requirement.

Disintegrate 1 tablet of Pioglitazone Hydrochloride Tablets with 10 mL of 0.1 mol/L hydrochloric acid TS, add 70 mL of methanol, shake vigorously for 10 minutes, then add methanol to make exactly 100 mL, and centrifuge. Take exactly \(V \) mL of the supernatant liquid, add a mixture of methanol and 0.1 mol/L hydrochloric acid TS (9:1) to make exactly \(V \) mL so that each mL contains about 26 \(\mu \)g of pioglitazone hydrochloride (\(C_{20}H_{27}N_2O_8S.HCl \)), and use this solution as the sample solution. Separately, weigh accurately about 33 mg of Pioglitazone Hydrochloride RS (separately, determine the water \(<2.4\% \) in the same manner as Pioglitazone Hydrochloride), dissolve in 10 mL of 0.1 mol/L hydrochloric acid TS, and add methanol to make exactly 100 mL. Pipet 4 mL of this solution, add a mixture of methanol and 0.1 mol/L hydrochloric acid TS (9:1) to make exactly 50 mL, and use this solution as the standard solution. Determine the absorbances, \(A_T \) and \(A_S \), of the sample solution and standard solution at 269 nm as directed under Ultraviolet-visible Spectrophotometry \(<2.4\% \) using a mixture of methanol and 0.1 mol/L hydrochloric acid TS (9:1) as the blank.

\[
\text{Amount (mg) of pioglitazone hydrochloride (C}_{20}\text{H}_{27}\text{N}_2\text{O}_8\text{S.HCl}) = M_S \times \frac{A_T}{A_S} \times V/V \times 2/25
\]

\(M_S \): Amount (mg) of Pioglitazone Hydrochloride RS taken, calculated on the anhydrous basis

Dissolution \(\text{Q6.10} \) When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of a solution, which is prepared by mixing 50 mL of 0.2 mol/L hydrochloric acid TS and 150 mL of potassium chloride solution (3 in 20), adding water to make 1000 mL and adjusting to pH 2.0 with 5 mol/L hydrochloric acid TS, as the dissolution medium, the dissolution rate at 45 minutes of Pioglitazone Hydrochloride Tablets is not less than 80%. Start the test with 1 tablet of Pioglitazone Hydrochloride Tablets, withdraw 10 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 \(\mu \)m. Discard not less than 5 mL of the first filtrate, pipet \(V \) mL of the subsequent filtrate, add the dissolution medium to make exactly \(V \) mL so that each mL contains about 18 \(\mu \)g of pioglitazone hydrochloride (\(C_{20}H_{27}N_2O_8S.HCl \)), and use this solution as the sample solution. Separately, weigh accurately about 23 mg of Pioglitazone Hydrochloride RS (separately determine the water \(<2.4\% \) in the same manner as Pioglitazone Hydrochloride), dissolve in 10 mL of methanol, and add the dissolution medium to make exactly 50 mL. Pipet 2 mL of this solution, add the dissolution medium to make exactly 50 mL, and use this solution as the standard solution. Determine the absorbances, \(A_T \) and \(A_S \), of the sample solution and standard solution at 269 nm as directed under Ultraviolet-visible Spectrophotometry \(<2.4\% \) using the dissolution medium as the blank.

Dissolution rate (%) with respect to the labeled amount of pioglitazone hydrochloride (\(C_{20}H_{27}N_2O_8S.HCl \))

\[
M_S = M_S \times \frac{A_T}{A_S} \times V/V \times 1/C \times 72
\]

\(M_S \): Amount (mg) of Pioglitazone Hydrochloride RS taken, calculated on the anhydrous basis

Assay Accurately weigh the mass of not less than 20 Pioglitazone Hydrochloride Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 25 mg of pioglitazone hydrochloride (\(C_{20}H_{27}N_2O_8S.HCl \)), add 45 mL of methanol and exactly 5 mL of the internal standard solution, sonicate, and centrifuge. To 2 mL of the supernatant liquid add the mobile phase to make 20 mL, and use this solution as the sample solution. Separately, weigh accurately about 25 mg of Pioglitazone Hydrochloride RS (separately, determine the water \(<2.4\% \) in the same manner as Pioglitazone Hydrochloride), dissolve in 45 mL of methanol, and add exactly 5 mL of the internal standard solution. Pipet 2 mL of this solution, add the mobile phase to make 20 mL, and use this solution as the standard solution. Perform the test with 20 \(\mu \)L each of the sample solution and standard solution as directed under Liquid Chromatography \(<2.01D \) according to the following conditions, and calculate the ratios, \(Q_T \) and \(Q_S \), of the peak area of pioglitazone to that of the internal standard.

Amount (mg) of pioglitazone hydrochloride (C_{20}H_{27}N_2O_8S.HCl)

\[
M_S = M_S \times Q_T/Q_S
\]

Containers and storage Containers—Tight containers.

Pioglitazone Hydrochloride and Glimepiride Tablets

ピオグリタゾン塩酸塩・グリメピリド錠

Pioglitazone Hydrochloride and Glimepiride Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of pioglitazone hydrochloride (\(C_{20}H_{27}N_2O_8S.HCl \): 392.90), and not less than 93.0% and not more than 107.0% of the labeled amount of glimepiride (\(C_{24}H_{29}N_2O_8S \): 490.62).

Method of Preparation Prepare as directed under Tablets, with Pioglitazone Hydrochloride and Glimepiride.

Identification (1) Powder Pioglitazone Hydrochloride and Glimepiride Tablets, weigh a portion of the powder,
equivalent to 33 mg of Pioglitazone Hydrochloride, add 20 mL of 0.1 mol/L hydrochloric acid TS, and disintegrate completely by vigorous shaking for several minutes. Filter 2 mL of this solution through a membrane filter with a pore size not exceeding 0.45 µm. To 1 mL of the filtrate add 0.1 mol/L hydrochloric acid TS to make 50 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.24>: it exhibits a maximum between 267 nm and 271 nm.

(2) Wash the membrane filter obtained in (1) with 100 mL of 0.1 mol/L hydrochloric acid TS, and extract with methanol so that each mL contains about 10 µg of glimepiride (C\(_{19}\)H\(_{24}\)N\(_2\)O\(_4\)S). Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.24>: it exhibits a maximum between 227 nm and 231 nm.

Purity Related substances—Powder Pioglitazone Hydrochloride and Glimepiride Tablets, weigh a portion of the powder, equivalent to 10 mg of Glimepiride, add 30 mL of a mixture of acetonitrile and 0.1 mol/L hydrochloric acid TS (9:1), shake vigorously for 20 minutes, and add the mobile phase A to make 50 mL. Filter this solution through a membrane filter with a pore size not exceeding 0.2 µm, discard the first 4 mL of the filtrate, and use the subsequent filtrate as the sample solution. Pipet 1 mL of the sample solution, add the mobile phase A to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 40 µL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area by the automatic integration method: the area of the peak of glimepiride obtained from the sample solution is not larger than 2.5 times the peak area of glimepiride from the standard solution. The area of the peak other than glimepiride and other than the peak mentioned above from the sample solution is not larger than 1/2 times the peak area of glimepiride from the standard solution. The total area of the peaks other than glimepiride from the sample solution is not larger than 3 times the peak area of glimepiride from the standard solution.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 228 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 µm in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase A: Dissolve 1.1 g of sodium dihydrogen phosphate dihydrate in water to make 1000 mL, and adjust to pH 1.6 with diluted phosphoric acid (1 in 10). To 650 mL of this solution add 600 mL of acetonitrile.
Mobile phase B: Dissolve 1.1 g of sodium dihydrogen phosphate dihydrate in water to make 1000 mL, and adjust to pH 1.6 with diluted phosphoric acid (1 in 10). To 300 mL of this solution add 700 mL of acetonitrile.
Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 15</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>15 – 60</td>
<td>100 → 0</td>
<td>0 → 100</td>
</tr>
</tbody>
</table>

Flow rate: 1.0 mL per minute.
Time span of measurement: For 60 minutes after injection, beginning after the peak having a relative retention time of about 0.23 to glimepiride.

System suitability—
Test for required detectability: Pipet 2 mL of the standard solution, and add the mobile phase A to make exactly 20 mL. Confirm that the peak area of glimepiride obtained with 40 µL of this solution is equivalent to 7 to 13% of that with 40 µL of the standard solution.

System performance: When the procedure is run with 40 µL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of glimepiride are not less than 20,000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 40 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of glimepiride is not more than 2.0%.

Uniformity of dosage units<6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

(1) Pioglitazone hydrochloride—To 1 tablet of Pioglitazone Hydrochloride and Glimepiride Tablets add 30 mL of a mixture of acetonitrile and 0.1 mol/L hydrochloric acid TS (9:1), shake vigorously for 20 minutes, and add the mixture of acetonitrile and 0.1 mol/L hydrochloric acid TS (9:1) to make exactly 50 mL. Filter this solution through a membrane filter with a pore size not exceeding 0.2 µm. Discard the first 5 mL of the filtrate, pipet V mL of the subsequent filtrate, add exactly V'/10 mL of the internal standard solution, add the mobile phase to make V mL, and use this solution as the sample solution.

Amount (mg) of pioglitazone hydrochloride (C\(_{19}\)H\(_{24}\)N\(_2\)O\(_4\)S.HCl), and use this solution as the sample solution. Then, proceed as directed in the Assay (1).

Amount (mg) of pioglitazone hydrochloride
\[(C_{19}H_{24}N_2O_4S.HCl) = \frac{M_S \times Q_r/Q_S \times V'/V \times 1/10}{M_S} \]

Amount (mg) of pioglitazone hydrochloride RS, taken, calculated on the anhydrous basis

Internal standard solution—A solution of ethyl benzoate in the mobile phase (1 in 10,000).

(2) Glimepiride—To 1 tablet of Pioglitazone Hydrochloride and Glimepiride Tablets add 30 mL of a mixture of acetonitrile and 0.1 mol/L hydrochloric acid TS (9:1), shake vigorously for 20 minutes, and add the mixture of acetonitrile and 0.1 mol/L hydrochloric acid TS (9:1) to make exactly 50 mL. Filter this solution through a membrane filter with a pore size not exceeding 0.2 µm. Discard the first 5 mL of the filtrate, pipet V mL of the subsequent filtrate, add exactly V'/10 mL of the internal standard solution, add the mobile phase to make V mL, and use this solution as the sample solution. Then, proceed as directed in the Assay (2).

Amount (mg) of glimepiride (C\(_{19}\)H\(_{24}\)N\(_2\)O\(_4\)S)
\[= \frac{M_S \times Q_r/Q_S \times V'/V \times 1/100}{M_S} \]
M₅: Amount (mg) of Glimepiride RS taken, calculated on the anhydrous basis.

Internal standard solution—A solution of ethyl benzoate in the mobile phase (1 in 10,000).

Dissolution *<6.10>*(1) Pioglitazone hydrochloride—When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of a solution, which is prepared by mixing 50 mL of 0.2 mol/L hydrochloric acid TS and 150 mL of potassium chloride solution (3 in 20), adding water to make 1000 mL and adjusting to pH 2.0 with 5 mol/L hydrochloric acid TS, as the dissolution medium, the dissolution rate in 45 minutes of Pioglitazone Hydrochloride and Glimepiride Tablets is not less than 80%.

Start the test with 1 tablet of Pioglitazone Hydrochloride and Glimepiride Tablets, withdraw not less than 10 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 5 mL of the first filtrate, pipet V mL of the subsequent filtrate, add the dissolution medium to make exactly V mL so that each mL contains about 18 μg of pioglitazone hydrochloride (C₁₉H₂₈N₂O₅.HCl), and use this solution as the sample solution. Separately, weigh accurately about 37 mg of Pioglitazone Hydrochloride RS (separately determine the water <2.48> in the same manner as Pioglitazone Hydrochloride), dissolve in 20 mL of methanol, and add the dissolution medium to make exactly 100 mL. Pipet 5 mL of this solution, add the dissolution medium to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL of each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A₁ and A₅, of pioglitazone in each solution.

Dissolution rate (%) with respect to the labeled amount of pioglitazone hydrochloride (C₁₉H₂₈N₂O₅.HCl) = M₅ × A₁/₅/₅/₅ × V/V × 1/C × 9/5

M₅: Amount (mg) of Pioglitazone Hydrochloride RS taken, calculated on the anhydrous basis

C: Labeled amount (mg) of pioglitazone hydrochloride (C₁₉H₂₈N₂O₅.HCl) in 1 tablet

Operating conditions—Proceed as directed in the operating conditions in the Assay (1) (Pioglitazone Hydrochloride).

System suitability—

System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of pioglitazone are not less than 5000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above conditions, the relative standard deviation of the peak area of pioglitazone is not more than 2.0%.

Assay (1) Pioglitazone hydrochloride—Weigh accurately the mass of not less than 20 Pioglitazone Hydrochloride and Glimepiride Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 33 mg of pioglitazone hydrochloride (C₁₉H₂₈N₂O₅.HCl), add 30 mL of a mixture of acetonitrile and 0.1 mol/L hydrochloric acid TS (9:1), shake vigorously for 20 minutes, and add a mixture of acetonitrile and 0.1 mol/L hydrochloric acid TS (9:1) to make exactly 50 mL. Filter this solution through a membrane filter with a pore size not exceeding 0.2 μm. Discard the first 5 mL of the filtrate, pipet 5 mL of the subsequent filtrate, add exactly 5 mL of the internal standard solution, add the mobile phase to make 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 55 mg of Glimepiride RS (separately determine the water <2.48> in the same manner as Glimepiride), dissolve in acetonitrile to make exactly 250 mL. Pipet 10 mL of this solution, and add acetonitrile to make exactly 100 mL. Pipet 5 mL of this solution, add the dissolution medium to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A₁ and A₅, of glimepiride in each solution.

Dissolution rate (%) with respect to the labeled amount of glimepiride (C₂₀H₁₉N₅O₄S.HCl) = M₅ × A₁/₅/₅/₅ × V/V × 1/C × 9/5

M₅: Amount (mg) of Glimepiride RS taken, calculated on the anhydrous basis

C: Labeled amount (mg) of glimepiride (C₂₀H₁₉N₅O₄S) in 1 tablet

Operating conditions—

Detector, column, column temperature and mobile phase: Proceed as directed in the operating conditions in the Assay (1) (Pioglitazone Hydrochloride).

Flow rate: Adjust so that the retention time of glimepiride is about 5.4 minutes.

System suitability—

System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of glimepiride are not less than 5000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above conditions, the relative standard deviation of the peak area of glimepiride is not more than 2.0%.

Assay (2) Glimepiride—When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of disodium hydrogen phosphate-citrate buffer solution (pH 7.5) as the dissolution medium, the dissolution rate in 30 minutes of Pioglitazone Hydrochloride and Glimepiride Tablets is not less than 80%.

Start the test with 1 tablet of Pioglitazone Hydrochloride and Glimepiride Tablets, withdraw not less than 10 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 5 mL of the first filtrate, pipet V mL of the subsequent filtrate, add the dissolution medium to make exactly V mL so that each mL contains about 1.1 μg of glimepiride (C₂₁H₂₂N₂O₅.S), and use this solution as the sample solution. Separately, weigh accurately about 55 mg of Glimepiride RS (separately determine the water <2.48> in the same manner as Glimepiride), dissolve in acetonitrile to make exactly 250 mL. Pipet 10 mL of this solution, and add acetonitrile to make exactly 100 mL. Pipet 5 mL of this solution, add the dissolution medium to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A₁ and A₅, of glimepiride in each solution.

Dissolution rate (%) with respect to the labeled amount of glimepiride (C₂₁H₂₂N₂O₅.S) = M₅ × A₁/₅/₅/₅ × V/V × 1/C × 9/5

M₅: Amount (mg) of Glimepiride RS taken, calculated on the anhydrous basis

C: Labeled amount (mg) of glimepiride (C₂₁H₂₂N₂O₅.S) in 1 tablet

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
Amount (mg) of pioglitazone hydrochloride
\((C_{19}H_{23}N_2O_5S\cdot HCl)\)
\[M_5 = M_5 \times \frac{Q_5}{Q_3} \]

Amount (mg) of pioglitazone Hydrochloride RS taken, calculated on the anhydrous basis

Internal standard solution—A solution of ethyl benzoate in the mobile phase (1 in 10,000).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 228 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 5 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (3 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: Dissolve 7.80 g of sodium dihydrogen phosphate dihydrate in water to make 1000 mL, and adjust to pH 4.0 with diluted phosphoric acid (1 in 10). To 500 mL of this solution add 500 mL of acetonitrile.

Flow rate: Adjust so that the retention time of pioglitazone is about 2.3 minutes.

System suitability—

System performance: To 33 mg of Pioglitazone Hydrochloride RS add 5 mL of the glimepiride standard stock solution, and add a mixture of acetonitrile and 0.1 mol/L hydrochloric acid TS (9:1) to make 50 mL. To 5 mL of this solution add 5 mL of the internal standard solution, and add the mobile phase to make 50 mL. When the procedure is run with 20 μL of this solution under the above operating conditions, pioglitazone, the internal standard, and glimepiride are eluted in this order, and the resolutions between the peaks of pioglitazone and the internal standard and between the peaks of the internal standard and glimepiride are not less than 4 and not less than 3, respectively.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above conditions, the relative standard deviation of the ratio of the peak area of pioglitazone to that of the internal standard is not more than 1.0%.

(2) Glimepiride—Weigh accurately a portion of the powder, equivalent to about 3 mg of glimepiride \((C_{24}H_{23}N_2O_4S)\), add 30 mL of a mixture of acetonitrile and 0.1 mol/L hydrochloric acid TS (9:1), shake vigorously for 20 minutes, and add a mixture of acetonitrile and 0.1 mol/L hydrochloric acid TS (9:1) to make exactly 50 mL. Filter this solution through a membrane filter with a pore size not exceeding 0.2 μm. Discard the first 5 mL of the filtrate, pipet 5 mL of the subsequent filtrate, add exactly 5 mL of the internal standard solution, add the mobile phase to make 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 30 mg of Glimepiride RS (separately determine the water \(C_2H_8O_2\) in the same manner as Glimepiride), dissolve in the mixture of acetonitrile and 0.1 mol/L hydrochloric acid TS (9:1) to make exactly 50 mL, and use this solution as the glimepiride standard stock solution.

Pipet 10 mL of the glimepiride standard stock solution, and add the mixture of acetonitrile and 0.1 mol/L hydrochloric acid TS (9:1) to make exactly 100 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution, add the mobile phase to make 50 mL, and use this solution as the standard solution. Perform the test with 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography \(\text{<2.07>}\) according to the following conditions, and calculate the ratios, \(Q_1\) and \(Q_3\), of the peak area of glimepiride to that of the internal standard.

Amount (mg) of glimepiride \((C_{24}H_{23}N_2O_4S)\)
\[M_3 = M_3 \times \frac{Q_3}{Q_5} \times 1/10 \]

System suitability—

System performance: To 33 mg of Pioglitazone Hydrochloride RS add 5 mL of the glimepiride standard stock solution, and add a mixture of acetonitrile and 0.1 mol/L hydrochloric acid TS (9:1) to make 50 mL. To 5 mL of this solution add 5 mL of the internal standard solution, and add the mobile phase to make 50 mL. When the procedure is run with 20 μL of this solution under the above operating conditions, pioglitazone, the internal standard and glimepiride are eluted in this order, and the resolutions between the peaks of pioglitazone and the internal standard and between the peaks of the internal standard and glimepiride are not less than 4 and not less than 3, respectively.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above conditions, the relative standard deviation of the ratio of the peak area of glimepiride to that of the internal standard is not more than 1.0%.

Containers and storage—Containers—Tight containers.

Pioglitazone Hydrochloride and Metformin Hydrochloride Tablets

ピオグルタゾン塩酸塩・メトホルミン塩酸塩錠

Pioglitazone Hydrochloride and Metformin Hydrochloride Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of pioglitazone hydrochloride \((C_{19}H_{23}N_2O_5S\cdot HCl)\): 392.90 and metformin hydrochloride \((C_6H_11N_2Cl)\): 165.62.

Method of preparation—Prepare as directed under Tablets, with Pioglitazone Hydrochloride and Metformin Hydrochloride.

Identification—(1) Shake vigorously a quantity of powdered Pioglitazone Hydrochloride and Metformin Hydrochloride Tablets, equivalent to 0.33 mg of Pioglitazone Hydrochloride, with 10 mL of water, and filter through a membrane filter with a pore size not exceeding 0.45 μm. After washing the membrane filter with 10 mL of water, dissolve the retained substance on the filter by running through 10 mL of 0.1 mol/L hydrochloric acid TS, and determine the absorption spectrum of the filtrate so obtained as directed under Ultraviolet-visible Spectrophotometry \(\text{<2.22>}\) it exhibits a maximum between 267 nm and 271 nm.

(2) Shake vigorously a quantity of powdered Pioglitazone Hydrochloride and Metformin Hydrochloride Tablets, equivalent to 20 mg of Metformin Hydrochloride, with 50 mL of water, and filter through a membrane filter with a pore size not exceeding 0.45 μm. To 1 mL of the filtrate add water to make 50 mL, and determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry \(\text{<2.24>}\) it exhibits a maximum between 267 nm and 271 nm.
230 nm and 234 nm.

Uniformity of dosage units
Perform the test according to the following method: it meets the requirement of the Content uniformity test.

1. **Pioglitazone hydrochloride**—To 1 tablet of Pioglitazone Hydrochloride and Metformin Hydrochloride Tablets add 40 mL of 0.1 mol/L hydrochloric acid TS, shake vigorously for 10 minutes, add 40 mL of methanol, and shake. To this solution add a mixture of 0.1 mol/L hydrochloric acid TS and methanol (1:1) to make exactly 100 mL, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 5 mL of the filtrate, pipet V mL of the subsequent filtrate, add exactly 1/20 mL of the internal standard solution, then add a mixture of 0.1 mol/L hydrochloric acid TS and methanol (1:1) to make V mL so that each mL contains about 16.5 μg of pioglitazone hydrochloride (C₁₉H₁₉N₃O₂•HCl), and use this solution as the sample solution. Then, proceed as directed in the Assay (1).

Amount (mg) of pioglitazone hydrochloride
\[\frac{M_m}{V} \times \frac{Q_t}{Q_s} \times \frac{V'}{V} \times \frac{1}{19} \]

\(M_m \): Amount (mg) of pioglitazone hydrochloride (C₁₉H₁₉N₃O₂•HCl)
\(V \): Volume of the internal standard solution
\(Q_t \): Amount of pioglitazone hydrochloride (mg)
\(Q_s \): Amount of internal standard solution (mg)
\(V' \): Volume of the subsequent filtrate

Internal standard solution—A solution of butyl parahydroxybenzoate in a mixture of 0.1 mol/L hydrochloric acid TS and methanol (1:1) (1 in 2500).

2. **Metformin hydrochloride**—To 1 tablet of Pioglitazone Hydrochloride and Metformin Hydrochloride Tablets add 40 mL of 0.1 mol/L hydrochloric acid TS, shake vigorously for 10 minutes, add 40 mL of methanol, and shake. To this solution add a mixture of 0.1 mol/L hydrochloric acid TS and methanol (1:1) to make exactly 100 mL, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 5 mL of the filtrate, pipet V mL of the subsequent filtrate, add exactly 1/20 mL of the internal standard solution, then add a mixture of 0.1 mol/L hydrochloric acid TS and methanol (1:1) to make V mL so that each mL contains about 0.25 mg of metformin hydrochloride (C₆H₁₃N₂•HCl), and use this solution as the sample solution. Then, proceed as directed in the Assay (2).

Amount (mg) of metformin hydrochloride
\[\frac{M_m}{V} \times \frac{Q_t}{Q_s} \times \frac{V'}{V} \times \frac{1}{2} \]

\(M_m \): Amount (mg) of metformin hydrochloride for assay taken
\(V \): Volume of the internal standard solution
\(Q_t \): Amount of metformin hydrochloride (mg)
\(Q_s \): Amount of internal standard solution (mg)
\(V' \): Volume of the subsequent filtrate

Internal standard solution—A solution of 4'-methoxycetophenone in a mixture of 0.1 mol/L hydrochloric acid TS and methanol (1:1) (1 in 2000).

Dissolution
When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of the solution, which is prepared by mixing 50 mL of 0.2 mol/L hydrochloric acid TS and 150 mL of potassium chloride solution (3 in 20), adding water to make 1000 mL and adjusting to pH 2.0 with 5 mol/L hydrochloric acid TS, as the dissolution medium, the dissolution rate in 30 minutes of Pioglitazone Hydrochloride and Metformin Hydrochloride Tablets is not less than 80%.

Start the test with 1 tablet of Pioglitazone Hydrochloride and Metformin Hydrochloride Tablets, withdraw not less than 10 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 5 mL of the first filtrate, pipet V mL of the subsequent filtrate, add the dissolution medium to make exactly V mL so that each mL contains about 18.4 μg of pioglitazone hydrochloride (C₁₉H₉N₃O₂•HCl), and use this solution as the sample solution. Separately, weigh accurately about 37 mg of Pioglitazone Hydrochloride RS (separately, determine the water <2.48> in the same manner as Pioglitazone Hydrochloride), and dissolve in a mixture of 0.1 mol/L hydrochloric acid TS and methanol (1:1) to make exactly 100 mL. Pipet 5 mL of this solution, add the dissolution medium to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 5 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions, and determine the peak areas, A₁ and A₅, of pioglitazone in each solution.

\[M_s = \frac{M_t}{A_t/A_s} \times \frac{V'}{V} \times \frac{1}{1/C} \times 45 \]

\(M_s \): Amount (mg) of Pioglitazone Hydrochloride RS taken, calculated on the anhydrous basis
\(M_t \): Amount (mg) of Pioglitazone Hydrochloride RS
\(V' \): Volume of the sample solution
\(V \): Volume of the dissolution medium
\(C \): Concentration of the standard solution

Operating conditions—Proceed as directed in the operating conditions in the Assay (1).

System suitability—

System performance: When the procedure is run with 5 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of pioglitazone are not less than 8000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 5 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of pioglitazone is not more than 1.0%.

(2) **Metformin hydrochloride**—When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of the dissolution medium used in (1), the dissolution rate in 30 minutes of Pioglitazone Hydrochloride and Metformin Hydrochloride Tablets is not less than 80%.

Start the test with 1 tablet of Pioglitazone Hydrochloride and Metformin Hydrochloride Tablets, withdraw not less than 10 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 5 mL of the first filtrate, pipet V mL of the subsequent filtrate, add the dissolution medium to make exactly V mL so that each mL contains about 0.56 mg of metformin hydrochloride (C₆H₁₃N₂•HCl), and use this solution as the sample solution. Separately, weigh accurately about 28 mg of metformin hydrochloride for assay, previously dried at 105°C for 3 hours, and dissolve in the dissolution medium to make exactly 50 mL, use this solution as the standard solution. Perform the test with exactly 5 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions, and determine the peak areas, A₁ and A₅, of metformin in each solution.

Dissolution rate (%) with respect to the labeled amount of metformin hydrochloride (C₆H₁₃N₂•HCl)

\[M_s = \frac{M_t}{A_t/A_s} \times \frac{V'}{V} \times \frac{1}{1/C} \times 1800 \]

\(M_s \): Amount (mg) of metformin hydrochloride for assay taken

\(M_t \): Amount (mg) of metformin hydrochloride
C: Labeled amount (mg) of metformin hydrochloride (C$_{6}$H$_{11}$N$_{5}$,HCl) in 1 tablet

Operating conditions—

Proceed as directed in the operating conditions in the Assay (2).

System suitability—

System performance: When the procedure is run with 5 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of metformin are not less than 6000 and not more than 2.5, respectively.

System repeatability: When the test is repeated 6 times with 5 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of metformin is not more than 1.0%.

Assay (1) Pioglitazone hydrochloride—Weigh accurately the mass of not less than 20 Pioglitazone Hydrochloride and Metformin Hydrochloride Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 33 mg of pioglitazone hydrochloride (C$_{30}$H$_{32}$N$_{2}$O$_{5}$,HCl), add 40 mL of 0.1 mol/L hydrochloric acid TS, shake vigorously for 10 minutes, add 40 mL of methanol, and shake. Add a mixture of 0.1 mol/L hydrochloric acid TS and methanol (1:1) to make exactly 100 mL, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 5 mL of the filtrate, pipet 5 mL of the subsequent filtrate, add exactly 5 mL of the internal standard solution, then add a mixture of 0.1 mol/L hydrochloric acid TS and methanol (1:1) to make 100 mL, and use this solution as the sample solution. Separately, weigh accurately about 33 mg of Pioglitazone Hydrochloride RS (separately determine the water C$_{2}$H$_{4}$O in the same manner as Pioglitazone Hydrochloride), and dissolve in a mixture of 0.1 mol/L hydrochloric acid TS and methanol (1:1) to make exactly 100 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution, then add a mixture of 0.1 mol/L hydrochloric acid TS and methanol (1:1) to make 100 mL, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography C$_{2}$H$_{4}$O according to the following conditions, and calculate the ratios, Q$_{T}$ and Q$_{S}$, of the peak area of pioglitazone to that of the internal standard.

Amount (mg) of pioglitazone hydrochloride (C$_{30}$H$_{32}$N$_{2}$O$_{5}$,HCl) = M$_{S}$ × Q$_{T}$/Q$_{S}$

M$_{S}$: Amount (mg) of Pioglitazone Hydrochloride RS taken, calculated on the anhydrous basis

Internal standard solution—A solution of butyl para-hydroxybenzoate in a mixture of 0.1 mol/L hydrochloric acid TS and methanol (1:1) (1 in 2500).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 255 nm).

Column: A stainless steel column 6 mm in inside diameter and 15 cm in length, packed with octylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: Dissolve 7.2 g of sodium lauryl sulfate in 1000 mL of a mixture of a solution of ammonium dihydrogen phosphate (23 in 4000) and acetonitrile (1:1).

Flow rate: Adjust so that the retention time of pioglitazone is about 9 minutes.

System suitability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, pioglitazone and the internal standard are eluted in this order with the resolution between these peaks being not less than 2.5.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of pioglitazone to that of the internal standard is not more than 1.0%.

(2) Metformin hydrochloride—Weigh accurately the mass of not less than 20 Pioglitazone Hydrochloride and Metformin Hydrochloride Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 0.5 g of metformin hydrochloride (C$_{6}$H$_{11}$N$_{5}$,HCl), add 40 mL of 0.1 mol/L hydrochloric acid TS, shake vigorously for 10 minutes, add 40 mL of methanol, and shake. Add a mixture of 0.1 mol/L hydrochloric acid TS and methanol (1:1) to make exactly 100 mL, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 5 mL of the filtrate, pipet 5 mL of the subsequent filtrate, add exactly 5 mL of the internal standard solution, then add a mixture of 0.1 mol/L hydrochloric acid TS and methanol (1:1) to make 100 mL, and use this solution as the sample solution. Separately, weigh accurately about 50 mg of metformin hydrochloride for assay, previously dried at 105°C for 3 hours, and dissolve in a mixture of 0.1 mol/L hydrochloric acid TS and methanol (1:1) to make exactly 10 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution, then add a mixture of 0.1 mol/L hydrochloric acid TS and methanol (1:1) to make 100 mL, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography C$_{2}$H$_{4}$O according to the following conditions, and calculate the ratios, Q$_{T}$ and Q$_{S}$, of the peak area of metformin to that of the internal standard.

Amount (mg) of metformin hydrochloride (C$_{6}$H$_{11}$N$_{5}$,HCl) = M$_{S}$ × Q$_{T}$/Q$_{S}$ × 10

M$_{S}$: Amount (mg) of metformin hydrochloride for assay taken

Internal standard solution—A solution of 4'-methoxyacetophenone in a mixture of 0.1 mol/L hydrochloric acid TS and methanol (1:1) (1 in 2000).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 255 nm).

Column: A stainless steel column 6 mm in inside diameter and 15 cm in length, packed with octylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: Dissolve 7.2 g of sodium lauryl sulfate in 1000 mL of a mixture of a solution of ammonium dihydrogen phosphate (23 in 4000) and acetonitrile (1:1).

Flow rate: Adjust so that the retention time of metformin is about 5 minutes.

System suitability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, metformin and the internal standard are eluted in this order with the resolution between these peaks being not less than 2.5.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of metformin to that of the internal standard is not more than 1.0%.
ing conditions, the relative standard deviation of the ratio of the peak area of metformin to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Tight containers.

Pipemidic Acid Hydrate

ピペミド酸水和物

C₂₇H₂₅N₆O₅·3H₂O: 537.36
8-Ethyl-5-oxo-2-(piperazin-1-yl)-5,8-dihydropyrido[2,3-d]pyrimidine-6-carboxylic acid trihydrate [51940-44-4, anhydride]

Pipemidic Acid Hydrate contains not less than 98.5% and not more than 101.0% of pipemidic acid (C₂₇H₂₅N₆O₅·3H₂O; 303.32), calculated on the anhydrous basis.

Description Pipemidic Acid Hydrate occurs as a pale yellow crystalline powder.

It is freely soluble in acetic acid (100), very slightly soluble in water, and practically insoluble in methanol and in ethanol (99.5).

It dissolves in sodium hydroxide TS.

It is gradually colored on exposure to light.

Melting point: about 250°C (with decomposition).

Identification (1) Dissolve 0.1 g of Pipemidic Acid Hydrate in 20 mL of sodium hydroxide TS, and dilute with water to make 200 mL. To 1 mL of the solution add water to make 100 mL. Determine the absorption spectrum of the solution as directed under Ultraviolet-visible Spectrophotometry <2.44>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Pipemidic Acid Hydrate as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Purity (1) Chloride <1.07>—Dissolve 1.0 g of Pipemidic Acid Hydrate in 35 mL of water and 10 mL of sodium hydroxide TS, then add 15 mL of dilute nitric acid, shake well, and filter through a glass filter (G3). To 30 mL of the filtrate add 6 mL of dilute nitric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution as follows: to 0.30 mL of 0.01 mol/L hydrochloric acid add 1 mL of sodium hydroxide TS, 13.5 mL of dilute nitric acid and water to make 50 mL (not more than 0.021%).

(2) Sulfate <1.14>—Dissolve 1.0 g of Pipemidic Acid Hydrate in 35 mL of water and 10 mL of sodium hydroxide TS, then add 15 mL of dilute hydrochloric acid, shake well, and filter through a glass filter (G3). To 30 mL of the filtrate add water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution as follows: to 0.50 mL of 0.005 mol/L sulfuric acid add 5 mL of sodium hydroxide TS, 7.5 mL of dilute hydrochloric acid and water to make 50 mL (not more than 0.048%).

(3) Heavy metals <1.07>—Proceed with 2.0 g of Pipemidic Acid Hydrate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(4) Arsenic <1.11>—Prepare the test solution with 1.0 g of Pipemidic Acid Hydrate according to Method 3, and perform the test (not more than 2 ppm).

(5) Related substances—Dissolve 0.10 g of Pipemidic Acid Hydrate in 10 mL of diluted acetic acid (100) (1 in 20), and use this solution as the sample solution. Pipet 1 mL of the sample solution, add diluted acetic acid (100) (1 in 20) to make exactly 200 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.05>. Spot 5 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of chloroform, methanol, formic acid and triethylamine (25:15:5:1) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Water <2.48> 14.5 – 16.0% (20 mg, coulometric titration).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.35 g of Pipemidic Acid Hydrate, dissolve in 30 mL of acetic acid (100), and titrate with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 30.33 mg of C₂₇H₂₅N₆O₅

Containers and storage Containers—Well-closed containers.

Storage—Light-resistant.

Piperacillin Hydrate

ピペラシリン水和物

C₂₆H₃₃N₅O₅·S·H₂O: 535.57
(2S,5R,6R)-6-[(2R)-2-{[4-Ethyl-2,3-dioxopiperazine-1-carbonyl]amino}-2-phenylacetylamin]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid monohydrate [66238-76-2]

Piperacillin Hydrate contains not less than 970 μg (potency) and not more than 1020 μg (potency) per mg, calculated on the anhydrous basis. The potency of Piperacillin Hydrate is expressed as mass (potency) of piperacillin (C₂₆H₃₃N₅O₅·S; 517.55).

Description Piperacillin Hydrate occurs as a white crystalline powder.

It is freely soluble in methanol, soluble in ethanol (99.5)
and in dimethylsulfoxide, and very slightly soluble in water.

Identification (1)
Determine the infrared absorption spectrum of Piperacillin Hydrate as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of Piperacillin RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

(2) Determine the \(^1H \) spectrum of a solution of Piperacillin Hydrate in deuterated dimethylsulfoxide for nuclear magnetic resonance spectroscopy (1 in 3) as directed under Nuclear Magnetic Resonance Spectroscopy <2.27>, using tetramethylsilane for nuclear magnetic resonance spectroscopy as an internal reference compound: it exhibits a triplet signal \(A \) at about \(\delta 1.1 \) ppm, a singlet signal \(B \) at about \(\delta 4.2 \) ppm, and a multiplet signal \(C \) at about \(\delta 7.4 \) ppm, and the ratio of the integrated intensity of each signal, \(A:B:C \), is about 3:1:5.

Optical rotation \(<2.49 > \) \([\alpha]_D^{20} +162 - +172\) (0.2 g, methanol, 20 mL, 100 mm).

Purity (1)
Heavy metals \(<1.07 >\) — Proceed with 2.0 g of Piperacillin Hydrate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Related substances 1—Conduct this procedure rapidly after the preparation of the sample solution and standard solution. Dissolve 20 mg of Piperacillin Hydrate in 20 mL of the mobile phase, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add the mobile phase to make exactly 200 mL, and use this solution as the standard solution (1). Pipet 2 mL of the standard solution (1), add the mobile phase to make exactly 10 mL, and use this solution as the standard solution (2). Perform the test with exactly 20 \(\mu L \) each of the sample solution and the standard solutions (1) and (2) as directed under Liquid Chromatography <2.01> according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak, having the relative retention time of about 6.6 to piperacillin, obtained from the sample solution is not larger than 3 times the peak area of piperacillin from the standard solution (2), and the area of the peaks other than piperacillin and the peak mentioned above from the sample solution are not larger than 1.4 times the peak area of piperacillin from the standard solution (2). Furthermore, the total area of the peaks other than the peak of piperacillin from the sample solution is not larger than the area of the peak of piperacillin from the standard solution (1). For the area of the peak, having the relative retention time of about 6.6, multiply the correction factor, 2.0.

Operating conditions
Detector, column, and column temperature: Proceed as directed in the operating conditions in the Assay.
Mobile phase: Take 60.1 g of acetic acid (100) and 101.0 g of triethylamine, add water to make 1000 mL. To 25 mL of this solution add 300 mL of acetonitrile and 25 mL of dilute acetic acid, and add water to make 1000 mL.
Flow rate: Adjust so that the retention time of piperacillin is about 1.2 minutes.
Time span of measurement: About 8 times as long as the retention time of piperacillin, beginning after the piperacillin peak.

System suitability
Test for required detectability: Confirm that the peak area of piperacillin obtained with 20 \(\mu L \) of the standard solution (2) is equivalent to 15 to 25% of that with 20 \(\mu L \) of the standard solution (1).
System performance: When the procedure is run with 20 \(\mu L \) of the standard solution (1) under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of piperacillin are not less than 1500 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 20 \(\mu L \) of the standard solution (2) under the above operating conditions, the relative standard deviation of the peak area of piperacillin is not more than 4.0%.

(4) Residual solvents <2.40> — Transfer exactly 10 mg of Piperacillin Hydrate to an about 3 mL-vial, add exactly 1 mL of saturated sodium hydrogen carbonate solution to dissolve and stop the vial tightly. After heating this at 90°C for 10 minutes, use the gas inside the container as the sample gas. Separately, measure exactly 1 mL of ethyl acetate, dissolve in water to make exactly 200 mL. Pipet 10 mL of this solution, add water to make exactly 20 mL. Pipet 2 \(\mu L \) of this solution in an about 3 mL vial containing exactly 1 mL of saturated sodium hydrogen carbonate solution, and stop the vial tightly. Run the procedure similarly to the sample, and use the gas as the standard gas. Perform the test with ex-
actyl 0.5 mL each of the sample gas and standard gas as directed under Gas Chromatography <2.02> according to the following conditions, and determine the peak area of ethyl acetate by the automatic integration method: the peak area of ethyl acetate obtained from the sample gas is not larger than that from the standard gas.

Operating conditions—

Detector: A hydrogen flame-ionization detector.

Column: A glass column 3 mm in inside diameter and 1 m in length, packed with porous styrene-divinyl benzene copolymer for gas chromatography (average pore diameter of 0.0085 \(\mu \text{m} \), 300 – 400 \(\text{m}^2/\text{g} \)) with the particle size of 125 to 150 \(\mu \text{m} \).

Column temperature: A constant temperature of about 145°C.

Carrier gas: Nitrogen.

Flow rate: Adjust so that the retention time of ethyl acetate is about 4 minutes.

System suitability—

System performance: Take 1 mL of saturated sodium hydrogen carbonate solution in an about 3 mL-vial, add 2 \(\mu \text{L} \) each of ethyl acetate solution (1 in 400) and acetone solution (1 in 400), and stop the vial tightly. When the procedure is run under the above operating conditions, acetone and ethyl acetate are eluted in this order with the resolution between these peaks being not less than 2.0.

System repeatability: Take 1 mL of saturated sodium hydrogen carbonate solution in an about 3 mL-vial, add 2 \(\mu \text{L} \) of ethyl acetate solution (1 in 400), stop the vial tightly, and perform the test under the above operating conditions. When the procedure is repeated 6 times, the relative standard deviation of the peak area of ethyl acetate is not more than 10%.

Water <2.48> Not less than 3.2% and not more than 3.8% (0.5 g, volumetric titration, direct titration).

Residue on ignition <2.46> Not more than 0.1% (1 g).

Bacterial endotoxins <4.01> Less than 0.07 EU/mg (potency).

Assay Weigh accurately an amount of Piperacillin Hydrate and Piperacillin RS, equivalent to about 50 mg (potency), dissolve each in the mobile phase to make exactly 50 mL. Pipet 5 mL each of these solutions, add exactly 5 mL of the internal standard solution, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with 5 \(\mu \text{L} \) each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and calculate the ratios, \(H_f \) and \(H_s \), of the peak height of piperacillin to that of the internal standard.

\[
\text{Amount (\mu g (potency)) of piperacillin (C}_{23}\text{H}_{29}\text{N}_{3}\text{NaO}_7\text{S}: 539.54}
\]

Internal standard solution—A solution of acetonilide in the mobile phase (1 in 5000).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 254 nm).

Column: A stainless steel column 4 mm in inside diameter and 15 cm in length, packed with octadecysilsanized silica gel for liquid chromatography (5 \(\mu \text{m} \) in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: Take 60.1 g of acetic acid (100) and 101.0 g of triethylamine, add water to make 1000 mL. To 25 mL of this solution add 210 mL of acetonitrile and 25 mL of dilute acetic acid, and add water to make 1000 mL.

Flow rate: Adjust so that the retention time of piperacillin is about 5 minutes.

System suitability—

System performance: When the procedure is run with 5 \(\mu \text{L} \) of the standard solution under the above operating conditions, the internal standard and piperacillin are eluted in this order with the resolution between these peaks being not less than 3.

System repeatability: When the test is repeated 6 times with 5 \(\mu \text{L} \) of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak height of piperacillin to that of the internal standard is not more than 1.0%.

Containers and storage—Tight containers.

Piperacillin Sodium

Description Piperacillin Sodium contains not less than 863 \(\mu \text{g} \) (potency) and not more than 978 \(\mu \text{g} \) (potency) per mg, calculated on the anhydrous basis. The potency of Piperacillin Sodium is expressed as mass (potency) of piperacillin (C\(_{23}\)H\(_{27}\)N\(_{2}\)O\(_{7}\)S: 517.55).

Identification (1) Determine the infrared absorption spectrum of Piperacillin Sodium as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(2) Piperacillin Sodium responds to Qualitative Tests <1.09> (1) for sodium salt.

Optical rotation <2.49> [\(\alpha \)]\(_D\)\(_{20}^{{\circ}}\): +175° – +190° (0.8 g calculated on the anhydrous basis, water, 20 mL, 100 mm).

pH <2.54> Dissolve 1.0 g of Piperacillin Sodium in 4 mL of water: the pH of the solution is between 5.0 and 7.0.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Piperacillin Sodium in 10 mL of water: the solution is clear and colorless.

(2) Heavy metals <1.07>—Proceed with 2.0 g of Piperacillin Sodium according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead
Solution (not more than 10 ppm).

(3) Arsenic <2.1D>—Prepare the test solution with 2.0 g of Piperacillin Sodium according to Method 4, and perform the test (not more than 1 ppm).

(4) Related substances—Dissolve 0.10 g of Piperacillin Sodium in 50 mL of the mobile phase A, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add the mobile phase A to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the areas of each peak by the automatic integration method: the area of the peak of ampicillin appeared at the retention time of about 7 minutes obtained from the sample solution is not larger than 1/2 times that of piperacillin from the standard solution, the total area of related compounds 1 appeared at the retention times of about 17 minutes and about 21 minutes is not larger than 2 times of the peak area of piperacillin from the standard solution, the peak area of related compound 2 appeared at the retention time of about 56 minutes is not larger than that of piperacillin from the standard solution, and the total area of the peaks other than piperacillin is not larger than 5 times of the peak area of piperacillin from the standard solution. For the peak areas of ampicillin, related compound 1 and related compound 2, multiply their correction factors, 1.39, 1.32 and 1.11, respectively.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 220 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase A: A mixture of water, acetonitrile and 0.2 mol/L potassium dihydrogen phosphate (45:4:1).

Mobile phase B: A mixture of acetonitrile, water and 0.2 mol/L potassium dihydrogen phosphate (25:24:1).

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 − 7</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>7 − 13</td>
<td>100 − 83</td>
<td>0 − 17</td>
</tr>
<tr>
<td>13 − 41</td>
<td>83</td>
<td>17</td>
</tr>
<tr>
<td>41 − 56</td>
<td>83 − 20</td>
<td>17 − 80</td>
</tr>
<tr>
<td>56 − 60</td>
<td>20</td>
<td>80</td>
</tr>
</tbody>
</table>

Flow rate: 1.0 mL per minute (the retention time of piperacillin is about 33 minutes).

Time span of measurement: About 1.8 times as long as the retention time of piperacillin, beginning after the solvent peak.

System suitability—

Test for required detectability: To exactly 2 mL of the standard solution add the mobile phase A to make exactly 20 mL. Confirm that the peak area of piperacillin obtained with 20 μL of this solution is equivalent to 7 to 13% of that with 20 μL of the standard solution.

System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of piperacillin are not less than 15,000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 3 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of piperacillin is not more than 2.0%.

Water <2.48> Not more than 1.0% (3 g, volumetric titration, direct titration).

Assay Weigh accurately an amount of Piperacillin Sodium, equivalent to about 0.1 g (potency), and dissolve in water to make exactly 100 mL. To exactly 5 mL of this solution add exactly 5 mL of the internal standard solution, and use this solution as the sample solution. Separately, weigh accurately an amount of Piperacillin RS, equivalent to about 0.1 g (potency), and dissolve in the mobile phase to make exactly 100 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution, and use this solution as the standard solution. Perform the test with 5 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and calculate the ratios, Q₁ and Q₂, of the peak height of piperacillin to that of the internal standard.

\[
M_S: \text{Amount } [\text{mg (potency)}] \text{ of Piperacillin (C}_{23}\text{H}_{27}\text{N}_2\text{O}_5 \text{S}) = M_S \times Q_1 / Q_2 \times 1000
\]

\[M_S: \text{Amount } [\text{mg (potency)}] \text{ of Piperacillin RS taken}
\]

Internal standard solution—A solution of acetic acid in the mobile phase (1 in 5000).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 254 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: To 60.1 g of acetic acid (100) and 101.0 g of triethylamine add water to make exactly 1000 mL. To 25 mL of this solution add 25 mL of dilute acetic acid and 210 mL of acetonitrile, and add water to make exactly 1000 mL.

Flow rate: Adjust so that the retention time of piperacillin is about 5 minutes.

System suitability—

System performance: When the procedure is run with 5 μL of the standard solution under the above operating conditions, the internal standard and piperacillin are eluted in this order with the resolution between these peaks being not less than 3.

System repeatability: When the test is repeated 6 times with 5 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratios of the peak height of piperacillin to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Hermetic containers.
Piperacillin Sodium for Injection

注射用ピペラシリンナトリウム

Piperacillin Sodium for Injection is a preparation for injection which is dissolved before use.

It contains not less than 93.0% and not more than 107.0% of the labeled potency of piperacillin (C23H27N3O5S: 517.55).

Method of preparation Prepare as directed under Injections, with Piperacillin Sodium.

Description Piperacillin Sodium for Injection is a white, powder or masses.

Identification Proceed as directed in the Identification under Piperacillin Sodium.

pH \(<2.54\) The pH of a solution prepared by dissolving an amount of Piperacillin Sodium for Injection, equivalent to 1.0 g (potency) of Piperacillin Sodium, in 4 mL of water is 5.0 – 7.0.

Purity (1) Clarity and color of solution—Dissolve an amount of Piperacillin Sodium for Injection, equivalent to 4.0 g (potency) of Piperacillin Sodium, in 17 mL of water: the solution is clear and colorless.

(2) Related substances—Proceed as directed in the Purity (4) under Piperacillin Sodium.

Water \(<2.45\) Not more than 1.0% (3 g, volumetric titration, direct titration).

Bacterial endotoxins \(<4.01\) Less than 0.04 EU/mg (potency).

Uniformity of dosage units \(<6.02\) It meets the requirement of the Mass variation test.

Foreign insoluble matter \(<6.06\) Perform the test according to Method 2: it meets the requirement.

Insoluble particulate matter \(<6.07\) It meets the requirement.

Sterility \(<4.06\) Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Weigh accurately the mass of the contents of not less than 10 Piperacillin Sodium for Injection. Weigh accurately an amount of the contents, equivalent to about 20 mg (potency) of Piperacillin Sodium, dissolve in water to make exactly 20 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution, and use this solution as the sample solution. Separately, weigh accurately about 20 mg (potency) of Piperacillin RS, and dissolve in the mobile phase to make exactly 20 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution, and use this solution as the standard solution. Proceed as directed in the Assay under Piperacillin Sodium.

Amount [mg (potency)] of piperacillin (C23H27N3O5S)

\[M_0 = \frac{M_0}{Q_0} \]

\[M_0 = \text{Amount [mg (potency)] of Piperacillin RS taken} \]

Internal standard solution—A solution of acetonitrile in the mobile phase (1 in 5000).

Containers and storage Containers—Hermetic containers. Plastic containers for aqueous injections may be used.

Piperazine Adipate

ピペラジンアジピン酸塩

Piperazine Adipate, when dried, contains not less than 98.5% of piperazine adipate (C14H20N2O4).

Description Piperazine Adipate occurs as a white crystalline powder. It is odorless, and has a slightly acid taste. It is soluble in water and in acetic acid (100), and practically insoluble in ethanol (95), in acetone and in diethyl ether.

Melting point: about 250°C (with decomposition).

Identification (1) Dissolve 0.5 g of Piperazine Adipate in 10 mL of water, add 1 mL of hydrochloric acid, and extract with two 20-mL portions of diethyl ether. Combine the diethyl ether extracts, evaporate to dryness on a water bath, and dry the residue at 105°C for 1 hour: the melting point \(<2.60\) is between 152°C and 155°C.

(2) To 3 mL of a solution of Piperazine Adipate (1 in 100) add 3 drops of Reinecke salt TS: a light red precipitate is formed.

(3) Determine the infrared absorption spectrum of Piperazine Adipate, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry \(<2.25\), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

pH \(<2.54\) The pH of a solution of 1.0 g of Piperazine Adipate in 20 mL of water is between 5.0 and 6.0.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Piperazine Adipate in 30 mL of water: the solution is clear and colorless.

(2) Heavy metals \(<1.07\)—Proceed with 2.0 g of Piperazine Adipate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

Loss on drying \(<2.41\) Not more than 0.5% (1 g, 105°C, 4 hours).

Residue on ignition \(<2.44\) Not more than 0.1% (1 g).

Assay Weigh accurately about 0.2 g of Piperazine Adipate, previously dried, dissolve in a mixture of 20 mL of acetic acid for nonaqueous titration and 40 mL of acetone for nonaqueous titration, and titrate \(<2.50\) with 0.1 mol/L perchloric acid VS until the red-purple color of the solution changes to blue-purple (indicator: 6 drops of bromocresol green-methylrosaniline chloride TS). Perform a blank determination, and make any necessary correction in the same manner.

Each mL of 0.1 mol/L perchloric acid VS

\[= 11.61 \text{ mg of C}_{14}H_{20}N_{2}O_{4} \]

Containers and storage Containers—Well-closed containers.
Piperazine Phosphate Hydrate

Piperazine Phosphate Hydrate contains not less than 98.5% of piperazine phosphate (C₆H₁₀N₂.H₃PO₄: 184.13), calculated on the anhydrous basis.

Description Piperazine Phosphate Hydrate occurs as white, crystals or crystalline powder. It is odorless, and has a slightly acid taste.

It is soluble in formic acid, sparingly soluble in water, very slightly soluble in acetic acid (100), and practically insoluble in methanol, in ethanol (95) and in diethyl ether. It dissolves in dilute hydrochloric acid.

Melting point: about 222°C (with decomposition).

Identification (1) To 3 mL of a solution of Piperazine Phosphate Hydrate (1 in 100) add 3 drops of Reinecke salt TS: a light red precipitate is formed.

(2) Determine the infrared absorption spectrum of Piperazine Phosphate Hydrate as prepared in the potassium bromide disk method under Infrared Spectrophotometry 2.259, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) A solution of Piperazine Phosphate Hydrate (1 in 100) responds to Qualitative Tests 1.09 for (1) and (3) for phosphate.

pH 2.4 to 2.5 Dissolve 1.0 g of Piperazine Phosphate Hydrate in 100 mL of water: the pH of the solution is between 6.0 and 6.5.

Purity (1) Chloride 1.07—To 0.5 g of Piperazine Phosphate Hydrate add 6 mL of dilute nitric acid and water to make 50 mL. Use this solution as the test solution, and perform the test. Prepare the control solution with 0.25 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.018%).

(2) Heavy metals 1.07—To 2.0 g of Piperazine Phosphate Hydrate add 5 mL of dilute hydrochloric acid, 30 mL of water and 2 mL of dilute acetic acid, and dissolve. Add sodium hydroxide TS, adjust the pH of the solution to 3.3, and add water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(3) Arsenic 1.17—Dissolve 2.0 g of Piperazine Phosphate Hydrate in 5 mL of dilute hydrochloric acid, and use this solution as the test solution. Perform the test (not more than 1 ppm).

(4) Related substances—Dissolve 50 mg of Piperazine Phosphate Hydrate in 10 mL of water, and use this solution as the standard solution. Pipet 1 mL of the sample solution, add water to make exactly 100 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography 2.06. Place 5 μL each of the sample solution and standard solution on a plate of cellulose for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate, ammonia solution (28), acetone and ethanol (99.5) (8:3:3:2) to a distance of about 13 cm, and air-dry the plate. Spray evenly 4-dimethylaminocinnamaldehyde TS, and allow to stand for 15 minutes: the spots other than the principal spot and the spot on the starting line obtained from the sample solution are not more intense than the spot from the standard solution.

Water ≤0.45 8.0 – 9.5% (0.3 g, volumetric titration, direct titration).

Assay Weigh accurately about 0.15 g of Piperazine Phosphate Hydrate, dissolve in 10 mL of formic acid, add 60 mL of acetic acid (100), and titrate ≤2.50D with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 9.207 mg of C₆H₁₀N₂.H₃PO₄

Containers and storage Containers—Well-closed containers.

Piperazine Phosphate Tablets

Piperazine Phosphate Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of piperazine phosphate hydrate (C₆H₁₀N₂.H₃PO₄.H₂O: 202.15).

Method of preparation Prepare as directed under Tablets, with Piperazine Phosphate Hydrate.

Identification Take a quantity of Piperazine Phosphate Tablets equivalent to 0.1 g of Piperazine Phosphate Hydrate, previously powdered, add 10 mL of water, shake while warming for 10 minutes, allow to cool, and filter. To 3 mL of the filtrate add 3 drops of Reinecke salt TS: a light red precipitate is formed.

Disintegration ≤6.0 It meets the requirement. The time limit of the test is 10 minutes.

Assay Weigh accurately not less than 20 Piperazine Phosphate Tablets, and powder. Weigh accurately a quantity of the powder, equivalent to about 0.15 g of piperazine phosphate hydrate (C₆H₁₀N₂.H₃PO₄.H₂O). Add 5 mL of formic acid, shake for 5 minutes, centrifuge, and collect the supernatant liquid. To the residue add 5 mL of formic acid, shake for 5 minutes, centrifuge, and collect the supernatant liquid. Repeat twice the same procedure with 5 mL each of acetic acid (100), combine all the supernatant liquids, add 50 mL of acetic acid (100), and titrate ≤2.50D with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 10.11 mg of C₆H₁₀N₂.H₃PO₄.H₂O

Containers and storage Containers—Tight containers.
Pirarubicin

ピラルビシン

Pirarubicin is a derivative of daunorubicin.

It contains not less than 950 \(\mu \text{g} \) (potency) per mg, calculated on the anhydrous basis. The potency of Pirarubicin is expressed as mass (potency) of pirarubicin (\(\text{C}_{32}\text{H}_{37}\text{NO}_{37} \)).

Description Pirarubicin occurs as a red-orange crystalline powder.

It is soluble in chloroform, very slightly soluble in acetonitrile, in methanol and in ethanol (99.5), and practically insoluble in water.

Identification

1. Dissolve 10 mg of Pirarubicin in 80 mL of methanol and 6 mL of diluted hydrochloric acid (1 in 5000), and add water to make 100 mL. To 10 mL of this solution add diluted methanol (4 in 5) to make 100 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry \(<2.2>\), and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Pirarubicin RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

2. Dissolve 5 mg each of Pirarubicin and Pirarubicin RS in 5 mL of chloroform, and use these solutions as the sample solution and standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography \(<2.0>\). Spot 5 \(\mu \text{L} \) each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of chloroform and methanol (5:1) to a distance of about 10 cm, and air-dry the plate. Examine the spots: the principal spot obtained from the sample solution and the spot from the standard solution show a red-orange color and the same \(R_f \) value.

Optical rotation \(<2.49>\) [\(\alpha \)]\(_D^2\): + 195° to + 215° (10 mg, chloroform, 10 mL, 100 mm).

Purity

1. Clarity and color of solution—Dissolve 10 mg of Pirarubicin in 10 mL of 0.01 mol/L hydrochloric acid TS: the solution is clear and red.

2. Heavy metals—Proceed with 1.0 g of Pirarubicin according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

3. Related substances—Dissolve 10 mg of Pirarubicin in 20 mL of the mobile phase, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add the mobile phase to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 20 \(\mu \text{L} \) each of the sample solution and standard solution as directed under Liquid Chromatography \(<2.0>\) according to the following conditions, and determine each peak area by the automatic integration method: the peak area of doxorubicin, having the relative retention time of about 0.45 to pirarubicin, and the area of the peak, having the relative retention time of about 1.2, obtained from the sample solution are not larger than the peak area of pirarubicin from the standard solution, respectively, and the sum of the areas of the peaks, having the relative retention times of about 1.9 and about 2.0, from the sample solution is not larger than 5 times the peak area of pirarubicin from the standard solution. For the peak area for doxorubicin, multiply the correction factor 0.94 and the area for the two peaks, having the relative retention times of about 1.9 and about 2.0, multiply their correction factors, 1.09, respectively.

Operating conditions—

Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 4 times as long as the retention time of pirarubicin.

System suitability—

System performance, and system repeatability: Proceed as directed in the system suitability in the Assay.

Test for required detectability: Measure exactly 2 mL of the standard solution, and add the mobile phase to make exactly 10 mL. Confirm that the peak area of pirarubicin obtained with 20 \(\mu \text{L} \) of this solution is equivalent to 14 to 26% of that with 20 \(\mu \text{L} \) of the standard solution.

Water \(<2.48>\) Not more than 2.0% (0.1 g, volumetric titration, direct titration).

Assay Weigh accurately an amount of Pirarubicin and Pirarubicin RS, equivalent to about 10 mg (potency), and dissolve in the mobile phase to make exactly 10 mL. Pipet 5 \(\mu \text{L} \) of these solutions, add exactly 5 \(\mu \text{L} \) of the internal standard solution and standard solution, and use these solutions as the sample solution and standard solution. Perform the test with 20 \(\mu \text{L} \) each of the sample solution and standard solution as directed under Liquid Chromatography \(<2.0>\) according to the following conditions, and calculate the ratios, \(Q_1 \) and \(Q_3 \), of the peak area of pirarubicin to that of the internal standard.

Amount [mg (potency)] of pirarubicin (\(\text{C}_{32}\text{H}_{37}\text{NO}_{37} \))

\[
M_5 = M_5 \times \frac{Q_1}{Q_1 \times 1000}
\]

\(M_5\): Amount [mg (potency)] of Pirarubicin RS taken

Internal standard solution—A solution of 2-naphthol in the mobile phase (1 in 1000).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 254 nm).

Column: A stainless steel column 6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 \(\mu \text{m} \) in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: A mixture of 0.05 mol/L ammonium formate buffer solution (pH 4.0) and acetonitrile (3:2).

Flow rate: Adjust so that the retention time of pirarubicin is about 7 minutes.

System suitability—

System performance: When the procedure is run with 20
Pirenoxine

ピレノキシン

C_{16}H_{20}N_{2}O_{4}: 308.25
1-Hydroxy-5-oxo-5H-pyrido[3,2-α]phenoxazine-3-carboxylic acid
[1043-21-6]

Pirenoxine, when dried, contains not less than 98.0% of pirenoxine (C_{16}H_{20}N_{2}O_{4}).

Description
Pirenoxine occurs as a yellow-brown powder. It is odorless, and has a slightly bitter taste.

It is very slightly soluble in dimethylsulfoxide, and practically insoluble in water, in acetonitrile, in ethanol (95), in tetrahydrofuran and in diethyl ether.

Melting point: about 250°C (with decomposition).

Identification

1. **Dissolve** 2 mg of Pirenoxine in 10 mL of phosphate buffer solution (pH 6.5), add 5 mL of a solution of L-ascorbic acid (1 in 50), and shake vigorously: a dark purple precipitate is formed.

2. **Determine** the absorption spectrum of a solution of Pirenoxine in phosphate buffer solution (pH 6.5) (1 in 200,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

3. **Determine** the infrared absorption spectrum of Pirenoxine, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Purity

1. **Heavy metals** <1.07>—Proceed with 1.0 g of Pirenoxine according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

2. **Related substances**—Dissolve 10 mg of Pirenoxine in 50 mL of the mobile phase, and use this solution as the sample solution. Pipet 3 mL of the sample solution, add the mobile phase to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 5 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area of both solutions by the automatic integration method: the total area of the peaks other than pirenoxine obtained from the sample solution is not larger than the peak area of pirenoxine from the standard solution.

Operating conditions

- **Detector:** An ultraviolet absorption photometer (wavelength: 230 nm).
- **Column:** A stainless steel column 4 mm in inside diameter and 15 cm in length, packed with octadecysilanized silica gel for liquid chromatography (5 μm in particle diameter).
- **Column temperature:** A constant temperature of about 35°C.
- **Mobile phase:** Dissolve 1.39 g of tetra n-butyrammonium chloride and 4.5 g of disodium hydrogen phosphate dodecahydrate in 1000 mL of water, and adjust the pH to 6.5 with phosphoric acid. To 700 mL of this solution add 200 mL of acetonitrile and 30 mL of tetrahydrofuran, and mix.
- **Flow rate:** Adjust so that the retention time of pirenoxine is about 10 minutes.
- **Time span of measurement:** About 3 times as long as the retention time of pirenoxine.

System suitability

Test for required detectability: To exactly 2 mL of the standard solution add the mobile phase to make exactly 30 mL. Confirm that the peak area of pirenoxine obtained with 5 μL of this solution is equivalent to 5 to 8% of that with 5 μL of the standard solution.

System performance: Dissolve 3 mg of Pirenoxine and 16 mg of methyl parahydroxybenzoate in 100 mL of the mobile phase. When the procedure is run with 5 μL of this solution under the above operating conditions, pirenoxine and methyl parahydroxybenzoate are eluted in this order with the resolution between these peaks being not less than 2.0.

System repeatability: When the test is repeated 6 times with 5 μL of this solution under the above operating conditions, the relative standard deviation of the peak area of pirenoxine is not more than 1.0%.

Loss on drying <2.41> Not more than 1.5% (0.5 g, in vacuum, 80°C, 3 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay

Weigh accurately about 0.1 g of Pirenoxine, previously dried, dissolve in 140 mL of dimethylsulfoxide by heating on a water bath. After cooling, add 30 mL of water, and titrate <2.50> immediately with 0.02 mol/L sodium hydroxide VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.02 mol/L sodium hydroxide VS = 6.165 mg of C_{16}H_{20}N_{2}O_{4}

Containers and storage

Containers—Tight containers.
Pirenzepine Hydrochloride Hydrate

ピレンゼピン塩酸塩水和物

\[
\text{C}_{19}\text{H}_{21}\text{N}_3\text{O}_2 \cdot \text{2HCl \cdot H}_2\text{O}: 442.34
\]

11-(4-Methylpiperazin-1-yl)acetyl]-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepin-6-one dihydrochloride monohydrate

[29868-97-1, anhydride]

Pirenzepine Hydrochloride Hydrate contains not less than 98.5% and not more than 101.0% of pirenzepine hydrochloride (C_{19}H_{21}N_3O_2 \cdot 2\text{HCl} \cdot 2\text{H}_2\text{O}: 424.32), calculated on the anhydrous basis.

Description
Pirenzepine Hydrochloride Hydrate occurs as a white to pale yellow crystalline powder.

It is freely soluble in water and in formic acid, slightly soluble in methanol, and very slightly soluble in ethanol (99.5).

The pH of a solution obtained by dissolving 1 g of Pirenzepine Hydrochloride Hydrate in 10 mL of water is between 1.0 and 2.0.

Melting point: about 245°C (with decomposition).

It is gradually colored by light.

Identification (1) Determine the absorption spectrum of a solution of Pirenzepine Hydrochloride Hydrate (1 in 40,000) as directed under Ultraviolet-visible Spectrophotometry <2.25> and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Pirenzepine Hydrochloride Hydrate as directed in the potassium chloride disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) A solution of Pirenzepine Hydrochloride Hydrate (1 in 50) responds to Qualitative Tests <1.09> for chloride.

Purity (1) Clarity and color of solution—A solution obtained by dissolving 1.0 g of Pirenzepine Hydrochloride Hydrate in 10 mL of water is clear and not more color than that of the following control solution.

Control solution: To 1.2 mL of Matching Fluid F add 8.8 mL of diluted hydrochloric acid (1 in 40).

(2) Heavy metals <1.07>—Proceed with 2.0 g of Pirenzepine Hydrochloride Hydrate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(3) Related substances—Dissolve 0.3 g of Pirenzepine Hydrochloride Hydrate in 10 mL of water. To 1 mL of this solution add 5 mL of methanol and the mobile phase A to make 10 mL, and use this solution as the sample solution. Pipet 1 mL of the sample solution, and add 5 mL of methanol and the mobile phase A to make exactly 10 mL. Pipet 1 mL of this solution, add 5 mL of methanol and the mobile phase A to make exactly 10 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak other than pirenzepine obtained from the sample solution is not larger than 3/5 times the peak area of pirenzepine from the standard solution, and the total area of the peaks other than pirenzepine from the sample solution is not larger than 3/5 times the peak area of pirenzepine from the standard solution.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 283 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase A: Dissolve 2 g of sodium lauryl sulfate in 900 mL of water, adjust the pH to 3.2 with acetic acid (100), and add water to make 1000 mL.

Mobile phase B: Methanol.

Mobile phase C: Acetonitrile.

Flowing of mobile phase: Control the gradient by mixing the mobile phases A, B and C as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
<th>Mobile phase C (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 15</td>
<td>55 → 25</td>
<td>30</td>
<td>15 → 45</td>
</tr>
<tr>
<td>15 –</td>
<td>25</td>
<td>30</td>
<td>45</td>
</tr>
</tbody>
</table>

Flow rate: Adjust so that the retention time of pirenzepine is about 8 minutes.

Time span of measurement: About 2 times as long as the retention time of pirenzepine, beginning after the solvent peak.

System suitability—

Test for required detectability: Pipet 1 mL of the standard solution, and add 5 mL of methanol and the mobile phase A to make exactly 10 mL. Confirm that the peak area of pirenzepine obtained with 10 μL of this solution is equivalent to 7 to 13% of that with 10 μL of the standard solution.

System performance: Dissolve 0.1 g of 1-phenylpiperazine hydrochloride in 10 mL of methanol. Mix 1 mL of this solution and 1 mL of the sample solution, and add 5 mL of methanol and the mobile phase A to make 10 mL. When the procedure is run with 10 μL of this solution under the above operating conditions, pirenzepine and phenylpiperazine are eluted in this order with the resolution between these peaks being not less than 5.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of pirenzepine is not more than 2.0%.

Water <2.48> Not less than 3.5% and not more than 5.0% (0.3 g, volumetric titration, direct titration).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.2 g of Pirenzepine Hydrochloride Hydrate, dissolve in 2 mL of formic acid, add 60 mL of acetic anhydride, and titrate <2.56> with 0.1 mol/L
Determine the infrared absorption spectrum of piroxicam according to the following conditions, and determine with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS is equivalent to 14.14 mg of C₁₃H₁₂N₂O₅·2HCl

Containers and storage Containers—Well-closed containers.
Storage—Light-resistant.

Piroxicam

ピロキシカム

C₁₃H₁₂N₂O₅·2HCl: 331.35
4-Hydroxy-2-methyl-N-(pyridin-2-yl)-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide
[36322-90-4]

Piroxicam contains not less than 98.5% and not more than 101.0% of piroxicam (C₁₃H₁₂N₂O₅·2HCl), calculated on the dried basis.

Description Piroxicam occurs as a white to light yellow crystalline powder.
It is slightly soluble in acetonitrile and in ethanol (99.5), and practically insoluble in water.
Melting point: about 200°C (with decomposition).
It shows crystal polymorphism.

Identification (1) Dissolve 0.1 g of Piroxicam in a mixture of methanol and 0.5 mol/L hydrochloric acid TS (490:1) to make 200 mL. To 1 mL of this solution add the mixture of methanol and 0.5 mol/L hydrochloric acid TS (490:1) to make 100 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Piroxicam as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers. If any difference appears between the spectra, dissolve the Piroxicam with dichloromethane, evaporate the solvent, dry the residue on a water bath, and perform the test.

Purity (1) Heavy metals <1.07>—Prove with 1.0 g of Piroxicam according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(2) Related substances—Dissolve 75 mg of Piroxicam in 50 mL of acetonitrile for liquid chromatography, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add acetonitrile for liquid chromatography to make exactly 10 mL. Pipet 1 mL of this solution, add acetonitrile for liquid chromatography to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak other than piroxicam obtained from the sample solution is not larger than the peak area of piroxicam from the standard solution, and the total area of the peaks other than piroxicam from the sample solution is not larger than 2 times the peak area of piroxicam from the standard solution.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 230 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase: A mixture of 0.05 mol/L potassium dihydrogen phosphate TS (pH 3.0) and acetonitrile for liquid chromatography (3:2).
Flow rate: Adjust so that the retention time of piroxicam is about 10 minutes.
Time span of measurement: About 5 times as long as the retention time of piroxicam, beginning after the solvent peak.

System suitability—
Test for required detectability: To exactly 5 mL of the standard solution add acetonitrile for liquid chromatography to make exactly 20 mL. Confirm that the peak area of piroxicam obtained with 20 μL of this solution is equivalent to 17.5 to 32.5% of that with 20 μL of the standard solution.
System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of piroxicam are not less than 6000 and not more than 1.5, respectively.
System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of piroxicam is not more than 2.0%.

Loss on drying <2.41> Not more than 0.5% (1 g, 105°C, 3 hours).
Residue on ignition <2.44> Not more than 0.2% (1 g).

Assay Weigh accurately about 0.25 g of Piroxicam, dissolve in 60 mL of a mixture of acetic anhydride and acetic acid (100) (1:1), and titrate <2.50> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS is equivalent to 33.14 mg of C₁₃H₁₂N₂O₅·2HCl

Containers and storage Containers—Tight containers.
Pitavastatin Calcium Hydrate

ピタバスタチンカルシウム水和物

\[
\text{C}_{33}\text{H}_{46}\text{CaF}_8\text{N}_6\text{O}_{12}\cdot5\text{H}_2\text{O} : 971.06 \\
\text{Monocalcium bis}(3\text{R},5\text{S},6\text{E})-7\text{-}[2\text{-cyclopropyl-4-(4-fluorophenyl)]quinolin-3-yl}-3\text{-dihydroxyhept-6-enoate} \text{ pentahydrate} \\
[147526-32-7, \text{anhydride}]
\]

Pitavastatin Calcium Hydrate contains not less than 98.0% and not more than 102.0% of pitavastatin calcium (C_{33}H_{46}CaF_8N_6O_{12}: 880.98), calculated on the anhydrous basis.

Description Pitavastatin Calcium Hydrate occurs as a white to pale yellow powder.

It is slightly soluble in methanol, very slightly soluble in water and in ethanol (99.5).

It dissolves in dilute hydrochloric acid.

It shows crystal polymorphism.

Identification (1) Determine the absorption spectrum of a solution of Pitavastatin Calcium Hydrate in methanol (1 in 125,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Pitavastatin Calcium Hydrate as directed in the potassium bromide disc method under Infrared Spectrophotometry <2.25>: it exhibits absorption at the wave numbers of 3400 – 3300 cm\(^{-1}\), about 1560 cm\(^{-1}\), 1490 cm\(^{-1}\), 1219 cm\(^{-1}\), 1066 cm\(^{-1}\) and 766 cm\(^{-1}\).

(3) Dissolve 0.25 g of Pitavastatin Calcium Hydrate in 5 mL of dilute hydrochloric acid, neutralize with ammonia TS, and filter: the filtrate responds to Qualitative Tests <1.065> (1), (2), and (3) for calcium.

Optical rotation <2.49> \([\alpha]_D^{20} +22.0 \pm +24.5^\circ\) (0.1 g calculated on the anhydrous basis, a mixture of water and acetone-nitrite (1:1), 10 mL, 100 mm).

Purity (1) Heavy metals <1.077>—To 1.0 g of Pitavastatin Calcium Hydrate in a quartz crucible add 10 mL of a solution of magnesium nitrate hexahydrate in ethanol (95) (1 in 10) and mix well, then fire the ethanol to burn, and heat gradually to carbonize. After cooling, moisten the residue with 1.5 mL of sulfuric acid, heat carefully, then ignite at 550°C until the residue is incinerated. After cooling, moisten the residue with 1.5 mL of nitric acid, heat carefully, then ignite at 550°C until the residue is completely incinerated. After cooling, dissolve the residue in 3 mL of hydrochloric acid, and evaporate the solvent to dryness on a water bath. Moisten the residue with 3 drops of hydrochloric acid, dissolve in 10 mL of hot water with the aid of gentle heat, and filter. Wash the residue with 20 mL of water, and pour the filtrates and washings into a Nessler tube. Add 1 drop of phenolphthalein TS, add ammonia TS dropwise until the solution develops a pale red color, then add 2 mL of dilute acetic acid, add water to make 50 mL, and use this solution as the test solution. The control solution is prepared as follows: Take 10 mL of a solution of magnesium nitrate hexahydrate in ethanol (95) (1 in 10), and fire the ethanol to burn. Hereafter, proceed as for the test solution, then add 2.0 mL of Standard Lead Solution, 2 mL of acetic acid and water to make 50 mL (not more than 20 ppm).

(2) Related substances—Conduct this procedure using light-resistant vessels. Dissolve 0.10 g of Pitavastatin Calcium Hydrate in 100 mL of a mixture of acetone-nitrite and water (3:2), and use this solution as the sample solution. Pipet 1 mL of the sample solution, add a mixture of acetone-nitrite and water (3:2) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 µL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak of related substance A, having the relative retention time of about 1.1 to pitavastatin, obtained from the sample solution is not more than 1/2 times the peak area of pitavastatin from the standard solution, and the area of the peak other than pitavastatin and the peak mentioned above from the sample solution is not more than 1/10 times the peak area of pitavastatin from the standard solution. Furthermore, the total area of the peaks other than pitavastatin from the sample solution is not larger than the peak area of pitavastatin from the standard solution. For the area of the peak of related substance B, having the relative retention time of about 1.4, multiply the correction factor, 1.8.

Operating conditions—

Detector, column, and column temperature: Proceed as directed in the operating conditions in the Assay.

Mobile phase A: To 10 mL of dilute acetic acid add water to make 1000 mL. To 800 mL of this solution add diluted sodium acetate TS (1 in 100) to adjust to pH 3.8.

Mobile phase B: Acetonitrile for liquid chromatography.

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 20</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>20 – 40</td>
<td>60 (\to) 10</td>
<td>40 (\to) 90</td>
</tr>
<tr>
<td>40 – 60</td>
<td>10</td>
<td>90</td>
</tr>
</tbody>
</table>

Flow rate: Adjust so that the retention time of pitavastatin is about 23 minutes.

Time span of measurement: About 2.5 times as long as the retention time of pitavastatin, beginning after the solvent peak.

System suitability—

Test for required detectability: Pipet 1 mL of the standard solution, add a mixture of acetone-nitrite and water (3:2) to make exactly 20 mL. Confirm that the peak area of pitavastatin obtained with 10 µL of this solution is equivalent to 4 to 6% of that with 10 µL of the standard solution.

System performance: When the procedure is run with 10 µL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of pitavastatin are not less than 17,000 and not more than 1.3, respectively.

System repeatability: When the test is repeated 6 times with 10 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of pitavastatin is not more than 2.0%.
Pitavastatin Calcium Orally Disintegrating Tablets

Assay Conduct this procedure using light-resistant vessels. Weigh accurately about 0.1 g of Pitavastatin Calcium Hydrodate, dissolve in a mixture of acetonitrile and water (3:2) to make exactly 100 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution, then add a mixture of acetonitrile and water (3:2) to make 50 mL, and use this solution as the standard solution. Separately, weigh accurately about 30 mg of Pitavastatin Methylbenzylamine RS (separately determine the water content by coulometric titration using 0.1 g), dissolve in a mixture of acetonitrile and water (3:2) to make 100 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal solution, then add a mixture of acetonitrile and water (3:2) to make 50 mL, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography (2.01) according to the following conditions, and calculate the ratios, Q_T and Q_S, of the peak area of pitavastatin to that of the internal standard.

\[
\text{Amount (mg) of pitavastatin calcium (C}_{30}\text{H}_{46}\text{CaF}_2\text{N}_2\text{O}_8) = M_S \times Q_T/Q_S \times 4 \times 0.812
\]

\[
M_S: \text{Amount (mg) of Pitavastatin Methylbenzylamine RS taken, calculated on the anhydrous basis}
\]

Internal standard solution—Butyl parahydroxybenzoate in a mixture of acetonitrile and water (3:2) (3 in 2000).

Operating conditions—
- Detector: An ultraviolet absorption photometer (wavelength: 245 nm).
- Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
- Column temperature: A constant temperature of about 40°C.
- Mobile phase: To 10 mL of dilute acetic acid add water to make 1000 mL. To 330 mL of this solution add 650 mL of methanol, and dissolve 0.29 g of sodium chloride in this solution.
- Flow rate: Adjust so that the retention time of pitavastatin is about 17 minutes.

System suitability—
- System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the internal standard and pitavastatin are eluted in this order with the resolution between these peaks being not less than 8.
- System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of pitavastatin to that of the internal standard is not more than 1.0%.

Containers and storage—Containers—Tight containers. Storage—Light-resistant.

Purity Related substances—Conduct this procedure using light-resistant vessels. To a quantity of Pitavastatin Calcium Orally Disintegrating Tablets, equivalent to 4 mg of pitavastatin calcium (C₃₀H₄₆CaF₂N₂O₈), add 10 mL of methanol, shake thoroughly, and centrifuge. To 1 mL of the supernatant liquid add methanol to make 50 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry (2.24); it exhibits a maximum between 243 nm and 247 nm.

Pitavastatin Calcium Orally Disintegrating Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of pitavastatin calcium (C₃₀H₄₆CaF₂N₂O₈; 880.98).

Method of preparation Prepare as directed under Tablets, with Pitavastatin Calcium Hydrodate.

Identification To a quantity of Pitavastatin Calcium Orally Disintegrating Tablets, equivalent to 4 mg of pitavastatin calcium (C₃₀H₄₆CaF₂N₂O₈), add 10 mL of methanol, shake thoroughly, and centrifuge. To 1 mL of the supernatant liquid add methanol to make 50 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry (2.24); it exhibits a maximum between 243 nm and 247 nm.

Purified Substances

Related substance A:
\[
(3\text{RS},5\text{RS})-7-[2\text{-Cyclopropyl}-4-(4\text{-fluorophenyl})\text{quinolin-3-yl}]-3,5\text{-dihydroxyhept-6-enoic acid}
\]

Related substance B:
7-[2-Cyclopropyl-4-(4-fluorophenyl)quinolin-3-yl]-3-hydroxy-5-oxohept-6-enoic acid

Others Related substances—Conduct this procedure using light-resistant vessels. To a quantity of Pitavastatin Calcium Orally Disintegrating Tablets, equivalent to 20 mg of pitavastatin calcium (C₃₀H₄₆CaF₂N₂O₈), add 60 mL of a mixture of acetonitrile and water (3:2), sonicate to disintegrate, add a mixture of acetonitrile and water (3:2) to make 100 mL. Filter this solution through a membrane filter with a pore size not exceeding 0.45 μm, and use the filtrate as the sample solution. Perform the test with 10 μL of the sample solution as directed under Liquid Chromatography (2.01) according to the following conditions. Determine each peak area by the automatic integration method, and calculate the amounts of them by the area percentage method: the amount of related substance A having the relative retention times of about 1.1 to pitavastatin is not more than 0.5%, the amount of related substance B having the relative retention times of about 1.5 is not more than 0.2%, the amount of related substance TA having the relative retention times of about 1.7 is not more than 0.5%, and the amount of the peak other than pitavastatin and the peaks mentioned above is not more than 0.1%. Furthermore, the total amount of the peaks other than pitavastatin is not more than 2.0%.
Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 245 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecysilicized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase A: To 10 mL of dilute acetic acid add water to make 1000 mL. To 800 mL of this solution add diluted sodium acetate TS (1 in 100) to adjust to pH 3.8.
Mobile phase B: Acetonitrile for liquid chromatography.
Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 20</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>20 – 40</td>
<td>60 → 30</td>
<td>40 → 70</td>
</tr>
<tr>
<td>40 – 65</td>
<td>30</td>
<td>70</td>
</tr>
</tbody>
</table>

Flow rate: Adjust so that the retention time of pitavastatin is about 23 minutes.
Time span of measurement: About 2.7 times as long as the retention time of pitavastatin, beginning after the solvent peak.

System suitability—
Test for required detectability: To 1 mL of the sample solution, add a mixture of acetonitrile and water (3:2) to make 100 mL, and use this solution as the solution for system suitability test. Pipet 5 mL of the solution for system suitability test, add a mixture of acetonitrile and water (3:2) to make exactly 50 mL. Confirm that the peak area of pitavastatin obtained with 10 μL of this solution is equivalent to 7 to 13% of that with 10 μL of the solution for system suitability test.

System performance: When the procedure is run with 10 μL of the solution for system suitability test under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of pitavastatin are not less than 7500 and not more than 2.0, respectively.
System repeatability: When the test is repeated 6 times with 10 μL of the solution for system suitability test under the above operating conditions, the relative standard deviation of the peak area of pitavastatin is not more than 2.0%.

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

Conduct this procedure using light-resistant vessels. To 1 tablet of Pitavastatin Calcium Orally Disintegrating Tablets add exactly V mL of the internal standard solution so that each mL contains about 0.2 mg of pitavastatin calcium (C36H40CaF2N2O8), and add V mL of a mixture of acetonitrile and water (3:2), and sonicate to disintegrate. Filter this solution through a membrane filter with a pore size not exceeding 0.45 μm, and use the filtrate as the sample solution. Then, proceed as directed in the Assay.

Amount (mg) of pitavastatin calcium (C36H40CaF2N2O8) = M5 x Q5 / Q5 x V / 100 x 0.812

M5: Amount (mg) of Pitavastatin Methylbenzylamine RS taken, calculated on the anhydrous basis

Internal standard solution—A solution of butyl parahydroxybenzoate in a mixture of acetonitrile and water (3:2) (3 in 10,000).

Disintegration Being specified separately when the drug is granted approval based on the Law.

Dissolution <6.1D> When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of 2nd fluid for dissolution test as the dissolution medium, the dissolution rate in 15 minutes of Pitavastatin Calcium Orally Disintegrating Tablets is not less than 75%.

Conduct this procedure using light-resistant vessels. Start the test with 1 tablet of Pitavastatin Calcium Orally Disintegrating Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 5 mL of the first filtrate, pipet V mL of the subsequent filtrate, add the dissolution medium to make exactly V mL so that each mL contains about 1.1 μg of pitavastatin calcium (C36H40CaF2N2O8), and use this solution as the sample solution. Separately, weigh accurately about 24 mg of Pitavastatin Methylbenzylamine RS (separately determine the water <2.4D> by coulometric titration using 0.1 g) and dissolve in a mixture of acetonitrile and water (3:2) to make exactly 200 mL. Pipet 1 mL of this solution, add the dissolution medium to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 50 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.0D> according to the following conditions, and determine the peak areas, A1 and A2, of pitavastatin in each solution.

Dissolution rate (%) with respect to the labeled amount of pitavastatin calcium (C36H40CaF2N2O8) = M4 x A4 / A3 x V / V x 1/10 x 9/2 x 0.812

M4: Amount (mg) of Pitavastatin Methylbenzylamine RS taken, calculated on the anhydrous basis

C: Labeled amount (mg) of pitavastatin calcium (C36H40CaF2N2O8) in 1 tablet

Operating conditions—
Proceed as directed in the operating conditions in the Assay.

System suitability—
System performance: When the procedure is run with 50 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of pitavastatin are not less than 4500 and not more than 2.0, respectively.
System repeatability: When the test is repeated 6 times with 50 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of pitavastatin is not more than 1.0%.

Assay Conduct this procedure using light-resistant vessels. To not less than 20 tablets of Pitavastatin Calcium Orally Disintegrating Tablets add exactly V mL of a mixture of acetonitrile and water (3:2) so that each mL contains about 0.2 mg of pitavastatin calcium (C36H40CaF2N2O8), and sonicate to disintegrate the tablets. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution, shake, then filter through a membrane filter with a pore size not exceeding 0.45 μm, and use the filtrate as the sample solution. Separately weigh accurately about 24 mg of Pitavastatin Methylbenzylamine RS (separately determine the water <2.4D> by coulometric titration using 0.1 g), dissolve in a mixture of acetonitrile and water (3:2) to make exactly 100 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution, and use this solution as the standard solution. Perform the test with 10 μL each of the
sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and calculate the ratios, \(Q_x \) and \(Q_y \), of the peak area of pitavastatin to that of the internal standard.

\[
M_s = \frac{M_x \times Q_x}{V/N}
\]

\[
M_z = \text{Amount (mg) of Pitavastatin Methylbenzylamine RS taken, calculated on the anhydrous basis}
\]

\[
N: \text{Number of tablets taken}
\]

Internal standard solution—A solution of butyl parahydroxybenzoate in a mixture of acetonitrile and water (3:2) (3 in 10,000).

Operating conditions—Proceed as directed in the operating conditions in the Assay under Pitavastatin Calcium Hydrate.

System suitability—System performance: When the procedure is run with 10 \(\mu \)L of the standard solution under the above operating conditions, the internal standard and pitavastatin are eluted in this order with the resolution between these peaks being not less than 2.0.

System repeatability: When the test is repeated 6 times with 10 \(\mu \)L of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of pitavastatin to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Tight containers.

Storage—Light-resistant.

Others

Related substances A and B: Refer to them described in Pitavastatin Calcium Hydrate.

Related substances TA: 6-[2-[2-Cyclopropyl-4-(4-fluorophenyl)quinolin-3-yl]ethenyl]-4-hydroxyoxan-2-one

Purity Related substances—Conduct this procedure using light-resistant vessels. Take a quantity of Pitavastatin Calcium Tablets, equivalent to 20 mg of pitavastatin calcium (\(\text{C}_{30}\text{H}_{46}\text{CaF}_2\text{N}_2\text{O}_8 \)), add 60 mL of a mixture of acetonitrile and water (3:2), sonicate to disintegrate, and add a mixture of acetonitrile and water (3:2) to make 100 mL. Filter this solution through a membrane filter with a pore size not exceeding 0.45 \(\mu \)m, and use the filtrate as the sample solution. Perform the test with 50 \(\mu \)L of the sample solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine each peak area by the automatic integration method. Calculate the amount of the peaks by the area percentage method: the amounts of the peak of related substance A and related substance TA, having the relative retention times of about 1.1 and about 1.7 to pitavastatin, respectively, obtained from sample solution is not more than 0.5%, the amount of the peak other than pitavastatin and the peaks mentioned above is not more than 0.1%, and the total amount of the peaks other than pitavastatin is not more than 1.5%.

Operating conditions—Detector: An ultraviolet absorption photometer (wavelength: 245 nm). Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecysilanized silica gel for liquid chromatography (5 \(\mu \)m in particle diameter). Column temperature: A constant temperature of about 40°C.

Mobile phase A: To 10 mL of dilute acetic acid add water to make 1000 mL. To 800 mL of this solution add diluted sodium acetate TS (1 in 100) to adjust to pH 3.8.

Mobile phase B: Acetonitrile for liquid chromatography.

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 20</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>20 - 40</td>
<td>60 (\rightarrow) 30</td>
<td>40 (\rightarrow) 70</td>
</tr>
<tr>
<td>40 - 65</td>
<td>30</td>
<td>70</td>
</tr>
</tbody>
</table>

Flow rate: Adjust so that the retention time of pitavastatin is about 23 minutes.

Time span of measurement: About 2.7 times as long as the retention time of pitavastatin, beginning after the solvent peak.

System suitability—Test for required detectability: To 1 mL of the sample solution add a mixture of acetonitrile and water (3:2) to make 100 mL, and use this solution as the solution for system suitability test. Pipet 5 mL of the solution for system suitability test, add a mixture of acetonitrile and water (3:2) to make exactly 50 mL. Confirm that the peak area of pitavastatin obtained with 50 \(\mu \)L of this solution is equivalent to 7 to 13% of that with 50 \(\mu \)L of the solution for system suitability test.

System performance: When the procedure is run with 50 \(\mu \)L of the solution for system suitability test under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of pitavastatin are not less than 7500 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 50 \(\mu \)L of the solution for system suitability test under...
the above operating conditions, the relative standard deviation of the peak area of pitavastatin is not more than 2.0%.

Uniformity of dosage units (6.02) Perform the test according to the following method: it meets the requirement of the Content uniformity test.

Conduct this procedure using light-resistant vessels. To 1 tablet of Pitavastatin Calcium Tablets add exactly V mL of the internal standard solution so that each mL contains about 0.2 mg of pitavastatin calcium (C_{36}H_{40}CaF_{2}N_{2}O_{8}), and add V mL of a mixture of acetonitrile and water (3:2), shake well until the tablet is disintegrated completely. Filter this solution through a membrane filter with a pore size not exceeding 0.45 μm, and use the filtrate as the sample solution. Then, proceed as directed in the Assay.

Amount (mg) of pitavastatin calcium (C_{36}H_{40}CaF_{2}N_{2}O_{8})
$$M_5 = M_s \times Q_s / Q_t \times V / 100 \times 0.812$$

Operating conditions—

Dissolution (6.10) When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rates in 15 minutes of Pitavastatin Calcium Tablets is not less than 85%.

Conduct this procedure using light-resistant vessels. Start the test with 1 tablet of Pitavastatin Calcium Tablets. Withdraw not less than 10 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 5 mL of the first filtrate, pipet V mL of the subsequent filtrate, add water to make exactly V’ mL so that each mL contains about 1.1 μg of pitavastatin calcium (C_{36}H_{40}CaF_{2}N_{2}O_{8}), and use this solution as the sample solution. Separately, weigh accurately about 24 mg of Pitavastatin Methylbenzylamine RS (separately determine the water 2.48 μL by coulometric titration using 0.1 g), and dissolve in a mixture of acetonitrile and water (3:2) to make exactly 100 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution, and use this solution as the standard solution. Separately, weigh accurately about 24 mg of Pitavastatin Methylbenzylamine RS (separately determine the water 2.48 μL by coulometric titration using 0.1 g), and dissolve in a mixture of acetonitrile and water (3:2) to make exactly 100 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography (6.01) according to the following conditions, and calculate the ratios, Q_t and Q_s, of the peak area of pitavastatin to that of the internal standard.

Amount (mg) of pitavastatin calcium (C_{36}H_{40}CaF_{2}N_{2}O_{8})
$$M_5 = M_s \times Q_s / Q_t \times 1 / 2 \times 0.812$$

Operating conditions—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the internal standard and pitavastatin are eluted in this order with the resolution between these peaks being not less than 2.0.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of pitavastatin to that of the internal standard is not more than 1.0%.

Containers and storage—

Others

Related substance A: Refer to it described in Pitavastatin Calcium Hydrate.

Related substance TA:
Pivmecillinam Hydrochloride

Description
Pivmecillinam Hydrochloride occurs as a white to yellowish white crystalline powder.

It is very soluble in methanol and in acetic acid (100), freely soluble in water and in ethanol (99.5), and soluble in acetonitrile.

Identification (1)
Determine the infrared absorption spectrum of Pivmecillinam Hydrochloride as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of Pivmecillinam Hydrochloride RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Assay
Weigh accurately an amount of Pivmecillinam Hydrochloride and Pivmecillinam Hydrochloride RS, equivalent to about 20 mg (potency), dissolve in a suitable amount of the mobile phase, add exactly 10 mL of the internal standard solution and the mobile phase to make 100 mL, and use these solutions as the sample solution and the standard solution as directed under Liquid Chromatography <2.01>.

System suitability
Perform the test (not more than 2 ppm).

Internal standard solution
—A solution of diphenyl in the mobile phase (1 in 12,500).

Operating conditions
Detector: An ultraviolet absorption photometer (wavelength: 254 nm).

Column: A stainless steel column 4 mm in inside diameter and 30 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (10 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: Dissolve 0.771 g of ammonium acetate in about 900 mL of water, adjust the pH to 3.5 with acetic acid (100), and add water to make 1000 mL. To 400 mL of this solution add 600 mL of acetonitrile.

Flow rate: Adjust so that the retention time of pivmecillinam is about 6.5 minutes.

System performance
When the procedure is run with 10 μL of the standard solution under the above operating conditions, pivmecillinam and the internal standard are eluted in this order with the resolution between these peaks being not less than 4.

System repeatability
When the test is repeated 6 times with 10 μL of the standard solution under the above operat-
ing conditions, the relative standard deviation of the ratios of the peak area of pivmecillinam to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Tight containers.

Pivmecillinam Hydrochloride Tablets

ピブメシリナム塩酸塩錠

Pivmecillinam Hydrochloride Tablets contain not less than 93.0% and not more than 107.0% of the labeled potency of mecillinam (C₁₅H₂₃N₃O₅S: 325.43).

Method of preparation Prepare as directed under Tablets, with Pivmecillinam Hydrochloride.

Identification Powder Pivmecillinam Hydrochloride Tablets, dissolve a portion of the powder, equivalent to 35 mg (potency) of Pivmecillinam Hydrochloride, in 4 mL of a mixture of acetonitrile and acetic acid (100) (97:3), and filter through a membrane filter with a pore size not exceeding 0.45 µm. Discard the first 2 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately dissolve 25 mg of Pivmecillinam Hydrochloride RS in 2 mL of a mixture of acetonitrile and acetic acid (100) (97:3), and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.05>. Spot 2 µL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography, and immediately develop the plate with a mixture of acetone, water and acetic acid (100) (10:1:1) to a distance of about 12 cm, and air-dry the plate. Allow the plate to stand in iodine vapor for 10 minutes: the principal spot obtained from the sample solution has the same Rf value as the spot from the standard solution.

Water Not more than 3.0% (1 g of powdered Pivmecillinam Hydrochloride Tablets, volumetric titration, direct titration).

Uniformity of dosage units Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 tablet of Pivmecillinam Hydrochloride Tablets add 40 mL of the mobile phase, shake vigorously for 10 minutes, and add the mobile phase to make exactly 50 mL. Pipet 5 mL, equivalent to about 10 mg (potency) of Pivmecillinam Hydrochloride, add exactly 5 mL of the internal standard solution and the mobile phase to make 50 mL, filter through a membrane filter with a pore size not exceeding 0.45 µm, discard the first 10 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately an amount of Pivmecillinam Hydrochloride RS, equivalent to about 20 mg (potency), dissolve in the mobile phase with a mobile phase filter with a pore size not exceeding 0.45 µm, discard the first 10 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately an amount of Pivmecillinam Hydrochloride RS, equivalent to about 20 mg (potency), dissolve through a membrane filter with a pore size not exceeding 0.45 µm, discard the first 10 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately an amount of Pivmecillinam Hydrochloride RS, equivalent to about 20 mg (potency), dissolve in the mobile phase, add exactly 10 mL of the internal standard solution, add the mobile phase to make 100 mL, and use this solution as the standard solution. Then, proceed as directed in the Assay under Pivmecillinam Hydrochloride.

Amount [mg (potency)] of mecillinam (C₁₅H₂₃N₃O₅S) = Mₛ × Qₛ/Qₛ × 5

Mₛ: Amount [mg (potency)] of Pivmecillinam Hydrochloride RS taken

Internal standard solution—A solution of diphenyl in the mobile phase (1 in 12,500).

Disintegration Perform the test using the disk: it meets the requirement.

Assay Weigh accurately the mass of not less than 20 Pivmecillinam Hydrochloride Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 0.1 g (potency) of Pivmecillinam Hydrochloride, add 50 mL of the mobile phase, shake vigorously for 10 minutes, and add the mobile phase to make exactly 100 mL. Pipet 10 mL of this solution, add exactly 5 mL of the internal standard solution and the mobile phase to make 50 mL, filter through a membrane filter with a pore size not exceeding 0.45 µm, discard the first 10 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately an amount of Pivmecillinam Hydrochloride RS, equivalent to about 20 mg (potency), dissolve in the mobile phase, add exactly 10 mL of the internal standard solution, add the mobile phase to make 100 mL, and use this solution as the standard solution. Then, proceed as directed in the Assay under Pivmecillinam Hydrochloride.

Amount [mg (potency)] of mecillinam (C₁₅H₂₃N₃O₅S) = Mₛ × Qₛ/Qₛ × 5

Mₛ: Amount [mg (potency)] of Pivmecillinam Hydrochloride RS taken

Internal standard solution—A solution of diphenyl in the mobile phase (1 in 12,500).

Containers and storage Containers—Tight containers.

Polaprezinc

ポラプレジンク

(P₄H₈N₂O₂Zn₉, catena-Poly[zinc-μ-[β-alanyl-1-histidinato(2-)-N,N⁺,O⁺]:[107667-60-7]

Polaprezinc contains not less than 98.0% and not more than 102.0% of polaprezinc (C₆H₁₂N₂O₂Zn: 289.60), and contains not less than 21.5% and not more than 23.0% of zinc (Zn: 65.38), calculated on the anhydrous basis.

Description Polaprezinc occurs as a white to pale yellow-white crystalline powder. It is practically insoluble in water, in methanol and in ethanol (99.5).

It dissolves in dilute hydrochloric acid.

Identification (1) To 2 mL of a solution of Polaprezinc in 0.2 mol/L hydrochloric acid TS (1 in 1000) add 0.5 mL of a solution of sulfanilic acid in 1 mol/L hydrochloric acid TS (1 in 200), 0.5 mL of a solution of sodium nitrite (1 in 20) and 3 mL of sodium carbonate TS: a red color is produced.

(2) A solution of Polaprezinc in 0.2 mol/L hydrochloric acid TS (1 in 1000) responds to Qualitative Tests <1.09> for zinc salt.

(3) Determine the infrared absorption spectrum of Polaprezinc as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra match.
exhibit similar intensities of absorption at the same wave numbers.

Optical rotation \(2.49\) \([\alpha]_D^2\): +8 – +9° (1 g calculated on the anhydrous basis, 3 mol/L hydrochloric acid TS, 50 mL, 100 mm).

Purity (1) Lead—Weigh accurately about 0.5 g of Polaprezinc, dissolve in 3 mL of dilute nitric acid, add water to make exactly 10 mL, and use this solution as the sample solution. Separately, pipet 0.5 mL, 1.0 mL, 1.5 mL and 2.0 mL of Standard Lead Solution, to each solution add 3 mL of dilute nitric acid and water to make exactly 10 mL, and use these solutions as the standard solutions. Perform the test with the sample solution and standard solutions as directed under Atomic Absorption Spectrophotometry \(2.23\) according to the following conditions, and calculate the amount of lead in the sample solution using a calibration curve obtained from the absorbances of the standard solutions: not more than 10 ppm.

Gas: Combustible gas—Acetylene.
Supporting gas—Air.
Lamp: Lead hollow-cathode lamp.
Wavelength: 283.3 nm.

Related substances—Dissolve 50 mg of Polaprezinc in 10 mL of 0.1 mol/L hydrochloric acid TS, add the mobile phase to make 100 mL, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 \(\mu\)L each of the sample solution and standard solution as directed under Liquid Chromatography \(2.01\) according to the following conditions. Determine each peak area by the automatic integration method: the peak area of \(L\)-histidine, having the relative retention time of about 0.38 to \(L\)-carnosine, obtained from the sample solution is not larger than 1/5 times of the peak area of \(L\)-carnosine from the standard solution, the area of the peak other than \(L\)-carnosine and the peak mentioned above from the sample solution is not larger than 1/10 times of the peak area of \(L\)-carnosine from the standard solution. Furthermore, the total area of the peaks other than \(L\)-carnosine from the sample solution is not larger than the peak area of \(L\)-carnosine from the standard solution.

Operating conditions—
Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 4 times as long as the retention time of \(L\)-carnosine, beginning after the solvent peak.

System suitability—
Test for required detectability: Pipet 2 mL of the sample solution, add the mobile phase to make exactly 20 mL. Confirm that the peak area of \(L\)-carnosine obtained with 10 \(\mu\)L of this solution is equivalent to 7 to 13% of that with 10 \(\mu\)L of the standard solution.

System performance: Dissolve 50 mg each of Polaprezinc and \(L\)-histidine in 10 mL of 0.1 mol/L hydrochloric acid TS, and add the mobile phase to make 100 mL. When the procedure is run with 10 \(\mu\)L of this solution under the above operating conditions, \(L\)-histidine and \(L\)-carnosine are eluted in this order with the resolution between these peaks being not less than 12.

System repeatability: When the test is repeated 6 times with 10 \(\mu\)L of the standard solution under the above operating conditions, the relative standard deviation of the peak area of \(L\)-carnosine is not more than 2.0%.

Assay (1) Polaprezinc—Weigh accurately about 25 mg of Polaprezinc, dissolve in 5 mL of 0.1 mol/L hydrochloric acid TS, add the mobile phase to make exactly 100 mL, and use this solution as the sample solution. Separately, weigh accurately about 20 mg of \(L\)-Carnosine RS, previously dried at 105°C for 3 hours, dissolve in 5 mL of 0.1 mol/L hydrochloric acid TS, add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 \(\mu\)L each of the sample solution and standard solution as directed under Liquid Chromatography \(2.01\) according to the following conditions. Determine the peak areas, \(A_T\) and \(A_S\), of \(L\)-carnosine in each solution.

\[
\text{Amount (mg) of polaprezinc} = M_S \times \frac{A_T}{A_S} \times 1.292
\]

\[
M_S: \text{Amount (mg) of } L\text{-carnosine RS taken}
\]

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 210 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 \(\mu\)m in particle diameter).
Column temperature: A constant temperature of about 45°C.
Mobile phase: Dissolve 1.4 g of potassium dihydrogen phosphate in 1000 mL of water, adjust to pH 3.5 with diluted phosphoric acid (1 in 100). Dissolve 2 g of sodium 1-octane sulfonate in 900 mL of this solution, and add 100 mL of acetonitrile for liquid chromatography.
Flow rate: Adjust so that the retention time of \(L\)-carnosine is about 15 minutes.

System suitability—
System performance: Dissolve 5 mg of \(L\)-histidine in 20 mL of the standard solution. When the procedure is run with 10 \(\mu\)L of this solution under the above operating conditions, \(L\)-histidine and \(L\)-carnosine are eluted in this order with the resolution between these peaks being not less than 12.

System repeatability: When the test is repeated 6 times with 10 \(\mu\)L of the standard solution under the above operating conditions, the relative standard deviation of the peak area of \(L\)-carnosine is not more than 1.0%.

Zinc—Weigh accurately about 0.2 g of Polaprezinc, dissolve in 3 mL of dilute hydrochloric acid, and add water to make exactly 100 mL. Pipet 25 mL of this solution, add 10 mL of ammonia-ammonium chloride buffer solution (pH 10.7), and titrate \(2.50\) with 0.01 mol/L disodium dihydrogen ethylenediamine tetraacetate VS (indicator: 40 mg of eriochrome black T-sodium chloride indicator).

Each mL of 0.01 mol/L disodium dihydrogen ethylenediamine tetraacetate VS
\[
= 0.6538 \text{ mg Zn}
\]

Containers and storage—
Containers—Tight containers.
Polaprezinc Granules

Polaprezinc Granules contain not less than 95.0% and not more than 105.0% of the labeled amount of polaprezinc [(C₉H₁₂N₄O₃Zn)₉].

Method of preparation Prepare as directed under Granules, with Polaprezinc.

Identification (1) To a quantity of Polaprezinc Granules, equivalent to 20 mg of Polaprezinc, add 20 mL of 0.2 mol/L hydrochloric acid TS, shake for 10 minutes, centrifuge, and use the supernatant liquid as the sample solution. To 2 mL of the sample solution add 0.5 mL of a solution of sulfuric acid in 1 mol/L hydrochloric acid TS (1 in 200), 0.5 mL of a solution of sodium nitrite (1 in 20) and 3 mL of sodium carbonate TS: a red color develops.

(2) The sample solution obtained in (1) responds to Atomic Absorption Spectrophotometry in 2.23 of the absorbances of the standard solutions.

Uniformity of dosage units <6.02> Perform the test according to the following method: Polaprezinc Granules in single-dose packages meet the requirement of the Content uniformity test.

To the total content of 1 package of Polaprezinc Granules add exactly V mL of 0.2 mol/L hydrochloric acid TS so that each mL contains about 5 mg of polaprezinc [(C₉H₁₂N₄O₃Zn)₉]: shake vigorously for 10 minutes, and centrifuge. Pipet 5 mL of the supernatant liquid, add exactly 5 mL of the internal standard solution, add the mobile phase to make 50 mL, and use this solution as the sample solution. Then, proceed as directed in the Assay.

Dissolution rate (%) with respect to the labeled amount of polaprezinc [(C₉H₁₂N₄O₃Zn)₉]

\[
\text{Dissolution rate} = \left(\frac{\text{Content} (\mu g/mL) \times \text{in the sample solution}}{M_f} \times 100 \right)\%
\]

where:

- \(M_f\): Amount (g) of Polaprezinc Granules taken
- \(C\): Labeled amount (mg) of polaprezinc [(C₉H₁₂N₄O₃Zn)₉] in 1 g

Gas: Combustible gas—Acetylene.
Lamp: Zinc hollow-cathode lamp.
Wavelength: 213.9 nm.

Assay Weigh accurately an amount of Polaprezinc Granules, equivalent to 0.1 g of polaprezinc [(C₉H₁₂N₄O₃Zn)₉], add exactly 20 mL of 0.2 mol/L hydrochloric acid TS, shake vigorously for 10 minutes, and centrifuge. Pipet 5 mL of the supernatant liquid, add exactly 5 mL of the internal standard solution, add the mobile phase to make 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 20 mg of l-Carnosine RS, previously dried at 105°C for 3 hours, dissolve in 5 mL of 0.2 mol/L hydrochloric acid TS, add exactly 5 mL of the internal standard solution, add the mobile phase to make 50 mL, and use this solution as the standard solution. Perform the test with 5 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and calculate the ratio, \(Q_f\) and \(Q_s\), of the peak area of l-carnosine to that of the internal standard.

\[
\text{Amount (mg) of polaprezinc [(C₉H₁₂N₄O₃Zn)₉]} = M_s \times Q_f/Q_s \times 4 \times 1.292
\]

\[
\text{M_s: Amount (mg) of l-Carnosine RS taken}
\]

Internal standard solution—Dissolve 0.25 g of 4-aminoacetophenone in 5 mL of acetonitrile, and add the mobile phase to make 100 mL.

Operating conditions—

Proceed as directed in the operating conditions in the Assay (1) under Polaprezinc.

System suitability—

System performance: When the procedure is run with 5 μL of the standard solution under the above operating conditions, 4-aminoacetophenone and l-carnosine are eluted in this order with the resolution between these peaks being not less than 6.

System repeatability: When the test is repeated 6 times with 5 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of l-carnosine to that of the internal standard is not more than 1.0%.

Containers and storage

Containers—Tight containers.
Polymixin B Sulfate

ポリミキシン B 硫酸塩

Polymixin B Sulfate is the sulfate of a mixture of peptide substances having antibacterial activity produced by the growth of Bacillus polymyxa.

It contains not less than 6500 units and not more than 10,500 units per mg, calculated on the dried basis. The potency of Polymixin B Sulfate is expressed as mass unit of polymixin B (C_{55-56}H_{66-69}NO_{15}-1\cdot2H_2SO_4).

Description

Polymixin B Sulfate occurs as a white powder. It is freely soluble in water, and practically insoluble in ethanol (99.5).

Identification

1. To 5 mL of a solution of Polymixin B Sulfate (1 in 10) add 5 mL of a solution of sodium hydroxide (1 in 10) and adjust to about 200,000 units, and use this solution as the standard concentration.

2. Transfer 5 mg each of Polymixin B Sulfate and Polymixin B Sulfate RS separately into two glass stoppered test tubes, add 1 mL of diluted hydrochloric acid (1 in 2), stopper the tube, heat at 135°C for 5 hours, then heat to dryness on a water bath, and keep the heating until no more hydrochloric acid odor is evolved. Dissolve the residue in 0.5 mL of water, and use these solutions as the sample solution and standard solution (1). Separately, dissolve 20 mg each of L-leucine, L-threonine, phenylalanine and L-serine separately in 10 mL of water, and use these solutions as the standard solutions (2), (3), (4) and (5), respectively. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 3 mL each of the sample solution, the standard solutions (1), (2), (3), (4) and (5) on a plate of silica gel for thin-layer chromatography, and expose the plate to a saturated vapor of the developing solvent for 15 hours. Develop the plate with a mixture of phenol and water (3:1) to a distance of about 13 cm while without exposure to light, and dry the plate at 110°C for 5 minutes. Spray evenly ninhydrin-acetic acid TS on the plate, and heat at 110°C for 5 minutes: R_f value of each spot obtained from the sample solution is the same with R_f value of the corresponding spots from the standard solution (1). Each of the spots from the sample solution appears at the position corresponding to each of the spots from the standard solutions (2), (3) and (4), but not appears at the position corresponding to the spot from the standard solution (5).

3. A solution of Polymixin B Sulfate (1 in 20) responds to Qualitative Tests <1.09> for sulfate.

Optical rotation

$\alpha_{D}^{20} = -78 - -90^\circ$ (0.5 g calculated on the dried basis, water, 25 mL, 100 mm).

Phenylalanine

Weigh accurately about 0.375 g of Polymixin B Sulfate, dissolve in 0.1 mol/L hydrochloric acid VS to make exactly 100 mL. Determine absorbances, A_1, A_2, A_3, A_4 and A_5, of this solution at 252 nm, at 258 nm, at 264 nm, at 280 nm and at 300 nm, respectively, as directed under Ultraviolet-visible Spectrophotometry <2.52>, and calculate the amount of phenylalanine by the following equation: the amount of phenylalanine is not less than 9.0% and not more than 12.0%.

Amount (g) of phenylalanine

$$M_T = (A_2 - 0.5A_1 + 0.5A_3 - 1.8A_4 + 0.8A_5)/M_T \times 9.4787$$

Purity

Heavy metals <1.07>—Proceed with 1.0 g of Polymixin B Sulfate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

Loss on drying

<2.41> Not more than 6.0% (1 g, in vacuum, 60°C, 3 hours).

Residue on ignition

<2.44> Not more than 0.75% (1 g).

Assay

Perform the test according to the Cylinder-plate method as directed under Microbial Assay for Antibiotics <4.02> according to the following conditions.

(i) Test organism—Escherichia coli NIHJ

(ii) Agar media for seed and base layer

Peptone 10.0 g

Meat extract 3.0 g

Sodium chloride 30.0 g

Agar 20.0 g

Water 1000 mL

Mix all the ingredients, and sterilize. Adjust the pH <2.50> of the solution so that it will be 6.5 to 6.6 after sterilization.

(iii) Standard solutions—Weigh accurately an amount of Polymixin B Sulfate RS, equivalent to about 200,000 units, dissolve in phosphate buffer solution (pH 6.0) to make exactly 20 mL, and use this solution as the standard stock solution. Keep the standard stock solution at not exceeding 5°C and use within 14 days. Take exactly a suitable amount of the standard stock solution before use, add phosphate buffer solution (pH 6.0) to make solutions so that each mL contains 4000 units and 1000 units, and use these solutions as the high concentration standard solution and the low concentration standard solution, respectively.

(iv) Sample solutions—Weigh accurately an amount of Polymixin B Sulfate, equivalent to about 200,000 units, and dissolve in phosphate buffer solution (pH 6.0) to make exactly 20 mL. Take exactly a suitable amount of this solution, add phosphate buffer solution (pH 6.0) to make solutions so that each mL contains 4000 units and 1000 units, and use these solutions as the high concentration sample solution and the low concentration sample solution, respectively.

Containers and storage

Containers—Tight containers.

Storage—Light-resistant.
Polyoxyl 40 Stearate

Polyoxyl 40 Stearate is the monostearate of condensation polymers of ethylene oxide represented by the formula \(\text{H(OCH}_2\text{CH}_3\text{O)}_n\text{OCOC}_7\text{H}_3\), in which \(n \) is approximately 40.

Description Polyoxyl 40 Stearate occurs as a white to light yellow, waxy solid or powder. It is odorless or has a faint fat-like odor.

It is soluble in water, in ethanol (95) and in diethyl ether.

Congealing point <2.42> 39.0 - 44.0°C

Congealing point of the fatty acid <1.13> Not below 53°C.

Acid value <1.13> Not more than 1.

Saponification value <1.13> 25 - 35

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Polyoxyl 40 Stearate in 20 mL of water: the solution is clear and colorless.

(2) Heavy metals <1.07>—Proceed with 2.0 g of Polyoxyl 40 Stearate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(3) Arsenic <1.17>—Prepare the test solution with 0.67 g of Polyoxyl 40 Stearate, according to Method 3, and perform the test (not more than 3 ppm).

Residue on ignition <2.42> Not more than 0.1% (1 g).

Containers and storage Containers—Tight containers.

Polyisorbate 80

Polyisorbate 80 is a mixture of partial esters of fatty acids, mainly oleic acid, with sorbitol and its anhydrides ethoxylated with approximately 20 moles of ethylene oxide for each mole of sorbitol and sorbitol anhydrides.

Description Polyisorbate 80 is a colorless or brownish yellow, clear or slightly opalescent, oily liquid.

It is miscible with water, with methanol, with ethanol (99.5) and with ethyl acetate.

It is practically insoluble in fatty oils and in liquid paraffin.

Viscosity: about 400 mPa·s (25°C).

Specific gravity \(\text{d}_{20}^\circ \): about 1.10

Identification It meets the requirements of the Composition of fatty acids.

Composition of fatty acids Dissolve 0.10 g of Polyisorbate 80 in 2 mL of a solution of sodium hydroxide in methanol (1 in 50) in a 25-mL conical flask, and boil under a reflux condenser for 30 minutes. Add 2.0 mL of boron trifluoride-methanol TS through the condenser, and boil for 30 minutes. Add 4 mL of heptane through the condenser, and boil for 5 minutes. After cooling, add 10.0 mL of saturated sodium chloride solution, shake for about 15 seconds, and add a quantity of saturated sodium chloride solution such that the upper layer is brought into the neck of the flask. Collect 2 mL of the upper layer, wash with three 2-mL portions of water, dry with anhydrous sodium sulfate, and use this solution as the sample solution. Perform the test with 1 \(\mu L \) each of the sample solution and fatty acid methyl esters mixture TS as directed under Gas Chromatography <2.02> according to the following conditions. Identify each peak obtained with the sample solution using the chromatogram with fatty acid methyl esters mixture TS. Determine each peak area with the sample solution by the automatic integration method, and calculate the composition of fatty acids by the area percentage method: myristic acid is not more than 5.0%, palmitic acid is not more than 16.0%, palmitoleic acid is not more than 8.0%, stearic acid is not more than 6.0%, oleic acid is not less than 58.0%, linoleic acid is not more than 18.0% and linolenic acid is not more than 4.0%.

Operating conditions—

Detector: A hydrogen flame-ionization detector.

Column: A fused silica column 0.32 mm in inside diameter and 30 m in length, coated with polyethylene glycol 20 M for gas chromatography 0.5 µm in thickness.

Column temperature: Inject at a constant temperature of about 80°C, raise the temperature to 220°C at a rate of 10°C per minute, and maintain at 220°C for 40 minutes.

Injection port temperature: A constant temperature of about 250°C.

Detector temperature: A constant temperature of about 250°C.

Carrier gas: Helium.

Flow rate: 50 cm per second.

Split ratio: 1: 50.

System suitability—

Test for required detectability: Dissolve 0.50 g of the mixture of fatty acid methyl esters described in the following table in heptane to make exactly 50 mL, and use this solution as the solution for system suitability test. Pipet 1 mL of the solution for system suitability test add heptane to make exactly 10 mL. When the procedure is run with 1 \(\mu L \) of this solution under the above operating conditions, the SN ratio of methyl myristate is not less than 5.

<table>
<thead>
<tr>
<th>Mixture of fatty acid methyl esters</th>
<th>Composition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methyl myristate for gas chromatography</td>
<td>5</td>
</tr>
<tr>
<td>Methyl palmitate for gas chromatography</td>
<td>10</td>
</tr>
<tr>
<td>Methyl stearate for gas chromatography</td>
<td>15</td>
</tr>
<tr>
<td>Methyl arachidate for gas chromatography</td>
<td>20</td>
</tr>
<tr>
<td>Methyl oleate for gas chromatography</td>
<td>20</td>
</tr>
<tr>
<td>Methyl eicosenoate for gas chromatography</td>
<td>10</td>
</tr>
<tr>
<td>Methyl behenate</td>
<td>10</td>
</tr>
<tr>
<td>Methyl lignocerate for gas chromatography</td>
<td>10</td>
</tr>
</tbody>
</table>

System performance: When the procedure is run with 1 \(\mu L \) of the solution for system suitability test under the above operating conditions, methyl stearate and methyl oleate are eluted in this order. The resolution between these peaks is not less than 1.8, and the number of theoretical plates of the peak of methyl stearate is not less than 30,000.
Acid value <1.13> Not more than 2.0 (using ethanol (95) instead).

Saponification value Introduce about 4 g of Polysorbate 80, accurately weighed, into a 250-mL borosilicate glass flask. Add exactly 30 mL of 0.5 mol/L potassium hydroxide-ethanol VS and a few glass beads. Attach a reflux condenser, and heat for 60 minutes. Add 1 mL of phenolphthallein TS and 50 mL of ethanol (99.5), and titrate <2.50> immediately with 0.5 mol/L hydrochloric acid VS. Perform a blank determination in the same manner. Calculate the saponification value by the following equation: 45 – 55.

\[\text{Saponification value} = (a - b) \times 28.05 / M \]

\(M: \) Amount (g) of Polysorbate 80 taken
\(a: \) Volume (mL) of 0.5 mol/L hydrochloric acid VS required for blank determination
\(b: \) Volume (mL) of 0.5 mol/L hydrochloric acid VS required for sample determination

Hydroxyl value Introduce about 2 g of Polysorbate 80, accurately weighed, into a 150-mL round bottom flask, add exactly 5 mL of acetic anhydride-pyridine TS, and attach an air condenser. Heat the flask in a water bath for 1 hour keeping the level of the water about 2.5 cm above the level of the liquid in the flask. Withdraw the flask and allow to cool. Add 5 mL of water through the condenser. If a cloudiness appears add sufficient pyridine to clear it, noting the volume added. Shake the flask, and heat in the water bath for 10 minutes. Withdraw the flask and allow to cool. Rinse the condenser and the walls of the flask with 5 mL of neutralized ethanol, and titrate <2.50> with 0.5 mol/L potassium hydroxide-ethanol VS (indicator: 0.2 mL of phenolphthalain TS). Perform a blank determination in the same manner. Calculate the hydroxyl value by the following equation: 65 – 80.

\[\text{Hydroxyl value} = (a - b) \times 28.05 / M + \text{acid value} \]

\(M: \) Amount (g) of Polysorbate 80 taken
\(a: \) Volume (mL) of 0.5 mol/L potassium hydroxide-ethanol VS required for blank determination
\(b: \) Volume (mL) of 0.5 mol/L potassium hydroxide-ethanol VS required for sample determination

Purity ♦(1) Heavy metals <0.07>—Proceed with 1.0 g of Polysorbate 80 according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).♦

(2) Ethylene oxide and 1,4-dioxane—Transfer exactly 1.00 g of Polysorbate 80 into a 10-mL headspace vial, add exactly 2 mL of water, seal the vial immediately with a septum of silicon rubber coated the surface with fluoro resin and an aluminum cap. Mix carefully, and use the content as the standard solution. Perform the test with the sample solution and standard solution as directed in the head-space method under Gas Chromatography <2.02> according to the following conditions. The amounts of ethylene oxide and 1,4-dioxane, calculated by the following equations, are not more than 1 ppm and not more than 10 ppm, respectively.

\[\text{Amount (ppm) of ethylene oxide} = 2 \times C_{\text{EO}} \times A_{b} / (A_{b} - A_{a}) \]

\(C_{\text{EO}}: \) Concentration (µg/mL) of added ethylene oxide in the standard solution
\(A_{a}: \) Peak area of ethylene oxide obtained with the sample solution
\(A_{b}: \) Peak area of ethylene oxide obtained with the standard solution

\[\text{Amount (ppm) of 1,4-dioxane} = 2 \times 1.03 \times C_{D} \times A_{b} / 1000 / (A_{b} - A_{a}) \]

\(C_{D}: \) Concentration (µg/mL) of added 1,4-dioxane in the standard solution

1.03: Density (g/mL) of 1,4-dioxane
\(A_{a}: \) Peak area of 1,4-dioxane obtained with the sample solution
\(A_{b}: \) Peak area of 1,4-dioxane obtained with the standard solution

Head-space injection conditions—
Equilibration temperature in vial: A constant temperature of about 80°C.
Equilibration time in vial: 30 minutes.
Carrier gas: Helium.
Injection volume of sample: 1.0 mL.

Operating conditions—
Detector: A hydrogen flame-ionization detector.
Column: A fused silica column 0.53 mm in inside diameter and 50 m in length, coated the inside surface with 5% diphenyl-95% dimethylpolysiloxane for gas chromatography 5 µm in thickness.
Column temperature: Inject at a constant temperature of about 70°C, raise the temperature to 250°C at a rate of 10°C per minute, and maintain at 250°C for 5 minutes.
Injection port temperature: A constant temperature of about 85°C.
Detector temperature: A constant temperature of about 250°C.
Carrier gas: Helium.
Flow rate: 4.0 mL per minute.
Split ratio: 1:3.5.

System suitability—
System performance: Introduce 0.100 g of acetaldehyde in a 100-mL volumetric flask, and add water to make 100 mL. To exact 1 mL of this solution add water to make exactly 100 mL. Transfer exactly 2 mL of this solution and exactly 2 mL of ethylene oxide stock solution into a 10-mL headspace vial, seal the vial immediately with a fluoro resin coated silicon septum and an aluminum cap. Mix carefully, and use the content as the solution for system suitability test. When perform the test with ♦the standard solution and ♦the solution for system suitability test under the above conditions, acetaldehyde, ethylene oxide and 1,4-dioxane are eluted in this order, and the resolution between the peaks of acetaldehyde and ethylene oxide is not less than 2.0.

(3) Peroxide value—Introduce about 10 g of Polysorbate 80, accurately weighed, into a 100-mL beaker, dissolve in 20 mL of acetic acid (100). Add 1 mL of saturated potassium
Potash Soap

カリ石ケン

Potash Soap contains not less than 40.0% as fatty acids.

Method of preparation

<table>
<thead>
<tr>
<th>Fixed oil</th>
<th>470 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potassium Hydroxide</td>
<td>a sufficient quantity</td>
</tr>
<tr>
<td>Water, Purified Water or Purified Water in Containers</td>
<td>a sufficient quantity</td>
</tr>
</tbody>
</table>

To make 1000 g

Dissolve Potassium Hydroxide, in required quantity for saponification, in Water, Purified Water or Purified Water in Containers, add this solution to fixed oil, previously warmed, add a sufficient quantity of Ethanol if necessary, stir thoroughly, heat in a water bath, and continue the saponification. After complete saponification, add Water, Purified Water or Purified Water in Containers to make 1000 g.

Description Potash Soap occurs as a yellow-brown, transparent, unctuous, soft mass, having a characteristic odor.

It is freely soluble in water and in ethanol (95).

Purity Silicic acid and alkalinity—Dissolve 10 g of Potash Soap in 30 mL of ethanol (95), and add 0.50 mL of 1 mol/L hydrochloric acid VS; no turbidity is produced. Add 1 drop of phenolphthalein TS to this solution: no red color develops.

Assay Weigh accurately about 5 g of Potash Soap, dissolve in 100 mL of hot water, and transfer to a separator. Acidify the mixture with dilute sulfuric acid, and cool. Extract the solution with 50-mL, 40-mL, and 30-mL portions of diethyl ether. Wash the combined diethyl ether extracts with 10-mL portions of water until the washing contains no acid. Transfer the diethyl ether solution to a tared flask, evaporate diethyl ether on a water bath at a temperature as low as possible. Dry the residue at 80°C to constant mass, and weigh as fatty acids.

Containers and storage Containers—Light-resistant.

Potassium Bromide

臭化カリウム

KBr: 119.00

Potassium Bromide, when dried, contains not less than 99.0% of potassium bromide (KBr).

Description Potassium Bromide occurs as colorless or white crystals, granules or crystalline powder. It is odorless. It is freely soluble in water and in glycerin, soluble in hot ethanol (95), and slightly soluble in ethanol (95).

Identification A solution of Potassium Bromide (1 in 10) responds to Qualitative Tests (1.09) for potassium salt and for bromide.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Potassium Bromide in 3 mL of water: the solution is clear and colorless.

(2) Alkalinity—Dissolve 1.0 g of Potassium Bromide in 10 mL of water, add 0.10 mL of 0.05 mol/L sulfuric acid VS and 1 drop of phenolphthalein TS, heat to boiling, and cool: no color develops.

(3) Chloride—Make a calculation from the result obtained in the Assay: not more than 84.5 mL of 0.1 mol/L silver nitrate VS is consumed for 1 g of Potassium Bromide.

(4) Sulfate (1.14) —Proceed with 2.0 g of Potassium Bromide, and perform the test. Prepare the control solution with 1.0 mL of 0.005 mol/L sulfuric acid VS (not more than 0.024%).

(5) Iodide—Dissolve 0.5 g of Potassium Bromide in 10 mL of water, add 2 to 3 drops of iron (III) chloride TS and 1 mL of chloroform, and shake: no red-purple to purple color develops in the chloroform layer.

(6) Bromate—Dissolve 1.0 g of Potassium Bromide in 10 mL of freshly boiled and cooled water, and add 0.1 mL of potassium iodide TS, 1 mL of starch TS and 3 drops of dilute sulfuric acid. Shake the mixture gently, and allow to stand for 5 minutes: no blue color develops.

(7) Heavy metals (1.07) —Proceed with 2.0 g of Potassium Bromide according to Method 1, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(8) Barium—Dissolve 0.5 g of Potassium Bromide in 10 mL of water, add 0.5 mL of dilute hydrochloric acid and 1 mL of potassium sulfate TS, and allow to stand for 10 minutes: no turbidity is produced.

(9) Arsenic (1.11) —Prepare the test solution with 1.0 g of Potassium Bromide according to Method 1, and perform the test (not more than 2 ppm).
Loss on drying <2.4%> Not more than 1.0% (1 g, 110°C, 4 hours).

Assay Weigh accurately about 0.4 g of Potassium Bromide, previously dried, and dissolve in 50 mL of water. Add 10 mL of dilute nitric acid and exactly measured 50 mL of 0.1 mol/L silver nitrate VS, and titrate <2.50> the excess silver nitrate with 0.1 mol/L ammonium thiocyanate VS (indicator: 2 mL of ammonium iron (III) sulfate TS). Perform a blank determination in the same manner.

Each mL of 0.1 mol/L silver nitrate VS = 11.90 mg of KBr

Containers and storage Containers—Tight containers.

Potassium Canrenoate

Potassium Canrenoate, when dried, contains not less than 98.0% and not more than 102.0% of potassium canrenoate (C_{22}H_{29}KO_4).

Description Potassium Canrenoate occurs as a pale yellow-white to pale yellow-brown, crystalline powder. It is freely soluble in water, soluble in methanol, sparingly soluble in ethanol, and practically insoluble in chloroform and in diethyl ether.

Identification (1) Dissolve 2 mg of Potassium Canrenoate in 2 drops of sulfuric acid: an orange color develops. Observe under ultraviolet light (main wavelength: 365 nm): the solution shows a yellow-green fluorescence. Add 1 drop of acetic anhydride to this solution: the color of the solution changes to red.

(2) Determine the absorption spectrum of a solution of Potassium Canrenoate in methanol (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(3) Determine the infrared absorption spectrum of Potassium Canrenoate, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.23>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(4) The solution of Potassium Canrenoate (1 in 10) responds to Qualitative Tests <1.09> (1) for potassium salt.

Optical rotation <2.49> [α]_D^20 = -71 to -76° (after drying, 0.2 g, methanol, 20 mL, 100 mm).

pH <2.54> Dissolve 1.0 g of Potassium Canrenoate in 20 mL of water: the pH of this solution is between 8.4 and 9.4.

Purity (1) Clarity and color of solution—Dissolve 0.5 g of Potassium Canrenoate in 5 mL of water: the solution is clear, and shows a pale yellow to light yellow color.

(2) Heavy metals <1.07>—Proceed with 2.0 g of Potassium Canrenoate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(3) Arsenic <1.11>—Prepare the test solution with 1.0 g of Potassium Canrenoate according to Method 3, and perform the test (not more than 2 ppm).

(4) Canrenone—Place 0.40 g of Potassium Canrenoate in a glass-stoppered centrifuge tube, cool in ice-water to a temperature not higher than 5°C, add 6 mL of boric acid-potassium chloride-sodium hydroxide buffer solution (pH 10.0) being cooled to a temperature not higher than 5°C to dissolve, and add 8 mL of water being cooled to a temperature not higher than 5°C. Add exactly 10 mL of chloroform, allow to stand for 3 minutes at a temperature not higher than 5°C, shake vigorously for 2 minutes, and centrifuge. Drain off the water layer, collect 5 mL of the chloroform layer, transfer to a glass-stoppered centrifuge tube containing 3 mL of boric acid-potassium chloride-sodium hydroxide buffer solution (pH 10.0) cooled to a temperature not higher than 5°C, and 4 mL of water cooled to a temperature not higher than 5°C, shake for 1 minute, and centrifuge. Drain off the water layer, pipet 2 mL of the chloroform layer, and add chloroform to make exactly 10 mL. Determine the absorbance of this solution at 283 nm as directed under Ultraviolet-visible Spectrophotometry <2.24>: it is not more than 0.67.

Loss on drying <2.4%> Not more than 0.5% (1 g, 105°C, 4 hours).

Assay Weigh accurately about 0.2 g of Potassium Canrenoate, previously dried, dissolve in 75 mL of acetic acid (100), and titrate <2.50> with 0.1 mol/L perchloric acid VS (potentiometric titration). Use a solution of saturated potassium chloride-acetic acid (100) as the internal liquid.). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 39.66 mg of C_{22}H_{29}KO_4

Containers and storage Containers—Tight containers.

Potassium Carbonate

Potassium Carbonate, when dried, contains not less than 99.0% of potassium carbonate (K_{2}CO_3).

Description Potassium Carbonate occurs as white granules or powder. It is odorless.

It is very soluble in water, and practically insoluble in ethanol (95).

A solution of Potassium Carbonate (1 in 10) is alkaline. It is hygroscopic.

Identification A solution of Potassium Carbonate (1 in 10) responds to Qualitative Tests <1.09> for potassium salt and for carbonate.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Potassium Carbonate in 20 mL of water: the solution is clear and colorless.

(2) Heavy metals <1.07>—Dissolve 1.0 g of Potassium

C_{22}H_{29}KO_4: 396.56

Monopotassium 17-hydroxy-3-oxo-17α-pregna-4,6-diene-21-carboxylate

[2181-04-6]

Potassium Carbonate is to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
Carbonate in 2 mL of water and 6 mL of dilute hydrochloric acid, and evaporate to dryness on a water bath. Dissolve the residue in 35 mL of water and 2 mL of dilute acetic acid, dilute with water to 50 mL, and perform the test using this solution as the test solution. Prepare the control solution as follows: evaporate 6 mL of dilute hydrochloric acid on a water bath to dryness, add 2 mL of dilute acetic acid and 2.0 mL of Standard Lead Solution, and dilute with water to 50 mL (not more than 20 ppm).

(3) Sodium—Dissolve 1.0 g of Potassium Carbonate in 20 mL of water, and perform the test as directed under Flame Coloration Test (1.04) (1): no persisting yellow color is produced.

(4) Arsenic (1.17)—Prepare the test solution with 0.5 g of Potassium Carbonate, according to Method 1, and perform the test (not more than 4 ppm).

Loss on drying (2.41) Not more than 1.0% (3 g, 180°C, 4 hours).

Assay Dissolve about 1.5 g of Potassium Carbonate, previously dried and accurately weighed, in 25 mL of water, titrate with 0.5 mol/L sulfuric acid VS until the blue color of the solution changes to yellow-green, boil cautiously, then cool, and titrate (2.50) until a greenish yellow color develops (indicator: 2 drops of bromocresol green TS).

Each mL of 0.5 mol/L sulfuric acid VS

\[= 69.11 \text{ mg of K}_2\text{CO}_3\]

Containers and storage Containers—Tight containers.

Potassium Chloride

塩化カリウム

KCl: 74.55

Potassium Chloride, when dried, contains not less than 99.0% of potassium chloride (KCl).

Description Potassium Chloride occurs as colorless or white crystals or crystalline powder. It is odorless, and has a saline taste.

It is freely soluble in water, and practically insoluble in ethanol (95) and in diethyl ether.

A solution of Potassium Chloride (1 in 10) is neutral.

Identification A solution of Potassium Chloride (1 in 50) responds to Qualitative Tests (1.099) for potassium salt and for chlorides.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Potassium Chloride in 5 mL of water: the solution is clear and colorless.

(2) Acidity and alkalinity—Dissolve 5.0 g of Potassium Chloride in 50 mL of freshly boiled and cooled water, and add 3 drops of phenolphthalein TS: no red color develops. Then add 0.50 mL of 0.01 mol/L sodium hydroxide VS: a red color develops.

(3) Bromide—Dissolve 1.0 g of Potassium Chloride in water to make 100 mL. To 5 mL of the solution add 3 drops of dilute hydrochloric acid and 1 mL of chloroform, and add 3 drops of sodium toluenesulfonchloramide TS dropwise while shaking: no yellow to yellow-red color develops in the chloroform layer.

(4) Iodide—Dissolve 0.5 g of Potassium Chloride in 10 mL of water, add 3 drops of iron (III) chloride TS and 1 mL of chloroform, shake, allow to stand for 30 minutes, and shake again: no red-purple to purple color develops in the chloroform layer.

(5) Heavy metals (1.07)—Proceed with 4.0 g of Potassium Chloride according to Method 1, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 5 ppm).

(6) Calcium and magnesium—Dissolve 0.20 g of Potassium Chloride in 20 mL of water, add 2 mL of ammonia TS, 2 mL of ammonium oxalate TS and 2 mL of disodium hydrogenphosphate TS, and then allow to stand for 5 minutes: no turbidity is produced.

(7) Sodium—Dissolve 1.0 g of Potassium Chloride in 20 mL of water, and perform Flame Coloration Test (1.04) (1): no persistent, yellow color develops.

(8) Arsenic (1.17)—Prepare the test solution with 1.0 g of Potassium Chloride according to Method 1, and perform the test (not more than 2 ppm).

Loss on drying (2.41) Not more than 0.5% (1 g, 130°C, 2 hours).

Assay Weigh accurately about 0.2 g of Potassium Chloride, previously dried, dissolve in 50 mL of water, and titrate (2.50) with 0.1 mol/L silver nitrate VS while shaking vigorously (indicator: 3 drops of fluorescein sodium TS).

Each mL of 0.1 mol/L silver nitrate VS = 7.455 mg of KCl

Containers and storage Containers—Tight containers.

Potassium Clavulanate

クラブラン酸カリウム

\[\text{C}_5\text{H}_7\text{KNO}_5\cdot\text{C}_8\text{H}_8\text{NO}_3: 237.25}\]

Monopotassium (2R,5R)-3-[(1Z)-2-hydroxyethylidene]-7-oxo-4-oxa-1-azabicyclo[3.2.0]heptane-2-carboxylate [61177-45-5]

Potassium Clavulanate is the potassium salt of a substance having \(\beta\)-lactamase inhibiting activity produced by the growth of *Streptomyces clavuligerus*.

It contains not less than 810 μg (potency) and not more than 860 μg (potency) per mg, calculated on the anhydrous basis. The potency of Potassium Clavulanate is expressed as mass (potency) of clavularic acid (\(\text{C}_8\text{H}_9\text{NO}_5\cdot\text{C}_8\text{H}_8\text{NO}_3\)): 199.16.

Description Potassium Clavulanate occurs as a white to light yellow-white, crystalline powder.

It is very soluble in water, soluble in methanol, and slightly soluble in ethanol (95).

It is hygroscopic.

Identification (1) To 1 mL of a solution of Potassium Clavulanate (1 in 50,000) add 5 mL of imidazole TS, and warm in a water bath at 30°C for 12 minutes. After cooling, determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry (2.24), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Potassium Clavulanate as directed in the potassium bromide
Potassium Clavulanate responds to Qualitative Tests <1.09> (1) for potassium salt.

Optical rotation <2.49>
\[[\alpha]_D^{(l)} = +53 - +63^\circ \] (0.5 g calculated on the anhydrous basis, water, 50 mL, 100 mm).

Purity (1)
Heavy metals <1.07>—Proceed with 2.0 g of Potassium Clavulanate according to Method 2, and perform the test. Prepare the control solution with 4.0 mL of Standard Lead Solution (not more than 20 ppm).

Arsenic <1.11>—Prepare the test solution with 1.0 g of Potassium Clavulanate according to Method 3, and perform the test (not more than 2 ppm).

Related substances
Dissolve 0.10 g of Potassium Clavulanate in 10 mL of the mobile phase A, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add the mobile phase A to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine each peak area by the automatic integration method: the area of each peak other than clavulanic acid obtained from the sample solution is not larger than the peak area of clavulanic acid from the standard solution, and the total area of the peaks other than clavulanic acid from the sample solution is not larger than 2 times the peak area of clavulanic acid from the standard solution.

Operating conditions—
- **Detector:** An ultraviolet absorption photometer (wavelength: 230 nm).
- **Column:** A stainless steel column 4.6 mm in inside diameter and 10 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
- **Column temperature:** A constant temperature of about 40°C.
- **Mobile phase A:** Adjust the pH of 0.05 mol/L sodium dihydrogen phosphate TS to 4.0 with phosphoric acid.
- **Mobile phase B:** A mixture of the mobile phase A and methanol (1:1).
- **Flowing of mobile phase:** Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 4</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>4 – 15</td>
<td>100 – 0</td>
<td>0 – 100</td>
</tr>
<tr>
<td>15 – 25</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Flow rate: 1.0 mL per minute.

Time span of measurement: About 6 times as long as the retention time of clavulanic acid.

System suitability—
- **Test for required detectability:** Pipet 1 mL of the standard solution, and add the mobile phase A to make exactly 10 mL. Confirm that the peak area of clavulanic acid obtained with 20 μL of this solution is equivalent to 7 to 13% of that with 20 μL of the standard solution.
- **System performance:** Dissolve 10 mg each of Potassium Clavulanate and amoxicillin hydrate in 100 mL of the mobile phase A. When the procedure is run with 20 μL of this solution under the above operating conditions, clavulanic acid and amoxicillin are eluted in this order with the resolution between these peaks being not less than 8 and the number of theoretical plates of the peak of clavulanic acid is not less than 2500.

System repeatability: When the test is repeated 3 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of clavulanic acid is not more than 2.0%.

Water <2.48>
Not more than 1.5% (5 g, volumetric titration, direct titration).

Assay
Weigh accurately an amount of Potassium Clavulanate and Lithium Clavulanate RS, equivalent to about 12.5 mg (potency), dissolve each in 30 mL of water, add exactly 5 mL of the internal standard solution and water to make 50 mL, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with 5 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.0> according to the following conditions, and calculate the ratios, \(Q_1 \) and \(Q_2 \), of the peak area of clavulanic acid to that of the internal standard.

\[
\text{Amount [μg (potency)] of clavulanic acid (C}_4H_7NO_3) = M_S \times \frac{Q_1}{Q_2} \times 1000
\]

\(M_S \): Amount [mg (potency)] of Lithium Clavulanate RS taken

Internal standard solution—Dissolve 0.3 g of sulfanilamide in 30 mL of methanol, and add water to make 100 mL.

Operating conditions—
- **Detector:** An ultraviolet absorption photometer (wavelength: 230 nm).
- **Column:** A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
- **Column temperature:** A constant temperature of about 25°C.
- **Mobile phase:** Dissolve 1.36 g of sodium acetate trihydrate in 900 mL of water, adjust to pH 4.5 with diluted acetic acid (31) (2 in 5), and add 30 mL of methanol and water to make 1000 mL.
- **Flow rate:** Adjust so that the retention time of clavulanic acid is about 6 minutes.

System suitability—
- **System performance:** When the procedure is run with 5 μL of the standard solution under the above operating conditions, clavulanic acid and the internal standard are eluted in this order with the resolution between these peaks being not less than 4.

System repeatability: When the test is repeated 6 times with 5 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratios of the peak area of clavulanic acid to that of the internal standard is not more than 1.0%.

Containers and storage
Containers—Tight containers.
Potassium Guaiacolsulfonate

グアヤコールスルホン酸カリウム

\[
\text{C}_7\text{H}_4\text{KO}_3\text{S}: 242.29
\]

Monopotassium 4-hydroxy-3-methoxybenzenesulfonate [16241-25-1]

Potassium Guaiacolsulfonate contains not less than 98.5% of potassium guaiacolsulfonate (C$_7$H$_4$KO$_3$S), calculated on the anhydrous basis.

Description Potassium Guaiacolsulfonate occurs as white crystals or crystalline powder. It is odorless or has a slight, characteristic odor and a slightly bitter taste.

It is freely soluble in water and in formic acid, soluble in methanol, and practically insoluble in ethanol (95), in acetic anhydride and in diethyl ether.

Identification (1) To 10 mL of a solution of Potassium Guaiacolsulfonate (1 in 100) add 2 drops of iron (III) chloride TS: a blue-purple color develops.

(2) Dissolve 0.25 g of Potassium Guaiacolsulfonate in water to make 500 mL, and to 10 mL of this solution add phosphate buffer solution (pH 7.0) to make 100 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.24> and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(3) A solution of Potassium Guaiacolsulfonate (1 in 10) responds to Qualitative Tests <1.09> for potassium salt.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Potassium Guaiacolsulfonate in 20 mL of water: the pH of the solution is between 4.0 and 5.5.

Assay Weigh accurately about 0.3 g of Potassium Guaiacolsulfonate, dissolve in 2.0 mL of formic acid, add 50 mL of acetic anhydride, and titrate with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 24.23 mg of C$_7$H$_4$KO$_3$S

Containers and storage Containers—Well-closed containers.

Storage—Light-resistant.

Potassium Hydroxide

水酸化カリウム

KOH: 56.11

Potassium Hydroxide contains not less than 85.0% of potassium hydroxide (KOH).

Description Potassium Hydroxide occurs as white fused masses, in small pellets, in flakes, in sticks and in other forms. It is hard and brittle, and shows a crystalline fracture.

It is freely soluble in water and in ethanol (95), and practically insoluble in diethyl ether.

It rapidly absorbs carbon dioxide in air.

It deliquesces in the presence of moisture.

Identification (1) A solution of Potassium Hydroxide (1 in 500) is alkaline.

(2) A solution of Potassium Hydroxide (1 in 25) responds to Qualitative Tests <1.09> for potassium salt.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Potassium Hydroxide in 20 mL of water: the solution is clear and colorless.

(2) Chloride <1.07>—Dissolve 2.0 g of Potassium Hy-
dioxide in water to make 100 mL. To 25 mL of the solution add 8 mL of dilute nitric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 0.7 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.05%).

(3) Heavy metals \(<1.07\) — Dissolve 1.0 g of Potassium Hydroxide in 5 mL of water, add 7 mL of dilute hydrochloric acid, and evaporate on a water bath to dryness. Dissolve the residue in 35 mL of water, 2 mL of dilute acetic acid and 1 drop of ammonia TS, add water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution as follows: evaporate 7 mL of dilute hydrochloric acid on a water bath to dryness, dissolve the residue in 2 mL of dilute acetic acid and 3.0 mL of Standard Lead Solution, and add water to make 50 mL (not more than 30 ppm).

(4) Sodium—Dissolve 0.10 g of Potassium Hydroxide in 10 mL of dilute hydrochloric acid, and perform the test as directed under Flame Coloration Test \(<1.04\) (1): no persistent yellow color develops.

(5) Potassium carbonate—The amount of potassium carbonate (K₂CO₃; 138.21) is not more than 2.0% when calculated by the following equation using B (mL) obtained in the Assay.

\[
\text{Amount of potassium carbonate (mg)} = 138.21 \times B
\]

Assay Weigh accurately about 1.5 g of Potassium Hydroxide, and dissolve in 40 mL of freshly boiled and cooled water. Cool the solution to 15°C, add 2 drops of phenolphthalein TS, and titrate \(<2.50\) with 0.5 mol/L sulfuric acid VS until the red color of the solution disappears. Record the amount A (mL) of 0.5 mol/L sulfuric acid VS consumed, then add 2 drops of methyl orange TS, and titrate \(<2.50\) again with 0.5 mol/L sulfuric acid VS until the solution changes to a persistent light red color. Record the amount B (mL) of 0.5 mol/L sulfuric acid VS consumed.

Calculate the amount potassium hydroxide (KOH) from the amount, A (mL) — B (mL).

Each mL of 0.5 mol/L sulfuric acid VS = 56.11 mg of KOH

Containers and storage Containers—Tight containers.

Potassium Iodide

ヨウ化カリウム

KI: 166.00

Potassium Iodide, when dried, contains not less than 99.0% of potassium iodide (KI).

Description Potassium Iodide occurs as colorless or white crystals, or a white crystalline powder.

It is very soluble in water, soluble in ethanol (95), and practically insoluble in diethyl ether.

It is slightly deliquescent in moist air.

Identification A solution of Potassium Iodide (1 in 20) responds to Qualitative Tests \(<1.09\) for potassium salt and for iodide.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Potassium Iodide in 2 mL of water: the solution is clear and colorless.

(2) Alkalinity—Dissolve 1.0 g of Potassium Iodide in 10 mL of freshly boiled and cooled water, and add 0.50 mL of 0.005 mol/L sulfuric acid VS and 1 drop of phenolphthalein TS: no color develops.

(3) Chloride, bromide and thiosulfate—Dissolve 0.20 g of Potassium Iodide in 5 mL of ammonia TS, add 15.0 mL of 0.1 mol/L silver nitrate VS, shake for 2 to 3 minutes, and filter. To 10 mL of the filtrate, add 15 mL of dilute nitric acid: no brown color develops. The solution has no more turbidity than that of the following control solution.

Control solution: To 0.30 mL of 0.01 mol/L hydrochloric acid VS add 2.5 mL of ammonia TS, and 7.5 mL of 0.1 mol/L silver nitrate VS and 15 mL of dilute nitric acid.

(4) Nitrate, nitrite and ammonium—Place 1.0 g of Potassium Iodide in a 40-mL test tube, and add 5 mL of water, 5 mL of sodium hydroxide TS and 0.2 g of aluminum wire. Insert the absorbent cotton in the mouth of the test tube, and place a piece of moistened red litmus paper on it. Heat the test tube carefully on a water bath for 15 minutes: the gas evolved does not turn red litmus paper to blue.

(5) Cyanide—Dissolve 0.5 g of Potassium Iodide in 10 mL of water. To 5 mL of this solution add 1 drop of iron (II) sulfate TS and 2 mL of sodium hydroxide TS, warm, then add 4 mL of hydrochloric acid: no green color develops.

(6) Iodate—Dissolve 0.5 g of Potassium Iodide in 10 mL of freshly boiled and cooled water, and add 2 drops of dilute sulfuric acid and 1 drop of starch TS: no blue color develops immediately.

(7) Heavy metals \(<1.07\) — Proceed with 2.0 g of Potassium Iodide according to Method 1, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(8) Barium—Dissolve 0.5 g of Potassium Iodide in 10 mL of water, add 1 mL of dilute sulfuric acid, and allow to stand for 5 minutes: no turbidity is produced.

(9) Sodium—Dissolve 1.0 g of Potassium Iodide in 10 mL of water, and perform Flame Coloration Test \(<1.04\) (1): a yellow color develops, but does not persist.

(10) Arsenic \(<1.11\) — Prepare the test solution with 0.40 g of Potassium Iodide according to Method 1, and perform the test (not more than 5 ppm).

Loss on drying \(<2.41\) Not more than 1.0% (2 g, 105°C, 4 hours).

Assay Weigh accurately about 0.5 g of Potassium Iodide, previously dried, in an iodine flask, dissolve in 10 mL of water, add 35 mL of hydrochloric acid and 5 mL of chloroform, and titrate \(<2.50\) with 0.05 mol/L potassium iodate VS with shaking until the red-purple color of the chloroform layer disappears. The end point is reached when the red-purple color does not reappear in the chloroform layer within 5 minutes after the layer has been decolorized.

Each mL of 0.05 mol/L potassium iodate VS = 16.60 mg of KI

Containers and storage Containers—Tight containers.

Storage—Light-resistant.
Potassium Permanganate

Potassium Permanganate, when dried, contains not less than 99.0% of potassium permanganate (KMnO₄).

Description Potassium Permanganate occurs as dark purple crystals and has a metallic luster. It is soluble in water.

A solution of Potassium Permanganate (1 in 1000) has a slightly sweet, astringent taste.

Identification A solution of Potassium Permanganate (1 in 100) responds to Qualitative Tests <1.00> for permanganate.

Purity (1) Water-insoluble substances—Dissolve 2.0 g of Potassium Permanganate, previously powdered, in 200 mL of water. Filter the insoluble substances through a tared glass filter (G4), wash with water until the last washing shows no color, and dry at 105°C for 2 hours: the mass of the residue is not more than 4 mg.

(2) Arsenic <1.17>—Dissolve 0.40 g of Potassium Permanganate in 10 mL of water, add 1 mL of sulfuric acid, add hydrogen peroxide (30) dropwise until the solution remains colorless, and evaporate on a sand bath nearly to dryness. Dissolve the residue in 5 mL of water, and perform the test with this solution as the test solution: the color produced is not more intense than the following color standard.

Color standard: To 10 mL of water add 1 mL of sulfuric acid and the same volume of hydrogen peroxide (30) as used for the preparation of the test solution. Evaporate the solution on a sand bath nearly to dryness, add 2.0 mL of Standard Arsenic Solution and water to make 5 mL, and carry out the test with this solution in the same manner as the test solution (not more than 5 ppm).

Loss on drying <2.41> Not more than 0.5% (1 g, silica gel, 18 hours).

Assay Weigh accurately about 0.6 g of Potassium Permanganate, previously dried, dissolve in water to make exactly 200 mL, and use this solution as the sample solution. Pipet 25 mL of 0.05 mol/L oxalic acid VS into a 500-mL conical flask, add 200 mL of diluted sulfuric acid (1 in 20), and keep at a temperature between 30°C and 35°C. Transfer the sample solution to a buret. Add quickly 23 mL of the sample solution from the buret to the flask while shaking gently, and then allow the flask to stand until the red color disappears. Warm the mixture to a temperature between 55°C and 60°C, and continue the titration <2.50> slowly until the red color persists for 30 seconds.

Each mL of 0.05 mol/L oxalic acid VS

= 3.161 mg of KMnO₄

Containers and storage Containers—Tight containers.

Potassium Sulfate

Potassium Sulfate, when dried, contains not less than 99.0% of potassium sulfate (K₂SO₄).

Description Potassium Sulfate occurs as colorless crystals or a white, crystalline powder. It has a slightly saline, somewhat bitter taste. It is soluble in water and practically insoluble in ethanol (95).

Identification A solution of Potassium Sulfate (1 in 20) responds to Qualitative Tests <1.00> for potassium salt and for sulfate.

Purity (1) Clarity and color of solution, and acid or alkaline—Dissolve 1.0 g of Potassium Sulfate in 20 mL of water: the solution is clear, colorless and neutral.

(2) Chloride <1.03>—Perform the test with 0.5 g of Potassium Sulfate. Prepare the control solution with 0.40 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.028%).

(3) Heavy metals <1.07>—Proceed with 2.0 g of Potassium Sulfate according to Method 1, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(4) Sodium—Dissolve 1.0 g of Potassium Sulfate in 20 mL of water, and perform the test as directed under Flame Coloration Test <1.04> (1): no persistent yellow color develops.

(5) Arsenic <1.17>—Prepare the test solution with 0.40 g of Potassium Sulfate according to Method 1, and perform the test (not more than 5 ppm).

Loss on drying <2.41> Not more than 1.0% (1 g, 110°C, 4 hours).

Assay Weigh accurately about 0.5 g of Potassium Sulfate, previously dried, boil with 200 mL of water and 1.0 mL of hydrochloric acid, and add gradually 8 mL of boiling barium chloride TS. Heat the mixture on a water bath for 1 hour, collect the precipitate, and wash the precipitate with water until the last washing shows no opalescence on the addition of silver nitrate TS. Dry, heat strongly to constant mass between 500°C and 600°C by raising the temperature gradually, and weigh as barium sulfate (BaSO₄ × 0.7477)

Amount (mg) of potassium sulfate (K₂SO₄)

= amount (mg) of barium sulfate (BaSO₄) × 0.747

Containers and storage Containers—Well-closed containers.
Povidone

ボビドン

\[
\text{H}_2\text{N}\text{O}(\text{C}_2\text{H}_3\text{NO})_n
\]

Poly[1-(2-oxopyrrolidin-1-yl)ethylene]

This monograph is harmonized with the European Pharmacopoeia and the U.S. Pharmacopeia.

Information on the harmonization with the European Pharmacopoeia and the U.S. Pharmacopeia is available on the website of the Pharmaceuticals and Medical Devices Agency.

Povidone is a chain polymer of 1-vinyl-2-pyrrolidone.

It contains not less than 11.5% and not more than 12.8% of nitrogen (N: 14.01), calculated on the anhydrous basis.

It has a nominal K-value of not less than 10 and not more than 120.

The nominal K-value is shown on the label.

\textbf{Description} Povidone occurs as a white to slightly yellowish fine powder. It is odorless or has a faint, characteristic odor.

It is freely soluble in water, in methanol and in ethanol (99.5).

It is hygroscopic.

\textbf{Identification (1)} To 0.5 g of Povidone add 10 mL of water, and shake: it dissolves.

\textbf{(2)} Determine the infrared absorption spectrum of Povidone, previously dried at 105°C for 6 hours, as directed in the potassium bromide disk method under Infrared Spectrophotometry \<2.25\> and compare the spectrum with the Reference Spectrum or the spectrum of Povidone for Identification RS (previously dried at 105°C for 6 hours): both spectra exhibit similar intensities of absorption at the same wave numbers.

\textbf{pH} \<2.5\> Dissolve 1.0 g of Povidone in 20 mL of water: the pH of this solution is between 3.0 and 5.0 for Povidone having the nominal K-value of 30 or less, and between 4.0 and 7.0 for Povidone having the nominal K-value exceeding 30.

\textbf{Purity (1)} Clarity and color of solution—Dissolve 1.0 g of Povidone in 20 mL of water: the solution is clear and colorless to pale yellow, or pale red.

\textbf{(2)} Heavy metals \<1.07\>—Proceed with 2.0 g of Povidone according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

\textbf{(3)} Aldehydes—Weigh accurately about 1 g of Povidone and dissolve in 0.05 mol/L pyrophosphate buffer solution (pH 9.0) to make exactly 100 mL. Pipet 1 mL of this solution, add 0.05 mol/L pyrophosphate buffer solution (pH 9.0) to make exactly 100 mL, and use this solution as the standard solution. Measure exactly 0.5 mL each of the sample solution, standard solution and water, transfer to separate 1-cm cells, add 2.5 mL of 0.05 mol/L pyrophosphate buffer solution (pH 9.0) and 0.2 mL of β-nicotinamide adenine dinucleotide TS to each of these cells, mix and stopper tightly. Allow to stand for 2 to 3 minutes at 22 ± 2°C, and perform the test with these solutions as directed under Ultraviolet-visible Spectrophotometry \<2.24\> using water as the control solution. Determine the absorbances, \(A_{T_1}\), \(A_{S_1}\) and \(A_{B_1}\) of the subsequent solutions of the sample solution, the standard solution and water at 340 nm. Add 0.05 mL of aldehyde dehydrogenase TS to each of the cells, mix and stopper tightly. Allow to stand for 5 minutes at 22 ± 2°C. Determine the absorbances, \(A_{T_2}\), \(A_{S_2}\) and \(A_{B_2}\) of these solutions in the same manner as above, and calculate the content of aldehydes by the following equation: the content of aldehydes is not more than 500 ppm.

\[
\text{Content (ppm) of aldehydes } = C/M \times \left\{ \frac{(A_{T_2} - A_{T_1}) - (A_{B_2} - A_{B_1})}{(A_{S_2} - A_{S_1})} \right\} \times 100,000
\]

\(M\): Amount (g) of Povidone taken, calculated on the anhydrous basis

\(C\): Concentration (mg/mL) of aldehyde in the standard solution, using 0.72 as conversion factor for acetaldehyde ammonia trimer hydrate to acetaldehyde

\(4\) 1-Vinyl-2-pyrrolidone—Weigh accurately about 0.25 g of Povidone, dissolve in a mixture of water and acetonitrile (9:1) to make exactly 10 mL, and use this solution as the sample solution. Separately, dissolve 50 mg of 1-vinyl-2-pyrrolidone in a mixture of water and acetonitrile (9:1) to make exactly 100 mL. Pipet 1 mL of this solution and add a mixture of water and acetonitrile (9:1) to make exactly 100 mL. Pipet 5 mL of this solution, add a mixture of water and acetonitrile (9:1) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography \<2.01\> according to the following conditions, determine the peak areas, \(A_T\) and \(A_S\), of 1-vinyl-2-pyrrolidone in each solution, and calculate the content of 1-vinyl-2-pyrrolidone by the following equation: it is not more than 10 ppm.

\[
\text{Content (ppm) of 1-vinyl-2-pyrrolidone} = 1/M \times A_T/A_S \times 2.5
\]

\(M\): Amount (g) of Povidone taken, calculated on the anhydrous basis

\textbf{Operating conditions—}

Detector: An ultraviolet spectrophotometer (detection wavelength: 235 nm).

Column: Stainless steel columns 4.0 mm in inside diameter and 10 mm in length, and 4.6 mm in inside diameter and 150 mm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter), and use them as a guard column and a separation column, respectively.

Column temperature: A constant temperature of about 40°C.

Mobile phase: A mixture of water and acetonitrile (9:1). Flow rate: 1.0 mL per minutes.

\textbf{System suitability—}

System performance: Dissolve 10 mg of 1-vinyl-2-pyrrolidone and 0.5 g of vinyl acetate in 100 mL of methanol. To 1 mL of this solution add a mixture of water and acetonitrile...
(9:1) to make 100 mL. When the procedure is run with 20 μL of this solution under the above operating conditions, 1-vinyl-2-pyrrolidone and vinyl acetate are eluted in this order with the resolution between these peaks being not less than 2.0.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of 1-vinyl-2-pyrrolidone is not more than 2.0%.

(5) Peroxides—Weigh exactly an amount of Povidone, equivalent to 4.0 g calculated on the anhydrous basis, dissolve in water to make exactly 100 mL, and use this solution as the sample solution. To 25 mL of the sample solution add 2 mL of titanium (III) chloride-sulfuric acid TS, and mix. Allow to stand for 30 minutes, and perform the test with this solution as directed under Ultraviolet-visible Spectrophotometry <2.24>, using a solution prepared by adding 2 mL of diluted sulfuric acid (13 in 100) to 25 mL of the sample solution as a blank: the absorbance of the solution at 405 nm is not more than 0.35 (not more than 400 ppm, expressed as hydrogen peroxide).

(6) Hydrazine—Weigh exactly an amount of Povidone equivalent to 2.5 g calculated on the anhydrous basis, transfer to a 50-mL centrifuge tube, add 25 mL of water, and stir to dissolve. Add 500 μL of a solution of salicylaldazine in methanol (1 in 20), stir and warm at 60°C for 15 minutes in a water bath. Allow to cool, add 2.0 mL of toluene, stopper tightly, shake vigorously for 2 minutes, centrifuge, and use the upper layer of the mixture as the sample solution. Separately, dissolve 90 mg of salicylaldazine in toluene to make exactly 100 mL. Pipet 1 mL of this solution, add toluene to make exactly 100 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.67>. Spot 10 μL each of the sample solution and standard solution on a plate of dimethylsilanized silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of methanol and water (2:1) to a distance of about three-fourths of the length of the plate, and air-dry the plate. Examine under ultraviolet light (main wavelength: 365 nm): the fluorescence of the spot obtained from the sample solution corresponding to the spot having a Rf value of about 0.3 from the standard solution is not more intense than that of the spot from the standard solution (not more than 1 ppm).

(7) Formic acid—Weigh accurately about 2 g of Povidone, dissolve in water to make exactly 100 mL, and use this solution as the sample stock solution. Transfer a strongly acidic ion exchange resin (H type) for column chromatography previously suspended in water to a column of about 8 mm in inside diameter to give a packing depth of about 20 mm in length, and keep the resin layer constantly immersed in water. Pour 5 mL of water to the column, and adjust the flow rate about 1 mL per minute. When the level of the water comes down to near the top of the resin layer, put the sample stock solution into the column, discard the first 2 mL of the eluent, take 1.5 mL of the subsequent eluent, and use this solution as the sample solution. Separately, weigh accurately about 0.1 g of formic acid, dissolve in water to make exactly 100 mL. Pipet 1 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 50 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions, and determine the peak areas, A1 and A5, of formic acid in each solution. Calculate the content of formic acid by the following equation: it is not more than 0.5%.

Content of formic acid(%) = $M_z/M_x \times A_1/A_5$

M_z: Amount (g) of formic acid taken
M_x: Amount (g) of Povidone taken, calculated on the anhydrous basis

Operating conditions

- Detector: An ultraviolet absorption photometer (wavelength: 210 nm).
- Column: A stainless steel column 7.8 mm in inside diameter and 300 mm in length, packed with strongly acidic ion exchange resin for liquid chromatography (9 μm in particle diameter).
- Column temperature: A constant temperature of about 35°C.
- Mobile phase: Diluted perchloric acid (1 in 700).
- Flow rate: 1.0 mL per minute.

System suitability

- System performance: When the procedure is run with 50 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of formic acid are not less than 1000 and 0.5 to 1.5, respectively.
- System repeatability: When the test is repeated 6 times with 50 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of formic acid is not more than 2.0%.

(8) 2-Pyrrolidone—Weigh accurately about 0.5 g of Povidone, dissolve in a mixture of water and methanol for liquid chromatography (19:1) to make exactly 100 mL, and use this solution as the sample solution. Separately, dissolve 0.150 g of 2-pyrrolidone in a mixture of water and methanol for liquid chromatography (19:1) to make exactly 100 mL. Pipet 2 mL of this solution, add a mixture of water and methanol for liquid chromatography (19:1) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 50 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions, and determine the peak areas, A1 and A5, of 2-pyrrolidone in each solution. Calculate the content of 2-pyrrolidone by the following equation: not more than 3.0%.

Content (%) of 2-pyrrolidone = $1/M \times A_1/A_5 \times 0.3$

M: The amount (g) of Povidone taken, calculated on the anhydrous basis

Operating conditions

- Detector: An ultraviolet absorption photometer (wavelength: 205 nm).
- Column: Stainless steel columns 4.0 mm in inside diameter and 10 mm in length, and 4.6 mm in inside diameter and 150 mm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter), and use them as a guard column and a separation column, respectively.
- Column temperature: A constant temperature of about 40°C.
- Mobile phase: A mixture of water and methanol for liquid chromatography (19 : 1).
- Flow rate: 0.8 mL per min.

System suitability

- System performance: When the procedure is run with 50 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of 2-pyrrolidone are not less than 5000 and not more than 1.5, respectively.
- System repeatability: When the test is repeated 6 times...
with 50 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of 2-pyrrolidone is not more than 2.0%.

Water \(\leq 2.4\% \) Not more than 5.0% (0.5 g, volumetric titration, direct titration).

Residue on ignition \(\leq 2.4\% \) Not more than 0.1% (1 g).

K-value Weigh accurately an amount of Povidone, calculated on the anhydrous basis, specified in the table below according to the nominal K-value, dissolve in water to make exactly 100 mL, allow to stand for 60 minutes, and use this solution as the sample solution. Perform the test with the sample solution and with water at 25°C as directed in Method 1 under Viscosity Determination \(\leq 2.5\% \), and calculate the K-value by the following formula.

\[
K = \frac{1.5 \log v_{rel} - 1}{0.15 + 0.003 c} + \frac{300 c \log v_{rel} + (c + 1.5 c \log v_{rel})^2}{0.15 c + 0.003 c^2} \\
\]

\(c \): Mass (g) of Povidone in 100 mL of the solution, calculated on the anhydrous basis

\(v_{rel} \): Kinematic viscosity of the sample solution relative to that of water

<table>
<thead>
<tr>
<th>Nominal K-value</th>
<th>Amount (g) calculated on anhydrous basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not more than 18</td>
<td>5.00</td>
</tr>
<tr>
<td>More than 18 and not more than 95</td>
<td>1.00</td>
</tr>
<tr>
<td>More than 95</td>
<td>0.10</td>
</tr>
</tbody>
</table>

The K-value is not less than 85% and not more than 115.0% of the nominal K-value when the nominal K-value is not more than 15, and the K-value is not less than 90.0% and not more than 108.0% of the nominal K-value when the nominal K-value is more than 15.

Assay Weigh accurately about 0.1 g of Povidone, and place in a Kjeldahl flask. Add 5 g of a decomposition accelerator (a powdered mixture of 33 g of potassium sulfate, 1 g of copper (II) sulfate pentahydrate and 1 g of titanium (IV) oxide), and wash down any adhering sample from the neck of the flask with a small amount of water. Add 7 mL of sulfuric acid allowing to flow down the inside wall of the flask. Heat the flask gradually over a free flame until the solution has a clear, yellow-green color and the inside wall of the flask is free from a carbonaceous material, and then heat for further 45 minutes. After cooling, add cautiously 20 mL of water, and connect the flask to the distillation apparatus previously washed by passing steam through it. To the absorption flask add 30 mL of a solution of boric acid (1 in 25), 3 drops of bromocresol green-methyl red TS and sufficient water to immerse the lower end of the condenser tube. Add 30 mL of a solution of sodium hydroxide (2 in 5) through the funnel, rinse cautiously the funnel with 10 ml of water, immediately close the clamp attached to the rubber tube, then start the distillation with steam to get 80 to 100 mL of the distillate. Remove the absorption flask from the lower end of the condenser tube, rinsing the end part with a small quantity of water, and titrate \(\leq 2.5\% \) the distillate with 0.025 mol/L sulfuric acid VS until the color of the solution changes from green through pale grayish blue to pale grayish red-purple. Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.025 mol/L sulfuric acid VS = 0.700 mg of N

Povidone-Iodine is a complex of iodine with 1-vinyl-2-pyrrolidone polymer.

It contains not less than 9.0% and not more than 12.0% of available iodine (I: 126.90), and not less than 9.5% and not more than 11.5% of nitrogen (N: 14.01), calculated on the dried basis.

Description Povidone-Iodine occurs as a dark red-brown powder. It has a faint, characteristic odor.

It is freely soluble in water and in ethanol (99.5).

The pH of a solution obtained by dissolving 1.0 g of Povidone-Iodine in 100 mL of water is between 1.5 and 3.5.

Identification (1) To 10 mL of diluted starch TS (1 in 10) add 1 drop of a solution of Povidone-Iodine (1 in 10): a deep blue color develops.

(2) To 1 mL of a solution of Povidone-Iodine (1 in 100) add 1 mL of sodium thiosulfate TS, and add 1 mL of ammonium thiocyanate-cobalt (II) nitrate TS and 2 drops of 1 mol/L hydrochloric acid TS: a blue color develops, and a blue precipitate is gradually formed.

Purity (1) Clarity and color of solution—Dissolve 0.30 g of Povidone-Iodine in 100 mL of water: the solution is clear and brown.

(2) Heavy metals \(\leq 1.0\% \)—Proceed with 1.0 g of Povidone-Iodine according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(3) Arsenic \(\leq 1.1\% \)—Prepare the test solution with 1.0 g of Povidone-Iodine according to Method 4, and perform the test (not more than 2 ppm).

(4) Iodide ion—Weigh accurately about 0.5 g of Povidone-Iodine, dissolve in 100 mL of water, and add sodium hydrogensulfite TS until the color of iodine completely disappears. To this solution add exactly 25 mL of 0.1 mol/L silver nitrate VS, shake thoroughly with 10 mL of nitric acid, titrate \(\leq 2.5\% \) the excess silver nitrate with 0.1 mol/L ammonium thiocyanate VS until the solution develops a red-brown color, and calculate the total amount of iodine (indicator: 1 mL of ammonium iron (III) sulfate TS). Perform a blank determination in the same manner.

Each mL of 0.1 mol/L ammonium thiocyanate VS = 12.69 mg of I

Obtain the amount of iodide ion, calculated on the dried basis, by deducting the amount (%) of available iodine from the total amount (%) of iodine: not more than 6.6%.

Loss on drying \(\leq 2.4\% \) Not more than 8.0% (1 g, 100°C, 3 hours).

Residue on ignition \(\leq 2.4\% \) Not more than 0.05% (5 g).
Pranlukast Hydrate

プランルカスト水和物

C₂₇H₃₂N₂O₄·½H₂O: 490.51
N-[4-Oxo-2-(1H-tetrazol-5-yl)-4H-chromen-8-yl]-4-(4-phenylbutyloxy)benzamide hemihydrate

Pranlukast Hydrate contains not less than 98.0% and not more than 101.0% of pranlukast (C₂₇H₃₂N₂O₄: 481.50), calculated on the anhydrous basis.

Description

Pranlukast Hydrate occurs as a white to light yellow crystalline powder.

It is very slightly soluble in ethanol (99.5), and practically insoluble in water.

Melting point: about 233°C (with decomposition).

Identification (1)

Determine the absorption spectrum of a solution of Pranlukast Hydrate in ethanol (99.5) (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Pranlukast RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Pranlukast Hydrate as directed in the potassium bromide disk and use this solution as the sample solution.

Purity (1)

Heavy metals <1.07>—Suspend 1.0 g of Pranlukast Hydrate in 10 mL of N,N-dimethylformamide, proceed according to Method 4, and perform the test. Prepare the control solution with 10 mL of N,N-dimethylformamide in the same manner as preparation of the test solution, and add 2.0 mL of Standard Lead Solution (not more than 20 ppm).

Arsenic <1.11>—Suspend 1.0 g of Pranlukast Hydrate in 10 mL of N,N-dimethylformamide, then proceed according to Method 4, and perform the test (not more than 2 ppm).

Related substances—Dissolve 20 mg of Pranlukast Hydrate in 50 mL of a mixture of acetonitrile and dimethylsulfoxide (3:1), and use this solution as the sample solution.

Assay (1)

Available iodine—Weigh accurately about 0.5 g of Povidone-Iodine, dissolve in 30 mL of water, and titrate <2.50> with 0.02 mol/L sodium thiosulfate VS (indicator: 2 mL of starch TS).

Each mL of 0.02 mol/L sodium thiosulfate VS = 2.538 mg of I

(2) Nitrogen—Weigh accurately about 20 mg of Povidone-Iodine, and perform the test as directed under Nitrogen Determination <1.08>.

Containers and storage

Containers—Tight containers.

Pipet 1 mL of the sample solution, add a mixture of acetonitrile and dimethylsulfoxide (3:1) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 µL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area by the automatic integration method: the area of the peak, having the relative retention time about 1.5 to pranlukast, obtained from the sample solution is not larger than 1/2 times that of pranlukast from the standard solution, the area of the peak other than pranlukast and the peak mentioned above from the sample solution is not larger than 1/5 times that of pranlukast from the standard solution, and the total area of the peaks other than pranlukast from the sample solution is not larger than the peak area of pranlukast from the standard solution.

Operating conditions

Detector: An ultraviolet absorption photometer (wavelength: 260 nm).

Column: A stainless steel column 6 mm in inside diameter and 15 cm in length, packed with octysilsilizated silica gel for
Pranoprofen

プラノプロフェン

C₁₅H₁₈NO₃: 255.27

(2RS)-2-(10H-9-Oxa-1-azaanthracen-6-yl)propanoic acid [52549-17-4]

Pranoprofen, when dried, contains not less than 98.5% of pranoprofen (C₁₅H₁₈NO₃).

Description
Pranoprofen occurs as a white to pale yellow-white crystalline powder.
It is freely soluble in N,N-dimethylformamide, soluble in acetic acid (100), sparingly soluble in methanol, slightly soluble in acetonitrile, in ethanol (95) and in acetic anhydride, very slightly soluble in diethyl ether, and practically insoluble in water.

A solution of Pranoprofen in N,N-dimethylformamide (1 in 30) shows no optical rotation.

Identification (1)
Dissolve 0.02 g of Pranoprofen in 1 mol/L hydrochloric acid TS to make 100 mL, and dilute 10 mL of the solution with water to make 100 mL. Determine the absorption spectrum of the solution as directed under Ultraviolet-visible Spectrophotometry (2.24), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Pranoprofen as directed in the potassium bromide disk method under Infrared Spectrophotometry (2.25), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point
186 – 190°C

Purity (1)
Chloride
Dissolve 0.5 g of Pranoprofen in 40 mL of methanol, and 6 mL of dilute nitric acid, and add water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution as follows. To 0.30 mL of 0.01 mol/L hydrochloric acid VS add 40 mL of methanol, 6 mL of dilute nitric acid and water to make 50 mL (not more than 0.021%).

(2) Heavy metals
Proceed with 2.0 g of Pranoprofen according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of the Standard Lead Solution (not more than 10 ppm).

(3) Related Substances
Dissolve 50 mg of Pranoprofen in 50 mL of the mobile phase, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add the mobile phase to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography (2.07) according to the following conditions. Determine each peak area from both solutions by the automatic integration method: the each area of the peaks other than pranoprofen obtained from the sample solution is not larger than the peak area of pranoprofen from the standard solution, and the total peak area of them is not larger than 2 times the peak area of pranoprofen from the standard solution.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 275 nm).
Column: A stainless steel column about 6 mm in inside diameter and about 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase: Dissolve 7.02 g of sodium perchlorate monohydrate in 1000 mL of water, and adjust the pH to 2.5 with perchloric acid. To 2 volumes of this solution add 1 volume of acetonitrile.
Flow rate: Adjust so that the retention time of pranoprofen is about 10 minutes.
Selection of column: Dissolve 4 mg each of Pranoprofen and ethyl parahydroxybenzoate in 200 mL of the mobile phase. Proceed with 10 μL of this solution under the above operating conditions, and calculate the resolution. Use a column giving elution of pranoprofen and ethyl parahydroxybenzoate in this order with the resolution between these peaks being not less than 2.1.
Detection sensitivity: Adjust the detection sensitivity so that the peak height of pranoprofen obtained from 10 μL of the standard solution is between 10 mm and 20 mm.
Time span of measurement: About three times as long as the retention time of pranoprofen.

Loss on drying (2.47)
Not more than 0.5% (1 g, in vacuum, phosphorus (V) oxide, 4 hours).

Residue on ignition (2.44)
Not more than 0.1% (1 g).

Assay
Weigh accurately about 0.4 g of Pranoprofen, previously dried, dissolve in 70 mL of a mixture of acetic anhydride and acetic acid (100) (7:3), and titrate 2.300 with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 25.53 mg of C₁₅H₁₈NO₃
Prasterone Sodium Sulfate Hydrate
プラステロン硫酸エステルナトリウム水和物

C₃₈H₅₃NaO₇S·2H₂O: 426.50
Monosodium 17-oxandrost-5-en-3β-yl sulfate dihydrate [1099-87-2, anhydride]

Sodium Prasterone Sulfate Hydrate contains not less than 98.0% of prasterone sodium sulfate (C₁₉H₂₇NaO₅S: 390.47), calculated on the dried basis.

Description Prasterone Sodium Sulfate Hydrate occurs as white crystals or crystalline powder. It is odorless.

It is soluble in methanol, sparingly soluble in water and in ethanol (95), and practically insoluble in acetone and in diethyl ether.

The pH of a solution of 1.0 g of Prasterone Sodium Sulfate Hydrate in 200 mL of water is between 4.5 and 6.5.

Melting point: about 160°C (with decomposition, after drying).

Identification
1. Dissolve 0.01 g of Prasterone Sodium Sulfate Hydrate in 4 mL of ethanol (95), add 2 mL of 1,3-dinitrobenzene TS and 2 mL of a solution of sodium hydroxide (1 in 8): a red-purple color develops, and gradually changes to brown.

2. To 10 mL of a solution of Prasterone Sodium Sulfate Hydrate (1 in 200) add 0.5 mL of bromine TS: the color of bromine TS immediately disappears.

3. Determine the infrared absorption spectrum of Prasterone Sodium Sulfate Hydrate as directed in the potassium bromide disk method under the Infrared Spectrophotometry 2.25*, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

4. A solution of Prasterone Sodium Sulfate Hydrate (1 in 200) responds to Qualitative Tests 1.09* for sodium salt.

Optical rotation 2.24\% [α]D \(=\) +10.7° – +12.1° (0.73 g calculated on the dried basis, methanol, 20 mL, 100 mm).

Purity
1. Clarity and color of solution—Dissolve 0.25 g of Prasterone Sodium Sulfate Hydrate in 50 mL of water: the solution is clear and colorless.

2. Chloride 1.07*—Dissolve 1.0 g of Prasterone Sodium Sulfate Hydrate in 20 mL of acetone and 20 mL of water, and add 6 mL of dilute nitric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution as follows: to 0.30 mL of 0.01 mol/L hydrochloric acid VS add 20 mL of acetone, 6 mL of dilute nitric acid and water to make 50 mL (not more than 0.011%).

3. Sulfate 1.14*—To 1.2 g of Prasterone Sodium Sulfate Hydrate add 20 mL of water, shake vigorously for 5 minutes, and filter. To 10 mL of the filtrate add 20 mL of acetone, 1 mL of dilute hydrochloric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution as follows: to 0.40 mL of 0.005 mol/L sulfuric acid VS add 20 mL of acetone, 1 mL of dilute hydrochloric acid and water to make 50 mL (not more than 0.032%).

(4) Heavy metals 1.07*—Proceed with 2.0 g of Prasterone Sodium Sulfate Hydrate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(5) Related substances—Dissolve 0.10 g of Prasterone Sodium Sulfate Hydrate in 10 mL of methanol, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add methanol to make exactly 200 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography 2.05*. Spot 5 μL of each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of chloroform, methanol and water (75:22:3) to a distance of about 10 cm, and air-dry the plate. Spray evenly a mixture of sulfuric acid and ethanol (95) (1:1) on the plate, and heat the plate at 80°C for 5 minutes: the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying 2.41* 8.0 – 9.0% (0.5 g, in vacuum, phosphorus (V) oxide, 60°C, 3 hours).

Assay Weigh accurately about 0.25 g of Prasterone Sodium Sulfate Hydrate, dissolve in 30 mL of water. Apply this solution to a chromatographic column 10 mm in inside diameter, previously prepared by pouring 5 mL of strongly acidic ion-exchange resin (H type) for column chromatography, and elute at the rate of 4 mL per minute. Wash the chromatographic column with 100 mL of water, combine the washings with above effluent solution, and titrate 2.50* with 0.05 mol/L sodium hydroxide VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.05 mol/L sodium hydroxide VS = 19.52 mg of C₁₉H₂₇NaO₅S.

Containers and storage Containers—Tight containers.

Pravastatin Sodium
プラバスタチンナトリウム

C₂₃H₃₂NaO₅·H₂O: 446.51
Monosodium (3R,5R)-3,5-dihydroxy-7-[(1S,2S,6S,8S,8αR)-6-hydroxy-2-methyl-8-[2(5S)-2-methylbutanoyloxy]-1,2,6,7,8,8α-hexahydropyran-1-ylheptanoate [81131-70-6]

Pravastatin Sodium contains not less than 98.5% and not more than 101.0% of pravastatin sodium (C₂₃H₃₂NaO₅), calculated on the anhydrous and residual solvent-free basis.

Description Pravastatin Sodium occurs as a white to yellowish white, powder or crystalline powder.

It is freely soluble in water and in methanol, and soluble in ethanol (99.5).

It is hygroscopic.
Identification (1) Determine the absorption spectrum of a solution of Pravastatin Sodium (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.49>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Pravastatin Sodium as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25> : it exhibits absorption at the wave numbers of about 2970 cm⁻¹, 2880 cm⁻¹, 1727 cm⁻¹ and 1578 cm⁻¹.

(3) Dissolve 50 mg of Pravastatin Sodium in 5 mL of methanol, and use this solution as the sample solution. Separately, dissolve 24 mg of Pravastatin 1,1,3,3-Tetramethylbutylammonium RS in 2 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.05> . Spot 2 µL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate, ethanol (99.5) and acetic acid (100) (80:16:1) to a distance of about 8 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the color tone and the Rf value of the principal spot obtained from the sample solution are not different with them of the spot from the standard solution.

(4) A solution of Pravastatin Sodium (1 in 10) responds to Qualitative Tests <1.09> (1) for sodium salt.

Optical rotation <2.49> [α]D: +153 – +159° (0.1 g calculated on the anhydrous and residual solvent-free basis, water, 20 mL, 100 nm).

pH <2.54> The pH of a solution obtained by dissolving 1.0 g of Pravastatin Sodium in 20 mL of freshly boiled and cooled water is between 7.2 and 8.2.

Purity (1) Heavy metals <1.07>—Proceed with 1.0 g of Pravastatin Sodium according to Method 2, and perform the test. Prepare the control solution with 1.0 mL of Standard Lead Solution (not more than 10 ppm). The assay consists of 10 mL of this solution.

(2) Related substances—Dissolve 0.10 g of Pravastatin Sodium in 100 mL of a mixture of water and methanol (11:9), and use this solution as the sample solution. Pipet 10 mL of the sample solution, add the mixture of water and methanol (11:9) to make exactly 100 mL. Pipet 5 mL of this solution, add the mixture of water and methanol (11:9) to make exactly 100 mL, and use this solution as the standard solution. Performed the test with exactly 10 µL of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak area of pravastatin obtained with 10 µL of the sample solution. Perform the test with 10 µL of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak area of pravastatin obtained.

Amount (mg) of pravastatin sodium (C28H32NaO6) = M₅ × Q₁ / Q₅ × 4 × 1.052

M₅: Amount (mg) of pravastatin in taken Pravastatin 1,1,3,3-Tetramethylbutylammonium RS, calculated on the anhydrous basis

Internal standard solution—A solution of ethyl parahydroxybenzoate in the mixture of water and methanol (11:9) (3 in 4000).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 238 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadeccylsilaized silica gel for liquid chromatography (5 µm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: A mixture of water, methanol, acetic acid (100) and triethylamine (500:450:1:1).

Flow rate: Adjust so that the retention time of pravastatin is about 21 minutes.

System suitability—

System performance: When the procedure is run with 10 µL of the standard solution under the above operating conditions, the internal standard and pravastatin are eluted in this order with the resolution between these peaks being not less than 10.

System repeatability: When the test is repeated 6 times with 10 µL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of pravastatin to that of the internal standard is about 2%.
the peak area of pravastatin to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Tight containers.

Pravastatin Sodium Fine Granules
プラバスタチンナトリウム細粒

Pravastatin Sodium Fine Granules contain not less than 95.0% and not more than 105.0% of the labeled amount of pravastatin sodium (C₂₃H₃₅NaO₇: 446.51).

Method of preparation Prepare as directed under Granules, with Pravastatin Sodium.

Identification To an amount of Pravastatin Sodium Fine Granules, equivalent to 10 mg of Pravastatin Sodium, add 20 mL of water, sonicate for 15 minutes, and centrifuge. Filter the supernatant liquid, discard the first 5 mL of the filtrate, and add water to 1 mL of the subsequent filtrate to make 50 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry. \(\lambda_{	ext{max}}: 224, 2.24\) >; \(\lambda_{	ext{max}}: 238, 2.48\) >; \(\lambda_{	ext{max}}: 241, 2.01\) >.

Purity Related substances—The sample solution and the standard solution are stored at not exceeding 5°C after preparation. To an amount of Pravastatin Sodium Fine Granules, equivalent to 25 mg of Pravastatin Sodium, add 25 mL of a mixture of water and methanol (1:1), sonicate for 15 minutes, and centrifuge. Filter the supernatant liquid, discard the first 5 mL of the filtrate, and use the subsequent filtrate as the sample solution. Pipet 1 mL of the sample solution, add a mixture of water and methanol (1:1) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 \(\mu\)L each of the sample solution and standard solution as directed under Liquid Chromatography. \(t_{\text{R}}\) of pravastatin is not more than 4.5 times the peak area of pravastatin from the sample solution is not larger than 1/2 times and 3 times the area of the peaks, having the relative retention time of about 0.36 and about 1.9, and the peaks mentioned above from the sample solution is not larger than 1/5 times the peak area of pravastatin from the standard solution, respectively, the area of the peak other than pravastatin and the peaks mentioned above from the sample solution is not larger than 1/5 times the peak area of pravastatin from the standard solution, and the total area of the peaks other than pravastatin from the sample solution is not larger than 4.5 times the peak area of pravastatin from the standard solution. For the area of the peaks, having the relative retention time of about 0.28, about 0.36 and about 0.88, multiply their correction factors, 1.16, 1.72 and 1.22, respectively.

Operating conditions—
Detector: An ultraviolet spectrophotometer (wavelength: 238 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilylized silica gel for liquid chromatography (5 \(\mu\)m in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase A: A mixture of water, methanol, acetic acid (100) and triethylamine (750:250:1:1).
Mobile phase B: A mixture of methanol, water, acetic acid (100) and triethylamine (650:350:1:1).
Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>50 - 75</td>
<td>50 (\rightarrow) 0</td>
<td>50 (\rightarrow) 100</td>
</tr>
</tbody>
</table>

Flow rate: 1.3 mL per minute.
Time span of measurement: For 75 minutes after injection, beginning after the solvent peak.

System suitability—
Test for required detectability: To exactly 1 mL of the standard solution add a mixture of water and methanol (1:1) to make exactly 10 mL. Confirm that the peak area of pravastatin obtained with 20 \(\mu\)L of this solution is equivalent to 7 to 13% of that with 20 \(\mu\)L of the standard solution.
System performance: When the procedure is run with 20 \(\mu\)L of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of pravastatin are not less than 3500 and not more than 1.6, respectively.
System repeatability: When the test is repeated 6 times with 20 \(\mu\)L of the standard solution under the above operating conditions, the relative standard deviation of the peak area of pravastatin is not more than 1.5%.

Uniformity of dosage units \(<6.02>\) Perform the test according to the following method: the Pravastatin Sodium Fine Granules in single-dose packages meet the requirement of the Content uniformity test.

To the total amount of the content of 1 package of Pravastatin Sodium Fine Granules add exactly \(V\) mL of the internal standard solution so that each mL contains 0.25 mg of pravastatin sodium (C₂₃H₃₅NaO₇), sonicate for 15 minutes, and centrifuge. Filter the supernatant liquid, discard the first 5 mL of the filtrate, pipet 2 mL of the subsequent filtrate add a mixture of water and methanol (1 in 1) to make 20 mL, and use this solution as the sample solution. Then, proceed as directed in the Assay.

Amount (mg) of pravastatin sodium (C₂₃H₃₅NaO₇) \(= M_r \times \frac{Q_1}{Q_2} \times V \times 100 \times 1.052\)

\(M_r\): Amount (mg) of pravastatin in taken Pravastatin 1,1,3,3-Tetramethylbutylammonium RS, calculated on the anhydrous basis

Internal standard solution—A solution of propyl parahydroxybenzoate in a mixture of water and methanol (1:1) (3 in 10,000).

Dissolution \(<6.10>\) When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 15 minutes of Pravastatin Sodium Fine Granules is not less than 80%.

Start the test with an accurately weighed amount of Pravastatin Sodium Fine Granules, equivalent to about 5 mg of pravastatin sodium (C₂₃H₃₅NaO₇), withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 \(\mu\)m. Discard not less than 10 mL of the first filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 23 mg of Pravastatin 1,1,3,3-Tetramethylbutylammonium RS (separately determine the water \(<2.48>\) in the same manner as Pravastatin Sodium), and dissolve in water to make exactly 100 mL. Pipet 3 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution.
Determine the absorbances, \(A_{11} \) and \(A_{45}, \) at 238 nm and \(A_{12} \) and \(A_{43} \) at 265 nm of the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry <2.24>.

\[
\text{Dissolution rate} \% = \frac{M_S}{M_T} \times \left(\frac{A_{11} - A_{12}}{A_{41} - A_{42}}\right) \times \frac{1}{C} \times 27 \times 0.806
\]

\(M_S: \) Amount (mg) of Pravastatin 1,1,3,3-Tetramethylbutylammonium RS taken, calculated on the anhydrous basis

\(M_T: \) Amount (g) of Pravastatin Sodium Fine Granules taken

\(C: \) Labeled amount (mg) of pravastatin sodium \((C_{32}H_{32}NaO_7)\) in 1 g

Assay

Weigh accurately an amount of Pravastatin Sodium Fine Granules, equivalent to about 5 mg of pravastatin sodium \((C_{32}H_{32}NaO_7),\) add exactly 20 mL of the internal standard solution, sonicate for 15 minute, and centrifuge. Filter the supernatant liquid, discard the first 5 mL of the filtrate, to 2 mL of the subsequent filtrate add a mixture of water and methanol \((1:1)\) to make 20 mL, and use this solution as the sample solution. Separately, weigh accurately about 32 mg of Pravastatin 1,1,3,3-Tetramethylbutylammonium RS (separately determine the water <2.49> in the same manner as Pravastatin Sodium), and dissolve in a mixture of water and methanol \((1:1)\) to make exactly 100 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution, then add a mixture of water and methanol \((1:1)\) to make 50 mL, and use this solution as the standard solution. Perform the test with 10 \(\mu L \) each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions, and calculate the ratios, \(Q_1 \) and \(Q_2, \) of the peak area of pravastatin to that of the internal standard.

\[
\text{Amount (mg) of pravastatin sodium} \ (C_{32}H_{32}NaO_7) = M_S \times Q_1/Q_2 \times 1/5 \times 1.052
\]

\(M_S: \) Amount (mg) of pravastatin in taken Pravastatin 1,1,3,3-Tetramethylbutylammonium RS, calculated on the anhydrous basis

Internal standard solution—A solution of propyl parahydroxybenzoate in a mixture of water and methanol \((1:1)\) (3 in 10,000).

Operating conditions—

Proceed as directed in the operating conditions in the Assay under Pravastatin Sodium.

System suitability—

System performance: When the procedure is run with 10 \(\mu L \) of the standard solution under the above operating conditions, the internal standard and pravastatin are eluted in this order with the resolution between these peaks being not less than 4.

System repeatability: When the test is repeated 6 times with 10 \(\mu L \) of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of pravastatin to that of the internal standard is not more than 1.0%.

Containers and storage—Containers—Well-closed containers.

Pravastatin Sodium Solution

プラバスタチンナトリウム液

Pravastatin Sodium Solution contains not less than 95.0% and not more than 105.0% of the labeled amount of pravastatin sodium \((C_{32}H_{32}NaO_7): \) 446.51).

Method of preparation—Prepare as directed under Liquids and Solutions for Oral Administration, with Pravastatin Sodium.

Identification—Pass a volume of Pravastatin Sodium Solution, equivalent to 1 mg of Pravastatin Sodium, through a column \([5.5 \text{ mm in inside diameter}, \) packed with 30 mg of divinylbenzene-N-vinyl pyrrolidone copolymer for column chromatography \((30 \mu \text{m in particle size})\), and washed with 1 mL of methanol and 1 mL of water. Then wash with 1 mL of water, and elute with 1 mL of methanol. To 0.1 mL of the eluate add water to make 10 mL, and determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.24>; it exhibits a maximum between 237 nm and 241 nm.

pH—Being specified separately when the drug is granted approval based on the Law.

Purity—Related substances—The sample solution and the standard solution are stored at not exceeding 15°C after preparation. To a volume of Pravastatin Sodium Solution, equivalent to 2 mg of Pravastatin Sodium, add a mixture of methanol and water \((5:3)\) to make 10 mL, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add a mixture of water and methanol \((1:1)\) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 \(\mu L \) each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions. Determine each peak area of both solutions by the automatic integration method: the area of the peaks, having the relative retention time about 0.24 and about 0.85 to pravastatin, obtained from the sample solution is not larger than 3.5 times the peak area of pravastatin from the standard solution, the area of the peak other than pravastatin and the peaks mentioned above from the sample solution is not larger than 3/10 times the peak area of pravastatin from the standard solution, and the total area of the peaks other than pravastatin from the sample solution is not larger than 3.5 times the peak area of pravastatin from the standard solution.

Operating conditions—

Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 2 times as long as the retention time of pravastatin, beginning after the solvent peak.

System suitability—

Test for required detectability: Pipet 2 mL of the standard solution, and add a mixture of water and methanol \((1:1)\) to make exactly 10 mL. Confirm that the peak area of pravastatin obtained with 10 \(\mu L \) of this solution is equivalent to 15 to 25% of that with 10 \(\mu L \) of the standard solution.

System performance: When the procedure is run with 10 \(\mu L \) of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of pravastatin are not less than 3400 and not more than 1.6, respectively.
System repeatability: When the test is repeated 6 times with 10 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of pravastatin is not more than 2.5%.

Uniformity of dosage units <6.02> The solution in singledose packages meet the requirement of the Mass variation test.

Microbial limit <6.05> The acceptance criteria of TAMC and TYMC are 10^2 CFU/mL and 10^3 CFU/mL, respectively. Escherichia coli is not observed.

Assay To an exact volume of Pravastatin Sodium Solution, equivalent to 2 mg of pravastatin sodium (C_{25}H_{35}NaO_{3}), add exactly 5 mL of the internal standard solution, add water to make 100 mL, and use this solution as the sample solution. Separately, weigh accurately about 20 mg of Pravastatin 1,1,3,3-Tetramethylbutylammonium RS (separately determine the water <2.49> in the same manner as Pravastatin Sodium), and dissolve in a solution of disodium hydrogen phosphate dodecahydrate (1 in 200) to make exactly 50 mL. Pipet 6 mL of this solution, add exactly 5 mL of the internal standard solution, add water to make 100 mL, and use this solution as the standard solution. Perform the test with 10 µL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions. Calculate the ratios, Q_T and Q_S, of the peak area of pravastatin to that of the internal standard.

\[
\text{Amount (mg) of pravastatin sodium} = M_S \times \frac{Q_T}{Q_S} \times \frac{1}{2.5} \times 1.052
\]

\[M_S: \text{Amount (mg) of pravastatin in the sample solution.}\]

Internal standard solution—A solution of ethyl parahydroxybenzoate in methanol (3 in 10,000).

Operating conditions—

Detector: An ultraviolet spectrophotometer (wavelength: 238 nm).

Column: A stainless steel column 3.9 mm in inside diameter and 30 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (10 µm in particle diameter).

Column temperature: A constant temperature of about 30°C.

Mobile phase: A mixture of water, methanol, acetic acid (100) and triethylamine (500:500:1:1).

Flow rate: Adjust so that the retention time of pravastatin is about 20 minutes.

System performance: When the procedure is run with 10 µL of the standard solution under the above operating conditions, the internal standard and pravastatin are eluted in this order with the resolution between these peaks being not less than 8.

System repeatability: When the test is repeated 6 times with 10 µL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of pravastatin to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Tight containers.

Pravastatin Sodium Tablets

プラバスタチンナトリウム錠

Pravastatin Sodium Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of pravastatin sodium (C_{25}H_{35}NaO_{3}: 446.51).

Method of preparation Prepare as directed under Tablets, with Pravastatin Sodium.

Identification To a quantity of powdered Pravastatin Sodium Tablets, equivalent to 10 mg of Pravastatin Sodium, add 20 mL of water, sonicate for 15 minutes, and centrifuge. Filter the supernatant liquid, discard the first 5 mL of the filtrate, and add water to 1 mL of the subsequent filtrate to make 50 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.24>: it exhibits a maximum between 237 nm and 241 nm.

Purity Related substances—The sample solution and the standard solution are stored at not exceeding 15°C after preparation. To an amount of powdered Pravastatin Sodium Tablets, equivalent to 50 mg of Pravastatin Sodium, add 40 mL of a mixture of water and methanol (1:1), sonicate, then add a mixture of water and methanol (1:1) to make 50 mL, centrifuge, and use the supernatant liquid as the sample solution. Pipet 1 mL of the sample solution, add a mixture of water and methanol (1:1) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 µL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions. Determine each peak area by the automatic integration method: the area of the peaks, having the relative retention time about 0.36 and about 1.9 to pravastatin obtained from the sample solution is not larger than 3/10 times and 2 times the peak area of pravastatin from the standard solution, respectively, the area of the peak other than pravastatin and the peak mentioned above from the sample solution is not larger than 1/5 times the peak area of pravastatin from the standard solution, and the total area of the peaks other than pravastatin from the sample solution is not larger than 3 times the peak area of pravastatin from the standard solution. For the area of the peaks, having the relative retention time about 0.28, about 0.36 and about 0.88, multiply their correction factors, 1.16, 1.72 and 1.22, respectively.

Operating conditions—

Detector: An ultraviolet spectrophotometer (wavelength: 238 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 µm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase A: A mixture of water, methanol, acetic acid (100) and triethylamine (750:250:1:1).

Mobile phase B: A mixture of methanol, water, acetic acid (100) and triethylamine (650:350:1:1).

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.
<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>50 - 75</td>
<td>50 → 0</td>
<td>50 → 100</td>
</tr>
</tbody>
</table>

Flow rate: 1.3 mL per minute.
Time span of measurement: For 75 minutes after injection, beginning after the solvent peak.

System suitability—
Test for required detectability: Pipet 1 mL of the standard solution, and add a mixture of water and methanol (1:1) to make exactly 10 mL. Confirm that the peak area of pravastatin obtained with 20 μL of this solution is equivalent to 7 to 13% of that with 20 μL of the standard solution.

System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of pravastatin are not less than 3500 and not more than 1.6, respectively.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of pravastatin is not more than 1.5%.

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 tablet of Pravastatin Sodium Tablets add exactly V mL of the internal standard solution so that each mL contains about 23 mg of pravastatin (C$_{23}$H$_{29}$NaO$_7$), sonicate for 15 minutes, and centrifuge. To 2 mL of the supernatant liquid add a mixture of water and methanol (1:1) to make 20 mL, and use this solution as the sample solution. Then, proceed as directed in the Assay.

Amount (mg) of pravastatin sodium (C$_{23}$H$_{29}$NaO$_7$) = \(M_2 \times (A_{T1} - A_{S1}) / (A_{S2} - A_{S3}) \times V / V_0 \times 100 \times 1.052 \)

\(M_2 \): Amount (mg) of pravastatin in taken Pravastatin 1,1,3,3-Tetramethylbutylammonium RS, calculated on the anhydrous basis

Internal standard solution—A solution of propyl parahydroxybenzoate in a mixture of water and methanol (1:1) (3 in 10,000).

Dissolution <6.10> When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 30 minutes of Pravastatin Sodium Tablets is not less than 85%.

Start the test with 1 tablet of Pravastatin Sodium Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add water to make exactly \(V/100 \) mL so that each mL contains about 5.5 μg of pravastatin (C$_{23}$H$_{29}$O$_7$), and use this solution as the sample solution. Separately, weigh accurately about 23 mg of Pravastatin 1,1,3,3-Tetramethylbutylammonium RS (separately determine the water <2.48> in the same manner as Pravastatin Sodium), and dissolve in water to make exactly 100 mL. Pipet 3 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution. Determine the absorbances, \(A_{T1} \) and \(A_{S1} \), at 238 nm and \(A_{T2} \) and \(A_{S2} \), at 256 nm of the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry <2.24>.

Dissolution rate (%) with respect to the labeled amount of pravastatin sodium (C$_{23}$H$_{29}$NaO$_7$) = \(\frac{P_2}{P_1} \times (A_{T1} - A_{T2}) / (A_{S1} - A_{S2}) \times 100 \)

\(M_2 \): Amount (mg) of Pravastatin 1,1,3,3-Tetramethylbutylammonium RS taken, calculated on the anhydrous basis

C: Labeled amount (mg) of pravastatin sodium (C$_{23}$H$_{29}$NaO$_7$) in 1 tablet

Assay Weigh accurately and powder not less than 20 Pravastatin Sodium Tablets. Weigh accurately a portion of the powder, equivalent to about 10 mg of pravastatin sodium (C$_{23}$H$_{29}$NaO$_7$), add exactly 40 mL of the internal standard solution, sonicate for 15 minutes, and centrifuge. Filter the supernatant liquid, discard the first 5 mL of the filtrate, to 2 mL of the subsequent filtrate add a mixture of water and methanol (1:1) to make 20 mL, and use this solution as the sample solution. Separately, weigh accurately about 32 mg of Pravastatin 1,1,3,3-Tetramethylbutylammonium RS (separately determine the water <2.48> in the same manner as Pravastatin Sodium), and dissolve in a mixture of water and methanol (1:1) to make exactly 100 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution, then add a mixture of water and methanol (1:1) to make 50 mL, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Calculate the ratios, \(Q_{T1} \) and \(Q_{S1} \), of the peak area of pravastatin to that of the internal standard.

Amount (mg) of pravastatin sodium (C$_{23}$H$_{29}$NaO$_7$) = \(M_2 \times Q_{T1} / Q_{S1} \times 2 / 5 \times 1.052 \)

\(M_2 \): Amount (mg) of pravastatin in taken Pravastatin 1,1,3,3-Tetramethylbutylammonium RS, calculated on the anhydrous basis

Internal standard solution—A solution of propyl parahydroxybenzoate in a mixture of water and methanol (1:1) (3 in 10,000).

Operating conditions—
Proceed as directed in the operating conditions in the Assay under Pravastatin Sodium.

System suitability—
System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the internal standard and pravastatin are eluted in this order with the resolution between these peaks being not less than 4.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of pravastatin to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Well-closed containers.
Prazepam

プラゼパム

C₁₀H₁₁ClN₂O: 324.80
7-Chloro-1-(cyclopropylmethyl)-5-phenyl-1,3-dihydro-2H-1,4-benzodiazepin-2-one
[2955-38-6]

Prazepam, when dried, contains not less than 98.5% of prazepam (C₁₀H₁₁ClN₂O).

Description Prazepam occurs as white to light yellow crystals or crystalline powder. It is odorless.

It is freely soluble in acetone, soluble in acetic anhydride, sparingly soluble in ethanol (99.5) and in diethyl ether, and practically insoluble in water.

Identification (1) Dissolve 0.01 g of Prazepam in 100 mL of a solution of sulfuric acid in ethanol (99.5) (3 in 1000). Determine the absorption spectrum of the solution as directed under Ultraviolet-visible Spectrophotometry \(<2.24>\), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(3) Determine the infrared absorption spectrum of Prazepam, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry \(<2.25>\), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Identification (1) Dissolve 0.01 g of Prazepam in 100 mL of a solution of sulfuric acid in ethanol (99.5) (3 in 1000). Determine the absorption spectrum of the solution as directed under Ultraviolet-visible Spectrophotometry \(<2.24>\), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(4) Perform Flame Coloration Tests \(<1.04>\) (2) with Prazepam: a green color appears.

Melting point \(<2.66>\): 145 – 148°C

Purity (1) Chloride \(<1.03>\)—To 1.0 g of Prazepam add 50 mL of water, allow to stand for 1 hour with occasional shaking, and filter. To 20 mL of the filtrate add 6 mL of dilute nitric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 0.40 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.036%).

(2) Sulfate \(<1.14>\)—To 20 mL of the filtrate obtained in (1) add 1 mL of dilute hydrochloric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 0.40 mL of 0.005 mol/L sulfuric acid VS (not more than 0.048%).

(3) Heavy metals \(<1.07>\)—Proceed with 2.0 g of Prazepam according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(4) Arsenic \(<1.1D>\)—Prepare the test solution with 1.0 g of Prazepam according to Method 3, and perform the test (not more than 2 ppm).

(5) Related substances—Dissolve 0.40 g of Prazepam in 10 mL of acetone, and use this solution as the sample solution. Pipet 1 mL of the sample solution, and add acetone to make exactly 20 mL. Pipet 1 mL of this solution, add acetone to make exactly 25 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography \(<2.03>\). Spot 5 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of chloroform and acetone (9:1) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying \(<2.41>\) Not more than 0.20% (1 g, 105°C, 2 hours).

Residue on ignition \(<2.44>\) Not more than 0.1% (1 g).

Assay Weigh accurately about 0.4 g of Prazepam, previously dried, dissolve in 60 mL of acetic anhydride, and titrate \(<2.50>\) with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS

\[= 32.48 \text{ mg of } C₁₀H₁₁ClN₂O\]

Containers and storage Containers—Tight containers.

Prazepam Tablets

プラゼパム錠

Prazepam Tablets contain not less than 93.0% and not more than 107.0% of the labeled amount of prazepam (C₁₀H₁₁ClN₂O: 324.80).

Method of preparation Prepare as directed under Tablets, with Prazepam.

Identification (1) To a quantity of powdered Prazepam Tablets, equivalent to 0.05 g of Prazepam, add 25 mL of acetone, shake well, and filter. Take 5 mL of the filtrate, evaporate on a water bath to dryness, and dissolve the residue in 3 mL of sulfuric acid. With this solution, proceed as directed in the Identification (1) under Prazepam.

(2) To a quantity of powdered Prazepam Tablets, equivalent to 0.02 g of Prazepam, add 200 mL of a solution of sulfuric acid in ethanol (99.5) (3 in 1000), shake well, and filter. To 5 mL of the filtrate add a solution of sulfuric acid in ethanol (99.5) (3 in 1000) to make 50 mL, and determine the absorption spectrum as directed under Ultraviolet-visible Spectrophotometry \(<2.24>\): it exhibits maxima between 241 nm and 245 nm, between 283 nm and 287 nm and between 363 nm and 367 nm, and minima between 263 nm and 267 nm and between 334 nm and 338 nm.

Dissolution \(<6.10>\) When the test is performed at 100 revolutions per minute according to the Basket method, using 900 mL of 0.1 mol/L hydrochloric acid TS as the dissolution medium, the dissolution rate in 30 minutes of Prazepam Tablets is not less than 80%.

Start the test with 1 tablet of Prazepam Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.8 μm. Discard not less than 10 mL of the first filtrate, measure exactly the subsequent V mL of the filtrate, add the dissolution medium to make ex-
Dissolution rate (%) with respect to the labeled amount of prazepam (C₁₉H₁₉Cl₂N₂O₂) in 1 tablet

\[M_D = \frac{M_x}{A_D} = \frac{V}{V \times V/C \times 90} \]

Where:
- \(M_x \): Amount (mg) of prazepam
- \(A_D \): Labeled amount (mg) of prazepam (C₁₉H₁₉Cl₂N₂O₂)

Prazosin Hydrochloride

\[
\begin{align*}
\text{C}_{19}\text{H}_{19}\text{N}_2\text{O}_2\cdot\text{HCl} & : 419.86 \\
1-(4\text{-Amino-6,7-dimethoxy-quinazolin-2-yl})-4\text{-}(2\text{-furoyl})\text{piperazine monohydrochloride} & : [19237-84-4]
\end{align*}
\]

Prazosin Hydrochloride, when dried, contains not less than 97.0% and not more than 103.0% of prazosin hydrochloride (C₁₉H₁₉N₂O₂.HCl).

Description Prazosin Hydrochloride occurs as a white crystalline powder.

It is slightly soluble in methanol, very slightly soluble in ethanol (99.5) and practically insoluble in water. It gradually turns pale yellow-white on exposure to light. Melting point: about 270°C (with decomposition).

Identification (1) Determine the absorption spectrum of a solution of Prazosin Hydrochloride prepared in the potassium chloride disk method under Infrared Spectrophotometry 2.2.25, and compare the spectrum with the Reference Spectrum or the spectrum of Prazosin Hydrochloride RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

(2) Determine the infrared absorption spectrum of Prazosin Hydrochloride as directed in the potassium chloride disk method under Infrared Spectrophotometry 2.2.25, and compare the spectrum with the Reference Spectrum or the spectrum of Prazosin Hydrochloride RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) To 0.1 g of Prazosin Hydrochloride add 5 mL of water and 1 mL of ammonia TS, shake, allow to stand for 5 minutes, and filter. Render the filtrate acid with acetic acid (100): the solution responds to Qualitative Tests 1.07 for chloride.

Purity (1) Heavy metals 1.07—Proceed with 1.0 g of Prazosin Hydrochloride according to Method 4, and perform the test. Prepare the control solution with 1.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Related substances—Dissolve 20 mg of Prazosin Hydrochloride in 20 mL of the mobile phase, and use this solution as the sample solution. Pipet 1 mL of the sample solution, and add the mobile phase to make exactly 100 mL. Pipet 1 mL of this solution, add the mobile phase to make exactly 10 mL, and use this solution as the standard solution. Perform the test with exactly 20 µL of each of the sample solution and standard solution as directed under Liquid Chromatography 2.2.17 according to the following conditions. Determine each peak area of both solutions by the automatic integration method: the area of each peak other than prazosin obtained from the sample solution is not larger than 2 times the peak area of prazosin from the standard solution, and the total area of the peaks other than prazosin from the sample solution is not larger than 5 times the peak area of prazosin from the standard solution.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 254 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 µm in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase: Dissolve 3.484 g of sodium 1-pentane sulfonate and 18 mL of tetramethylammonium hydroxide in 900 mL of water, adjust the pH to 5.0 with acetic acid (100), and add water to make 1000 mL. To this solution add 1000 mL of methanol.
Flow rate: Adjust so that the retention time of prazosin is about 9 minutes.
Time span of measurement: About 6 times as long as the retention time of prazosin.
System suitability—
Test for required detectability: Pipet 5 mL of the standard solution, and add the mobile phase to make exactly 10 mL. Confirm that the peak area of prazosin obtained with 20 µL of this solution is equivalent to 35 to 65% of that with 20 µL of the standard solution.
System performance: When the procedure is run with 20 µL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of prazosin are not less than 4000 and not more than 2.0, respectively.
System repeatability: When the test is repeated 6 times with 20 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak
area of prazosin is not more than 2.0%.

Loss on drying Not more than 1.0% (1 g, 105°C, 2 hours).

Residue on ignition Not more than 0.2% (1 g).

Assay Weigh accurately about 25 mg each of Prazosin Hydrochloride and Prazosin Hydrochloride RS, previously dried, and dissolve each in methanol to make exactly 50 mL. Pipet 3 mL each of these solutions, and add a mixture of methanol and water (7:3) to make exactly 100 mL, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography 2.01 according to the following conditions, and determine the peak areas, A₁ and A₅, of prazosin in each solution.

Amount (mg) of prazosin hydrochloride (C₁₉H₂₁N₂O₄.HCl) = Mₛ × A₁/A₅

Mₛ: Amount (mg) of Prazosin Hydrochloride RS taken

Operating conditions

Detector: An ultraviolet absorption photometer (wavelength: 254 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: A mixture of methanol, water, acetic acid (100) and diethylamine (3500:1500:250:1).

Flow rate: Adjust so that the retention time of prazosin is about 8 minutes.

System suitability

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the asymmetry factor of the peak of prazosin are not less than 5000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of prazosin is not more than 1.0%.

Containers and storage Containers—Well-closed containers. Storage—Light-resistant.

Prednisolone

Prednisolone, when dried, contains not less than 97.0% and not more than 102.0% of prednisolone (C₂₁H₂₈O₅).

Description

Prednisolone occurs as a white crystalline powder.

It is soluble in methanol and in ethanol (95), slightly soluble in ethyl acetate, and very slightly soluble in water.

Melting point: about 235°C (with decomposition).

It shows crystal polymorphism.

Identification

(1) To 2 mg of Prednisolone add 2 mL of sulfuric acid, and allow to stand for 2 to 3 minutes: a deep red color, without fluorescence, develops. To this solution add 10 mL of water cautiously: the color disappears and a gray, flocculent precipitate is formed.

(2) Determine the infrared absorption spectrum of Prednisolone, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry 2.25, and compare the spectrum with the Reference Spectrum or the spectrum of previously dried Prednisolone RS: both spectra exhibit similar intensities of absorption at the same wave numbers. If any difference appears between the spectra, dissolve Prednisolone and Prednisolone RS in ethyl acetate, respectively, then evaporate the ethyl acetate to dryness, and repeat the test on the residues.

Optical rotation [α]D +113° to +119° (after drying, 0.2 g, ethanol (95), 20 mL, 100 mm).

Purity

(1) Selenium—To 0.10 g of Prednisolone add 0.5 mL of a mixture of perchloric acid and sulfuric acid (1:1) and 2 mL of nitric acid, and heat on a water bath until no more brown gas evolves and the solution becomes to be a light yellow clear solution. After cooling, add 4 mL of nitric acid to this solution, then add water to make exactly 50 mL, and use this solution as the sample solution. Separately, pipet 3 mL of Standard Selenium Solution, add 0.5 mL of a mixture of perchloric acid and sulfuric acid (1:1) and 6 mL of nitric acid, then add water to make exactly 50 mL, and use this solution as the standard solution. Perform the test with the sample solution and standard solution as directed under Atomic Absorption Spectrophotometry 2.23 according to the following conditions, and determine constant absorbances, A₁ and A₅, obtained on a recorder after rapid increasing of the absorption: A₁ is smaller than A₅ (not more than 30 ppm).

Perform the test by using a hydride generating system and a thermal absorption cell.

Lamp: A selenium hollow cathode lamp.

Wavelength: 196.0 nm.

Temperature of sample atomizer: When an electric furnace is used, about 1000°C.

Carrier gas: Nitrogen or argon.

(2) Related substances—Dissolve 20 mg of Prednisolone in exactly 2 mL of a mixture of methanol and chloroform (1:1), and use this solution as the sample solution. Separately, dissolve 20 mg of hydrocortisone and 10 mg of prednisolone acetate each in a mixture of methanol and chloroform (1:1) to make exactly 100 mL, and use these solutions as the standard solution (1) and standard solution (2). Perform the test with these solutions as directed under Thin-layer Chromatography 2.09. Spot 5 μL each of the sample solution and standard solutions (1) and (2) on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of acetone, toluene and diethylamine (55:45:2) to a distance of about 15 cm, and air-dry the plate (do not dip the filter paper in the developing vessel). Spray evenly alkaline blue tetrazolium TS on the plate: the spots obtained from the sample solution corresponding to those from the standard solutions (1) and (2) are not more intense than the spots from the standard solutions (1) and (2), and
Containers—Tight containers.

Loss on drying <2.4% Not more than 1.0% (0.5 g, 105°C, 3 hours).

Residue on ignition <2.4% Not more than 0.1% (0.5 g).

Assay Dissolve about 25 mg each of Prednisolone and Prednisolone RS, previously dried, and accurately weighed, in 50 mL of methanol, add exactly 25 mL of the internal standard solution to each, and add methanol to make 100 mL. To 1 mL each of these solutions add the mobile phase to make 10 mL, and use these solutions as the sample solution and standard solution. Perform the test with 20 μL each of these solutions as directed under Liquid Chromatography <2.0> according to the following conditions, and calculate the ratios, S/T, and S/ISO, of the peak area of prednisolone to that of the internal standard.

Amount (mg) of prednisolone (C₂₁H₂₃O₃) = M₃ × S/Q₃

M₃: Amount (mg) of Prednisolone RS taken

Internal standard solution—A solution of methyl parahydroxybenzoate in methanol (1 in 2000).

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 247 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with fluorosilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase: A mixture of water and methanol (13:7).
Flow rate: Adjust so that the retention time of prednisolone is about 15 minutes.
System suitability—
System performance: Dissolve 25 mg of Prednisolone and 25 mg of hydrocortisone in 100 mL of methanol. To 1 mL of this solution add the mobile phase to make 10 mL. When the procedure is run with 20 μL of this solution under the above operating conditions, hydrocortisone and prednisolone are eluted in order with the resolution between these peaks being not less than 1.5.
System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratios of the peak area of prednisolone to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Tight containers.

Prednisolone Tablets

プレドニゾロン錠

Prednisolone Tablets contain not less than 90.0% and not more than 110.0% of the labeled amount of prednisolone (C₂₁H₂₃O₃: 360.44).

Method of preparation Prepare as directed under Tablets, with Prednisolone.

Identification (I) Weigh a quantity of powdered Prednisolone Tablets, equivalent to 0.05 g of Prednisolone, add 10 mL of chloroform, shake for 15 minutes, and filter. Evaporate the filtrate on a water bath to dryness. Dry the residue at 105°C for 1 hour, and proceed as directed in the Identification (I) under Prednisolone.

(2) Determine the infrared absorption spectra of the residue obtained in (1) and Prednisolone RS, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.29> : both spectra exhibit similar intensities of absorption at the same wave numbers. If any difference appears, dissolve the sample and the RS in ethyl acetate, evaporate to dryness, and repeat the test on the residues.

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

Transfer 1 tablet of Prednisolone Tablets to a volumetric flask, and shake with 10 mL of water until the tablet is disintegrated. Add 50 mL of methanol, shake for 30 minutes, and add methanol to make exactly 100 mL. Centrifuge this solution, pipet 5 mL of the supernatant liquid, and add methanol to make exactly 5 mL to provide a solution that contains about 10 μg of prednisolone (C₂₁H₂₃O₃) per mL, and use this solution as the sample solution. Separately, weigh accurately about 10 mg of Prednisolone RS, previously dried at 105°C for 3 hours, dissolve in 10 mL of water and 50 mL of methanol, and add methanol to make exactly 100 mL. Pipet 5 mL of this solution, add methanol to make exactly 50 mL, and use this solution as the standard solution. Determine the absorbances, A₄ and A₅, of the sample solution and standard solution at 242 nm as directed under Ultraviolet-visible Spectrophotometry <2.29>.

Amount (mg) of prednisolone (C₂₁H₂₃O₃) = M₅ × A₄ / A₅ × V/V × 1/10

M₅: Amount (mg) of Prednisolone RS taken

Dissolution <6.10> When the test is performed at 100 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 20 minutes of Prednisolone Tablets is not less than 70%.

Start the test with 1 tablet of Prednisolone Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.8 μm. Discard not less than 10 mL of the first filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 10 mg of Prednisolone RS, previously dried at 105°C for 3 hours, and dissolve in ethanol (95) to make exactly 100 mL. Pipet 5 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution. Determine the absorbances, A₄ and A₅, of the sample solution and standard solution at the maximum wavelength at about 242 nm as directed under Ultraviolet-visible Spectrophotometry <2.29>, using water as the blank.

Dissolution rate (%) with respect to the labeled amount of prednisolone (C₂₁H₂₃O₃) = M₅ × A₄ / A₅ × 1/C × 45

M₅: Amount (mg) of Prednisolone RS taken

C: Labeled amount (mg) of prednisolone (C₂₁H₂₃O₃) in 1 tablet

Assay Weigh accurately and粉末 not less than 20 Prednisolone Tablets using an agate mortar. Weigh accurately a portion of the powder, equivalent to about 5 mg of prednisolone (C₂₁H₂₃O₃), add 1 mL of water, and shake gently. Add exactly 5 mL of the internal standard solution and 15 mL of methanol, and shake vigorously for 20 minutes. To 1 mL of this solution add the mobile phase to make 10 mL, and filter through a membrane filter with a pore size of 0.45 μm. Dis-
card the first 3 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 25 mg of Prednisolone RS, previously dried at 105°C for 3 hours, dissolve in 50 mL of methanol, add exactly 25 mL of the internal standard solution, and add methanol to make 100 mL. To 1 mL of this solution add the mobile phase to make 10 mL, and use this solution as the standard solution. Proceed as directed in the Assay under Prednisolone with these solutions.

\[
\text{Amount (mg) of prednisolone (C}_{21}\text{H}_{25}\text{O}_{3}) = M_S \times Q_1 / Q_2 \times 1/5
\]

\(M_S\): Amount (mg) of Prednisolone RS taken

Internal standard solution—A solution of methyl parahydroxybenzoate in methanol (1 in 2000).

Containers and storage Containers—Tight containers.

Prednisolone Acetate

プレドニゾロン酢酸エステル

\[\text{C}_{21}\text{H}_{25}\text{O}_{3}: 402.48}\]

11ß,17,21-Trihydroxypregna-1,4-diene-3,20-dione 21-acetate

[52-21-1]

Prednisolone Acetate, when dried, contains not less than 96.0% and not more than 102.0% of prednisolone acetate (C\(_{21}\)H\(_{25}\)O\(_3\)).

Description Prednisolone Acetate occurs as a white crystalline powder.

- It is slightly soluble in methanol and in ethanol (99.5), and practically insoluble in water.
- Melting point: about 235°C (with decomposition).
- It shows crystal polymorphism.

Identification (1) To 2 mg of Prednisolone Acetate add 2 mL of sulfuric acid, and allow to stand for 2 to 3 minutes: a deep red color, without fluorescence, develops. To this solution add 10 mL of water cautiously: the color disappears and a gray, flocculent precipitate is formed.

(2) Determine the infrared absorption spectra of Prednisolone Acetate, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry \(0.25\), and compare the spectrum in a range between 4000 cm\(^{-1}\) and 650 cm\(^{-1}\) with the Infrared Reference Spectrum or the spectrum of previously dried Prednisolone Acetate RS: both spectra exhibit similar intensities of absorption at the same wave numbers. If any difference appears, dissolve the sample and the RS in ethanol (99.5), respectively, evaporate to dryness, and repeat the test on the residues.

Optical rotation \(<2.49\): \([\alpha]_D^{20} = +128\) to +137° (after drying, 70 mg, methanol, 20 mL, 100 mm).

Purity Related substances—Dissolve 0.20 g of Prednisolone Acetate in exactly 10 mL of a mixture of chloroform and methanol (9:1), and use this solution as the sample solution. Separately, dissolve 20 mg each of prednisolone, cortisone acetate and hydrocortisone acetate in exactly 10 mL of a mixture of chloroform and methanol (9:1). Pipet 1 mL of this solution, add a mixture of chloroform and methanol (9:1) to make exactly 10 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography \(<2.07\). Spot 5 \(\mu\)L each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of dichloromethane, diethyl ether, methanol and water (385:75:40:6) to a distance of about 15 cm, and air-dry the plate. Examine under ultraviolet light (wavelength: 254 mm): the spots obtained from the sample solution corresponding to those from the standard solution are not more intense than the spots from the standard solution, and any spot from the sample solution other than the principal spot and the spots from prednisolone, cortisone acetate and hydrocortisone acetate does not appear.

Loss on drying \(<2.41\): Not more than 1.0% (0.5 g, 105°C, 3 hours).

Residue on ignition \(<2.44\): Not more than 0.1% (0.5 g).

Assay Dissolve about 10 mg each of Prednisolone Acetate and Prednisolone Acetate RS, previously dried and accurately weighed, in 60 mL each of methanol, add exactly 2 mL each of the internal standard solution, then add methanol to make 100 mL, and use these solutions as the sample solution and standard solution. Perform the test with 10 \(\mu\)L each of the sample solution and standard solution as directed under Liquid Chromatography \(<2.07\) according to the following conditions, and calculate the ratios, \(Q_1\) and \(Q_3\), of the peak height of prednisolone acetate to that of the internal standard.

\[
\text{Amount (mg) of prednisolone acetate (C}_{21}\text{H}_{25}\text{O}_{3}) = M_S \times Q_1 / Q_3
\]

\(M_S\): Amount (mg) of Prednisolone Acetate RS taken

Internal standard solution—A solution of butyl parahydroxybenzoate in methanol (3 in 1000).

Operating conditions—
- Detector: An ultraviolet absorption photometer (wavelength: 254 nm).
- Column: A stainless steel column 4.0 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 \(\mu\)m in particle diameter).
- Column temperature: A constant temperature of about 25°C.
- Mobile phase: A mixture of water and acetonitrile (3:2).
- Flow rate: Adjust so that the retention time of prednisolone acetate is about 10 minutes.

System suitability—
- System performance: When the procedure is run with 10 \(\mu\)L of the standard solution under the above operating conditions, prednisolone acetate and the internal standard are eluted in this order with the resolution between these peaks being not less than 10.
- System repeatability: When the test is repeated 6 times with 10 \(\mu\)L of the standard solution under the above operating conditions, the relative standard deviation of the ratios of the peak height of prednisolone acetate to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Tight containers.
Prednisolone Sodium Phosphate

Prednisolone Sodium Phosphate contains not less than 97.0% and not more than 103.0% of prednisolone sodium phosphate (C₁₂H₁₇₂Na₃O₈P), calculated on the anhydrous basis.

Description Prednisolone Sodium Phosphate occurs as a white to pale yellow powder. It is freely soluble in water, soluble in methanol, and practically insoluble in ethanol (99.5). It is hygroscopic.

Identification (1) Moisten 1.0 g of Prednisolone Sodium Phosphate with a small amount of sulfuric acid, and gradually heat to incinerate. After cooling, dissolve the residue in 10 mL of dilute nitric acid, and heat in a water bath for 30 minutes. After cooling, filter if necessary. This solution responds to Qualitative Tests <1.09> for phosphate.

(2) Dissolve 2 mg of Prednisolone Sodium Phosphate in 2 mL of sulfuric acid, and allow to stand for 2 minutes: a deep red color, without fluorescence, develops.

(3) Determine the absorption spectrum of a solution of Prednisolone Sodium Phosphate (1 in 50,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(4) Determine the infrared absorption spectrum of Prednisolone Sodium Phosphate as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(5) The solution obtained in (1) responds to Qualitative Tests <1.09> for sodium salt.

Optical rotation <2.49> [α]D₂₀ +96 - +103° (1 g calculated on the anhydrous basis, phosphate buffer solution (pH 7.0), 100 mL, 100 mm).

pH <2.54> Dissolve 1.0 g of Prednisolone Sodium Phosphate in 100 mL of water: the pH of the solution is between 7.5 and 9.0.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Prednisolone Sodium Phosphate in 10 mL of water: the solution is clear and not more colored than the following control solution.

Control solution: To a mixture of 3.0 mL of Cobalt (II) Chloride CS, 3.0 mL of Iron (III) Chloride CS and 2.4 mL of Copper (II) Sulfate CS add diluted hydrochloric acid (1 in 40) to make 10 mL. To 2.5 mL of this solution add diluted hydrochloric acid (1 in 40) to make 100 mL.

(2) Heavy metals <1.07>—Proceed with 0.5 g of Prednisolone Sodium Phosphate according to Method 3, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 40 ppm).

(3) Free phosphoric acid—Weigh accurately about 0.25 g of Prednisolone Sodium Phosphate, dissolve in water to make exactly 100 mL, and use this solution as the sample solution. Pipet 5 mL each of the sample solution and Phosphoric Acid Standard Solution, add 2.5 mL of hexammonium heptamolybdophosphate-sulfuric acid TS and 1 mL of 1-amino-2-naphthol-4-sulfonic acid TS, shake, add water to make exactly 25 mL, and allow to stand at 20 ± 1°C for 30 minutes. Perform the test with these solutions as directed under Ultraviolet-visible Spectrophotometry <2.24>, using a solution prepared with 5 mL of water in the same manner as the blank. Determine the absorbances, A₁ and A₄, of each solution from the sample solution and standard solution at 740 nm: the content of free phosphoric acid is not more than 1.0%.

Content (%) of free phosphoric acid (H₃PO₄) = 1/M × A₁/A₄ × 258.0

M: Amount (mg) of Prednisolone Sodium Phosphate taken, calculated on the anhydrous basis

(4) Related substances—Dissolve 10 mg of Prednisolone Sodium Phosphate in 100 mL of the mobile phase, and use this solution as the sample solution. Pipet 2 mL of the sample solution, add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 µL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area of both solutions by the automatic integration method: the area of each peak other than prednisolone phosphate obtained from the sample solution is not larger than 1.5 times the peak area of prednisolone phosphate from the standard solution, and the total area of the peaks other than prednisolone phosphate from the sample solution is not larger than 2.5 times the peak area of prednisolone phosphate from the standard solution.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 245 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 10 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (3 µm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase: Dissolve 6.80 g of potassium dihydrogen phosphate in water to make 1000 mL, and adjust the pH to 2.5 with phosphoric acid. To 1000 mL of this solution add 250 mL of acetonitrile.
Flow rate: Adjust so that the retention time of prednisolone phosphate is about 7 minutes.
Time span of measurement: About 4 times as long as the retention time of prednisolone phosphate.

System suitability—
Test for required detectability: Pipet 5 mL of the standard solution, and add the mobile phase to make exactly 50 mL. Confirm that the peak area of prednisolone phosphate obtained with 20 µL of this solution is equivalent to 7 to 13% of that with 20 µL of the standard solution.

System performance: When the procedure is run with 20 µL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of prednisolone phosphate are not less than 3000 and not more than 2.0, respectively.
System repeatability: When the test is repeated 6 times with 20 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of prednisolone phosphate is not more than 2.0%.

Water 2.48 - Not more than 0.8% (0.1 g, volumetric titration, direct titration).

Assay Weigh accurately about 0.1 g of Prednisolone Sodium Phosphate, and dissolve in water to make exactly 100 mL. Pipet 2 mL of this solution, add 1 mL of alkaline phosphatase TS, and allow to stand for 2 hours with occasional shaking. To this solution add exactly 20 mL of 1-octanol, and shake vigorously. Centrifuge this solution, pipet 10 mL of the 1-octanol layer, add 1-octanol to make exactly 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 25 mg of Prednisolone RS, previously dried at 105°C for 3 hours, and dissolve in 1-octanol to make exactly 100 mL. Pipet 6 mL of this solution, add a solution prepared by adding 1 mL of alkaline phosphatase TS to 2 mL water and being allowed to stand for 2 hours with occasional gentle shaking, add exactly 14 mL of 1-octanol, and shake vigorously. Proceed in the same manner as the sample solution to make the standard solution. Perform the test with the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry 2.2.4, using 1-octanol as the blank, and determine the absorbances, A_T and A_S, at 245 nm.

\[
\text{Amount (mg) of prednisolone sodium phosphate (C$_2$H$_3$NaO$_3$P)} = M_S \times \frac{A_T}{A_S} \times 3 \times 1.344
\]

M_S: Amount (mg) of Prednisolone RS taken

Containers and storage Containers—Tight containers.

Prednisolone Succinate

プレドニゾロンコハク酸エステル

\[
\text{C$_2$H$_3$O$_5$: 460.52} \\
11\beta,17,21-Trihydroxypregna-1,4-diene-3,20-dione 21-(hydrogen succinate) [2920-86-7]
\]

Prednisolone Succinate, when dried, contains not less than 97.0% and not more than 103.0% of prednisolone succinate (C$_2$H$_3$O$_5$).

Description Prednisolone Succinate occurs as a white, fine, crystalline powder. It is odorless.

It is freely soluble in methanol, soluble in ethanol (95), and very slightly soluble in water and in diethyl ether.

Melting point: about 205°C (with decomposition).

Identification

1. To 2 mg of Prednisolone Succinate add 2 mL of sulfuric acid, and allow to stand for 2 to 3 minutes: a deep red color, without fluorescence, develops. To this solution add 10 mL of water cautiously: the color disappears and a gray, flocculent precipitate is formed.

2. Determine the infrared absorption spectrum of Prednisolone Succinate as directed in the potassium bromide disk method under Infrared Spectrophotometry 2.2.5, and compare the spectrum with the Reference Spectrum or the spectrum of Prednisolone Succinate RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation 2.49 - [α]D^{20}_{D} +114° to +120° (after drying, 67 mg, methanol, 10 mL, 100 mm).

Purity Related substances—Dissolve 0.10 g of Prednisolone Succinate in methanol to make exactly 10 mL, and use this solution as the sample solution. Separately, dissolve 30 mg of prednisolone in methanol to make exactly 10 mL. Pipet 1 mL of the solution, add methanol to make exactly 10 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography 2.2.7. Spot 5 µL of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate and ethanol (95) (2:1) to a distance of about 10 cm, and air-dry the plate. Examine the plate under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying 2.47 - Not more than 0.5% (1 g, in vacuum, phosphorus (V) oxide, 60°C, 6 hours).

Residue on ignition 2.48 - Not more than 0.1% (1 g).

Assay Weigh accurately about 10 mg each of Prednisolone Succinate and Prednisolone Succinate RS, previously dried, and dissolve each in methanol to make exactly 100 mL. Pipet 5 mL each of these solutions, add methanol to make exactly 50 mL, and use these solutions as the sample solution and standard solution. Determine the absorbances, A_T and A_S, of the sample solution and standard solution at 242 nm as directed under Ultraviolet-visible Spectrophotometry 2.2.4.

\[
\text{Amount (mg) of prednisolone succinate (C$_2$H$_3$O$_5$)} = M_S \times \frac{A_T}{A_S}
\]

M_S: Amount (mg) of Prednisolone Succinate RS taken

Containers and storage Containers—Tight containers.

Prednisolone Sodium Succinate for Injection

注射用プレドニゾロンコハク酸エステルナトリウム

\[
\text{C$_2$H$_3$NaO$_5$: 482.50} \\
11\beta,17,21-tri-hydroxy-pregn-1,4-diene-3,20-dione 21-succinate
\]

Prednisolone Sodium Succinate for Injection is a preparation for injection which is dissolved before use.

It contains not less than 72.4% and not more than 83.2% of prednisolone sodium succinate
It meets the requirement.

Containers—Hermetic containers.

Dissolve 0.1 g of Prednisolone Sodium Succinate for Injection add 2 mL of sulfuric acid, and allow to stand for 2 to 3 minutes: a deep red color, without fluorescence, develops. To this solution add 10 mL of water cautiously: the color disappears and a gray, flocculent precipitate is formed.

Identification (1) To 2 mg of Prednisolone Sodium Succinate for Injection add 2 mL of sulfuric acid, and allow to stand for 2 to 3 minutes: a deep red color, without fluorescence, develops. To this solution add 10 mL of water cautiously: the color disappears and a gray, flocculent precipitate is formed.

(2) Dissolve 0.01 g of Prednisolone Sodium Succinate for Injection in 1 mL of methanol, add 1 mL of Fehling’s TS, and heat: an orange to red precipitate is formed.

(3) Dissolve 0.1 g of Prednisolone Sodium Succinate for Injection in 2 mL of sodium hydroxide TS, allow to stand for 10 minutes, and filter. Add 1 mL of dilute hydrochloric acid to the filtrate, shake, and filter if necessary. Adjust the solution with diluted ammonia TS (1 in 10) to a pH of about 6, and add 2 to 3 drops of iron (III) chloride TS: a brown precipitate is formed.

(4) Prednisolone Sodium Succinate for Injection responds to Qualitative Tests <1.09> (1) for sodium salt.

pH <2.54> Dissolve 1.0 g of Prednisolone Sodium Succinate for Injection in 40 mL of water: the pH of the solution is between 6.5 and 7.2.

Purity Clarity and color of solution—Dissolve 0.25 g of Prednisolone Sodium Succinate for Injection in 10 mL of water: the solution is clear and colorless.

Loss on drying <2.47> Not more than 2.0% (0.15 g, in vacuum, phosphorus (V) oxide, 60°C, 3 hours).

Bacterial endotoxins <4.01> Less than 2.4 EU/mg of prednisolone (C₂₅H₃₇O₃).

Uniformity of dosage units <6.02> It meets the requirement of the Mass variation test.

Foreign insoluble matter <6.06> Perform the test according to Method 2: it meets the requirement.

Insoluble particulate matter <6.07> It meets the requirement.

Sterility <4.06> Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Take a quantity of sealed containers of Prednisolone Sodium Succinate for Injection, equivalent to about 0.1 g of prednisolone (C₂₅H₃₇O₃), and dissolve the contents in a suitable amount of dilute methanol (1 in 2), and transfer to a 100-mL volumetric flask. Wash each container with dilute methanol (1 in 2), collect the washings in the volumetric flask, and add diluted methanol (1 in 2) to make volume. Pipet 4 mL of this solution, add diluted methanol (1 in 2) to make exactly 50 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution, mix, and use this solution as the sample solution. Separately, weigh accurately about 25 mg of Prednisolone Succinate RS, previously dried in a desiccator for 6 hours (in vacuum, phosphorus (V) oxide, 60°C), dissolve in methanol to make exactly 25 mL. Pipet 5 mL of this solution, add diluted methanol (1 in 2) to make exactly 50 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution, mix, and use this solution as the standard solution. Perform the test with 10 μL of the sample solution and standard solution as directed under Liquid Chromatography according <2.01> to the following conditions, and calculate the ratios, Q₁ and Q₂, of the peak area of prednisolone succinate to that of the internal standard.

\[
\text{Amount (mg) of prednisolone sodium succinate (C}_{25}\text{H}_{37}\text{NaO}_3) = M_S \times \frac{Q_1}{Q_S} \times 5 \times 1.048
\]

\[
\text{Amount (mg) of prednisolone (C}_{25}\text{H}_{37}\text{O}_3) = M_S \times \frac{Q_1}{Q_S} \times 5 \times 0.783
\]

\[M_S: \text{Amount (mg) of Prednisolone Succinate RS taken}\]

Internal standard solution—A solution of propyl parahydroxybenzoate in dilute methanol (1 in 2) (1 in 25,000).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 254 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecysilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: Dissolve 0.32 g of tetra-n-butyrammonium bromide, 3.22 g of disodium hydrogen phosphate dodecahydrate and 6.94 g of potassium dihydrogen phosphate in 1000 mL of water. To 840 mL of this solution add 1160 mL of methanol.

Flow rate: Adjust so that the retention time of prednisolone succinate is about 15 minutes.

System suitability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, prednisolone succinate and the internal standard are eluted in this order with the resolution between these peaks being not less than 6.

System reactivity: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratios of the peak area of prednisolone succinate to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Hermetic containers.
Primidone

プリミドン

C₁₅H₁₄N₂O₅: 218.25
5-Ethyl-5-phenyl-2,3-dihydropyrimidine-4,6(1H,5H)-dione
[125-33-7]

Primidone, when dried, contains not less than 98.5% of primidone (C₁₅H₁₄N₂O₅).

Description Primidone occurs as a white, crystalline powder or granules. It is odorless and has a slightly bitter taste. It is soluble in N,N-dimethylformamide, sparingly soluble in pyridine, slightly soluble in ethanol (95%), very slightly soluble in water, and practically insoluble in diethyl ether.

Identification (1) Heat 0.5 g of Primidone with 5 mL of diluted sulfuric acid (1 in 2): the odor of formaldehyde is perceptible.

(2) Mix 0.2 g of Primidone with 0.2 g of anhydrous sodium carbonate, and heat; the gas evolved changes moistened red litmus paper to blue.

Melting point <2.60> 279 – 284°C

Purity (1) Clarity and color of solution—Dissolve 0.10 g of Primidone in 10 mL of N,N-dimethylformamide: the solution is clear and colorless.

(2) Heavy metals <1.07>—Proceed with 2.0 g of Primidone according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(3) 2-Ethyl-2-phenylmalononediimide—Dissolve 0.10 g of Primidone in 2 mL of pyridine, add exactly 2 mL of the internal standard solution, then add 1 mL of bis-trimethylsilyl acetamide, shake well, and heat at 100°C for 5 minutes. Cool, add pyridine to make 10 mL, and use this solution as the sample solution. Separately, dissolve 50 mg of 2-ethyl-2-phenylmalononediimide in pyridine to make exactly 100 mL. Pipet 2 mL of this solution, add exactly 2 mL of the internal standard solution, proceed in the same manner as Primidone, and use this solution as the standard solution. Perform the test with 2 μL of the sample solution and standard solution as directed under Gas Chromatography <2.02> according to the following conditions, and calculate the ratios, Q₁ and Q₂, of the peak area of 2-ethylnonoaldehyde to that of the internal standard: Q₁ is not more than Q₂.

Internal standard solution—A solution of stearalcohol in pyridine (1 in 2000).

Operating conditions—
Detector: A hydrogen flame-ionization detector.
Column: A glass column 3 mm in inside diameter and 150 cm in length, packed with silica gel for gas chromatography (125 to 150 μm in particle diameter) coated with 50% phenyl-methyl silicone polymer for gas chromatography at the ratio of 3%.
Column temperature: A constant temperature of about 195°C.
Carrier gas: Nitrogen.
Flow rate: Adjust so that the retention time of stearalcohol is about 10 minutes.

System suitability—
System performance: When the procedure is run with 2 μL of the standard solution under the above operating conditions, 2-ethyl-2-phenylmalononediimide and the internal standard are eluted in this order with the resolution between these peaks being not less than 3.
System repeatability: When the test is repeated 5 times with 2 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratios of the peak area of 2-ethyl-2-phenylmalononediimide to that of the internal standard is not more than 1.5%.

Loss on drying <2.41> Not more than 0.5% (1 g, 105°C, 2 hours).

Residue on ignition <2.41> Not more than 0.2% (1 g).

Assay Weigh accurately about 20 mg each of Primidone and Primidone RS, previously dried, dissolve each in 20 mL of ethanol (95%) by warming, and after cooling, add ethanol (95%) to make exactly 25 mL, and use these solutions as the sample solution and the standard solution, respectively. Determine the absorbance, A₁, of the sample solution and standard solution at the wavelength of maximum absorption at about 257 nm, and the absorbances, A₂ and A₃, at the wavelength of minimum absorption at about 254 nm and at about 261 nm, as directed under Ultraviolet-visible Spectrophotometry <2.24>, using ethanol (95%) as the blank.

Amount (mg) of primidone (C₁₅H₁₄N₂O₅)

\[M₅ = \frac{(2A₁ - A₃)b}{(2A₂ - A₃)b} \]

Amount (mg) of Primidone RS taken

where, (2A₁ - A₃)b is the value from the sample solution, and (2A₂ - A₃)b is from the standard solution.

Containers and storage Containers—Tight containers.

Probenecid

プロベネシド

C₁₃H₁₉NO₅S: 285.36
4-(Dipropylaminsulfonyl)benzoic acid
[57-66-9]

Probenecid, when dried, contains not less than 98.0% of probenecid (C₁₃H₁₉NO₅S).

Description Probenecid occurs as white, crystals or crystalline powder. It is odorless, and has a slightly bitter taste, followed by unpleasant bitter.

It is sparingly soluble in ethanol (99.5), and practically insoluble in water.

It dissolves in sodium hydroxide TS and in ammonia TS.

Melting point: 198 – 200°C

Identification (1) Heat Probenecid strongly: the odor of sulfur dioxide is perceptible.

(2) Determine the absorption spectrum of a solution of Probenecid in ethanol (99.5) (1 in 50,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Probenecid RS prepared in the same manner.
JP XVIII

Official Monographs / Probenecid Tablets 1579

as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

Purity (1) Acidity—To 2.0 g of Probenecid add 100 mL of water, heat on a water bath with occasional shaking for 30 minutes, cool, and filter. To the filtrate add 1 drop of phenolphthalein TS and 0.50 mL of 0.1 mol/L sodium hydroxide VS: a red color develops.

(2) Chloride <1.027>—To 1.0 g of Probenecid add 100 mL of water and 1 mL of nitric acid, and heat on a water bath with occasional shaking for 30 minutes. After cooling, add, if necessary, water to make 100 mL, and filter. Perform the test using 50 mL of the filtrate as the test solution. Prepare the control solution with 0.30 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.021%).

(3) Sulfate <1.14>—To 1.0 g of Probenecid add 100 mL of water and 1 mL of hydrochloric acid, and heat on a water bath with occasional shaking for 30 minutes. After cooling, add, if necessary, water to make 100 mL, and filter. Perform the test using 50 mL of the filtrate as the test solution. Prepare the control solution with 0.40 mL of 0.005 mol/L sulfuric acid VS (not more than 0.038%).

(4) Heavy metals <1.077>—Proceed with 2.0 g of Probenecid according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(5) Arsenic <1.11D>—Prepare the test solution with 1.0 g of Probenecid according to Method 3, and perform the test (not more than 2 ppm).

Loss on drying <2.41> Not more than 0.5% (1 g, 105°C, 4 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.5 g of Probenecid, previously dried, and dissolve in 50 mL of neutralized ethanol. Titrate <2.50> with 0.1 mol/L sodium hydroxide VS (indicator: 3 drops of phenolphthalein TS).

Each mL of 0.1 mol/L sodium hydroxide VS = 28.54 mg of C\textsubscript{3}H\textsubscript{3}H\textsubscript{2}NO\textsubscript{3}S

Containers and storage Containers—Well-closed containers.

Probenecid Tablets

プロベネシド錠

Probenecid Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of probenecid (C\textsubscript{13}H\textsubscript{19}NO\textsubscript{3}S: 285.36).

Method of preparation Prepare as directed under Tablets, with Probenecid.

Identification (1) Weigh a quantity of powdered Probenecid Tablets, equivalent to 0.5 g of Probenecid, add 50 mL of ethanol (95) and 1 mL of 1 mol/L hydrochloric acid TS, shake, and filter. Evaporate the filtrate on a water bath to about 20 mL. After cooling, collect produced crystals, recrystallize with 50 mL of dilute ethanol, and dry at 105°C for 4 hours: it melts between 196°C and 200°C. With the crystals so obtained, proceed as directed in the Identification (1) under Probenecid.

(2) Determine the absorption spectrum of a solution of the dried crystals obtained in (1) in ethanol (99.5) (1 in 50,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Probenecid RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 tablet of Probenecid Tablets add 30 mL of water and 2 mL of 1 mol/L hydrochloric acid TS, sonicate with occasional shaking to disintegrate the tablet completely, and add ethanol (99.5) to make exactly 100 mL. Centrifuge this solution, pipet 3 mL of the supernatant liquid, and add 1 mL of 1 mol/L hydrochloric acid TS and ethanol (99.5) to make exactly 50 mL. Pipet 5 mL of this solution, and add ethanol (99.5) to make exactly V mL so that each mL contains about 15 µg of probenecid (C\textsubscript{13}H\textsubscript{19}NO\textsubscript{3}S), and use this solution as the sample solution. Separately, weigh accurately about 0.125 g of Probenecid RS, previously dried at 105°C for 4 hours, dissolve in 15 mL of water, 1 mL of 1 mol/L hydrochloric acid TS and ethanol (99.5) to make exactly 50 mL. Pipet 3 mL of this solution, and add 1 mL of 1 mol/L hydrochloric acid TS and ethanol (99.5) to make exactly 50 mL. Pipet 5 mL of this solution, add ethanol (99.5) to make exactly 50 mL, and use this solution as the standard solution. Perform the test with the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry <2.24>, using a solution, prepared by adding ethanol (99.5) to 1 mL of 0.1 mol/L hydrochloric acid TS to make exactly 50 mL, as the blank, and determine the absorbances, A\textsubscript{T} and A\textsubscript{S}, at 248 nm.

\[
\text{Amount (mg) of probenecid (C}_{13}\text{H}_{19}\text{NO}_3\text{S}} = M_t \times A_t/A_s \times V/25
\]

M\textsubscript{T}: Amount (mg) of Probenecid RS taken

Dissolution <6.10> When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of the 2nd fluid for dissolution test as the dissolution medium, the dissolution rate in 30 minutes of Probenecid Tablets is not less than 80%.

Start the test with 1 tablet of Probenecid Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.8 µm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add the dissolution medium to make exactly V mL so that each mL contains about 14 µg of probenecid (C\textsubscript{13}H\textsubscript{19}NO\textsubscript{3}S), and use this solution as the sample solution. Separately, weigh accurately about 70 mg of Probenecid RS, previously dried at 105°C for 4 hours, and dissolve in the dissolution medium to make exactly 100 mL. Pipet 1 mL of this solution, add the dissolution medium to make exactly 50 mL, and use this solution as the standard solution. Determine the absorbances, A\textsubscript{T} and A\textsubscript{S}, at 244 nm of the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry <2.24>.

Dissolution rate (% with respect to the labeled amount of probenecid (C\textsubscript{13}H\textsubscript{19}NO\textsubscript{3}S))

\[
= \frac{M_t}{A_t} \times \frac{A_t}{A_s} \times V/V' \times 1/C \times 18
\]

M\textsubscript{T}: Amount (mg) of Probenecid RS taken

C: Labeled amount (mg) of probenecid (C\textsubscript{13}H\textsubscript{19}NO\textsubscript{3}S) in 1 tablet

Assay Weigh accurately, and powder not less than 20 Probenecid Tablets. Weigh accurately a portion of the pow-
Probucol

Description
Probucol occurs as a white crystalline powder. It gradually turns light yellow on exposure to light.

Containers and storage
Containers—Well-closed containers.

Assay

1. **System suitability**
 - Test for required detectability: Pipet 2 mL of the standard solution and add the mobile phase to make exactly 10 mL. Confirm that the peak area of probucol obtained with 5 µL of this solution is equivalent to 14 to 26% of that with 5 µL of the standard solution.
 - System performance: To 1 mL of the sample solution add the mobile phase to make 50 mL. To 1 mL of this solution add 1 mL of a solution of phthalic acid bis((cis-3,3,5-trimethylcyclohexyl) in the mobile phase (1 in 1000), 5 mL of ethanol (99.5), and the mobile phase to make 20 mL. When the procedure is run with 5 µL of this solution under the above operating conditions, phthalic acid bis((cis-3,3,5-trimethylcyclohexyl) and probucol are eluted in this order having the relative retention time of about 1.9 from the sample solution is not larger than 5 times the peak area of probucol from the standard solution. Furthermore, the total area of the peaks other than probucol from the sample solution is not larger than 25 times the peak area of probucol from the standard solution. For the areas of the peaks, having the relative retention times of about 0.9 and about 1.9 to probucol, multiply their correction factors, 1.2 and 1.4, respectively.

2. **Test for required proportion**
 - System suitability: Pipet 2 mL of the standard solution and add the mobile phase to make exactly 10 mL. Confirm that the peak area of probucol obtained with 5 µL of this solution is equivalent to 14 to 26% of that with 5 µL of the standard solution.
 - System performance: To 1 mL of the sample solution add the mobile phase to make 50 mL. To 1 mL of this solution add 1 mL of a solution of phthalic acid bis((cis-3,3,5-trimethylcyclohexyl) in the mobile phase (1 in 1000), 5 mL of ethanol (99.5), and the mobile phase to make 20 mL. When the procedure is run with 5 µL of this solution under the above operating conditions, phthalic acid bis((cis-3,3,5-trimethylcyclohexyl) and probucol are eluted in this order with the resolution between these peaks being not less than 6.
 - System repeatability: When the test is repeated 6 times with 5 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of probucol is not more than 5%.

Loss on drying
Not more than 0.5% (1 g, in vacuum, 80°C, 1 hour).

Residue on ignition
Not more than 0.1% (1 g).

Assay
Weigh accurately about 60 mg each of Probucol and Probucol RS, previously dried, dissolve each in 5 mL of tetrahydrofuran, and add the mobile phase to make exactly.

Melting point
125 – 128°C

Purity (1)
Heavy metals—Prepare with 2.0 g of Probucol according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

Related substances—Conduct this procedure using light-resistant vessels. Dissolve 0.40 g of Probucol in 5 mL of ethanol (99.5), add the mobile phase to make 20 mL, and use this solution as the sample solution. Pipet 1 mL of the sample solution, and add the mobile phase to make exactly 50 mL. Pipet 1 mL of this solution, add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 5 µL each of the sample solution and standard solution as directed under Liquid Chromatography 2.0.17 according to the following conditions.

Determine each peak area of both solutions by the automatic integration method: the area of the peak having the relative retention time of about 0.9 to probucol obtained from the sample solution is not larger than the peak area of probucol from the standard solution, and the area of peak having the relative retention time of about 1.9 from the sample solution is not larger than 25 times the peak area of probucol from the standard solution, and the area of each peak other than probucol and the peaks mentioned above from the sample solution is not larger than 5 times the peak area of probucol from the standard solution. Furthermore, the total area of the peaks other than probucol from the sample solution is not larger than 25 times the peak area of probucol from the standard solution. For the areas of the peaks, having the relative retention times of about 0.9 and about 1.9 to probucol, multiply their correction factors, 1.2 and 1.4, respectively.

Operating conditions
Detector, column, column temperature, mobile phase and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 3 times as long as the retention time of probucol, beginning after the solvent peak, excluding the peak having the relative retention time of about 0.5 to probucol.

System suitability
Test for required detectability: Pipet 2 mL of the standard solution, and add the mobile phase to make exactly 10 mL. Confirm that the peak area of probucol obtained with 5 µL of this solution is equivalent to 14 to 26% of that with 5 µL of the standard solution.

System performance: To 1 mL of the sample solution add the mobile phase to make 50 mL. To 1 mL of this solution add 1 mL of a solution of phthalic acid bis((cis-3,3,5-trimethylcyclohexyl) in the mobile phase (1 in 1000), 5 mL of ethanol (99.5), and the mobile phase to make 20 mL. When the procedure is run with 5 µL of this solution under the above operating conditions, phthalic acid bis((cis-3,3,5-trimethylcyclohexyl) and probucol are eluted in this order with the resolution between these peaks being not less than 6.

System repeatability: When the test is repeated 6 times with 5 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of probucol is not more than 5%.

Loss on drying
Not more than 0.5% (1 g, in vacuum, 80°C, 1 hour).

Residue on ignition
Not more than 0.1% (1 g).

Assay
Weigh accurately about 60 mg each of Probucol and Probucol RS, previously dried, dissolve each in 5 mL of tetrahydrofuran, and add the mobile phase to make exactly.
50 mL. Pipet 5 mL each of these solutions, add exactly 5 mL of the internal standard solution and the mobile phase to make 100 mL, and use these solutions as the sample solution and standard solution. Perform the test with 10 μL of each of the sample solution and standard solution as directed under Liquid Chromatography <2.0> according to the following conditions, and calculate the ratios, \(Q_T \) and \(Q_S \), of the peak area of probucol to that of the internal standard.

\[
\text{Amount (mg) of probucol (C}_{31}\text{H}_{48}\text{O}_{2}\text{S}_{2}) = M_S \times Q_T / Q_S
\]

\(M_S \): Amount (mg) of Probucol RS taken

Internal standard solution—Dissolve 0.2 g of bis(cis-3,3,5-trimethylcyclohexyl) phthalate in 1 mL of tetrahydrofuran, and add the mobile phase to make 50 mL.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 242 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: A mixture of acetonitrile and water (93:7).

Flow rate: Adjust so that the retention time of probucol is about 13 minutes.

System suitability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the internal standard and probucol are eluted in this order with the resolution between these peaks being not less than 6.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of probucol to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Tight containers.

Storage—Light-resistant.

Probucol Fine Granules

プロブコール細粒

Probucol Fine Granules contain not less than 95.0% and not more than 105.0% of the labeled amount of probucol (C\(_{31}\)H\(_{48}\)O\(_2\)S\(_2\)): 516.84.

Method of preparation Prepare as directed under Granules, with Probucol.

Identification To an amount of powdered Probucol Fine Granules, equivalent to 50 mg of Probucol, add 100 mL of methanol, shake, and filter. To 2 mL of the filtrate add methanol to make 100 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.24>; it exhibits a maximum between 240 nm and 244 nm.

Uniformity of dosage units <6.02> Perform the test according to the following method: the granules in single-dose packages meet the requirement of the Content uniformity test.

To the total amount of the content of 1 package of Probucol Fine Granules add 70 mL of methanol, shake thoroughly, and add methanol to make exactly 100 mL. Centrifuge, pipet \(V \) mL of the supernatant liquid, equivalent to about 5 mg of probucol (C\(_{31}\)H\(_{48}\)O\(_2\)S\(_2\)), add exactly 5 mL of the internal standard solution, add methanol to make 100 mL, and use this solution as the sample solution. Then, proceed as directed in the Assay.

\[
\text{Amount (mg) of probucol (C}_{31}\text{H}_{48}\text{O}_{2}\text{S}_{2}) = M_S \times Q_T / Q_S \times 10/V
\]

\(M_S \): Amount (mg) of Probucol RS taken

Internal standard solution—A solution of bis(cis-3,3,5-trimethylcyclohexyl) phthalate in methanol (1 in 250).

Assay Weigh accurately an amount of powdered Probucol Fine Granules, equivalent to about 0.25 g of probucol (C\(_{31}\)H\(_{48}\)O\(_2\)S\(_2\)), add 70 mL of methanol, shake thoroughly, and add methanol to make exactly 100 mL. Centrifuge, pipet 2 mL of the supernatant liquid, add exactly 5 mL of the internal standard solution, add methanol to make 100 mL, and use this solution as the sample solution. Separately, weigh accurately about 50 mg of Probucol RS, previously dried under reduced pressure at 80°C for 1 hour, and dissolve in methanol to make exactly 20 mL. Pipet 2 mL of this solution, add exactly 5 mL of the internal standard solution, add methanol to make 100 mL, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.0> according to the following conditions, and calculate the ratios, \(Q_T \) and \(Q_S \), of the peak area of probucol to that of the internal standard.

\[
\text{Amount (mg) of probucol (C}_{31}\text{H}_{48}\text{O}_{2}\text{S}_{2}) = M_S \times Q_T / Q_S \times 5
\]

\(M_S \): Amount (mg) of Probucol RS taken

Internal standard solution—A solution of bis(cis-3,3,5-trimethylcyclohexyl) phthalate in methanol (1 in 250).

Operating conditions—

Detector, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay under Probucol.

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

System suitability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the internal standard and probucol are eluted in this order with the resolution between these peaks being not less than 3.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of probucol to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Well-closed containers.
Procainamide Hydrochloride

プロカインアミド塩酸塩

C$_{13}$H$_{17}$N$_{2}$O.HCl: 271.79

4-Amino-N-(2-diethylaminoethyl)benzamide monohydrochloride

[614-39-1]

Procainamide Hydrochloride, when dried, contains not less than 98.0% and not more than 101.0% of procainamide hydrochloride (C$_{13}$H$_{17}$N$_{2}$O.HCl).

Description Procainamide Hydrochloride occurs as a white to light yellow crystalline powder.

It is very soluble in water and soluble in ethanol (99.5).

It is hygroscopic.

Identification (1) Determine the infrared absorption spectrum of Procainamide Hydrochloride, previously dried, as directed in the potassium chloride disk method under Infrared Spectrophotometry $<$2.25$>$, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(2) A solution of Procainamide Hydrochloride (1 in 20) responds to Qualitative Tests $<$1.09$>$ for chloride.

pH $<$2.54$>$ Dissolve 1.0 g of Procainamide Hydrochloride in 10 mL of water: the pH of this solution is between 5.0 and 6.5.

Melting point $<$2.60$>$ 165 − 169°C

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Procainamide Hydrochloride in 10 mL of water: the solution is clear and colorless.

(2) Heavy metals $<$1.07$>$—Proceed with 2.0 g of Procainamide Hydrochloride according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(3) Arsenic $<$1.11$>$—Prepare the test solution with 1.0 g of Procainamide Hydrochloride according to Method 1, and perform the test (not more than 2 ppm).

(4) Related substances—Dissolve 50 mg of Procainamide Hydrochloride in 100 mL of the mobile phase, and use this solution as the sample solution. Pipet 1 mL of the sample sol-
Procainamide Hydrochloride Injection

プロカインアミド塩酸塩注射液

Procainamide Hydrochloride Injection is an aqueous injection.

It contains not less than 95.0% and not more than 105.0% of the labeled amount of procainamide hydrochloride (C₁₃H₂₁N₂O.HCl: 271.79).

Method of preparation Prepare as directed under Injections, with Procainamide Hydrochloride.

Description Procainamide Hydrochloride Injection is a clear, colorless or light yellow liquid.

pH: 4.0 – 6.0

Identification (1) To a volume of Procainamide Hydrochloride Injection, equivalent to 10 mg of Procainamide Hydrochloride, add 1 mL of dilute hydrochloric acid and water to make 5 mL: the solution responds to Qualitative Tests <1.09> (1) for primary aromatic amines.

(2) To a volume of Procainamide Hydrochloride Injection, equivalent to 0.1 g of Procainamide Hydrochloride, add water to make 100 mL. To 1 mL of this solution add water to make 100 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.24>: it exhibits a maximum between 277 nm and 281 nm.

(3) Procainamide Hydrochloride Injection responds to Qualitative Tests <1.09> (2) for chloride.

Bacterial endotoxins <4.06> Less than 0.30 EU/mg.

Extractable volume <6.05> It meets the requirement.

Foreign insoluble matter <6.06> Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter <6.07> It meets the requirement.

Sterility <4.06> Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Dilute an accurately measured volume of Procainamide Hydrochloride Injection, equivalent to about 0.5 g of procainamide hydrochloride (C₁₃H₂₁N₂O.HCl), with 5 mL of hydrochloric acid and water to 50 mL, add 10 mL of potassium bromide solution (3 → 10), cool to 15°C or lower, and titrate <2.50>: with 0.1 mol/L sodium nitrite VS (potentiometric titration method or amperometric titration).

Each mL of 0.1 mol/L sodium nitrite VS

= 27.18 mg of C₁₃H₂₁N₂O.HCl

Containers and storage Containers—Tight containers.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.)
Procaínamide Hydrochloride Tablets

プロカインアミド塩酸塩錠

Procaínamide Hydrochloride Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of procaínamide hydrochloride (C₉H₁₅N₂O.HCl: 271.79).

Method of preparation Prepare as directed under Tablets, with Procaínamide Hydrochloride.

Identification To a quantity of powdered Procaínamide Hydrochloride Tablets, equivalent to 1.5 g of Procaínamide Hydrochloride, add 30 mL of water, shake well, filter, and use the filtrate as the sample solution. To 0.2 mL of the sample solution add 1 mL of dilute hydrochloric acid and 4 mL of water: the solution responds to Qualitative Tests <1.699> for primary aromatic amines.

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 tablet of Procaínamide Hydrochloride Tablets add 3V/5 mL of 0.02 mol/L phosphate buffer solution (pH 3.0), sonicate to disintegrate the tablet completely, add 0.02 mol/L phosphate buffer solution (pH 3.0) to make exactly V mL so that each mL contains about 2.5 mg of procaínamide hydrochloride (C₉H₁₅N₂O.HCl), and shake for 5 minutes. Centrifuge this solution, pipet 1 mL of the supernatant liquid, and add 0.02 mol/L phosphate buffer solution (pH 3.0) to make exactly 250 mL, and use this solution as the sample solution. Proceed as directed in the Assay.

\[
\text{Amount (mg) of procaínamide hydrochloride} = M_s \times A_r / A_s \times V / 20
\]

\[M_s:\] Amount (mg) of procaínamide hydrochloride for assay taken

Dissolution <6.10> When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 30 minutes of Procaínamide Hydrochloride Tablets is not less than 80%.

Start the test with 1 tablet of Procaínamide Hydrochloride Tablets, withdraw not less than 30 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.8 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add 2nd fluid for dissolution test to make exactly V’ mL so that each mL contains about 7 μg of procaínamide hydrochloride (C₉H₁₅N₂O.HCl), and use this solution as the sample solution. Separately, weigh accurately about 0.125 g of procaínamide hydrochloride for assay, previously dried at 105°C for 4 hours, and dissolve in water to make exactly 1000 mL. Pipet 5 mL of this solution, add 2nd fluid for dissolution test to make exactly 100 mL, and use this solution as the standard solution. Perform the test with the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry <2.24>, and determine the absorbances, A₁ and A₅ at 278 nm.

Dissolution rate (%) with respect to the labeled amount of procaínamide hydrochloride (C₉H₁₅N₂O.HCl) = \[
M_s \times A_r / A_s \times V’ / V \times 1 / C \times 9 / 2
\]

\[M_s:\] Amount (mg) of procaínamide hydrochloride for assay taken

\[C:\] Labeled amount (mg) of procaínamide hydrochloride (C₉H₁₅N₂O.HCl) in 1 tablet

Assay To 10 Procaínamide Hydrochloride Tablets add about 300 mL of 0.02 mol/L phosphate buffer solution (pH 3.0) and sonicate to disintegrate the tablets completely. To this solution add 0.02 mol/L phosphate buffer solution (pH 3.0) to make exactly 500 mL, and stir for 5 minutes. Centrifuge this solution, pipet V mL of the supernatant liquid, and add 0.02 mol/L phosphate buffer solution (pH 3.0) to make exactly V mL so that each mL contains about 10 μg of procaínamide hydrochloride (C₉H₁₅N₂O.HCl). Filter this solution through a membrane filter with a pore size not exceeding 0.45 μm, discard the first 10 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 50 mg of procaínamide hydrochloride for assay, previously dried at 105°C for 4 hours, dissolve in 0.02 mol/L phosphate buffer solution (pH 3.0) to make exactly 100 mL. Pipet 2 mL of this solution, add 0.02 mol/L phosphate buffer solution (pH 3.0) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A₁ and A₅, of procaínamide in each solution.

\[
\text{Amount (mg) of procaínamide hydrochloride} = M_s \times A_r / A_s \times V’ / V \times 1 / 10
\]

\[M_s:\] Amount (mg) of procaínamide hydrochloride for assay taken

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 270 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase: A mixture of 0.02 mol/L phosphate buffer solution (pH 3.0) and methanol (9:1).
Flow rate: Adjust so that the retention time of procaínamide is about 9 minutes.
System suitability—
System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of procaínamide are not less than 10,000 and not more than 1.5, respectively.
System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of procaínamide is not more than 1.0%.

Containers and storage Containers—Tight containers.
Procaine Hydrochloride

プロカイン塩酸塩

\[
\text{C}_3\text{H}_8\text{N}_2\text{O}_2\cdot\text{HCl}: 272.77
\]

2-(Diethylamino)ethyl 4-aminobenzoate monohydrochloride [51-05-8]

Procaine Hydrochloride, when dried, contains not less than 99.0% of procaaine hydrochloride (C\(_{13}\)H\(_{20}\)N\(_2\)O\(_2\).HCl).

Description Procaine Hydrochloride occurs as white, crystals or crystalline powder.

It is very soluble in water, soluble in ethanol (95), and practically insoluble in diethyl ether.

Identification (1) Determine the absorption spectrum of a solution of Procaine Hydrochloride (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry \(\leq 2.24\)\(^2\), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Procaine Hydrochloride, previously dried, as directed in the potassium chloride disk method under Infrared Spectroscopy \(\leq 2.25\), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) A solution of Procaine Hydrochloride (1 in 10) responds to Qualitative Tests \(\leq 1.09\) for chloride.

pH \(\leq 2.54\) The pH of a solution prepared by dissolving 1.0 g of Procaine Hydrochloride in 20 mL of water is between 5.0 and 6.0.

Melting point \(\geq 2.60\) 155 – 158°C

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Procaine Hydrochloride in 10 mL of water: the solution is clear and colorless.

(2) Heavy metals \(\leq 1.07\) —Proceed with 1.0 g of Procaine Hydrochloride according to Method 1, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(3) Related substances—To 1.0 g of Procaine Hydrochloride add 5 mL of ethanol (95), dissolve by mixing well, add water to make exactly 10 mL, and use this solution as the sample solution. Separately, dissolve 10 mg of 4-aminobenzoic acid in ethanol (95) to make exactly 20 mL, then pipet 1 mL of this solution, add 4 mL of ethanol (95) and water to make exactly 10 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography \(\leq 2.03\). Spot 5 \(\mu\)L of each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography to develop the plate with a mixture of dibutyl ether, n-hexane and acetic acid (100:20:4:1) to a distance of about 10 cm, and air-dry the plate. After drying the plate more at 105°C for 10 minutes, examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution. The principal spot from the sample solution stays at the origin.

Loss on drying \(\leq 2.47\) Not more than 0.5% (1 g, silica gel, 4 hours).

Residue on ignition \(\leq 2.44\) Not more than 0.1% (1 g).

Assay Weigh accurately about 0.4 g of Procaine Hydrochloride, previously dried, dissolve in 5 mL of hydrochloric acid and 60 mL of water, add 10 mL of a solution of potassium bromide (3 in 10), cool to below 15°C, and titrate \(\leq 2.50\) with 0.1 mol/L sodium nitrite VS (potentiometric titration or amperometric titration).

Each mL of 0.1 mol/L sodium nitrite VS = 27.28 mg of C\(_{13}\)H\(_{20}\)N\(_2\)O\(_2\).HCl

Containers and storage Containers—Well-closed containers.

Procaine Hydrochloride Injection

プロカイン塩酸塩注射液

Procaine Hydrochloride Injection is an aqueous injection.

It contains not less than 95.0% and not more than 105.0% of the labeled amount of procaaine hydrochloride (C\(_{13}\)H\(_{20}\)N\(_2\)O\(_2\).HCl: 272.77).

Method of preparation Prepare as directed under Injections, with Procaine Hydrochloride.

Description Procaine Hydrochloride Injection is a clear, colorless liquid.

Identification (1) To a volume of Procaine Hydrochloride Injection, equivalent to 0.01 g of Procaine Hydrochloride, add water to make 1000 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry \(\leq 2.24\): it exhibits maxima between 219 nm and 223 nm, and between 289 nm and 293 nm.

(2) Procaine Hydrochloride Injection responds to Qualitative Tests \(\leq 1.09\) for chloride.

pH \(\leq 2.54\) 3.3 – 6.0

Bacterial endotoxins \(\leq 4.01\) Less than 0.02 EU/unit. Apply to the preparations intended for intraspinal administration.

Extractable volume \(\leq 6.05\) It meets the requirement.

Foreign insoluble matter \(\leq 6.06\) Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter \(\leq 6.07\) It meets the requirement.

Sterility \(\leq 4.06\) Perform the test according to the Membrane filtration method: it meets the requirement.

Assay To an exactly measured volume of Procaine Hydrochloride Injection, equivalent to about 20 mg of procaaine hydrochloride (C\(_{13}\)H\(_{20}\)N\(_2\)O\(_2\).HCl), add the mobile phase to make exactly 20 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution and the mobile phase to make 20 mL, and use this solution as the sample solution. Separately, weigh accurately about 50 mg of procaaine hydrochloride for assay, previously dried in a desiccator (silica gel) for 4 hours, dissolve in the mobile phase to make exactly 50 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution and the mobile phase to make 20 mL, and use this solution as the standard solution. Perform
the test with 5 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and calculate the ratios, Q₁ and Q₂, of the peak area of procaine hydrochloride to that of the internal standard.

\[
\text{Amount (mg) of procaine hydrochloride (C₁₃H₁₉N₂O₃.HCl)} = M_S \times Q_1 / Q_2 \times 2/5
\]

It dissolves in dilute hydrochloric acid.

Melting point: about 223°C (with decomposition).

Identification (1) Dissolve 0.01 g of Procarbazine Hydrochloride in 1 mL of diluted copper (II) sulfate TS (1 in 10), and add 4 drops of sodium hydrosulfite TS: a green precipitate is formed immediately, and the color changes from green through yellow to orange.

(2) Determine the absorption spectrum of a solution of Procarbazine Hydrochloride in 0.1 mol/L hydrochloric acid TS (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(3) Determine the infrared absorption spectrum of Procarbazine Hydrochloride, previously dried, as directed in the potassium chloride disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(4) A solution of Procarbazine Hydrochloride (1 in 20) responds to Qualitative Tests <1.09> for chloride.

pH <2.52> Dissolve 0.10 g of Procarbazine Hydrochloride in 10 mL of water: the pH of this solution is between 3.0 and 5.0.

Purity (1) Heavy metals <1.07>—Proceed with 1.0 g of Procarbazine Hydrochloride according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(2) Related substances—Dissolve 50 mg of Procarbazine Hydrochloride in 5.0 mL of a solution of L-cysteine hydrochloride monohydrate in diluted methanol (7 in 10) (1 in 200), and use this solution as the sample solution. Pipet 1 mL of the sample solution, add a solution of L-cysteine hydrochloride monohydrate in diluted methanol (7 in 10) (1 in 200) to make exactly 50 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Immerse slowly, by inclining, a plate of silica gel with fluorescent indicator for thin-layer chromatography in a solution of L-cysteine hydrochloride monohydrate in diluted methanol (7 in 10) (1 in 200) for 1 hour, allow to stand for 2 minutes, lift the plate from the solution, dry it in cold wind for 10 minutes, then dry in warm wind for 5 minutes, and then dry at 60°C for 5 minutes. After cooling, spot 5 μL each of the sample solution and standard solution on the plate. Develop the plate with a mixture of methanol and ethyl acetate (1:1) to a distance of about 12 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): not more than 1 spot other than the principal spot and the spot of the starting point obtained from the sample solution appears, and is not more intense than the spot from the standard solution.

Loss on drying <2.41> Not more than 0.5% (1 g, 105°C, 2 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.15 g of Procarbazine Hydrochloride, previously dried, place in a glass-stoppered flask, dissolve in 25 mL of water, add 25 mL of hydrochloric acid, and cool to room temperature. To this solution add 5 mL of chloroform, and titrate <2.53>, while shaking, with 0.05 mol/L potassium iodate VS until the purple color of the chloroform layer disappears. The end point is reached when the red-purple color of the chloroform layer no more reappears within 5 minutes after the purple color disappeared.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.)
Each mL of 0.05 mol/L potassium iodate VS
= 8.592 mg of C\(_{16}\)H\(_{22}\)N\(_2\)O\(_3\).HCl

Containers and storage Containers—Tight containers.

Procaterol Hydrochloride Hydrate

プロカテロール塩酸塩水和物

![Chemical structure](image)

C\(_{16}\)H\(_{22}\)N\(_2\)O\(_3\)HCl. \(\frac{1}{2}\)H\(_2\)O: 335.83
8-Hydroxy-5-[(1RS,2SR)-1-hydroxy-2-[(1-methyl-ethyl)amino]butyl]quinolin-2(1H)-one monohydrochloride hemihydrate
[62929-91-3, anhydride]

Procaterol Hydrochloride Hydrate contains not less than 98.5% of procaterol hydrochloride (C\(_{16}\)H\(_{22}\)N\(_2\)O\(_3\).HCl: 326.82), calculated on the anhydrous basis.

Description Procaterol Hydrochloride Hydrate occurs as white to pale yellow-white, crystals or crystalline powder.

It is soluble in water, in formic acid and in methanol, slightly soluble in ethanol (95), and practically insoluble in diethyl ether.

The pH of a solution of 1.0 g of Procaterol Hydrochloride Hydrate in 100 mL of water is between 4.0 and 5.0.

It is gradually colored by light.

The solution of Procaterol Hydrochloride Hydrate (1 in 20) shows no optical rotation.

Melting point: about 195°C (with decomposition).

Identification (1) Determine the absorption spectrum of a solution of Procaterol Hydrochloride Hydrate (7 in 1,000,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Procaterol Hydrochloride Hydrate as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) A solution of Procaterol Hydrochloride Hydrate (1 in 50) responds to Qualitative Tests <1.09> for chloride.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Procaterol Hydrochloride Hydrate in 30 mL of water: the solution is clear, and has no more color than the following control solution.

Control solution: To 3.0 mL of Iron (III) Chloride CS add water to make 50 mL.

(2) Heavy metals <1.07>—Proceed with 2.0 g of Procaterol Hydrochloride Hydrate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(3) Related substances—Dissolve 0.10 g of Procaterol Hydrochloride Hydrate in 100 mL of diluted methanol (1 in 2), and use this solution as the sample solution. Pipet 1 mL of the sample solution, add diluted methanol (1 in 2) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 2 \(\mu\)L each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area of these solutions by the automatic integration method: the total area of the peaks other than procaterol obtained from the sample solution is not larger than the peak area of procaterol from the standard solution.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 254 nm).

Column: A stainless steel column about 4 mm in inside diameter and about 25 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 \(\mu\)m in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: Dissolve 0.87 g of sodium 1-pentanesulphonate in 1000 mL of water. To 760 mL of this solution add 230 mL of methanol and 10 mL of acetic acid (100).

Flow rate: Adjust so that the retention time of procaterol is about 15 minutes.

Selection of column: Dissolve 20 mg each of Procaterol Hydrochloride Hydrate and threoprocaterol hydrochloride in 100 mL of diluted methanol (1 in 2). To 15 mL of this solution add diluted methanol (1 in 2) to make 100 mL. Proceed with 2 \(\mu\)L of this solution under the above operating conditions, and calculate the resolution. Use a column giving elution of procaterol and threoprocaterol in this order with the resolution of these peaks being not less than 3.

Detection sensitivity: Adjust the detection sensitivity so that the peak height of procaterol obtained from 2 \(\mu\)L of the standard solution is not less than 10 mm.

Time span of measurement: 2.5 times as long as the retention time of procaterol, beginning after the solvent peak.

Water <2.48> 2.5 – 3.3% (0.5 g, volumetric titration, direct titration).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.25 g of Procaterol Hydrochloride Hydrate, add 2 mL of formic acid, dissolve by warming, and add exactly 15 mL of 0.1 mol/L perchloric acid VS. Add 1 mL of acetic anhydride, heat on a water bath for 30 minutes, cool, add 60 mL of acetic anhydride, and titrate <2.50> the excess perchloric acid with 0.1 mol/L sodium acetate VS (potentiometric titration). Perform a blank determination in the same manner.

Each mL of 0.1 mol/L perchloric acid VS
= 32.68 mg of C\(_{16}\)H\(_{22}\)N\(_2\)O\(_3\).HCl

Containers and storage Containers—Well-closed containers.

Storage—Light-resistant.
Prochlorperazine Maleate

Prochlorperazine Maleate, when dried, contains not less than 98.0% of prochlorperazine maleate (C₂₅H₂₄ClN₃S.2C₂H₅O₂).

Description
Prochlorperazine Maleate occurs as a white to light yellow powder. It is odorless, and has a slightly bitter taste. It is slightly soluble in acetic acid (100), very slightly soluble in water and in ethanol (95), and practically insoluble in diethyl ether. It gradually acquires a red tint by light.

Melting point: 195 – 203°C (with decomposition).

Identification (1) Dissolve 5 mg of Prochlorperazine Maleate in 5 mL of sulfuric acid: a red color develops, which darkens slowly on standing. Warm a half of the solution: the color changes to red-purple. To the remainder add 1 drop of potassium dichromate TS: a green-brown color develops, which changes to brown on standing.

(2) Boil 0.5 g of Prochlorperazine Maleate with 10 mL of hydrobromic acid under a reflux condenser for 10 minutes. After cooling, add 100 mL of water, and filter through glass filter (G4). Wash the residue with three 10-mL portions of diethyl ether, shake, and centrifuge. Transfer the diethyl ether extracts on a water bath to dryness, dissolve the residue in 10 mL of methanol by warming, and pour into 30 mL of a mixture of 1-butanol and ammonia TS (15:2) to a distance of about 10 cm, and air-dry the plate. Spray evenly palladium chloride TS on the plate: the spots obtained from the solution add 1 drop of potassium dichromate TS: a green-brown color is produced and changes to brown on standing.

(3) Dissolve 0.2 g of Prochlorperazine Maleate in 5 mL of a solution of sodium hydroxide (1 in 10), and extract with three 3-mL portions of diethyl ether [reserve the aqueous layer, and use for test (4)]. Evaporate the combined diethyl ether extracts on a water bath to dryness, dissolve the residue in 10 mL of methanol by warming, and pour into 30 mL of a solution of 2,4,6-trinitrophenol in methanol (1 in 75), previously warmed to 50°C. Allow to stand for 1 hour, collect the crystals, wash with a small amount of methanol, and dry at 105°C for 1 hour: the crystals melt <2.60> between 195°C and 198°C (with decomposition).

(4) To the aqueous layer reserved in (3) add boiling chips, and heat on a water bath for 10 minutes. Cool, add 2 mL of bromine TS, heat on a water bath for 10 minutes, and heat the solution to boil. After cooling, add 2 drops of this solution to 3 mL of a solution of resorcinol in sulfuric acid (1 in 300), and heat on a water bath for 15 minutes: a red-purple color is produced.

Purity
Heavy metals <1.077>—Proceed with 1.0 g of Prochlorperazine Maleate according to Method 2, and perform the test. Prepare the control solution with 1.0 mL of Standard Lead Solution (not more than 10 ppm).

Loss on drying <2.41> Not more than 1.0% (1 g, 105°C, 3 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay
Weigh accurately about 0.3 g of Prochlorperazine Maleate, previously dried, dissolve in 60 mL of acetic acid (100) while stirring and warming. Cool, and titrate 2.50 mL 0.05 mol/L perchloric acid VS until the color of the solution changes from orange to green (indicator: 0.5 mL of p-naphtholbenzene TS). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.05 mol/L perchloric acid VS = 15.15 mg of C₂₅H₂₄ClN₃S.2C₂H₅O₂

Containers and storage
Containers—Tight containers.
Storage—Light-resistant.

Prochlorperazine Maleate Tablets

Prochlorperazine Maleate Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of prochlorperazine maleate (C₂₅H₂₄ClN₃S.2C₂H₅O₂: 606.09).

Method of preparation
Prepare as directed under Tablets, with Prochlorperazine Maleate.

Identification (1) Weigh a quantity of powdered Prochlorperazine Maleate Tablets, equivalent to 5 mg of Prochlorperazine Maleate, add 15 mL of acetic acid (100), shake, and filter. To 5 mL of the filtrate add 3 mL of sulfuric acid, and shake: a light red color develops. To this solution add 1 drop of potassium dichromate TS: a green-brown color is produced and changes to brown on standing.

(2) Weigh a quantity of powdered Prochlorperazine Maleate Tablets, equivalent to 0.08 g of Prochlorperazine Maleate, add 15 mL of methanol and 1 mL of dimethylamine, shake, centrifuge, and use the supernatant liquid as the sample solution. Separately, dissolve 0.08 g of Prochlorperazine Maleate RS in 15 mL of methanol and 1 mL of dimethylamine, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.07>. Spot 10 μL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of 1-butanol and ammonia TS (15:2) to a distance of about 10 cm, and air-dry the plate. Spray evenly palladium chloride TS on the plate: the spots obtained from the sample solution and standard solution show a red-purple color, and has the same Rf value.

(3) To a quantity of powdered Prochlorperazine Maleate Tablets, equivalent to 0.04 g of Prochlorperazine Maleate, add 10 mL of 1 mol/L hydrochloric acid TS and 20 mL of diethyl ether, shake, and centrifuge. Transfer the diethyl ether layer to a separator, wash with 5 mL of 0.05 mol/L sulfuric acid TS, and evaporate on a water bath to dryness. Dissolve the residue in 5 mL of sulfuric acid TS, filter, if necessary, and add 1 to 2 drops of potassium permanganate TS: the red color of the test solution is discharged immediately.

Uniformity of dosage units
6.02
Perform the test according to the following method: it meets the requirement of the Content uniformity test.

Conduct this procedure using light-resistant vessels. To 1 tablet of Prochlorperazine Maleate Tablets add 3V/5 mL of a mixture of dilute phosphoric acid (1 in 500) and ethanol (99.5) (1:1), sonicate until the tablet is disintegrated, and shake vigorously for 10 minutes. Add exactly V/20 mL of...
the internal standard solution, and a mixture of dilute phosphoric acid (1 in 500) and ethanol (99.5) (1:1) to make V mL so that each mL contains about 8 µg of prochlorperazine maleate (C₂₂H₂₃ClN₂S₂C₂H₄O₂). Centrifuge this solution, and use the supernatant liquid as the sample solution. Proceed as directed in the Assay.

Amount (mg) of prochlorperazine maleate (C₂₂H₂₃ClN₂S₂C₂H₄O₂) = M₅ × Qₜ/Qₖ × V/250

M₅: Amount (mg) of Prochlorperazine Maleate RS taken

Internal standard solution—A solution of butyl parahydroxybenzoate in a mixture of diluted phosphoric acid (1 in 500) and ethanol (99.5) (1:1) in 1000 mL.

Dissolution 66.16 When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of 2nd fluid for dissolution test as the dissolution medium, the dissolution rate in 45 minutes of Prochlorperazine Maleate Tablets is not less than 75%.

Start the test with 1 tablet of Prochlorperazine Maleate Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 µm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add the dissolution medium to make exactly V' mL so that each mL contains about 9 µg of prochlorperazine maleate (C₂₂H₂₃ClN₂S₂C₂H₄O₂), and use this solution as the sample solution. Separately, weigh accurately about 18 mg of Prochlorperazine Maleate RS, previously dried at 105°C for 3 hours, and dissolve in methanol to make exactly 100 mL. Pipet 5 mL of this solution, add the dissolution medium to make exactly 100 mL, and use this solution as the standard solution. Perform the test with the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry <2.24>, using the dissolution medium as the blank, and determine the absorbances, A and Aₜ and Aₕ, at 255 nm.

Dissolution rate (%) with respect to the labeled amount of prochlorperazine maleate (C₂₂H₂₃ClN₂S₂C₂H₄O₂) = M₅ × Aₜ/Aₕ × V'/V × 1/C × 45

M₅: Amount (mg) of Prochlorperazine Maleate RS taken

C: Labeled amount (mg) of prochlorperazine maleate (C₂₂H₂₃ClN₂S₂C₂H₄O₂) in 1 tablet

Assay Conduct this procedure using light-resistant vessels. Weigh accurately the mass of not less than 20 Prochlorperazine Maleate Tablets, and powder in an agate mortar. Weigh accurately a portion of the powder, equivalent to about 8 mg of prochlorperazine maleate (C₂₂H₂₃ClN₂S₂C₂H₄O₂), add 60 mL of a mixture of diluted phosphoric acid (1 in 500) and ethanol (99.5) (1:1), and shake vigorously for 10 minutes. Add exactly 5 mL of the internal standard solution, and add a mixture of diluted phosphoric acid (1 in 500) and ethanol (99.5) (1:1) to make 100 mL. Centrifuge this solution, and use the supernatant liquid as the sample solution. Separately, weigh accurately about 20 mg of Prochlorperazine Maleate RS, previously dried at 105°C for 3 hours, and dissolve in a mixture of diluted phosphoric acid (1 in 500) and ethanol (99.5) (1:1) to make exactly 25 mL. Pipet 10 mL of this solution, add exactly 5 mL of the internal standard solution and a mixture of diluted phosphoric acid (1 in 500) and ethanol (99.5) (1:1) to make 100 mL, and use this solution as the standard solution. Perform the test with 5 µL each of the sample solution and standard solution as directed under Liquid Chromatography <2.017> according to the following conditions, and calculate the ratios, Qₜ and Qₖ, of the peak area of prochlorperazine to that of the internal standard.

Amount (mg) of prochlorperazine maleate (C₂₂H₂₃ClN₂S₂C₂H₄O₂) = M₅ × Qₜ/Qₖ × 2/5

M₅: Amount (mg) of Prochlorperazine Maleate RS taken

Internal standard solution—A solution of butyl parahydroxybenzoate in a mixture of diluted phosphoric acid (1 in 500) and ethanol (99.5) (1:1) in 1000 mL.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 257 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 µm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: A mixture of diluted 0.05 mol/L sodium dihydrogen phosphate TS (1 in 2) and acetonitrile (11:9).

Flow rate: Adjust so that the retention time of prochlorperazine is about 5 minutes.

System suitability—

System performance: When the procedure is run with 5 µL of the standard solution under the above operating conditions, prochlorperazine and the internal standard are eluted in this order with the resolution between these peaks being not less than 10.

System repeatability: When the test is repeated 6 times with 5 µL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of prochlorperazine to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Tight containers.

Storage—Light-resistant.

Progesterone

プロゲステロン

C₂₃H₃₆O₂: 314.46
Pregn-4-ene-3,20-dione [57-83-0]

Progesterone, when dried, contains not less than 97.0% and not more than 103.0% of progesterone (C₂₃H₃₆O₂).

Description Progesterone occurs as white, crystals or crystalline powder.

It is soluble in methanol and in ethanol (99.5), and practically insoluble in water.

It shows crystal polymorphism.

Identification (1) Determine the absorption spectrum of a solution of Progesterone in ethanol (99.5) (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Progesterone RS prepared in
the same manner as the sample solution; both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Progesterone, as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of Progesterone RS: both spectra exhibit similar intensities of absorption at the same wave numbers. If any difference appears between the spectra, dissolve Progesterone and Progesterone RS in ethanol (95), respectively, then evaporate the ethanol to dryness, and repeat the test on the residues.

Optical rotation <2.49> \[[\alpha]_{D}^{20} +184° \sim +194° \] (after drying, 0.2 g, ethanol (99.5), 10 mL, 100 mm).

Melting point <2.60> 128° – 133°C or 120° – 122°C

Purity Related substances—Dissolve 80 mg of Progesterone in 2 mL of methanol, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add methanol to make exactly 100 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 5 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of diethyl ether and diethylamine (19:1) to a distance of about 15 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spot other than the principal spot obtained from the sample solution is not more intense than the spot from the standard solution.

Loss on drying <2.41> Not more than 0.5% (0.5 g, in vacuum, phosphorus (V) oxide, 4 hours).

Residue on ignition <2.44> Not more than 0.1% (0.5 g).

Assay Weigh accurately about 10 mg each of Progesterone and Progesterone RS, previously dried, and dissolve each in ethanol (99.5) to make exactly 100 mL. Pipet 5 mL each of these solutions, add ethanol (99.5) to make exactly 50 mL, and use these solution as the sample solution and the standard solution, respectively. Determine the absorbances, \(A_T \) and \(A_S \), of the sample solution and standard solution at the wavelength of maximum absorption at about 241 nm as directed under Ultraviolet-visible Spectrophotometry <2.03>. Use the following equations.

\[
\text{Amount (mg) of progestogen (C}_{21}\text{H}_{29}\text{O}_{5}) = M_5 \times \frac{A_T}{A_S}
\]

where

- \(M_5 \): Amount (mg) of Progesterone RS taken.

Containers and storage Containers—Tight containers. Storage—Light-resistant.

Identification To 1 mL of Progesterone Injection add 1 mL of dilute ethanol (9 in 10), shake well, take the ethanol layer, shake well with 1 mL of petroleum benzine, and use the ethanol layer as the sample solution. Separately, dissolve about 5 mg of Progesterone RS in 1 mL of ethanol (99.5), and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 2 μL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of diethyl ether and diethylamine (19:1) to a distance of about 10 cm, and air-dry the plate. Spray evenly sulfuric acid on the plate, and heat the plate at 105°C for 10 minutes: the principal spot obtained from the sample solution has the same RF value as the spot from the standard solution.

Extractable volume <5.07> It meets the requirement.

Foreign insoluble matter <6.06> Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter <6.07> It meets the requirement.

Sterility <4.06> Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Measure the specific gravity of Progesterone Injection. Weigh accurately the mass of Progesterone Injection, equivalent to about 1 mL, mix with 2 mL of tetrahydrofuran, and add ethanol (99.5) to make exactly V mL so that each mL contains about 0.5 mg of progesterone (C_{21}H_{29}O_{5}). Pipet 2 mL of this solution, add exactly 10 mL of the internal standard solution and ethanol (99.5) to make 20 mL, and use this solution as the sample solution. Separately, weigh accurately about 10 mg of Progesterone RS, previously dried in vacuum for 4 hours using phosphorus (V) oxide as the desiccant, dissolve in 2 mL of tetrahydrofuran, and add ethanol (99.5) to make exactly 20 mL. Pipet 2 mL of this solution, add exactly 10 mL of the internal standard solution and ethanol (99.5) to make 20 mL, and use this solution as the standard solution. Perform the test with 5 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.02> according to the following conditions, and calculate the ratios, \(Q_T \) and \(Q_S \), of the peak area of progesterone to that of the internal standard.

\[
\text{Amount (mg) of progesterone (C}_{21}\text{H}_{29}\text{O}_{5}) = M_5 \times \frac{Q_T}{Q_S} \times V/20
\]

where

- \(M_5 \): Amount (mg) of Progesterone RS taken.

Internal standard solution—A solution of testosterone propionate in ethanol (99.5) (1 in 4000).

Operating conditions—
- Detector: An ultraviolet absorption photometer (wavelength: 241 nm).
- Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
- Column temperature: A constant temperature of about 35°C.
- Mobile phase: A mixture of acetonitrile and water (7:3).
- Flow rate: Adjust so that the retention time of progesterone is about 6 minutes.

System suitability—
- System performance: When the procedure is run with 5 μL of the standard solution under the above operating conditions, progesterone and the internal standard are eluted in this order with the resolution between these peaks being not less than 9.

Progestogen Injection

プロゲステロン注射液

Progesterone Injection is an oily solution for injection.

It contains not less than 95.0% and not more than 105.0% of the labeled amount of progestogen (C_{21}H_{29}O_{5}: 314.46).

Method of preparation Prepare as directed under Injections, with Progesterone.

Description Progesterone Injection is a clear, colorless to pale yellow, oily liquid.
Proglumide

プログルミド

C₁₈H₂₅N₂O₄: 334.41
(4RS)-4-Benzoylamino-N,N-dipropylglutaramic acid
[6620-60-6]

Proglumide, when dried, contains not less than 98.5% of proglumide (C₁₈H₂₅N₂O₄).

Description Proglumide occurs as white, crystals or crystal-line powder.

It is freely soluble in methanol, soluble in ethanol (95), sparingly soluble in diethyl ether, and very slightly soluble in water.

A solution of Proglumide in methanol (1 in 10) shows no optical rotation.

Identification (1) Put 0.5 g of Proglumide in a round bot-
tom tube, add 5 mL of hydrochloric acid, seal the tube, and
heat the tube carefully at 120°C for 3 hours. After cooling,
open the tube, filter the content to collect crystals separated
out, wash the crystals with 50 mL of cold water, and dry at
100°C for 1 hour: the melting point <2.60> of the crystals
is between 121°C and 124°C.

(2) Determine the infrared absorption spectrum of
Proglumide, previously dried, as directed in the potassium
bromide disk method under Infrared Spectrophotometry
<2.25>, and compare the spectrum with the Reference Spe-
rum: both spectra exhibit similar intensities of absorption at
the same wave numbers.

Absorbance <2.24> E₁₃₄₅ (225 nm): 384 – 414 (after drying,
4 mg, methanol, 250 mL).

Melting point <2.60> 148 – 150°C

Purity (1) Heavy metals <1.07>—Proceed with 1.0 g of
Proglumide according to Method 2, and perform the test.
Prepare the control solution with 2.0 mL of Standard Lead
Solution (not more than 20 ppm).

(2) Arsenic <1.11>—To 1.0 g of Proglumide add 10 mL
of a solution of magnesium nitrate hexahydrate in ethanol
(95) (1 in 10) and 1.5 mL of hydrogen peroxide (30), burn
the ethanol, and prepare the test solution according to Method
3, and perform the test (not more than 2 ppm).

(3) Related substances—Dissolve 0.10 g of Proglumide
in 5 mL of methanol, and use this solution as the sample
solution. Pipet 1 mL of the sample solution, add methanol
to make exactly 200 mL, and use this solution as the standard
solution. Perform the test with these solutions as directed
under Thin-layer Chromatography <2.03>. Spot 10 μL each
of the sample solution and standard solution on a plate of
silica gel with fluorescent indicator for thin-layer chromato-
graphy. Develop the plate with a mixture of cyclohexane,
ethyl acetate, acetic acid (100) and methanol (50:18:5:4) to
a distance of about 10 cm, and air-dry the plate. Examine
under ultraviolet light (main wavelength: 254 nm): the spots
other than the principal spot obtained from the sample solution
are not more intense than the spot from the standard solu-
tion.

Loss on drying <2.41> Not more than 0.10% (1 g, reduced
pressure, phosphorus (V) oxide, 60°C, 3 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.16 g of Proglumide, previ-
ously dried, dissolve in 40 mL of methanol, add 10 mL of
water, and titrate <2.50> with 0.1 mol/L sodium hydroxide
VS (potentiometric titration). Perform a blank determina-
tion in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L sodium hydroxide VS
= 33.44 mg of C₁₈H₂₅N₂O₄

Containers and storage Containers—Well-closed contain-
ers.

L-Proline

L-プロリン

C₇H₁₄NO₂: 115.13
(2S)-Pyroglutamme-2-carboxylic acid
[147-85-3]

L-Proline contains not less than 99.0% and not
more than 101.0% of L-proline (C₇H₁₄NO₂), calculated
on the dried basis.

Description L-Proline occurs as white, crystals or crystal-
line powder. It has a slightly sweet taste.

It is very soluble in water and in formic acid, and slightly
soluble in ethanol (99.5).

It is deliquescent.

Identification Determine the infrared absorption spectrum of
L-Proline as directed in the potassium bromide disk
method under Infrared Spectrophotometry <2.25>, and
compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation <2.49> [α]D₂⁰: -84.0° – -86.0° (1 g calculated
on the dried basis, water, 25 mL, 100 mm).

pH <2.54> The pH of a solution of 1.0 g of L-Proline in 10
mL of water is 5.9 to 6.9.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of
L-Proline in 10 mL of water: the solution is clear and col-
ors.

(2) Chloride <1.03>—Perform the test with 0.5 g of
L-Proline. Prepare the control solution with 0.30 mL of 0.01
mol/L hydrochloric acid VS (not more than 0.021%).

(3) Sulfate <1.10>—Perform the test with 0.6 g of L-Pro-
line. Prepare the control solution with 0.35 mL of 0.005
mol/L sulfuric acid VS (not more than 0.028%).
(4) Ammonium —Perform the test with 0.25 g of 1-Proline. Prepare the control solution with 5.0 mL of Standard Ammonium Solution (not more than 0.02%).

(5) Heavy metals —Proceed with 1.0 g of 1-Proline according to Method 1, and perform the test. Prepare the control solution with 1.0 mL of Standard Lead Solution (not more than 10 ppm).

(6) Iron —Prepare the test solution with 1.0 g of 1-Proline according to Method 1, and perform the test according to Method A. Prepare the control solution with 1.0 mL of Standard Iron Solution (not more than 10 ppm).

(7) Related substances—Weigh accurately about 0.5 g of 1-Proline, and dissolve in 0.5 mL of hydrochloric acid and water to make exactly 100 mL. Pipet 10 mL of this solution, add 0.02 mol/L hydrochloric acid TS to make exactly 50 mL, and use this solution as the sample solution. Separately, weigh accurately an amount, equivalent to 2.5 mmol, of aspartic acid, threonine, serine, glutamic acid, 1-proline, glycine, L-alanine, L-cystine, L-valine, L-methionine, L-isoleucine, L-leucine, L-lysine, L-phenylalanine, L-lysine hydrochloride, ammonium chloride, L-histidine and L-arginine, dissolve them in 0.1 mol/L hydrochloric acid TS to make exactly 1000 mL, and use this solution as the standard solution. Perform the test with exactly 50 mL of the sample solution, add 0.02 mol/L hydrochloric acid TS to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL of each of the sample solution and standard solution as directed under Liquid Chromatography —according to the following conditions, and calculate the mass percentage of each amino acid, using the mass of amino acid other than proline in 1 mL of the sample solution from the height of the peaks obtained from the sample and standard solution: the amount of each amino acid other than proline is not more than 0.1 %.

Operating conditions—
Detector: A visible absorption photometer (wavelength: 570 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 8 cm in length, packed with strongly acidic ion-exchange resin for liquid chromatography composed with a sulfonated polystyrene (3 μm in particle diameter) (Na type).
Column temperature: A constant temperature of about 57°C.
Chemical reaction vessel temperature: A constant temperature of about 130°C.
Reaction time: About 1 minute.
Mobile phase: Prepare the mobile phases A, B, C, D and E according to the following table, and add 0.1 mL each of caprylic acid.

<table>
<thead>
<tr>
<th>Mobile phase</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citric acid monohydrate</td>
<td>19.80 g</td>
<td>22.00 g</td>
<td>12.80 g</td>
<td>6.10 g</td>
<td>—</td>
</tr>
<tr>
<td>Trisodium citrate dihydrate</td>
<td>6.19 g</td>
<td>7.74 g</td>
<td>13.31 g</td>
<td>26.67 g</td>
<td>—</td>
</tr>
<tr>
<td>Sodium chloride</td>
<td>5.66 g</td>
<td>7.07 g</td>
<td>3.74 g</td>
<td>54.35 g</td>
<td>—</td>
</tr>
<tr>
<td>Sodium hydroxide</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>8.00 g</td>
</tr>
<tr>
<td>Ethanol (99.5)</td>
<td>130 mL</td>
<td>20 mL</td>
<td>4 mL</td>
<td>—</td>
<td>100 mL</td>
</tr>
<tr>
<td>Thiodiglycol</td>
<td>5 mL</td>
<td>5 mL</td>
<td>5 mL</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Benzyl alcohol</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>5 mL</td>
<td>—</td>
</tr>
<tr>
<td>Lauromacrogol solution (1 in 4)</td>
<td>4 mL</td>
<td>4 mL</td>
<td>4 mL</td>
<td>4 mL</td>
<td>4 mL</td>
</tr>
<tr>
<td>Water</td>
<td>a sufficient amount</td>
</tr>
</tbody>
</table>

Total amount 1000 mL 1000 mL 1000 mL 1000 mL 1000 mL

Switching of mobile phase: Switch the mobile phases A, B, C, D and E sequentially so that when proceed with 20 μL of the standard solution under the above conditions, aspartic acid, threonine, serine, glutamic acid, proline, glycine, alanine, cystine, valine, methionine, isoleucine, leucine, tyrosine, phenylalanine, lysine, ammonia, histidine and arginine are eluted in this order with the resolution between the peaks of isoleucine and leucine being not less than 1.2.

Reaction reagent: Dissolve 204 g of lithium acetate hydrate in an appropriate amount of water, add 123 mL of acetic acid (100), 401 mL of 1-methoxy-2-propanol and water to make 1000 mL, pass nitrogen for 10 minutes, and use this solution as Solution (I). Separately, to 979 mL of 1-methoxy-2-propanol add 39 g of ninhydrin, pass nitrogen for 5 minutes, add 81 mg of sodium borohydride, pass nitrogen for 30 minutes, and use this solution as Solution (II). Prepare a mixture with an equal volume of the Solution (I) and (II). (Prepare before use).

Flow rate of mobile phase: 0.20 mL per minute.
Flow rate of reaction reagent: 0.24 mL per minute.

System suitability—
System performance: When the test is run with 20 μL of the standard solution under the above operating conditions, the resolution between the peaks of glycine and alanine is not less than 1.2.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviations of the peak height of each amino acid other than proline in the standard solution is not more than 5.0%, and the relative standard deviation of the retention time is not more than 1.0%.

Loss on drying —Not more than 0.3% (1 g, 105°C, 3 hours).

Residue on ignition —Not more than 0.1% (1 g).

Assay Weigh accurately about 0.12 g of 1-Proline, dissolve in 3 mL of formic acid, add 50 mL of acetic acid (100), and titrate with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 11.51 mg of C₆H₇NO₃

Containers and storage —Containers—Tight containers.
Promethazine Hydrochloride

プロメタジン塩酸塩

C_{18}H_{28}N_3S.HCl: 320.88
(2RS)-N,N-Dimethyl-1-(10H-phenothiazin-10-yl)propan-2-ylamine monohydrochloride
[58-33-3]

Promethazine Hydrochloride, when dried, contains not less than 98.0% of promethazine hydrochloride (C_{18}H_{28}N_3S.HCl).

Description Promethazine Hydrochloride occurs as a white to light yellow powder.

It is very soluble in water, freely soluble in ethanol (95) and in acetic acid (100), sparingly soluble in acetic anhydride, and practically insoluble in diethyl ether.

It is gradually colored by light.

A solution of Promethazine Hydrochloride (1 in 25) shows no optical rotation.

Melting point: about 223°C (with decomposition).

Identification (1) Determine the absorption spectrum of a solution of Promethazine Hydrochloride (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry 2.24, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

Identification (2) Determine the infrared absorption spectrum of Promethazine Hydrochloride, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry 2.25, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) Dissolve 0.5 g of Promethazine Hydrochloride in 5 mL of water, add 2 mL of ammonia TS, and filter. To 5 mL of the filtrate add dilute nitric acid to make acidic: the solution responds to Qualitative Tests 1.06 for chloride.

pH <2.56> The pH of a solution of Promethazine Hydrochloride (1 in 10) is between 4.0 and 5.5.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Promethazine Hydrochloride in 10 mL of water, protecting from light: the solution is clear and colorless.

(2) Heavy metals <1.07>—Proceed with 1.0 g of Promethazine Hydrochloride according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(3) Related substances—Perform the test under the protection from sunlight. Dissolve 0.10 g of Promethazine Hydrochloride in exactly 5 mL of ethanol (95), and use this solution as the sample solution. Pipet 1 mL of the sample solution, add ethanol (95) to make exactly 200 mL, and use this solution as the standard solution (1).

Separately, dissolve 20 mg of isomethazine hydrochloride for thin-layer chromatography in ethanol (95) to make exactly 100 mL, and use this solution as the standard solution (2). Perform the test with these solutions as directed under Thin-layer Chromatography 2.03. Spot 10 μL of each of the sample solution and standard solutions (1) and (2) on a plate of silica gel with fluorescent indicator for thin-layer chromatography.

Develop the plate with a mixture of methanol and diethylamine (19:1) to a distance of about 12 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots obtained from the sample solution corresponding to the spots from the standard solution (2) are not more intense than the spot from the standard solution (2), and any spot other than the principal spot from the sample solution is not more intense than the spot from the standard solution (1).

Loss on drying <2.41> Not more than 0.5% (1 g, 105°C, 3 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.5 g of Promethazine Hydrochloride, previously dried, dissolve in 50 mL of a mixture of acetic anhydride and acetic acid (100) (7:3), and titrate <2.50> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 32.09 mg of C_{18}H_{28}N_3S.HCl.

Containers and storage Containers—Tight containers.

Storage—Light-resistant.

Propafenone Hydrochloride

プロパフェノン塩酸塩

C_{17}H_{25}NO_{3}.HCl: 377.90
1-[2-[(2RS)-2-Hydroxy-3-(propylamino)propoxy]phenyl]-3-phenylpropan-1-one monohydrochloride
[34183-22-7]

Propafenone Hydrochloride, when dried, contains not less than 98.5% and not more than 101.0% of propafenone hydrochloride (C_{17}H_{25}NO_{3}.HCl).

Description Propafenone Hydrochloride occurs as white crystals or a white crystalline powder.

It is freely soluble in formic acid, sparingly soluble in methanol, and slightly soluble in water and in ethanol (99.5).

A solution of Propafenone Hydrochloride in methanol (1 in 100) shows no optical rotation.

Identification (1) Dissolve 0.1 g of Propafenone Hydrochloride in 20 mL of water by warming. After cooling, to 3 mL of this solution add water to make 500 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry 2.24, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Propafenone Hydrochloride as directed in the potassium chloride disk method under Infrared Spectrophotometry 2.25, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at
the same wave numbers.

(3) Dissolve 0.1 g of Propafenone Hydrochloride in 20 mL of water by warming. After cooling, to 10 mL of this solution add 1 mL of dilute nitric acid, and filter to separate formed precipitate: the filtrate responds to Qualitative Tests <1.09> (2) for chloride.

Melting point <2.60> 172 – 175°C

Purity (1) Heavy metals <1.07>—Proceed with 1.0 g of Propafenone Hydrochloride according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(2) Related substances—Dissolve 0.1 g of Propafenone Hydrochloride in 20 mL of the mobile phase in the operating conditions 1, and use this solution as the sample solution. Pipet 2 mL of the sample solution, and add the mobile phase in the operating conditions 1 to make exactly 50 mL. Pipet 2.5 mL of this solution, add 2.5 mL of a solution of diphenyl phthalate in methanol (1 in 2000), add the mobile phase in the operating conditions 1 to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.60> according to the following conditions 1 and 2. Determine each peak area of both solutions by the automatic integration method: the area of each peak other than the peak of propafenone obtained from the sample solution is not larger than the peak area of propafenone from the standard solution.

Operating conditions 1—

Detector: An ultraviolet absorption photometer (wavelength: 254 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase: Dissolve 4.6 g of sodium 1-nonanesulfonate and 2.3 g of phosphoric acid in water to make 1000 mL, and filter through a membrane filter with a pore size not exceeding 0.45 μm. To 900 mL of the filtrate add 600 mL of acetonitrile.
Flow rate: Adjust so that the retention time of diphenyl phthalate is about 39 minutes.
Time span of measurement: Beginning after the solvent peak to the retention time of diphenyl phthalate.
System suitability 1—
System performance: Dissolve 12 mg of Propafenone Hydrochloride and 50 mg of isopropyl benzoate in 100 mL of methanol. When the procedure is run with 10 μL of this solution under the above operating conditions 1, propafenone and isopropyl benzoate are eluted in this order with the resolution between these peaks being not less than 5.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions 1, the relative standard deviation of the peak area of propafenone is not more than 2.0%.

Operating conditions 2—

Detector, column and column temperature: Proceed as directed in the operating conditions 1.
Mobile phase: Dissolve 7.33 g of sodium 1-decanesulfonate and 2.3 g of phosphoric acid in water to make 1000 mL, and filter through a membrane filter with a pore size not exceeding 0.45 μm. To 700 mL of the filtrate add 700 mL of acetonitrile.
Flow rate: Adjust so that the retention time of diphenyl phthalate is about 11 minutes.

Time span of measurement: About 2.5 times as long as the retention time of diphenyl phthalate, beginning after the retention time of diphenyl phthalate.

System suitability 2—
System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions 2, propafenone and diphenyl phthalate are eluted in this order with the resolution between these peaks being not less than 21.
System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions 2, the relative standard deviation of the peak area of propafenone is not more than 2.0%.

Loss on drying <2.41> Not more than 0.5% (1 g, 105°C, 2 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.3 g of Propafenone Hydrochloride, previously dried, dissolve in 2 mL of formic acid, add 50 mL of acetic anhydride, and titrate <2.50> with 0.05 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.05 mol/L perchloric acid VS = 18.90 mg of \(\text{C}_9\text{H}_17\text{NO}_3\)·HCl

Containers and storage Containers—Well-closed containers.

Propafenone Hydrochloride Tablets

プロパフェノン塩酸塩錠

Propafenone Hydrochloride Tablets contain not less than 96.0% and not more than 104.0% of the labeled amount of propafenone hydrochloride (\(\text{C}_9\text{H}_17\text{NO}_3\)·HCl: 377.90).

Method of preparation Prepare as directed under Tablets, with Propafenone Hydrochloride.

Identification To a quantity of Propafenone Hydrochloride Tablets, equivalent to 0.3 g of Propafenone Hydrochloride, add 60 mL of water, and disintegrate by warming. After cooling, centrifuge, and to 3 mL of the supernatant liquid add water to make 500 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.24>: it exhibits maxima between 247 nm and 251 nm, and between 302 nm and 306 nm. Separately, determine the both maximal absorbances, \(A_1 \) and \(A_2 \), of the solution, the ratio of \(A_1/A_2 \) is between 2.30 and 2.55.

Uniformity of dosage units <6.02> Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement.

To 1 tablet of Propafenone Hydrochloride Tablets add 30 mL of a mixture of water and acetonitrile (1:1), shake well to disintegrate, add a mixture of water and acetonitrile (1:1) to make exactly 50 mL, and centrifuge. Pipet 5 mL of the supernatant liquid, equivalent to about 6 mg of propafenone hydrochloride (\(\text{C}_9\text{H}_17\text{NO}_3\)·HCl), add exactly 5 mL of the internal standard solution, add methanol to make 50 mL, and use this solution as the sample solution. Proceed as directed in the Assay.
Amount (mg) of propafenone hydrochloride

\[(C_2H_3NO_2.HCl) = M_s \times Q_s/Q_b \times 10/V \]

\(M_s \): Amount (mg) of propafenone hydrochloride for assay taken

Internal standard solution — A solution of isopropyl benzoate in methanol (1 in 200).

Dissolution^{6.10} When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 30 minutes of Propafenone Hydrochloride Tablets is not less than 75%.

Start the test with 1 tablet of Propafenone Hydrochloride Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.5 μm. Discard not less than 10 mL of the first filtrate, pipet \(V \) mL of the subsequent filtrate, add water to make exactly \(V' \) mL so that each mL contains about 67 μg of propafenone hydrochloride \((C_2H_3NO_2.HCl)\), and use this solution as the sample solution. Separately, weigh accurately about 13 mg of propafenone hydrochloride for assay, previously dried at 105°C for 2 hours, dissolve in water to make exactly 200 mL, and use this solution as the standard solution. Determine the absorbances, \(A_t \) and \(A_s \), of the sample solution and standard solution at 305 nm as directed under Ultraviolet-visible Spectrophotometry.^{2.24}

Dissolution rate (%) with respect to the labeled amount of propafenone hydrochloride \((C_2H_3NO_2.HCl)\)

\[= M_s \times A_t/A_s \times V'/V \times 1/C 	imes 450 \]

\(M_s \): Amount (mg) of propafenone hydrochloride for assay taken

\(C \): Labeled amount (mg) of propafenone hydrochloride \((C_2H_3NO_2.HCl)\) in 1 tablet

Assay To a quantity of Propafenone Hydrochloride Tablets, equivalent to 1.5 g of propafenone hydrochloride \((C_2H_3NO_2.HCl)\), add 70 mL of a mixture of water and acetonitrile (1:1), shake well to disintegrate, shake well for another 5 minutes, add a mixture of water and acetonitrile (1:1) to make exactly 100 mL, and centrifuge. Pipet 4 mL of the supernatant liquid, and add methanol to make exactly 50 mL. Pipet 5 mL of the solution, add exactly 5 mL of the internal standard solution, add methanol to make 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 30 mg of propafenone hydrochloride for assay, previously dried at 105°C for 2 hours, and dissolve in methanol to make exactly 50 mL. Pipet 10 mL of this solution, add exactly 5 mL of the internal standard solution, add methanol to make 50 mL, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography.^{2.01} According to the following conditions, and calculate the ratios, \(Q_s \) and \(Q_b \), of the peak area of propafenone to that of the internal standard.

Amount (mg) of propafenone hydrochloride

\[(C_2H_3NO_2.HCl) = M_s \times Q_s/Q_b \times 50 \]

\(M_s \): Amount (mg) of propafenone hydrochloride for assay taken

Internal standard solution — A solution of isopropyl benzoate in methanol (1 in 200).

Operating conditions

- **Detector**: An ultraviolet absorption photometer (wavelength: 254 nm).
- **Column**: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
- **Column temperature**: A constant temperature of about 40°C.
- **Mobile phase**: Dissolve 4.6 g of sodium 1-nonanesulfonate and 2.3 g of phosphoric acid in water to make 1000 mL, and filter through a membrane filter with a pore size not exceeding 0.45 μm. To 900 mL of the filtrate add 600 mL of acetonitrile.
- **Flow rate**: Adjust so that the retention time of propafenone is about 8 minutes.

System suitability

- **System performance**: When the procedure is run with 10 μL of the standard solution under the above operating conditions, propafenone and the internal standard are eluted in this order with the resolution between these peaks being not less than 5.
- **System repeatability**: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of propafenone to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Tight containers.

Propantheline Bromide

プロパンテリン臭化物

C₂H₃BrNO₃: 448.39

\(N\text{-Methyl-N,}N\text{-bis(1-methylethyl)-2-[9H-xanthen-9-ylcarbonyl]oxyethylaminium bromide} \)

Description Propantheline Bromide occurs as a white to yellowish white crystalline powder. It is odorless and has a very bitter taste.

It is very soluble in water, in ethanol (95), in acetic acid (100) and in chloroform, soluble in acetic anhydride, and practically insoluble in diethyl ether.

The pH of a solution of 1.0 g of Propantheline Bromide in 50 mL of water is between 5.0 and 6.0.

Melting point: about 161°C (with decomposition, after drying).

Identification (1) To 5 mL of a solution of Propantheline Bromide (1 in 20) add 10 mL of sodium hydroxide TS, heat to boil for 2 minutes. Cool to 60°C, and add 5 mL of dilute hydrochloric acid. After cooling, collect the precipitates, and wash with water. Recrystallize from dilute ethanol, and dry at 105°C for 1 hour: the crystals melt <2.60> between 217°C and 222°C.

(2) Dissolve 0.01 g of the crystals obtained in (1) in 5 mL
of sulfuric acid: a vivid yellow to yellow-red color develops.

(3) To 5 mL of a solution of Propantheline Bromide (1 in 10) add 2 mL of dilute nitric acid: this solution responds to Qualitative Tests "1.09" (1) for bromide.

Purity

Xanthene-9-carboxylic acid and xanthone—Dissolve 10 mg of Propantheline Bromide in exactly 2 mL of chloroform, and use this solution as the sample solution. Separately, dissolve 1.0 mg of xanthene-9-carboxylic acid and 1.0 mg of xanthone in exactly 40 mL of chloroform, and use this solution as the standard solution. Perform the test immediately with these solutions as directed under Thin-layer Chromatography "2.07". Spot 25 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography, and air-dry the plate for 10 minutes. Develop the plate with a mixture of 1,2-dichloroethane, methanol, water and formic acid (56:24:1:1) to a distance of about 12 cm, and air-dry the plate. Examine under ultraviolet light: the spots obtained from the sample solution corresponding to the spots from the standard solution are not more intense than those from the standard solution.

Loss on drying "2.41" Not more than 0.5% (2 g, 105°C, 4 hours).

Residue on ignition "2.44" Not more than 0.1% (1 g).

Assay

Weigh accurately about 1 g of Propantheline Bromide, previously dried, dissolve in 50 mL of a mixture of acetic anhydride and acetic acid (100) (7:3), and titrate "2.50" with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 44.84 g of C$_2$H$_5$OBrNO$_3$

Containers and storage

Containers—Well-closed containers.

Propiverine Hydrochloride

プロピベリン塩酸塩

![Propiverine Hydrochloride structure](image)

C$_2$H$_5$NO$_3$.HCl: 403.94

1-Methylpiperidin-4-yl 2,2-diphenyl-2-propoxycetate monohydrochloride [54556-98-8]

Propiverine Hydrochloride, when dried, contains not less than 98.5% and not more than 101.5% of propiverine hydrochloride (C$_2$H$_5$NO$_3$.HCl).

Description

Propiverine Hydrochloride occurs as white, crystals or crystalline powder.

It is soluble in water and in ethanol (99.5).

Identification (1) Dissolve 50 mg of Propiverine Hydrochloride in 20 mL of water, and add acetonitrile to make 100 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry "2.24", and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Propiverine Hydrochloride RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Propiverine Hydrochloride, previously dried, as directed in the potassium chloride disk method under Infrared Spectroscopy "2.25", and compare the spectrum with the Reference Spectrum or the spectrum of dried Propiverine Hydrochloride RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) To 5 mL of a solution of Propiverine Hydrochloride (1 in 100) add 6 mL of ethyl acetate, and add 3 drops of silver nitrate TS: a white precipitate is formed, which does not dissolve on the addition of 0.5 mL of dilute nitric acid and shaking. The precipitate dissolves on the addition of 2 mL of ammonia TS and shaking.

Melting point "2.60" 213 - 218°C

Purity (1) Sulfate "1.14"—Perform the test with 0.40 g of Propiverine Hydrochloride. Prepare the control solution with 0.40 mL of 0.005 mol/L sulfuric acid VS (not more than 0.048%).

(2) Heavy metals "1.07"—Perform with 1.0 g of Propiverine Hydrochloride according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(3) Related substances—Dissolve 50 mg of Propiverine Hydrochloride in 100 mL of the mobile phase, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 15 μL each of the sample solution and standard solution as directed under Liquid Chromatography "2.01" according to the following conditions. Determine each peak area by the automatic integration method: the area of the peak, having the relative retention time about 0.28 to propiverine, obtained from the sample solution is not larger than 3/10 times the peak area of propiverine from the standard solution, the area of the peak other than propiverine and the peak mentioned above from the sample solution is not larger than 1/10 times the peak area of propiverine from the standard solution, and the total area of the peaks other than propiverine from the sample solution is not larger than 1/2 times the peak area of propiverine from the standard solution.

Operating conditions

Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 2.5 times as long as the retention time of propiverine, beginning after the solvent peak.

System suitability

Test for required detectability: Pipet 1 mL of the standard solution, and add the mobile phase to make exactly 20 mL. Confirm that the peak area of propiverine obtained with 15 μL of this solution is equivalent to 3.5 to 6.5% of that with 15 μL of the standard solution.

System performance: When the procedure is run with 15 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of propiverine are not less than 7000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 15 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of propiverine is not more than 2.0%.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
Loss on drying <2.41> Not more than 1.0% (1 g, 105°C, 1 hour).

Residue on ignition <2.42> Not more than 0.1% (1 g).

Assay Weigh accurately about 50 mg each of Propiverine Hydrochloride and Propiverine Hydrochloride RS, both previously dried, and dissolve each in the mobile phase to make exactly 100 mL. Pipet 10 mL each of these solutions, add the mobile phase to make exactly 50 mL, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with exactly 15 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions, and determine the peak areas, \(A_T \) and \(A_S \), of propiverine in each solution.

\[
M_S = \frac{A_T}{A_S}
\]

System suitability—
Detector: An ultraviolet absorption photometer (wavelength: 210 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with phenylated silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase: Dissolve 2.21 g of potassium dihydrogen phosphate and 1.51 g of sodium 1-octane sulfonate in 650 mL of water, adjust to pH 3.2 with phosphoric acid, and add 350 mL of acetonitrile.
Flow rate: Adjust so that the retention time of propiverine is about 17 minutes.
System performance: When the procedure is run with 15 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of propiverine are not less than 6000 and not more than 2.0, respectively.
System repeatability: When the test is repeated 6 times with 15 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of propiverine is not more than 1.0%.

Containers and storage Containers—Tight containers.

Propiverine Hydrochloride Tablets

Propiverine Hydrochloride Tablets contain not less than 95.0% and not more than 105.0% of propiverine hydrochloride \((C_23H_23NO_3.HCl): 403.94\).

Method of preparation Prepare as directed under Tablets, with Propiverine Hydrochloride.

Identification Shake vigorously a quantity of powdered Propiverine Hydrochloride Tablets, equivalent to 50 mg of Propiverine Hydrochloride, with 20 mL of water. Add acetonitrile to make 100 mL, centrifuge, and filter the supernatant liquid, if necessary. Determine the absorption spectrum of the supernatant liquid or the filtrate under Ultraviolet-visible Spectrophotometry <2.24>: it exhibits a maximum between 257 nm and 261 nm.

Purity Related substances—Shake vigorously a quantity of powdered Propiverine Hydrochloride Tablets, equivalent to 50 mg of Propiverine Hydrochloride, with the mobile phase, add the mobile phase to make 100 mL, centrifuge, and use the supernatant liquid as the sample solution. Pipet 1 mL of the sample solution, add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 15 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions. Determine each peak area by the automatic integration method: the area of the peak, having the relative retention time about 0.28 to propiverine, obtained from the sample solution is not larger than 3/10 times the peak area of propiverine from the standard solution, the area of the peak other than propiverine and the peak mentioned above from the sample solution is not larger than 1/5 times the peak area of propiverine from the standard solution, and the total area of the peaks other than propiverine from the sample solution is not larger than 7/10 times the peak area of propiverine from the standard solution.

Operating conditions—
Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay under Propiverine Hydrochloride.
Time span of measurement: About 2.5 times as long as the retention time of propiverine, beginning after the solvent peak.

System suitability—
Test for required detectability: Pipet 1 mL of the standard solution, and add the mobile phase to make exactly 20 mL. Confirm that the peak area of propiverine obtained with 15 μL of this solution is equivalent to 3.5 to 6.5% of that with 15 μL of the standard solution.
System performance: When the procedure is run with 15 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of propiverine are not less than 7000 and not more than 1.5, respectively.
System repeatability: When the test is repeated 6 times with 15 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of propiverine is not more than 2.0%.

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 tablet of Propiverine Hydrochloride Tablets add the mobile phase, shake vigorously, add the mobile phase to make exactly \(V \) mL so that each mL contains about 0.1 mg of propiverine hydrochloride \((C_23H_23NO_3.HCl): 403.94\), centrifuge, and use the supernatant liquid as the sample solution. Separately, weigh accurately about 50 mg of Propiverine Hydrochloride RS, previously dried at 105°C for 1 hour, and dissolve in the mobile phase to make exactly 100 mL. Pipet 10 mL of this solution, add the mobile phase to make exactly 50 mL, and use this solution as the standard solution. Then, proceed as directed in the Assay under Propiverine Hydrochloride.

\[
M_S = \frac{A_T}{A_S} \times \frac{V}{500}
\]

Dissolution <6.10> When the test is performed at 50 revolutions per minute according to Paddle method, using 900 mL of 2nd fluid for dissolution test as the dissolution medium,
the dissolution rate in 20 minutes of Propiverine Hydrochloride Tablets is not less than 85%.

Start the test with 1 tablet of Propiverine Hydrochloride Tablets, withdraw not less than 25 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 µm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add the dissolution medium to make exactly V mL so that each mL contains about 11 µg of propiverine hydrochloride (C_{13}H_{21}NO_{3}.HCl). Pipet 15 mL of this solution, add exactly 2 mL of 0.1 mol/L hydrochloric acid TS, and use this solution as the sample solution. Separately, weigh accurately about 28 mg of Propiverine Hydrochloride RS, previously dried at 105°C for 1 hour, and dissolve in the dissolution medium to make exactly 100 mL. Pipet 4 mL of this solution, and add the dissolution medium to make exactly 100 mL. Further, pipet 15 mL of this solution, add exactly 2 mL of 0.1 mol/L hydrochloric acid TS, and use this solution as the standard solution. Perform the test with exactly 20 µL each of the sample solution and standard solution as directed under Liquid Chromatography (2.2) according to the following conditions, and determine the peak areas, A_{S} and A_{T}, of propiverine in each solution.

Dissolution rate (%) with respect to the labeled amount of propiverine hydrochloride (C_{13}H_{21}NO_{3}.HCl) = \frac{M_{S} \times A_{T} \times V / V \times 1 / C \times 36}{M_{S} \times A_{T} \times V / V \times 1 / C \times 36}

M_{S}: Amount (mg) of Propiverine Hydrochloride RS taken
C: Labeled amount (mg) of propiverine hydrochloride (C_{13}H_{21}NO_{3}.HCl) in 1 tablet

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 220 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilylized silica gel for liquid chromatography (5 µm in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase: To diluted 0.02 mol/L potassium dihydrogen phosphate TS (1 → 2) add phosphoric acid, and adjust to pH 2.0. To 560 mL of this solution add 440 mL of acetonitrile.
Flow rate: Adjust so that the retention time of propiverine is about 6 minutes.

System suitability—
System performance: When the procedure is run with 20 µL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of propiverine are not less than 4000 and not more than 2.0, respectively.
System repeatability: When the test is repeated 6 times with 20 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of propiverine is not more than 2.0%.

Assay
Weigh accurately and powder not less than 20 Propiverine Hydrochloride Tablets. Weigh accurately a portion of the powder, equivalent to about 50 µg of propiverine hydrochloride (C_{13}H_{21}NO_{3}.HCl), add the mobile phase, shake vigorously, and add the mobile phase to make exactly 100 mL. Centrifuge this solution, pipet 10 mL of the supernatant liquid, add the mobile phase to make exactly 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 50 mg of Propiverine Hydrochloride RS, previously dried at 105°C for 1 hour, and dissolve in the mobile phase to make exactly 100 mL. Pipet 10 mL of this solution, add the mobile phase to make exactly 50 mL, and use this solution as the standard solution. Then, proceed as directed in the Assay under Propiverine Hydrochloride.

Amount (mg) of propiverine hydrochloride
(C_{13}H_{21}NO_{3}.HCl) = M_{S} \times A_{T} / A_{S}

M_{S}: Amount (mg) of Propiverine Hydrochloride RS taken

Containers and storage
Containers—Tight containers.

Propranolol Hydrochloride

プロプラノロール塩酸塩

C_{13}H_{21}NO_{3}.HCl: 295.80
(2R)-1-(1-Methylethyl)amino-3-(naphthalen-1-yl oxy)propan-2-ol monohydrochloride

【18-98-9】

Propranolol Hydrochloride, when dried, contains not less than 99.0% and not more than 101.0% of propranolol hydrochloride (C_{13}H_{21}NO_{3}.HCl).

Description
Propranolol Hydrochloride occurs as a white crystalline powder.
It is freely soluble in methanol, soluble in water and in acetic acid (100), and sparingly soluble in ethanol (99.5).
A solution of Propranolol Hydrochloride in methanol (1 in 40) shows no optical rotation.
It is gradually colored to yellowish white to light brown by light.

Identification (1)
Determine the absorption spectrum of a solution of Propranolol Hydrochloride in methanol (1 in 50,000) as directed under Ultraviolet-visible Spectrophotometry (2.2), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Propranolol Hydrochloride, previously dried, as directed in the potassium chloride disk method under Infrared Spectrophotometry (2.2), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) A solution of Propranolol Hydrochloride (1 in 50) responds to Qualitative Tests (2.09) (2) for chloride.

pH (2.4)<
The pH of a solution prepared by dissolving 0.5 g of Propranolol Hydrochloride in 50 mL of water is 5.0 ~ 6.0.

Melting point (2.60)< 163 ~ 166°C

Purity (1)
Clarity and color of solution—Dissolve 1.0 g of Propiverine Hydrochloride in 20 mL of water: the solution is clear and colorless.

(2) Heavy metals (<1.07)—Proceed with 1.0 g of Propiverine Hydrochloride according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(3) Related substances—Dissolve 20 mg of Propiverine Hydrochloride in 10 mL of the mobile phase, and use this solution as the sample solution. Pipet 2 mL of the sample solution, and add the mobile phase to make exactly 100 mL.
Pipet 1 mL of this solution, add the mobile phase to make exactly 10 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL of each of the sample solution and standard solution as directed under Liquid Chromatography <2.24> according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak other than propranolol obtained from the sample solution is not larger than 1/2 times the peak area of propranolol from the standard solution, and the total area of the peaks other than the peak of propranolol from the sample solution is not larger than 2 times the peak area of propranolol from the standard solution.

Operating conditions—
- **Detector:** An ultraviolet absorption photometer (wavelength: 292 nm).
- **Column:** A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecylsilylized silica gel for liquid chromatography (5 μm in particle diameter).
- **Column temperature:** A constant temperature of about 25°C.
- **Mobile phase:** Dissolve 1.6 g of sodium lauryl sulfate and 0.31 g of tetrabutylammonium dihydrogen phosphate in 450 mL of water, add 1 mL of sulfuric acid and 550 mL of acetonitrile for liquid chromatography, and adjust to pH 3.3 with 2 mol/L sodium hydroxide TS.
- **Flow rate:** Adjust so that the retention time of propranolol is about 4 minutes.
- **Time span of measurement:** About 5 times as long as the retention time of propranolol.

System suitability—
- **Test for required detectability:** Measure exactly 5 mL of the standard solution, and add the mobile phase to make exactly 20 mL. Confirm that the peak area of propranolol obtained with 20 μL of this solution is equivalent to 17 to 33% of that with 20 μL of the standard solution.
- **System performance:** When the procedure is run with 20 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of propranolol is not less than 3000 and not more than 2.0, respectively.
- **System repeatability:** When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of propranolol is not more than 2.0%.

Loss on drying <2.41> Not more than 0.5% (1 g, 105°C, 4 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.5 g of Propranolol Hydrochloride, previously dried, dissolve in 50 mL of a mixture of acetic anhydride and acetic acid (100) (7:3), and titrate <2.5> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

\[
\text{Each mL of 0.1 mol/L perchloric acid VS} = 29.58 \text{ mg of } C_{16}H_{21}NO_{2} \text{HCl}
\]

Containers and storage
- **Containers—** Well-closed containers.
- **Storage—** Light-resistant.

Propranolol Hydrochloride Tablets

Propranolol Hydrochloride Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of propranolol hydrochloride (C_{16}H_{21}NO_{2} \text{HCl}) 295.80).

Method of preparation Prepare as directed under Tablets, with Propranolol Hydrochloride.

Identification Determine the absorption spectrum of the sample solution obtained in the Assay as directed under Ultraviolet-visible Spectrophotometry <2.24>:
- Exhibits maxima between 288 nm and 292 nm, and between 317 nm and 321 nm.

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 tablet of Propranolol Hydrochloride Tablets add 20 mL of water, and shake until the tablet is completely disintegrated. Add 50 mL of methanol, shake vigorously for 10 minutes, then add methanol to make exactly 100 mL, and filter. Discard the first 20 mL of the filtrate, pipet V mL of the subsequent filtrate, add methanol to make exactly V mL so that each mL contains about 20 μg of propranolol hydrochloride (C_{16}H_{21}NO_{2} \text{HCl}), and use this solution as the sample solution. Separately, weigh accurately about 50 mg of propranolol hydrochloride for assay, previously dried at 105°C for 4 hours, and dissolve in methanol to make exactly 50 mL. Pipet 2 mL of this solution, add methanol to make exactly 100 mL, and use this solution as the standard solution. Determine the absorbances, A_{7} and A_{5}, of the sample solution and standard solution at 290 nm as directed under Ultraviolet-visible Spectrophotometry <2.24>.

\[
\text{Amount (mg) of propranolol hydrochloride (C_{16}H_{21}NO_{2} \text{HCl})} = M_s \times A_7 / A_5 \times V' / V \times 1 / 25
\]

M_{s}:
- **Amount (mg) of propranolol hydrochloride for assay taken**
- **Dissolution <6.10>** When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 15 minutes of Propranolol Hydrochloride Tablets is not less than 80%.

Start the test with 1 tablet of Propranolol Hydrochloride Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add water to make exactly V mL so that each mL contains about 10 μg of propranolol hydrochloride (C_{16}H_{21}NO_{2} \text{HCl}), and use this solution as the sample solution. Separately, weigh accurately about 50 mg of propranolol hydrochloride for assay, previously dried at 105°C for 4 hours, and dissolve in water to make exactly 50 mL. Pipet 1 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution. Determine the absorbances, A_{7} and A_{5}, of the sample solution and standard solution at 290 nm as directed under Ultraviolet-visible Spectrophotometry <2.24>.
Propylene Glycol / Official Monographs

Dissolution rate (%) with respect to the labeled amount of propanolol hydrochloride ($C_{6}H_{12}NO_{2}.HCl$)

$M_{S}: \text{Amount (mg) of propanolol hydrochloride for assay taken}$

$C: \text{Labeled amount (mg) of propanolol hydrochloride (}C_{6}H_{12}NO_{2}.HCl)$ in 1 tablet

Assay Weigh accurately the mass of not less than 20 Propanolol Hydrochloride Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 20 mg of propanolol hydrochloride ($C_{6}H_{12}NO_{2}.HCl$), add 60 mL of methanol, shake for 10 minutes, and add methanol to make exactly 100 mL. Filter, discard the first 20 mL of the filtrate, pipet 10 mL of the subsequent filtrate, add methanol to make exactly 100 mL, and use this solution as the sample solution. Separately, weigh accurately about 50 mg of propanolol hydrochloride for assay, previously dried at 105°C for 4 hours, and dissolve in methanol to make exactly 50 mL. Pipet 2 mL of this solution, add methanol to make exactly 100 mL, and use this solution as the standard solution. Determine the absorbances, A_{1} and A_{S}, of the sample solution and standard solution at 290 nm as directed under Ultraviolet-visible Spectrophotometry (2.24).

Amount (mg) of propanolol hydrochloride ($C_{6}H_{12}NO_{2}.HCl$)

$M_{S}: \text{Amount (mg) of propanolol hydrochloride for assay taken}$

Containers and storage Containers—Well-closed containers.

Storage—Light-resistant.

Propylene Glycol

プロピレングリコール

$C,H,O_{2}: 76.09$

(2RS)-Propane-1,2-diil

[57-55-6]

Description Propylene Glycol is a clear, colorless, viscous liquid. It is odorless, and has a slightly bitter taste. It is miscible with water, with methanol, with ethanol (95) and with pyridine.

It is freely soluble in diethyl ether. It is hygroscopic.

Identification (1) Mix 2 to 3 drops of Propylene Glycol with 0.7 g of triphenylchloromethane, add 1 mL of pyridine, and heat under a reflux condenser on a water bath for 1 hour. After cooling, dissolve the mixture in 20 mL of acetone by warming, shake with 0.02 g of activated charcoal, and filter. Concentrate the filtrate to about 10 mL, and cool. Collect the separated crystals, and dry in a desiccator (silica gel) for 4 hours: the crystals melt between 174°C and 178°C.

(2) Heat gently 1 mL of Propylene Glycol with 0.5 g of potassium hydrogen sulfate; a characteristic odor is evolved.

Specific gravity <2.50 $d_{20}^{20}: 1.035 – 1.040$

Purity (1) Acidity—Mix 10.0 mL of Propylene Glycol with 50 mL of freshly boiled and cooled water, and add 5 drops of phenolphthalein TS and 0.30 mL of 0.1 mol/L sodium hydroxide VS: the solution has a red color.

Chloride <1.00—Perform the test with 2.0 g of Propylene Glycol. Prepare the control solution with 0.40 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.007%).

Sulfate <1.14—Perform the test with 10.0 g of Propylene Glycol. Prepare the control solution with 0.40 mL of 0.005 mol/L sulfuric acid VS (not more than 0.002%).

Heavy metals <0.07—Perform the test with 5.0 g of Propylene Glycol according to Method 1. Prepare the control solution with 2.5 mL of Standard Lead Solution (not more than 5 ppm).

Arsenic <1.11—Prepare the test solution with 1.0 g of Propylene Glycol according to Method 1, and perform the test (not more than 2 ppm).

Glycerin—Heat 1.0 g of Propylene Glycol with 0.5 g of potassium hydrogen sulfate and evaporate to dryness; no odor of acrolein is perceptible.

Ethylene glycol, diethylene glycol and related substances—Weigh accurately about 5 g of Propylene Glycol, mix with methanol to make exactly 100 mL, and use this solution as the sample solution. Separately, weigh accurately about 0.1 g each of ethylene glycol and diethylene glycol, and mix with methanol to make exactly 100 mL. Pipet 5 mL of this solution, and transfer to a 100-mL volumetric flask. Separately, weigh 5.0 g of propylene glycol for gas chromatography, mix with a suitable amount of methanol and put in the 100-mL volumetric flask, dilute with methanol to volume, and use this solution as the standard solution. Perform the test with exactly 1 µL each of the sample solution and standard solution as directed under Gas Chromatography (2.02) according to the following conditions, and determine the peak areas, A_{1} and A_{S}, of ethylene glycol and, A_{T} and A_{S2}, of diethylene glycol by the automatic integration method. The amounts of ethylene glycol and diethylene glycol calculated by the following equations are not more than 0.1%, respectively. The amount of the peak other than propylene glycol, ethylene glycol and diethylene glycol obtained from the sample solution, calculated by the area percentage method, is not more than 0.1%, and the total amount of the peaks other than propylene glycol is not more than 1.0%.

Amount (%) of ethylene glycol

$M_{S2}/M_{T} \times A_{S}/A_{S2} \times 5$

Amount (%) of diethylene glycol

$M_{S2}/M_{T} \times A_{T}/A_{S2} \times 5$

$M_{S2}: \text{Amount (g) of ethylene glycol taken}$

$M_{S2}: \text{Amount (g) of diethylene glycol taken}$

$M_{T}: \text{Amount (g) of Propylene Glycol taken}$

Operating conditions—

Detector: A hydrogen flame-ionization detector.

Column: A fused silica tube 0.32 mm in inside diameter and 30 m in length, coated the inside surface 1 µm in thickness with 14% cyanopropylphenyl-86% dimethyl silicone polymer for gas chromatography.

Column temperature: Inject at a constant temperature of about 100°C, rise the temperature at the rate of 7.5°C per minute to 220°C, and maintain at a constant temperature of about 220°C.

Injection port temperature: A constant temperature of about 250°C.
Carrying gas: Helium.
Flow rate: about 38 cm per second.

Time span of measurement: About 3 times as long as the retention time of propylene glycol, beginning after the solvent peak.

System suitability—

System performance: Mix 50 mg each of ethylene glycol, diethylene glycol and propylene glycol for gas chromatography with 100 mL of methanol. When the procedure is run with 1 μL of this mixture under the above operating conditions, ethylene glycol, propylene glycol and diethylene glycol are eluted in this order, and the resolution between the peaks of ethylene glycol and propylene glycol is not less than 5, and that between the peaks of propylene glycol and diethylene glycol is not less than 10.

System repeatability: When the test is repeated 6 times with 1 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of ethylene glycol and diethylene glycol is not more than 10%.

Water Not more than 0.5% (2 g, volumetric titration, direct titration).

Residue on ignition Weigh accurately about 20 g of Propylene Glycol in a tared crucible, and heat to boiling. Stop heating, and immediately ignite to burn. Cool, moisten the residue with 0.2 mL of sulfuric acid, and heat strongly with care to constant mass: the mass of the residue is not more than 0.005%.

Distilling range 184 – 189°C, not less than 95 vol%.

Containers and storage Containers—Tight containers.

Propyl Parahydroxybenzoate

パラオキシ安息香酸プロピル

\[
\text{C}_{10}\text{H}_{12}\text{O}_3: \text{180.20}
\]

Propyl 4-hydroxybenzoate

[94-13-3]

This monograph is harmonized with the European Pharmacopoeia and the U.S. Pharmacopoeia.

The parts of the text that are not harmonized are marked with symbols (◆ ○) .

Information on the harmonization with the European Pharmacopoeia and the U.S. Pharmacopoeia is available on the website of the Pharmaceuticals and Medical Devices Agency.

Propyl Parahydroxybenzoate contains not less than 98.0% and not more than 102.0% of propyl parahydroxybenzoic acid (C₁₀H₁₃O₃).

◆ **Description** Propyl Parahydroxybenzoate occurs as colorless crystals or a white crystalline powder.

It is freely soluble in methanol, in ethanol (95) and in acetone, and very slightly soluble in water.◆

Identification Determine the infrared absorption spectrum of Propyl Parahydroxybenzoate as directed in the potassium bromide disk method under Infrared Spectrophotometry (2.25), and compare the spectrum with the Reference Spectrum or the spectrum of Propyl Parahydroxybenzoate RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point 96 – 99°C

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Propyl Parahydroxybenzoate in ethanol (95) to make 10 mL: the solution is clear and not more intensely colored than the following control solution.

Control solution: To 5.0 mL of Cobalt (II) Chloride CS, 12.0 mL of Iron (III) Chloride CS and 2.0 mL of Copper (II) Sulfate CS add diluted dilute hydrochloric acid (1 in 10) to make 1000 mL.

(2) Acidity—To 2 mL of the solution of Propyl Parahydroxybenzoate obtained in (1) add 3 mL of ethanol (95), add 5 mL of freshly boiled and cooled water and 0.1 mL of bromocresol green-sodium hydroxide-ethanol TS, then add 0.1 mol/L sodium hydroxide VS until the solution shows a blue color: the volume of 0.1 mol/L sodium hydroxide VS used does not exceed 0.1 mL.

(3) Heavy metals (2.07)—Dissolve 1.0 g of Propyl Parahydroxybenzoate in 25 mL of acetone, add 2 mL of dilute acetic acid and water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution as follows: to 2.0 mL of Standard Lead Solution add 25 mL of acetone, 2 mL of dilute acetic acid, and water to make 50 mL (not more than 20 ppm).◆

(4) Related substances—Dissolve 50.0 mg of Propyl Parahydroxybenzoate in 2.5 mL of methanol, and add the mobile phase to make exactly 50 mL. Pipet 10 mL of this solution, add the mobile phase to make exactly 100 mL, and use this solution as the sample solution. Pipet 1 mL of the sample solution, and add the mobile phase to make exactly 20 mL. Pipet 1 mL of this solution, add the mobile phase to make exactly 10 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography (2.01) according to the following conditions, and determine each peak area by the automatic integration method: the peak area of parahydroxybenzoic acid having a relative retention time of about 0.3 to propyl parahydroxybenzoate obtained from the sample solution is not larger than the peak area of propyl parahydroxybenzoate from the standard solution (0.5%). For the peak area of parahydroxybenzoic acid, multiply the correction factor, 1.4. Furthermore, the area of the peak other than propyl parahydroxybenzoate and parahydroxybenzoic acid from the sample solution is not larger than the peak area of propyl parahydroxybenzoate from the standard solution (0.5%), and the total area of the peaks other than propyl parahydroxybenzoate from the sample solution is not larger than 2 times the peak area of propyl parahydroxybenzoate from the standard solution (1.0%). For this calculation the peak area not larger than 1/5 times the peak area of propyl parahydroxybenzoate from the standard solution is excluded (0.1%).

Operating conditions—

Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 2.5 times as long as the retention time of propyl parahydroxybenzoate.

System suitability—

System performance: Proceed as directed in the system suitability in the Assay.
Propylthiouracil / Official Monographs

Weigh accurately about 50.0 mg each of Propyl Parahydroxybenzoate and 105.0 mg of Propylthiouracil. Shake well 0.02 g of Propylthiouracil according to the following conditions, and determine the peak areas, \(A_T \) and \(A_S \), of propyl parahydroxybenzoate in each solution.

Amount (mg) of propyl parahydroxybenzoate (C\(_{10}H_8O_4\)) per mL of the standard solution:

\[
M_S = \frac{M_T \times A_T}{A_S}
\]

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 272 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilylanized silica gel for liquid chromatography (5 \(\mu \)m in particle diameter).
Column temperature: A constant temperature of about 35°C.
Mobile phase: A mixture of methanol and potassium dihydrogen phosphate solution (17 in 2500) (13:7).
Flow rate: 1.3 mL per minute.

System suitability—
System performance: Dissolve 5 mg each of Propyl Parahydroxybenzoate, ethyl parahydroxybenzoate and parahydroxybenzoic acid in the mobile phase to make exactly 100 mL. Pipet 1 mL of this solution, and add the mobile phase to make exactly 10 mL. The procedure is run with 10 \(\mu \)L of this solution under the above operating conditions, parahydroxybenzoic acid, ethyl parahydroxybenzoate and propyl parahydroxybenzoate are eluted in this order, the relative retention times of parahydroxybenzoic acid and ethyl parahydroxybenzoate to propyl parahydroxybenzoate are about 0.3 and about 0.7, respectively, and the resolution between the peaks of ethyl parahydroxybenzoate and propyl parahydroxybenzoate is not less than 3.0.

System repeatability: When the test is repeated 6 times with 10 \(\mu \)L of the standard solution under the above operating conditions, the relative standard deviation of the peak area of propyl parahydroxybenzoate is not more than 0.85%.

Containers and storage—Well-closed containers.

Propylthiouracil

C\(_{10}\)H\(_{18}\)N\(_2\)O\(_5\): 170.23
6-Propyl-2-thiouracil [57-52-5]

Propylthiouracil, when dried, contains not less than 98.0% of propylthiouracil (C\(_{10}\)H\(_{18}\)N\(_2\)O\(_5\)).

Description—Propylthiouracil occurs as a white powder. It is odorless, and has a bitter taste.

It is sparingly soluble in ethanol (95%), and very slightly soluble in water and in diethyl ether.

It dissolves in sodium hydroxide TS and in ammonia TS.

Identification (1)—Shake well 0.02 g of Propylthiouracil with 7 mL of bromine TS for 1 minute, and heat until the color of bromine TS disappears. Cool, filter, and add 10 mL of barium hydroxide TS to the filtrate: a white precipitate is produced. The color of the precipitate does not turn purple within 1 minute.

(2) To 5 mL of a hot saturated solution of Propylthiouracil add 2 mL of a solution of sodium pentacyanoammine ferroate (II) \(n \)-hydrate (1 in 100): a green color develops.

Melting point—218 – 221°C

Purity (1)—Sulfate

Triturate Propylthiouracil finely in a mortar. To 0.75 g of the powder add 25 mL of water, heat for 10 minutes on a water bath, cool, filter, and wash the residue with water until the volume of the filtrate becomes 30 mL. To 10 mL of the filtrate add 1 mL of dilute hydrochloric acid and water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution with 0.40 mL of 0.005 mol/L sulfuric acid VS (not more than 0.07%).

(2) Thiourea—Dissolve 0.30 g of Propylthiouracil in 50 mL of water by heating under a reflux condenser for 5 minutes, cool, and filter. To 10 mL of the filtrate add 3 mL of ammonia TS, shake well, and add 2 mL of silver nitrate TS: the solution has no more color than the following control solution.

Control solution: Weigh exactly 60 mg of thiourea, and dissolve in water to make exactly 100 mL. Pipet 1 mL of this solution, add water to make exactly 100 mL, and proceed with 10 mL of this solution in the same manner.

Loss on drying—Not more than 0.5% (1 g, 105°C, 2 hours).

Residue on ignition—Not more than 0.1% (1 g).

Assay—Weigh accurately about 0.3 g of Propylthiouracil, previously dried, and add 30 mL of water. Add 30 mL of 0.1 mol/L sodium hydroxide VS from a burette, heat to boil, and dissolve by stirring. Wash down the solid adhering to the wall of the flask with a small amount of water, and add 50 mL of 0.1 mol/L silver nitrate VS with stirring. Boil gently for 5 minutes, add 1 to 2 mL of bromothymol blue TS, and titrate with 0.1 mol/L sodium hydroxide VS until a persistent blue-green color develops. Determine the total volume of 0.1 mol/L sodium hydroxide VS consumed.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
Each mL of 0.1 mol/L sodium hydroxide VS = 8.512 mg of C₇H₁₉N₂O₅

Containers and storage Containers—Well-closed containers.

Storage—Light-resistant.

Propylthiouracil Tablets

プロピルチオウラシル錠

Propylthiouracil Tablets contain not less than 93.0% and not more than 107.0% of the labeled amount of propylthiouracil (C₇H₁₉N₂OS: 170.23).

Method of preparation Prepare as directed under Tablets, with Propylthiouracil.

Identification To a quantity of powdered Propylthiouracil Tablets, equivalent to 0.3 g of Propylthiouracil, add 5 mL of ammonia TS, allow to stand for 5 minutes with occasional shaking, add 10 mL of water, and centrifuge. To the supernatant liquid add acetic acid (31), collect the precipitate produced, recrystallize from water, and dry at 105°C for 1 hour. It melts between 218°C and 221°C. Proceed with the residue as directed in the Identification under Propylthiouracil.

Uniformity of dosage units Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement.

To 1 tablet of Propylthiouracil Tablets add 3V/4 mL of 2nd fluid for dissolution test, sonicate until the tablet is disintegrated, and add 2nd fluid for dissolution test to make exactly V mL so that each mL contains about 0.25 mg of propylthiouracil (C₇H₁₉N₂OS). Filter this solution through a membrane filter with a pore size not exceeding 0.45 μm, discard the first 5 mL of the filtrate, pipet 2 mL of the subsequent filtrate, add 2nd fluid for dissolution test to make exactly 100 mL, and use this solution as the sample solution. Proceed as directed in the Assay.

Amount (mg) of propylthiouracil (C₇H₁₉N₂OS) = Mₛ × V'/V × 200

Mₛ: Amount (mg) of propylthiouracil for assay taken

Dissolution When the test is performed at 75 revolutions per minute according to the Paddle method, using 900 mL of 2nd fluid for dissolution test as the dissolution medium, the dissolution rate in 30 minutes of Propylthiouracil Tablets is not less than 80%.

Start the test with 1 tablet of Propylthiouracil Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.8 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add the dissolution medium to make exactly V′ mL so that each mL contains about 5.6 μg of propylthiouracil (C₇H₁₉N₂OS), and use this solution as the sample solution. Separately, weigh about 50 mg of propylthiouracil for assay, previously dried at 105°C for 3 hours, and dissolve in the dissolution medium to make exactly 1000 mL. Pipet 5 mL of this solution, add the dissolution medium to make exactly 50 mL, and use this solution as the standard solution. Determine the absorbance at 274 nm, Aₛ and Aₜ, of the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry.<ref>2.24</ref>

Amount (mg) of propylthiouracil (C₇H₁₉N₂OS) = Mₛ × Aₛ/Aₜ

Mₛ: Amount (mg) of propylthiouracil for assay taken

Official Monographs / Protamine Sulfate 1603

Dissolution rate (%) with respect to the labeled amount of propylthiouracil (C₇H₁₉N₂OS) = Mₛ × Aₛ/V × V'/V × 1/C × 9

Mₛ: Amount (mg) of propylthiouracil for assay taken

C: Labeled amount (mg) of propylthiouracil (C₇H₁₉N₂OS) in 1 tablet

Assay Weigh accurately the mass of not less than 20 Propylthiouracil Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 50 mg of propylthiouracil (C₇H₁₉N₂OS), add 150 mL of 2nd fluid for dissolution test, disperse finely the particles by sonication, and add 2nd fluid for dissolution test to make exactly 200 mL. Filter this solution through a membrane filter with a pore size not exceeding 0.45 μm, discard the first 5 mL of the filtrate, pipet 2 mL of the subsequent filtrate, add 2nd fluid for dissolution test to make exactly 100 mL, and use this solution as the sample solution. Separately, weigh accurately about 50 mg of propylthiouracil for assay, previously dried at 105°C for 2 hours, and dissolve in 2nd fluid for dissolution test to make exactly 200 mL. Pipet 2 mL of this solution, add 2nd fluid for dissolution test to make exactly 100 mL, and use this solution as the standard solution. Determine the absorbance at 274 nm, Aₛ and Aₜ, of the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry.<ref>2.24</ref>

Amount (mg) of propylthiouracil (C₇H₁₉N₂OS) = Mₛ × Aₛ/Aₜ

Mₛ: Amount (mg) of propylthiouracil for assay taken

Containers and storage Containers—Well-closed containers.

Storage—Light-resistant.

Protamine Sulfate

プロタミン硫酸塩

Protamine Sulfate is the sulfate of protamine prepared from the mature sperm of fish belonging to the family *Salmonidae*.

It has a property to bind with heparin.

It binds with not less than 100 Units of heparin per mg, calculated on the dried basis.

Description Protamine Sulfate occurs as a white powder. It is sparingly soluble in water.

Identification (1) Dissolve 1 mg of Protamine Sulfate in 2 mL of water, add 0.4 mL of sodium hydroxide TS, and immediately add 5 drops of a solution prepared by dissolving 0.1 g of 1-naphthol in 100 mL of diluted ethanol (7 in 10) and 5 drops of sodium hypochlorite TS: a vivid red color develops.

(2) Dissolve 5 mg of Protamine Sulfate in 1 mL of water by warming, add 1 drop of a solution of sodium hydroxide (1 in 10) and 2 drops of copper (II)ulfate TS: a red-purple color develops.

(3) (1) An aqueous solution of Protamine Sulfate (1 in 20) responds to Qualitative Tests <1.09> for sulfate.

pH Dissolve 1.0 g of Protamine Sulfate in 100 mL of water: the pH of this solution is between 6.5 and 7.5.

Purity Clarity and color of solution—Dissolve 0.10 g of Protamine Sulfate in 10 mL of water: the solution is clear and colorless.
(2) Absorbance—Dissolve 0.10 g of Protamine Sulfate in 10 mL of water, and determine the absorption spectrum as directed under Ultraviolet-visible Spectrophotometry 2.24: the absorption between 260 nm and 280 nm is not more than 0.1.

Loss on drying <2.41 Not more than 5.0% (1 g, 105°C, 3 hours).

Nitrogen content Weigh accurately about 10 mg of Protamine Sulfate, and perform the test as directed under Nitrogen Determination $<1.08>$: the amount of nitrogen (N:14.01) is 22.5 – 25.5%, calculated on the dried basis.

Heparin-binding capacity

(i) Sample solution (a)—Weigh accurately about 15 mg of Protamine Sulfate, and dissolve in water to make exactly 100 mL. Repeat this procedure 3 times, and use the solutions so obtained as the sample solutions (a1), (a2) and (a3).

(ii) Sample solution (b)—Pipet 10 mL each of the sample solutions (a1), (a2) and (a3), add exactly 5 mL of water to them, and use these solutions as the sample solutions (b1), (b2) and (b3).

(iii) Sample solution (c)—Pipet 10 mL each of the sample solutions (a1), (a2) and (a3), add exactly 20 mL of water to them, and use these solutions as the sample solutions (c1), (c2) and (c3).

(iv) Standard solution—Dissolve Heparin Sodium RS in water to make a solution containing exactly about 20 Units per mL.

(v) Procedure—Transfer exactly 2 mL of the sample solution to a cell for spectrophotometer, add the standard solution dropwise while mixing, and determine the transmittance at 500 nm as directed under Ultraviolet-visible Spectrophotometry 2.24: Continue the addition until a sharp change in the transmittance is observed, and note the volume, V mL, of the standard solution added. Repeat this procedure 2 times for each sample solution.

(vi) Calculation—Calculate the amount of heparin bound to 1 mg of sample protein by the following formula from the volume of titrant on each sample solution, and calculate the average of 18 results obtained. The assay is not valid unless each relative standard deviation of 6 results obtained from the sample solutions (a), sample solution (b) and sample solution (c) is not more than 5%, respectively, and also unless each relative standard deviation of 6 results obtained from 3 sets, (a1, b1, c1), (a2, b2, c2) and (a3, b3, c3) is not more than 5%, respectively.

\[
\text{Amount (heparin Unit) of heparin bound to 1 mg of Protamine Sulfate} = S \times V \times 50/M_T \times d
\]

S: Amount (heparin Unit) of heparin sodium in 1 mL of the standard solution

\(M_T\): Amount (mg) of Protamine Sulfate taken, calculated on the dried basis

\(d\): Dilution factor for each sample solution from the sample solution (a)

Sulfate content Weigh accurately about 0.15 g of Protamine Sulfate, dissolve in 75 mL of water, add 5 mL of 3 mol/L hydrochloric acid TS, and heat to boil. Add gradually 10 mL of barium chloride TS while boiling, and allow to stand for 1 hour while heating. Filter the precipitate formed, wash the precipitate with warm water several times, and transfer the precipitate into a tared crucible. Dry the precipitate, and incinerate by ignition to constant mass: the amount of sulfate (SO₄) is 16 – 22%, calculated on the dried basis, where 1 g of the residue is equivalent to 0.4117 g of SO₄.

Containers and storage Containers—Tight containers.

Protamine Sulfate Injection

プロタミン硫酸塩注射液

Protamine Sulfate Injection is an aqueous injection. It contains not less than 92.0% and not more than 108.0% of the labeled amount of Protamine Sulfate. It binds with not less than 100 Units of heparin per mg of the labeled amount.

Method of preparation Prepare as directed under Injections, with Protamine Sulfate.

Description Protamine Sulfate Injection is a colorless liquid. It is odorless or has the odor of preservatives.

Identification

(1) Dilute a volume of Protamine Sulfate Injection, equivalent to 1 mg of Protamine Sulfate, with water to make 2 mL, and proceed as directed in the Identification (1) under Protamine Sulfate.

(2) Dilute a volume of Protamine Sulfate Injection, equivalent to 5 mg of Protamine Sulfate, with water to make 1 mL, and proceed as directed in the Identification (2) under Protamine Sulfate.

pH $<2.54> 5.0 – 7.0

Bacterial endotoxins $<4.01>$ Less than 6.0 EU/mg.

Extractable volume $<6.05>$ It meets the requirement.

Foreign insoluble matter $<6.06>$ Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter $<6.07>$ It meets the requirement.

Sterility $<4.06>$ Perform the test according to the Membrane filtration method: it meets the requirement.

Assay

(1) Protein—Pipet a volume of Protamine Sulfate Injection, equivalent to about 10 mg of Protamine Sulfate, transfer to a Kjeldahl flask, evaporate on a water bath to dryness with the aid of a current of air, determine the nitrogen as directed under Nitrogen Determination $<1.08>$, and calculate the amount of protein by converting 0.24 mg of nitrogen (N: 14.01) to 1 mg of protein.

(2) Heparin-binding activity—Proceed the test as directed in the Heparin-binding capacity under Protamine Sulfate, changing the sample so obtained as the sample solutions (a), (a) and (a), and determine the amount of heparin bound to 1 mg of protein by dividing by the amount of protein.

(i) Sample solution (a)—Pipet a volume of Protamine Sulfate Injection, equivalent to 15.0 mg of Protamine Sulfate, and add water to make exactly 100 mL. Repeat this procedure two more times, and designate the solutions so obtained as the sample solutions (a1), (a2) and (a3).

Containers and storage Containers—Hermetic containers.
Prothionamide

プロチオナミド

C₉H₂N₆S: 180.27
2-Propylpyridine-4-carbothioamide

[14222-60-7]

Prothionamide, when dried, contains not less than 98.0% of prothionamide (C₉H₁₂N₆S).

Description Prothionamide occurs as yellow, crystals or crystalline powder. It has a slight, characteristic odor.

It is freely soluble in methanol and in acetic acid (100), soluble in ethanol (95), slightly soluble in diethyl ether, and practically insoluble in water.

It dissolves in dilute hydrochloric acid and in dilute sulfuric acid.

Identification (1) Mix 0.05 g of Prothionamide with 0.1 g of 1-chloro-2,4-dinitrobenzene, transfer about 10 mg of this mixture to a test tube, and heat for several seconds over a small flame until the mixture is fused. Cool, and add 3 mL of potassium hydroxide-ethanol TS: a red to orange-red color develops.

(2) Place 0.5 g of Prothionamide in a 100-mL beaker, and dissolve in 20 mL of sodium hydroxide TS by heating while shaking occasionally: the gas evolved turns a moistened red litmus paper to blue. Boil gently, and evaporate the solution to 3 to 5 mL. After cooling, add gradually 20 mL of acetic acid (100), and heat on a water bath: the gas evolved darkens moistened lead (II) acetate paper. Evaporate the solution on a water bath to 3 to 5 mL with the aid of a current of air, cool, add 10 mL of water, and mix well. Filter the crystals by suction, recrystallize from water immediately, and dry in a desiccator (in vacuum, silica gel) for 6 hours: the crystals melt between 198°C and 203°C (with decomposition).

Melting point 2.60°C 142 – 145°C

Purity (1) Clarity and color of solution—Dissolve 0.5 g of Prothionamide in 20 mL of ethanol (95): the solution is clear, and shows a yellow color.

(2) Acidity—Dissolve 3.0 g of Prothionamide in 20 mL of methanol with warming. Add 100 mL of water to the solution, cool in an ice water bath with agitation, and remove any precipitate by filtration. Allow 80 mL of the filtrate to cool to room temperature, and add 0.8 mL of cresol red TS and 0.20 mL of 0.1 mol/L sodium hydroxide VS: a red color develops.

(3) Heavy metals <1.07>—Proceed with 1.0 g of Prothionamide according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(4) Arsenic <1.11>—Prepare the test solution with 0.6 g of Prothionamide according to Method 3, and perform the test. To the test solution add 10 mL of a solution of magnesium nitrate hexahydrate in ethanol (95) (1 in 50), then add 1.5 mL of hydrogen peroxide (30), and ignite to burn (not more than 3.3 ppm).

Loss on drying <2.44> Not more than 0.5% (1 g, 80°C, 3 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.3 g of Prothionamide, previously dried, dissolve in 50 mL of acetic acid (100), and titrate <2.50> with 0.1 mol/L perchloric acid VS until the color of the solution changes from orange-red to dark orange-brown (indicator: 2 mL of p-naphtholbenzine TS). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 18.03 mg of C₉H₁₂N₆S

Containers and storage Containers—Well-closed containers. Storage—Light-resistant.

Protirelin

プロチレリン

C₁₆H₂₂N₆O₄: 362.38
5-Oxoo-L-prolyl-L-histidyl-L-prolinamide

[24305-27-9]

Protirelin contains not less than 98.5% of protirelin (C₁₆H₂₂N₆O₄), calculated on the anhydrous basis.

Description Protirelin occurs as a white powder.

It is freely soluble in water, in methanol, in ethanol (95) and in acetic acid (100).

It is hygroscopic.

Identification (1) Take 0.01 g of Protirelin in a test tube made of hard glass, add 0.5 mL of 6 mol/L hydrochloric acid TS, seal the upper part of the tube, and heat carefully at 110°C for 5 hours. After cooling, open the seal, transfer the contents into a beaker, and evaporate on a water bath to dryness. Dissolve the residue in 1 mL of water, and use this solution as the sample solution. Separately, dissolve 0.08 g of L-glutamic acid, 0.12 g of L-histidine hydrochloride monohydrate and 0.06 g of L-proline in 20 mL of water, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.07>. Spot 5 µL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of 1-butanol, water, acetic acid (100) and pyridine (4:1:1:1) to a distance of about 12 cm, and dry the plate at 100°C for 3 minutes. Spray evenly a solution of ninhydrin in acetone (1 in 50) on the plate, and heat the plate at 80°C for 5 minutes: the three spots obtained from the sample solution show the same color and the same Rf value as each corresponding spots from the standard solution.

(2) Determine the infrared absorption spectrum of Protirelin, as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation <2.49> [α]D° = −66.0 – −69.0° (0.1 g, calcu-
lated on the anhydrous basis, water, 20 mL, 100 mm).

pH <2.54> Dissolve 0.20 g of Protirelin in 10 mL of water: the pH of this solution is between 7.5 and 8.5.

Purity (1) Clarity and color of solution—Dissolve 0.10 g of Protirelin in 10 mL of water: the solution is clear and colorless.

(2) Heavy metals <1.07>—Proceed with 1.0 g of Protirelin according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(3) Related substances—Dissolve 0.20 g of Protirelin in 10 mL of water, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add water to make exactly 200 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.07>. Spot 5 μL each of the sample solution and standard solution on a plate (1) of silica gel for thin-layer chromatography, and spot 5 μL of the sample solution on a plate (2) of silica gel for thin-layer chromatography. Develop the plates with a mixture of 1-butanol, water, pyridine and acetic acid (100) (4:2:1:1) to a distance of about 12 cm, and dry the plates at 100°C for 30 minutes. Spray evenly a mixture of a solution of sulfamic acid in 1 mol/L hydrochloric acid TS (1 in 100) and a solution of sodium nitrite (1 in 20) (1:1) on the plate (1), and air-dry the plates. Successively spray evenly a solution of sodium decacylhydroxamate (1 in 10) on it: the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution. Spray evenly a solution of ninhydrin in acetone (1 in 50) on the plate (2), and heat the plate at 80°C for 5 minutes: no colored spot appears.

Water <2.48> Not more than 5.0% (0.1 g, volumetric titration, direct titration).

Residue on ignition <2.48> Not more than 0.3% (0.2 g).

Assay Weigh accurately about 70 mg of Protirelin dissolve in 50 mL of acetic acid (100), and titrate with 0.02 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.02 mol/L perchloric acid VS = 7.248 mg of \(C_{18}H_{22}N_6O_4 \)

Containers and storage Containers—Tight containers.

Protirelin Tartrate Hydrate

プロチレリン酒石酸塩水和物

\[
\begin{align*}
\text{C}_{18}\text{H}_{22}\text{N}_6\text{O}_4 \cdot \text{C}_4\text{H}_6\text{O}_5 \cdot \text{H}_2\text{O} & : 530.49 \\
5\text{-Oxo-L-prolyl-L-histidyl-L-prolinamidemono} & \text{tartrate monohydrate} \\
[24305-27-9, \text{Protirelin}] &
\end{align*}
\]

Protirelin Tartrate Hydrate, calculated on the anhydrous basis, contains not less than 98.5% of protirelin tartrate (\(C_{18}H_{22}N_6O_4 \cdot C_4H_6O_5 \cdot H_2O \): 512.48).

Description Protirelin Tartrate Hydrate occurs as white to pale yellowish white, crystals or crystalline powder.

It is freely soluble in water, sparingly soluble in acetic acid (100), and practically insoluble in ethanol (95) and in diethyl ether.

Melting point: about 187°C (with decomposition).

Identification (I) To 1 mL of a solution of Protirelin Tartrate Hydrate (1 in 1000) add 2 mL of a solution of 4-nitrobenzene diazonium fluoroborate (1 in 2000) and 2 mL of boric acid-potassium chloride-sodium hydroxide buffer solution (pH 9.0): a red color develops.

(2) Dissolve 0.03 g of Protirelin Tartrate Hydrate in 5 mL of sodium hydroxide TS, add 1 drop of copper (II) sulfate TS: a purple color develops.

(3) To 0.20 g of Protirelin Tartrate Hydrate add 5.0 mL of 6 mol/L hydrochloric acid TS, and boil for 7 hours under a reflux condenser. After cooling, evaporate 2.0 mL of this solution on a water bath to dryness, dissolve the residue in 2.0 mL of water and use this solution as the sample solution. Separately, dissolve 22 mg of L-glutamic acid, 32 mg of L-histidine hydrochloride monohydrate and 17 mg of L-proline in 2.0 mL of 0.1 mol/L hydrochloric acid TS by heating, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.07>. Spot 2 μL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of L-butanol, water, acetic acid (100) and pyridine (4:1:1:1) to a distance of about 12 cm, and dry at 100°C for 30 minutes. Spray evenly a solution of ninhydrin in acetone (1 in 50) on the plate, and heat the plate at 80°C for 5 minutes: the three spots obtained from the sample solution show, respectively, the same color and the same Rf value as the corresponding spot from the standard solution.

(4) A solution of Protirelin Tartrate Hydrate (1 in 40) responds to Qualitative Tests <1.09> for tartrate.

Optical rotation <2.47> \([\alpha]_D^20 = -50.0 - 53.0° \) (0.5 g calculated on the anhydrous basis, water, 25 mL, 100 mm).

\[\text{pH} <2.54> \text{ Dissolve 1.0 g of Protirelin Tartrate Hydrate in 100 mL of water: the pH of this solution is between 3.0 and 4.0.} \]

Purity (1) Clarity and color of solution—Dissolve 0.10 g of Protirelin Tartrate Hydrate in 10 mL of water: the solution is clear and colorless.

(2) Heavy metals <1.07>—Proceed with 1.0 g of Protirelin Tartrate Hydrate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(3) Arsenic <1.11>—Take 1.0 g of Protirelin Tartrate Hydrate in a porcelain crucible. Add 10 mL of a solution of magnesium nitrate hexahydrate in ethanol (95) (1 in 10), ignite the ethanol, and heat gradually to incinerate. If a carbonized material still remains in this method, moisten with a small quantity of nitric acid, and ignite to incinerate. After cooling, add 10 mL of dilute hydrochloric acid, heat on a water bath to dissolve the residue, use this solution as the test solution, and perform the test (not more than 2 ppm).

(4) Related substances—Dissolve 0.60 g of Protirelin Tartrate Hydrate in 10 mL of water, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add water to make exactly 200 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.07>. Spot 5 μL each of the sample solution and standard solution on a plate (1) of silica gel for thin-layer chromatography. Spot 5
μL of the sample solution on a plate (2) of silica gel for thin-layer chromatography. Develop the plates with a mixture of chloroform, methanol and ammonia solution (28:6:4:1) to a distance of about 10 cm, and dry at 100°C for 30 minutes. Spray evenly a mixture of solutions of sulfuric acid in 1 mol/L hydrochloric acid TS (1 in 200) and a solution of sodium nitrite (1 in 20) (1:1) on the plate (1), and air-dry the plate. Then, spray evenly a solution of sodium carbonate decahydrate (1 in 10) on the plate: the spots other than the principal spot obtained from the sample solution are not more intense than those from the standard solution in color. On the other hand, spray evenly a solution of ninhydrin in acetic acid (1 in 50) on the plate (2), and heat the plate at 80°C for 5 minutes: no colored spot is obtained.

Water <2.48> Not more than 4.5% (0.2 g, volumetric titration, direct titration).

Residue on ignition <2.48> Not more than 0.2% (0.5 g).

Assay Weigh accurately about 0.5 g of Protirelin Tartrate Hydroxide, dissolve in 80 mL of acetic acid (100) by warming, cool, and titrate <2.50> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 51.25 mg of C_{10}H_{22}N_{6}O_{4}.C_{4}H_{4}O_{6}.

Containers and storage Containers—Well-closed containers.

Pullulan プルラン

(C_{18}H_{30}O_{13})_{x}

Poly[6)-α-D-glucopyranosyl-(1-→4)-α-D-glucopyranosyl-(1-→4)-α-D-glucopyranosyl-(1-→1]

[9057-02-7]

Pullulan is a neutral simple polysaccharide produced by the growth of Aureobasidium pullulans. It has a chain structure of repeated α-1,6 binding of maltotriose composed of three glucose residues in α-1,4 binding.

Description Pullulan occurs as a white powder.

It is freely soluble in water, and practically insoluble in ethanol (99.5).

Identification (1) Dissolve 10 g of Pullulan in 100 mL of water with stirring by adding in small portions: a viscous solution is produced.

(2) Mix 10 mL of the viscous solution obtained in (1) with 0.1 mL of pullulanase TS, and allow to stand: the solution loses its viscosity.

(3) To 10 mL of a solution of Pullulan (1 in 50) add 2 mL of macrogol 600: a white precipitate is formed immediately.

Viscosity <2.53> Weigh exactly 10.0 g of Pullulan, previously dried, dissolve in water to make exactly 100 g, and perform the test at 30 ± 0.1°C as directed in Method 1: the kinematic viscosity is between 100 mm²/s and 180 mm²/s.

pH <2.54> Dissolve 1.0 g of Pullulan in 10 mL of freshly boiled and cooled water: the pH is between 4.5 and 6.5.

Purity (1) Heavy metals <1.07>—Proceed with 4.0 g of Pullulan according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 5 ppm).

(2) Nitrogen—Weigh accurately about 3 g of Pullulan, previously dried, and perform the test as directed under Nitrogen Determination <1.08>: the amount of nitrogen (N: 14.01) is not more than 0.05%. Use 12 mL of sulfuric acid for the decomposition, and add 40 mL of a solution of sodium hydroxide (2 in 5).

(3) Monosaccharide and oligosaccharides—Dissolve 0.8 g of Pullulan, previously dried, in 100 mL of water, and designate this solution as the sample stock solution. To 1 mL of the sample stock solution add 0.1 mL of potassium chloride saturated solution, and shake vigorously with 3 mL of methanol. Centrifuge, and use the supernatant liquid as the sample solution. Separately, pipet 1 mL of the sample stock solution, add water to make exactly 50 mL, and use this solution as the standard solution. Pipet 0.2 mL each of the sample solution, the standard solution and water, transfer them gently to each test tube containing 5 mL of a solution of anthrone in diluted sulfuric acid (3 in 4) (1 in 500) cooled in ice water, stir immediately, then heat at 90°C for 10 minutes, and cool immediately. Perform the test with these solutions so obtained as directed under Ultraviolet-visible Spectrophotometry <2.24> using water as a blank, and determine the absorbances at 620 nm, A_1, A_2 and A_3: the amount of monosaccharide and oligosaccharides is not more than 10.0%.

Amount (%) of monosaccharide and oligosaccharides = (A_1 - A_3)/(A_3 - A_3) × 8.2

Loss on drying <2.41> Not more than 6.0% (1 g, in vacuum, 90°C, 6 hours).

Residue on ignition <2.44> Not more than 0.3% (2 g).

Containers and storage Containers—Well-closed containers.

Pyrantel Pamoate ピランテルパモ酸塩

C_{11}H_{14}N_{2}S.C_{23}H_{18}O_{6}: 594.68
1-Methyl-2-[(1E)-2-(thien-2-yl)vinyl]-1,4,5,6-tetrahydropyrimidine mono[4,4'-methylenedioxy-2-naphthoate]

[22204-24-6]

Pyrantel Pamoate, when dried, contains not less than 98.0% of pyrantel pamoate (C_{11}H_{14}N_{2}S.C_{23}H_{18}O_{6}).

Description Pyrantel Pamoate occurs as a light yellow to
yellow crystalline powder. It is odorless and tasteless.

It is sparingly soluble in N,N-dimethylformamide, very slightly soluble in methanol and in ethanol (95), and practically insoluble in water, in ethyl acetate and in diethyl ether.

Melting point: 256 – 264°C (with decomposition).

Identification (1) To 0.05 g of Pyrantel Pamoate add 10 mL of methanol and 1 mL of a mixture of hydrochloric acid and methanol (1:1), and shake vigorously: a yellow precipitate is produced. Filter the solution, and use the filtrate as the sample solution. Use the precipitate for the test (2). To 0.5 mL of the sample solution add 1 mL of a solution of 2,3-indolinedione in sulfuric acid (1 in 1000): a red color develops.

(2) Collect the precipitate obtained in the test (1), wash with methanol, and dry at 105°C for 1 hour. To 0.01 g of the dried precipitate add 10 mL of methanol, shake well, and filter. To 5 mL of the filtrate add 1 drop of iron (III) chloride TS: a green color develops.

(3) Dissolve 0.1 g of Pyrantel Pamoate in 50 mL of N,N-dimethylformamide, and add methanol to make 200 mL. To 2 mL of the solution add a solution of hydrochloric acid in methanol (9 in 1000) to make 100 mL. Determine the absorption spectrum of the solution as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(4) Determine the infrared absorption spectrum of Pyrantel Pamoate, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Purity (1) Chloride <1.07>—To 1.0 g of Pyrantel Pamoate add 10 mL of dilute nitric acid and 40 mL of water, and heat on a water bath with shaking for 5 minutes. After cooling, add water to make 50 mL, and filter. To 20 mL of the filtrate add 2 mL of dilute nitric acid and water to make 50 mL. Proceed the test using this solution as the test solution. Prepare the control solution with 0.40 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.036%).

(2) Sulfate <1.14>—To 0.75 g of Pyrantel Pamoate add 5 mL of dilute hydrochloric acid and water to make 100 mL, and heat on a water bath for 5 minutes with shaking. After cooling, add water to make 100 mL, and filter. To 20 mL of the filtrate add water to make 50 mL. Proceed the test using this solution as the test solution. Prepare the control solution with 0.45 mL of 0.005 mol/L sulfuric acid VS (not more than 0.144%).

(3) Heavy metals <1.07>—Proceed with 1.0 g of Pyrantel Pamoate according to Method 2, and perform the test. Prepare the control solution with 3.0 mL of Standard Lead Solution (not more than 30 ppm).

(4) Arsenic <1.11>—Prepare the test solution with 1.0 g of Pyrantel Pamoate according to Method 3, and perform the test (not more than 2 ppm).

(5) Related substances—The procedure should be performed under protection from light in light-resistant vessels. Dissolve 0.10 g of Pyrantel Pamoate in 10 mL of N,N-dimethylformamide, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add N,N-dimethylformamide to make exactly 100 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.02>. Spot 5 μL of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate, water and acetic acid (100) (3:1:1) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the spot of pyrantel and the spot of pamoic acid obtained from the sample solution are not more intense than the spot of pyrantel (RF value: about 0.3) from the standard solution.

Loss on drying <2.41> Not more than 1.0% (1 g, 105°C, 2 hours).

Residue on ignition <2.44> Not more than 0.3% (1 g).

Assay Weigh accurately about 0.5 g of Pyrantel Pamoate, previously dried, add 25 mL of chloroform and 25 mL of sodium hydroxide TS, shake for 15 minutes, and extract. Extract further with two 25-mL portions of chloroform. Filter each extract through 5 g of anhydrous sodium sulfate on a pledget of absorbent cotton. Combine the chloroform extracts, add 30 mL of acetic acid (100), and titrate <2.50> with 0.1 mol/L perchloric acid VS (indicator: 2 drops of crystal violet TS). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 59.47 mg of C$_{17}$H$_{14}$N$_2$S.C$_2$H$_6$O$_6$.

Containers and storage Containers—Tight containers.

Pyrazinamide

ピラジナミド

C$_{17}$H$_{14}$N$_2$O: 123.11

Pyrazine-2-carboxamide [98-96-4]

Pyrazinamide, when dried, contains not less than 99.0% and not more than 101.0% of pyrazinamide (C$_{17}$H$_{14}$N$_2$O).

Description Pyrazinamide occurs as white, crystals or crystalline powder.

It is sparingly soluble in water and in methanol, and slightly soluble in ethanol (99.5) and in acetic anhydride.

Identification (1) Determine the absorption spectrum of a solution of Pyrazinamide in 0.1 mol/L hydrochloric acid TS (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Pyrazinamide, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point <2.60> 188 – 193°C

Purity (1) Heavy metals <1.07>—Proceed with 1.0 g of Pyrazinamide according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(2) Related substances—Dissolve 0.10 g of Pyrazinamide in 10 mL of methanol, and use this solution as the sample so-
lution. Pipet 1 mL of the sample solution, add methanol to make exactly 200 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography $<2.03>$. Spot 20 µL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of 1-butanol, water and acetic acid (100) (3:1:1) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spot other than the principal spot obtained from the sample solution is not more intense than the spot from the standard solution.

Loss on drying $<2.47>$ Not more than 0.5% (1 g, in vacuum, silica gel, 4 hours).

Residue on ignition $<2.44>$ Not more than 0.1% (1 g).

Assay Weigh accurately about 0.1 g of Pyrazinamide, previously dried, dissolve in 50 mL of acetic anhydride, and titrate $<2.50>$ with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 12.31 mg of C₄H₄N₂O₂

Containers and storage Containers—Well-closed containers.

Pyridostigmine Bromide

ピリドスチグミン臭化物

![Pyridostigmine Bromide](image)

C₆H₃BrN₂O₂: 261.12

3-Dimethylcarbamoyloxy-1-methylpyridinium bromide [101-26-8]

Pyridostigmine Bromide, when dried, contains not less than 98.5% of pyridostigmine bromide (C₆H₃BrN₂O₂).

Description Pyridostigmine Bromide occurs as a white crystalline powder. It is odorless or has a slightly characteristic odor.

It is very soluble in water, freely soluble in ethanol (95) and in acetic acid (100), and practically insoluble in diethyl ether. The pH of a solution of 1.0 g of Pyridostigmine Bromide in 10 mL of water is between 4.0 and 6.0. It is deliquescent.

Identification (1) Dissolve 0.02 g of Pyridostigmine Bromide in 10 mL of water, add 5 mL of Reinecke salt TS: a light red precipitate is produced.

(2) To 0.1 g of Pyridostigmine Bromide add 0.6 mL of sodium hydroxide TS: the unpleasant odor of dimethylamine is perceptible.

(3) Determine the absorption spectrum of a solution of Pyridostigmine Bromide in 0.1 mol/L hydrochloric acid TS (1 in 30,000) as directed under Ultraviolet-visible Spectrophotometry $<2.24>$, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(4) A solution of Pyridostigmine Bromide (1 in 50) responds to Qualitative Tests $<1.09>$ for Bromide.

Melting point $<2.60>$ 153 – 157°C

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Pyridostigmine Bromide in 10 mL of water: the solution is clear and colorless.

(2) Heavy metals $<1.07>$—Proceed with 1.0 g of Pyridostigmine Bromide according to Method 1, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(3) Arsenic $<1.11>$—Prepare the test solution with 1.0 g of Pyridostigmine Bromide according to Method 1, and perform the test (not more than 2 ppm).

Related substances—Dissolve 0.10 g of Pyridostigmine Bromide in 10 mL of ethanol (95), and use this solution as the sample solution. Pipet 2 mL of the sample solution, and add ethanol (95) to make exactly 10 mL. Pipet 1 mL of this solution, add ethanol (95) to make exactly 25 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography $<2.03>$. Spot 10 µL of each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of methanol, chloroform and ammonium chloride TS (5:4:1) to a distance of about 12 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution in color.

Loss on drying $<2.47>$ Not more than 2.0% (1 g, in vacuum, phosphorus (V) oxide, 100°C, 5 hours).

Residue on ignition $<2.44>$ Not more than 0.1% (1 g).

Assay Weigh accurately about 0.3 g of Pyridostigmine Bromide, previously dried, dissolve in 10 mL of acetic acid (100), add 40 mL of acetic anhydride, and titrate $<2.50>$ with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 26.11 mg of C₄H₄N₂O₂

Containers and storage Containers—Hermetic containers.

Pyridoxal Phosphate Hydrate

ピリドキサールリン酸エステル水和物

![Pyridoxal Phosphate Hydrate](image)

C₆H₉NO₃P·H₂O: 265.16

(4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogenphosphate monohydrate [41468-25-1]

Pyridoxal Phosphate Hydrate contains not less than 98.0% and not more than 101.0% of pyridoxal phosphate (C₆H₉NO₃P: 247.14), calculated on the anhydrous basis.

Description Pyridoxal Phosphate Hydrate occurs as a pale yellow-white to light yellow crystalline powder.
It is slightly soluble in water, and practically insoluble in ethanol (99.5).

It dissolves in dilute hydrochloric acid and in sodium hydroxide TS.

The pH of a solution prepared by dissolving 0.1 g of Pyridoxal Phosphate Hydrate in 200 mL of water is between 3.0 and 3.5.

Pyridoxal Phosphate Hydrate is colored to light red by light.

Identification

1. Determine the absorption spectrum of a solution of Pyridoxal Phosphate Hydrate in a phosphate buffer solution (pH 6.8) (1 in 50,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Pyridoxal Phosphate RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

2. Determine the infrared absorption spectrum of Pyridoxal Phosphate Hydrate as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of Pyridoxal Phosphate RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Purity

1. Heavy metals <1.07>—Proceed with 4.0 g of Pyridoxal Phosphate Hydrate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 5 ppm).

2. Arsenic <1.17>—Dissolve 1.0 g of Pyridoxal Phosphate Hydrate in 5 mL of dilute hydrochloric acid. Use this solution as the test solution, and perform the test (not more than 2 ppm).

3. Free phosphoric acid—Weigh accurately about 0.1 g of Pyridoxal Phosphate Hydrate, dissolve in water to make exactly 100 mL, and use this solution as the sample solution. Pipet 5 mL each of the sample solution and Standard Phosphoric Acid Solution, to each add 2.5 mL of hexammonium heptamolybdate-sulfuric acid TS and 1 mL of 1-amino-2-naphthol-4-sulfonic acid TS, and shake. Add water to make exactly 25 mL, and allow to stand at 20 ± 1°C for 30 minutes. Perform the test with these solutions as directed under Ultraviolet-visible Spectrophotometry <2.24>, using a solution prepared with 5 mL of water in the same manner as the blank. Determine the absorbances, A_T and A_S, of each solution from the sample solution and Standard Phosphoric Acid Solution at 740 nm: the amount of free phosphoric acid is not more than 0.5%.

\[
\text{Content (%)} = \frac{1}{M} \times \frac{A_T}{A_S} \times 258.0
\]

M: Amount (mg) of Pyridoxal Phosphate Hydrate taken, calculated on the anhydrous basis

4. Related substances—Dissolve 50 mg of Pyridoxal Phosphate Hydrate in 20 mL of the mobile phase, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 5 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.03> according to the following conditions. Determine each peak area by the automatic integration method: the area of the peak other than pyridoxal phosphate obtained from the sample solution is not larger than the peak area of pyridoxal phosphate from the standard solution, and the total area of the peaks other than pyridoxal phosphate from the sample solution is not larger than 2 times the peak area of pyridoxal phosphate from the standard solution.

Operating conditions

- **Detector**: An ultraviolet absorption photometer (wavelength: 254 nm).
- **Column**: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
- **Column temperature**: A constant temperature of about 30°C.
- **Mobile phase**: Dissolve 3.63 g of potassium dihydrogen phosphate and 5.68 g of anhydrous hydrogen phosphate in water to make 1000 mL.
- **Flow rate**: Adjust so that the retention time of pyridoxal phosphate is about 6 minutes.

Time span of measurement: About 2.5 times as long as the retention time of pyridoxal phosphate, beginning after the solvent peak.

System suitability

Test for required detectability: Pipet 2 mL of the standard solution, and add the mobile phase to make exactly 20 mL. Confirm that the peak area of pyridoxal phosphate obtained with 5 μL of this solution is equivalent to 7 to 13% of that with 5 μL of the standard solution.

System performance: When the procedure is run with 5 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of pyridoxal phosphate is not less than 3000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 5 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of pyridoxal phosphate is not more than 2.0%.

Water <2.40> 6.0–9.0% (0.1 g, volumetric titration, direct titration. Use a solution prepared by dissolving 50 g of imidazole for water determination in 100 mL of the dissolving solution instead of methanol for water determination).

Dissolving solution: A solution containing 80% of 1-methoxy-2-propanol, 18% of ethanol (99.5), 1% of imidazole and 1% of imidazole hydrobromide.

Assay Weigh accurately about 45 mg each of Pyridoxal Phosphate Hydrate and Pyridoxal Phosphate RS (separately determine the water <2.40> in the same manner as Pyridoxal Phosphate Hydrate), and dissolve each in phosphate buffer solution (pH 6.8) to make exactly 250 mL. Pipet 10 mL each of these solutions, add phosphate buffer solution (pH 6.8) to make exactly 100 mL, and use these solutions as the sample solution and the standard solution. Determine the absorbances, A_T and A_S, of the sample solution and standard solution at 388 nm as directed under Ultraviolet-visible Spectrophotometry <2.24> using phosphate buffer solution (pH 6.8) as the blank.

\[
\text{Amount (mg) of pyridoxal phosphate (C}_9\text{H}_9\text{NO}_4\text{P}) = M_S \times \frac{A_T}{A_S}
\]

M_S: Amount (mg) of Pyridoxal Phosphate RS taken, calculated on the anhydrous basis

Containers and storage

Containers—Well-closed containers.

Storage—Light-resistant.
Pyridoxine Hydrochloride

Vitamin B₆

![Chemical Structure](image)

C₅H₁₁NO₃.HCl: 205.64
4,5-Bis(hydroxymethyl)-2-methylpyridin-3-ol monohydrochloride [58-56-0]

Pyridoxine Hydrochloride, when dried, contains not less than 98.0% and not more than 101.0% of pyridoxine hydrochloride (C₅H₁₁NO₃.HCl).

Description Pyridoxine Hydrochloride occurs as a white to pale yellow crystalline powder.

It is freely soluble in water, slightly soluble in ethanol (99.5), and practically insoluble in acetic anhydride and in acetic acid (100).

It is gradually affected by light.

Melting point: about 206°C (with decomposition).

Identification (1) Determine the absorption spectrum of a solution of Pyridoxine Hydrochloride in 0.1 mol/L hydrochloric acid TS (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry (2.24), and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Pyridoxine Hydrochloride RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Pyridoxine Hydrochloride, previously dried, as directed in the potassium chloride disk method under Infrared Spectrophotometry (2.24), and compare the spectrum with the Reference Spectrum or the spectrum of Pyridoxine Hydrochloride RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) A solution of Pyridoxine Hydrochloride (1 in 10) responds to Qualitative Tests (1.069) for chloroform.

pH (2.54) The pH of a solution prepared by dissolving 1.0 g of Pyridoxine Hydrochloride in 50 mL of water is between 2.5 and 3.5.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Pyridoxine hydrochloride in 20 mL of water: the solution is clear and colorless.

(2) Heavy metals (1.077)—Proceed with 1.0 g of Pyridoxine Hydrochloride according to Method 1, and perform the test. Prepare the control solution with 3.0 mL of Standard Lead Solution (not more than 30 ppm).

(3) Related substances—Dissolve 1.0 g of Pyridoxine Hydrochloride in 10 mL of water, and use this solution as the sample solution. Pipet 2.5 mL of the sample solution, and add water to make exactly 100 mL. Pipet 1 mL of this solution, add water to make exactly 10 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography (2.25). Spot 2 μL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography, and air-dry the plate. Develop the plate with a mixture of acetone, tetrahydrofuran, hexane and ammonia solution (28) (65:13:13:9) to a distance of about 10 cm, and air-dry the plate. Spray evenly a solution of sodium carbonate in diluted ethanol (3 in 10) (1 in 20) on the plate. After air-drying, spray evenly a solution of 2,6-dibromo-N-chloro-1,4-benzoquinone monoimine in ethanol (99.5) (1 in 1000) on the plate, and air-dry: the spot other than the principal spot obtained from the sample solution is not more intense than the spot from the standard solution.

Loss on drying (2.41) Not more than 0.30% (1 g, in vacuum, silica gel, 4 hours).

Residue on ignition (2.24) Not more than 0.1% (1 g).

Assay Weigh accurately about 0.2 g of Pyridoxine Hydrochloride, previously dried, add 5 mL of acetic acid (100) and 5 mL of acetic anhydride, dissolve by gentle boiling, cool, add 30 mL of acetic anhydride, and titrate (2.50) with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 20.56 mg of C₅H₁₁NO₃.HCl

Containers and storage Containers—Tight containers. Storage—Light-resistant.

Pyridoxine Hydrochloride Injection

Vitamin B₆ Injection

Pyridoxine Hydrochloride Injection is an aqueous injection.

It contains not less than 95.0% and not more than 105.0% of the labeled amount of pyridoxine hydrochloride (C₅H₁₁NO₃.HCl: 205.64).

Method of preparation Prepare as directed under Injections, with Pyridoxine Hydrochloride.

Description Pyridoxine Hydrochloride Injection is a colorless or pale yellow, clear liquid.

It is gradually affected by light.

pH: 3.0 – 6.0

Identification (1) To a volume of Pyridoxine Hydrochloride Injection, equivalent to 0.05 g of Pyridoxine Hydrochloride, add 0.1 mol/L hydrochloric acid TS to make 100 mL. To 2 mL of this solution add 0.1 mol/L hydrochloric acid TS to make 100 mL, and determine the absorption spectrum of this solution as directed under Ultraviolet-visible spectrophotometry (2.24): it exhibits a maximum between 288 nm and 292 nm.

(2) To a volume of Pyridoxine Hydrochloride Injection, equivalent to 0.01 g of Pyridoxine Hydrochloride, add water to make 10 mL, and use this solution as the sample solution. Separately, dissolve 0.01 g of Pyridoxine Hydrochloride RS in 10 mL of water, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography (2.09). Spot 2 μL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography, and air-dry the plate. Develop the plate with a mixture of acetone, tetrahydrofuran, hexane and ammonia solution (28) (65:13:13:9) to a distance of about 10 cm, and air-dry the plate. Spray evenly a solution of sodium carbonate in diluted ethanol (3 in 10) (1 in 20)
on the plate. After air-drying, spray evenly a solution of 2,6-dibromo-N-chloro-4-benzoquinone monoimine in ethanol (99.5) (1 in 1000) on the plate: the spots obtained from the sample solution and the standard solution are blue in color and have the same Rf value.

Bacterial endotoxins Less than 3.0 EU/mg.

Extractable volume < Substrate and vessel. It meets the requirement.

Foreign insoluble matter < Substrate and vessel. Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter < Substrate and vessel. Perform the test according to Method 1: it meets the requirement.

Sterility < Substrate and vessel. Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Measure exactly a volume of Pyridoxine Hydrochloride solution, equivalent to about 20 mg of pyridoxine hydrochloride (C\textsubscript{6}H\textsubscript{5}N\textsubscript{2}O\textsubscript{4}HCl), dilute with water, if necessary, and add water to make exactly 100 mL. Pipet 25 mL of this solution, add water to make exactly 200 mL, and use this solution as the sample solution. Separately, weigh accurately about 0.1 g of Pyridoxine Hydrochloride RS, previously dried in a desiccator (in vacuum, silica gel) for 4 hours, and dissolve in water to make exactly 100 mL. Pipet 5 mL of this solution, add water to make exactly 200 mL, and use this solution as the standard solution. Pipet 1 mL of each of the sample solution and standard solution, add 2.0 mL of barbital buffer solution, 9.0 mL of 2-propanol and 2.0 mL of a freshly prepared solution of 2,6-dibromo-N-chloro-4-benzoquinone monoimine in ethanol (95) (1 in 4000), shake well, add 2-propanol to make exactly 25 mL, and allow to stand for 90 minutes. Determine the absorbances, \(A_T \) and \(A_S \), of the subsequent sample solution and subsequent standard solution, respectively, at 650 nm as directed under Ultraviolet-visible Spectrophotometry < 2.24 > , using a solution, prepared in the same manner with 1 mL of water, as the blank.

\[
\frac{\text{Amount (mg) of pyridoxine hydrochloride}}{\text{(C\textsubscript{6}H\textsubscript{5}N\textsubscript{2}O\textsubscript{4}HCl)}} = M_S \times \frac{A_T}{A_S} \times \frac{1}{5}
\]

\(M_S \): Amount (mg) of Pyridoxine Hydrochloride RS taken

Containers and storage Containers—Hermetic containers, and colored containers may be used. Storage—Light-resistant.

Pyroxylin

ピロキシリン

Pyroxylin is a nitric acid ester of cellulose. It is usually moistened with 2-propanol or some other solvent.

Description Pyroxylin occurs as a white cotton-like substance or white flakes.

It is freely soluble in acetone, and very slightly soluble in diethyl ether.

Upon heating or exposure to light, it is decomposed with the evolution of nitrous acid vapors.

Identification Ignite Pyroxylin: it burns very rapidly with a luminous flame.

Purity (1) Clarity of solution—Dissolve 1.0 g of Pyroxylin, previously dried at 80°C for 2 hours, in 25 mL of a mixture of diethyl ether and ethanol (95) (3:1): the solution is clear.

(2) Acidity—Shake 1.0 g of Pyroxylin, previously dried at 80°C for 2 hours, with 20 mL of water for 10 minutes: the filtrate is neutral.

(3) Water-soluble substances—Evaporate 10 mL of the filtrate obtained in (2) on a water bath to dryness, and dry at 105°C for 1 hour: the mass of the residue is not more than 1.5 mg.

(4) Residue on ignition—Weigh accurately about 2 g of Pyroxylin, previously dried at 80°C for 2 hours, and moisten with 10 mL of a solution of castor oil in acetone (1 in 20) to gelatinize the sample. Ignite the contents to carbonize the sample, heat strongly at about 500°C for 2 hours, and allow to cool in a desicator (silica gel): the amount of the residue is not more than 0.30%.

Containers and storage Containers—Tight containers.

Storage—Light-resistant, packed loosely, remote from fire, and preferably in a cold place.

Pyrrolnitrin

ピロールニトリン

\(\text{C}_{10}\text{H}_{13}\text{ClN}_{2}O_{2} \): 257.07

3-Chloro-4-(3-chloro-2-nitropheryl)pyrrole

[1018-71-9]

Pyrrolnitrin contains not less than 970 \(\mu \)g (potency) and not more than 1020 \(\mu \)g (potency) per mg, calculated on the dried basis. The potency of Pyrrolnitrin is expressed as mass (potency) of pyrrolnitrin (\(\text{C}_{10}\text{H}_{13}\text{ClN}_{2}O_{2} \)).

Description Pyrrolnitrin occurs as yellow to yellow-brown, crystals or crystalline powder.

It is freely soluble in methanol and in ethanol (95), and practically insoluble in water.

Identification (1) Determine the absorption spectrum of a solution of Pyrrolnitrin in ethanol (95) (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry < 2.24 > , and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Pyrrolnitrin RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Pyrrolnitrin as directed in the potassium bromide disk method under Infrared Spectrophotometry < 2.25 > , and compare the spectrum with the Reference Spectrum or the spectrum of Pyrrolnitrin RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point < 2.03 > 124 – 128°C

Purity Related substances—Dissolve 0.10 g of Pyrrolnitrin in 10 mL of methanol, and use this solution as the sample solution. Pipet 1 mL of the sample solution, and add methanol to make exactly 100 mL. Pipet 3 mL of this solution, add methanol to make exactly 10 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography < 2.05 > . Spot 10...
Quetiapine Fumarate

クエチアピンフマル酸塩

\[
\begin{align*}
(C_{21}H_{28}N_2O_5S)_2 \cdot C_4H_4O_4 &; \quad 883.09 \\
2 \cdot \{2-(4-Dibenzo[b,f][1,4]thiazepin-11-yl)piperazin-1-yl\}ethoxyjethanol hemifumarate \\
[111974-72-2]
\end{align*}
\]

Quetiapine Fumarate contains not less than 98.0% and not more than 102.0% of quetiapine fumarate \([C_{31}H_{32}N_2O_5S_2 \cdot C_4H_4O_4]\), calculated on the anhydrous basis.

Description Quetiapine Fumarate occurs as a white powder.

It is sparingly soluble in methanol, and slightly soluble in water and in ethanol (99.5).

Identification (1) Determine the absorption spectrum of a solution of Quetiapine Fumarate in a mixture of water and acetonitrile (1:1) (3 in 200,000) as directed under Ultraviolet-visible Spectrophotometry \(<2.24>\), and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Quetiapine Fumarate RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Quetiapine Fumarate as directed in the potassium bromide disk method under Infrared Spectrophotometry \(<2.25>\), and compare the spectrum with the Reference Spectrum or the spectrum of Quetiapine Fumarate RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) Dissolve 40 mg of Quetiapine Fumarate and 10 mg of fumaric acid for thin-layer chromatography in separate 10 mL of methanol, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with these solutions as directed under Thin-layer Chromatography \(<2.07>\). Spot 10 \(\mu\)L each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of isopropyl ether, formic acid and water (90:7:3) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spot having a larger \(R_f\) value among the spots obtained from the sample solution and the spot from the standard solution show the same \(R_f\) value.

Purity

(1) Heavy metals \(<1.0>\)—Proceed with 2.0 g of Quetiapine Fumarate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Related substances (i)—To 20 mg of Quetiapine Fumarate add 30 mL of the mobile phase, dissolve by sonication, add the mobile phase to make 50 mL, and use this solution as the sample solution. Pipet 5 mL of the sample solution, add the mobile phase to make exactly 100 mL. Pipet 5 mL of this solution, and add the mobile phase to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly 50 \(\mu\)L each of the
sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area by the automatic integration method, and calculate the amount of each related substance by the following equation: the amount is not more than 0.10%. For the area of the peaks, having a relative retention time of about 0.5 and about 0.9 to quetiapine, multiply their correction factors, 0.6 and 0.9, respectively.

Amount (%) of each related substance = \(A_t / A_S \times 1/2 \)

\(A_S: \) Peak area of quetiapine obtained with the standard solution

\(A_t: \) Each peak area other than quetiapine obtained with the sample solution

Operating conditions—
Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 1.8 times as long as the retention time of quetiapine, beginning after the solvent peak.

System suitability—
Test for required detectability: Pipet 5 mL of the standard solution, and add the mobile phase to make exactly 50 mL. Confirm that the peak area of quetiapine obtained with 50 \(\mu L \) of this solution is equivalent to 7 to 13% of that with 50 \(\mu L \) of the standard solution.

System performance: When the procedure is run with 50 \(\mu L \) of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of quetiapine are not less than 6000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 50 \(\mu L \) of the standard solution under the above operating conditions, the relative standard deviation of the peak area of quetiapine is not more than 2.0%.

(ii)—To 20 mg of Quetiapine Fumarate add 30 mL of a mixture of acetonitrile, water and the mobile phase (2:1:1), dissolve by sonicating, the same mixture to make 50 mL, and use this solution as the sample solution. Pipet 5 mL of the sample solution, and add the same mixture to make exactly 100 mL. Pipet 5 mL of this solution, add the same mixture to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly 50 \(\mu L \) each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area by the automatic integration method, and calculate the amount of each related substance by the following equation: the amount is not more than 0.10%. For the area of the peak, having a relative retention time of about 1.9 to quetiapine, multiply its correction factor, 0.8.

Amount (%) of each related substance = \(A_t / A_S \times 1/2 \)

\(A_S: \) Peak area of quetiapine obtained from the standard solution

\(A_t: \) Each peak area other than quetiapine obtained from the sample solution

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 230 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octylsilanized silica gel for liquid chromatography (5 \(\mu \)m in particle diameter).
Column temperature: A constant temperature of about 25°C.

Mobile phase: A mixture of methanol, diammonium hydrogen phosphate solution (33 in 12,500) and acetonitrile (70:21:9).
Flow rate: Adjust so that the retention time of quetiapine is about 3.5 minutes.

Time span of measurement: About 8 times as long as the retention time of quetiapine, beginning from about 1.2 times the retention time of quetiapine.

System suitability—
Test for required detectability: Pipet 5 mL of the standard solution, and add a mixture of acetonitrile, water and the mobile phase (2:1:1) to make exactly 50 mL. Confirm that the peak area of quetiapine obtained with 50 \(\mu L \) of this solution is equivalent to 7 to 13% of that with 50 \(\mu L \) of the standard solution.

System performance: When the procedure is run with 50 \(\mu L \) of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of quetiapine are not less than 3000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 50 \(\mu L \) of the standard solution under the above operating conditions, the relative standard deviation of the peak area of quetiapine is not more than 2.0%.

Water <2.48> Not more than 0.5% (Weigh accurately about 0.1 g of Quetiapine Fumarate, transfer to a centrifuge tube, add exactly 4 mL of methanol for water determination, shake vigorously for 1 minute, and centrifuge at 2000 round per minute for 5 minutes. Pipet 1 mL of the supernatant liquid and perform the test. Perform a blank determination in the same manner, and make any necessary correction. Coulometric titration).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 20 mg each of Quetiapine Fumarate and Quetiapine Fumarate RS (separately determine the water <2.48> in the same manner as Quetiapine Fumarate), add 60 mL of the mobile phase to them, dissolve by sonicating, and add the mobile phase to make exactly 100 mL. Pipet 10 mL each of these solutions, add the mobile phase to make exactly 25 mL, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with exactly 50 \(\mu L \) each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, \(A_T \) and \(A_S \), of quetiapine in each solution.

Amount (mg) of quetiapine fumarate
\[
[(C_{21}H_{23}N_2O_7S_3) \cdot C_4H_8O_4] = M_S \times A_T / A_S
\]

\(M_S: \) Amount (mg) of Quetiapine Fumarate RS taken, calculated on the anhydrous basis

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 230 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octylsilanized silica gel for liquid chromatography (5 \(\mu \)m in particle diameter).
Column temperature: A constant temperature of about 25°C.

Mobile phase: Dissolve 2.6 g of diammonium hydrogen phosphate in 1000 mL of water, and adjust to pH 6.5 with phosphoric acid. To 39 volumes of this solution add 54
volumes of methanol and 7 volumes of acetonitrile.

Flow rate: Adjust so that the retention time of quetiapine is about 15 minutes.

System suitability—

System performance: When the procedure is run with 50 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of quetiapine are not less than 6000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 50 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of quetiapine is not more than 1.0%

Containers and storage Containers—Tight containers.

Quetiapine Fumarate Fine Granules

クエチアピンフマル酸塩細粒

Quetiapine Fumarate Fine Granules contain not less than 95.0% and not more than 105.0% of the labeled amount of quetiapine (C₂₁H₂₃N₃O₅S: 383.51)

Method of preparation Prepare as directed under Granules, with Quetiapine Fumarate.

Identification Powder Quetiapine Fumarate Fine Granules. To a portion of the powder, equivalent to 12.5 mg of quetiapine (C₂₁H₂₃N₃O₅S), add 60 mL of a mixture of water and acetonitrile (1:1), shake, then add the same mixture to make 100 mL, and filter. To 3 mL of the filtrate add the same mixture to make 25 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry 2.01: it exhibits a maximum between 290 nm and 296 nm.

Dissolution 6.10 When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 30 minutes of Quetiapine Fumarate Fine Granules is not less than 80%.

Start the test with an accurately weighed amount of Quetiapine Fumarate Fine Granules, equivalent to about 0.1 g of quetiapine (C₂₁H₂₃N₃O₅S), withdraw not less than 10 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 1.0 μm. Discard not less than 5 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 17 mg of Quetiapine Fumarate RS (separately determine the water < 2.48% in the same manner as Quetiapine Fumarate), add 60 mL of the mobile phase, dissolve by sonicating, then add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 50 μL of each of the sample solution and standard solution as directed under Liquid Chromatography 2.01 according to the following conditions, and determine the peak areas, A₉ and A₃₅, of quetiapine in each solution.

Amount (mg) of Quetiapine Fumarate RS taken, calculated on the anhydrous basis:

\[
M₅ = M₉ \times \frac{A₉}{C} \times \frac{1}{360} \times 0.869
\]

M₅: Amount (mg) of Quetiapine Fumarate RS taken

M₉: Amount (g) of Quetiapine Fumarate Fine Granules taken

C: Labeled amount (mg) of quetiapine (C₂₁H₂₃N₃O₅S) in 1 g

Assay To an accurately weighed amount of Quetiapine Fumarate Fine Granules, equivalent to about 0.25 g of quetiapine (C₂₁H₂₃N₃O₅S), add 10 mL of water, and allow to stand for 15 minutes. Add 100 mL of the mobile, shake for 15 minutes, then add the mobile phase to make exactly 200 mL, and stir the solution thoroughly. After standing for 15 minutes, pipet 6 mL of the supernatant liquid, add the mobile phase to make exactly 50 mL, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 5 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separate, weigh accurately about 17 mg of Quetiapine Fumarate RS (separately determine the water < 2.48% in the same manner as Quetiapine Fumarate), add 60 mL of the mobile phase, dissolve by sonicating, then add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 50 μL of each of the sample solution and standard solution as directed under Liquid Chromatography 2.01 according to the following conditions, and determine the peak areas, A₉ and A₃₅, of quetiapine in each solution.

Mobile phase: A mixture of methanol, diammonium hydrogen phosphate solution (33 in 12,500) and acetonitrile (54:39:7). Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octysilanized silica gel for liquid chromatography (5 μm in particle diameter). Column temperature: A constant temperature of about 25°C.

Flow rate: Adjust so that the retention time of quetiapine is about 15 minutes.

System suitability—

System performance: When the procedure is run with 50 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of quetiapine are not less than 7000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 50 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of quetiapine is not more than 1.0%

Containers and storage Containers—Tight containers.

Quetiapine Fumarate Tablets

クエチアピンフマル酸塩錠

Quetiapine Fumarate Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of quetiapine (C₂₁H₂₃N₃O₅S: 383.51)

Method of preparation Prepare as directed under Tablets, with Quetiapine Fumarate.

Identification Powder Quetiapine Fumarate Tablets. To a portion of the powder, equivalent to about 12.5 mg of quetiapine (C₂₁H₂₃N₃O₅S), add 5 mL of water, shake, add 60
mL of a mixture of water and acetonitrile (1:1), shake, then add the same mixture to make 100 mL, and filter. To 3 mL of the filtrate add the same mixture to make 25 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry \(<2.20 > \); it exhibits a maximum between 290 nm and 296 nm.

Purity Related substances—To 10 Quetiapine Fumarate Tablets add 10 mL of water, allow to stand for 15 minutes, then shake for 25 minutes, and add a mixture of water and acetonitrile (1:1) to make exactly 200 mL. Stir this solution for 4 hours, and allow to stand for 15 minutes. Pipet 3 mL of this solution, add the mobile phase so that each mL contains about 0.15 mg of quetiapine \(\left(\text{C}_{21}\text{H}_{25}\text{N}_{2}\text{O}_{5}\text{S} \right) \), and filter through a membrane filter with a pore size not exceeding 0.45 \(\mu \)m. Discard the first 5 mL of the filtrate, and use the subsequent filtrate as the sample solution. Pipet 1 mL of the sample solution, add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 50 \(\mu \)L each of the sample solution and standard solution as directed under Liquid Chromatography \(<2.01 > \) according to the following conditions. Determine each peak area by the automatic integration method: the area of the peak with the relative retention time of about 0.6 to quetiapine obtained from the sample solution is not larger than 1/5 times the peak area of quetiapine from the standard solution, the area of the peak other than quetiapine and the peak mentioned above from the sample solution is not larger than 1/10 times the peak area of quetiapine from the standard solution, and the total area of the peaks other than quetiapine and the peak with the relative retention time of about 0.6 is not larger than 1/5 times the peak area of quetiapine from the standard solution.

Operating conditions—
Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 2.3 times as long as the retention time of quetiapine, beginning after the peak of fumaric acid.

System suitability—
Test for required detectability: Pipet 5 mL of the standard solution, and add the mobile phase to make exactly 50 mL. Confirm that the peak area of quetiapine obtained with 50 \(\mu \)L of this solution is equivalent to 7 to 13% of that with 50 \(\mu \)L of the standard solution.

System performance: When the procedure is run with 50 \(\mu \)L of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of quetiapine are not less than 7000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 50 \(\mu \)L of the standard solution under the above operating conditions, the relative standard deviation of the peak area of quetiapine is not more than 2.0%.

Uniformity of dosage units \(<6.02 > \) Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement.

To 1 tablet of Quetiapine Fumarate Tablets add 5 mL of water, allow to stand for 15 minutes, then shake for 25 minutes, add 30 mL of a mixture of water and acetonitrile (1:1), shake, and add the same mixture to make exactly 50 mL. Stir this solution for 4 hours, and allow to stand for 15 minutes. To exactly 8 mL of this solution, add the mobile phase to make exactly \(V \) mL so that each mL contains about 0.16 mg of quetiapine \(\left(\text{C}_{21}\text{H}_{25}\text{N}_{2}\text{O}_{5}\text{S} \right) \), and filter through a membrane filter with a pore size not exceeding 0.45 \(\mu \)m. Discard the first 5 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 18 mg of Quetiapine Fumarate RS (separately determine the water \(<2.48 > \) in the same manner as Quetiapine Fumarate), add 60 mL of the mobile phase, dissolve by sonicating, then add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Then, proceed as directed in the Assay.

\[
\text{Amount (mg) of quetiapine (C}_{21}\text{H}_{25}\text{N}_{2}\text{O}_{5}\text{S}) = \frac{M_S}{M_C} \times \frac{A_T}{A_S} \times \frac{V}{1/C} \times 72 \times 0.869
\]

\[
M_C: \text{Amount (mg) of Quetiapine Fumarate RS taken, calculated on the anhydrous basis}
\]

Dissolution \(<6.01 > \) When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 30 minutes of Quetiapine Fumarate Tablets is not less than 75%.

Start the test with 1 tablet of Quetiapine Fumarate Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 \(\mu \)m. Discard not less than 5 mL of the first filtrate, pipet \(V \) mL of the subsequent filtrate, add the mobile phase to make exactly \(V \) mL so that each mL contains about 14 \(\mu \)g of quetiapine \(\left(\text{C}_{21}\text{H}_{25}\text{N}_{2}\text{O}_{5}\text{S} \right) \), and use this solution as the sample solution. Separately, weigh accurately about 20 mg of Quetiapine Fumarate RS (separately determine the water \(<2.48 > \) in the same manner as Quetiapine Fumarate), add 60 mL of the mobile phase, sonicate to dissolve, and add the mobile phase to make exactly 100 mL. Pipet 8 mL of this solution, add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 50 \(\mu \)L each of the sample solution and standard solution as directed under Liquid Chromatography \(<2.01 > \) according to the following conditions, and determine the peak areas, \(A_T \) and \(A_S \), of quetiapine in each solution.

\[
\text{Dissolution rate} (\%) = \frac{A_T}{A_S} \times 100
\]

\[
C: \text{Labeled amount (mg) of quetiapine (C}_{21}\text{H}_{25}\text{N}_{2}\text{O}_{5}\text{S}) in 1 tablet}
\]

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 210 nm).
Column: A stainless steel column 4 mm in inside diameter and 8 cm in length, packed with octylsilanized silica gel for liquid chromatography (5 \(\mu \)m in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase: A mixture of methanol, a solution of diammonium hydrogen phosphate (33 in 12,500) and acetonitrile (54:39:7).
Flow rate: Adjust so that the retention time of quetiapine is about 4 minutes.

System suitability—
System performance: When the procedure is run with 50 \(\mu \)L of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of quetiapine are not less than 1400 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 50 \(\mu \)L of the standard solution under the above operat-
ing conditions, the relative standard deviation of the peak area of quetiapine is not more than 2.0%.

Assay To 20 Quetiapine Fumarate Tablets add 20 mL of water, allow to stand for 15 minutes, shake for 25 minutes, and add a mixture of water and acetonitrile (1:1) to make exactly 500 mL. Stir the solution for 4 hours. After standing for 15 minutes, pipet 4 mL of this solution, and add the mobile phase to make exactly 5 mL so that each mL contains about 0.16 mg of quetiapine (C_{22}H_{32}N_{2}O_{5}S). Filter this solution through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 5 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 18 mg of Quetiapine Fumarate RS (separately determine the water <2.40% in the same manner as Quetiapine Fumarate), add 60 mL of the mobile phase, dissolve by sonicating, then add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 50 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.25> according to the following conditions, and determine the peak areas, A_{4} and A_{8}, of quetiapine in each solution.

\[
\text{Amount (mg) of quetiapine (C}_{22}\text{H}_{32}\text{N}_{2}\text{O}_{5}\text{S}) \text{ in 1 tablet of Quetiapine Fumarate Tablets} = M_{s} \times A_{4}/A_{8} \times V/16 \times 0.869
\]

\[
M_{s}: \text{Amount (mg) of Quetiapine Fumarate RS taken, calculated on the anhydrous basis}
\]

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 230 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase: A mixture of methanol, diammonium hydrogen phosphate solution (33 in 12,500) and acetonitrile (54:39:7).
Flow rate: Adjust so that the retention time of quetiapine is about 15 minutes.
System suitability:
- When the procedure is run with 50 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of quetiapine are not less than 7000 and not more than 1.5, respectively.
- System repeatability: When the test is repeated 6 times with 50 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of quetiapine is not more than 1.0%.

Containers and storage Containers—Tight containers.

Quinapril Hydrochloride

キナプリル塩酸塩

\[
\text{C}_{22}\text{H}_{32}\text{N}_{2}\text{O}_{5}\text{S}.\text{HCl}: 474.98
\]

(3S)-2-((2S,2S)-[(1S)-1-Ethoxycarbonyl-3-phenylpropyl]amino)propanoyl)-1,2,3,4-tetrahydroisooquinoline-3-carboxylic acid monohydrochloride

[8256-35-8]

Quinapril Hydrochloride contains not less than 99.0% and not more than 101.0% of quinapril hydrochloride (C_{22}H_{30}N_{2}O_{5}.HCl), calculated on the anhydrous basis.

Description Quinapril Hydrochloride occurs as a white powder.

It is very soluble in methanol, freely soluble in water and in ethanol (99.5), and soluble in acetic acid (100). It is deliquescent.

Identification (1) Determine the absorption spectrum of a solution of Quinapril Hydrochloride in methanol (1 in 2000) as directed under Ultraviolet-visible Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(2) Determine the infrared absorption spectrum of Quinapril Hydrochloride as directed in the potassium chloride disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) A solution of Quinapril Hydrochloride (1 in 20) responds to Qualitative Tests <1.09> for chloride.

Optical rotation <2.40> [α]_{D}^{22} +14.4° to +16.0° (0.5 g calculated on the anhydrous basis, methanol, 25 mL, 100 mm).

Purity (1) Heavy metals <1.07>—Proceed with 1.0 g of Quinapril Hydrochloride according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(2) Related substances—Dissolve 50 mg of Quinapril Hydrochloride in 50 mL of a mixture of phosphate buffer solution (pH 7.0) and acetonitrile for liquid chromatography (1:1), and use this solution as the sample solution. Pipet 1 mL of the sample solution, add a mixture of phosphate buffer solution (pH 7.0) and acetonitrile for liquid chromatography (1:1) to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.25> according to the following conditions. Determine each peak area by the automatic integration method: the area of the peaks, having the relative retention time of about 0.5 and about 2.0 to quinapril, obtained from the sample solution are not larger than the peak area of quinapril from the standard solution, respectively, the area of peak other than quinapril and the peak mentioned above from the sample solution are not larger than 2/5 times the peak area of quinapril from the standard solution, and the total area of the peaks other than
quinapril from the sample solution is not larger than 3 times the peak area of quinapril from the standard solution.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 214 nm).

Column: A stainless steel column 6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: While keeping the temperature not below 25°C, adjust to pH 2.0 of 0.2 mol/L potassium dihydrogen phosphate TS with perchloric acid. To 1000 mL of this solution add 1000 mL of acetonitrile for liquid chromatography.

Flow rate: Adjust so that the retention time of quinapril is about 7 minutes.

Time span of measurement: About 4 times as long as the retention time of quinapril, beginning after the solvent peak.

System suitability—

Test for required detectability: Pipet 10 mL of the standard solution, and add a mixture of phosphate buffer solution (pH 7.0) and acetonitrile for liquid chromatography (1:1) to make exactly 100 mL. Confirm that the peak area of quinapril obtained with 10 μL of this solution is equivalent to 7 to 13% of that with 10 μL of the standard solution.

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of quinapril are not less than 5000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of quinapril is not more than 2.0%.

Water <2.44> Not more than 1.0% (0.2 g, coulometric titration).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Start to titrate within 3 minutes after dissolving Quinapril Hydrochloride. Weigh accurately about 0.5 g of Quinapril Hydrochloride, dissolve in 70 mL of acetic acid (100), add 4 mL of bismuth nitrate TS, and titrate <2.50> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS is equivalent to 47.50 mg of C₂₅H₂₄N₂O₂.HCl.

Containers and storage Containers—Tight containers.

Storage—In a cold place.

Quinapril Hydrochloride Tablets

キナプリル塩酸塩錠

Quinapril Hydrochloride Tablets contain not less than 93.0% and not more than 107.0% of the labeled amount of quinapril hydrochloride (C₂₅H₂₄N₂O₂.HCl: 474.98).

Method of preparation Prepare as directed under Tablets, with Quinapril Hydrochloride.

Identification To a quantity of powdered Quinapril Hydrochloride Tablets, equivalent to 20 mg of Quinapril Hydrochloride, add 10 mL of methanol, shake for 5 minutes, and centrifuge. To 5 mL of the supernatant liquid add 0.5 mL of dilute hydrochloric acid, and add methanol to make 20 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.24>: it exhibits maxima between 256 nm and 260 nm, between 262 nm and 266 nm, and between 269 nm and 273 nm.

Purity To an amount of the supernatant liquid obtained in the Assay add a mixture of phosphate buffer solution (pH 7.0) and acetonitrile for liquid chromatography (1:1) so that each mL contains 0.2 mg of Quinapril Hydrochloride, and use this solution as the sample solution. Pipet 5 mL of the sample solution, add a mixture of phosphate buffer solution (pH 7.0) and acetonitrile for liquid chromatography (1:1) to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions. Determine each peak area by the automatic integration method: the area of the peak having the relative retention time of about 0.5 to quinapril obtained from the sample solution is not larger than 2 times the peak area of quinapril from the standard solution, and the area of the peak, having the relative retention time of about 2.0 from the sample solution is not larger than the peak area of quinapril from the standard solution.

Operating conditions—

Proceed as directed in the operating conditions in the Purity (2) under Quinapril Hydrochloride.

System suitability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of quinapril are not less than 5000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of quinapril is not more than 2.0%.

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 tablet of Quinapril Hydrochloride Tablets add 3V/5 ml of a mixture of phosphate buffer solution (pH 7.0) and acetonitrile for liquid chromatography (1:1), shake vigorously to disintegrate the tablet, shake again for 10 minutes, add a mixture of phosphate buffer solution (pH 7.0) and acetonitrile for liquid chromatography (1:1) to make exactly V mL so that each mL contains about 0.22 mg of quinapril hydrochloride (C₂₅H₂₄N₂O₂.HCl), and centrifuge. Pipet 15 mL of the supernatant liquid, add exactly 2 mL of the internal standard solution, add a mixture of phosphate buffer solution (pH 7.0) and acetonitrile for liquid chromatography (1:1) to make 50 mL, and use this solution as the sample solution. Then, proceed as directed in the Assay.

Amount (mg) of quinapril hydrochloride (C₂₅H₂₄N₂O₂.HCl) = \(M_S \times \frac{Q_T}{Q_B} \times \frac{V}{120} \)

\(M_S \): Amount (mg) of quinapril hydrochloride for assay taken, calculated on the anhydrous basis

Internal standard solution—A solution of butyl parahydroxybenzoate in a mixture of phosphate buffer solution (pH 7.0) and acetonitrile for liquid chromatography (1:1) (1 in 800).

Dissolution <6.10> When the test is performed at 75 revolu-
tions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 15 minutes of Quinapril Hydrochloride Tablets is not less than 80%.

Start the test with 1 tablet of Quinapril Hydrochloride Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add a mixture of phosphate buffer solution (pH 7.0) and acetonitrile for liquid chromatography (1:1) to make exactly V mL so that each mL contains about 1.2 μg of quinapril hydrochloride (C₂₅H₂₉N₂O₇.HCl), and use this solution as the sample solution. Separately, weigh accurately about 24 mg of quinapril hydrochloride for assay (separately, determine the water 2<.38> in the same manner as Quinapril Hydrochloride), and dissolve in a mixture of phosphate buffer solution (pH 7.0) and acetonitrile for liquid chromatography (1:1) to make exactly 200 mL. Pipet 2 mL of this solution, add a mixture of phosphate buffer solution (pH 7.0) and acetonitrile for liquid chromatography (1:1) to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, Aₜ and Aₛ, of quinapril in each solution.

Dissolution rate (%) with respect to the labeled amount of quinapril hydrochloride (C₂₅H₂₉N₂O₇.HCl)

\[= Mₛ \times Aₜ/ₐₕ \times V/ₐₕ \times 1/C \times 9/2 \]

Mₛ: Amount (mg) of quinapril hydrochloride for assay taken, calculated on the anhydrous basis
C: Labeled amount (mg) of quinapril hydrochloride (C₂₅H₂₉N₂O₇.HCl) in 1 tablet

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 214 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase: While keeping the temperature not below 25°C, adjust to pH 2.0 of 0.1 mol/L potassium dihydrogen phosphate TS with perchloric acid. To 1000 mL of this solution, add 1500 mL of acetonitrile for liquid chromatography.
Flow rate: Adjust so that the retention time of quinapril is about 7 minutes.
System suitability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of quinapril are not less than 2000 and not more than 2.0, respectively.
System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of quinapril is not more than 2.0%.

Assay To 20 Quinapril Hydrochloride Tablets add 300 mL of a mixture of phosphate buffer solution (pH 7.0) and acetonitrile for liquid chromatography (1:1), shake vigorously to disintegrate the tablets, shake again for 10 minutes, and add a mixture of phosphate buffer solution (pH 7.0) and acetonitrile for liquid chromatography (1:1) to make exactly 500 mL. Centrifuge this solution, pipet V mL of the supernatant liquid, equivalent to about 6.5 mg of quinapril hydrochloride (C₂₅H₂₉N₂O₇.HCl), add exactly 4 mL of the internal standard solution, add a mixture of phosphate buffer solution (pH 7.0) and acetonitrile for liquid chromatography (1:1) to make 100 mL, and use this solution as the sample solution. Separately, weigh accurately about 25 mg of quinapril hydrochloride for assay (separately, determine the water 2<.38> in the same manner as Quinapril Hydrochloride), and dissolve in a mixture of phosphate buffer solution (pH 7.0) and acetonitrile for liquid chromatography (1:1) to make exactly 100 mL. Pipet 25 mL of this solution, add exactly 4 mL of the internal standard solution, add a mixture of phosphate buffer solution (pH 7.0) and acetonitrile for liquid chromatography (1:1) to make 100 mL, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Calculate the ratios, Qₜ and Qₛ, of the peak area of quinapril to that of the internal standard.

Amount (mg) of quinapril hydrochloride (C₂₅H₂₉N₂O₇.HCl) in 1 tablet

\[= Mₛ \times Qₜ/Qₛ \times V/ₐₕ \times 25/ₐₕ \]

Mₛ: Amount (mg) of quinapril hydrochloride for assay taken, calculated on the anhydrous basis

Internal standard solution—A solution of butyl parahydroxybenzoate in a mixture of phosphate buffer solution (pH 7.0) and acetonitrile for liquid chromatography (1:1) (1 in 800).

Operating conditions—

Detector: An ultraviolet spectrophotometer (wavelength: 214 nm).
Column: A stainless steel column 6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase: While keeping the temperature not below 25°C, adjust to pH 2.0 of 0.2 mol/L potassium dihydrogen phosphate TS with perchloric acid. To 1000 mL of this solution, add 1000 mL of acetonitrile for liquid chromatography.
Flow rate: Adjust so that the retention time of quinapril is about 7 minutes.
System suitability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, quinapril and the internal standard are eluted in this order with the resolution between these peaks being not less than 6.
System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of quinapril to that of the internal standard is not more than 1.0%.

Containers and storageContainers—Tight containers.
Quinidine Sulfate Hydrate

キニジン硫酸塩水和物

\[
\text{C}_{20}\text{H}_{24}\text{N}_2\text{O}_5\cdot\text{H}_2\text{SO}_4\cdot\text{H}_2\text{O} : 782.94
\]

(95)-6'-Methoxycinchonan-9-ol hemisulfate monohydrate

[6591-63-5]

Quinidine Sulfate Hydrate, when dried, contains not less than 98.5% of quinidine sulfate ([C_{20}H_{24}N_2O_5]_2\cdot H_2SO_4: 746.91).

Description Quinidine Sulfate Hydrate occurs as white crystals. It is odorless, and has a very bitter taste. It is freely soluble in ethanol (95) and in boiling water, sparingly soluble in water, and practically insoluble in diethyl ether. It, previously dried, is freely soluble in chloroform.

It darkens gradually by light.

Optical rotation \([\alpha]_{D}^{20} + 275 \text{ to } 287^\circ\) (after drying, 0.5 g, 0.1 mol/L hydrochloric acid VS, 25 mL, 100 mm).

Identification (1) Dissolve 0.01 g of Quinidine Sulfate Hydrate in 10 mL of water and 2 to 3 drops of dilute sulfuric acid: a blue fluorescence is produced.

(2) To 5 mL of a solution of Quinidine Sulfate Hydrate (1 in 1000) add 1 to 2 drops of bromine TS, then add 1 mL of ammonia TS: a green color develops.

(3) To 5 mL of a solution of Quinidine Sulfate Hydrate (1 in 100) add 1 mL of silver nitrate TS, stir with a glass rod, and allow to stand for a short interval: a white precipitate is formed.

(4) Dissolve 0.4 g of Quinidine Sulfate Hydrate in 20 mL of water and 1 mL of dilute hydrochloric acid: the solution responds to Qualitative Tests \(<1.09\) for sulfate.

pH <2.5\(\alpha\) Dissolve 1.0 g of Quinidine Sulfate Hydrate in 100 mL of freshly boiled and cooled water: the pH of this solution is between 6.0 and 7.0.

Purity (1) Chloroform-ethanol-insoluble substances—Warm 2.0 g of Quinidine Sulfate Hydrate with 15 mL of a mixture of chloroform and ethanol (99.5) (2:1) at about 50°C for 10 minutes. After cooling, filter through a tared glass filter (G4) by gentle suction. Wash the residue with five 10-mL portions of a mixture of chloroform and ethanol (99.5) (2:1), and dry at 105°C for 1 hour: the mass of the residue is not more than 2.0 mg.

(2) Related substances—Dissolve 20 mg of Quinidine Sulfate Hydrate in the mobile phase to make exactly 100 mL, and use this solution as the sample solution. Separately, dissolve 25 mg of cinchonine in the mobile phase to make exactly 100 mL. Pipet 2 mL of this solution, add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 50 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area of the sample solution by the automatic integration method, and calculate their amounts by the area percentage method: the amount of dihydroquinidine sulfate is not more than 15.0%, and those of quinine sulfate and dihydroquinine sulfate are not more than 1.0%. The total area of the peaks other than the principal peak and the peaks mentioned above obtained from the sample solution is not larger than the peak area of cinchonine from the standard solution.

Operating conditions—

Column: A column about 4 mm in inside diameter and about 25 cm in length, packed with octadecylsilanized silica gel (10 μm in particle diameter).

Temperature: Room temperature.

Mobile phase: A mixture of water, acetonitrile, methanesulfonic acid TS and a solution of diethylamine (1 in 10) (43:5:1:1).

Flow rate: Adjust so that the retention time of quinine is about 10 minutes.

Selection of column: Dissolve 0.01 g each of Quinidine Sulfate Hydrate and quinine sulfate hydrate in 5 mL of methanol, and add the mobile phase to make 50 mL. Proceed with 50 μL of this solution under the above operating conditions, and calculate the resolution. Use a column giving elution of quinine, quinine, dihydroquinidine and dihydroquinine in this order with a resolution between quinidine and quinine and that between quinine and dihydroquinidine being not less than 1.2, respectively.

Detection sensitivity: Adjust the detection sensitivity so that the peak height of cinchonine obtained with 50 μL of the standard solution is between 5 mm and 10 mm.

Time span of measurement: About 2 times as long as the retention time of quinine, beginning after the solvent peak.

(3) Readily carbonizable substances \(<1.15\)—Take 0.20 g of Quinidine Sulfate Hydrate and perform the test: the solution has no more color than Matching Fluid M.

Loss on drying \(<2.4\%\) Not more than 5.0% (1 g, 130°C, 3 hours).

Residue on ignition \(<2.4\%\) Not more than 0.1% (1 g).

Assay Weigh accurately about 0.5 g of Quinidine Sulfate Hydrate, previously dried, dissolve in 20 mL of acetic acid (100), and add 80 mL of acetic anhydride, and titrate \(<2.5\%\) with 0.1 mol/L perchloric acid VS until the color of the solution changes from purple through blue to blue-green (indicator: 3 drops of crystal violet TS). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 24.90 mg of (C_{20}H_{24}N_2O_5)_2\cdot H_2SO_4

Containers and storage Containers—Well-closed containers.

Storage—Light-resistant.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
Quinine Ethyl Carbonate

キニーネエチル炭酸エステル

\[
\text{C}_{23}\text{H}_{23}\text{N}_2\text{O}_4 : 396.48}
\]

Ethyl (8S,9R)-6′-methoxyinchonan-9-yl carbonate [83-75-0]

Quinine Ethyl Carbonate contains not less than 98.5% of quinine ethyl carbonate (\(\text{C}_{23}\text{H}_{23}\text{N}_2\text{O}_4\)), calculated on the anhydrous basis.

Description Quinine Ethyl Carbonate occurs as white crystals. It is odorless, and tasteless at first but slowly develops a bitter taste.

It is very soluble in methanol, freely soluble in ethanol (95) and in ethanol (99.5), soluble in diethyl ether, and practically insoluble in water.

It dissolves in dilute hydrochloric acid.

Identification (1) Determine the absorption spectrum of a solution of Quinine Ethyl Carbonate in methanol (1 in 20,000) as directed under Ultraviolet-visible Spectrophotometry (2.24), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Quinine Ethyl Carbonate as directed in the potassium bromide disk method under Infrared Spectrophotometry (2.25), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation \(<2.49\> [\alpha]_D^20: -42.2 \text{ } \text{ to } -44.0^\circ \) (0.5 g calculated on the anhydrous basis, methanol, 50 mL, 100 mm).

Melting point \(<2.60\> 91 \text{ } \text{ to } 95^\circ\text{C}\)

Purity (1) Chloride—Dissolve 0.3 g of Quinine Ethyl Carbonate in 10 mL of dilute nitric acid and 20 mL of water. To 5 mL of the solution add 2 to 3 drops of silver nitrate TS: no color develops.

(2) Sulfate \(<1.14\>—Dissolve 1.0 g of Quinine Ethyl Carbonate in 5 mL of dilute hydrochloric acid and water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution with 1.0 mL of 0.005 mol/L sulfuric acid VS, 5 mL of dilute hydrochloric acid and water to make 50 mL (not more than 0.048%).

(3) Heavy metals \(<1.07\>—Proceed with 2.0 g of Quinine Ethyl Carbonate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(4) Related substances—Dissolve 20 mg of Quinine Ethyl Carbonate in the mobile phase to make exactly 100 mL, and use this solution as the sample solution. Separately, dissolve 25 mg of quinine sulfate hydrate in the mobile phase to make exactly 100 mL. Pipet 2 mL of this solution, add mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 \(\mu\)L each of the sample solution and standard solution as directed under Liquid Chromatography \(<2.07\>\) according to the following conditions. Determine each peak area of these solutions by the automatic integration method, and calculate the amount of a main impurity in the sample solution which appears at about 1.2 times of the retention time of quinine ethyl carbonate by the area percentage method: it is not more than 10.0%. The total area of the peaks other than the principal peak and the peak mentioned above obtained from the sample solution is not larger than the peak area of quinine from the standard solution.

Operating conditions—

Column: A stainless steel column about 4 mm in inside diameter and about 15 cm in length, packed with octadecyl-silanized silica gel for liquid chromatography (5 \(\mu\)m in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: Dissolve 1.2 g of sodium 1-octanesulfonate in 1000 mL of a mixture of water and methanol (1:1), and adjust to pH 3.5 with diluted phosphoric acid (1 in 20).

Flow rate: Adjust so that the retention time of the peak of quinine ethyl carbonate is about 20 minutes.

Selection of column: Dissolve 5 mg each of Quinine Ethyl Carbonate and quinine sulfate hydrate in the mobile phase to make 50 mL. Proceed with 10 \(\mu\)L of this solution under the above operating conditions, and calculate the resolution. Use a column giving elution of quinine, dihydroquinine, quinine ethyl carbonate and the main impurity of quinine ethyl carbonate in this order with the resolution between the peaks of quinine and dihydroquinine being not less than 2.7, and between the peaks of quinine and quinine ethyl carbonate being not less than 5.

Detection sensitivity: Adjust the detection sensitivity so that the peak height of quinine obtained from 10 \(\mu\)L of the standard solution is between 5 mm and 10 mm.

Time span of measurement: About 2 times as long as the retention time of quinine ethyl carbonate.

Water \(<2.48\> Not more than 3.0% (0.5 g, volumetric titration, direct titration).

Residue on ignition \(<2.44\> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.3 g of Quinine Ethyl Carbonate, dissolve in 60 mL of acetic acid (100), add 2 mL of acetic anhydride, and titrate \(<2.50\>\) with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 19.82 mg of \(\text{C}_{23}\text{H}_{23}\text{N}_2\text{O}_4\)

Containers and storage Containers—Well-closed containers.
Quinine Hydrochloride Hydrate

キー: ニケ酸塩水和物

\[
\text{C}_{20}H_{22}N_2O_2 \cdot HCl \cdot 2H_2O: 396.91
\]

(8S,9R)-6'-Methoxycinchonan-9-ol monohydrochloride dihydrate

[6119-47-7]

Quinine Hydrochloride Hydrate, when dried, contains not less than 98.5% of quinine hydrochloride (C₂₀H₂₂N₂O₂·HCl: 360.88).

Description Quinine Hydrochloride Hydrate occurs as white crystals. It is odorless, and has a very bitter taste.

It is very soluble in ethanol (99.5), freely soluble in acetic acid (100), in acetic anhydride and in ethanol (95), soluble in water, and practically insoluble in diethyl ether.

It, previously dried, is freely soluble in chloroform.

It gradually changes to brown by light.

Identification (1) A solution of Quinine Hydrochloride Hydrate (1 in 50) shows no fluorescence. To 1 mL of the solution add 100 mL of water and 1 drop of dilute sulfuric acid: a blue fluorescence is produced.

(2) To 5 mL of a solution of Quinine Hydrochloride Hydrate (1 in 1000) add 1 to 2 drops of bromine TS and 1 mL of ammonia TS: a green color develops.

(3) To 5 mL of a solution of Quinine Hydrochloride Hydrate (1 in 50) add 1 mL of dilute nitric acid and 1 mL of silver nitrate TS: a white precipitate is produced. Collect the precipitate, and add an excess of ammonia TS: it dissolves.

Optical rotation <2.49° [α]₂₀: -245° to -255° (after drying, 0.5 g, 0.1 mol/L hydrochloric acid VS, 25 mL, 100 mm).

pH <2.54° Dissolve 1.0 g of Quinine Hydrochloride Hydrate in 100 mL of freshly boiled and cooled water: the pH of this solution is between 6.0 and 7.0.

Purity (1) Sulfate <1.14° Perform the test with 1.0 g of Quinine Hydrochloride Hydrate. Prepare the control solution with 1.0 mL of 0.005 mol/L sulfuric acid VS (not more than 0.048%).

(2) Barium—Dissolve 0.5 g of Quinine hydrochloride Hydrate in 10 mL of water by warming, and add 1 mL of dilute sulfuric acid: no turbidity is produced.

(3) Chloroform-ethanol-insoluble substances—Warm 2.0 g of Quinine Hydrochloride Hydrate with 15 mL of a mixture of chloroform and ethanol (99.5) (2:1) at 50°C for 10 minutes. After cooling, filter through a tared glass filter (G4) by gentle suction. Wash the residue with five 10-mL portions of a mixture of chloroform and ethanol (99.5) (2:1), dry at 105°C for 1 hour, and weigh: the mass of the residue so obtained is not more than 2.0 mg.

(4) Related substances—Dissolve 20 mg of Quinine Hydrochloride Hydrate in the mobile phase to make exactly 100 mL, and use this solution as the sample solution. Separately, dissolve 25 mg of cinchonidine in the mobile phase to make exactly 100 mL. Pipet 2 mL of this solution, add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 50 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area of the sample solution by the automatic integration method, and calculate the amount of dihydroquinine hydrochloride by the area percentage method: it is not more than 10.0%. The total area of the peaks other than the main peak and the peaks mentioned above is not larger than the peak area of cinchonidine from the standard solution.

Operating conditions—

Column: A stainless steel column about 4 mm in inside diameter and about 25 cm in length, packed with octadecylsilanized silica gel (10 μm in particle diameter).

Column temperature: Room temperature.

Mobile phase: A mixture of water, acetonitrile, methanesulfonic acid TS and a solution of diethylamine (1 in 10) (43:5:1:1).

Flow rate: Adjust so that the retention time of quinine is about 10 minutes.

Selection of column: Dissolve 10 mg each of Quinine Hydrochloride Hydrate and quinidine sulfate hydrate in 5 mL of methanol, and add the mobile phase to make 50 mL. Proceed with 50 μL of this solution under the above operating conditions. Use a column giving elution of quinidine, quinine, dihydroquinidine and dihydroquinine in this order with the resolution between quinidine and quinine, and that between quinine and dihydroquinidine being not less than 1.2, respectively.

Detection sensitivity: Adjust the detection sensitivity so that the peak height of cinchonidine from 50 μL of the standard solution is between 5 mm and 10 mm.

Time span of measurement: About 2 times as long as the retention time of quinine, beginning after the solvent peak.

(5) Readily carbonizable substances <1.15°—Perform the test with 0.25 g of Quinine Hydrochloride Hydrate. The solution has no more color than Matching Fluid M.

Loss on drying <2.41° Not more than 10.0% (1 g, 105°C, 5 hours).

Residue on ignition <2.41° Not more than 0.1% (1 g).

Assay Weigh accurately about 0.4 g of Quinine Hydrochloride Hydrate, previously dried, dissolve in 100 mL of a mixture of acetic anhydride and acetic acid (100) (7:3) by warming, cool, and titrate <2.50° with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 18.04 mg of C₂₀H₂₂N₂O₂·HCl

Containers and storage Containers—Well-closed containers.

Storage—Light-resistant.
Quinine Sulfate Hydrate

キニーネ硫酸塩水和物

\[
\text{C}_{20}\text{H}_{24}\text{N}_2\text{O}_8\cdot\text{H}_2\text{SO}_4\cdot\text{2H}_2\text{O}: 782.94
\]

Quinine Sulfate Hydrate contains not less than 98.5\% of quinine sulfate \([\text{C}_{20}\text{H}_{24}\text{N}_2\text{O}_8\cdot\text{H}_2\text{SO}_4\cdot\text{2H}_2\text{O}: 746.91]\), calculated on the dried basis.

Description Quinine Sulfate Hydrate occurs as white, crystals or crystalline powder. It is odorless, and has a very bitter taste.

It is freely soluble in acetic acid (100), slightly soluble in water, in ethanol (95), in ethanol (99.5) and in chloroform, and practically insoluble in diethyl ether.

It gradually changes to brown by light.

Identification (1) Determine the absorption spectrum of a solution of Quinine Sulfate Hydrate (1 in 20,000) as directed under Ultraviolet-visible Spectrophotometry\(<2.24>\), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Quinine Sulfate Hydrate, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry\(<2.25>\), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) To 0.4 g of Quinine Sulfate Hydrate add 20 mL of water and 1 mL of dilute hydrochloric acid: the solution responds to Qualitative Tests\(<1.09>\) for sulfate.

Optical rotation \(<2.49>\) \([\alpha]_D^220: -235 \pm -245\)\(^\circ\) (after drying, 0.5 g, 0.1 mol/L hydrochloric acid VS, 25 mL, 100 mm).

pH \(<2.54>\) Shake 2.0 g of Quinine Sulfate Hydrate in 20 mL of freshly boiled and cooled water, and filter: the pH of this filtrate is between 5.5 and 7.0.

Purity (1) Heavy metals \(<1.07>\) - Proceed with 2.0 g of Quinine Sulfate Hydrate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Chloroform-ethanol-insoluble substances - Warm 2.0 g of Quinine Sulfate Hydrate with 15 mL of a mixture of chloroform and ethanol (99.5) (2:1) at 50°C for 10 minutes. After cooling, filter through a tared glass filter (G4) by gentle suction. Wash the residue with five 10-mL portions of a mixture of chloroform and ethanol (99.5) (2:1), dry at 105°C for 1 hour, and weigh: the mass of the residue is not more than 2.0 mg.

(3) Related substances - Dissolve 20 mg of Quinine Sulfate Hydrate in the mobile phase to make exactly 100 mL, and use this solution as the sample solution. Separately, dissolve 25 mg of cinchonidine in the mobile phase to make exactly 100 mL. Pipet 2 mL of this solution, add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 50 \(\mu\)L each of the sample solution and standard solution as directed under Liquid Chromatography\(<2.01>\) according to the following conditions. Determine each peak area from the sample solution by the automatic integration method, and calculate the amount of dihydroquinine sulfate by the area percentage method: it is not more than 5\%. The total area of the peaks other than the main peak and the peaks mentioned above is not larger than the peak area of cinchonidine from the standard solution.

Operating conditions -

Column: A column about 4 mm in inside diameter and about 25 cm in length, packed with octadecylsilanized silica gel (10 \(\mu\)m in particle diameter).

Temperature: Room temperature.

Mobile phase: A mixture of water, acetonitrile, methanol, and add the mobile phase to make 50 mL. Proceed with 50 \(\mu\)L of this solution under the above operating conditions, and calculate the resolution. Use a column giving elution of quinidine, quinine, dihydroquinidine and dihydroquinine in this order with the resolution between quinidine and quinine and that between quinine and dihydroquinine being not less than 1.2, respectively.

Detection sensitivity: Adjust the detection sensitivity so that the peak height of cinchonidine obtained from 50 \(\mu\)L of the standard solution is between 5 mm and 10 mm.

Time span of measurement: About 2 times as long as the retention time of quinine, beginning after the solvent peak.

Loss on drying \(<2.41>\) 3.0\% - 5.0\% (1 g, 105°C, 3 hours).

Residue on ignition \(<2.44>\) Not more than 0.1\% (1 g).

Assay Weigh accurately about 0.5 g of Quinine Sulfate Hydrate, dissolve in 20 mL of acetic acid (100), add 80 mL of acetic anhydride, and titrate \(<2.50>\) with 0.1 mol/L perchloric acid VS until the color of the solution changes from purple through blue to blue-green (indicator: 2 drops of crystal violet TS). Perform a blank determination in the same manner.

Each mL of 0.1 mol/L perchloric acid VS = 24.90 mg of \((\text{C}_{20}\text{H}_{24}\text{N}_2\text{O}_8\cdot\text{H}_2\text{SO}_4\cdot\text{2H}_2\text{O})\).
Rabeprazole Sodium

ラベプラゾールナトリウム

\[
\text{C}_18\text{H}_{20}\text{N}_3\text{NaO}_5\text{S}: 381.42 \\
\text{Monosodium (RS)-2-[[4-(3-methoxypropoxy)-3-methylpyridin-2-yl]methyl]sulfanyl}-1\text{H}-\text{benzimidazolide}
\]

[Rabeprazole Sodium occurs as a white to pale yellow-white powder.]

- It is very soluble in water, and freely soluble in ethanol (99.5).
- It dissolves in 0.01 mol/L sodium hydroxide TS.
- It is hygroscopic.

A solution of Rabeprazole Sodium (1 in 20) shows no optical rotation.

Rabeprazole Sodium shows crystal polymorphism.

Identification (1) Determine the absorption spectrum of a solution of Rabeprazole Sodium in 0.01 mol/L sodium hydroxide TS (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry (2.24), and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Rabeprazole Sodium RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

System suitability—
- Test for required detectability: Pipet 5 mL of the standard solution, and add a mixture of methanol and 0.01 mol/L sodium hydroxide TS (3:2) to make exactly 100 mL. Confirm that the peak area of rabeprazole obtained with 10 \(\mu \)L of this solution is equivalent to 3.5 to 6.5\% of that with 10 \(\mu \)L of the standard solution.

Sample solution—Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 3 times as long as the retention time of rabeprazole, beginning after the solvent peak.

Assay—
- Take the sample to be tested while avoiding moisture absorption.
- Weigh accurately about 0.1 g each of Rabeprazole Sodium and Rabeprazole Sodium RS (separately determine the loss on drying under the same conditions as Rabeprazole Sodium), dissolve each in a mixture of methanol and 0.01 mol/L sodium hydroxide TS (3:2) to make exactly 25 mL. Pipet 5 mL each of these solutions, add exactly 10 mL of the internal standard solution to each, then add a mixture of methanol and 0.01 mol/L sodium hydroxide TS (3:2) to make 100 mL, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with 10 \(\mu \)L each of the sample solution and standard solution as directed under Liquid Chromatography (2.01) according to the following conditions, and calculate the ratios, \(Q_r \) and \(Q_s \), of the peak area of rabeprazole to that of the internal standard.

\[
\text{Amount (mg) of sodium rabeprazole (C}_{18}\text{H}_{20}\text{N}_3\text{NaO}_5\text{S}) = M_s \times Q_r/Q_s
\]

\(M_s \): Amount (mg) of Rabeprazole Sodium RS taken, calculated on the dried basis

Internal standard solution— A solution of 1-amino-2-methyl-naphthalene in a mixture of methanol and 0.01 mol/L sodium hydroxide TS (3:2) (1 in 250).

Operating conditions—
- Detector: An ultraviolet absorption photometer (wavelength: 290 nm).
- Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 \(\mu \)m in particle diameter).
- Column temperature: A constant temperature of about 30°C.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
Determine the infrared absorption spectrum of Ranitidine Hydrochloride (1 in 50) is about 5 minutes.

System suitability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, rabeprazole and the internal standard are eluted in this order with the resolution between these peaks being not less than 4, and the symmetry factor of the peak of rabeprazole is not more than 2.0.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of rabeprazole to that of the internal standard is not more than 1.0%.

Containers and storage—Containers—Tight containers.

Freeze-dried Inactivated Tissue Culture Rabies Vaccine

Freeze-dried Inactivated Tissue Culture Rabies Vaccine is a dried preparation containing inactivated rabies virus.

It conforms to the requirements of Freeze-dried Inactivated Tissue Culture Rabies Vaccine in the Minimum Requirements of Biologic Products.

Description—Freeze-dried Inactivated Tissue Culture Rabies Vaccine becomes a colorless or light yellow-red clear liquid on addition of solvent.

Ranitidine Hydrochloride

\[
\text{C}_{13}\text{H}_{22}\text{N}_{2}\text{O}_{5}\text{S.HCl: 350.86 (1E)}-N-2\{\{\text{Dimethylamino}}\text{methyl}}\text{furan-2-yl}\text{methyl}\text{ulfanyl} \text{ethyl}\text{-N'-methyl-2-nitroethene-1,1-diamine monohydrochloride [66357-59-3]}
\]

Ranitidine Hydrochloride, when dried, contains not less than 97.5% and not more than 102.0% of ranitidine hydrochloride \((\text{C}_{13}\text{H}_{22}\text{N}_{2}\text{O}_{5}\text{S.HCl})\).

Description—Ranitidine Hydrochloride occurs as a white to pale yellow, crystalline or fine granular powder.

It is very soluble in water, freely soluble in methanol, and slightly soluble in ethanol (99.5).

It is hygroscopic.

It is gradually colored by light.

Melting point: about 140°C (with decomposition).

Identification—(1) Determine the absorption spectrum of a solution of Ranitidine Hydrochloride (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry \(<2.2\rangle\), and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Ranitidine Hydrochloride RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Ranitidine Hydrochloride as directed in the paste method under Infrared Spectrophotometry \(<2.25\rangle\), and compare the spectrum with the Reference Spectrum or the spectrum of previously dried Ranitidine Hydrochloride RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) A solution of Ranitidine Hydrochloride (1 in 50) responds to Qualitative Tests \(<1.09\rangle\) for chloride.

\[\text{pH} < 2.54\] The pH of a solution obtained by dissolving 1.0 g of Ranitidine Hydrochloride in 100 mL of water is between 4.5 and 6.0.

Purity—(1) Clarity and color of solution—A solution of Ranitidine Hydrochloride (1 in 10) is clear and pale yellow to light yellow.

(2) Heavy metals \(<1.07\rangle\)—Proceed with 2.0 g of Ranitidine Hydrochloride according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(3) Arsenic \(<1.1D\rangle\)—Prepare the test solution with 1.0 g of Ranitidine Hydrochloride according to Method 4, and perform the test (not more than 2 ppm).

(4) Related substances—Conduct this procedure without exposure to light, using light-resistant vessels. Dissolve 0.22 g of Ranitidine Hydrochloride in methanol to make exactly 10 mL, and use this solution as the sample solution. Pipet 0.5 mL of the sample solution, add methanol to make exactly 100 mL, and use this solution as the standard solution (1). Pipet 6 mL, 4 mL, 2 mL and 1 mL of the standard solution (1), add to each methanol to make exactly 10 mL, and use these solutions as the standard solution (2), the standard solution (3), the standard solution (4) and the standard solution (5), respectively. Separately, dissolve 12.7 mg of ranitidine diaminemethane in methanol to make exactly 10 mL, and use this solution as the standard solution (6). Perform the test with these solutions as directed under Thin-layer Chromatography \(<2.03\rangle\), Spot 10 μL each of the sample solution and standard solutions (1), (2), (3), (4) and (5) on a plate of silica gel for thin-layer chromatography. Separately, spot 10 μL of the sample solution on the plate, then spot 10 μL of the standard solution (6) on the spotted position of the sample solution. Immediately develop the plate with a mixture of ethyl acetate, 2-propanol, ammonia solution (28) and water (25:15:5:1) to a distance of about 15 cm, and air-dry the plate. Allow the plate to stand in iodine vapor until the spot from the standard solution (5) appears: the spot obtained from the standard solution (6) is completely separated from the principal spot from the sample solution. The spot having Rf value of about 0.7 from the sample solution is not more intense than the spot from the standard solution (1), the spots other than the principal spot and the spot of Rf value of about 0.7 from the sample solution are not more intense than the spot from the standard solution (2), and the total amount of these related substances, calculated by comparison with the spots from the standard solutions (1), (2), (3), (4) and (5), is not more than 1.0%.

Loss on drying \(<2.4\rangle\) Not more than 0.75% (1 g, in vacuum, 60°C, 3 hours).

Residue on ignition \(<2.4\rangle\) Not more than 0.1% (1 g).
Assay

Weigh accurately about 20 mg of Ranitidine Hydrochloride and Ranitidine Hydrochloride RS, previously dried, dissolve each in the mobile phase to make exactly 200 mL, and use these solutions as the sample solution and standard solution. Perform the test with exactly 10 \(\mu \)L of each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, \(A_T \) and \(A_S \), of ranitidine in each solution.

\[
\text{Amount (mg) of ranitidine hydrochloride (C\textsubscript{12}H\textsubscript{18}ClN\textsubscript{6}O\textsubscript{5}H\textsubscript{2}ClN)} = M_M \times A_T/A_S
\]

Containers and storage—Containers—Tight containers.

Storage—Light-resistant.

Rebamipide

レバミピド

C\textsubscript{15}H\textsubscript{17}ClN\textsubscript{2}O\textsubscript{2}: 370.79
(2RS)-2-(4-Chlorobenzoylamino)-3-(2-oxo-1,2-dihydroquinolin-4-yl)propanoic acid [90098-04-7]

Rebamipide, when dried, contains not less than 99.0% and not more than 101.0% of rebamipide (C\textsubscript{15}H\textsubscript{17}ClN\textsubscript{2}O\textsubscript{2}).

Description—Rebamipide occurs as a white crystalline powder. It has a bitter taste.

It is soluble in \(N, N \)-dimethylformamide, very slightly soluble in methanol and in ethanol (99.5), and practically insoluble in water.

A solution of Rebamipide in \(N, N \)-dimethylformamide (1 in 20) shows no optical rotation.

Melting point: about 291°C (with decomposition).

Identification (1)

Determine the absorption spectrum of a solution of Rebamipide in methanol (7 in 1,000,000) as directed under Ultraviolet-visible Spectrophotometry <2.2>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

Purity (1)

Chloride <1.07>—Dissolve 0.5 g of Rebamipide in 40 mL of \(N, N \)-dimethylformamide, and add 6 mL of dilute nitric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution as follows: To 0.40 mL of 0.01 mol/L hydrochloric acid VS add 40 mL of \(N, N \)-dimethylformamide, 6 mL of dilute nitric acid and water to make 50 mL (not more than 0.028%).

System suitability—

System performance: Dissolve 20 mg of Ranitidine Hydrochloride and 5 mg of benzalpahthalide in 200 mL of the mobile phase. When the procedure is run with 10 \(\mu \)L of this solution under the above operating conditions, benzalpahthalide and ranitidine are eluted in this order with the resolution between these peaks being not less than 2.0.

System repeatability: When the test is repeated 6 times with 10 \(\mu \)L of the standard solution under the above operating conditions, the relative standard deviation of the peak area of ranitidine is not more than 1.0%.

Containers and storage—Containers—Tight containers.

Storage—Light-resistant.
System performance: To 1 mL of the sample solution add a mixture of water, 0.05 mol/L phosphate buffer solution (pH 6.0) and methanol (7:7:6) to make 100 mL. When the procedure is run with 10 µL of this solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of rebamipide are not less than 11,000 and not more than 1.2, respectively.

System repeatability: When the test is repeated 6 times with 10 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of rebamipide is not more than 2.0%.

(4) Related substances—Perform the test with exactly 10 g of the sample solution and standard solution obtained in (3) as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area of both solutions by the automatic integration method: each area of the peaks of rebamipide o-chloro isomer and debenzyolated isomer, having the relative retention times of about 0.5 and about 0.7, respectively, to rebamipide obtained from the sample solution, is not larger than 3/8 times the peak area of rebamipide from the standard solution, the area of each peak other than rebamipide and the peak mentioned above from the sample solution is not larger than 1/4 times the peak area of rebamipide from the standard solution, and the total area of the peaks other than rebamipide from the sample solution is not larger than the peak area of rebamipide from the standard solution. For the peak area of rebamipide o-chloro isomer, multiply the correction factor, 1.4.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 232 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadeclisilanilized silica gel for liquid chromatography (5 µm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase: Dissolve 2.44 g of sodium 1-decanesulphonate in 1000 mL of water and to this solution add 1000 mL of methanol and 10 mL of phosphoric acid.
Flow rate: Adjust so that the retention time of rebamipide is about 12 minutes.
Time span of measurement: About 3 times as long as the retention time of rebamipide, beginning after the solvent peak.
System suitability—
Test for required detectability: Pipet 5 mL of the standard solution, and add a mixture of water, 0.05 mol/L phosphate buffer solution (pH 6.0) and methanol (7:7:6) to make exactly 50 mL. Confirm that the peak area of rebamipide obtained with 10 µL of this solution is equivalent to 7 to 13% of that with 10 µL of the standard solution.
System performance: Dissolve 20 mg of 4-chlorobenzoate in methanol to make 50 mL. To 5 mL of this solution add 5 mL of the sample solution and a mixture of water, 0.05 mol/L phosphate buffer solution (pH 6.0) and methanol (7:7:6) to make 50 mL. When the procedure is run with 10 µL of this solution under the above operating conditions, rebamipide and 4-chlorobenzoate are eluted in this order with the resolution between these peaks being not less than 8.
System repeatability: When the test is repeated 6 times with 10 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of rebamipide is not more than 2.0%.

Loss on drying <2.41> Not more than 3.0% (1 g, 105°C, 2 hours).

Official Monographs / Rebamipide Tablets

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.6 g of Rebamipide, previously dried, dissolve in 60 mL of N,N-dimethylformamide, and titrate <2.25> with 0.1 mol/L potassium hydroxide VS until the color of the solution changes from pale yellow to colorless (indicator: 2 drops of phenol red TS). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L potassium hydroxide VS = 37.08 mg of C₁₀H₁₄ClN₂O₄

Containers and storage Containers—Well-closed containers.

Storage—Light-resistant.

Rebamipide Tablets

Rebamipide Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of rebamipide (C₁₀H₁₄ClN₂O₄: 370.79).

Method of preparation Prepare as directed under Tablets, with Rebamipide.

Identification To a quantity of powdered Rebamipide Tablets, equivalent to 30 mg of Rebamipide, add 5 mL of a mixture of methanol and ammonia solution (28) (9:1), shake for 10 minutes, centrifuge, and use the supernatant liquid as the sample solution. Separately, dissolve 30 mg of rebamipide for assay in 5 mL of a mixture of methanol and ammonia solution (28) (9:1), and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.05>. Set 5 µL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate, methanol and formic acid (75:25:2) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the principal spot obtained from the sample solution has the same Rf value as the spot from the standard solution.

Uniformity of dosage units <6.02> Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement.

To 1 tablet of Rebamipide Tablets add 10 mL of water, shake well for 10 minutes, add exactly 10 mL of the internal standard solution, add 10 mL of N,N-dimethylformamide, shake well for 5 minutes, and add N,N-dimethylformamide to make 50 mL. Centrifuge this solution, pipet 1 mL of the supernatant liquid, equivalent to 3 mg of rebamipide (C₁₀H₁₄ClN₂O₄), and add 20 mL of N,N-dimethylformamide and water to make 50 mL. Filter this solution through a membrane filter with a pore size not exceeding 0.5 µm, discard the first 1 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 0.1 g of rebamipide for assay, previously dried at 105°C for 2 hours, dissolve in N,N-dimethylformamide, and add exactly 10 mL of the internal standard solution and N,N-dimethylformamide to make 50 mL. Pipet 1.5 mL of this solution, add 20 mL of N,N-dimethylformamide, add water to make 50 mL, and use this solution as the standard solution. Proceed as directed in the Assay.
Reserpine / Official Monographs

Reserpine

Amount (mg) of rebamipide (C₂₉H₂₃ClN₂O₃)

\[M_S = M_S \times Q_S/Q_S \times V/100 \]

\[M_S : \text{Amount (mg) of rebamipide for assay taken} \]

Internal standard solution—A solution of acetic anilide in N,N-dimethylformamide (1 in 150).

Dissolution C6.1D

When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of diluted hydrochloric acid buffer solution (pH 1.2) (1 in 4), as the dissolution medium, the dissolution rate in 60 minutes of Rebamipide Tablets is not less than 75%.

Start the test with 1 tablet of Rebamipide Tablets, withdraw not less than 20 mL of the medium at the specified time after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 \(\mu m \). Discard not less than 10 mL of the first filtrate, pipet \(V \) mL of the subsequent filtrate, add the dissolution medium to make exactly \(V' \) mL so that each mL contains about 22 \(\mu g \) of rebamipide (C₂₉H₂₃ClN₂O₃), and use this solution as the sample solution. Separately, weigh accurately about 50 mg of rebamipide for assay, previously dried at 105°C for 2 hours, and dissolve in N,N-dimethylformamide to make exactly 55 mL. Pipet 2 mL of this solution, add the dissolution medium to make exactly 200 mL, and use this solution as the standard solution. Perform the test with the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry C2.2A, using the dissolution medium as the blank, and determine the absorbances, \(A_1 \) and \(A_2 \), at 326 nm.

Dissolution rate (%) with respect to the labeled amount of rebamipide (C₂₉H₂₃ClN₂O₃)

\[M_S = M_S \times A_1/A_2 \times V'/V \times 1/C \times 36 \]

\[M_S : \text{Amount (mg) of rebamipide for assay taken} \]

C: Labeled amount (mg) of rebamipide (C₂₉H₂₃ClN₂O₃) in 1 tablet

Assay

To 10 Rebamipide Tablets add exactly \(V/V \) mL of the internal standard solution and 50 mL of N,N-dimethylformamide, and disintegrate the tablets by sonicating. Shake this solution for 5 minutes, add N,N-dimethylformamide to make \(V' \) mL so that each mL contains about 10 mg of rebamipide (C₂₉H₂₃ClN₂O₃). Centrifuge this solution, and to 5 mL of the supernatant liquid add N,N-dimethylformamide to make 50 mL. To 2 mL of this solution add 20 mL of N,N-dimethylformamide and water to make 50 mL. Filter, if necessary, through a membrane filter with a pore size not exceeding 0.5 \(\mu m \), and use the filtrate as the sample solution. Separately, weigh accurately about 0.1 g of rebamipide for assay, previously dried at 105°C for 2 hours, dissolve in N,N-dimethylformamide, and add exactly 2 mL of the internal standard solution and N,N-dimethylformamide to make 100 mL. To 2 mL of this solution, add 20 mL of N,N-dimethylformamide and water to make 50 mL, and use this solution as the standard solution. Perform the test with 20 \(\mu L \) each of the sample solution and standard solution as directed under Liquid Chromatography C2.01 according to the following conditions, and calculate the ratios, \(Q_T \) and \(Q_S \), of the peak area of rebamipide to that of the internal standard.

Amount (mg) of rebamipide (C₂₉H₂₃ClN₂O₃)

\[M_S = M_S \times Q_T/Q_S \times V/100 \]

\[M_S : \text{Amount (mg) of rebamipide for assay taken} \]

Internal standard solution—A solution of acetic anilide in N,N-dimethylformamide (1 in 20).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 254 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 \(\mu m \) in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: To 300 mL of phosphate buffer solution (pH 6.2) add 750 mL of water. To 830 mL of this solution add 170 mL of acetonitrile.

Flow rate: Adjust so that the retention time of rebamipide is about 20 minutes.

System suitability—

System performance: When the procedure is run with 20 \(\mu L \) of the standard solution under the above operating conditions, the internal standard and rebamipide are eluted in this order with the resolution between these peaks being not less than 8.

System repeatability: When the test is repeated 6 times with 20 \(\mu L \) of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of rebamipide to that of the internal standard is not more than 1.0%.

Containers and storage

Containers—Well-closed containers.

Reserpine

レセルピン

![Reserpine structure](image)

C₃₁H₄₀N₂O₄: 608.68

Reserpine, when dried, contains not less than 96.0% of reserpine (C₃₁H₄₀N₂O₄).

Description

Reserpine occurs as white to light yellow, crystals or crystalline powder.

It is freely soluble in acetic acid (100) and in chloroform, slightly soluble in acetonitrile, very slightly soluble in ethanol (95), and practically insoluble in water and in diethyl ether.

It is affected by light.

Identification

1) To 1 mg of Reserpine add 1 mL of vanillin-hydrochloric acid TS, and warm: a vivid red-purple color develops.

2) Determine the absorption spectrum of a solution of Reserpine in acetonitrile (1 in 50,000) as directed under Ultraviolet-visible Spectrophotometry C2.2A, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Reserpine RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.
(3) Determine the infrared absorption spectrum of Reserpine, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry \(<2.25\>\), and compare the spectrum with the Reference Spectrum or the spectrum of previously dried Reserpine RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation \(<2.49\>\) \([\alpha]_{D}^{20} = -114 \pm 127^\circ\) (after drying, 0.25 g, chloroform, 25 mL, 100 mm).

Purity Related substances—Conduct this procedure without exposure to light, using light-resistant vessels. Dissolve 50 mg of Reserpine in 50 mL of acetonitrile, and use this solution as the sample solution. Pipet 3 mL of the sample solution, add acetonitrile to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 \(\mu\)L each of the sample solution and standard solution as directed under Liquid Chromatography \(<2.01\>\) according to the following conditions. Determine each peak area from these solutions by the automatic integration method: the total area of the peaks other than reserpine obtained from the sample solution is not larger than the peak area of reserpine from the standard solution.

Operating conditions—
- Detector: An ultraviolet absorption photometer (wavelength: 268 nm).
- Column: A stainless steel column 4 mm in inside diameter and 25 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 \(\mu\)m in particle diameter).
- Column temperature: A constant temperature of about 40°C.
- Mobile phase: A mixture of 0.05 mol/L potassium dihydrogen phosphate (pH 3.0) and acetonitrile (11:9).
- Flow rate: Adjust so that the retention time of reserpine is about 10 minutes.

System suitability—
- System performance: When the procedure is run with 20 \(\mu\)L of the standard solution under the above operating conditions, reserpine and the internal standard are eluted in this order with the resolution between these peaks being not less than 2.0.
- System repeatability: When the test is repeated 6 times with 20 \(\mu\)L of the standard solution under the above operating conditions, the relative standard deviation of the ratios of the peak area of reserpine to that of the internal standard is not more than 2.0%.

Containers and Storage Containers—Well-closed containers.
- Storage—Light-resistant.

Reserpine Injection

レセルピン注射液

Reserpine Injection is an aqueous injection.
- It contains not less than 90.0% and not more than 110.0% of the labeled amount of reserpine \((C_{23}H_{29}N_{2}O_{3})\): 608.68.
- **Method of preparation** Prepare as directed under Injections, with Reserpine.
- **Description** Reserpine Injection is a clear, colorless or pale yellow liquid.
- **pH** 2.5 – 4.0

Identification Measure a volume of Reserpine Injection, equivalent to 1.5 mg of Reserpine, add 10 mL of diethyl ether, shake for 10 minutes, and take the aqueous layer. If necessary, add 10 mL of diethyl ether to the aqueous layer, and shake for 10 minutes to repeat the process. To the aqueous layer add water to make 50 mL, and determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry \(<2.24\>\): it exhibits a maximum between 265 nm and 269 nm.

Extractable volume \(<6.05\>\) It meets the requirement.

Foreign insoluble matter \(<6.06\>\) Perform the test according to Method 1; it meets the requirement.

Insoluble particulate matter \(<6.07\>\) It meets the requirement.

Sterility \(<4.06\>\) Perform the test according to the Membrane filtration method; it meets the requirement.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
Assay Measure exactly a volume of Reserpine Injection, equivalent to about 4 mg of reserpine \((C_{33}H_{40}N_2O_3)\). Separately, weigh accurately about 4 mg of Reserpine RS, previously dried in vacuum at 60°C for 3 hours. Transfer them to separate separator, add 10 mL each of water and 5 mL each of ammonia TS, and extract with one 20-mL portion of chloroform, then with three 10-mL portions of chloroform with shaking vigorously. Combine the chloroform extracts, wash with two 50-mL portions of dilute hydrochloric acid (1 in 1000), and combine the washings. Then wash the chloroform extract with two 50-mL portions of a solution of sodium hydrogen carbonate (1 in 100), and combine the all washings. Extract the combined washing with two 10-mL portions of chloroform, and combine the washings with the former chloroform extract. Transfer the chloroform solution to a 100-mL volumetric flask through a pledget of absorbent cotton previously wetted with chloroform, wash with a small amount of chloroform, dilute with chloroform to make 100 mL, and use these solutions as the sample solution and the standard solution, respectively. Determine the absorbances, \(A_T\) and \(A_S\), of the sample solution and the standard solution, respectively, at 295 nm as directed under Ultraviolet-visible Spectrophotometry \(<2.24>\).

\[
\text{Amount (mg) of reserpine (C}_{33}\text{H}_{40}\text{N}_2\text{O}_3) = M_S \times A_T / A_S
\]

\(M_S:\) Amount (mg) of Reserpine RS taken

Containers and storage Containers—Well-closed containers, and colored containers may be used.

Storage—Light-resistant.

0.1% Reserpine Powder

レセルピン散 0.1%

0.1% Reserpine Powder contains not less than 0.09% and not more than 0.11% of reserpine \((C_{33}H_{40}N_2O_3): 608.68)\).

Method of preparation

<table>
<thead>
<tr>
<th>Reserpine</th>
<th>1 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactose Hydrate</td>
<td>a sufficient quantity</td>
</tr>
</tbody>
</table>

Prepare as directed under Powders, with the above ingredients.

Identification To 0.4 g of 0.1% Reserpine Powder add 20 mL of acetonitrile, shake for 30 minutes, and centrifuge. Determine the absorption spectrum of the supernatant liquid as directed under Ultraviolet-visible Spectrophotometry \(<2.24>\): it exhibits maxima between 265 nm and 269 nm, and between 294 nm and 298 nm.

Dissolution Being specified separately when the drug is granted approval based on the Law.

Assay Conduct this procedure without exposure to light, using light-resistant vessels. Weigh accurately a quantity of 0.1% Reserpine Powder, equivalent to about 0.5 mg of reserpine \((C_{33}H_{40}N_2O_3)\), disperse in 12 mL of water, add exactly 10 mL of the internal standard solution and 10 mL of acetonitrile, and dissolve by warming at 50°C for 15 minutes, then add water to make 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 10 mg of Reserpine RS, previously dried at 60°C in vacuum for 3 hours, dissolve in acetonitrile to make exactly 100 mL. Pipet 5 mL of this solution, add exactly 10 mL of the internal standard solution, 5 mL of acetonitrile and water to make 50 mL, and use this solution as the standard solution. Then, proceed as directed in the Assay under Reserpine.

\[
\text{Amount (mg) of reserpine (C}_{33}\text{H}_{40}\text{N}_2\text{O}_3) = M_S \times Q_T / Q_S \times 1 / 20
\]

\(M_S:\) Amount (mg) of Reserpine RS taken

Internal standard solution—A solution of butyl parahydroxybenzoate in acetonitrile (1 in 50,000).

Containers and storage Containers—Well-closed containers.

Storage—Light-resistant.

Reserpine Tablets

Reserpine Tablets contain not less than 90.0% and not more than 110.0% of the labeled amount of reserpine \((C_{33}H_{40}N_2O_3): 608.68)\).

Method of preparation Prepare as directed under Tablets, with Reserpine.

Identification Take a portion of powdered Reserpine Tablets, equivalent to 0.4 mg of Reserpine, add 20 mL of acetonitrile, shake for 30 minutes, and centrifuge. Determine the absorption spectrum of the supernatant liquid as directed under Ultraviolet-visible Spectrophotometry \(<2.24>\): it exhibits maxima between 265 nm and 269 nm, and between 294 nm and 298 nm.

Uniformity of dosage units \(<6.02>\) Perform the test according to the following method: it meets the requirement of the Content uniformity test. Conduct this procedure without exposure to light, using light-resistant vessels. To 1 tablet of Reserpine Tablets add 2 mL of water, disintegrate by warming at 50°C for 15 minutes while shaking. After cooling, add exactly 2 mL of the internal standard solution per 0.1 mg of reserpine \((C_{33}H_{40}N_2O_3)\), add 2 mL of acetonitrile, warm at 50°C for 15 minutes while shaking, and after cooling, add water to make 10 mL. Centrifuge the solution, and use the supernatant liquid as the sample solution. Separately, weigh accurately about 10 mg of Reserpine RS, previously dried at 60°C in vacuum for 3 hours, dissolve in acetonitrile to make exactly 100 mL. Pipet 5 mL of this solution add exactly 10 mL of the internal standard solution, 5 mL of acetonitrile and water to make 50 mL, and use this solution as the standard solution. Then, proceed as directed in the Assay under Reserpine.

\[
\text{Amount (mg) of reserpine (C}_{33}\text{H}_{40}\text{N}_2\text{O}_3) = M_S \times Q_T / Q_S \times C / 10
\]

\(M_S:\) Amount (mg) of Reserpine RS taken

\(C:\) Labeled amount (mg) of reserpine \((C_{33}H_{40}N_2O_3)\) in 1 tablet

Internal standard solution—A solution of butyl parahydroxybenzoate in acetonitrile (1 in 50,000).

Dissolution \(<6.10>\) When the test is performed at 100 revolutions per minute according to the Paddle method, using 500 mL of a solution prepared by dissolving 1 g of polysor-
Retinol Acetate

Vitamin A Acetate

レチノール酢酸エステル

C₂₁H₂₃O₂: 328.49
(2E,AE,6E,8E)-3,7-Dimethyl-9-(2,6,6-trimethylcyclohex-1-en-1-yl)nona-2,4,6,8-tetraen-1-yl acetate

[127-47-9]

Retinol Acetate is synthetic retinol acetate or synthetic retinol acetate diluted with fixed oil.

It contains not less than 2,500,000 Vitamin A Units per gram.

A suitable antioxidant may be added.

It contains not less than 95.0% and not more than 105.0% of the labeled Units.

Description Retinol Acetate occurs as pale yellow to yellow-red, crystals or an ointment-like substance, and has a faint, characteristic odor, but has no rancid odor.

It is freely soluble in petroleum ether, soluable in ethanol (95), and practically insoluble in water.

It is decomposed by air and by light.

Identification Dissolve Retinol Acetate and Retinol Acetate RS, equivalent to 15,000 Units each, in 5 mL of petroleum ether, and use these solutions as the sample solution and standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography 2.227, and determine the intensity of fluorescence, F₁ and Fₛ, at the wavelength of excitation at 400 nm and at the wavelength of fluorescence at 500 nm.

Dissolution rate (%) with respect to the labeled amount of retinol (C₃₃H₆₆N₂O₂)

\[Mₛ = \frac{Mₛ \times V \times 1/20}{F₁ \times Fₛ \times 1/C} \]

Mₛ: Amount (mg) of Retinol RS taken
C: Labeled amount (mg) of retinol (C₃₃H₆₆N₂O₂) in 1 tablet

Assay Conduct this procedure without exposure to light, using light-resistant vessels. Weigh accurately and powder not less than 20 mg of Retinol Tablets. Weigh accurately a quantity of the powder, equivalent to about 0.5 mg of retinol (C₃₃H₆₆N₂O₂), add 3 mL of water, and warm at 50°C for 15 minutes while shaking. After cooling, add exactly 10 mL of the internal standard solution, 10 mL of acetonitrile and warm at 50°C for 15 minutes while shaking. After cooling, add water to make 50 mL, centrifuge, and use the supernatant liquid as the sample solution. Separately, weigh accurately about 10 mg of Retinol RS, previously dried at 60°C in vacuum for 3 hours, and dissolve in acetonitrile to make exactly 100 mL. Pipet 5 mL of this solution, add exactly 10 mL of the internal standard solution, 5 mL of acetonitrile and water to make 50 mL, and use this solution as the standard solution. Then, proceed as directed in the Assay under Retinol.

Dissolution rate (% of labeled amount)

\[Mₛ = \frac{Mₛ \times V \times 1/20}{F₁ \times Fₛ \times 1/C} \]

Mₛ: Amount (mg) of Retinol RS taken

Internal standard solution—A solution of butyl parahydroxybenzoate in acetonitrile (1 in 50,000).

Containers and storage Containers—Well-closed containers.
Storage—Light-resistant.

Purity (1) Acid value <1.15>—Take exactly 5.0 g of Retinol Acetate, and perform the test: not more than 2.0.

(2) Peroxide—Weigh accurately about 5 g of Retinol Acetate, transfer in a 250-mL glass-stoppered conical flask, add 50 mL of a mixture of acetic acid (100) and isooctane (3:2), and gently mix to dissolve completely. Replace the air of the inside gradually with about 600 mL of Nitrogen, then add 0.1 mL of saturated potassium iodide TS under a current of Nitrogen. Immediately stopper tightly, and mix with a swirling motion for 1 minute. Add 30 mL of water, stopper tightly, and shake vigorously for 5 to 10 seconds. Titrate with 0.01 mol/L sodium thiosulfate VS until the blue color of the solution disappears after addition of 0.5 mL of starch TS near the end point where the solution is a pale yellow color. Calculate the amount of peroxide by the following formula: not more than 10 mEq/kg.

Amount (mEq/kg) of peroxide = \(V/M \times 10 \)

V: Volume (mL) of 0.01 mol/L sodium thiosulfate VS consumed
M: Amount (g) of Retinol Acetate taken

Assay Proceed as directed in Method 1-1 under Vitamin A Assay <2.55>.
Containers and storage Containers—Tight containers.
 Storage—Light-resistant, and almost well-filled, or under
 Nitrogen atmosphere, and in a cold place.

Retinol Palmitate

Vitamin A Palmitate

Retinol Palmitate is a synthetic retinol palmitate or
a synthetic retinol palmitate diluted with fixed oil.

It contains not less than 1,500,000 Vitamin A Units
per gram.

A suitable antioxidant may be added.

It contains not less than 95.0% and not more than
105.0% of the labeled Units.

Description Retinol Palmitate occurs as a light yellow to
yellow-red, ointment-like or an oily substance. It has a faint,
characteristic odor, but has no rancid odor.

It is very soluble in petroleum ether, slightly soluble in
ethanol (95), and practically insoluble in water.

It is decomposed by air and by light.

Identification Dissolve Retinol Palmitate and Retinol Palmitate
RS, equivalent to 15,000 Units each, in 5 mL of
petroleum ether, and use these solutions as the sample solutions
and standard solutions. Perform the test with these solutions
as directed under Thin-layer Chromatography <2.07>.

Spot 5 μL each of the sample solution and standard solution
on a plate of silica gel for thin-layer chromatography. Devel-
oped with a mixture of cyclohexane and diethyl ether (12:1) to
a distance of about 10 cm, and air-dry the plate. Spray
evenly antimony (III) chloride TS: the principal spot ob-
tained from the sample solution is the same in color tone and
Rf value with the blue spot from the standard solution.

Purity (1) Acid value <1.13>—Take exactly 5.0 g of
Retinol Palmitate, and perform the test: not more than 2.0.

(2) Peroxide—Weigh accurately about 5 g of Retinol
Palmitate, transfer in a 250-mL glass-stoppered conical
flask, add 50 mL of a mixture of acetic acid (100) and isooc-
tane (3:2), and gently mix to dissolve completely. Replace
the air of the inside gradually with acetic acid of about 600 mL of Nitro-
gen, then add 0.1 mL of saturated potassium iodide TS
under a current of Nitrogen. Immediately stopper tightly,
and mix with a swirling motion for 1 minute. Add 30 mL of
water, stopper tightly, and shake vigorously for 5 to 10 se-
conds. Titrate <2.56> this solution with 0.01 mol/L sodium
thiosulfate VS until the blue color of the solution disappears
after addition of 0.5 mL of starch TS near the end point
where the solution is a pale yellow color. Calculate the
amount of peroxide by the following formula: not more than
10 mEq/kg.

Amount (mEq/kg) of peroxide = \(\frac{V}{M} \times 10 \)

V: Volume (mL) of 0.01 mol/L sodium thiosulfate VS

M: Amount (g) of Retinol Palmitate taken

Assay Proceed as directed in Method 1-1 under the Vita-
min A Assay <2.55>.

Containers and storage Containers—Tight containers.
 Storage—Light-resistant, and almost well-filled, or under
 Nitrogen atmosphere, and in a cold place.

Ribavirin

Ribavirin, when dried, contains not less than 98.0%
and not more than 102.0% of ribavirin (C_{9}H_{12}N_{3}O_{4}).

Description Ribavirin occurs as a white crystalline powder.
It is freely soluble in water and in N,N-dimethylfor-
mamide, slightly soluble in methanol, and practically insoluble
in ethanol (99.5).

Melting point: 167 – 171°C
Ribavirin shows crystal polymorphism.

Identification (1) Determine the absorption spectrum of a
solution of Ribavirin (1 in 100,000) as directed under Ultra-
violet-visible Spectrophotometry <2.24>, and compare the
spectrum with the Reference Spectrum or the spectrum of a
solution of Ribavirin RS prepared in the same manner as the
sample solution: both spectra exhibit similar intensities of
absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of previ-
ously dried Ribavirin as directed in the potassium bromide
disk method under Infrared Spectrophotometry <2.25>,
and compare the spectrum with the Reference Spectrum or the
spectrum of previously dried Ribavirin RS: both spectra
exhibit similar intensities of absorption at the sample
wave numbers.

Optical rotation <2.49> \([\alpha]_{D}^{20} = -33.0 \text{ to } -37.0°\text{ (after drying,}
0.1 g, water, 10 mL, 100 mm).

Purity (1) Heavy metals <1.07>—Proceed with 1.0 g of
Ribavirin according to Method 1, and perform the test. Pre-
pare the control solution with 1.0 mL of Standard Lead So-
lution (not more than 10 ppm).

(2) Arsenic <1.11>—Prepare the test solution with 1.0 g
of Ribavirin according to Method 5, and perform the test
(not more than 2 ppm).

(3) Related substances—Use the sample solution ob-
tained in the Assay as the sample solution. Pipet 1 mL of the
sample solution, add water to make exactly 200 mL, and use
this solution as the standard solution. Perform the test with
exactly 5 μL each of the sample solution and standard solu-
tion as directed under Liquid Chromatography <2.01>
according to the following conditions, and determine each
peak area by the automatic integration method: the area of
Operating conditions—

Detector, column, column temperature, mobile phases A and B, flowing of mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: For 35 minutes after the injection, beginning after the solvent peak.

System suitability—

Test for required detectability: To exactly 1 mL of the standard solution add water to make exactly 10 mL. Confirm that the peak area of ribavirin obtained with 5 μL of this solution is equivalent to 7 to 13% of that with 5 μL of the standard solution.

System performance: To 5 mL of the sample solution add 1 mL of sodium hydroxide TS, allow to stand for 30 minutes, and add 1 mL of 1 mol/L hydrochloric acid TS. To 1 mL of this solution add water to make 200 mL. When the procedure is run with 5 μL of this solution under the above operating conditions, the resolution between the peak having the relative retention time of about 0.85 to ribavirin and the peak of ribavirin is not less than 4.0, and when the procedure is run with 5 μL of the standard solution under the above operating conditions, the symmetry factor of the peak of ribavirin is not more than 1.5.

System repeatability: When the test is repeated 6 times with 5 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of ribavirin is not more than 2.0%.

Loss on drying <2.4> Not more than 0.5% (1 g, 105°C, 5 hours).

Residue on ignition <2.4> Not more than 0.1% (1 g).

Assay Weigh accurately an amount of Ribavirin and Ribavirin RS, both previously dried, equivalent to about 25 mg each, dissolve in water to make exactly 50 mL, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with exactly 5 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions, and determine the peak areas, A1 and A5, of ribavirin in each solution.

Amount (mg) of ribavirin (C₉H₁₂N₄O₅) = Mₛ × A₁/A₅

Mₛ: Amount (mg) of Ribavirin RS taken

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 220 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (3 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase A: Dissolve 2.0 g of anhydrous sodium sulfate in 300 mL of water, add 8 mL of phosphoric acid solution (1 in 20) and water to make 2000 mL.

Mobile phase B: A mixture of mobile phase A and acetonitrile for liquid chromatography (19:1).

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 15</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>15 – 25</td>
<td>100 – 0</td>
<td>0 → 100</td>
</tr>
<tr>
<td>25 – 35</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Flow rate: 1.0 mL per minute.

System suitability—

System performance: To 5 mL of the standard solution add 1 mL of sodium hydroxide TS, allow to stand for 30 minutes, and add 1 mL of 1 mol/L hydrochloric acid TS. When the procedure is run with 5 μL of this solution under the above operating conditions, the resolution between the peak having the relative retention time of about 0.85 to ribavirin and the peak of ribavirin is not less than 4.0, and when the procedure is run with 5 μL of the standard solution under the above operating conditions, the symmetry factor of the peak of ribavirin is not more than 1.5.

System repeatability: When the test is repeated 6 times with 5 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of ribavirin is not more than 1.0%.

Containers and storage Containers—Well-closed containers.

Ribavirin Capsules

Ribavirin Capsules contain not less than 95.0% and not more than 105.0% of the labeled amount of ribavirin (C₉H₁₂N₄O₅; 244.20).

Method of preparation Prepare as directed under Capsules, with Ribavirin.

Identification Take out the content of Ribavirin Capsules. Shake thoroughly an amount of the content, equivalent to 0.1 g of Ribavirin, with 10 mL of water, allow to stand for 1 minute, filter, and use the filtrate as the sample solution. Separately, dissolve 50 mg of ribavirin in 5 mL of water, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 10 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of acetonitrile and diluted ammonium chloride TS (1 in 20) (9:2) to a distance of about 15 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the principal spot obtained from the sample solution and the spot from the standard solution have the same Rf value.

Uniformity of dosage units <6.02> Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement.
To 1 capsule of Ribavirin Capsules add 250 mL of water previously warmed to 37°C, shake in a water bath of 37°C for 15 minutes, then allow standing to cool to room temperature, add water to make exactly 500 mL, and filter. Discard the first 3 mL of the filtrate, pipet V mL of the subsequent filtrate, add water to make exactly V’ mL so that each mL contains about 20 μg of ribavirin (C₇H₉N₅O₅), and use this solution as the sample solution. Separately, weigh accurately about 20 mg of Ribavirin RS, previously dried at 105°C for 5 hours, dissolve in water to make exactly 100 mL. Pipet 5 mL of this solution, add water to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A_T and A_S, of ribavirin in each solution.

Amount (mg) of ribavirin (C₇H₉N₅O₅)

\[
M_b = A_T \times A_S \times V'/V \times 1/2
\]

M_b: Amount (mg) of Ribavirin RS taken

Operating conditions—
Proceed as directed in the operating conditions in the Dissolution.

System suitability—
Proceed as directed in the system suitability in the Dissolution.

Dissolution <6.10> When the test is performed at 50 revolutions per minute according to the Paddle method using the sinker, using 900 mL of water as the dissolution medium, the dissolution rate in 30 minutes of Ribavirin Capsules is not less than 85%.

Start the test with 1 capsule of Ribavirin Capsules, withdraw not less than 10 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.8 μm. Discard not less than 3 mL of the first filtrate, pipet V mL of the subsequent filtrate, add water to make exactly V’ mL so that each mL contains about 22 μg of ribavirin (C₇H₉N₅O₅), and use this solution as the sample solution. Separately, weigh accurately about 20 mg of Ribavirin RS, previously dried at 105°C for 5 hours, dissolve in water to make exactly 100 mL. Pipet 5 mL of this solution, add water to make exactly 50 mL, and use this solution as the standard solution. Proceed the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A_T and A_S, of ribavirin in each solution.

Dissolution rate (%) with respect to the labeled amount of ribavirin (C₇H₉N₅O₅)

\[
= M_b \times A_T / A_S \times V'/V \times 1/C \times 90
\]

M_b: Amount (mg) of Ribavirin RS taken

C: Labeled amount (mg) of ribavirin (C₇H₉N₅O₅) in 1 capsule

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 207 nm)

Column: A stainless steel column 7.8 mm in inside diameter and 10 cm in length, packed with strongly acidic ion-exchange resin for liquid chromatography composed with sulfonic acid group bound styrene-divinylbenzene copolymer (9 μm in particle diameter).

Column temperature: A constant temperature of about 40°C

Mobile phase: Adjust to pH 2.5 of water with 0.5 mol/L sulfuric acid TS.

Flow rate: Adjust so that the retention time of ribavirin is about 4 minutes.

System suitability—

System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of ribavirin are not less than 500 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of ribavirin is not more than 2.0%.

Assay Cut and open the capsules of not less than 20 Ribavirin Capsules, take out the contents and weigh the mass accurately, and mix uniformly. Weigh accurately an amount of the content, equivalent to about 0.1 g of ribavirin (C₇H₉N₅O₅), add 100 mL of water, shake for 30 minutes, then add water to make exactly 200 mL, and use this solution as the sample solution. Separately, weigh accurately about 25 mg of Ribavirin RS, previously dried at 105°C for 5 hours, dissolve in water to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly 5 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A_T and A_S, of ribavirin in each solution.

Amount (mg) of ribavirin (C₇H₉N₅O₅)

\[
M_b = A_T / A_S \times 4
\]

M_b: Amount (mg) of Ribavirin RS taken

Operating conditions—
Detector, column, column temperature, mobile phase A, and flow rate: Proceed as directed in the operating conditions in the Assay under Ribavirin.

Mobile phase B: A mixture of mobile phase A and acetone-nitrite for liquid chromatography (9:1).

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 15</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>15 - 20</td>
<td>100 → 0</td>
<td>0 → 100</td>
</tr>
</tbody>
</table>

System suitability—

System performance: To 5 mL of the standard solution add 1 mL of sodium hydroxide TS, allow to stand for 30 minutes, and add 1 mL of 1 mol/L hydrochloric acid TS. When the procedure is run with 5 μL of this solution under the above operating conditions, the resolution between the peak having the relative retention time of about 0.85 to ribavirin and the peak of ribavirin is not less than 4.0. Furthermore, when the procedure is run with 5 μL of the standard solution under the above operating conditions, the symmetry factor of the peak of ribavirin is not more than 1.5.

System repeatability: When the test is repeated 6 times with 5 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of ribavirin is not more than 1.0%.

Containers and storage Containers—Tight containers.
Riboflavin

Vitamin B₂

Riboflavin, when dried, contains not less than 98.0% of riboflavin (C₁₇H₂₀N₂O₄).

Description Riboflavin occurs as yellow to orange-yellow crystals. It has a slight odor.

It is very slightly soluble in water, practically insoluble in ethanol (95), in acetic acid (100), and in diethyl ether.

It dissolves in sodium hydroxide TS.

A saturated solution of Riboflavin is neutral.

It is decomposed by light.

Melting point: about 290°C (with decomposition).

Identification (1) A solution of Riboflavin (1 in 100,000) is light-yellow-green in color and has an intense yellow-green fluorescence. The color and fluorescence of the solution disappear upon the addition of 0.02 g of sodium hydrosulfite to 5 mL of the solution, and reappear on shaking the mixture in air. This fluorescence disappears upon the addition of dilute hydrochloric acid or sodium hydroxide TS.

(2) To 10 mL of a solution of Riboflavin (1 in 100,000) placed in a glass-stoppered test tube add 1 mL of sodium hydroxide TS, and after illumination with a fluorescence lamp of 10 to 30 watts at 20-cm distance for 30 minutes between 20°C and 40°C, acidify with 0.5 mL of acetic acid (31), and shake with 5 mL of chloroform: the chloroform layer shows a yellow-green fluorescence.

(3) Determine the absorption spectrum of a solution of Riboflavin in phosphate buffer solution (pH 7.0) (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Riboflavin RS prepared in the same manner as the sample solution; both spectra exhibit similar intensities of absorption at the same wavelengths.

Optical rotation <2.49> [α]D₂₀ = −128 to −142° Weigh accurately about 0.1 g of dried Riboflavin, dissolve in exactly 4 mL of dilute sodium hydroxide TS, add 10 mL of freshly boiled and cooled water, add exactly 4 mL of aldehyde-free ethanol while shaking, add freshly boiled and cooled water to make exactly 20 mL, and determine the rotation in a 100-mm cell within 30 minutes after preparing the solution.

Purity Lumiflavin—Shake 25 mg of Riboflavin with 10 mL of ethanol-free chloroform for 5 minutes, and filter: the filtrate has no more color than the following control solution.

Control solution: To 2.0 mL of 1/60 mol/L potassium dichromate VS add water to make 1000 mL.

Loss on drying <2.47> Not more than 1.5% (0.5 g, 105°C, 2 hours).

Residue on ignition <2.47> Not more than 0.2% (1 g).

Assay Conduct this procedure without exposure to light, using light-resistant vessels. Weigh accurately about 15 mg of Riboflavin, previously dried, dissolve in 800 mL of diluted acetic acid (100) (1 in 400) by warming, cool, add water to make exactly 1000 mL, and use this solution as the sample solution. Dry Riboflavin RS at 105°C for 2 hours, weigh accurately about 15 mg, dissolve in 800 mL of diluted acetic acid (100) (1 in 400) by warming, cool, add water to make exactly 1000 mL, and use this solution as the standard solution. Perform the test with the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry <2.24>, using water as the blank, and determine the absorbances, A₁ and A₅, at 445 nm. Add 0.02 g of sodium hydrosulfite to 5 mL of each solution, shake until decolorized, and immediately measure the absorbances, A₁' and A₅', of the solutions.

Amount (mg) of riboflavin (C₁₇H₂₀N₂O₄) = Mₛ x (A₁ - A₁')/(A₅ - A₅')

Mₛ: Amount (mg) of Riboflavin RS taken

Containers and storage Containers—Tight containers.

Storage—Light-resistant.

Riboflavin Powder

Vitamin B₂ Powder

Riboflavin Powder contains not less than 95.0% and not more than 115.0% of the labeled amount of riboflavin (C₁₇H₂₀N₂O₄; 376.36).

Method of preparation Prepare as directed under Granules or Powders, with Riboflavin.

Identification Shake a portion of Riboflavin Powder, equivalent to 1 mg of Riboflavin, with 100 mL of water, filter, and proceed with the filtrate as directed in the Identification (1) and (2) under Riboflavin.

Purity Rancidity—Riboflavin Powder is free from any unpleasant or rancid odor or taste.

Dissolution 6.10 When the test is performed at 75 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 60 minutes of Riboflavin Powder is not less than 80%.

Conduct this procedure without exposure to light. Start the test with an accurately weighed amount of Riboflavin Powder, equivalent to about 5 mg of riboflavin (C₁₇H₂₀N₂O₄), withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 22 mg of Riboflavin RS, previously dried at 105°C for 2 hours, dissolve in water by warming and add water to make exactly 200 mL after cooling. Pipet 5 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution. Determine the absorbances, A₁ and A₅, at 445 nm of the sample solution and standard solution as directed under Ultravi-
Riboflavin Butyrate / Official Monographs

Dissolution rate (%) with respect to the labeled amount of riboflavin (C₁₇H₂₃N₂O₃) = \(M_0 / M_1 \times A_1 / A_3 \times 1/C \times 45/2 \)

\(M_0 \): Amount (mg) of Riboflavin RS taken
\(M_1 \): Amount (g) of Riboflavin Powder taken
\(C \): Labeled amount (mg) of riboflavin (C₁₇H₂₃N₂O₃) in 1 g

Containers and storage

Containers—Tight containers.

Melting point

2.60°C

Purity (1)

Chloride—Dissolve 2.0 g of Riboflavin Butyrate in 10 mL of methanol, and add 24 mL of dilute nitric acid and water to make 100 mL. After shaking well, allow to stand for 10 minutes, filter, and use the subsequent filtrate as the sample solution. To 25 mL of the sample solution add water to make 50 mL, then add 1 mL of silver nitrate TS, and allow to stand for 5 minutes: the turbidity of the solution is no more than that of the following control solution.

Control solution: To 25 mL of the sample solution add 1 mL of silver nitrate TS, allow to stand for 10 minutes, and filter. Wash the precipitate with four 5-mL portions of water, and combine the washings with the filtrate. To this solution add 0.30 mL of 0.01 mol/L hydrochloric acid VS and 2 drops of phenolphthalein TS: the solution shows a red color.

Residue on ignition

Not more than 0.1% (1 g).

Loss on drying

Not more than 0.5% (1 g, in vacuum, silica gel, 4 hours).

Residue on ignition

Not more than 0.1% (1 g).

Identification (1)

A solution of Riboflavin Butyrate in ethanol (95) (1 in 100,000) shows a light-yellow green color with a strong yellowish green fluorescence. To the solution, add dilute hydrochloric acid or sodium hydroxide TS: the fluorescence disappears.

(2) Dissolve 0.01 g of Riboflavin Butyrate in 5 mL of ethanol (95), add 2 mL of a mixture of a solution of sodium hydroxide (3 in 20) and a solution of hydroxylammonium chloride (3 in 20) (1:1), and shake well. To this solution add 0.8 mL of hydrochloric acid and 0.5 mL of iron (III) chloride TS, and add 8 mL of ethanol (95): a deep red-brown color develops.

(3) Determine the absorption spectrum of the sample solution obtained in the Assay as directed under Ultraviolet-visible Spectrophotometry 2.24, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

Purity (2)

Heavy metals—Conduct this procedure without exposure to light, using light-resistant vessels. Weigh accurately Riboflavin Powder equivalent to about 15 mg of riboflavin (C₁₇H₂₃N₂O₃), add 800 mL of diluted acetic acid (100) (1 in 400), and extract by warming for 30 minutes with occasional shaking. Cool, dilute with water to make exactly 1000 mL, and filter through a glass filter (G4). Use this filtrate as the sample solution, and proceed as directed in the Assay under Riboflavin.

\(M_3 \): Amount (mg) of riboflavin (C₁₇H₂₃N₂O₃) in 1 g

Containers and storage

Containers—Tight containers.

Riboflavin Butyrate

Vitamin B₁₂ Butyrate

Riboflavin Butyrate, when dried, contains not less than 98.5% of riboflavin butyrate (C₁₇H₄₄N₄O₁₀).

Description

Riboflavin Butyrate occurs as orange-yellow, crystals or crystalline powder. It has a slight, characteristic odor and a slightly bitter taste.

It is freely soluble in methanol, in ethanol (95) and in chloroform, slightly soluble in diethyl ether, and practically insoluble in water.

It is decomposed by light.

Identification (1)

A solution of Riboflavin Butyrate in ethanol (95) (1 in 100,000) shows a light-yellow-green color with a strong yellowish green fluorescence. To the solution add dilute hydrochloric acid or sodium hydroxide TS: the fluorescence disappears.

(2) Dissolve 0.01 g of Riboflavin Butyrate in 5 mL of ethanol (95), add 2 mL of a mixture of a solution of sodium hydroxide (3 in 20) and a solution of hydroxylammonium chloride (3 in 20) (1:1), and shake well. To this solution add 0.8 mL of hydrochloric acid and 0.5 mL of iron (III) chloride TS, and add 8 mL of ethanol (95): a deep red-brown color develops.

(3) Determine the absorption spectrum of the sample solution obtained in the Assay as directed under Ultraviolet-visible Spectrophotometry 2.24, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

Melting point

146 – 150°C

Purity (1)

Chloride—Dissolve 2.0 g of Riboflavin Butyrate in 10 mL of methanol, and add 24 mL of dilute nitric acid and water to make 100 mL. After shaking well, allow to stand for 10 minutes, filter, discard the first 10 mL of the filtrate, and use the subsequent filtrate as the sample solution. To 25 mL of the sample solution add water to make 50 mL, then add 1 mL of silver nitrate TS, and allow to stand for 5 minutes: the turbidity of the solution is no more than that of the following control solution.

Control solution: To 25 mL of the sample solution add 1 mL of silver nitrate TS, allow to stand for 10 minutes, and filter. Wash the precipitate with four 5-mL portions of water, and combine the washings with the filtrate. To this solution add 0.30 mL of 0.01 mol/L hydrochloric acid VS and water to make 50 mL, add 1 mL of water, and mix (not more than 0.021%).

(2) Heavy metals—Conduct this procedure according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(3) Free acid—To 1.0 g of Riboflavin Butyrate add 50 mL of freshly boiled and cooled water, shake, and filter. To 25 mL of the filtrate add 0.50 mL of 0.01 mol/L sodium hydroxide VS and 2 drops of phenolphthalein TS: the solution shows a red color.

(4) Related substances—Dissolve 0.10 g of Riboflavin Butyrate in 10 mL of chloroform, and use this solution as the sample solution. Pipet 1 mL of the sample solution, and add chloroform to make exactly 50 mL. Pipet 5 mL of this solution, add chloroform to make exactly 20 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography 2.03. Spot 10 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of chloroform and 2-propanol (9:1) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying

Not more than 0.5% (1 g, in vacuum, silica gel, 4 hours).

Residue on ignition

Not more than 0.1% (1 g).

Assay

Conduct this procedure without exposure to light, using light-resistant vessels. Weigh accurately about 40 mg of Riboflavin Butyrate, previously dried, dissolve in ethanol (95) to make exactly 500 mL, and pipet 10 mL of this solution, add ethanol (95) to make exactly 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 50 mg of Riboflavin RS, previously dried at 105°C for 2 hours, dissolve in 150 mL of dilute acetic acid (100) (2 in 75) by warming, and after cooling, add water to make exactly 500 mL. Pipet 5 mL of this solution, add ethanol (95)
to make exactly 50 mL, and use this solution as the standard solution. Determine the absorbances, \(A_1 \) and \(A_2 \), of the sample solution and standard solution at 445 nm as directed under Ultraviolet-visible Spectrophotometry <2.24>.

\[
\text{Amount (mg) of riboflavin butyrate (C}_{17}\text{H}_{34}\text{Na}_{2}\text{O}_{10}) = M_s \times A_1/A_2 \times 1/2 \times 1.745
\]

\(M_s \): Amount (mg) of Riboflavin RS taken

Containers and storage Containers—Tight containers.

Storage—Light-resistant.

Riboflavin Sodium Phosphate

Vitamin B₂ Phosphate Ester

Riboflavin Sodium Phosphate contains not less than 92% of riboflavin sodium phosphate (C₁₇H₃₀NaO₈P), calculated on the anhydrous basis.

Description Riboflavin Sodium Phosphate is a yellow to orange-yellow crystalline powder. It is odorless, and has a slightly bitter taste.

It is soluble in water, and practically insoluble in ethanol (95), in chloroform and in diethyl ether.

It is decomposed on exposure to light.

It is very hygroscopic.

Identification (1) A solution of Riboflavin Sodium Phosphate (1 in 100,000) is light yellow-green in color and has an intense yellow-green fluorescence. The color and fluorescence of the solution disappear upon the addition of 0.02 g of sodium hydrosulfite to 5 mL of the solution, and reappear on shaking the mixture in air. This fluorescence disappears upon the addition of dilute hydrochloric acid or sodium hydroxide TS.

(2) To 10 mL of a solution of Riboflavin Sodium Phosphate (1 in 100,000) placed in a glass-stoppered test tube add 1 mL of sodium hydroxide TS, and after illumination with a fluorescence lamp of 10 to 30 watts at 20-cm distance for 30 minutes between 20°C and 40°C, acidify with 0.5 mL of acetic acid (31), and shake with 5 mL of chloroform: the chloroform layer shows a yellow-green fluorescence.

(3) Determine the absorption spectrum of a solution of Riboflavin Sodium Phosphate in phosphate buffer solution (pH 7.0) (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(4) To 0.05 g of Riboflavin Sodium Phosphate add 10 mL of nitric acid, evaporate on a water bath to dryness, and ignite. Boil the residue with 10 mL of diluted nitric acid (1 in 50) for 5 minutes, after cooling, neutralize this solution with ammonia TS, and filter, if necessary: the solution responds to Qualitative Tests <1.09> for sodium salt and phosphate.

Optical rotation <2.49> [α]_D: +38° - +43° (0.3 g calculated on the anhydrous basis, 5 mol/L hydrochloric acid TS, 20 mL, 100 mm).

pH <2.54> Dissolve 0.20 g of Riboflavin Sodium Phosphate in 20 mL of water: the pH of the solution is between 5.0 and 6.5.

Purity (1) Clarity and color of solution—Dissolve 0.20 g of Riboflavin Sodium Phosphate in 10 mL of water: the solution is clear and yellow to orange-yellow in color.

(2) Lumiflavin—To 35 mg of Riboflavin Sodium Phosphate add 10 mL of ethanol-free chloroform, and shake for 5 minutes, then filter: the filtrate has no more color than the control solution.

Control solution: To 3.0 mL of 1/60 mol/L potassium dichromate VS add water to make 1000 mL.

(3) Free phosphoric acid—Weigh accurately about 0.4 g of Riboflavin Sodium Phosphate, dissolve in water to make exactly 100 mL, and use this solution as the sample solution. Measure exactly 5 mL each of the sample solution and Standard Phosphoric Acid Solution, transfer to separate 25-mL volumetric flasks, add 2.5 mL of hexammonium heptamolybdate-sulfuric acid TS and 1 mL of 1-amino-2-naphthol-4-sulfonic acid TS to each of these flasks, mix, and add water to make 25 mL. Allow to stand for 30 minutes at 20 ± 1°C, and perform the test with these solutions as directed under Ultraviolet-visible Spectrophotometry <2.24>, using a solution prepared with 5 mL of water in the same manner as a blank. Determine the absorbances, \(A_1 \) and \(A_5 \), of the subsequent solutions of the sample solution and Standard Phosphoric Acid Solution at 740 nm: the free phosphoric acid content is not more than 1.5%.

Content (% of free phosphoric acid (H₃PO₄))

\[
M = 1/M \times A_1/A_5 \times 258.0
\]

Assay Conduct this procedure without exposure to light, using light-resistant vessels. To about 0.1 g of Riboflavin Sodium Phosphate, accurately weighed, dissolve in diluted acetic acid (100) (1 in 500) to make exactly 1000 mL, then pipet 10 mL of this solution, and add diluted acetic acid (100) (1 in 500) to make exactly 50 mL. Use this solution as the sample solution. Separately, dry Riboflavin RS at 105°C for 2 hours, weigh accurately about 15 mg, dissolve in 800 mL of diluted acetic acid (100) (1 in 400) by warming, cool, add water to make exactly 1000 mL, and use this solution as the standard solution. Perform the test with the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry <2.24>, using water as the blank, and determine the absorbances, \(A_1 \) and \(A_5 \), at 445 nm. Add 0.02 g

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.)
Riboflavin Sodium Phosphate Injection

Vitamin B₂ Phosphate Ester Injection

Riboflavin Sodium Phosphate Injection is an aqueous injection.

It contains not less than 95.0% and not more than 120.0% of the labeled amount of riboflavin (C₂₀H₂₀N₄O₆) 376.36.

The concentration of Riboflavin Sodium Phosphate Injection should be stated as the amount of riboflavin (C₂₀H₂₀N₄O₆).

Method of preparation Prepare as directed under Injections, with Riboflavin Sodium Phosphate.

Description Riboflavin Sodium Phosphate Injection is a clear, yellow to orange-yellow liquid.

pH: 5.0 – 7.0

Identification (1) To a measured volume of Riboflavin Sodium Phosphate Injection, equivalent to 1 mg of Riboflavin, add water to make 100 mL, and proceed with this solution as directed in the Identification (1) and (2) under Riboflavin Sodium Phosphate.

(2) To a measured volume of Riboflavin Sodium Phosphate Injection, equivalent to 0.05 g of Riboflavin, and evaporate on a water bath to dryness. Proceed with this residue as directed in the Identification (4) under Riboflavin Sodium Phosphate.

Bacterial endotoxins <4.01< Less than 10 EU/mg.

Extractable volume <6.05> It meets the requirement.

Foreign insoluble matter <6.06> Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter <6.07> It meets the requirement.

Sterility <4.06> Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Conduct this procedure without exposure to light, using light-resistant vessels. To an accurately measured volume of Riboflavin Sodium Phosphate Injection, equivalent to about 15 mg of riboflavin (C₂₀H₂₀N₄O₆), add dilute acetic acid (100) (1 in 500) to make exactly 1000 mL, and use this solution as the sample solution. Proceed as directed in the Assay under Riboflavin Sodium Phosphate.

Amount (mg) of Riboflavin (C₂₀H₂₀N₄O₆)

\[M_S = \frac{M_S \times (A_T - A_{T'})}{(A_S - A_{S'})} \times 5 \times 1.271 \]

\[M_S: \text{Amount (mg) of Riboflavin RS taken} \]

Ribostamycin Sulfate

リボスタマイシン硫酸塩

C₁₇H₃₂N₄O₁₀.xH₂SO₄
2,6-Diamino-2,6-dideoxy-α-D-glucopyranosyl-(1→4)-[β-D-ribofuranosyl-(1→5)]-2-deoxy-β-streptamine 53797-35-6

Ribostamycin Sulfate is the sulfate of an aminoglycoside substance having antibacterial activity produced by the growth of Streptomyces ribosidicus.

It contains not less than 680 µg (potency) and not more than 780 µg (potency) per mg, calculated on the dried basis. The potency of Ribostamycin Sulfate is expressed as mass (potency) of ribostamycin (C₁₇H₃₂N₄O₁₀): 454.47.

Description Ribostamycin Sulfate occurs as a white to yellow-white powder.

It is finely soluble in water, and practically insoluble in ethanol (95).

Identification (1) Dissolve 20 mg of Ribostamycin Sulfate in 2 mL of phosphate buffer solution (pH 6.0), add 1 mL of ninhydrin TS, and boil: a blue-purple color develops.

(2) Dissolve 0.12 g each of Ribostamycin Sulfate and Ribostamycin Sulfate RS in 20 mL of water, and use these solutions as the sample solution and standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.06>. Spot 5 µL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a solution of potassium dihydrogen phosphate (3 in 40) to a distance of about 10 cm, and air-dry the plate. Spray evenly 0.2% ninhydrin-water saturated 1-butanol TS, and heat at 100°C for 10 minutes: the principal spots obtained from the sample solution and standard solution show a purple-brown color and the same R_f value.

(3) To 2 mL of a solution of Ribostamycin Sulfate (1 in 5) add 1 drop of barium chloride TS: a white turbidity is produced.

Optical rotation <2.49> [α]^D +42 – +49° (after drying, 0.25 g, water, 25 mL, 100 mm).

pH <2.5> The pH of a solution obtained by dissolving 1.0 g of Ribostamycin Sulfate in 20 mL of water is between 6.0 and 8.0.
Purity (1) Clarity and color of solution—Dissolve 2.9 g of Ribostamycin Sulfate in 10 mL of water: the solution is clear. Determine the absorbance of this solution at 400 nm as directed under Ultraviolet-visible Spectrophotometry <2.24> not more than 0.10.

(2) Heavy metals <1.07>—Proceed with 1.0 g of Ribostamycin Sulfate according to Method 1, and perform the test. Prepare the control solution with 3.0 mL of Standard Lead Solution (not more than 30 ppm).

(3) Arsenic <1.1D>—Prepare the test solution with 1.0 g of Ribostamycin Sulfate according to Method 1, and perform the test (not more than 2 ppm).

(4) Related substances—Dissolve 0.12 g of Ribostamycin Sulfate in water to make exactly 20 mL, and use this solution as the sample solution. Pipet 5 mL of the sample solution, add water to make exactly 100 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 5 μL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a solution of potassium dihydrogen phosphate (3 in 40) to a distance of about 10 cm, and air-dry the plate. Spray evenly 0.2% ninhydrin-water saturated 1-butanol TS on the plate, and heat the plate at 100°C for 10 minutes: the spot other than the principal spot obtained from the sample solution is not more intense than the spot from the standard solution.

Loss on drying <2.47> Not more than 5.0% (0.5 g, reduced pressure not exceeding 0.67 kPa, 60°C, 3 hours).

Residue on ignition <2.44> Not more than 1.0% (1 g).

Assay Perform the test according to the Cylinder-plate method as directed under Microbial Assay for Antibiotics <4.02> according to the following conditions.

(i) Test organism—Bacillus subtilis ATCC 6633

(ii) Culture medium—Use the medium in 1) Medium under (i) Agar media for seed and base layer.

(iii) Standard solutions—Weigh accurately an amount of Ribostamycin Sulfate RS, previously dried, equivalent to about 20 mg (potency), dissolve in diluted phosphate buffer solution (pH 6.0) (1 in 2) to make exactly 50 mL, and use this solution as the standard stock solution. Keep the standard stock solution at 5 to 15°C and use within 20 days. Take exactly a suitable amount of the standard stock solution before use, add 0.1 mol/L phosphate buffer solution (pH 8.0) to make solutions so that each mL contains 20 μg (potency) and 5 μg (potency), and use these solutions as the high concentration standard solution and the low concentration standard solution, respectively.

(iv) Sample solutions—Weigh accurately an amount of Ribostamycin Sulfate, equivalent to about 20 mg (potency), and dissolve in water to make exactly 50 mL. Take exactly a suitable amount of this solution, add 0.1 mol/L phosphate buffer solution (pH 8.0) to make solutions so that each mL contains 20 μg (potency) and 5 μg (potency), and use these solutions as the high concentration sample solution and the low concentration sample solution, respectively.

Containers and storage Containers—Tight containers.

Rifampicin

Rifampicin is a derivative of a substance having antibacterial activity produced by the growth of Streptomyces mediterranei.

It contains not less than 970 μg (potency) and not more than 1020 μg (potency) per mg, calculated on the dried basis. The potency of Rifampicin is expressed as mass (potency) of rifampicin (C_{43}H_{58}N_{12}O_{22}).

Description Rifampicin occurs as orange-red to red-brown, crystals or crystalline powder.

It is slightly soluble in water, in acetonitrile, in methanol and in ethanol (95).

Identification (1) To 5 mL of a solution of Rifampicin in methanol (1 in 5000) add 0.05 mol/L phosphate buffer solution (pH 7.0) to make 100 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Rifampicin RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Rifampicin as directed in the potassium bromide disk method under the Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of Rifampicin RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Purity (1) Heavy metals <1.07>—Proceed with 1.0 g of Rifampicin according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(2) Arsenic <1.1D>—Prepare the test solution with 1.0 g of Rifampicin according to Method 3, and perform the test (not more than 2 ppm).

(3) Related substances—Perform the test immediately after preparing of the sample and standard solutions. Dissolve 0.10 g of Rifampicin in 50 mL of acetonitrile, and use this solution as the sample stock solution. Pipet 5 mL of the sample stock solution, add citric acid-phosphate-acetonitrile TS to make exactly 50 mL, and use this solution as the sample solution. Separately, pipet 1 mL of the sample stock so-
solution, and add acetonitrile to make exactly 100 mL. Pipet 5 mL of this solution, add citric acid-phosphate-acetonitrile TS to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly 50 µL each of the sample solution and standard solution as directed under Liquid Chromatography 2.017 according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak appeared at the relative retention time of about 0.7 to rifampicin obtained from the sample solution is not larger than 1.5 times the peak area of rifampicin from the standard solution, the area of the peak other than rifampicin and the peak mentioned above from the sample solution is not larger than the peak area of rifampicin from the standard solution, and the total area of the peaks other than rifampicin and the peak mentioned above from the sample solution is not larger than 3.5 times the peak area of rifampicin from the standard solution.

Operating conditions—
Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 3 times as long as the retention time of rifampicin, beginning after the peak of the solvent.

System suitability—
System performance: Proceed as directed in the system suitability in the Assay.

Test for required detectability: Measure exactly 2 mL of the standard solution, and add citric acid-phosphate-acetonitrile TS to make exactly 20 mL. Confirm that the peak area of rifampicin obtained with 50 µL of this solution is equivalent to 7 to 13% of that with 50 µL of the standard solution.

System repeatability: When the test is repeated 6 times with 50 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of rifampicin is not more than 2.0%.

Loss on drying 2.41 Not more than 2.0% (1 g, reduced pressure not exceeding 0.67 kPa, 60°C, 3 hours).

Residue on ignition 2.44 Not more than 0.1% (1 g).

Assay Weigh accurately an amount of Rifampicin and Rifampicin RS, equivalent to about 40 mg (potency), and dissolve each in acetonitrile to make exactly 200 mL. Pipet 10 mL each of these solutions, add citric acid-phosphate-acetonitrile TS to make exactly 100 mL, and use these solutions as the sample solution and standard solution. Perform the test with exactly 50 µL each of the sample solution and standard solution as directed under Liquid Chromatography 2.017 according to the following conditions, and determine the peak areas, A1 and A2, of rifampicin in each solution.

\[
\text{Amount [µg (potency)] of rifampicin (C_{43}H_{52}N_{2}O_{12})} = M_5 \times A_1 / A_2 \times 1000
\]

\[
M_5: \text{Amount [µg (potency)] of Rifampicin RS taken}
\]

Flow rate: Adjust so that the retention time of rifampicin is about 8 minutes.

System suitability—
System performance: To 5 mL of a solution of Rifampicin in acetonitrile (1 in 5000) add 1 mL of a solution of butyl parahydroxybenzoate in acetonitrile (1 in 5000) and citric acid-phosphate-acetonitrile TS to make 50 mL. When the procedure is run with 50 µL of this solution under the above operating conditions, butyl parahydroxybenzoate and rifampicin are eluted in this order with the resolution between these peaks being not less than 1.5.

System repeatability: When the test is repeated 5 times with 50 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of rifampicin is not more than 1.0%.

Containers and storage Containers—Tight containers.

Rifampicin Capsules

リファンビシンカプセル

Rifampicin Capsules contain not less than 93.0% and not more than 105.0% of the labeled potency of rifampicin (C_{43}H_{52}N_{2}O_{12}; \text{822.94}).

Method of preparation
Prepare as directed under Capsules, with Rifampicin.

Identification
Take out the content of Rifampicin Capsules, mix well, and powder, if necessary. Dissolve an amount of the content, equivalent to 20 mg (potency) of Rifampicin, in methanol to make 100 mL, and filter. To 5 mL of the filtrate add 0.05 mol/L phosphate buffer solution (pH 7.0) to make 100 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry 2.24: it exhibits maxima between 234 nm and 238 nm, between 252 nm and 256 nm, between 331 nm and 335 nm, and between 472 nm and 476 nm.

Purity
Related substances—Perform the test quickly after the sample solution and standard solution are prepared. Open the capsules of not less than 20 Rifampicin Capsules, carefully take out the content, weigh accurately, and powder. Weigh accurately a portion of the powder, equivalent to about 20 mg (potency) of Rifampicin, and dissolve in acetonitrile to make exactly 10 mL. Pipet 2 mL of this solution, add a mixture of acetonitrile and methanol (1:1) to make exactly 20 mL, and use this solution as the sample solution. Separately, weigh accurately an amount of Rifampicin RS, equivalent to about 20 mg (potency), and dissolve in acetonitrile to make exactly 10 mL. Pipet 2 mL of this solution, and add the mixture of acetonitrile and methanol (1:1) to make exactly 20 mL. Pipet 1 mL of this solution, add the mixture of acetonitrile and methanol (1:1) to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly 20 µL each of the sample solution and standard solution as directed under Liquid Chromatography 2.017 according to the following conditions, and determine each peak area by the automatic integration method: the amount of the peaks of quinone substance and N-oxide substance, having the relative retention time of about 0.5 and about 1.2 to rifampicin, obtained from the sample solution are not more than 4.0% and not more than 1.5%, respectively. The amount of the peak other than the peaks mentioned above is not more than 1.0%, and the total amount of these related substances is not more than 2.0%.
For the areas of the peaks of the quinone substance and N-oxide substance, multiply their correction factors, 1.24 and 1.16, respectively.

\[
\text{Amount (mg) of quinone substance} = M_3/M_1 \times A_{T_3}/A_S \times 2.48
\]

\[
\text{Amount (mg) of N-oxide substance} = M_3/M_1 \times A_{T_3}/A_S \times 2.32
\]

Each amount (mg) of related substances other than quinone and N-oxide substances is:

\[
M_3 = \text{Amount [mg (potency)] of Rifampicin RS taken}
\]

\[
M_4 = \text{Amount [mg (potency)] of sample taken}
\]

\[
A_{T_3} = \text{Peak area of the standard solution}
\]

\[
A_{T_1} = \text{Peak area of quinone substance}
\]

\[
A_{T_2} = \text{Peak area of N-oxide substance}
\]

\[
A_{T_0} = \text{Each peak area of related substances other than quinone and N-oxide substances}
\]

Operating conditions

Detector: An ultraviolet absorption photometer (wavelength: 254 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octylsilsanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: Dissolve 2.1 g of sodium perchlorate, 6.5 g of citric acid monohydrate and 2.3 g of potassium dihydrogen phosphate in 1100 mL of water, and add 900 mL of acetonitrile.

Flow rate: Adjust so that the retention time of rifampicin is about 12 minutes.

Time span of measurement: About 2.5 times as long as the retention time of rifampicin.

System suitability

Test for required detectability: To exactly 1 mL of the standard solution add a mixture of acetonitrile and methanol (1:1) to make exactly 20 mL. Confirm that the peak area of rifampicin obtained with 20 μL of this solution is equivalent to 3.5 to 6.5% of that with 20 μL of the standard solution.

System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of rifampicin is not less than 2500 and not more than 4.0, respectively.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of rifampicin is not more than 2.0%.

Uniformity of dosage units

It meets the requirement of the Mass variation test.

Dissolution

When the test is performed at 75 revolutions per minute according to the Paddle method using a sinker, using 900 mL of water as the dissolution medium, the dissolution rate in 45 minutes of Rifampicin Capsules is not less than 80%.

Start the test with 1 capsule of Rifampicin Capsules, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet 10 mL of the subsequent filtrate, add water to make exactly 100 mL so that each mL contains about 17 μg (potency) of rifampicin (C_{30}H_{32}N_{10}O_{12}), and use this solution as the sample solution. Separately, weigh accurately about 17 mg (potency) of Rifampicin RS, dissolve in 5 mL of methanol, and add water to make exactly 100 mL. Pipet 2 mL of this solution, add water to make exactly 20 mL, and use this solution as the standard solution. Determine the absorbances, A_1 and A_8, at 334 nm of the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry <2.24>, using water as the blank.

Dissolution rate (%) with respect to the labeled amount of rifampicin (C_{30}H_{32}N_{10}O_{12})

\[
M_3 = \text{Amount [mg (potency)] of Rifampicin RS taken}
\]

\[
M_4 = \text{Amount [mg (potency)] of rifampicin (C_{30}H_{32}N_{10}O_{12}) in 1 capsule}
\]

Assay

Open the capsules of not less than 20 Rifampicin Capsules, take out the content, weigh accurately the mass of the content, and powder. Weigh accurately a portion of the powder, equivalent to about 75 mg (potency) of Rifampicin, dissolve in a mixture of acetonitrile and methanol (1:1) to make exactly 50 mL. Pipet 10 mL of this solution, and add acetonitrile to make exactly 50 mL. Pipet 5 mL of this solution, add a solution prepared by dissolving 2.1 g of citric acid monohydrate, 27.6 g of disodium hydrogen phosphate dodecahydrate and 3.1 g of potassium dihydrogen phosphate in 1000 mL of a mixture of water and acetonitrile (3:1) to make exactly 50 mL, and use this solution as the sample solution. Separately, weigh accurately an amount of Rifampicin RS, equivalent to about 30 mg (potency), dissolve in 20 mL of a mixture of acetonitrile and methanol (1:1), and add acetonitrile to make exactly 100 mL. Pipet 5 mL of this solution, add the solution prepared by dissolving 2.1 g of citric acid monohydrate, 27.6 g of disodium hydrogen phosphate dodecahydrate and 3.1 g of potassium dihydrogen phosphate in 1000 mL of the mixture of water and acetonitrile (3:1) to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly 50 μL of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A_1 and A_8, of rifampicin in each solution.

\[
\text{Amount [mg (potency)] of rifampicin (C_{30}H_{32}N_{10}O_{12})} = M_3 \times A_{T_3}/A_S \times 5/2
\]

\[
M_3 = \text{Amount [mg (potency)] of Rifampicin RS taken}
\]

Operating conditions

Proceed as directed in the operating conditions in the Assay under Rifampicin.

System suitability

System performance: Dissolve 30 mg (potency) of Rifampicin RS in 20 mL of the mixture of acetonitrile and methanol (1:1), and add acetonitrile to make 100 mL. To 5 mL of this solution add 2 mL of a solution of butyl parahydroxybenzoate in the mixture of acetonitrile and methanol (1:1) in 5000 mL), then add the solution prepared by dissolving 2.1 g of citric acid monohydrate, 27.6 g of disodium hydrogen phosphate dodecahydrate and 3.1 g of potassium dihydrogen phosphate in 1000 mL of a mixture of water and acetonitrile (3:1) to make exactly 50 mL. When the procedure is run with 50 μL of this solution under the above operating conditions, butyl parahydroxybenzoate and rifampicin are eluted in this order with the resolution between these peaks being not less than 1.5.

System repeatability: When the test is repeated 5 times with 50 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of rifampicin is not more than 1.0%.
Rilmazafone Hydrochloride Hydrate

リルマザホン塩酸塩水和物

C_{21}H_{29}Cl_{2}N_{6}O_{3}.HCl.2H_{2}O: 547.82
5-[(2-Aminoacetamido)methyl]-1-[4-chloro-2-(2-chlorobenzoyl)phenyl]-N,N-dimethyl-1H-1,2,4-triazole-3-carboxamide monohydrochloride dihydrate [85815-37-8, anhydride]

Rilmazafone Hydrochloride Hydrate contains not less than 98.0% and not more than 102.0% of rilmazafone hydrochloride (C_{21}H_{29}Cl_{2}N_{6}O_{3}.HCl: 511.79), calculated on the anhydrous basis.

Description

Rilmazafone Hydrochloride Hydrate occurs as a white to pale yellow-white crystalline powder.

It is very soluble in methanol, soluble in water, and slightly soluble in ethanol (99.5).

Identification

1. Determine the absorption spectrum of a solution of Rilmazafone Hydrochloride Hydrate (1 in 100.00) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Rilmazafone Hydrochloride RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

2. Determine the infrared absorption spectrum of Rilmazafone Hydrochloride Hydrate as directed in the potassium chloride disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of Rilmazafone Hydrochloride RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

3. A solution of Rilmazafone Hydrochloride Hydrate (1 in 200) responds to Qualitative Tests <1.09> (2) for chloride.

Purity

1. Heavy metals <1.07>—Proceed with 1.0 g of Rilmazafone Hydrochloride Hydrate according to Method 2, and perform the test. Prepare the control solution with 1.0 mL of Standard Lead Solution (not more than 10 ppm).

2. Related substances—Dissolve 25 mg of Rilmazafone Hydrochloride Hydrate in 50 mL of a mixture of water and acetonitrile (1:1), and use this solution as the sample solution. Pipet 1 mL of the sample solution, add a mixture of water and acetonitrile (1:1) to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 10 µL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak, having the relative retention time of about 0.87 to rilmazafone, obtained from the sample solution is not larger than the peak area of rilmazafone from the standard solution, and the area of the peak other than rilmazafone and the peak mentioned above from the sample solution is not larger than 1/5 times the peak area of rilmazafone from the standard solution. Furthermore, the total area of the peaks other than rilmazafone from the sample solution is not larger than 2 times the peak area of rilmazafone from the standard solution.

Operating conditions

Detector: An ultraviolet absorption photometer (wave-length: 254 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadeclsilanized silica gel for liquid chromatography (5 µm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase A: 0.02 mol/L phosphate buffer solution (pH 3.0).

Mobile phase B: Acetonitrile.

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 3</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>3 – 20</td>
<td>75 → 70</td>
<td>25 → 30</td>
</tr>
<tr>
<td>20 – 30</td>
<td>70 → 50</td>
<td>30 → 50</td>
</tr>
<tr>
<td>30 – 45</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Flow rate: 1.0 mL per minute.

Time span of measurement: For 45 minutes after injection, beginning after the solvent peak.

System suitability

Test for required detectability: Pipet 2 mL of the standard solution, and add a mixture of water and acetonitrile (1:1) to make exactly 20 mL. Confirm that the peak area of rilmazafone obtained with 10 µL of this solution is equivalent to 7 to 13% of that with 10 µL of the standard solution.

System performance: When the procedure is run with 10 µL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of rilmazafone are not less than 20,000 and not more than 1.3, respectively.

System repeatability: When the test is repeated 6 times with 10 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of rilmazafone is not more than 2.0%.

Water <2.48> 5.5 – 7.5% (0.2 g, volumetric titration, direct titration).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay

Weigh accurately about 40 mg each of Rilmazafone Hydrochloride Hydrate and Rilmazafone Hydrochloride RS (separately determine the water <2.48> in the same manner as Rilmazafone Hydrochloride Hydrate), dissolve each in water to make exactly 200 mL. Pipet 10 mL each of these solutions, add exactly 20 mL of the internal standard solution to each solution, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with 15 µL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and calculate the ratios, Q_{T} and Q_{S}, of the peak area of rilmazafone to that of the internal standard.
Amount (mg) of rilmazafone hydrochloride
\[(C_{21}H_{20}Cl_{2}N_{2}O_{6} \cdot HCl)\]
\[= M_S \times \frac{Q_S}{Q_b}\]

M_S: Amount (mg) of Rilmazafone Hydrochloride RS taken, calculated on the anhydrous basis

Internal standard solution—A solution of propyl parahydroxybenzoate in a mixture of water and acetonitrile (1:1) (3 in 100,000).

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 254 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase: Dissolve 1.1 g of sodium 1-heptanesulfonate in 1000 mL of water, and adjust to pH 3.0 with acetic acid (100). To 500 mL of this solution add 300 mL of acetonitrile.
Flow rate: Adjust so that the retention time of rilmazafone is about 5 minutes.

System suitability—
System performance: When the procedure is run with 15 μL of the standard solution under the above operating conditions, rilmazafone and the internal standard are eluted in this order with the resolution between these peaks being not less than 13.
System repeatability: When the test is repeated 6 times with 15 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratios of the peak area of rilmazafone to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Well-closed containers.

Rilmazafone Hydrochloride Tablets

Rilmazafone Hydrochloride Tablets contain not less than 93.0% and not more than 107.0% of the labeled amount of rilmazafone hydrochloride hydrate \[(C_{21}H_{20}Cl_{2}N_{2}O_{6} \cdot HCl \cdot 2H_2O)\]: 547.82.

Method of preparation Prepare as directed under Tablets, with Rilmazafone Hydrochloride Hydrate.

Identification To a quantity of powdered Rilmazafone Hydrochloride Tablets, equivalent to 10 mg of Rilmazafone Hydrochloride Hydrate, add 5 mL of methanol, shake for 10 minutes, and centrifuge. Filter the supernatant liquid with a membrane filter with a pore size not exceeding 0.45 μm, and use the filtrate as the sample solution. Separately, dissolve 2 mg of rilmazafone hydrochloride hydrate in 1 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography \[<2.0>\]. Spot 10 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate, acetonitrile, water and acetic acid (100) (8:4:3:3) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the principal spot obtained from the sample solution and the spot from the standard solution show the same Rf value.

Uniformity of dosage units \[<6.02>\] Perform the test according to the following method: it meets the requirement of the Content uniformity test.
To 1 tablet of Rilmazafone Hydrochloride Tablets add 18 mL of water so that each mL contains about 0.2 mg of rilmazafone hydrochloride hydrate \[(C_{21}H_{20}Cl_{2}N_{2}O_{6} \cdot HCl \cdot 2H_2O)\]. Add exactly 20 mL of the internal standard solution, shake vigorously for 10 minutes, and filter with a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 5 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 20 mg of Rilmazafone Hydrochloride RS (separately determine the water \[<2.40>\] in the same manner as Rilmazafone Hydrochloride Hydrate), and dissolve in water to make exactly 100 mL. Pipet 20 mL of this solution, add exactly 20 mL of the internal standard solution, and use this solution as the standard solution. Then, proceed as directed in the Assay under Rilmazafone Hydrochloride Hydrate.

Amount (mg) of rilmazafone hydrochloride hydrate
\[(C_{21}H_{20}Cl_{2}N_{2}O_{6} \cdot HCl \cdot 2H_2O)\]
\[= M_S \times \frac{Q_S}{Q_b} \times V/100 \times 1.070\]

M_S: Amount (mg) of Rilmazafone Hydrochloride RS taken, calculated on the anhydrous basis

Internal standard solution—A solution of propyl parahydroxybenzoate in a mixture of water and acetonitrile (1:1) (3 in 100,000).

Dissolution \[<6.10>\] When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 15 minutes of Rilmazafone Hydrochloride Tablets is not less than 85%.

Start the test with 1 tablet of Rilmazafone Hydrochloride Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet 10 mL of the subsequent filtrate, add water to make exactly 100 mL, and use this solution as the sample solution. Separately, weigh accurately about 22 mg of Rilmazafone Hydrochloride RS (separately determine the water \[<2.40>\] in the same manner as Rilmazafone Hydrochloride Hydrate), and use this solution as the sample solution. Perform the test with exactly 50 μL each of the sample solution and standard solution as directed under Liquid Chromatography \[<2.0>\] according to the following conditions, and determine the peak areas, A_T and A_S, of rilmazafone in each solution.

Dissolution rate (%): with respect to the labeled amount of rilmazafone hydrochloride hydrate
\[(C_{21}H_{20}Cl_{2}N_{2}O_{6} \cdot HCl \cdot 2H_2O)\]
\[= M_S \times A_T/A_S = \frac{V/100}{C} \times 9/2 \times 1.070\]

M_S: Amount (mg) of Rilmazafone Hydrochloride RS taken, calculated on the anhydrous basis
C: Labeled amount (mg) of rilmazafone hydrochloride hydrate \[(C_{21}H_{20}Cl_{2}N_{2}O_{6} \cdot HCl \cdot 2H_2O)\] in 1 tablet

Operating conditions—
Proceed as directed in the operating conditions in the
Ringer’s Solution / Official Monographs

Assay under Rilmazafone Hydrochloride Hydrate.

System suitability

System performance: When the procedure is run with 50 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of rilmazafone are not less than 5000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 50 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of rilmazafone is not more than 2.0%.

Assay

Weigh accurately the mass of not less than 20 tablets of Rilmazafone Hydrochloride Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 2 mg of rilmazafone hydrochloride hydrate (C₂₉H₂₂Cl₂N₂O₂·HCl·2H₂O), add 10 mL of water and exactly 20 mL of the internal standard solution, shake vigorously for 10 minutes, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 5 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 20 mg of Rilmazafone Hydrochloride RS (separately determine the water <2.48 in the same manner as Rilmazafone Hydrochloride Hydrate), and dissolve in water to make exactly 100 mL. Pipet 10 mL of this solution, add exactly 20 mL of the internal standard, and use this solution as the standard solution. Then, proceed as directed in the Assay under Rilmazafone Hydrochloride Hydrate.

\[M_s = \frac{Q_1}{Q_2} \times \frac{1}{10} \times 1.070 \]

\[M_s: \text{Amount (mg) of Rilmazafone Hydrochloride RS taken, calculated on the anhydrous basis} \]

Internal standard solution—A solution of propyl parahydroxybenzoate in a mixture of water and acetonitrile (1:1) (3 in 100,000).

Containers and storage

Containers—Well-closed containers.

Ringer’s Solution

リンゲル液

Ringer’s Solution is an aqueous injection.

It contains not less than 0.53 w/v% and not more than 0.58 w/v% of chlorine (Cl: 35.45), and not less than 0.030 w/v% and not more than 0.036 w/v% of calcium chloride hydrate (CaCl₂·2H₂O: 147.01).

Method of preparation

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium Chloride</td>
<td>8.6</td>
</tr>
<tr>
<td>Potassium Chloride</td>
<td>0.3</td>
</tr>
<tr>
<td>Calcium Chloride Hydrate</td>
<td>0.33</td>
</tr>
<tr>
<td>Water for Injection or Sterile Water for Injection in Containers</td>
<td>a sufficient quantity</td>
</tr>
</tbody>
</table>

To make 1000 mL

Prepare as directed under Injections, with the above ingredients.

No preservative may be added.

Description

Ringer’s Solution is a clear and colorless liquid. It has a slightly saline taste.

Identification

1. Evaporate 10 mL of Ringer’s Solution to 5 mL: the solution responds to Qualitative Tests <1.09> for potassium salt.
2. Evaporate 10 mL of Ringer’s Solution to 5 mL: the solution responds to Qualitative Test <1.09> for calcium salt.
3. Ringer’s Solution responds to Qualitative Tests <1.09> for sodium salt.
4. Ringer’s Solution responds to Qualitative Tests <1.09> for chloride.

pH<2.50> 5.0 – 7.5

Purity (1)

Heavy metals <1.07>—Evaporate 100 mL of Ringer’s Solution to about 40 mL on a water bath. Add 2 mL of dilute acetic acid and water to make 50 mL, and perform the test using this solution as the test solution.

Control solution: To 3.0 mL of Standard Lead Solution add 2 mL of dilute acetic acid and water to make 50 mL (not more than 0.3 ppm).

(2) Arsenic <1.11>—Perform the test with 20 mL of Ringer’s Solution as the test solution (not more than 0.1 ppm).

Bacterial endotoxins <4.01>

Less than 0.50 EU/mL.

Extractable volume <6.05> It meets the requirement.

Foreign insoluble matter <6.06> Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter <6.07> It meets the requirement.

Sterility <4.06> Perform the test according to the Membrane filtration method: it meets the requirement.

Assay (1)

Chlorine—To 20 mL of Ringer’s Solution, accurately measured, add 30 mL of water. Titrate <2.50> with 0.1 mol/L silver nitrate VS while shaking vigorously (indicator: 3 drops of fluorescein sodium TS).

\[\text{Each mL of 0.1 mol/L silver nitrate VS} = 3.545 \text{ mg of Cl} \]

(2) Calcium chloride Hydrate—To 50 mL of Ringer’s Solution, exactly measured, add 2 mL of 8 mol/L potassium hydroxide TS and 50 mg of NN indicator, and titrate <2.50> immediately with 0.01 mol/L disodium dihydrogen ethylenediamine tetraacetate VS, until the color of the solution changes from red-purple to blue.

\[\text{Each mL of 0.01 mol/L disodium dihydrogen ethylenediamine tetraacetate VS} = 1.470 \text{ mg of CaCl}_2·2\text{H}_2\text{O} \]

Containers and storage

Containers—Hermetic containers.

Plastic containers for aqueous infusions may be used.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S)
Risperidone

リスペリドン

![Chemical Structure](image)

C\(_{23}\)H\(_{37}\)FN\(_4\)O\(_2\): 410.48
3-[2-[4-(6-Fluoro-1,2-benzisoxazol-3-yl)piperidin-1-yl]ethyl]-2-methyl-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidin-4-one [106266-06-2]

Risperidone contains not less than 98.5% and not more than 101.0% of risperidone (C\(_{23}\)H\(_{27}\)FN\(_4\)O\(_2\)), calculated on the dried basis.

Description

Risperidone occurs as a white to pale yellow-white crystalline powder.

It is sparingly soluble in methanol and in ethanol (99.5), very slightly soluble in 2-propanol, and practically insoluble in water.

Identification (1) Determine the absorption spectrum of a solution of Risperidone in 2-propanol (1 in 40,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Risperidone, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point 2.60° 169 – 173°C

Purity (1) Heavy metals <1.07>—Proceed with 1.0 g of Risperidone according to Method 4, and perform the test. Prepare the control solution with 1.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Related substances—Dissolve 0.10 g of Risperidone in 10 mL of methanol, and use this solution as the sample solution. Pipet 1 mL of the sample solution, and add methanol to make exactly 100 mL. Pipet 5 mL of this solution, add methanol to make exactly 25 mL, and use this solution as the standard solution. Perform the test with exactly 10 \(\mu\)L each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak other than risperidone obtained from the sample solution is not larger than the peak area of risperidone from the standard solution, and the total area of the peaks other than risperidone from the sample solution is not larger than 1.5 times the peak area of risperidone from the standard solution.

Operating conditions

Detector: An ultraviolet absorption photometer (wavelength: 260 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 10 cm in length, packed with octadecylsila- nized silica gel for liquid chromatography (3 \(\mu\)m in particle diameter).

Column temperature: A constant temperature of about 30°C.

Mobile phase A: A solution of ammonium acetate (1 in 200).

Mobile phase B: Methanol.

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 2</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>2 – 17</td>
<td>70 → 30</td>
<td>30 → 70</td>
</tr>
<tr>
<td>17 – 22</td>
<td>30</td>
<td>70</td>
</tr>
</tbody>
</table>

Flow rate: 1.5 mL per minute.

Time span of measurement: About 1.6 times as long as the retention time of risperidone.

System suitability

Test for required detectability: Pipet 2 mL of the standard solution, and add methanol to make exactly 20 mL. Confirm that the peak area of risperidone obtained with 10 \(\mu\)L of this solution is equivalent to 7 to 13% of that with 10 \(\mu\)L of the standard solution.

System performance: When the procedure is run with 10 \(\mu\)L of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of risperidone are not less than 10,000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 10 \(\mu\)L of the standard solution under the above operating conditions, the relative standard deviation of the peak area of risperidone is not more than 2.0%.

Loss on drying 2.41> Not more than 0.5% (1 g, in vacuum, 80°C, 4 hours).

Residue on ignition 2.44> Not more than 0.1% (1 g, platinum crucible).

Assay Weigh accurately about 0.16 g of Risperidone, dissolve in 70 mL of a mixture of 2-butanol and acetic acid (100) (7:1), and titrate 2.50> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 20.52 mg of C\(_{23}\)H\(_{27}\)FN\(_4\)O\(_2\)

Containers and storage Containers—Tight containers.

Risperidone Fine Granules

リスペリドン細粒

Risperidone Fine Granules contain not less than 95.0% and not more than 105.0% of the labeled amount of risperidone (C\(_{23}\)H\(_{27}\)FN\(_4\)O\(_2\): 410.48).

Method of preparation Prepare as directed under Granules, with Risperidone.

Identification To an amount of Risperidone Fine Granules, equivalent to 2 mg of Risperidone, add 100 mL of 2-propanol, shake thoroughly, and filter. Determine the absorption spectrum of the filtrate as directed under Ultraviolet-visible Spectrophotometry <2.24>: it exhibits maxima between 277 nm and 281 nm and between 283 nm and 287 nm.

Purity Related substances—To an amount of Risperidone Fine Granules, equivalent to 2 mg of Risperidone, add 20 mL of a mixture of 0.1 mol/L hydrochloric acid TS and
If necessary powder Risperidone Fine Granules, and according to the following conditions, and determine the peak areas, \(A_T \) and \(A_S \), of risperidone in each solution.

\[
M_S = \frac{M_s \times A_T / A_S}{1 / C \times 54 / 5}
\]

\[
M_S = \text{Amount (mg) of risperidone for assay taken, calculated on the dried basis}
\]

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 237 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 \(\mu \)m in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase: To 1000 mL of a mixture of water and acetonitrile (13:7) add 1 mL of trifluoroacetic acid, and adjust to pH 3.0 with ammonia solution (28).
Flow rate: Adjust so that the retention time of risperidone is about 3 minutes.

System suitability—
System performance: When the procedure is run with 100 \(\mu \)L of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of risperidone are not less than 3500 and not more than 2.5, respectively.
System repeatability: When the test is repeated 6 times with 100 \(\mu \)L of the standard solution under the above operating conditions, the relative standard deviation of the peak area of risperidone is not more than 2.0%.

Assay
If necessary powder Risperidone Fine Granules, and weigh accurately an amount, equivalent to about 2 mg of risperidone (C\(_23\)H\(_23\)FN\(_5\)O\(_8\)), add 8 mL of a mixture of 0.1 mol/L hydrochloric acid TS and methanol (3:2), shake, and add a mixture of 0.1 mol/L hydrochloric acid TS and methanol (3:2) to make exactly 20 mL. Filter the solution through a membrane filter with a pore size not exceeding 0.45 \(\mu \)m. Discard the first 1 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 50 mg of risperidone for assay (separately determine the loss on drying C\(_23\)H\(_23\)FN\(_5\)O\(_8\) under the same conditions as Risperidone), and dissolve in a mixture of 0.1 mol/L hydrochloric acid TS and methanol (3:2) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 \(\mu \)L each of the sample solution and standard solution as directed under Liquid Chromatography C\(_2\)O\(_1\) according to the following conditions, and determine the peak areas, \(A_T \) and \(A_S \), of risperidone in each solution.

\[M_S = \frac{M_s \times A_T / A_S}{1 / 25}
\]

\[M_S = \text{Amount (mg) of risperidone for assay taken, calculated on the dried basis}
\]

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 275 nm).
Column: A stainless steel column 3.0 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (3.5 \(\mu \)m in particle diameter).

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.)
Risperidone Oral Solution

リスペリドン内服液

Risperidone Oral Solution contains not less than 95.0% and not more than 105.0% of the labeled amount of risperidone (C23H27FN3O2: 410.48).

Method of preparation Prepare as directed under Liquids and Solutions for Oral Administration, with Risperidone.

Description Risperidone Oral Solution occurs as a clear and colorless liquid.

Identification To a volume of Risperidone Oral Solution, equivalent to 2 mg of Risperidone, add 50 mg of sodium hydrogen carbonate and 10 mL of diethyl ether, shake, centrifuge, and evaporate the supernatant liquid to dryness in lukewarm water. Determine the absorption spectrum of a solution of the residue in 100 mL of 2-propanol as directed under Ultraviolet-visible Spectrophotometry (2.24): it exhibits maxima between 277 nm and 281 nm and between 283 nm and 287 nm.

pH Being specified separately when the drug is granted approval based on the Law.

Purity Related substances—To a volume of Risperidone Oral Solution, equivalent to 2 mg of Risperidone, add methanol to make 20 mL, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add a mixture of methanol and water (9:1) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography (2.07) according to the following conditions, and determine each peak area by the automatic integration method: the area of risperidone is not more than 2.5.

Operating conditions—
Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 2.5 times as long as the retention time of risperidone, beginning after the solvent peak.

System suitability—
Test for required detectability: To exactly 5 mL of the standard solution add a mixture of methanol and water (9:1) to make exactly 50 mL. Confirm that the peak area of risperidone obtained with 10 μL of this solution is equivalent to 7.5 to 12.5% of that with 10 μL of the standard solution.

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of risperidone are not less than 4000 and not more than 2.5, respectively.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of risperidone is not more than 1.0%.

Containers and storage Containers—Tight containers.

Amount (mg) of risperidone (C23H27FN3O2) = M5 × A7/A5 × 1/25

M5: Amount (mg) of risperidone for assay taken, calculated on the dried basis

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 275 nm)
Column: A stainless steel column 3.0 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (3.5 μm in particle diameter).
Column temperature: A constant temperature of about 25°C.

Mobile phase: To 1000 mL of a mixture of water and acetonitrile (4:1) add 1.5 mL of trifluoroacetic acid, and adjust to pH 3.0 with ammonia solution (28).
Flow rate: Adjust so that the retention time of risperidone is about 13 minutes.

System suitability—
System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of risperidone are not less than 4000 and not more than 2.5, respectively.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operat-
ing conditions, the relative standard deviation of the peak area of risperidone is not more than 1.0%.

Containers and storage Containers—Tight containers.

Risperidone Tablets

リスペリドン錠

Risperidone Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of risperidone (C_{23}H_{27}FN_{2}O_{2}: 410.48).

Method of preparation Prepare as directed under Tablets, with Risperidone.

Identification Powder Risperidone Tablets. To a portion of the powder, equivalent to 2 mg of Risperidone, add 100 mL of 2-propanol, shake thoroughly, and filter. Determine the absorption spectrum of the filtrate as directed under Ultraviolet-visible Spectrophotometry <2.24>: it exhibits maxima between 277 nm and 281 nm and between 283 nm and 287 nm.

Purity Related substances—Powder Risperidone Tablets. To a portion of the powder, equivalent to 2 mg of Risperidone, add 20 mL of a mixture of 0.1 mol/L hydrochloric acid TS and methanol (3:2), shake, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 1 mL of the filtrate, and use the subsequent filtrate as the sample solution. Pipet 1 mL of the sample solution, add a mixture of 0.1 mol/L hydrochloric acid TS and methanol (3:2) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak other than risperidone obtained from the sample solution is not larger than 1/2 times the peak area of risperidone from the standard solution, and the total area of the peaks other than risperidone from the sample solution is not larger than the peak area of risperidone from the standard solution. For the area of the peaks, having the relative retention time of about 0.4 and about 1.6 to risperidone, multiply their correction factors, 1.9 and 1.5, respectively.

Operating conditions—
 Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 2.5 times as long as the retention time of risperidone, beginning after the solvent peak.

System suitability—
 Test for required detectability: To exactly 5 mL of the standard solution add a mixture of 0.1 mol/L hydrochloric acid TS and methanol (3:2) to make exactly 50 mL. Confirm that the peak area of risperidone obtained with 10 μL of this solution is equivalent to 7.5 to 12.5% of that with 10 μL of the standard solution.

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of risperidone are not less than 4000 and not more than 2.5, respectively.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of risperidone is not more than 2.5%.

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 tablet of Risperidone Tablets add 3V/5 mL of a mixture of 0.1 mol/L hydrochloric acid TS and methanol (3:2), shake, and add a mixture of 0.1 mol/L hydrochloric acid TS and methanol (3:2) to make exactly V mL so that each mL contains 0.1 mg of risperidone (C_{23}H_{27}FN_{2}O_{2}). Filter this solution through a membrane filter with a pore size not exceeding 0.45 μm, discard the first 1 mL of the filtrate, and use the subsequent filtrate as the sample solution. Then, proceed as directed in the Assay.

Amount (mg) of risperidone (C_{23}H_{27}FN_{2}O_{2})

\[
M_S = \frac{M_T}{A_T}
\]

\[
M_S = \frac{\text{Amount (mg) of risperidone taken}}{\text{Labeled amount (mg) of risperidone in 1 tablet}} \times \frac{V/5}{V/500}
\]

Dissolution <6.10> When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 30 minutes of Risperidone Tablets is not less than 75%.

Start the test with 1 tablet of Risperidone Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add diluted hydrochloric acid (1 in 137) to make exactly V mL so that each mL contains about 0.56 μg of risperidone (C_{23}H_{27}FN_{2}O_{2}), and use this solution as the sample solution. Separately, weigh accurately about 28 mg of risperidone for assay (separately determine the loss on drying <2.41> under the same conditions as Risperidone), and dissolve in methanol to make exactly 50 mL. Pipet 5 mL of this solution, add methanol to make exactly 25 mL. Pipet 2 mL of this solution, and add water to make exactly 200 mL. Pipet 3 mL of this solution, add exactly 3 mL of diluted hydrochloric acid (1 in 137), and use this solution as the standard solution. Perform the test with exactly 100 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A_{T2} and A_{S2}, of risperidone in each solution.

Dissolution rate (%): with respect to the labeled amount of risperidone (C_{23}H_{27}FN_{2}O_{2})

\[
D = \frac{M_S - M_T}{C} \times 100 \%
\]

M_S: Amount (mg) of risperidone for assay taken, calculated on the dried basis.

C: Labeled amount (mg) of risperidone (C_{23}H_{27}FN_{2}O_{2}) in 1 tablet

Operating conditions—
 Detector: An ultraviolet absorption photometer (wave-length: 237 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: To 1000 mL of a mixture of water and acetonitrile (13:7) add 1 mL of trifluoroacetic acid, and adjust to pH 3.0 with ammonia solution (28).

Flow rate: Adjust so that the retention time of risperidone is about 3 minutes.
Ritodrine Hydrochloride

Ritodrine Hydrochloride

[Ritodrine Hydrochloride structure diagram]

\[\text{C}_{17}\text{H}_{23}\text{FN} \cdot \text{HCl}: 323.81 \]

(RS,2SR)-1-(4-Hydroxyphenyl)-2-[[2-(4-hydroxyphenyl)ethyl]amino]propan-1-ol monohydrochloride

Ritodrine Hydrochloride, when dried, contains not less than 98.0% and not more than 102.0% of ritodrine hydrochloride (C_{17}H_{23}FN\cdot\text{HCl}).

Description

Ritodrine Hydrochloride occurs as a white crystalline powder.

It is freely soluble in water, in methanol and in ethanol (99.5).

It dissolves in 0.01 mol/L hydrochloric acid TS.

A solution of Ritodrine Hydrochloride (1 in 10) shows no optical rotation.

It is gradually colored to light yellow by light.

Melting point: about 196°C (with decomposition).

Identification (1)

Determine the absorption spectrum of a solution of Ritodrine Hydrochloride in 0.01 mol/L hydrochloric acid TS (1 in 20,000) as directed under Ultraviolet-visible Spectrophotometry (2.24), and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Ritodrine Hydrochloride RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 275 nm).

Column: A stainless steel column 3.0 mm in inside diameter and 15 cm in length, packed with octadecylsilylanized silica gel for liquid chromatography (3.5 μm in particle diameter). Column temperature: A constant temperature of about 25°C.

Mobile phase: To 1000 mL of a mixture of water and acetonitrile (4:1) add 1.5 mL of trifluoroacetic acid, and adjust to pH 3.0 with ammonia solution (28).

Flow rate: Adjust so that the retention time of risperidone is about 13 minutes.

System suitability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of risperidone are not less than 4000 and not more than 2.5, respectively.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of risperidone is not more than 1.0%.

Containers and storage

Containers—Tight containers.
Ritodrine Hydrochloride Injection is a clear and colorless liquid.

It contains not less than 95.0% and not more than 105.0% of the labeled amount of ritodrine hydrochloride (C\textsubscript{17}H\textsubscript{21}NO\textsubscript{3} HCl: 323.81).

Method of preparation Prepare as directed under Injections, with Ritodrine Hydrochloride.

Manufacture Ritodrine Hydrochloride Injection is produced by the formulation and the manufacturing method to ensure that the amounts of related substances do not exceed the limit values of related substances under Ritodrine Hydrochloride.

Description Ritodrine Hydrochloride Injection is a clear and colorless liquid.

Identification To a volume of Ritodrine Hydrochloride Injection, equivalent to 50 mg of Ritodrine Hydrochloride, add 0.01 mol/L hydrochloric acid TS to make 100 mL. To 10 mL of this solution add 0.01 mol/L hydrochloric acid TS to make 100 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.24>: it exhibits a maximum between 272 nm and 276 nm.

pH Being specified separately when the drug is granted approval based on the Law.

Bacterial endotoxins <4.01> Less than 25 EU/mg.

Extractable volume <6.05> It meets the requirement.

Foreign insoluble matter <6.06> Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter <6.07> It meets the requirement.

Sterility <6.08> Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Pipet a volume of Ritodrine Hydrochloride Injection, equivalent to about 20 mg of ritodrine hydrochloride...
(C$_7$H$_{12}$NO$_3$.HCl), and add a mixture of 0.02 mol/L sodium dihydrogen phosphate dihydrate solution and methanol (7:3) to make exactly 250 mL, and use this solution as the sample solution. Separately, weigh accurately about 20 mg of Ritodrine Hydrochloride RS, previously dried at 105°C for 2 hours, dissolve in a mixture of 0.02 mol/L sodium dihydrogen phosphate dihydrate solution and methanol (7:3) to make exactly 250 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine the peak areas, A_T and A_S, of ritodrine in each solution.

Amount (mg) of ritodrine hydrochloride (C$_7$H$_{12}$NO$_3$.HCl) = $M_S \times A_T/A_S$

M_S: Amount (mg) of Ritodrine Hydrochloride RS taken

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 220 nm).
Column: A stainless steel column 6 mm in inside diameter and 15 cm in length, packed with octylsilanized silica gel for liquid chromatography, and adjust to pH 3.0 with phosphoric acid.
Flow rate: Adjust so that the retention time of ritodrine is about 19 minutes.

System Suitability—
System performance: Dissolve 10 mg of ritodrine hydrochloride in 50 mL of dilute sulfuric acid. Heat a portion of this solution in a water bath for about 30 minutes, and allow to cool. Measure a portion of this solution, and add the same volume of 2 mol/L sodium hydroxide TS. Dissolve 2 mg of ritodrine hydrochloride in 10 mL of this solution, and add a mixture of 0.02 mol/L sodium dihydrogen phosphate dihydrate solution and methanol (7:3) to make 25 mL. When the procedure is run with 10 μL of this solution under the above operating conditions, ritodrine and ritodrine threo-isomer are eluted in this order with the resolution between these peaks being not less than 3.
System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of ritodrine is not more than 1.0%.

Containers and storage—Containers—Hermetic containers.
Storage—At a temperature between 2°C and 8°C.

Ritodrine Hydrochloride Tablets
リトドリン塩酸塩錠

Ritodrine Hydrochloride Tablets contain not less than 93.0% and not more than 107.0% of the labeled amount of ritodrine hydrochloride (C$_7$H$_{12}$NO$_3$.HCl: 323.81).

Method of preparation—Prepare as directed under Tablets, with Ritodrine Hydrochloride.

Identification—To 10 mL of the filtrate obtained in the Assay add 0.01 mol/L hydrochloric acid TS to make 100 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.24>—it exhibits a maximum between 272 nm and 276 nm.

Uniformity of dosage units <6.02>—Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 tablet of Ritodrine Hydrochloride Tablets add 9 mL of 0.01 mol/L hydrochloric acid TS, shake until the tablet is completely disintegrated, add 0.01 mol/L hydrochloric acid TS to make exactly 10 mL, and filter through a membrane filter having pore size of 0.45 μm. Pipet 3 mL of the filtrate, add exactly 1 mL of the internal standard solution, and use this solution as the sample solution. Separately, weigh accurately about 25 mg of Ritodrine Hydrochloride RS, previously dried at 105°C for 2 hours, and dissolve in 0.01 mol/L hydrochloric acid TS to make exactly 50 mL. Pipet 3 mL of this solution, add exactly 1 mL of the internal standard solution, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and calculate the ratios, Q_T and Q_S, of the peak area of ritodrine to that of the internal standard.

Amount (mg) of ritodrine hydrochloride (C$_7$H$_{12}$NO$_3$.HCl) = $M_S \times Q_T/Q_S \times 1/5$

M_S: Amount (mg) of Ritodrine Hydrochloride RS taken

Internal standard solution—A solution of methyl parahydroxybenzoate in methanol (3 in 10,000).

Operating conditions—
Proceed as directed in the operating conditions in the Assay.

System suitability—
System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, ritodrine and the internal standard are eluted in this order with the resolution between these peaks being not less than 3.
System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of ritodrine to that of the internal standard is not more than 1.0%.

Dissolution <6.10>—When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 15 minutes of Ritodrine Hydrochloride Tablets is not less than 80%.

Start the test with 1 tablet of Ritodrine Hydrochloride Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet V_M mL of the subsequent filtrate, add water to make exactly V_M mL so that each mL contains about 5.6 μg of ritodrine hydrochloride (C$_7$H$_{12}$NO$_3$.HCl), and use this solution as the sample solution. Separately, weigh accurately about 28 mg of Ritodrine Hydrochloride RS, previously dried at 105°C for 2 hours, and dissolve in water to make exactly 100 mL. Pipet 2 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 80 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A_T and A_S, of ritodrine in each solution.
Rosuvastatin Calcium / Official Monographs

Dissolution rate (%) with respect to the labeled amount of ritodrine hydrochloride (C\(_17\)H\(_20\)NO\(_3\)HCl)

\[M_S = \frac{M_S \times A_S}{V' \times V \times 1/C \times 18} \]

\(M_S \): Amount (mg) of Ritodrine Hydrochloride RS taken

\(C \): Labeled amount (mg) of ritodrine hydrochloride (C\(_17\)H\(_20\)NO\(_3\)HCl) in 1 tablet

Operating conditions—

Proceed as directed in the operating conditions in the Assay.

System suitability—

System performance: When the procedure is run with 80 µL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of ritodrine are not less than 3000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 80 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of ritodrine is not more than 1.5%.

Assay To 20 Ritodrine Hydrochloride Tablets add 150 mL of 0.01 mol/L hydrochloric acid TS, shake for 20 minutes, and add 0.01 mol/L hydrochloric acid TS to make exactly 200 mL. Filter through a glass filter (G4), and discard the first 20 mL of the filtrate. Pipet 30 mL of the subsequent filtrate, add exactly 5 mL of the internal standard solution and 0.01 mol/L hydrochloric acid TS to make 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 25 mg of Ritodrine Hydrochloride RS, previously dried at 105°C for 2 hours, and dissolve in 0.01 mol/L hydrochloric acid TS to make exactly 50 mL. Pipet 30 mL of this solution, add exactly 5 mL of the internal standard solution and 0.01 mol/L hydrochloric acid TS to make 50 mL, and use this solution as the standard solution. Perform the test with 10 µL each of the sample solution and standard solution as directed under Liquid Chromatography <2.00> according to the following conditions, and calculate the ratios, \(Q_3 \) and \(Q_6 \), of the peak area of ritodrine to that of the internal standard.

Amount (mg) of ritodrine hydrochloride (C\(_17\)H\(_20\)NO\(_3\)HCl)

\[M_S = \frac{M_S \times Q_3}{Q_6 \times 4} \]

\(M_S \): Amount (mg) of Ritodrine Hydrochloride RS taken

Internal standard solution—A solution of methyl parahydroxybenzoate in methanol (3 in 5000).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 274 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: Dissolve 6.6 g of diammonium hydrogen phosphate and 1.1 g of sodium 1-heptanesulfonate in 700 mL of water, and add 300 mL of methanol. Adjust to pH 3.0 with phosphoric acid.

Flow rate: Adjust so that the retention time of ritodrine is about 6 minutes.

System suitability—

System performance: When the procedure is run with 10 µL of the standard solution under the above operating conditions, ritodrine and the internal standard are eluted in this order with the resolution between these peaks being not less than 3.

System repeatability: When the test is repeated 6 times with 10 µL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of ritodrine to that of the internal standard is not more than 1.0%.

Containers and storage—Containers—Tight containers.

Storage—Light-resistant.

Rosuvastatin Calcium

Rosuvastatin Calcium contains not less than 97.0% and not more than 102.0% of rosuvastatin calcium ([C\(_{27}\)H\(_{29}\)FN\(_3\)O\(_6\)S\(_2\)]Ca), calculated on the anhydrous basis.

Description—Rosuvastatin Calcium occurs as a white powder.

It is freely soluble in acetonitrile, soluble in methanol, and slightly soluble in water and in ethanol (99.5).

It is hygroscopic.

Identification (1) Determine the absorption spectrum of a solution of Rosuvastatin Calcium in methanol (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Rosuvastatin Calcium RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Rosuvastatin Calcium as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of Rosuvastatin Calcium RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) A solution of Rosuvastatin Calcium in a mixture of water and methanol (1:1) (1 in 125) responds to Qualitative Tests <1.08> (3) for calcium salt.

Purity (1) Inorganic impurities (chloride)—Being specified separately when the drug is granted approval based on the Law.

(2) Heavy metals <1.07>—Proceed with 1.0 g of Rosuvastatin Calcium according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(3) Related substances—Conduct this procedure using light-resistant vessels. Use the sample solution obtained in the Assay as the sample solution. Separately, pipet 1 mL of the standard solution obtained in the Assay, add a mixture of water and acetonitrile (3:1) to make exactly 10 mL. Pipet 1 mL of this solution, add a mixture of water and acetonitrile (3:1) to make exactly 10 mL. Pipet
Rosuvastatin Calcium (3:1) to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly 10 \(\mu L \) each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area of related substances, \(A_1 \) in the sample solution and the peak area of rosuvastatin, \(A_S \), in the standard solution by the automatic integration method, and calculate the amount of the related substances by the following equation: the amount of related substance \(A \) having the relative retention time of about 0.90 to rosuvastatin is not more than 0.2\%, the amount of related substance \(B \) (diastereomer) having the relative retention time of about 1.1 is not more than 0.5\%, the amount of related substance \(C \) having the relative retention time of about 1.5 is not more than 0.7\%, the amount of related substance \(D \) having the relative retention time of about 1.7 is not more than 0.15\%, and each amount of other related substance is not more than 0.1\%. Furthermore, the total amount of the related substances is not more than 1.1\%. For the area of the peak of related substance \(C \), multiply the correction factor 1.4.

Amount (\%) of related substance

\[
M_5: \text{Amount (mg) of Rosuvastatin Calcium RS taken, calculated on the anhydrous basis}
\]

\[
M_2: \text{Amount (mg) of Rosuvastatin Calcium taken, calculated on the anhydrous basis}
\]

Operating conditions—

Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 2.8 times as long as the retention time of rosuvastatin, beginning after the solvent peak.

System suitability—

System performance: Proceed as directed in the system suitability in the Assay.

Test for required detectability: Pipet 5 mL of the standard solution obtained in the Assay, add 24 mL of acetonitrile, and add water to make exactly 100 mL. Pipet 1 mL of this solution, add 24 mL of acetonitrile, and add water to make exactly 100 mL. Confirm that the peak area of rosuvastatin obtained with 10 \(\mu L \) of this solution is equivalent to 7 to 13\% of that with the standard solution.

System performance: To 5 mg of rosuvastatin calcium enantiomer add 12 mL of acetonitrile and 10 mL of water, sonicate to dissolve, and add water to make 50 mL. To 1 mL of this solution and 6 mL of acetonitrile add 25 mg of Rosuvastatin Calcium, sonicate to dissolve, and add water to make 25 mL. When the procedure is run with 10 \(\mu L \) of this solution under the above operating conditions, rosuvastatin enantiomer and rosuvastatin are eluted in this order with the resolution between these peaks being not less than 1.5, and the symmetry factor of the peak of rosuvastatin is 1.0 – 1.5.

System repeatability: When the test is repeated 6 times with 10 \(\mu L \) of the standard solution under the above operating conditions, the relative standard deviation of the peak area of rosuvastatin is not more than 2.0\%.

Water \(< 2.48\)> Not more than 6.1\% (20 mg, coulometric titration).

Assay Conduct this procedure using light-resistant vessels. Weigh accurately about 35 mg each of Rosuvastatin Calcium and Rosuvastatin Calcium RS (separately determine the water \(< 2.48\>\) in the same manner as Rosuvastatin Calcium), dissolve each in 12 mL of acetonitrile, add water to make exactly 50 mL, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with exactly 10 \(\mu L \) each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, \(A_1 \) and \(A_S \), of rosuvastatin in each solution.

Amount (mg) of rosuvastatin calcium \([\text{C}_{27}\text{H}_{34}\text{FN}_{6}\text{O}_{7}\text{S}]\text{Ca}\) = \(M_5 \times A_1/A_S\)

\[M_5: \text{Amount (mg) of Rosuvastatin Calcium RS taken, calculated on the anhydrous basis}\]

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 242 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with silica gel coated with cellulose tris(4-methylbenzoate) for liquid chromatography (5 \(\mu m \) in particle diameter).

Column temperature: A constant temperature of about 35°C.

Mobile phase: A mixture of diluted trifluoroacetic acid (1 in 1000) and acetonitrile (3:1).

Flow rate: Adjust so that the retention time of rosuvastatin is about 26.5 minutes.

System suitability—

Test for required detectability: Pipet 5 mL of the standard solution, add a mixture of water and acetonitrile (3:1) to make exactly 50 mL. Confirm that the peak area of rosuvastatin obtained with 10 \(\mu L \) of this solution is equivalent to 7 to 13\% of that with the standard solution.

Mobile phase: A mixture of diluted trifluoroacetic acid (1 in 1000) and acetonitrile (3:1).

Flow rate: Adjust so that the retention time of rosuvastatin is about 26.5 minutes.

System suitability—

Test for required detectability: Pipet 5 mL of the standard solution, add a mixture of water and acetonitrile (3:1) to make exactly 50 mL. Confirm that the peak area of rosuvastatin obtained with 10 \(\mu L \) of this solution is equivalent to 7 to 13\% of that with the standard solution.

Mobile phase: A mixture of diluted trifluoroacetic acid (1 in 1000) and acetonitrile (3:1).

Flow rate: Adjust so that the retention time of rosuvastatin is about 26.5 minutes.

System suitability—

Test for required detectability: Pipet 5 mL of the standard solution, add a mixture of water and acetonitrile (3:1) to make exactly 50 mL. Confirm that the peak area of rosuvastatin obtained with 10 \(\mu L \) of this solution is equivalent to 7 to 13\% of that with the standard solution.

Mobile phase: A mixture of diluted trifluoroacetic acid (1 in 1000) and acetonitrile (3:1).

Flow rate: Adjust so that the retention time of rosuvastatin is about 26.5 minutes.

System suitability—

Test for required detectability: Pipet 5 mL of the standard solution, add a mixture of water and acetonitrile (3:1) to make exactly 50 mL. Confirm that the peak area of rosuvastatin obtained with 10 \(\mu L \) of this solution is equivalent to 7 to 13\% of that with the standard solution.

Mobile phase: A mixture of diluted trifluoroacetic acid (1 in 1000) and acetonitrile (3:1).

Flow rate: Adjust so that the retention time of rosuvastatin is about 26.5 minutes.

System suitability—

Test for required detectability: Pipet 5 mL of the standard solution, add a mixture of water and acetonitrile (3:1) to make exactly 50 mL. Confirm that the peak area of rosuvastatin obtained with 10 \(\mu L \) of this solution is equivalent to 7 to 13\% of that with the standard solution.

Mobile phase: A mixture of diluted trifluoroacetic acid (1 in 1000) and acetonitrile (3:1).

Flow rate: Adjust so that the retention time of rosuvastatin is about 26.5 minutes.
Rosuvastatin Calcium Tablets

Official Monographs

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.)

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 30</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>30 – 50</td>
<td>100 → 60</td>
<td>0 → 40</td>
</tr>
<tr>
<td>50 – 60</td>
<td>60 → 0</td>
<td>40 → 100</td>
</tr>
<tr>
<td>60 – 70</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Flow rate: 0.75 mL per minute.

System suitability

System performance: Dissolve 10 mg of Rosuvastatin Calcium in 10 mL of a solution of trifluoroacetic acid in acetonitrile (1 in 100), and allow to stand at 40°C for 1 hour. After cooling, add 20 mL of water, adjust to pH 6 – 8 with sodium hydroxide TS, and add water to make 50 mL. To 3 mL of this solution, add water to make 50 mL. When the procedure is run with 10 µL of this solution under the above operating conditions, rosuvastatin and the related substance B (diastereomer) are eluted in this order with the resolution between these peaks being not less than 2.5, and the symmetry factor of the peak of rosuvastatin is not more than 1.5.

System repeatability: When the test is repeated 5 times with 10 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of rosuvastatin is not more than 2.0%.

Containers and storage

Containers—Tight containers.

Storage—Light-resistant, at a temperature between 2°C and 8°C.

Others

Rosuvastatin enantiomer:

(3S,5R,6E)-7-[4-(4-Fluorophenyl)-6-(1-methylethyl)-2-[methyl(methylsulfonyl)amino]pyrimidin-5-yl]-3,5-dihydroxyhept-6-enoic acid

Related substance A:

(3S,5R,6E)-7-[4-(4-Fluorophenyl)-6-(1-methylethyl)-2-[(2-hydroxy-2-methylpropyl)sulfonyl]methylamino]-6-(1-methylethyl)pyrimidin-5-yl]-3,5-dihydroxyhept-6-enoic acid

Related substance B (diastereomer):

(3RS,5RS,6E)-7-[4-(4-Fluorophenyl)-6-(1-methylethyl)-2-[methyl(methylsulfonyl)amino]pyrimidin-5-yl]-3,5-dihydroxyhept-6-enoic acid

Related substance C:

(3R,6E)-7-[4-(4-Fluorophenyl)-6-(1-methylethyl)-2-[methyl(methylsulfonyl)amino]pyrimidin-5-yl]-3-hydroxy-5-oxohept-6-enoic acid

Related substance D:

N-[4-(4-Fluorophenyl)-5-[(1E)-2-[(2S,4R)-4-hydroxy-6-oxotetrahydro-2H-pyran-2-yl]ethenyl]-6-(1-methylethyl)pyrimidin-2-yl]-N-methylmethanesulfonamide

Related substance E (enantiomer):

(3S,5R,6E)-7-[4-(4-Fluorophenyl)-6-(1-methylethyl)-2-[methyl(methylsulfonyl)amino]pyrimidin-5-yl]-3,5-dihydroxyhept-6-enoic acid

Rosuvastatin Calcium Tablets

ロスバスタチンカルシウム錠

Rosuvastatin Calcium Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of rosuvastatin (C22H28FN3O6S: 481.54).

Method of preparation Prepare as directed under Tablets, with Rosuvastatin Calcium.

Identification Perform the test with 10 µL each of the sample solution and standard solution obtained in the Assay, as
Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 tablet of Rosuvastatin Calcium Tablets add 3 V/4 mL of 0.1 mol/L phosphate buffer solution (pH 7), and shake for 45 minutes. To this solution add 0.1 mol/L phosphate buffer solution (pH 7) to make exactly V mL so that each mL contains about 25 μg of rosuvastatin (C$_{22}$H$_{28}$FN$_{6}$O$_{2}$S), and filter through a membrane filter with a pore size not exceeding 0.2 μm. Discard the first 5 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 0.1 g of Rosuvastatin Calcium RS (separately determine the water <2.48> in the same manner as Rosuvastatin Calcium), add 0.1 mol/L phosphate buffer solution (pH 7) to make exactly 250 mL. Pipet 15 mL of this solution, add 0.1 mol/L phosphate buffer solution (pH 7) to make exactly 250 mL, and use this solution as the standard solution. Determine the absorbances, A_1 and A_3, of the sample solution and standard solution at 241 nm as directed under Ultraviolet-visible Spectrophotometry <2.49>

$$M_5 = M_5 \times A_1/A_3 \times V/12,500 \times 0.962$$

M_5: Amount (mg) of Rosuvastatin Calcium RS taken, calculated on the anhydrous basis

Dissolution <6.10> When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of 0.05 mol/L citrate buffer solution (pH 6.6) as the dissolution medium, the dissolution rate in 30 minutes of Rosuvastatin Calcium Tablets is not less than 80%.

Start the test with 1 tablet of Rosuvastatin Calcium Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 5 mL of the first filtrate, pipet V mL of the subsequent filtrate, add the dissolution medium to make exactly V mL so that each mL contains about 2.8 μg of rosuvastatin (C$_{22}$H$_{28}$FN$_{6}$O$_{2}$S), and use this solution as the sample solution. Separately, weigh accurately about 0.1 g of Rosuvastatin Calcium RS (separately determine the water <2.48> in the same manner as Rosuvastatin Calcium), add 50 mL of water, sonicate, add 25 mL of acetone and stir, and add water to make exactly 100 mL. Pipet 10 mL of this solution, add the dissolution medium to make exactly 200 mL. Pipet 10 mL of this solution, and add the dissolution medium to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A_1 and A_3, of rosuvastatin in each solution.

Dissolution rate (%) with respect to the labeled amount of rosuvastatin (C$_{22}$H$_{28}$FN$_{6}$O$_{2}$S)

$$= M_5 \times A_1/A_3 \times V/V' \times 1/C \times 9/4 \times 0.962$$

M_5: Amount (mg) of Rosuvastatin Calcium RS taken, calculated on the anhydrous basis

C: Labeled amount (mg) of rosuvastatin (C$_{22}$H$_{28}$FN$_{6}$O$_{2}$S) in 1 tablet

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 242 nm).

Column: A stainless steel column 4 mm in inside diameter and 5 cm in length, packed with octadeylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 25°C for 45 minutes.

System performance: Proceed as directed in the system suitability in the Assay.

Purity Related substances—To an amount of Rosuvastatin Calcium Tablets, equivalent to 0.1 g of rosuvastatin (C$_{22}$H$_{28}$FN$_{6}$O$_{2}$S), add 50 mL of water, shake for 30 minutes, then add 25 mL of acetonitrile, and shake for 30 minutes. To this solution add water to make 100 mL, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 5 mL of the filtrate, and use the subsequent filtrate as the sample solution. Pipet 1 mL of the sample solution, add a mixture of water and acetonitrile (3:1) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine each peak area by the automatic integration method: the peak area of related substance C, having the relative retention time of about 1.6 to rosuvastatin, obtained from the sample solution is not larger than 1.4 times the peak area of rosuvastatin from the standard solution, the peak area of related substance D, having the relative retention time of about 2.3, from the sample solution is not larger than 7/10 times the peak area of rosuvastatin from the standard solution, and the area of the peak other than the peaks of rosuvastatin and related substance B (diasertoromer) having a relative retention time of about 1.1 and the peaks mentioned above from the sample solution is not larger than 1/5 times the peak area of rosuvastatin from the standard solution. Furthermore, the total area of the peaks other than rosuvastatin from the sample solution is not larger than 2.1 times the peak area of rosuvastatin from the standard solution. For the area of the peak of related substance C, multiply the correction factor 1.4.

Operating conditions—

Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 2.5 times as long as the retention time of rosvastatin, beginning after the solvent peak.

System suitability—

System performance: Proceed as directed in the system suitability in the Assay.

Test for required detectability: Pipet 5 mL of the standard solution, add a mixture of water and acetonitrile (3:1) to make exactly 100 mL. Confirm that the peak area of rosuvastatin obtained with 10 μL of this solution is equivalent to 3.5 to 6.5% of that with 10 μL of the standard solution.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of rosuvastatin is not more than 2.0%.
25°C.

Mobile phase: A mixture of water, acetonitrile and phosphoric acid (600:400:1).

Flow rate: Adjust so that the retention time of rosuvastatin is about 2 minutes.

System suitability—

System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of rosuvastatin are not less than 1900 and not more than 1.4, respectively.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of rosuvastatin is not more than 1.5%.

Assay To 10 tablets of Rosuvastatin Calcium Tablets add exactly 300 mL of water, and shake for 30 minutes. To this solution add 125 mL of acetonitrile, shake for 15 minutes, and add water to make exactly 500 mL. Pipet 5 mL of this solution, a mixture of water and acetonitrile (3:1) to make exactly V mL so that each mL contains about 25 μg of rosvastatin (C_{2}H_{8}FN_{2}O_{4}S), and filter this solution through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 5 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 0.1 g of Rosuvastatin Calcium (separately determine the water by the same manner as Rosuvastatin Calcium), add 50 mL of water, sonicate, add 25 mL of acetonitrile, and add water to make exactly 100 mL. Pipet 5 mL of this solution, a mixture of water and acetonitrile (3:1) to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography according to the following conditions, and determine the peak areas, A₁ and A₃, of rosuvastatin in each solution.

Amount (mg) of rosuvastatin (C_{2}H_{8}FN_{2}O_{4}S) in 1 tablet of Rosuvastatin Calcium Tablets

= Mₛ × A₁ / A₃ × V / 400 × 0.962

Mₛ: Amount (mg) of Rosuvastatin Calcium RS taken, calculated on the anhydrous basis

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 242 nm).

Column: A stainless steel column 3.2 mm in inside diameter and 25 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: A mixture of water, acetonitrile and diluted trifluoroacetic acid (1 in 100) (62:37:1).

Flow rate: Adjust so that the retention time of rosuvastatin is about 13 minutes.

System suitability—

System performance: To 10 mg of rosuvastatin calcium add 100 mL of water and 20 mL of 1 mol/L hydrochloric acid TS, heat on a water bath of 60°C for 2 hours, and neutralize with sodium hydroxide TS. After cooling, add 50 mL of acetonitrile and water to make 200 mL. To 10 mL of this solution add 10 mL of a mixture of water and acetonitrile (3:1). When the procedure is run with 10 μL of this solution under the above operating conditions, the resolution between rosuvastatin and related substance B (diastereomer) is not less than 1.5.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of rosuvastatin is not more than 1.5%.

Containers and storage Containers—Tight containers.

Others Related substances B (diastereomer), C and D: Refer to them described in Rosuvastatin Calcium.

Roxatidine Acetate Hydrochloride

Roxatidine Acetate Hydrochloride, when dried, contains not less than 99.0% and not more than 101.0% of roxatidine acetate hydrochloride (C_{14}H_{18}N_{2}O_{2}·HCl).

Description Roxatidine Acetate Hydrochloride occurs as white, crystals or crystalline powder.

It is very soluble in water, freely soluble in acetic acid (100), and sparingly soluble in ethanol (99.5).

Identification (1) Determine the absorption spectrum of a solution of Roxatidine Acetate Hydrochloride in ethanol (99.5) (1 in 10,000) as directed in the Ultraviolet-visible Spectrophotometry, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Roxatidine Acetate Hydrochloride RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Roxatidine Acetate Hydrochloride as directed in the potassium chloride disk method under Infrared Spectrophotometry, and compare the spectrum with the Reference Spectrum or the spectrum of Roxatidine Acetate Hydrochloride RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) A solution of Roxatidine Acetate Hydrochloride (1 in 50) responds to Qualitative Tests (1.0%) (2) for chloride.

pH (2.5) Dissolve 1.0 g of Roxatidine Acetate Hydrochloride in 20 mL of water: the pH of this solution is between 4.0 and 6.0.

Melting point (2.6) 147 – 151°C (after drying).

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Roxatidine Acetate Hydrochloride in 10 mL of water: the solution is clear and colorless.

(2) Heavy metals (1.07) Proceed with 2.0 g of Roxatidine Acetate Hydrochloride according to Method 1, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(3) Related substances—Dissolve 50 mg of Roxatidine
Acetate Hydrochloride in 10 mL of ethanol (99.5), and use this solution as the sample solution. Pipet 1 mL of the sample solution, add ethanol (99.5) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 µL each of the sample solution and standard solution as directed under Liquid Chromatography 2.2.1 according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak other than roxatidine acetate obtained from sample solution is not larger than 1/5 times the peak area of roxatidine acetate from the standard solution, and the total area of the peaks other than roxatidine acetate from the sample solution is not larger than 1/2 times the peak area of roxatidine acetate from the standard solution.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 274 nm).
Column: A stainless steel column 4 mm in inside diameter and 25 cm in length, packed with cyanopropylsilylized silica gel for liquid chromatography (5 µm in particle diameter).
Column temperature: A constant temperature of about 35°C.
Mobile phase: A mixture of hexane, ethanol (99.5), triethylamine and acetic acid (100) (384:16:2:1).
Flow rate: Adjust so that the retention time of roxatidine acetate is about 10 minutes.
Time span of measurement: About 1.5 times as long as the retention time of roxatidine acetate, beginning after the solvent peak.
System suitability—
Test for required detectability: To 5 mL of the standard solution add ethanol (99.5) to make 10 mL, and use this solution as the solution for system suitability test. Pipet 1 mL of the solution for system suitability test, and add ethanol (99.5) to make exactly 10 mL. Confirnm that the peak area of roxatidine acetate obtained with 10 mL of this solution is equivalent to 7 to 13% of that with 10 µL of the solution for system suitability test.
System performance: Dissolve 50 mg of roxatidine acetate hydrochloride and 10 mg of benzoic acid in 25 mL of ethanol (99.5). When the procedure is run with 10 mL of ethanol (99.5) so that each mL contains about 2.5 mg of roxatidine acetate hydrochloride (C₉H₁₇N₂O₄.HCl), disperse the particles by sonicating, and filter through a membrane filter with a pore size of not more than 1.0 µm. To exactly 8 mL of the filtrate add exactly 2 mL of the internal standard solution, mix, and use this solution as the sample solution. Proceed as directed in the Assay.

Amount (mg) of roxatidine acetate hydrochloride (C₉H₁₇N₂O₄.HCl) = Mₛ × Qₛ/Qₛ × V/20

Mₛ: Amount (mg) of Roxatidine Acetate Hydrochloride RS taken

Internal standard solution—A solution of benzoic acid in ethanol (99.5) (1 in 500).

Dissolution 6.10—When the test is performed at 50 revolutions per minute according to the Paddle method using the sinker, using 900 mL of water as the dissolution medium, the dissolution rates of a 37.5-mg capsule in 45 minutes, in 90 minutes and in 8 hours are 10–40%, 35–65%, and not less than 70%, respectively, and of a 75-mg capsule in 60 minutes, in 90 minutes and in 8 hours are 20–50%, 35–65%, and not less than 70%, respectively.

Start the test with 1 capsule of Roxatidine Acetate Hydrochloride Extended-release Capsules, withdraw exactly 20 mL of the medium at the specified minute after starting the test, and supply exactly 20 mL of warmed water to 37 ± 0.5°C immediately after withdrawing of the medium every time, and filter the media withdrawn through a membrane filter with a pore size not exceeding 0.45 µm. Discard not less than 10 mL of the filtrate. Pipet V mL of the filtrate as the sample solution. Perform the blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 38.49 mg of C₉H₁₇N₂O₄.HCl
Containers and storage Containers—Tight containers.

Roxatidine Acetate Hydrochloride
Extended-release Capsules
ロキサチジン酢酸エステル塩酸塩徐放カプセル

Roxatidine Acetate Hydrochloride Extended-release Capsules contain not less than 93.0% and not more than 107.0% of the labeled amount of roxatidine acetate hydrochloride (C₉H₁₇N₂O₄.HCl: 384.90).

Method of preparation Prepare as directed under Capsules, with Roxatidine Acetate Hydrochloride.

Identification To 1 mL of the filtrate obtained in the Assay add ethanol (99.5) to make 20 mL, and determine the absorption spectrum as directed under Ultraviolet-visible Spectrophotometry 2.2.4: it exhibits maxima between 275 nm and 278 nm, and between 282 nm and 285 nm.

Uniformity of dosage units 6.02 Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement.

Take out the contents of 1 capsule of Roxatidine Acetate Hydrochloride Extended-release Capsules, add exactly V mL of ethanol (99.5) so that each mL contains about 2.5 mg of roxatidine acetate hydrochloride (C₉H₁₇N₂O₄.HCl), disperse the particles by sonicating, and filter through a membrane filter with a pore size of not more than 1.0 µm. To exactly 8 mL of the filtrate add exactly 2 mL of the internal standard solution, mix, and use this solution as the sample solution. Proceed as directed in the Assay.

Amount (mg) of roxatidine acetate hydrochloride (C₉H₁₇N₂O₄.HCl) = Mₛ × Qₛ/Qₛ × V/20

Mₛ: Amount (mg) of Roxatidine Acetate Hydrochloride RS taken

Internal standard solution—A solution of benzoic acid in ethanol (99.5) (1 in 500).

Dissolution 6.10—When the test is performed at 50 revolutions per minute according to the Paddle method using the sinker, using 900 mL of water as the dissolution medium, the dissolution rates of a 37.5-mg capsule in 45 minutes, in 90 minutes and in 8 hours are 10–40%, 35–65%, and not less than 70%, respectively, and of a 75-mg capsule in 60 minutes, in 90 minutes and in 8 hours are 20–50%, 35–65%, and not less than 70%, respectively.

Start the test with 1 capsule of Roxatidine Acetate Hydrochloride Extended-release Capsules, withdraw exactly 20 mL of the medium at the specified minute after starting the test, and supply exactly 20 mL of warmed water to 37 ± 0.5°C immediately after withdrawing of the medium every time, and filter the media withdrawn through a membrane filter with a pore size not exceeding 0.45 µm. Discard not less than 10 mL of the filtrate. Pipet V mL of the filtrate as the sample solution. Perform the blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 38.49 mg of C₉H₁₇N₂O₄.HCl
Containers and storage Containers—Tight containers.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.)
the following conditions, and determine the peak areas, $A_{T(n)}$ and A_S, of roxatidine acetate in each solution.

Dissolution rate (%) with respect to the labeled amount of roxatidine acetate hydrochloride (C$_{19}$H$_{28}$N$_{2}$O$_{4}$HCl) on the nth medium withdrawing ($n = 1, 2, 3$)

$$M_S = \frac{A_{T(n)}}{A_S} \times \left[\frac{1}{\sum_{i=1}^{n-1} \frac{A_{T(i)}}{A_S} \times \frac{1}{45}} \right] \times \frac{1}{V} \times \frac{1}{C} \times 180$$

M_S: Amount (mg) of Roxatidine Acetate Hydrochloride RS taken

A_S: Labeled amount (mg) of roxatidine acetate hydrochloride (C$_{19}$H$_{28}$N$_{2}$O$_{4}$HCl) in 1 capsule

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 274 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadeceansilizaned silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: A mixture of water, acetonitrile, triethylamine and acetic acid (100) (340:60:2:1).

Flow rate: Adjust so that the retention time of roxatidine acetate is about 5 minutes.

System suitability—

System performance: When the procedure is run with 100 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of roxatidine acetate are not less than 3000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 100 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of roxatidine acetate is not more than 1.0%.

Assay Take out the contents of not less than 20 Roxatidine Acetate Hydrochloride Extended-release Capsules, weigh accurately the mass of the contents, and powder. Weigh accurately a portion of the powder, equivalent to about 75 mg of roxatidine acetate hydrochloride (C$_{19}$H$_{28}$N$_{2}$O$_{4}$HCl), add exactly 30 mL of ethanol (99.5), shake, and filter through a membrane filter with a pore size of not more than 0.2 μm. To exactly 8 mL of this solution add exactly 2 mL of the internal standard solution, mix, and use this solution as the sample solution. Separately, weigh accurately about 50 mg of Roxatidine Acetate Hydrochloride RS, previously dried in a desiccator (in vacuum, phosphorus (V) oxide) for 4 hours, and dissolve in ethanol (99.5) to make exactly 20 mL. To exactly 8 mL of this solution add exactly 2 mL of the internal standard solution, mix, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography $<2.02>$ according to the following conditions, and calculate the ratios, Q_T and Q_S, of the peak area of roxatidine acetate to that of the internal standard.

Amount (mg) of roxatidine acetate hydrochloride (C$_{19}$H$_{28}$N$_{2}$O$_{4}$HCl)

$$M_S = M_S \times \frac{Q_T}{Q_S} \times \frac{1}{3}$$

M_S: Amount (mg) of Roxatidine Acetate Hydrochloride RS taken

Internal standard solution—A solution of benzoic acid in ethanol (99.5) (1 in 500).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 274 nm).

Column: A stainless steel column 4.0 mm in inside diameter and 25 cm in length, packed with cyanopropylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 35°C.

Mobile phase: A mixture of hexane, ethanol (99.5), triethylamine and acetic acid (100) (384:16:2:1).

Flow rate: Adjust so that the retention time of roxatidine acetate is about 10 minutes.

System suitability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the internal standard and roxatidine acetate are elute in this order with the resolution between these peaks being not less than 10.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of roxatidine acetate to that of the internal standard is not more than 1.0%.

Containers and storage —Containers—Tight containers.

Roxatidine Acetate Hydrochloride Extended-release Tablets

ロックサチンジン酢酸エステル塩酸塩錠

Roxatidine Acetate Hydrochloride Extended-release Tablets contain not less than 93.0% and not more than 107.0% of the labeled amount of roxatidine acetate hydrochloride (C$_{19}$H$_{28}$N$_{2}$O$_{4}$HCl: 384.90).

Method of preparation Prepare as directed under Tablets, with Roxatidine Acetate Hydrochloride.

Identification Powder Roxatidine Acetate Hydrochloride Extended-release Tablets. To a portion of the powder, equivalent to 37.5 mg of Roxatidine Acetate Hydrochloride, add 40 mL of ethanol (99.5), and disperse the particles by sonication for 10 minutes with occasional shaking. After shaking thoroughly, add ethanol (99.5) to make 50 mL. Filter the solution, and to 4 mL of the filtrate add ethanol (99.5) to make 25 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry $<2.24>$: it exhibits maxima between 274 nm and 278 nm and between 281 nm and 285 nm.

Uniformity of dosage units $<6.02>$ Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 tablet of Roxatidine Acetate Hydrochloride Extended-release Tablets add 5 mL of a mixture of water, triethylamine and acetic acid (100) (340:2:1), sonicate for 5 minutes with occasional shaking, then add 7.5 mL of acetonitrile, then sonicate again for 5 minutes. Add 5 mL of a mixture of water, triethylamine and acetic acid (100) (340:2:1), sonicate for 5 minutes, shake thoroughly, add a mixture of water, triethylamine and acetic acid (100) (340:2:1) to make exactly 50 mL, centrifuge, and filter the supernatant liquid. Discard the first 10 mL of the filtrate, pipet 1 mL of the subsequent filtrate, equivalent to 6 mg of roxatidine acetate hydrochloride (C$_{19}$H$_{28}$N$_{2}$O$_{4}$HCl), add exactly 3 mL of the internal standard solution, then add the mobile phase to make 20 mL, and use this solution as the
sample solution. Then, proceed as directed in the Assay.

\[
M_3: \text{Amount (mg) of Roxatidine Acetate Hydrochloride RS taken}
\]

Internal standard solution—A solution of sodium benzoate in the mobile phase (3 in 2000).

Dissolution Being specified separately when the drug is granted approval based on the Law.

Assay Weigh accurately the mass of not less than 20 Roxatidine Acetate Hydrochloride for Injection, equivalent to 75 mg of Roxatidine Acetate Hydrochloride (C\textsubscript{19}H\textsubscript{28}N\textsubscript{2}O\textsubscript{4}.HCl), add 40 mL of the mobile phase, and sonicate for 10 minutes with occasional shaking. Further shake thoroughly, add the mobile phase to make exactly 50 mL, centrifuge, and filter the supernatant liquid. Discard the first 10 mL of the filtrate, pipet 8 mL of the subsequent filtrate, add exactly 3 mL of the internal standard solution, add the mobile phase to make 20 mL, and use this solution as the sample solution. Separately, weigh accurately about 38 mg of Roxatidine Acetate Hydrochloride RS, previously dried in a desiccator (in vacuum, phosphorous (V) oxide) for 4 hours, dissolve in the mobile phase to make exactly 50 mL. Pipet 8 mL of this solution, add exactly 3 mL of the internal standard solution, then add the mobile phase to make 20 mL, and use this solution as the standard solution. Perform the test with 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography \(\leq 2.01\)D under the following conditions, and calculate the ratios, \(Q_1\) and \(Q_2\), of the peak area ofroxatidine acetate to that of the internal standard.

\[
\text{Amount (mg) of roxatidine acetate hydrochloride} (C\textsubscript{19}H\textsubscript{28}N\textsubscript{2}O\textsubscript{4}.HCl) = M_2 \times Q_1 / Q_2
\]

Internal standard solution—A solution of sodium benzoate in the mobile phase (3 in 2000).

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 274 nm).
Column: A stainless steel column 4 mm in inside diameter and 15 cm in length, packed with octadecylsilylated silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase: A mixture of water, acetonitrile, triethylamine and acetic acid (100) (340:60:2:1).
Flow rate: Adjust so that the retention time of roxatidine acetate is about 8 minutes.
System suitability—
System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the internal standard and roxatidine acetate are eluted in this order with the resolution between these peaks being not less than 10.
System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of roxatidine acetate to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Well-closed containers.

Roxatidine Acetate Hydrochloride for Injection

注射用ロキサチン酢酸エステル塩酸塩

Roxatidine Acetate Hydrochloride for Injection is a preparation for injection which is dissolved before use. It contains not less than 95.0% and not more than 105.0% of the labeled amount of roxatidine acetate hydrochloride (C\textsubscript{19}H\textsubscript{28}N\textsubscript{2}O\textsubscript{4}.HCl: 384.90).

Method of preparation Prepare as directed under Injections, with Roxatidine Acetate Hydrochloride.

Description It occurs as white, masses or powder.

Identification To an amount of Roxatidine Acetate Hydrochloride for Injection, equivalent to 75 mg of Roxatidine Acetate Hydrochloride, add 30 mL of ethanol (99.5), shake, and filter through a membrane filter with a pore size not exceeding 0.45 μm. To 1 mL of the filtrate add ethanol (99.5) to make 20 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry \(\leq 2.24\): it exhibits maxima between 275 nm and 279 nm and between 282 nm and 286 nm.

pH Being specified separately when the drug is granted approval based on the Law.

Purity Clarity and color of solution Dissolve an amount of Roxatidine Acetate Hydrochloride for Injection, equivalent to 75 mg of Roxatidine Acetate Hydrochloride, in 20 mL of isotonic sodium chloride solution: the solution is clear and colorless.

Bacterial endotoxins \(\leq 4.0\) Less than 4.0 EU/mg.

Uniformity of dosage units \(\leq 6.02\) It meets the requirements of the Mass variation test.

Foreign insoluble matter \(\leq 6.06\) Perform the test according to Method 2: it meets the requirement.

Insoluble particulate matter \(\leq 6.07\) It meets the requirement.

Sterility \(\leq 6.06\) Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Dissolve with water each content of 10 Roxatidine Acetate Hydrochloride for Injection, wash the containers with water, combine the solution of the content and washings, and add water to make exactly \(V\) mL so that each mL contains about 3.75 mg of roxatidine acetate hydrochloride (C\textsubscript{19}H\textsubscript{28}N\textsubscript{2}O\textsubscript{4}.HCl). Pipet 5 mL of this solution, add water to make exactly 50 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution, and use this solution as the sample solution. Separately, weigh accurately about 20 mg of Roxatidine Acetate Hydrochloride RS, previously dried in a desiccator (in vacuum, phosphorous (V) oxide) for 4 hours, dissolve in water to make exactly 50 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography \(\leq 2.01\) according to the following conditions, and calculate the ratios, \(Q_1\) and \(Q_2\), of the peak area of roxatidine acetate.
to that of the internal standard.

Amount (mg) of roxatidine acetate hydrochloride
\((C_{19}H_{28}N_2O_4 \cdot HCl)\) in 1 Roxatidine Acetate
Hydrochloride for Injection

\[M_s = \frac{Q_s 	imes V}{Q_1} \]

\(M_s \): Amount (mg) of Roxatidine Acetate Hydrochloride
RS taken

Internal standard solution—Dissolve 20 mg of guanine in 10 mL of 2 mol/L hydrochloric acid TS, add 50 mL of water, then add 20 mL of a solution of sodium hydroxide (1 in 25) and water to make 100 mL. To 10 mL of this solution add water to make 100 mL.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 274 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecysilanized silica gel for liquid chromatography (5 \(\mu \text{m} \) in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase: A mixture of water, acetonitrile, triethylamine and acetic acid (100) (340:60:2:1).
Flow rate: Adjust so that the retention time of roxatidine acetate is about 14 minutes.

System suitability—
System performance: When the procedure is run with 10 \(\mu L \) of the standard solution under the above operating conditions, the internal standard and roxatidine acetate are eluted in this order with the relative standard deviation of the ratio of the peak area of roxatidine acetate to that of the internal standard not more than 1.0%.

Containers and storage Containers—Hermetic containers.

Roxithromycin

ロキシスロマイシン

C_{36}H_{58}N_2O_{12}: 837.05
(2R,3S,4S,5R,6R,8R,9E,10R,11R,12S,13R)-5-(3,4,6-Trideoxy-3-dimethylamino-6-L-xylo-hexopyranosyloxy)-3-(2,6-dideoxy-3-C-methyl-3-O-methyl- \(\alpha-L-\) ribo-hexopyranosyloxy)-6,11,12-trihydroxy-9-(2-methoxyethoxy)methoxyiminono-2,4,6,8,10,12-hexamethylpentadecan-13-olide

[80214-83-1]

Roxithromycin is a derivative of erythromycin.

It contains not less than 970 \(\mu \text{g} \) (potency) and not more than 1020 \(\mu \text{g} \) (potency) per mg, calculated on the anhydrous basis. The potency of Roxithromycin is expressed as mass (potency) of roxithromycin \((C_{19}H_{28}N_2O_4)\).

Description Roxithromycin occurs as a white crystalline powder.

It is freely soluble in ethanol (95) and in acetone, soluble in methanol, and practically insoluble in water.

Identification Determine the infrared absorption spectrum of Roxithromycin as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of Roxithromycin RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation <2.49> \([\alpha]_{D}^{20} = -93 - -96^\circ \) (0.5 g calculated on the anhydrous basis, acetone, 50 mL, 100 mm).

Purity (1) Heavy metals <1.07>—Proceed with 2.0 g of Roxithromycin according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Related substances—Dissolve exactly 40 mg of Roxithromycin in the mobile phase A to make exactly 10 mL, and use this solution as the sample solution. Separately, dissolve exactly 20 mg of Roxithromycin RS in the mobile phase A to make exactly 10 mL. Pipet 1 mL of this solution, add the mobile phase A to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 \(\mu L \) each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak having a relative retention time of about 1.05 to roxithromycin obtained from the sample solution is not larger than 2 times the peak area of roxithromycin from the standard solution. The area of the peak other than roxithromycin and the peak mentioned above from the sample solution is not larger than the peak area of roxithromycin.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.)
from the standard solution, and the total area of the peaks other than roxithromycin from the sample solution is not larger than 6 times the peak area of roxithromycin from the standard solution.

Operating conditions

Detector: An ultraviolet absorption photometer (wave-length: 205 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase A: To 200 mL of a solution of ammonium dihydrogenphosphate (17 in 100) add 510 mL of water, and adjust to pH 5.3 with 2 mol/L sodium hydroxide TS. To this solution add 315 mL of acetonitrile for liquid chromatography.

Mobile phase B: A mixture of acetonitrile for liquid chromatography and water (7:3).

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 38</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>38 – 39</td>
<td>100 → 90</td>
<td>0 → 10</td>
</tr>
<tr>
<td>39 – 80</td>
<td>90</td>
<td>10</td>
</tr>
</tbody>
</table>

Flow rate: Adjust so that the retention time of roxithromycin is about 21 minutes.

Time span of measurement: For 80 minutes after injection of the sample solution.

System suitability

Test for required detectability: To exactly 2 mL of the standard solution add the mobile phase A to make exactly 10 mL. Confirm that the peak area of roxithromycin obtained with 20 μL of this solution is equivalent to 15 to 25% of that with 20 μL of the standard solution.

System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of roxithromycin are not less than 9000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 5 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak areas of roxithromycin is not more than 2.0%.

Water: Not more than 3.0% (0.3 g, volumetric titration, direct titration).

Residue on ignition: Not more than 0.1% (1 g).

Assay

Weigh accurately an amount of Roxithromycin and Roxithromycin RS, equivalent to about 38 mg (potency), dissolve them separately in a suitable amount of the mobile phase, then add exactly 1 mL of the internal standard, add the mobile phase to make 25 mL, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography according to the following conditions, and calculate the ratios, \(Q_s \) and \(Q_R \), of the peak area of roxithromycin to that of the internal standard.

Amount [μg (potency)] of roxithromycin (C₄₁H₆₅N₂O₁₂) = \(M_s \times Q_R/Q_s \times 1000 \)

\(M_s \): Amount [mg (potency)] of Roxithromycin RS taken

Internal standard solution—A solution of isopropyl parahydroxybenzoate in the mobile phase (1 in 800).

Operating conditions

Detector: An ultraviolet absorption photometer (wave-length: 230 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: Dissolve 49.1 g of ammonium dihydrogenphosphate in water to make 1000 mL, and adjust to pH 5.3 with 2 mol/L sodium hydroxide TS. To 690 mL of this solution add 310 mL of acetonitrile.

Flow rate: Adjust so that the retention time of roxithromycin is about 12 minutes.

System suitability

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, roxithromycin and the internal standard are eluted in this order with the resolution between these peaks being not less than 10.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of roxithromycin to that of the internal standard is not more than 1.0%.

Containers and storage

Containers—Tight containers.

Roxithromycin Tablets

ロキシスロマイシン錠

Roxithromycin Tablets contain not less than 95.0% and not more than 110.0% of the labeled potency of roxithromycin (C₄₁H₆₅N₂O₁₂): 837.05.

Method of preparation

Prepare as directed under Tablets, with Roxithromycin.

Identification

To a quantity of powdered Roxithromycin Tablets, equivalent to 0.3 g (potency) of Roxithromycin, add 10 mL of acetonitrile, shake, and centrifuge. Evaporate the supernatant liquid on a water bath under reduced pressure, dry the residue at 60°C under reduced pressure for 1 hour, and determine the infrared absorption spectrum of the residue as directed in the potassium bromide disk method under Infrared Spectrophotometry. It exhibits absorption at the wave numbers of about 3460 cm⁻¹, 2940 cm⁻¹, 1728 cm⁻¹, 1633 cm⁻¹, and 1464 cm⁻¹.

Uniformity of dosage unit

Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement.

To 1 tablet of Roxithromycin Tablets add 7.5/10 mL of the mobile phase, sonicate to disintegrate the tablet, shake, add exactly 25 mL of the internal standard solution, and add the mobile phase to make \(V \) mL so that each mL contains about 1.5 mg (potency) of roxithromycin (C₄₁H₆₅N₂O₁₂). Filter this solution through a membrane filter with a pore size not exceeding 0.45 μm, discard the first 5 mL of the filtrate, and use the subsequent filtrate as the sample solution. Then, proceed as directed in the Assay.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
Amount [mg (potency)] of roxithromycin (C_{41}H_{58}N_{2}O_{13})

\[M_{S} = A_{T} \times Q_{S} / Q_{T} \times V / 25 \]

\[M_{S} = \text{Amount [mg (potency)] of Roxithromycin RS taken} \]

Internal standard solution—A solution of isopropyl parahydroxybenzoate in the mobile phase (1 in 800).

Dissolution <6.10> When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of 2nd fluid for dissolution test as the dissolution medium, the dissolution rate in 30 minutes of Roxithromycin Tablets is not less than 80%.

Start the test with 1 tablet of Roxithromycin Tablets, without less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, and add the dissolution medium to make exactly V mL so that each mL contains about 0.17 mg (potency) of roxithromycin (C_{41}H_{58}N_{2}O_{13}), and use this solution as the sample solution. Separately, weigh accurately about 33 mg (potency) of Roxithromycin RS, dissolve in the dissolution medium to dissolve in the solution medium to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 50 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A_T and A_S, of roxithromycin in each solution.

Dissolution rate (%) with respect to the labeled amount [mg (potency)] of roxithromycin (C_{41}H_{58}N_{2}O_{13})

\[M_{S} = A_{T} / A_{S} \times V / V \times 1 / C \times 450 \]

\[M_{S} = \text{Amount [mg (potency)] of Roxithromycin RS taken} \]

C: Labeled amount [mg (potency)] of roxithromycin (C_{41}H_{58}N_{2}O_{13}) in 1 tablet

Operating conditions—

Detector, column temperature and mobile phase: Proceed as directed in the operating conditions in the Assay.

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Flow rate: Adjust so that the retention time of roxithromycin is about 5 minutes.

System suitability—

System performance: When the procedure is run with 50 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of roxithromycin are not less than 2300 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 50 μL of each standard solution under the above operating conditions, the relative standard deviation of the peak area of roxithromycin is not more than 1.0%.

Assay

Weigh accurately the mass of not less than 20 Roxithromycin Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 38 mg (potency) of roxithromycin (C_{41}H_{58}N_{2}O_{13}), add 20 mL of the mobile phase, shake vigorously, add exactly 1 mL of the internal standard solution, and then add the mobile phase to make 25 mL. Filter the solution through a membrane filter with a pore size not exceeding 0.45 μm, discard the first 5 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 38 mg (potency) of Roxithromycin RS, dissolve in the mobile phase, add exactly 1 mL of the internal standard solution, then add the mobile phase to make 25 mL, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and calculate the ratios, Q_T and Q_S, of the peak area of roxithromycin to that of the internal standard.

Amount [mg (potency)] of roxithromycin (C_{41}H_{58}N_{2}O_{13})

\[M_{S} = A_{T} / A_{S} \times Q_{S} / Q_{T} \]

\[M_{S} = \text{Amount [mg (potency)] of Roxithromycin RS taken} \]

Internal standard solution—A solution of isopropyl parahydroxybenzoate in the mobile phase (1 in 800).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 230 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: Dissolve 49.1 g of ammonium dihydrogen phosphate in water to make 1000 mL, and adjust to pH 5.3 with 2 mol/L sodium hydroxide TS. To 690 mL of this solution add 310 mL of acetonitrile.

Flow rate: Adjust so that the retention time of roxithromycin is about 12 minutes.

System suitability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, roxithromycin and the internal standard are eluted in this order with the resolution between these peaks being not less than 10.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of roxithromycin to that of the internal standard is not more than 1.0%.

Containers and storage—Containers—Tight containers.

Freeze-dried Live Attenuated Rubella Vaccine

乾燥弱毒生風しんワクチン

Freeze-dried Live Attenuated Rubella Vaccine is a preparation for injection which is dissolved before use. It contains live attenuated rubella virus. It conforms to the requirements of Freeze-dried Live Attenuated Rubella Vaccine in the Minimum Requirements for Biological Products.

Description

Freeze-dried Live Attenuated Rubella Vaccine becomes a colorless, yellowish or reddish, clear liquid on addition of solvent.

Saccharated Pepsin

含糖ペプシン

Saccharated Pepsin is a mixture of pepsin obtained from the gastric mucosa of hog or cattle and Lactose hydrate, and it is an enzyme drug having a proteolytic activity.

It contains not less than 3800 units and not more
than 6000 units per g.

Description Saccharated Pepsin occurs as a white powder. It has a characteristic odor, and has a slightly sweet taste. It dissolves in water to give a slightly turbid liquid, and does not dissolve in ethanol (95) and in diethyl ether. It is slightly hygroscopic.

Purity (1) Rancidity—Saccharated Pepsin has no unpleasant or rancid odor.

(2) Acidity—Dissolve 0.5 g of Saccharated Pepsin in 50 mL of water, and add 0.50 mL of 0.1 mol/L sodium hydroxide VS and 2 drops of phenolphthalein TS: the solution is red in color.

Loss on drying Not more than 1.0% (1g, 80°C, 4 hours).

Residue on ignition Not more than 0.5% (1g).

Assay (i) Substrate solution—Use the substrate solution 1 described in Assay for protein digestive activity under Digestion Test <4.03> after adjusting the pH to 2.0.

(ii) Sample solution—Weigh accurately an amount of Saccharated Pepsin equivalent to about 1250 units, dissolve in ice-cold 0.01 mol/L hydrochloric acid TS to make exactly 50 mL.

(iii) Standard solution—Weigh accurately a suitable amount of Saccharated Pepsin RS, and dissolve in ice-cold 0.01 mol/L hydrochloric acid TS to make a solution containing about 25 units per mL.

(iv) Procedure—Proceed as directed in Assay for protein digestive activity under Digestion Test <4.03>, and determine the absorbances, \(A_T \) and \(A_{89} \), of the sample solution, using trichloroacetic acid TS A as the precipitation reagent. Separately, determine the absorbances, \(A_3 \) and \(A_{38} \), of the standard solution in the same manner as the sample solution.

\[
\text{Units in 1 g of Saccharated Pepsin} = U_S \times \frac{(A_T - A_{10b})/(A_S - A_{10b})}{1/M}
\]

\(U_S \): Units per mL of the standard solution

\(M \): Amount (g) of Saccharated Pepsin per mL of the sample solution taken

Containers and storage Containers—Tight containers.

Storage—Not exceeding 30°C.

Saccharin

\(\text{サッカリニ} \)

\[
\text{C}_7\text{H}_7\text{NO}_3\text{S}: 183.18
\]

1,2-Benzol[d]isothiazol-3(2H)-one 1,1-dioxide [81-07-2]

Saccharin contains not less than 98.0% and not more than 102.0% of saccharin (\(\text{C}_7\text{H}_7\text{NO}_3\text{S} \)), calculated on the dried basis.

Description Saccharin occurs as colorless to white crystals or a white crystalline powder.

It is sparingly soluble in ethanol (95), and slightly soluble in water.

It dissolves in sodium hydroxide TS.

Identification Determine the infrared absorption spectrum of Saccharin as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point<2.60> 226 – 230°C

Purity (1) Clarity and color of solution—Dissolve 5.0 g of Saccharin in 25 mL of a solution of sodium acetate trihydrate (1 in 5): the clarity of the solution is equivalent to that of water or a solution of sodium acetate trihydrate (1 in 5), or its degree of opalescence is not more than Reference suspension I, and it has the appearance of water in color or is not more intensely colored than a solution of sodium acetate trihydrate (1 in 5) or the following control solution.

Control solution: Mix 3.0 mL of Cobalt (II) Chloride CS, 3.0 mL of Iron (III) Chloride CS and 2.4 mL of Copper (II) Sulfate CS, and add diluted dilute hydrochloric acid (1 in 10) to make 1000 mL.

(2) Heavy metals <1.07>—Proceed with 2.0 g of Saccharin according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(3) Benzole and salicylate—To 10 mL of a saturated solution of Saccharin in hot water add 3 drops of iron (III) chloride TS: no precipitate is formed, and no red-purple to purple color develops.

(4) \(o \)-Toluene sulfonamide—Dissolve 10 g of Saccharin in 70 mL of sodium hydroxide TS, and extract with three 30-mL portions of ethyl acetate. Combine all the ethyl acetate extracts, wash with 30 mL of a solution of sodium chloride (1 in 4), dehydrate with 5 g of anhydrous sodium sulfate, then evaporate the solvent. To the residue add exactly 5 mL of the internal standard solution to dissolve, and use this solution as the sample solution. Separately, dissolve 0.10 g of \(o \)-toluene sulfonamide in ethyl acetate to make exactly 100 mL. Pipet 1 mL of this solution, evaporate to dryness on a water bath, dissolve the residue in exactly 5 mL of the internal standard solution, and use this solution as the standard solution. Perform the test with 1 \(\mu \)L each of the sample solution and standard solution as directed under Gas Chromatography <2.02> according to the following conditions, and calculate the ratios, \(Q_1 \) and \(Q_2 \), of the peak height of \(o \)-toluene sulfonamide to that of the internal standard: \(Q_1 \) is not more than \(Q_2 \).

Internal standard solution—A solution of caffeine in ethyl acetate (1 in 500).

Operating conditions—

Detector: A hydrogen flame-ionization detector.

Column: A glass column 3 mm in inside diameter and 1 m in length, packed with siliceous earth for gas chromatography coated 3%, with diethylene glycol succinate polyester for gas chromatography (180 – 250 \(\mu \)m in particle diameter).

Column temperature: A constant temperature of about 200°C.

Temperature of injection port: A constant temperature of about 225°C.

Temperature of detector: A constant temperature of about 250°C.

Carrier gas: Nitrogen.

Flow rate: Adjust so that the retention time of caffeine is about 6 minutes.

System suitability—

System performance: When the procedure is run with 1 \(\mu \)L of the standard solution under the above operating conditions, the internal standard and \(o \)-toluene sulfonamide are
eluted in this order with the resolution between these peaks being not less than 2.0.

System repeatability: When the test is repeated 6 times with 1 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak height of o-tolune sulfonamide to that of the internal standard is not more than 2.0%.

(5) Readily carbonizable substances—Transfer 0.20 g of Saccharin to a Nessler tube, add 5 mL of sulfuric acid, mix to dissolve, and warm at 48 to 50°C for 10 minutes: the solution is not more intensely colored than Matching Fluid A, when compared both solutions against a white background by viewing transversely.

Loss on drying <2.4> Not more than 1.0% (1 g, 105°C, 2 hours).

Residue on ignition <2.4> Not more than 0.2% (1 g).

Assay Weigh accurately about 50 mg of Saccharin, and dissolve in a mixture of water and methanol (1:1) to make exactly 50 mL. Pipet 5 mL of this solution, add a mixture of water and methanol (1:1) to make exactly 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 25 mg of Saccharin RS (separately determine the loss on drying <2.4> in the same conditions as Saccharin), dissolve in a mixture of water and methanol (1:1) to make exactly 25 mL, and use this solution as the standard stock solution. Pipet 5 mL of the standard stock solution, add a mixture of water and methanol (1:1) to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.67> according to the following conditions, and determine the peak areas, A_T and A_S, of saccharin in each solution.

\[
\text{Amount (mg) of saccharin (C}_4\text{H}_4\text{NNaO}_4\text{S)} = M_S \times A_T / A_S \times 2
\]

Operating conditions—
Detector: An ultraviolet spectrophotometer (wavelength: 230 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (3.5 μm in particle diameter).

Column temperature: A constant temperature of about 20°C.

Mobile phase A: Dissolve 8.7 g of dipotassium hydrogen phosphate in diluted phosphoric acid (1 in 1000) to make 1000 mL.

Mobile phase B: Methanol.

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 7.0</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>7.0 - 8.0</td>
<td>90 – 5</td>
<td>10 – 95</td>
</tr>
<tr>
<td>8.0 - 10.0</td>
<td>5</td>
<td>95</td>
</tr>
<tr>
<td>10.0 - 10.1</td>
<td>5 – 90</td>
<td>95 – 10</td>
</tr>
<tr>
<td>10.1 - 10.5</td>
<td>90</td>
<td>10</td>
</tr>
</tbody>
</table>

Flow rate: 1.0 mL per minute (the retention time of saccharin is about 7.3 minutes).

System suitability—

System performance: Dissolve 25 mg of phthalic anhydride in a mixture of water and methanol (1:1) to make 25 mL. To 5 mL of this solution add 5 mL of the standard stock solution and a mixture of water and methanol (1:1) to make 50 mL. When the procedure is run with 10 μL of this solution under the above operating conditions, phthalic anhydride and saccharin are eluted in this order with the resolution between these peaks being not less than 1.5. When the procedure is run with 10 μL of the standard solution under the above operating conditions, the symmetry factor of the peak of saccharin is not more than 1.5.

System repeatability: When the test is repeated 5 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of saccharin is not more than 0.73%.

Containers and storage Containers—Well-closed containers.

Saccharin Sodium Hydrate

サッカリンナトリウム水和物

C_4H_4NNaO_4S_2H_2O: 241.20
2-Sodio-1,2-benzox[d]isothiazol-3(2H)-one 1,1-dioxide dihydrate

[6155-57-3]

Saccharin Sodium Hydrate contains not less than 98.0% and not more than 102.0% of saccharin sodium (C_4H_4NNaO_4S: 205.17), calculated on the anhydrous basis.

Description Saccharin Sodium Hydrate occurs as colorless crystals or a white crystalline powder.

It is freely soluble in water and in methanol, and sparingly soluble in ethanol (95).

It effloresces slowly and loses about half the amount of water of crystallization in air.

Identification (1) Determine the infrared absorption spectrum of Saccharin Sodium Hydrate, previously dried at 105°C to constant mass, as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the spectrum of Saccharin Sodium RS dried in the same manner as Saccharin Sodium Hydrate: both spectra exhibit similar intensities of absorption at the same wave numbers.

(2) A solution of Saccharin Sodium Hydrate (1 in 10) responds to Qualitative Tests "1.09" for sodium salt.

Purity (1) Clarity and color of solution—Dissolve 2.0 g of Saccharin Sodium Hydrate in water to make 10 mL, and use this solution as the test solution. Perform the test with the test solution as directed under Turbidity Measurement <2.67>: the solution is clear. Perform the test with the test solution according to Method 2 under Methods for Color Matching <2.65>: the solution is colorless.

(2) Acidity or alkalininity—Dissolve 1.0 g of Saccharin Sodium Hydrate in 10 mL of water, and add 1 drop of phenolphthalein TS: the solution is colorless. Add 1 drop of 0.1 mol/L sodium hydroxide VS to the solution: the color
changes to red.

(3) Heavy metals – Dissolve 2.0 g of Saccharin Sodium Hydrate in 40 mL of water, add 0.7 mL of dilute hydrochloric acid, dilute with water to make 50 mL, and rub the inner wall of the vessel with a glass rod until crystallization begins. Allow the solution to stand for 1 hour after the beginning of crystallization, and then filter through dry filter paper. Reject the first 10 mL of the filtrate, and take 25 mL of the subsequent filtrate. Add 2 mL of dilute acetic acid and water to make 50 mL, and perform the test, using this solution as the test solution. To 1.0 mL of Standard Lead Solution add 2 mL of dilute acetic acid and water to make 50 mL, and use this solution as the control solution (not more than 10 ppm).

(4) Benzoate and salicylate—Dissolve 0.5 g of Saccharin Sodium Hydrate in 10 mL of water, add 5 drops of acetic acid (31) and 3 drops of iron (III) chloride TS; no turbidity is produced, and no red-purple to purple color develops.

(5) o-Toluene sulfonamide—Dissolve 10 g of Saccharin Sodium Hydrate in 50 mL of water, and extract with three 30-mL portions of ethyl acetate. Combine all the ethyl acetate extracts, wash with 30 mL of a solution of sodium chloride (1 in 4), dehydrate with 5 g of anhydrous sodium sulfate, and evaporate ethyl acetate. To the residue add exactly 5 mL of the internal standard solution to dissolve, and use this solution as the sample solution. Separately, dissolve 0.10 g of o-toluene sulfonamide in ethyl acetate to make exactly 100 mL. Pipet 1 mL of this solution, evaporate on a water bath to dryness, dissolve the residue in exactly 5 mL of the internal standard solution, and use this solution as the standard solution. Perform the test with 1 μL each of the sample solution and standard solution as directed under Gas Chromatography (2.02) according to the following conditions, and calculate the ratios, Q1 and Q2, of the peak height of o-toluene sulfonamide to that of the internal standard: Q2 is not more than Q1.

Internal standard solution—A solution of caffeine in ethyl acetate (1 in 500).

Operating conditions—

Detector: A hydrogen flame-ionization detector.

Column: A glass column 3 mm in inside diameter and 1 m in length, packed with siliceous earth for gas chromatography (180 to 250 μm in diameter), coated with diethylene glycol succinate polyester for gas chromatography at the ratio of 3%.

Column temperature: A constant temperature of about 200°C.

Injection port temperature: A constant temperature of about 225°C.

Detector temperature: A constant temperature of about 250°C.

Carrier gas: Nitrogen.

Flow rate: Adjust so that the retention time of caffeine is about 6 minutes.

System suitability—

System performance: When the procedure is run with 1 μL of the standard solution under the above operating conditions, the internal standard and o-toluene sulfonamide are eluted in this order with the resolution between these peaks being not less than 2.0.

System repeatability: When the test is repeated 6 times with 1 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak height of o-toluene sulfonamide to that of the internal standard is not more than 2.0%.

(6) Readily carbonizable substances – Perform the test with 0.20 g of Saccharin Sodium Hydrate. Allow the solution to stand between 48°C and 50°C for 10 minutes: the solution has no more color than Matching Fluid A.

Water – Not more than 15.0% (0.1 g, volumetric titration, direct titration).

Assay—Weigh accurately about 50 mg of Saccharin Sodium Hydrate, and dissolve in a mixture of water and methanol (1:1) to make exactly 50 mL. Pipet 5 mL of this solution, add a mixture of water and methanol (1:1) to make exactly 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 25 mg of Saccharin Sodium RS (separately determine the water 2.48 in the same manner as Saccharin Sodium Hydrolyze), dissolve in a mixture of water and methanol (1:1) to make exactly 25 mL, and use this solution as the standard stock solution. Pipet 5 mL of the standard stock solution, add a mixture of water and methanol (1:1) to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography (2.07) according to the following conditions, and determine the peak areas, A1 and A2, of saccharin in each solution.

Amount (mg) of saccharin sodium (C8H7NNaO4S) = M2 x A1/A2 x 2

M2: Amount (mg) of Saccharin Sodium RS taken, calculated on the anhydrous basis.

Operating conditions—

Detector: An ultraviolet spectrophotometer (wavelength: 230 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (3.5 μm in particle diameter).

Column temperature: A constant temperature of about 20°C.

Mobile phase A: Dissolve 8.7 g of dipotassium hydrogen phosphate in diluted phosphoric acid (1 in 1000) to make 1000 mL.

Mobile phase B: Methanol.

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 7.0</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>7.0 – 8.0</td>
<td>90 → 5</td>
<td>10 → 95</td>
</tr>
<tr>
<td>8.0 – 10.0</td>
<td>5</td>
<td>95</td>
</tr>
<tr>
<td>10.0 – 10.1</td>
<td>5 → 90</td>
<td>95 → 10</td>
</tr>
<tr>
<td>10.1 – 10.5</td>
<td>90</td>
<td>10</td>
</tr>
</tbody>
</table>

Flow rate: 1.0 mL per minute (the retention time of saccharin is about 7.3 minutes).

System suitability—

System performance: Dissolve 25 mg of phthalic anhydride in a mixture of water and methanol (1:1) to make 25 mL. To 5 mL of this solution add 5 mL of the standard stock solution and a mixture of water and methanol (1:1) to make 30 mL. When the procedure is run with 10 μL of this solution under the above operating conditions, phthalic anhydride and saccharin are eluted in this order with the resolution between these peaks being not less than 1.5. When the procedure is run with 10 μL of the standard solution under the above operating conditions, the symmetry factor of the peak of saccharin is not more than 1.5.

System repeatability: When the test is repeated 5 times
Salazosulfapyridine

Sulfasalazine

サラゾスルファピリジン

\[\text{C}_4\text{H}_8\text{N}_2\text{O}_5\text{S} : 398.39 \]

2-Hydroxy-5-[4-(pyridin-2-ylsulfamoyl)phenylazo]benzoic acid

[599-79-1]

Salazosulfapyridine, when dried, contains not less than 96.0% of salazosulfapyridine (C\textsubscript{4}H\textsubscript{4}N\textsubscript{2}O\textsubscript{5}S).

Description

Salazosulfapyridine occurs as a yellow to yellow-brown fine powder. It is odorless and tasteless.

It is sparingly soluble in pyridine, slightly soluble in ethanol (95), practically insoluble in water, in chloroform and in diethyl ether.

It dissolves in sodium hydroxide TS.

Melting point: 240 – 249°C (with decomposition).

Identification

(1) Dissolve 0.1 g of Salazosulfapyridine in 20 mL of dilute sodium hydroxide TS: a red-brown color develops. This color gradually fades upon gradual addition of 0.5 g of sodium hydroxide with shaking. Use this solution in the following tests (2) to (4).

(2) To 1 mL of the solution obtained in (1) add 40 mL of water, neutralize with 0.1 mol/L hydrochloric acid TS, and add water to make 50 mL. To 5 mL of this solution add 2 to 3 drops of dilute iron (III) chloride TS: a red color develops and changes to purple, then fades when dilute hydrochloric acid is added dropwise.

(3) The solution obtained in (1) responds to Qualitative Tests \textless1.09\textgreater for primary aromatic amines.

(4) To 1 mL of the solution obtained in (1) add 1 mL of pyridine and 2 drops of copper (II) sulfate TS, and shake. Add 3 mL of water and 5 mL of chloroform, shake, and allow to stand: a green color develops in the chloroform layer.

(5) Determine the absorption spectrum of a solution of Salazosulfapyridine in dilute sodium hydroxide TS (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry \textless2.24\textgreater, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

Purity

(1) Chloride \textless1.07\textgreater—Dissolve 2.0 g of Salazosulfapyridine in 12 mL of sodium hydroxide TS and 36 mL of water, add 2 mL of nitric acid, shake, and filter. To 25 mL of the filtrate add 6 mL of dilute nitric acid and water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution with 0.40 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.014%).

(2) Sulfate \textless1.14\textgreater—Dissolve 2.0 g of Salazosulfapyridine in 12 mL of sodium hydroxide TS and 36 mL of water, add 2 mL of hydrochloric acid, shake, and filter. To 25 mL of the filtrate add 1 mL of dilute hydrochloric acid and water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution with 1.0 mL of 0.005 mol/L sulfuric acid VS (not more than 0.048%).

(3) Heavy metals \textless1.07\textgreater—Produce with 1.0 g of Salazosulfapyridine according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(4) Arsenic \textless1.11\textgreater—Take 1.0 g of Salazosulfapyridine in a decomposition flask, add 20 mL of nitric acid, and heat gently until it becomes fluid. After cooling, add 5 mL of sulfuric acid, and heat until white fumes are evolved. Add, if necessary, 5 mL of nitric acid after cooling, and heat again. Repeat this operation until the solution becomes colorless to slightly yellow. After cooling, add 15 mL of a saturated solution of ammonium oxalate monohydrate, and heat until white fumes are evolved again. After cooling, add water to make 25 mL. Perform the test with 5 mL of this solution as the test solution: the color of the test solution is not deeper than that of the following color standard.

Color standard: Proceed in the same manner without Salazosulfapyridine, transfer 5 mL of the obtained solution to a generator bottle, add exactly 2 mL of Standard Arsenic Solution, and proceed in the same manner as the test solution with this solution (not more than 10 ppm).

(5) Related substances—Dissolve 0.20 g of Salazosulfapyridine in 20 mL of pyridine, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add pyridine to make exactly 100 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography \textless2.03\textgreater. Spot 10 \(\mu\)L each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with diluted methanol (9 in 10) to a distance of about 10 cm, and air-dry the plate. Examine the plate under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

(6) Salicylic acid—To 0.10 g of Salazosulfapyridine add 15 mL of diethyl ether, and shake vigorously. Add 5 mL of dilute hydrochloric acid, shake vigorously for 3 minutes, collect the diethyl ether layer, and filter. To the water layer add 15 mL of diethyl ether, shake vigorously for 3 minutes, collect the diethyl ether layer, filter, and combine the filtrates. Wash the residue on the filter paper with a small quantity of diethyl ether, and combine the washings and the filtrate. Evaporate the diethyl ether with the aid of air-stream at room temperature. To the residue add dilute ammonium iron (III) sulfate TS, shake, and filter, if necessary. Wash the residue on the filter paper with a small quantity of dilute ammonium iron (III) sulfate TS, combine the washings and the filtrate, add dilute ammonium iron (III) sulfate TS to make exactly 20 mL, and use this solution as the sample solution. Separately, weigh accurately about 10 mg of salicylic acid for assay, previously dried in a desiccator (silica gel) for 3 hours, dissolve in dilute ammonium iron (III) sulfate TS to make exactly 400 mL, and use this solution as the standard solution. Determine the absorbances, \(A_7\) and \(A_8\), at 535 nm of the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry \textless2.24\textgreater: salicylic acid content is not more than 0.5%.

\[
\text{Content (\%)} \text{ of salicylic acid (C}_7\text{H}_6\text{O}_3\text{)} = M_5 \times A_7/A_8 \times 1/20
\]

\(M_5\): Amount (mg) of salicylic acid for assay taken.
Salicylic Acid

A solution of Salicylic Acid (1 in 500) with 0.1 mol/L hydrochloric acid, previously dried, and perform the test as directed in the procedure for determination of sulfur under Oxygen Flask Combustion Method <1.065>, using 10 mL of diluted hydrogen peroxide (30) (1 in 40) as an absorbing liquid.

Each mL of 0.005 mol/L barium perchlorate VS = 1.992 mg of \(\text{C}_9\text{H}_7\text{NO}_3\text{S} \)

Containers and storage: Containers—Tight containers. Storage—Light-resistant.

Salbutamol Sulfate

サルブタモル硫酸塩

\[
\text{(C}_9\text{H}_{13}\text{NO}_3\text{)}_2\cdot\text{H}_2\text{SO}_4\cdot 576.70
\]

\((1RS)-2-(1,1-\text{Dimethylethyl}amino)-1-(4-\text{hydroxy}-3-\text{hydroxymethylphenyl})\text{ethanol hemisulfate}\ [51022-70-9]

Salbutamol Sulfate, when dried, contains not less than 98.0% of salbutamol sulfate [\(\text{C}_9\text{H}_{13}\text{NO}_3\text{H}_2\text{SO}_4 \)].

Description: Salbutamol Sulfate occurs as a white powder. It is freely soluble in water, slightly soluble in ethanol (95), and in acetic acid (100) and practically insoluble in diethyl ether.

A solution of Salbutamol Sulfate (1 in 20) shows no optical rotation.

Identification (1) Determine the absorption spectrum of a solution of Salbutamol Sulfate in 0.1 mol/L hydrochloric acid TS (1 in 12,500) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Salbutamol Sulfate, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) A solution of Salbutamol Sulfate (1 in 20) responds to Qualitative Tests <1.09> for sulfate.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Salbutamol Sulfate in 20 mL of water: the solution is clear and colorless.

(2) Heavy metals <1.07>—Proceed with 1.0 g of Salbutamol Sulfate according to Method 1, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(3) Related substances—Dissolve 20 mg of Salbutamol Sulfate in 10 mL of water, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add water to make exactly 100 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.02>. Spot 5 \(\mu \text{L} \) each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate, 2-propanol, water and ammonia solution (28) (25:15:8:2) to a distance of about 15 cm, and air-dry the plate. Leave the plate in a well-closed vessel saturated with diethylylamine vapor for 5 minutes, and spray evenly 4-nitrobenzenediazonium chloride TS: the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution in color.

(4) Boron—Take 50 mg of Salbutamol Sulfate and 5.0 mL of the Standard Boron Solution, and transfer to a platinum crucible. Add 5 mL of potassium carbonate-sodium carbonate TS, evaporate on a water bath to dryness, and dry at 120°C for 1 hour. Ignite the residue immediately. After cooling, add 0.5 mL of water and 3 mL of curcumin TS to the residue, warm gently in a water bath for 5 minutes. After cooling, add 3 mL of acetic acid-sulfuric acid TS, mix, and allow to stand for 30 minutes. Add ethanol (95) to make exactly 100 mL, and filter. Discard the first 10 mL of the filtrate, and use the subsequent filtrate as the sample solution and standard solution. Perform the test with these solutions as directed under Ultraviolet-visible Spectrophotometry <2.24>, using ethanol (95) as the blank: the absorbance of the sample solution at 555 nm is not larger than that of the standard solution.

Lost on drying <2.41> Not more than 2.0% (1 g, 105°C, 4 hours).

Residue on ignition <2.42> Not more than 0.2% (1 g).

Assay Weigh accurately about 20 mg of Salazosulfapyridine, previously dried, and perform the test as directed in the procedure for determination of sulfur under Oxygen Flask Combustion Method <1.065>, using 10 mL of diluted hydrogen peroxide (30) (1 in 40) as an absorbing liquid.

Each mL of 0.005 mol/L barium perchlorate VS = 1.992 mg of \(\text{C}_9\text{H}_7\text{NO}_3\text{S} \).

Containers and storage: Containers—Tight containers. Storage—Light-resistant.

Salicylic Acid

The JP Drugs are to be tested in accordance with the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)

C_9H_8O_2: 138.12
2-Hydroxybenzoic acid [69-72-7]

Salicylic Acid, when dried, contains not less than 99.5% and not more than 101.0% of salicylic acid (C_9H_8O_2).

Description: Salicylic Acid occurs as white, crystals or crystalline powder. It has a slightly acid, followed by an acrid taste. It is freely soluble in ethanol (95) and in acetone, and slightly soluble in water.

Identification (1) A solution of Salicylic Acid (1 in 500)
responds to Qualitative Tests <1.09> (1) and (3) for salicylate.

(2) Determine the absorption spectrum of a solution of Salicylic Acid in ethanol (95) (3 in 200,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave-lengths.

(3) Determine the infrared absorption spectrum of Salicylic Acid as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point <2.60> 158 – 161°C

Purity (1) Chloride <1.02>—Dissolve 5.0 g of Salicylic Acid in 90 mL of water by heating, cool, dilute with water to 100 mL, and filter. Discard the first 20 mL of the filtrate, take 30 mL of the subsequent filtrate, add 6 mL of dilute nitric acid and water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution with 0.35 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.008%).

(2) Sulfate <1.14>—To 20 mL of the filtrate obtained in (1) add 1 mL of dilute hydrochloric acid and water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution with 0.40 mL of 0.005 mol/L sulfuric acid VS (not more than 0.019%).

(3) Heavy metals <1.07>—Dissolve 2.0 g of Salicylic Acid in 25 mL of acetone, add 4 mL of sodium hydroxide TS, 2 mL of dilute acetic acid and water and make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution as follows: to 2.0 mL of Standard Lead Solution add 25 mL of acetone, 2 mL of dilute acetic acid and water and make 50 mL (not more than 10 ppm).

(4) Related substances—Dissolve 0.50 g of Salicylic Acid in the mobile phase to make exactly 100 mL, and use this solution as the sample solution. Separately, dissolve exactly 10 mg of phenol, exactly 25 mg of 4-hydroxyisophthalic acid and exactly 50 mg of parahydroxybenzoic acid in the mobile phase to make exactly 100 mL. Pipet 1 mL of this solution, add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine each peak area by the automatic integration method: the peak areas of parahydroxybenzoic acid, 4-hydroxyisophthalic acid and phenol obtained from the sample solution are not larger than the area of each respective peak from the standard solution, the area of the peak other than salicylic acid and the substances mentioned above is not larger than the peak area of 4-hydroxyisophthalic acid from the standard solution, and the total area of peaks other than salicylic acid is not larger than 2 times the peak area of parahydroxybenzoic acid from the standard solution.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 270 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadeylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 35°C.

Mobile phase: A mixture of water, methanol and acetic acid (100) (60:40:1).

Flow rate: Adjust so that the retention time of salicylic acid is about 17 minutes.

Time span of measurement: About 2 times as long as the retention time of salicylic acid, beginning after the solvent peak.

System suitability—
Test for required detectability: Pipet 2 mL of the standard solution, and add the mobile phase to make exactly 10 mL. Confirm that the peak areas of parahydroxybenzoic acid, 4-hydroxyisophthalic acid and phenol obtained with 10 μL of this solution are equivalent to 14 to 26% of the area of each respective peak with 10 μL of the standard solution.

System performance: Dissolve 10 mg of phenol, 25 mg of 4-hydroxyisophthalic acid and 50 mg of parahydroxybenzoic acid in 100 mL of the mobile phase. To 1 mL of this solution add the mobile phase to make 10 mL. When the procedure is run with 10 μL of this solution under the above operating conditions, parahydroxybenzoic acid, 4-hydroxyisophthalic acid and phenol are eluted in this order with the resolution between the peaks of 4-hydroxyisophthalic acid and phenol being not less than 4.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak areas of parahydroxybenzoic acid, 4-hydroxyisophthalic acid and phenol is not more than 2.0%, respectively.

Loss on drying <2.41> Not more than 0.5% (2 g, silica gel, 3 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.5 g of Salicylic Acid, previously dried, dissolve in 25 mL of neutralized ethanol, and titrate <2.30> with 0.1 mol/L sodium hydroxide VS (indicator: 3 drops of phenolphthalein TS).

Each mL of 0.1 mol/L sodium hydroxide VS = 13.81 mg of C7H6O4

Containers and storage Containers—Well-closed containers.

Salicylic Acid Adhesive Plaster

Method of preparation

| Salicylic Acid, finely powdered | 500 g |
| Adhesive plaster base | a sufficient quantity |

To make 1000 g

Adhesive Plaster consists of a mixture of the above ingredients with carefully selected rubber, resins, zinc oxide and other substances. It has adhesive properties. It spreads evenly on a fabric.

Description The surface of Salicylic Acid Adhesive Plaster is whitish in color and adheres well to the skin.

Containers and storage Containers—Well-closed containers.

Storage—Light-resistant.
Salicylic Acid Spirit

サリチル酸精

Salicylic Acid Spirit contains not less than 2.7 w/v% and not more than 3.3 w/v% of salicylic acid (C₇H₆O₃: 138.12).

Method of preparation

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salicylic Acid</td>
<td>30 g</td>
</tr>
<tr>
<td>Glycerin</td>
<td>50 mL</td>
</tr>
<tr>
<td>Ethanol</td>
<td>a sufficient quantity</td>
</tr>
</tbody>
</table>

To make 1000 mL

Prepare as directed under Spirits, with the above ingredients.

Description Salicylic Acid Spirit is a clear, colorless liquid. Specific gravity d_{20}^{20}: about 0.86

Identification The solution obtained in the Assay has a red-purple color. Determine the absorption spectrum of the solution as directed under Ultraviolet-visible Spectrophotometry λ_{max}: it exhibits a maximum between 520 nm and 535 nm (salicylic acid).

Alcohol number $<1.0^\circ>$ Not less than 8.8 (Method 2).

Assay Measure exactly 10 mL of Salicylic Acid Spirit, add 10 mL of ethanol (95) and water to make exactly 100 mL. Pipet 3 mL of this solution, and dilute with hydrochloric acid-potassium chloride buffer solution (pH 2.0) to make exactly 100 mL. Use this solution as the sample solution. Dissolve about 0.3 g of salicylic acid for assay, previously dried in a desiccator (silica gel) for 3 hours and accurately weighed, in 10 mL of ethanol (95) and water to make exactly 100 mL. Pipet 3 mL of this solution, dilute with hydrochloric acid-potassium chloride buffer solution (pH 2.0) to make exactly 100 mL, and use this solution as the standard solution. Pipet 10 mL each of the sample solution and standard solution, to each add exactly 5 mL of a solution of iron (III) nitrate enneahydrate (1 in 200) and use both solutions as the standard solution. Pipet 10 mL each of the sample solution and standard solution, to each add exactly 5 mL of a solution of iron (III) nitrate enneahydrate (1 in 200) and use both solutions as the standard solution. Pipet 10 mL each of the sample solution and standard solution, to each add exactly 5 mL of a solution of iron (III) nitrate enneahydrate (1 in 200) and use both solutions as the standard solution. Pipet 10 mL each of the sample solution and standard solution, to each add exactly 5 mL of a solution of iron (III) nitrate enneahydrate (1 in 200) and use both solutions as the standard solution.

Amount (mg) of salicylic acid (C₇H₆O₃)

\[M_5 = M_5 \times A_T / A_S \]

M_5: Amount (mg) of salicylic acid for assay taken

Containers and storage Containers—Tight containers.

Compound Salicylic Acid Spirit

複方サリチル酸精

Compound Salicylic Acid Spirit contains not less than 1.8 w/v% and not more than 2.2 w/v% of salicylic acid (C₇H₆O₃: 138.12), and not less than 0.43 w/v% and not more than 0.53 w/v% of phenol (C₆H₅O: 94.11).

Method of preparation

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salicylic Acid</td>
<td>20 g</td>
</tr>
<tr>
<td>Liquefied Phenol</td>
<td>5 mL</td>
</tr>
<tr>
<td>Glycerin</td>
<td>40 mL</td>
</tr>
<tr>
<td>Ethanol</td>
<td>800 mL</td>
</tr>
<tr>
<td>Water, Purified Water or Purified</td>
<td>a sufficient quantity</td>
</tr>
</tbody>
</table>

To make 1000 mL

Prepare as directed under Spirits, with the above ingredients.

Description Compound Salicylic Acid Spirit is a clear, colorless to light red liquid. Specific gravity d_{20}^{20}: about 0.88

Identification (1) To 1 mL of Compound Salicylic Acid Spirit add hydrochloric acid-potassium chloride buffer solution (pH 2.0) to make 200 mL, and to 5 mL of this solution add 5 mL of a solution of iron (III) nitrate enneahydrate (1 in 200): a red-purple color is produced (salicylic acid).

(2) To 1 mL of Compound Salicylic Acid Spirit add 20 mL of water and 5 mL of dilute hydrochloric acid, and extract with 20 mL of diethyl ether. Wash the diethyl ether extract with two 5-mL portions of sodium hydrogen carbonate TS, and extract with 10 mL of dilute sodium hydroxide TS. Shake 1 mL of the extract with 1 mL of sodium nitrite TS and 1 mL of dilute hydrochloric acid, allow to stand for 10 minutes, and add 3 mL of sodium hydroxide TS: a yellow color is produced (phenol).

(3) To 0.5 mL of Compound Salicylic Acid Spirit add 5 mL of dilute hydrochloric acid, extract with 5 mL of chloroform, and use the extract as the sample solution (1). To 2 mL of Compound Salicylic Acid Spirit add 5 mL of dilute hydrochloric acid, wash the extract with two 5-mL portions of sodium hydrogen carbonate TS, and use the chloroform extract as the sample solution (2). Separately, dissolve 0.01 g each of salicylic acid and phenol in 5 mL each of chloroform, and use both solutions as the standard solutions (1) and (2). Perform the test with these solutions as directed under Thin-layer Chromatography λ_{max}. Spot 5 μL each of the sample solutions (1) and (2) and the standard solutions (1) and (2) on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of chloroform, acetone and acetic acid (100:45:5:1) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots obtained from the sample solution (1) and standard solution (1) show the same Rf value, and the spots from the sample solution (2) and the standard solution (2) show the same Rf value. Spray evenly iron (III) chloride TS upon the plate: the spot from the standard solution (1) and the corresponding spot from the sample solution (1) reveal a purple color.

Alcohol number $<1.0^\circ>$ Not less than 7.5 (Method 2).
Salicylated Alum Powder

Salicylated Alum Powder contains not less than 2.7% and not more than 3.3% of salicylic acid (C₇H₆O₃: 138.12).

Method of preparation

Salicylic Acid, finely powdered
Dried Aluminum Potassium Sulfate, very finely powdered
Talc, very finely powdered

<table>
<thead>
<tr>
<th>Amount (mg)</th>
<th>30 g</th>
<th>640 g</th>
<th>a sufficient quantity</th>
</tr>
</thead>
</table>

To make 1000 g

Prepare as directed under Powders, with the above ingredients.

Description

Salicylated Alum Powder occurs as a white powder.

Identification (1) The colored solution obtained in the Assay has a red-purple color. Determine the absorption spectrum of the solution as directed under Ultra violet-visible Spectrophotometry <2.2A>. It exhibits a maximum between 520 nm and 353 nm (salicylic acid).

(2) Shake 0.3 g of Salicylated Alum Powder with 5 mL of methanol, filter, and use the filtrate as the sample solution. Separately, dissolve 0.01 g of salicylic acid in 5 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.09>. Spot 5 μL each of the sample solution and standard solution on the plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of chloroform, acetone and acetic acid (100:45:5:1) to a distance of about 10 cm, and air-dry the plate. Examine the plate under ultraviolet light (main wavelength: 254 nm): the spot obtained from the sample solution and that from the standard solution show the same Rf value. Spray evenly iron (III) chloride TS upon the plate: the spot from the standard solution and the corresponding spot from the sample solution reveal a purple color.

Assay

Weigh accurately about 0.33 g of Salicylated Alum Powder, add 80 mL of ethanol (95), and shake vigorously. Dilute with ethanol (95) to make exactly 100 mL, filter, and discard the first 10 mL of the filtrate. Use the subsequent filtrate as the sample solution. Dissolve about 0.1 g of salicylic acid for assay, previously dried in a desiccator (silica gel) for 3 hours and accurately weighed, in sufficient ethanol (95) to make exactly 100 mL. Pipet 10 mL of this solution, dilute with ethanol (95) to make exactly 100 mL, and use the solution as the standard solution. Pipet 10 mL each of the sample solution and standard solution, to each add exactly 5 mL of a solution of iron (III) nitrate enneahydrate (1 in 200), and dilute with hydrochloric acid-potassium chloride buffer solution (pH 2.0) to make exactly 25 mL. Determine the absorbances, A₁ and A₅, of both solutions at 530 nm as directed under Ultra violet-visible Spectrophotometry <2.2B>, using a solution prepared in the same manner with 10 mL of ethanol (95) as the blank.

\[
\text{Amount (mg) of salicylic acid (C₇H₆O₃)} = M_S \times A_1/A_S \times 1/10
\]

M_S: Amount (mg) of salicylic acid for assay taken

Containers and storage

Containers—Well-closed containers.
Santonin

サントニン

Santonin, when dried, contains not less than 98.5% and not more than 101.0% of santonin (C₁₅H₁₉O₃).

Description Santonin occurs as colorless crystals, or a white crystalline powder.

It is freely soluble in chloroform, sparingly soluble in ethanol (95), and practically insoluble in water.

It becomes yellow by light.

Identification (1) Determine the absorption spectrum of a solution of Santonin in ethanol (95) (3 in 250,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Santonin as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation <2.49> [α]D₂₀: −170 to −175° (0.2 g, chloroform, 10 mL, 100 mm).

Melting point <2.60> 172–175°C

Purity (1) Heavy metals <1.07>—Proceed with 1.0 g of Santonin according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(2) Alkaloids—Boil 0.5 g of Santonin with 20 mL of dilute sulfuric acid (1 in 100), cool, and filter. Dilute 10 mL of the filtrate with water to 30 mL, add 3 drops of iodine TS, and allow to stand for 3 hours: no turbidity is produced.

(3) Artemisin—Dissolve 1.0 g of powdered Santonin in 2 mL of chloroform by slight warming: the solution is clear and colorless, or any yellow color produced is not darker than Matching Fluid A.

(4) Phenols—Boil 0.20 g of Santonin with 10 mL of water, cool, and filter. To the filtrate add bromine TS until the color of the solution becomes yellow: no turbidity is produced.

(5) Acid-coloring substances—Moisten 10 mg of Santonin with nitric acid: no color develops immediately. Moisten Santonin with sulfuric acid, previously cooled to 0°C: no color is produced immediately.

Loss on drying <2.41> Not more than 0.5% (1 g, 105°C, 3 hours).

Residue on ignition <2.48> Not more than 0.2% (1 g).

Assay Weigh accurately about 0.25 g of Santonin, previously dried, dissolve in 10 mL of ethanol (95) by warming, add exactly 20 mL of 0.1 mol/L sodium hydroxide VS, and heat on a water bath under a reflux condenser for 5 minutes. Cool quickly, and titrate <2.50> the excess sodium hydroxide with 0.05 mol/L hydrochloric acid VS (indicator: 3 drops of phenolphthalein TS). Perform a blank determination in the same manner.

Each mL of 0.1 mol/L sodium hydroxide VS = 24.63 mg of C₁₅H₁₉O₃

Containers and storage Containers—Tight containers. Storage—Light-resistant.

Sarpogrelate Hydrochloride

サルポグレラート塩酸塩

Sarpogrelate Hydrochloride contains not less than 98.5% and not more than 101.0% of sarpogrelate hydrochloride (C₃₂H₃₁NO₆.HCl), calculated on the anhydrous basis.

Description Sarpogrelate Hydrochloride occurs as a white crystalline powder.

It is slightly soluble in water and in ethanol (99.5). It dissolves in 0.01 mol/L hydrochloric acid TS.

A solution of Sarpogrelate Hydrochloride (1 in 100) shows no optical rotation.

Sarpogrelate Hydrochloride shows crystal polymorphism.

Identification (1) Determine the absorption spectrum of a solution of Sarpogrelate Hydrochloride in 0.01 mol/L hydrochloric acid TS (1 in 20,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Sarpogrelate Hydrochloride RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Sarpogrelate Hydrochloride as directed in the potassium chloride disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of Sarpogrelate Hydrochloride RS: both spectra exhibit similar intensities of absorption at the same wave numbers. If any difference appears between the spectra, recrystallize the Sarpogrelate Hydrochloride, or the Sarpogrelate Hydrochloride and the Sarpogrelate Hydrochloride RS separately with acetone by heating and suspending, filter and dry the crystals at 50°C for 1 hour, and perform the test with the crystals.

(3) Dissolve 0.3 g of Sarpogrelate Hydrochloride in 6 mL of sodium hydroxide TS, shake well, allow to stand for 10
minutes, and filter. To 1 mL of the filtrate add 1 mL of dilute nitric acid. This solution responds to Qualitative Tests <1.09> for chloride.

Purity (1) Heavy metals <1.07>—Proceed with 2.0 g of Sarpogrelate Hydrochloride according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Arsenic <1.17>—Prepare the test solution with 2.0 g of Sarpogrelate Hydrochloride according to Method 4, and perform the test (not more than 1 ppm).

(3) Related substances—Conduct this procedure within 3 hours after preparation of the sample solution. Dissolve 20 mg of Sarpogrelate Hydrochloride in 10 mL of the mobile phase, and use this solution as the sample solution. Pipet 2 mL of the sample solution, add the mobile phase to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions, and determine each peak area by the automatic integration method: the peak area of decomposed substance A, having the relative retention time about 0.82 to sarpogrelate, obtained from the sample solution is not larger than 1/5 times that of sarpogrelate from the standard solution, the area of the peak other than sarpogrelate and the peak mentioned above from the sample solution is not larger than 1/10 times the peak area of sarpogrelate from the standard solution, and the total area of the peaks other than sarpogrelate from the sample solution is not larger than 1/2 times the peak area of sarpogrelate from the standard solution. For the peak area of the decomposed substance A, multiply the correction factor, 0.78.

Operating conditions—

Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 2.5 times as long as the retention time of sarpogrelate, beginning after the solvent peak.

System suitability—

Test for required detectability: Pipet 5 mL of the standard solution, add the mobile phase to make exactly 50 mL. Confirm that the peak area of sarpogrelate obtained with 10 μL of this solution is equivalent to 7 to 13% of that with 10 μL of the standard solution.

System performance: Dissolve 50 mg of Sarpogrelate Hydrochloride in 20 mL of water, and use as the sarpogrelate hydrochloride stock solution. To 1 mL of the sarpogrelate hydrochloride stock solution add 2 mL of sodium hydroxide TS, shake thoroughly, allow to stand for 10 minutes, and add 3 mL of 1 mol/L hydrochloric acid TS. To this solution add 1 mL of the sarpogrelate hydrochloride stock solution, and add the mobile phase to make 50 mL. When the procedure is run with 10 μL of this solution under the above operating conditions, the decomposed substance A and sarpogrelate are eluted in this order with the resolution between these peaks being not less than 3.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of sarpogrelate to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Tight containers.

Sarpogrelate Hydrochloride Fine Granules

サルポグレラート塩酸塩細粒

Sarpogrelate Hydrochloride Fine Granules contain not less than 95.0% and not more than 105.0% of the labeled amount of sarpogrelate hydrochloride (C$_2$H$_5$NO$_6$.HCl; 465.97).

Method of preparation Prepare as directed under Granules, with Sarpogrelate Hydrochloride.

Identification To an amount of Sarpogrelate Hydrochloride Fine Granules, equivalent to 50 mg of Sarpogrelate Hydrochloride, add 10 mL of 0.01 mol/L hydrochloric acid TS, allow to stand at room temperature for 10 minutes, then add 0.01 mol/L hydrochloric acid TS to make 100 mL, and disperse the particles by sonicating. Centrifuge this solution, and to 5 mL of the supernatant liquid add 0.01 mol/L hydrochloric acid and filter. To 1 mL of the filtrate add 1 mL of dilute nitric acid. This solution responds to Qualitative Tests <1.09> for chloride.

Purity (1) Heavy metals <1.07>—Proceed with 2.0 g of Sarpogrelate Hydrochloride according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Arsenic <1.17>—Prepare the test solution with 2.0 g of Sarpogrelate Hydrochloride according to Method 4, and perform the test (not more than 1 ppm).

(3) Related substances—Conduct this procedure within 3 hours after preparation of the sample solution. Dissolve 20 mg of Sarpogrelate Hydrochloride in 10 mL of the mobile phase, and use this solution as the sample solution. Pipet 2 mL of the sample solution, add the mobile phase to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions, and calculate the ratios, Q_1 and Q_5, of the peak area of sarpogrelate to that of the internal standard.

\[
M_5 = \frac{Q_5}{Q_s}\]

Internal standard solution—A solution of isopropyl parahydroxybenzoate in the mobile phase (3 in 1000).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 272 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecysilaneized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: A mixture of water, acetonitrile and trifluoroacetic acid (1300:700:1).

Flow rate: Adjust so that the retention time of sarpogrelate is about 8 minutes.

System suitability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, sarpogrelate and the internal standard are eluted in this order with the resolution between these peaks being not less than 3.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of sarpogrelate to that of the internal standard is not more than 1.0%.
Purity: Related substances—Conduct this procedure within 3 hours after preparation of the sample solution. Powder Sarpogrelate Hydrochloride Fine Granules. To a portion of the powder, equivalent to 0.10 g of Sarpogrelate Hydrochloride, add 50 mL of the mobile phase, and disperse the particles by sonicating. Filter thorough a membrane filter with a pore size not exceeding 0.45 μm, discard the first 3 mL of the filtrate, and use the subsequent filtrate as the sample solution. Pipet 2 mL of the sample solution, add the mobile phase to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography 2.2.1 according to the following conditions, and determine each peak area by the automatic integration method: the peak area of decomposed substance A, having the relative retention time about 0.82 to sarpogrelate, obtained from the sample solution is not larger than 2.5 times that of sarpogrelate from the standard solution, and the area of the peak other than sarpogrelate and the peak mentioned above from the sample solution is not larger than 1/10 times the peak area of sarpogrelate from the standard solution. For the peak area of the decomposed substance A, multiply the correction factor, 0.78.

Operating conditions—
Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay under Sarpogrelate Hydrochloride.
Time span of measurement: About 2.5 times as long as the retention time of sarpogrelate, beginning after the solvent peak.

System suitability—
Test for required detectability: Pipet 5 mL of the standard solution, and add the mobile phase to make exactly 50 mL. Confirm that the peak area of sarpogrelate obtained with 10 μL of this solution is equivalent to 7 to 13% of that with 10 μL of the standard solution.
System performance: Dissolve 50 mg of sarpogrelate hydrochloride in 20 mL of water, and use this solution as the sarpogrelate hydrochloride stock solution. To 1 mL of the sarpogrelate hydrochloride stock solution add 2 mL of sodium hydroxide TS, shake thoroughly, allow to stand for 10 minutes, and add 3 mL of 1 mol/L hydrochloric acid TS. To this solution add 1 mL of the sarpogrelate hydrochloride stock solution, and add the mobile phase to make 50 mL. When the procedure is run with 10 μL of this solution under the above operating conditions, the decomposed substance A and sarpogrelate are eluted in this order with the resolution of the above operating conditions, the decomposed substance A, multiply the correction factor, 0.78.

Uniformity of dosage units 6.02—Perform the test according to the following method: Sarpogrelate Hydrochloride Fine Granules in single-dose packages meet the requirement of the Content uniformity test.
To the total amount of the content of 1 package of Sarpogrelate Hydrochloride Fine Granules add exactly V/10 mL of the internal standard solution, and add 4V/5 mL of the mobile phase, disperse the particles by sonicating, then add the mobile phase to make V mL so that each mL contains about 1 mg of sarpogrelate hydrochloride (C22H21NO5.HCl), and centrifuge. To 5 mL of the supernatant liquid add the mobile phase to make 50 mL, and use this solution as the sample solution. Then, proceed as directed in the Assay.

Amount (mg) of sarpogrelate hydrochloride
\[(C_2H_21NO_5HCl) = M_s \times Q_s / Q_s \times V / 50 \]

M_s: Amount (mg) of Sarpogrelate Hydrochloride RS taken, calculated on the anhydrous basis

Internal standard solution—A solution of isopropyl parahydroxybenzoate in the mobile phase (1 in 1000).

Dissolution 6.10—When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 15 minutes of Sarpogrelate Hydrochloride Fine Granules is not less than 85%.
Start the test with an accurately weighed amount of Sarpogrelate Hydrochloride Fine Granules, equivalent to about 50 mg of sarpogrelate hydrochloride (C22H21NO5.HCl), withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 25 mg of Sarpogrelate Hydrochloride RS (separately determine the water 2.48) in the same manner as Sarpogrelate Hydrochloride, and dissolve in water to make exactly 50 mL. Pipet 5 mL of this solution, add water to make exactly 50 mL, and use this solution as the standard solution. Determine the absorbances, A_T and A_S, of the sample solution and standard solution at 270 nm as directed under Ultraviolet-visible Spectrophotometry 2.2.4.

Dissolution rate (%) with respect to the labeled amount of sarpogrelate hydrochloride (C22H21NO5.HCl)
\[M_S / M_T \times A_S / A_T \times 1 / C \times 180 \]

C: Labeled amount (mg) of sarpogrelate hydrochloride (C22H21NO5.HCl) in 1 g

Assay Powder Sarpogrelate Hydrochloride Fine Granules. Weigh accurately a portion of the powder, equivalent to about 0.25 g of sarpogrelate hydrochloride (C22H21NO5.HCl), add exactly 25 mL of the internal standard solution, add 200 mL of the mobile phase, and disperse the particles by sonicating. To this solution add the mobile phase to make 250 mL, and centrifuge. To 5 mL of the supernatant liquid add the mobile phase to make 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 50 mg of Sarpogrelate Hydrochloride RS (separately determine the water 2.48) in the same manner as Sarpogrelate Hydrochloride, add exactly 5 mL of the internal standard solution, and add the mobile phase to make 50 mL. To 5 mL of this solution add the mobile phase to make 50 mL, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography 2.2.1 according to the following conditions, and calculate the ratios, Q_s and Q_T, of the peak area of sarpogrelate to that of the internal standard.

Amount (mg) of sarpogrelate hydrochloride
\[(C_2H_21NO_5HCl) = M_s \times Q_s / Q_T \times V \]
Sarpogrelate Hydrochloride Tablets

Sarpogrelate Hydrochloride Tablets

Sarpogrelate Hydrochloride Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of sarpogrelate hydrochloride \((C_{24}H_{31}NO_6.HCl): 465.97\).

Method of preparation Prepare as directed under Tablets, with Sarpogrelate Hydrochloride.

Identification Powder Sarpogrelate Hydrochloride Tablets. To a portion of the powder, equivalent to 50 mg of Sarpogrelate Hydrochloride Tablets, add 10 mL of 0.01 mol/L hydrochloric acid TS, allow to stand at room temperature for 10 minutes, then add 0.01 mol/L hydrochloric acid TS to make 100 mL, and disperse the particles by sonicating. Centrifuge this solution, and to 5 mL of the supernatant liquid add 0.01 mol/L hydrochloric acid TS to make 50 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry \((2.2.4): it exhibits its maxima between 269 nm and 273 nm, and between 274 nm and 278 nm.

Purity Related substances—Conduct this procedure within 12 hours after preparation of the sample solution. Powder Sarpogrelate Hydrochloride Tablets. To a portion of the powder, equivalent to 0.10 g of Sarpogrelate Hydrochloride, add 50 mL of the mobile phase, and disperse the particles by sonicating. Filter the solution through a membrane filter with a pore size not exceeding 0.45 \(\mu\)m, discard the first 3 mL of the filtrate, and use the subsequent filtrate as the sample solution. Pipet 2 mL of the sample solution, add the mobile phase to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 10 \(\mu\)L each of the sample solution and standard solution as directed under Liquid Chromatography \((2.0.1): according to the following conditions, and determine each peak area by the automatic integration method: the peak area of decomposed substance \(A\), having the relative retention time about 0.82 to sarpogrelate, obtained from the sample solution is not larger than 1.5 times that of sarpogrelate from the standard solution, and the area of the peak other than sarpogrelate and the peak mentioned above from the sample solution is not larger than 1/10 times the peak area of sarpogrelate from the standard solution. For the peak area of the decomposed substance \(A\), multiply the correction factor, 0.78.

Operating conditions

Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay under Sarpogrelate Hydrochloride.

Time span of measurement: About 2.5 times as long as the retention time of sarpogrelate, beginning after the solvent peak.

System suitability

Test for required detectability: To exactly 5 mL of the standard solution add the mobile phase to make exactly 50 mL. Confirm that the peak area of sarpogrelate obtained with 10 \(\mu\)L of this solution is equivalent to 7 to 13% of that with 10 \(\mu\)L of the standard solution.

System performance: Dissolve 50 mg of sarpogrelate hydrochloride in 20 mL of water, and use this solution as the sarpogrelate hydrochloride stock solution. To 1 mL of the sarpogrelate hydrochloride stock solution add 2 mL of sodium hydroxide TS, shake thoroughly, allow to stand for 10 minutes, and add 3 mL of 1 mol/L hydrochloric acid TS. To this solution add 1 mL of the sarpogrelate hydrochloride stock solution, and add the mobile phase to make 50 mL. Then, proceed as directed in the Assay under the above operating conditions, the decomposed substance \(A\) and sarpogrelate are eluted in this order with the resolution between these peaks being not less than 3.

System repeatability: When the test is repeated 6 times with 10 \(\mu\)L of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of sarpogrelate to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Tight containers.

Sarpogrelate Hydrochloride Tablets

サルポグレラート塩酸塩錠

Sarpogrelate Hydrochloride Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of sarpogrelate hydrochloride \((C_{24}H_{31}NO_6.HCl): 465.97\).

Method of preparation Prepare as directed under Tablets, with Sarpogrelate Hydrochloride.

Identification Powder Sarpogrelate Hydrochloride Tablets. To a portion of the powder, equivalent to 50 mg of Sarpogrelate Hydrochloride Tablets, add 10 mL of 0.01 mol/L hydrochloric acid TS, allow to stand at room temperature for 10 minutes, then add 0.01 mol/L hydrochloric acid TS to make 100 mL, and disperse the particles by sonicating. Centrifuge this solution, and to 5 mL of the supernatant liquid add 0.01 mol/L hydrochloric acid TS to make 50 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry \((2.2.4): it exhibits its maxima between 269 nm and 273 nm, and between 274 nm and 278 nm.

Purity Related substances—Conduct this procedure within 12 hours after preparation of the sample solution. Powder Sarpogrelate Hydrochloride Tablets. To a portion of the powder, equivalent to 0.10 g of Sarpogrelate Hydrochloride, add 50 mL of the mobile phase, and disperse the particles by sonicating. Filter the solution through a membrane filter with a pore size not exceeding 0.45 \(\mu\)m, discard the first 3 mL of the filtrate, and use the subsequent filtrate as the sample solution. Pipet 2 mL of the sample solution, add the mobile phase to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 10 \(\mu\)L each of the sample solution and standard solution as directed under Liquid Chromatography \((2.0.1): according to the following conditions, and determine each peak area by the automatic integration method: the peak area of decomposed substance \(A\), having the relative retention time about 0.82 to sarpogrelate, obtained from the sample solution is not larger than 1.5 times that of sarpogrelate from the standard solution, and the area of the peak other than sarpogrelate and the peak mentioned above from the sample solution is not larger than 1/10 times the peak area of sarpogrelate from the standard solution. For the peak area of the decomposed substance \(A\), multiply the correction factor, 0.78.

Operating conditions

Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay under Sarpogrelate Hydrochloride.

Time span of measurement: About 2.5 times as long as the retention time of sarpogrelate, beginning after the solvent peak.

System suitability

Test for required detectability: To exactly 5 mL of the standard solution add the mobile phase to make exactly 50 mL. Confirm that the peak area of sarpogrelate obtained with 10 \(\mu\)L of this solution is equivalent to 7 to 13% of that with 10 \(\mu\)L of the standard solution.

System performance: Dissolve 50 mg of sarpogrelate hydrochloride in 20 mL of water, and use this solution as the sarpogrelate hydrochloride stock solution. To 1 mL of the sarpogrelate hydrochloride stock solution add 2 mL of sodium hydroxide TS, shake thoroughly, allow to stand for 10 minutes, and add 3 mL of 1 mol/L hydrochloric acid TS. To this solution add 1 mL of the sarpogrelate hydrochloride stock solution, and add the mobile phase to make 50 mL. Then, proceed as directed in the Assay under the above operating conditions, the decomposed substance \(A\) and sarpogrelate are eluted in this order with the resolution between these peaks being not less than 3.

System repeatability: When the test is repeated 6 times with 10 \(\mu\)L of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of sarpogrelate to that of the internal standard is not more than 2.0%.

Uniformity of dosage units

Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement.

To 1 tablet of Sarpogrelate Hydrochloride Tablets add exactly V/10 mL of the internal standard solution, and disintegrate the tablet. Add 4V/5 mL of the mobile phase, disperse the particles by sonicating, then add the mobile phase to make V mL so that each mL contains about 1 mg of sarpogrelate hydrochloride \((C_{24}H_{31}NO_6.HCl), and centrifuge. To 5 mL of the supernatant liquid add the mobile phase to make 50 mL, and use this solution as the sample solution. Then, proceed as directed in the Assay.

\[
\text{Amount (mg) of sarpogrelate hydrochloride} = M_s \times Q_s / Q_t \times V/50
\]

\(M_s\): Amount (mg) of Sarpogrelate Hydrochloride RS taken, calculated on the anhydrous basis

Internal standard solution—A solution of isopropyl parahydroxybenzoate in the mobile phase (1 in 1000).

Dissolution

When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 30 minutes of Sarpogrelate Hydrochloride Tablets is not less than 80%.

Start the test with 1 tablet of Sarpogrelate Hydrochloride Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 \(\mu\)m. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add water to make exactly V mL so that each mL contains about 55.6 \(\mu\)g of sarpogrelate hydrochloride \((C_{24}H_{31}NO_6.HCl), and use this solution as the sample solution. Separately, weigh accurately about 25 mg of
Sarpogrelate Hydrochloride RS (separately determine the water <2.40> in the same manner as Sarpogrelate Hydrochloride), and dissolve in water to make exactly 50 mL. Pipet 5 mL of this solution, add water to make exactly 50 mL, and use this solution as the standard solution. Determine the absorbances, A_1 and A_2, of the sample solution and standard solution at 270 nm as directed under Ultraviolet-visible Spectrophotometry <2.24>.

Dissolution rate (%) with respect to the labeled amount of sarpogrelate hydrochloride ($C_24H_24BrNO_4.HCl$) = $M_0 × A_1/A_2 × V/V × 1/C × 180$

M_0: Amount (mg) of Sarpogrelate Hydrochloride RS taken, calculated on the anhydrous basis

C: Labeled amount (mg) of sarpogrelate hydrochloride ($C_24H_24BrNO_4.HCl$) in 1 tablet

Assay Weigh accurately the mass of not less than 20 Sar-
pgrelate Hydrochloride Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 0.25 g of sarpogrelate hydrochloride ($C_24H_24BrNO_4.HCl$), add exactly 25 mL of the internal standard solution, add about 200 mL of the mobile phase, and disperse the particles by sonicating. To this solution add the mobile phase to make 250 mL, and centrifuge. To 5 mL of the supernatant liquid add the mobile phase to make 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 50 mg of Sarpogrelate Hydrochloride RS (separately determine the water <2.40> in the same manner as Sarpogrelate Hydroxide), add exactly 5 mL of the internal standard solution, and add the mobile phase to make 50 mL. To 5 mL of this solution add the mobile phase to make 50 mL, and use this solution as the standard solution. Perform the test with 10 µL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> under the following conditions, and calculate the ratios, Q_1 and Q_2, of the peak area of sarpogrelate to that of the internal standard.

Amount (mg) of sarpogrelate hydrochloride ($C_24H_24BrNO_4.HCl$) = $M_0 × Q_1/Q_2 × 5$

M_0: Amount (mg) of Sarpogrelate Hydrochloride RS taken, calculated on the anhydrous basis

Internal standard solution—A solution of isopropyl parahy-
droxybenzoate in the mobile phase (1 in 1000).

Operating conditions—
Proceed as directed in the operating conditions in the Assay under Sarpogrelate Hydrochloride.

System suitability—
System performance: When the procedure is run with 10 µL of the standard solution under the above operating conditions, sarpogrelate and the internal standard are eluted in this order with the resolution between these peaks being not less than 3.

System repeatability: When the test is repeated 6 times with 10 µL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of sarpogrelate to that of the internal standard is not more than 1.0%.

Containers and storage—Containers—Tight containers.

Scopolamine Butylbromide

プチルスコラボラミン臭化物

\[
C_{20}H_{20}BrNO_4: 440.37
\]

(1R,2R,4S,5S,7S,9R)-9-Butyl-7-[(2S)-3-hydroxy-2-phenylpropanoyloxy]-9-methyl-3-oxa-9-
azoniatricyclo[3.3.1.0^7]nonane bromide

[149-64-4]

Scopolamine Butylbromide, when dried, contains not less than 98.5% of scopolamine butylbromide ($C_{20}H_{20}BrNO_4$).

Description—Scopolamine Butylbromide occurs as white, crystals or crystalline powder.

It is very soluble in water, freely soluble in acetic acid (100), soluble in ethanol (95), sparingly soluble in methanol, slightly soluble in acetic anhydride, and practically insoluble in diethyl ether.

Melting point: about 140°C (with decomposition).

Identification (1) To 1 mg of Scopolamine Butylbromide add 3 to 4 drops of fuming nitric acid, and evaporate on a water bath to dryness. After cooling, dissolve the residue in 1 mL of N,N-dimethylformamide, and add 6 drops of tetraethylammonium hydroxide TS: a red-purple color develops.

(2) Determine the absorption spectrum of a solution of Scopolamine Butylbromide (1 in 1000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(3) Determine the infrared absorption spectrum of Scopolamine Butylbromide, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(4) A solution of Scopolamine Butylbromide (1 in 20) responds to Qualitative Tests <1.09> for bromide.

Optical rotation <2.40> $[\alpha]_{D}^20 = -18.0 – -20.0°$ (after drying, 1 g, water, 10 mL, 100 mm).

pH <2.54> Dissolve 1.0 g of Scopolamine Butylbromide in 10 mL of water: the pH of this solution is between 5.5 and 6.5.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Scopolamine Butylbromide in 10 mL of water: the solution is clear, and has no more color than the following control solution.

Control solution: To 0.5 mL of Matching Fluid F add diluted hydrochloric acid (l in 40) to make 20 mL.

(2) Heavy metals <1.07>—Proceed with 2.0 g of Scopolamine Butylbromide according to Method 1, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(3) Related substances—Dissolve 0.10 g of Scopolamine Butylbromide in the mobile phase to make exactly 10 mL, and use this solution as the sample solution. Separately, dis-
solve 10 mg of scopolamine hydrobromide hydrate in the mobile phase to make exactly 100 mL. Pipet 10 mL of this solution, add the mobile phase to make exactly 50 mL, and use this solution as the standard solution (1). Pipet 5 mL of the standard solution (1), add the mobile phase to make exactly 10 mL, and use this solution as the standard solution (2). Perform the test with exactly 20 µL each of the sample solution and standard solutions (1) and (2) as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area of these solutions by the automatic integration method: the peak area of scopolamine obtained from the sample solution is not larger than that from the standard solution (2), and each area of the peaks other than the peak appearing in the first elution and the peak area of scopolamine and butylscopolamine from the sample solution are not larger than the peak area from the standard solution (1).

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 210 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octylysilanized silica gel for liquid chromatography (10 µm in particle diameter).
Column temperature: A constant temperature of about 30°C.
Mobile phase: Dissolve 2 g of sodium lauryl sulfate in 40 mL of acetic acid (1 in 10).
Flow rate: Adjust so that the retention time of butylscopolamine is about 7 minutes.
Time span of measurement: About 2 times as long as the retention time of butylscopolamine.

System suitability—
System performance: Dissolve 5 mg each of Scopolamine Butylbromide and scopolamine hydrobromide hydrate in 50 mL of the mobile phase. When the procedure is run with 20 µL of this solution under the above operating conditions, scopolamine and butylscopolamine are eluted in this order with the resolution between these peaks being not less than 5.
System repeatability: When the test is repeated 6 times with 20 µL of the standard solution (2) under the above operating conditions, the relative standard deviation of the peak area of scopolamine is not more than 2.0%.

Loss on drying <2.41> Not more than 1.0% (1 g, 105°C, 4 hours).
Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay
Weigh accurately about 0.8 g of Scopolamine Butylbromide, previously dried, dissolve in 40 mL of acetic acid (100) and 30 mL of acetic anhydride, and titrate <2.50> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 44.04 mg of C_{27}H_{39}BrNO_{4}

Containers and storage Contents—Tight containers.

Scopolamine Hydrobromide Hydrate

スコポラミン臭化水素酸塩水和物

C_{17}H_{22}NO_{4}, HBr, 3H_{2}O: 438.31
(1R,2R,4S,5S,7S)-9-Methyl-3-oxa-9-azatricyclo-[3.3.1.0\^{2,4}]non-7-yl (2S)-3-hydroxy-2-phenylpropanoate monohydrobromide trihydrate [6533-68-2]

Scopolamine Hydrobromide Hydrate, when dried, contains not less than 98.5% of scopolamine hydrobromide (C_{17}H_{22}NO_{4}, HBr: 384.26).

Description Scopolamine Hydrobromide Hydrate occurs as colorless or white crystals, or white granules or powder. It is odorless.
It is freely soluble in water, sparingly soluble in ethanol (95) and in acetic acid (100), and practically insoluble in diethyl ether.

Identification (1) To 1 mg of Scopolamine Hydrobromide Hydrate add 3 to 4 drops of fuming nitric acid, evaporate on a water bath to dryness, and cool. Dissolve the residue in 1 mL of N,N-Dimethylformamide, and add 6 drops of tetraethyllummonium hydroxide TS: a red-purple color is produced.
(2) A solution of Scopolamine Hydrobromide Hydrate (1 in 20) responds to Qualitative Tests <1.69> for bromide.

Optical rotation <2.49> [α]_{D}^{20}: −24.0° to −26.0° (after drying, 0.5 g, water, 10 mL, 100 mm).

Melting point <2.60> 195–199°C (after drying, previously heat the bath to 180°C).

Purity (1) Clarity and color of solution—Dissolve 0.5 g of Scopolamine Hydrobromide Hydrate in 10 mL of water: the solution is clear and colorless.
(2) Acidity—Dissolve 0.50 g of Scopolamine Hydrobromide Hydrate in 15 mL of water, and add 0.50 mL of 0.02 mol/L sodium hydroxide VS and 1 drop of methyl red-methylene blue TS: a green color develops.
(3) Apoatropine—Dissolve 0.20 g of Scopolamine Hydrobromide Hydrate in 20 mL of water, add 0.60 mL of 0.002 mol/L potassium permanganate VS, and allow to stand for 5 minutes: the red color in the solution does not disappear.
(4) Related substances—Dissolve 0.15 g of Scopolamine Hydrobromide Hydrate in 3 mL of water, and use this solution as the sample solution.
(i) To 1 mL of the sample solution add 2 to 3 drops of ammonia TS: no turbidity is produced.
(ii) To 1 mL of the sample solution add 2 to 3 drops of potassium hydroxide TS: a transient white turbidity might be produced, and disappears clearly in a little while.

Loss on drying <2.41> Not more than 13.0% [1.5 g, first dry in a desiccator (silica gel) for 24 hours, then dry at 105°C for 3 hours].
Residue on ignition <2.44> Not more than 0.1% (1 g).
Acidity or alkalinity—To 50 mL of Sevoflurane with 50 mL of freshly boiled and cooled water vigorously for 3 minutes. Separate the water layer and use this solution as the sample solution. To 20 mL of the sample solution add 1 drop of bromocresol purple TS and 0.10 mL exactly 10 mL. Pipet 1 mL of this solution, add water to make exactly 50 mL, and use this solution as the standard solution.

Perform the test with these solutions as directed under Thin-layer Chromatography (2.2.7). Spot 5 μL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Then develop with a mixture of 1-butanol, water and acetic acid (100) (3:1:1) to a distance of about 10 cm, and dry the plate at 80°C for 30 minutes. Spray evenly a solution of ninhydrin in a mixture of methanol and acetic acid (100) (97:3) (1 in 100) on the plate, and heat the plate at 80°C for 10 minutes: the spot other than the principal spot obtained from the sample solution is not more intense than the spot from the standard solution.

Loss on drying (2.41) Not more than 0.3% (1 g, 105°C, 3 hours).

Residue on Ignition (2.44) Not more than 0.1% (1 g).

Assay Weigh accurately about 0.11 g of l-Serine, previously dried, dissolve in 3 mL of formic acid, add 50 mL of acetic acid (100), and titrate (2.50) with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 0.5246 mg of l-Serine (C3H7NO2).

Containers and storage Containers—Tight containers.

Storage—Light-resistant.

Sevoflurane

General Information

Sevoflurane is a clear, colorless, and mobile liquid. It is miscible with ethanol (99.5). It is very slightly soluble in water. It is volatile and not inflammable. Refractive index nD20: 1.2745 – 1.2760 Boiling point: about 58.6°C

Identification Transfer about 1 μL of Sevoflurane to a gas cell having light path 10 cm in length, and determine the infrared absorption spectrum as directed in the gas sampling method under Infrared Spectrophotometry (2.2.5), and compare the spectrum with the Reference Spectrum or the spectrum of Sevoflurane RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Specific gravity (2.50) dD20: 1.190 – 1.195

Purity (1) Acidity or alkalinity—To 50 mL of Sevoflurane with 50 mL of freshly boiled and cooled water vigorously for 3 minutes. Separate the water layer and use this solution as the sample solution. To 20 mL of the sample solution add 1 drop of bromocresol purple TS and 0.10 mL
of 0.01 mol/L sodium hydroxide VS: a red-purple color develops. To 20 mL of the sample solution add 1 drop of bromocresol purple TS and 0.6 mL of 0.01 mol/L hydrochloric acid VS: a yellow color is produced.

(2) Soluble fluoride—To 6 g of Sevoflurane add 12 mL of diluted 0.01 mol/L sodium hydroxide TS (1 in 20), and shake for 10 minutes. Transfer 4.0 mL of diluted 0.01 mol/L sodium hydroxide solution (1 in 20) layer into a Nessler tube. Add 30 mL of a mixture of alizarin complexone TS, acetic acid-potassium acetate buffer solution (pH 4.3) and cerium (III) nitrate TS (1:1:1), add water to make 50 mL, allow to stand for 60 minutes, and use this solution as the sample solution. Separately, transfer 0.2 mL of the fluorine standard solution and 4.0 mL of diluted 0.01 mol/L sodium hydroxide TS (1 in 20) to a Nessler tube, and add 30 mL of a mixture of alizarin complexone TS, acetic acid-potassium acetate buffer solution (pH 4.3) and cerium (III) nitrate TS (1:1:1). Proceed in the same manner as directed for the preparation of the sample solution, and use this solution as the standard solution. Determine the absorbances of the sample solution and standard solution at 600 nm as directed under Ultraviolet-visible Spectrophotometry (2.24), using a solution, prepared with 4.0 mL of diluted 0.01 mol/L sodium hydroxide TS (1 in 20) in the same manner, as the blank: the absorbance of the sample solution is not more than that of the standard solution (not more than 1 ppm).

Fluorine standard solution: Dissolve exactly 2.21 g of sodium fluoride in water to make exactly 1000 mL. Pipet 10 mL of this solution and add water to make exactly 1000 mL. Each mL of this solution contains 0.01 mg of fluorine (F).

(3) Related substances—Perform the test with 2 μL of Sevoflurane as directed under Gas Chromatography (2.02) according to the following conditions. Determine each peak area by the automatic integration method and calculate the amount of them by the area percentage method: the amount of each peak other than the peaks of sevoflurane and hexafluoroisopropyl methyl ether, having the relative retention time of about 0.84 to sevoflurane, is not more than 0.005%, the amount of each peak other than the peaks of sevoflurane and hexafluoroisopropyl methyl ether is not more than 0.0025%, and the total amount of the peaks other than the peaks of sevoflurane and hexafluoroisopropyl methyl ether is not more than 0.005%.

Operating conditions—
Detector, column, injection port temperature, detector temperature, carrier gas and split ratio: Proceed as directed in the operating conditions in the Assay.
Column temperature: Inject at a constant temperature of about 40°C, maintain the temperature for 10 minutes, raise at a rate of 10°C per minute to 200°C, and maintain at a constant temperature of about 200°C.
Flow rate: Adjust so that the retention time of sevoflurane is about 7 minutes.
Time span of measurement: About 6 times as long as the retention time of sevoflurane.
System suitability—
Test for required detectability: To 20 μL of Sevoflurane add o-xylene to make 20 mL. To 1 mL of this solution add o-xylene to make 20 mL, and use this solution as the solution for system suitability test. Pipet 1 mL of the solution for system suitability test and add o-xylene to make exactly 10 mL. Confirm that the peak area of sevoflurane obtained with 2 μL of this solution is equivalent to 7 to 13% of the peak area of sevoflurane with 2 μL of the solution for system suitability test.
System performance: When the procedure is run with 2 μL of the solution for system suitability test under the above operating conditions, the number of theoretical plates and symmetry factor of the peak of sevoflurane are not less than 6000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 2 μL of the solution for system suitability test under the above operating conditions, the relative standard deviation of the peak area of Sevoflurane is not more than 5.0%.

(4) Residue on evaporation—Evaporate 10 mL of Sevoflurane, exactly measured, on a water bath to dryness, and dry at 105°C for 2 hours: the mass of the residue is not more than 1.0 mg.

Water <2.49> Not more than 0.2 w/v% (5 mL, volumetric titration, direct titration).

Assay Pipet 5 mL each of Sevoflurane and Sevoflurane RS (separately determine the water <2.49> in the same manner as Sevoflurane), to each add exactly 5 mL of dimethoxy-methane as an internal standard, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with 1 μL each of the sample solution and standard solution as directed under Gas Chromatography <2.02> according to the following conditions, and calculate the ratios, Q1 and Q2, of the peak area of sevoflurane to that of the internal standard.

Amount (mg) of sevoflurane (C₃H₅F₃O)\[1584\]
\[V_S \times Q_1/Q_2 \times 1000 \times 1.521 \]

V₄: Amount (mL) of Sevoflurane RS taken, calculated on the anhydrous basis
1.521: Specific gravity of Sevoflurane (d₂₀)

Operating conditions—
Detector: A hydrogen flame-ionization detector.
Column: A fused silica column 0.32 mm in inside diameter and 30 m in length, coated inside with cyanopropyl methylphenyl silicone for gas chromatography in 1.8 μm thickness.
Column temperature: 40°C.
Injection port temperature: A constant temperature of about 200°C.
Detector temperature: A constant temperature of about 225°C.
Carrier gas: Helium.
Flow rate: Adjust so that the retention time of Sevoflurane is about 3 minutes.

System suitability—
System performance: When the procedure is run with 1 μL of the standard solution under the above operating conditions, sevoflurane and the internal standard are eluted in this order with the resolution between these peaks being not less than 3.
System repeatability: When the test is repeated 6 times with 1 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of sevoflurane to that of the internal standard is not more than 1.0 %.

Containers and storage Containers—Tight containers.
Purified Shellac

精製セラック

Purified Shellac is a resin-like substance obtained from a purified secretion of Laccifer lacca Kerr (Coccidae).

Description Purified Shellac occurs as light yellow-brown to brown, lustrous, hard, brittle scutella. It is odorless or has a faint, characteristic odor. It is freely soluble in ethanol (95) and in ethanol (99.5), and practically insoluble in water and in diethyl ether. It dissolves in sodium hydroxide TS.

Acid value $<1.13> 60 – 80$ Weigh accurately about 1 g of Purified Shellac, add 40 mL of neutralized ethanol, and dissolve by warming. After cooling, titrate $<2.50>$ with 0.1 mol/L potassium hydroxide VS (potentiometric titration).

Purity (1) Heavy metals $<1.07>—$Proceed with 2.0 g of Purified Shellac according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Arsenic $<1.11>—$Prepare the test solution with 0.40 g of Purified Shellac according to Method 3, and perform the test. Add 10 mL of a solution of magnesium nitrate hexahydrate in ethanol (95) (1 in 50), then add 1.5 mL of hydrogen peroxide (30), and fire to burn (not more than 5 ppm).

(3) Ethanol-insoluble substances—Dissolve about 5 g of Purified Shellac, accurately weighed, in 50 mL of ethanol (95) on a water bath while shaking. Pour the ethanol solution into a tared extraction thimble, previously dried at 105°C for 2 hours, in a Soxhlet extractor, and extract with ethanol (95) for 3 hours. Dry the extraction thimble at 105°C for 3 hours: the mass of the residue is not more than 2.0%. Use a cylindrical weighing bottle for taring the extraction thimble.

(4) Rosin—To 2.0 g of Purified Shellac add 10 mL of ethanol (99.5), shake thoroughly to dissolve, and add gradually 50 mL of hexane while shaking. Transfer the solution to a separator, wash with two 50-mL portions of water, filter the upper layer, and evaporate the filtrate on a water bath to dryness. To the residue add 5 mL of acetic anhydride, and heat on a water bath to dissolve, if necessary. Transfer this solution to a Nessler tube, and add 1 drop of sulfuric acid: the color of the solution does not change from red-purple through purple to reddish yellow.

(5) Wax—Dissolve 10.0 g of Purified Shellac in 150 mL of a solution of sodium carbonate decahydrate (9 in 200) with shaking on a water bath, and continue the heating for 2 hours. After cooling, collect the floating wax by filtration, wash the wax and the filter paper with water, transfer to a beaker, and dry at 65°C until the water is almost evaporated. Transfer the wax together with the filter paper to an extraction thimble in a Soxhlet extractor. Dissolve the wax remaining in the beaker with a suitable quantity of chloroform by warming. Pour the solution into the thimble, and extract with chloroform for 2 hours. Evaporate the chloroform solution to dryness, and dry the residue at 105°C for 3 hours: the mass of the residue is not more than 20 mg.

Loss on drying Not more than 2.0%. Weigh accurately about 1 g of moderately fine powder of Purified Shellac, and dry at 40°C for 4 hours, then for 15 hours in a desiccator (calcium chloride for drying).

Total ash $<0.07>—$Not more than 1.0% (1 g).

Containers and storage Containers—Well-closed containers.

White Shellac

白色セラック

White Shellac is a resin-like substance obtained from a bleached secretion of Laccifer lacca Kerr (Coccidae).

Description White Shellac occurs as yellow-white to light yellow, hard, brittle granules. It is odorless or has a faint, characteristic odor. It is sparingly soluble in ethanol (95), and practically insoluble in water.

It dissolves in sodium hydroxide TS.

Acid value $<1.13> 65 – 90$ Weigh accurately about 0.5 g of White Shellac, add 50 mL of neutralized ethanol, and dissolve by warming. After cooling, perform the test as directed in the Acid value under Purified Shellac.

Purity (1) Chloride $<1.03>—$Shake and dissolve 0.40 g of White Shellac in 5 mL of ethanol (95) while warming, add 40 mL of water, and cool. Add 12 mL of dilute nitric acid and water to make 100 mL, and filter. Perform the test using 50 mL of the filtrate as the test solution. Prepare the control solution as follows: to 0.80 mL of 0.01 mol/L hydrochloric acid VS add 2.5 mL of ethanol (95), 6 mL of dilute nitric acid and water to make 50 mL (not more than 0.140%).

(2) Sulfate $<1.14>—$Shake and dissolve 0.40 g of White Shellac in 5 mL of ethanol (95) by warming, add 40 mL of water, and cool. Add 2 mL of dilute hydrochloric acid and water to make 100 mL, and filter. Perform the test using 50 mL of the filtrate as the test solution. Prepare the control solution as follows: to 0.45 mL of 0.005 mol/L sulfuric acid VS add 2.5 mL of ethanol (95), 1 mL of dilute hydrochloric acid and water to make 50 mL (not more than 0.110%).

(3) Heavy metals $<1.07>—$Proceed with 2.0 g of White Shellac according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(4) Arsenic $<1.11>—$Prepare the test solution with 0.40 g of White Shellac according to Method 3, and perform the test. Add 10 mL of a solution of magnesium nitrate hexahydrate in ethanol (95) (1 in 50), then add 1.5 mL of hydrogen peroxide (30), and fire to burn (not more than 5 ppm).

(5) Ethanol-insoluble substances—Dissolve about 5 g of White Shellac, accurately weighed, in 50 mL of ethanol (95) on a water bath while shaking. Pour the ethanol solution into a tared extraction thimble, previously dried at 105°C for 2 hours, in a Soxhlet extractor, and extract with ethanol (95) for 3 hours. Dry the extraction thimble at 105°C for 3 hours: the mass of the residue is not more than 2.0%. Use a cylindrical weighing bottle for taring the extraction thimble.

(6) Rosin—To 2.0 g of White Shellac add 10 mL of ethanol (99.5), shake thoroughly to dissolve, and add gradually 50 mL of hexane while shaking. Transfer the solution to a separator, wash with two 50-mL portions of water, filter the upper layer, and evaporate the filtrate on a water bath to dryness. To the residue add 5 mL of acetic anhydride, and heat on a water bath to dissolve, if necessary. Transfer this solution to a Nessler tube, and add 1 drop of sulfuric acid: the color of the solution does not change from red-purple through purple to reddish yellow.

(7) Wax—Dissolve 10.0 g of White Shellac in 150 mL of...
Light Anhydrous Silicic Acid

Light Anhydrous Silicic Acid contains not less than 98.0% of silicon dioxide (SiO₂: 60.08), calculated on the incinerated basis.

Description Light Anhydrous Silicic Acid occurs as a white to bluish white, light, fine powder. It is odorless and tasteless, and smooth to the touch.

It is practically insoluble in water, in ethanol (95), and in diethyl ether.

It dissolves in hydrofluoric acid, in hot potassium hydroxide TS and in hot sodium hydroxide TS, and does not dissolve in dilute hydrochloric acid.

Identification (1) Dissolve 0.1 g of Light Anhydrous Silicic Acid in 20 mL of sodium hydroxide TS by boiling, and add 12 mL of ammonium chloride TS: a white, gelatinous precipitate is produced. The precipitate does not dissolve in dilute hydrochloric acid.

(2) To the precipitate obtained in (1) add 10 mL of a solution of methylene blue trihydrate (1 in 10,000), and wash with water: the precipitate has a blue color.

(3) Prepare a bead by fusing ammonium sodium hydrogen orthophosphate tetrahydrate on a platinum loop. Bring the hot, transparent bead into contact with Light Anhydrous Silicic Acid, and fuse again: an insoluble matter is perceptible in the bead. The resulting bead, upon cooling, becomes opaque and acquires a reticulated appearance.

Purity (1) Chloride <1.0%>—Dissolve 0.5 g of Light Anhydrous Silicic Acid in 20 mL of sodium hydroxide TS by boiling, cool, filter if necessary, and wash with 10 mL of water. Combine the filtrate and washings, add 18 mL of dilute nitric acid, shake, and add water to make 50 mL. Perform the test using this solution as the test solution. To 0.15 mL of 0.01 mol/L hydrochloric acid VS add 20 mL of sodium hydroxide TS, 18 mL of dilute nitric acid and water to make 50 mL, and use this solution as the control solution (not more than 0.011%).

(2) Heavy metals <1.0%>—Dissolve 0.5 g of Light Anhydrous Silicic Acid in 20 mL of sodium hydroxide TS by boiling, cool, add 15 mL of acetic acid (31), shake, filter if necessary, wash with 10 mL of water, combine the filtrate and washings, and add water to make 50 mL. Perform the test using this solution as the test solution. Add acetic acid (31) to 20 mL of sodium hydroxide TS and 1 drop of phenolphthalein TS until the color of this solution disappears, add 2.0 mL of Standard Lead Solution, 2 mL of dilute acetic acid and water to make 50 mL, and use this solution as the control solution (not more than 40 ppm).

(3) Iron <1.10%>—To 0.040 g of Light Anhydrous Silicic Acid add 10 mL of dilute hydrochloric acid, and heat for 10 minutes in a water bath while shaking. After cooling, add 0.5 g of tartaric acid to dissolve by shaking. Prepare the test solution with this solution according to Method 2, and perform the test according to Method B. Prepare the control solution with 2.0 mL of Standard Iron Solution (not more than 500 ppm).

(4) Aluminum—Dissolve 0.5 g of Light Anhydrous Silicic Acid in 40 mL of sodium hydroxide TS by boiling, cool, add sodium hydroxide TS to make 50 mL, and filter. Measure 10 mL of the filtrate, add 17 mL of acetic acid (31), shake, add 2 mL of aluminium TS and water to make 50 mL, and allow to stand for 30 minutes: the color of this solution is not deeper than that of the following control solution.

Control solution: Dissolve 0.176 g of aluminium potassium sulfate dodecahydrate in water, and add water to make 1000 mL. To 15.5 mL of this solution add 10 mL of sodium hydroxide TS, 17 mL of acetic acid (31), 2 mL of aluminium TS and water to make 50 mL.

(5) Calcium—Dissolve 1.0 g of Light Anhydrous Silicic Acid in 30 mL of sodium hydroxide TS by boiling, cool, add 20 mL of water, 1 drop of phenolphthalein TS and dilute nitric acid until the color of this solution disappears, immediately add 5 mL of dilute acetic acid, shake, add water to make 100 mL, and obtain a clear liquid by centrifugation or filtration. To 25 mL of this liquid add 1 mL of oxalic acid TS and ethanol (95) to make 50 mL, immediately shake, and allow to stand for 10 minutes: the turbidity of this solution is not deeper than that of the following control solution.

Control solution: Dissolve 0.250 g of calcium carbonate, previously dried at 180°C for 4 hours, in 3 mL of dilute hydrochloric acid, and add water to make 100 mL. To 4 mL of this solution add 5 mL of dilute acetic acid and water to make 100 mL. To 25 mL of this solution add 1 mL of oxalic acid TS and ethanol (95) to make 50 mL, and shake.

(6) Arsenic <1.17%>—Dissolve 0.40 g of Light Anhydrous Silicic Acid in 10 mL of sodium hydroxide TS by boiling in a porcelain crucible, cool, add 5 mL of water and 5 mL of dilute hydrochloric acid, shake, and perform the test with this solution as the test solution (not more than 5 ppm).

Loss on drying <2.4%> Not more than 7.0% (1 g, 105°C, 4 hours).

Loss on ignition <2.4%> Not more than 12.0% (1 g, 850–900°C, constant mass).

Assay Weigh accurately about 1 g of Light Anhydrous Silicic Acid, add 20 mL of hydrochloric acid, and evaporate to dryness on a sand bath. Moisten the residue with hydrochloric acid, evaporate to dryness, and heat between 110°C and 120°C for 2 hours. Cool, add 5 mL of dilute hydrochloric acid, and heat. Allow to cool to room temperature, add 20 to 25 mL of hot water, filter rapidly, and wash the residue with warm water until the last washing becomes negative to Qualitative Tests <1.09> (2) for chloride. Transfer the residue together with the filter paper to a platinum crucible, ignite to ash, and continue the ignition for 30 minutes. Cool, weigh
the crucible, and designate the mass as \(a \) (g). Moisten the residue in the crucible with water, add 6 mL of hydrofluoric acid and 3 drops of sulfuric acid, and evaporate to dryness. Heat strongly for 5 minutes, cool, weigh the crucible, and designate the mass as \(b \) (g).

\[
\text{Amount (g) of silicon dioxide (SiO}_2\text{) = } a - b
\]

Containers and storage

Containers—Tight containers.

Silodosin (シロドシン)

Silodosin contains not less than 98.0% and not more than 102.0% of silodosin (C\(_{25}\)H\(_{32}\)F\(_{5}\)N\(_{3}\)O\(_{4}\)), calculated on the anhydrous basis.

Description

Silodosin occurs as a white to pale yellow-white powder.

It is freely soluble in water and in ethanol (99.5), and very slightly soluble in methanol.

It gradually becomes yellow-white on exposure to light.

Optical rotation [\(\alpha\)]\(_D\) (C 2.0 g calculated on the anhydrous basis, methanol, 20 mL, 100 mm): -13 to -17° (0.2 g calculated on the anhydrous basis, methanol, 20 mL, 100 mm).

Melting point: 105 – 109°C.

Silodosin shows crystal polymorphism.

Identification (1)

Prepare the test solution with 10 mg of Silodosin as directed under Oxygen Flask Combustion Method \(<1.08>\), using a mixture of 0.5 mL of 0.01 mol/L sodium hydroxide TS and 20 mL of water as the absorbing liquid: the solution responds to Qualitative Tests \(<1.09>\) (2) for fluoride.

(2) Determine the absorption spectrum of a solution of Silodosin in methanol (1 in 20,000) as directed under Ultraviolet-visible Spectrophotometry \(<2.24>\), and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Silodosin RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(3) Determine the infrared absorption spectrum of Silodosin as directed in the paste method under Infrared Spectrophotometry \(<2.25>\), and compare the spectrum with the Reference Spectrum or the spectrum of Silodosin RS: both spectra exhibit similar intensities of absorption at the same wave numbers. If any difference appears between the spectra, recrystallize the sample and the Reference Standard according to the method otherwise specified, filter and dry the crystals, and perform the test using the crystals.

Purity (1)

Heavy metals \(<1.07>\)—Proceed with 2.0 g of Silodosin in a platinum crucible according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Related substances—Conduct this procedure using light-resistant vessels. Dissolve 50 mg of Silodosin in 100 mL of methanol, and use this solution as the sample solution.

Pipet 1 mL of the sample solution, add methanol to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 \(\mu\)L each of the sample solution and standard solution as directed under Liquid Chromatography \(<2.01>\) according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak of related substance \(A\), having the relative retention time of about 1.3 to silodosin, obtained from the sample solution is not larger than 3/20 times the peak area of silodosin from the standard solution, the peak areas of related substance \(B\) and related substance \(C\), having the relative retention time of about 1.6 and about 2.0, respectively, is not larger than 1/16 times the peak area of silodosin from the standard solution, and the area of the peak other than silodosin and the peaks mentioned above from the sample solution is not larger than 1/10 times the peak area of silodosin from the standard solution. In addition, the total area of the peaks other than silodosin from the sample solution is not larger than 7/20 times the peak area of silodosin from the standard solution. For the areas of the peaks of related substanse \(A\), related substance \(B\), and related substance \(C\), multiply the correction factor 0.6, respectively.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 225 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 \(\mu\)m in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase A: Dissolve 3.9 g of sodium dihydrogen phosphate dihydrate in 1000 mL of water, and adjust to pH 3.4 with diluted phosphoric acid (1 in 10).

Mobile phase B: Acetonitrile for liquid chromatography.

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 15</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>15 – 35</td>
<td>75 – 50</td>
<td>25 – 50</td>
</tr>
<tr>
<td>35 – 45</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Flow rate: Adjust so that the retention time of silodosin is about 13 minutes.

Time span of measurement: About 3 times as long as the retention time of silodosin, beginning after the solvent peak.

System suitability—

Test for required detectability: Pipet 1 mL of the standard solution, and add methanol to make exactly 20 mL. Confirm that the peak area of silodosin obtained with 10 \(\mu\)L of this solution is equivalent to 3.5 to 6.5% of that with 10 \(\mu\)L of the standard solution.

System performance: Thinly spread out an amount of Silodosin in a petri dish, exposure to a 4000 lx light for not less than 24 hours using a D\(_{50}\) fluorescent lamp, and dissolve 4 mg of this sample in 8 mL of methanol. When the procedure is run with 10 \(\mu\)L of this solution under the above operating conditions, the resolution between the peaks of silodosin and related substance \(A\) is not less than 6.

System repeatability: When the test is repeated 6 times with 10 \(\mu\)L of the standard solution under the above operat-
ing conditions, the relative standard deviation of the peak area of silodosin is not more than 2.5%.

(3) Enantiomer—Conduct this procedure using light-resistant vessels. Dissolve 0.1 g of Silodosin in 10 mL of ethanol (99.5), and use this solution as the sample solution. Pipet 1 mL of the sample solution, add ethanol (99.5) to make exactly 200 mL. Pipet 3 mL of this solution, add ethanol (99.5) to make exactly 10 mL, and use this solution as the standard solution. Perform the test with exactly 5 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak of the enantiomer, having the relative retention time of about 0.8 to silodosin, obtained from the sample solution is not larger than the peak area of silodosin from the standard solution.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 270 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with silica gel coated with cellulose tris(4-methylbenzoate) for liquid chromatography (10 μm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase: A mixture of hexane, diethylamine and ethanol (99.5) (93:10:7).
Flow rate: Adjust so that the retention time of silodosin is about 29 minutes.

System suitability—
System performance: When the procedure is run with 5 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of silodosin are not less than 1000 and not more than 1.5, respectively.
System repeatability: When the test is repeated 6 times with 5 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of silodosin is not more than 5%.

Water <2.44> Not more than 0.1%; using a water vaporization device (heating temperature: 150°C; heating time: 2 minutes) (1.5 g, coulometric titration).

Residue on ignition <2.44> Not more than 0.1% (1 g, platinum crucible).
Assay Conduct this procedure using light-resistant vessels. Weigh accurately about 50 mg each of Silodosin and Silodosin RS (separately determine the water <2.44>). In the same manner as Silodosin, dissolve each in methanol to make exactly 100 mL. Pipet 5 mL of both solutions, add exactly 5 mL of the internal standard solution to them, add methanol to make 25 mL, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and calculate the ratios, Q₁ and Q₃, of the peak area of silodosin to that of the internal standard.

Amount (mg) of silodosin (C₂₈H₃₇F₆N₅O₅) = Mₛ × Q₁/Q₃
Mₛ: Amount (mg) of Silodosin RS taken, calculated on the anhydrous basis Internal standard solution—A solution of ethyl parahydroxybenzoate in methanol (1 in 8000).

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 270 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilylated silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase: Dissolve 3.9 g of sodium dihydrogen phosphate dihydrate in 1000 mL of water, and adjust to pH 3.4 with diluted phosphoric acid (1 in 10). To 730 mL of this solution add 270 mL of acetonitrile.
Flow rate: Adjust so that the retention time of silodosin is about 6 minutes.
System suitability—
System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, silodosin and the internal standard are eluted in this order with the resolution between these peaks being not less than 10.
System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of silodosin to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Well-closed containers.
Storage—Light-resistant.

Others
Related substance A: 1-(3-Hydroxypropyl)-5-[2-((2,2,2-trifluoroethoxy)phenoxyl)(ethyl)amino)propyl]-1H-indole-7-carboxamide
Related substance B: 5-[2-((2,2,2-trifluoroethoxy)phenoxyl)(ethyl)amino)propyl]-2,3-dihydro-1H-indole-7-carboxamide
Related substance C: 5-[2-((2,2,2-trifluoroethoxy)phenoxyl)(ethyl)amino)propyl]-1H-indole-7-carboxamide
Silodosin Orally Disintegrating Tablets

Silodosin Orally Disintegrating Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of silodosin (C_{23}H_{32}F_{3}N_{2}O_{4}: 495.53).

Method of preparation Prepare as directed under Tablets, with Silodosin.

Identification Conduct this procedure using light-resistant vessels. To 1 tablet of Silodosin Orally Disintegrating Tablets add 15 mL of a mixture of methanol and a solution of sodium chloride (1 in 200) (7:3) per 1 mg of Silodosin, and sonicate until the tablet is completely disintegrated while occasional shaking. Add a mixture of methanol and a solution of sodium chloride (1 in 200) (7:3) so that each mL contains about 40 μg of Silodosin, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 3 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, dissolve 20 mg of Silodosin RS in a mixture of methanol and a solution of sodium chloride (1 in 200) (7:3) to make 50 mL. To 5 mL of this solution add a mixture of methanol and a solution of sodium chloride (1 in 200) (7:3) to make 50 mL, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions: the retention times of the principal peaks in the chromatograms obtained from the sample solution and standard solution are the same, and both absorption spectra of these peaks exhibit similar intensities of absorption at the same wavelengths.

System suitability—
Column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.
Detector: A photodiode array detector (wavelength: 270 nm, spectrum range of measurement: 200 – 370 nm).

System suitability—
System performance: Proceed as directed in the system suitability in the Assay.

Purity Related substances—Conduct this procedure using light-resistant vessels. To a number of Silodosin Orally Disintegrating Tablets, equivalent to 20 mg of Silodosin, add 60 mL of a mixture of methanol and a solution of sodium chloride (1 in 200) (7:3), sonicate until the tablet is completely disintegrated while occasional shaking, and add a mixture of methanol and a solution of sodium chloride (1 in 200) (7:3) to make 100 mL. Centrifuge this solution, and filter the supernatant liquid through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 3 mL of the filtrate, and use the subsequent filtrate as the sample solution. Pipet 1 mL of the sample solution, add a mixture of methanol and a solution of sodium chloride (1 in 200) (7:3) to make exactly 20 mL. Add 4 mg of this sample in a mixture of methanol and a solution of sodium chloride (1 in 200) (7:3) to make 20 mL. When the procedure is run with 25 μL of this solution under the above operating conditions, the resolution between the peaks of silodosin and related substance A is not less than 6.

System reproductibility: When the test is repeated 6 times with 25 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of silodosin is not more than 2.0%.

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

Conduct this procedure using light-resistant vessels. To 1 tablet of Silodosin Orally Disintegrating Tablets add 3F/5 mL of a mixture of methanol and a solution of sodium chloride (1 in 200) (7:3), sonicate until the tablet is completely disintegrated while occasional shaking. Add a mixture of methanol and a solution of sodium chloride (1 in 200) (7:3) to make exactly V mL so that each mL contains about 40 μg of silodosin (C_{23}H_{32}F_{3}N_{2}O_{4}), and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 3 mL of the filtrate, and use the subsequent filtrate as the sample solution. Then, proceed as directed in the Assay.

Amount (mg) of silodosin (C_{23}H_{32}F_{3}N_{2}O_{4})
= M_{5} \times A_{1}/A_{2} \times V/500

M_{5}: Amount (mg) of Silodosin RS taken, calculated on the anhydrous basis

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
Silodosin Tablets

Silodosin Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of silodosin ($C_{25}H_{32}F_2N_3O_4$: 495.53).

Method of preparation Prepare as directed under Tablets, with Silodosin.

Identification Conduct this procedure using light-resistant vessels. To an amount of powdered Silodosin Tablets, equivalent to 2 mg of Silodosin, add a mixture of methanol and a solution of sodium chloride (1 in 200) (7:3), sonicate and filter the mixture while occasional shaking, add a mixture of methanol and a solution of sodium chloride (1 in 200) (7:3) to make exactly 20 mL, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 3 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separate, weigh accurately about 20 mg of Silodosin RS (separately determine the water <2.48 in the same manner as Silodosin), and dissolve in a mixture of methanol and a solution of sodium chloride (1 in 200) (7:3) to make exactly 50 mL. Pipet 5 mL of this solution, add a mixture of methanol and a solution of sodium chloride (1 in 200) (7:3) to make exactly 100 mL. Add the water <2.01 to make exactly 105 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of silodosin is not more than 1.0%.

System suitability—
System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of silodosin are not less than 3000 and not more than 1.6, respectively.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of silodosin is not more than 1.0%.

Containers and storage Containers—Tight containers.
Storage—Light-resistant.

Others Related substance A: Refer to it described in Silodosin.
tion. Perform the test with 25 μL each of the sample solution and standard solution as directed under Liquid Chromatography (2.07) according to the following conditions: the retention times of the principal peaks in the chromatograms obtained from these solutions are the same, and the absorption spectra of these peaks exhibit similar intensities of absorption at the same wavelengths.

Operating conditions—
Column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay under Silodosin.

System suitability—
System performance: When the procedure is run with 25 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of silodosin are not less than 3000 and not more than 1.6, respectively.

Purity Related substances—Conduct this procedure using light-resistant vessels. Powder not less than 10 Silodosin Tablets. To a portion of the powder, equivalent to 20 mg of Silodosin, add a mixture of methanol and a solution of sodium chloride (1 in 200) (7:3), sonicate with occasional shaking, and add a mixture of methanol and a solution of sodium chloride (1 in 200) (7:3) to make exactly 100 mL. Centrifuge this solution, and filter the supernatant liquid through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 3 mL of the filtrate, and use the subsequent filtrate as the sample solution. Pipet 1 mL of the sample solution, add a mixture of methanol and a solution of sodium chloride (1 in 200) (7:3) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 25 μL each of the sample solution and standard solution as directed under Liquid Chromatography (2.07) according to the following conditions, and determine each peak area by the automatic integration method: the peak area of related substance A, having the relative retention time of about 1.3 to silodosin, obtained from the sample solution is not larger than the peak area of silodosin from the standard solution, the area of the peak other than silodosin and the peak mentioned above from the sample solution is not larger than 1/4 times the peak area of silodosin from the standard solution. Furthermore, the total area of the peaks other than silodosin from the sample solution is not larger than 2 times the peak area of silodosin from the standard solution. For the peak area of related substance A, multiply the correction factor 0.6.

Operating conditions—
Detector, column, column temperature, mobile phase A and mobile phase B: Proceed as directed in the operating conditions in the Purity (2) under Silodosin.
Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 15</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>15 – 47</td>
<td>75 → 35</td>
<td>25 → 65</td>
</tr>
<tr>
<td>47 – 53</td>
<td>35</td>
<td>65</td>
</tr>
</tbody>
</table>

Flow rate: Adjust so that the retention time of silodosin is about 13 minutes.
Time span of measurement: About 3.5 times as long as the retention time of silodosin, beginning after the solvent peak.

System suitability—
Test for required detectability: Pipet 1 mL of the standard solution, and add a mixture of methanol and a solution of sodium chloride (1 in 200) (7:3) to make exactly 20 mL. Confirm that the peak area of silodosin obtained with 25 μL of this solution is equivalent to 3.5 to 6.5% of that with 25 μL of the standard solution.
System performance: Thinly spread out an amount of silodosin in a petri dish, exposure it to a 4000 lx light for not less than 24 hours using a D65 lamp, and dissolve 4 mg of this sample in a mixture of methanol and a solution of sodium chloride (1 in 200) (7:3) to make 20 mL. When the procedure is run with 25 μL of this solution under the above operating conditions, the resolution between the peak of silodosin and related substance A is not less than 6.
System repeatability: When the test is repeated 6 times with 25 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of silodosin is not more than 2.5%.

Uniformity of dosage units (6.02) Perform the test according to the following method: it meets the requirement of the Content uniformity test.

Conduct this procedure using light-resistant vessels. To 1 tablet of Silodosin Tablets add exactly 2V/25 mL of the internal standard solution, then add a suitable amount of a mixture of methanol and a solution of sodium chloride (1 in 200) (7:3), sonicate until the tablet is completely disintegrated with occasional stirring, and add a mixture of methanol and a solution of sodium chloride (1 in 200) (7:3) to make V mL so that each mL contains about 40 μg of silodosin (C29H36F6N6O9) and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 3 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 20 mg of Silodosin RS (separately determine the water (2.40) in the same manner as Silodosin), and dissolve in a mixture of methanol and a solution of sodium chloride (1 in 200) (7:3) to make exactly 50 mL. Pipet 5 mL of this solution, add exactly 4 mL of the internal standard solution, then add a mixture of methanol and a solution of sodium chloride (1 in 200) (7:3) to make 50 mL, and use this solution as the standard solution. Perform the test with 25 μL each of the sample solution and standard solution as directed under Liquid Chromatography (2.07) according to the following conditions, and calculate the ratios, Q1 and Q2, of the peak area of silodosin to that of the internal standard.

\[
\text{Amount (mg) of silodosin (C29H36F6N6O9)} = M_S \times \frac{Q_1}{Q_2} \times \frac{V}{500}
\]

\[
M_S: \text{Amount (mg) of Silodosin RS taken, calculated on the anhydrous basis}
\]

Internal standard solution—A solution of ethyl parahydroxybenzoate in a mixture of methanol and a solution of sodium chloride (1 in 200) (7:3) (1 in 8000).

Operating conditions—
Proceed as directed in the operating conditions in the Assay under Silodosin.

System suitability—
Proceed as directed in the system suitability in the Assay.

Dissolution (6.10) When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 15 minutes of Silodosin Tablets is not less than 80%.
Start the test with 1 tablet of Silodosin Tablets, withdraw not less than 9 mL of the medium at the specified minute
after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 5 mL of the first filtrate, pipet V mL of the subsequent filtrate, add 0.2 mol/L hydrochloric acid TS to make exactly V mL so that each mL contains about 1.1 μg of silodosin (C_{25}H_{32}F_{3}N_{3}O_{6}), and use this solution as the sample solution. Separately, weigh accurately about 22 mg of Silodosin RS (separately determine the water <2.40% in the same manner as Silodosin), and dissolve in 0.1 mol/L hydrochloric acid TS to make exactly 100 mL. Pipet 5 mL of this solution, add 0.1 mol/L hydrochloric acid TS to make exactly 50 mL. Pipet 5 mL of this solution, add 0.1 mol/L hydrochloric acid TS to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 100 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A_T and A_S, of silodosin in each solution.

- **Dissolution rate (%)** with respect to the labeled amount of silodosin (C_{25}H_{32}F_{3}N_{3}O_{6})
 \[M_S = \frac{A_T}{A_S} \times \frac{V'}{V} \times \frac{1}{C} \times 9/2 \]

- **M_S**: Amount (mg) of Silodosin RS taken, calculated on the anhydrous basis
- **C**: Labeled amount (mg) of silodosin (C_{25}H_{32}F_{3}N_{3}O_{6}) in 1 tablet

Operating conditions
- Proceed as directed in the operating conditions in the Assay under Silodosin.

System suitability
- System performance: When the procedure is run with 100 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of silodosin are not less than 3000 and not more than 1.6, respectively.
- System repeatability: When the test is repeated 6 times with 100 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of silodosin is not more than 2.0%.

Assay
- Conduct this procedure using light-resistant vessels. Weigh accurately the mass of not less than 20 Silodosin Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 40 mg of silodosin (C_{25}H_{32}F_{3}N_{3}O_{6}), add exactly 8 mL of the internal standard solution, then add a suitable amount of a mixture of methanol and a solution of sodium chloride (1 in 200) (7:3), sonicate with occasional shaking, and add a mixture of methanol and a solution of sodium chloride (1 in 200) (7:3) to make 100 mL. To 5 mL of this solution add a mixture of methanol and a solution of sodium chloride (1 in 200) (7:3) to make 50 mL, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 3 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 20 mg of Silodosin RS (separately determine the water <2.40% in the same manner as Silodosin), add exactly 4 mL of the internal standard solution and a mixture of methanol and a solution of sodium chloride (1 in 200) (7:3) to make 50 mL. To 5 mL of this solution add a mixture of methanol and a solution of sodium chloride (1 in 200) (7:3) to make 50 mL, and use this solution as the standard solution. Perform the test with 25 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and calculate the ratios, Q_T and Q_S, of the peak area of silodosin to that of the internal standard.

Amount (mg) of silodosin (C_{25}H_{32}F_{3}N_{3}O_{6})
\[= M_S \times Q_T/Q_S \times 2 \]

Loss on drying
- Not more than 0.20% (2 g, silica gel, light resistant, 4 hours).

Assay
- Weigh accurately about 0.7 g of Silver Nitrate, previously powdered and dried, dissolve in 50 mL of water, add 2 mL of nitric acid, and titrate <2.50> with 0.1 mol/L ammonium thiocyanate VS (indicator: 2 mL of ammonium iron (III) sulfate TS).

Each mL of 0.1 mol/L ammonium thiocyanate VS
\[= 16.99 \text{ mg of AgNO}_3 \]

Containers and storage
- Containers—Light-resistant.

Silver Nitrate

AgNO_3: 169.87

Silver Nitrate, when dried, contains not less than 99.8% of silver nitrate (AgNO_3).

Description
- Silver Nitrate occurs as lustrous, colorless or white crystals.
- It is very soluble in water, soluble in ethanol (95), and practically insoluble in diethyl ether.
- It gradually turns grayish black by light.

Identification
- A solution of Silver Nitrate (1 in 50) responds to Qualitative Tests <1.09> for silver salt and for nitrate.

Purity
- (1) Clarity and color of solution, and acidity or alkalinity—Dissolve 1.0 g of Silver Nitrate in 10 mL of freshly boiled and cooled water: the solution is clear and colorless. It is neutral.
- (2) Bismuth, copper and lead—To 5 mL of a solution of Silver Nitrate (1 in 10) add 3 mL of ammonia TS: the solution is clear and colorless.

Loss on drying
- Not more than 0.20% (2 g, silica gel, light resistant, 4 hours).

Assay
- Weigh accurately about 0.7 g of Silver Nitrate, previously powdered and dried, dissolve in 50 mL of water, add 2 mL of nitric acid, and titrate <2.50> with 0.1 mol/L ammonium thiocyanate VS (indicator: 2 mL of ammonium iron (III) sulfate TS).

Each mL of 0.1 mol/L ammonium thiocyanate VS
\[= 16.99 \text{ mg of AgNO}_3 \]

Containers and storage
- Containers—Light-resistant.
Silver Nitrate Ophthalmic Solution
硝酸銀点眼液

Silver Nitrate Ophthalmic Solution is an aqueous ophthalmic preparation.
It contains not less than 0.95 w/v% and not more than 1.05 w/v% of silver nitrate (AgNO₃: 169.87).

Method of preparation

Silver Nitrate 10 g
Purified Water or Purified Water in Containers a sufficient quantity

To make 1000 mL

Prepare as directed under Ophthalmic Liquids and Solutions, with the above ingredients.

Description Silver Nitrate Ophthalmic Solution is a clear, colorless liquid.

Identification Silver Nitrate Ophthalmic Solution responds to Qualitative Tests <1.09> for silver salt and for nitrate.

Assay Measure accurately 20 mL of Silver Nitrate Ophthalmic Solution, add 30 mL of water and 2 mL of nitric acid, and titrate <2.50> with 0.1 mol/L ammonium thiocyanate VS (indicator: 2 mL of ammonium iron (III) sulfate TS).

Each mL of 0.1 mol/L ammonium thiocyanate VS = 16.99 mg of AgNO₃

Containers and storage Containers—Tight containers.
Storage—Light-resistant.

Silver Protein
プロテイン銀

Silver Protein is a compound of silver and proteins.
It contains not less than 7.5% and not more than 8.5% of silver (Ag: 107.87).

Description Silver Protein occurs as a light yellow-brown to brown powder. It is odorless.

It (1 g) dissolves slowly in 2 mL of water. It is practically insoluble in ethanol (95), in diethyl ether and in chloroform.

The pH of a solution of 1.0 g of Silver Protein in 10 mL of water is between 7.0 and 8.5.

It is slightly hygroscopic.

It is affected by light.

Identification (1) To 10 mL of a solution of Silver Protein (1 in 100) add 2 mL of dilute hydrochloric acid, shake frequently for 5 minutes, and filter. To the filtrate add 5 mL of a solution of sodium hydroxide (1 in 10), and add 2 mL of diluted copper (II) chloride dihydrate in ethanol (95) (1 in 10), shake, and filter: the filtrate is blue in color (glycerin).

(2) To 5 mL of the sample solution obtained in (2) add iron (III) chloride TS: a brown precipitate is formed (silver protein).

(3) To 5 mL of the sample solution obtained in (2) add 5 mL of a solution of silver nitrate (AgNO₃) and ammonium thiocyanate VS (indicator: 3 mL of ammonium iron (III) sulfate TS). Each mL of 0.1 mol/L ammonium thiocyanate VS = 10.79 mg of Ag

Containers and storage Containers—Tight containers.
Storage—Light-resistant.

Silver Protein Solution
プロテイン銀液

Silver Protein Solution contains not less than 0.22 w/v% and not more than 0.26 w/v% of silver (Ag: 107.87).

Method of preparation

Silver Protein 30 g
Glycerin 100 mL
Mentha Water a sufficient quantity

To make 1000 mL

Dissolve and mix the above ingredients.

Description Silver Protein Solution is a clear, brown liquid, having the odor of mentha oil.

Identification (1) To 1 mL of Silver Protein Solution add 10 mL of ethanol (95), mix, and add 2 mL of sodium hydroxide TS. Add immediately 1 mL of a solution of copper (II) chloride dihydrate in ethanol (95) (1 in 10), shake, and filter: the filtrate is blue in color (glycerin).

(2) To 3 mL of Silver Protein Solution add water to make 10 mL, add 2 mL of dilute hydrochloric acid, shake frequently for 5 minutes, and filter. Add 5 mL of a solution of sodium hydroxide (1 in 10) to the filtrate, and add 2 mL of diluted copper (II) sulfate TS (2 in 25): a purple color develops (silver protein).

(3) To 5 mL of the sample solution obtained in (2) add iron (III) chloride TS dropwise: a brown precipitate is formed (silver protein).

(4) Place 3 mL of Silver Protein Solution in a crucible, heat cautiously, and evaporate almost to dryness. Then incinerate gradually by strong heating, dissolve the residue in 1 mL of nitric acid by warming, and add 10 mL of water: the solution responds to Qualitative Tests <1.09> (1) for silver salt.

Assay Pipet 25 mL of Silver Protein Solution into a 250-mL Kjeldahl flask, and heat cautiously until a white gas of glycerin is evolved. After cooling, add 25 mL of sulfuric acid, cover the flask with a funnel, and heat gently for 5 minutes. After cooling, drop gradually 5 mL of nitric acid, heat with occasional shaking in a water bath for 45 minutes, and cool. Add 2 mL of nitric acid, boil gently, and repeat this operation until the solution becomes colorless upon heating. Add 5 mL of a solution of silver nitrate (AgNO₃) and ammonium thiocyanate VS (indicator: 3 mL of ammonium iron (III) sulfate TS). Each mL of 0.1 mol/L ammonium thiocyanate VS = 10.79 mg of Ag.
Simvastatin

シンバスタチン

C_{32}H_{38}O_{3}: 418.57
(1S,3R,7S,8S,8aR)-8-\{2-[2R,4R]-4-Hydroxy-6-oxotetrahydro-2H-pyran-2-yl\}ethyl]-3,7-dimethyl-1,2,3,7,8,8a-hexahydropyran-1-yl
2,2-dimethylbutanoate

[79902-63-9]

Simvastatin contains not less than 98.0% and not more than 101.0% of simvastatin (C_{32}H_{38}O_{3}), calculated on the dried basis.

It may contain a suitable antioxidant.

Description Simvastatin occurs as a white crystalline powder.

It is freely soluble in acetonitrile, in methanol and in ethanol (99.5), and practically insoluble in water.

Identification (1) Determine the absorption spectrum of a solution of Simvastatin in acetonitrile (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.24> and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Simvastatin RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Simvastatin as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of Simvastatin RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation <2.49> [α]_{D}^{20}: +285 – +300° (50 mg calculated on the dried basis, acetonitrile, 10 mL, 100 mm).

Purity (1) Clarity and color of solution—Dissolve 1 g of Simvastatin in 10 mL of methanol: the solution is clear. Perform the test with this solution as directed under Ultraviolet-visible Spectrophotometry <2.24>: the absorbance at 440 nm is not more than 0.10.

(2) Heavy metals <1.07>—To 1.0 g of Simvastatin add 2 mL of sulfuric acid, and heat gently to carbonate. After cooling, add 2 mL of nitric acid and 1 mL of sulfuric acid, heat gently until the white fumes no more evolve, and heat to incinerate at 500 to 600°C. If the incineration is not accomplished, add 0.5 mL of nitric acid, heat in the same manner as above, and ignite at 500 to 600°C to incinerate completely. After cooling, add 2 mL of hydrochloric acid, proceed with this solution according to Method 2, and perform the test. Prepare the control solution by using the same quantities of the same reagents as directed for the preparation of the test solution, and add 2.0 mL of Standard Lead solution and water to make 50 mL (not more than 20 ppm).

(3) Related substances—Dissolve 30 mg of Simvastatin in 20 mL of a mixture of acetonitrile and 0.01 mol/L potassium dihydrogen phosphate TS (pH 4.0) (3:2), and use this
solution as the sample solution. Perform the test with 5 μL of the sample solution as directed under Liquid Chromatography 2.2.4. according to the following conditions. Determine each peak area from the sample solution by the automatic integration method, and calculate the amount of them by the area percentage method: the amounts of the peaks, having the relative retention times of about 0.45, about 0.80, about 2.42, and about 3.80 to simvastatin are not more than 0.2%, respectively; the amount of the peak, having a relative retention time of about 2.38 is not more than 0.3%; the amount of the peak, having a relative retention time of about 0.60 is not more than 0.4%; and the amount of each peak other than simvastatin and the peaks mentioned above is not more than 0.1%. Furthermore, the total amount of the peaks other than simvastatin and the peak with relative retention time of about 0.60 is not more than 1.0%.

Operating conditions—
Detector, column, and column temperature: Proceed as directed in the operating conditions in the Assay.
Mobile phase A: A mixture of diluted phosphoric acid (1 in 1000) and acetonitrile for liquid chromatography (1:1).
Mobile phase B: A solution of phosphoric acid in acetonitrile for liquid chromatography (1 in 1000).
Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 4.5</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>4.5 – 4.6</td>
<td>100 → 95</td>
<td>0 → 5</td>
</tr>
<tr>
<td>4.6 – 8.0</td>
<td>95 → 25</td>
<td>5 → 75</td>
</tr>
<tr>
<td>8.0 – 11.5</td>
<td>25</td>
<td>75</td>
</tr>
</tbody>
</table>

Flow rate: 3.0 mL per minute.
Time span of measurement: About 5 times as long as the retention time of simvastatin.

System suitability—
System performance: Proceed as directed in the system suitability in the Assay.
Test for required detectability: To 0.5 mL of the sample solution, add a mixture of acetonitrile and 0.01 mol/L potassium dihydrogen phosphate TS (pH 4.0) (3:2), to make 100 mL, and use this solution as the solution for system suitability test. Pipet 2 mL of the solution for system suitability test, add a mixture of acetonitrile and the 0.01 mol/L potassium dihydrogen phosphate TS (pH 4.0) (3:2), to make exactly 10 mL. Confirm that the peak area of simvastatin obtained with 5 μL of this solution is equivalent to 16 to 24% of that with 5 μL of the solution for system suitability test.
System repeatability: When the test is repeated 6 times with 5 μL of the solution for system suitability test under the above conditions, the relative standard deviation of the peak area of simvastatin is not more than 1.0%.

Loss on drying 2.2.4. Not more than 0.5% (1 g, in vacuum not exceeding 0.67 kPa, 60°C, 3 hours).

Residue on ignition 2.2.4. Not more than 0.1% (1 g).

Assay Weigh accurately about 30 mg each of Simvastatin and Simvastatin RS (previously determine the loss on drying 2.2.4. under the same conditions as Simvastatin), dissolve each in a mixture of acetonitrile and 0.01 mol/L potassium dihydrogen phosphate TS (pH 4.0) (3:2), to make exactly 20 mL, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with exactly 5 μL each of the sample solution and standard solution as directed under Liquid Chromatography 2.2.4. according to the following conditions, and determine the peak areas, \(A_T \) and \(A_S \), of simvastatin in each solution.

\[
\text{Amount (mg) of simvastatin (C}_{27}\text{H}_{33}\text{O}_{3} = M_S \times A_T/A_S}
\]

\(M_S \): Amount (mg) of Simvastatin RS taken, calculated on the dried basis

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 238 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 33 mm in length, packed with octadecylsilylized silica gel for liquid chromatography (3 μm in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase: A mixture of diluted phosphoric acid (1 in 1000) and acetonitrile for liquid chromatography (1:1).
Flow rate: Adjust so that the retention time of simvastatin is about 3 minutes.

System suitability—
System performance: Dissolve 3 mg of lovastatin in 2 mL of the standard solution. When the procedure is run with 5 μL of this solution under the above operating conditions, lovastatin and simvastatin are eluted in this order with the resolution between these peaks being not less than 3.
System repeatability: When the test is repeated 6 times with 5 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of simvastatin is not more than 1.0%.

Containers and storage Containers—Tight containers.
Storage—Under nitrogen atmosphere.

Simvastatin Tablets
シンバスタチン錠

Simvastatin Tablets contain not less than 93.0% and not more than 107.0% of the labeled amount of simvastatin (C_{27}H_{33}O_3: 418.57).

Method of preparation Prepare as directed under Tablets, with Simvastatin.

Identification To an amount of powdered Simvastatin Tablets, equivalent to about 2.5 mg of Simvastatin, add 25 mL of acetone in volume, sonicate for 15 minutes, and centrifuge. To 2 mL of the supernatant liquid add acetone in volume to make 20 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry 2.2.4.: it exhibits maxima between 229 nm and 233 nm, between 236 nm and 240 nm, and between 245 nm and 249 nm.

**Purity Related substances—Powder not less than 20 Simvastatin Tablets. To a portion of the powder, equivalent to about 50 mg of Simvastatin, add 200 mL of a mixture of acetonitrile and 0.05 mol/L acetate buffer solution (pH 4.0) (4:1), and sonicate for 15 minutes. After cooling, add the same mixture to make 250 mL, and centrifuge. To 5 mL of the supernatant liquid add the same mixture to make 10 mL, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add a mixture of acetonitrile and 0.05 mol/L acetate buffer solution (pH 4.0) (4:1) to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution
and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area by the automatic integration method: the area of the peak, having the relative retention time of about 0.5 to simvastatin obtained from the sample solution is not larger than 1.6 times the peak area of simvastatin from the standard solution, the area of the peak having the relative retention time of about 2.0 from the sample solution is not larger than the peak area of simvastatin from the standard solution, and the total area of the peaks other than simvastatin is not larger than 4 times the peak area of simvastatin from the standard solution.

Operating conditions—
Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 2.5 times as long as the retention time of simvastatin, beginning after the solvent peak.

System suitability—
Test for required detectability: Pipet 2 mL of the standard solution, and add the mobile phase to make exactly 10 mL. Confirm that the peak area of simvastatin obtained with 10 mL of this solution is equivalent to 14 to 26% of that with 10 μL of the standard solution. System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of simvastatin are not less than 6000 and 0.9–1.1, respectively. System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of simvastatin is not more than 2.0%.

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 tablet of Simvastatin Tablets add V/20 mL of water, and disintegrate the tablet by sonication. Add a mixture of acetonitrile and 0.05 mol/L acetate buffer solution (pH 4.0) (4:1) to make 3V/4 mL, and sonicate for 15 minutes. After cooling, add the same mixture to make exactly V mL so that each mL contains about 0.1 mg of simvastatin (C_{25}H_{36}O_{4}), centrifuge, and use the supernatant liquid as the sample solution. Then, proceed as directed in the Assay.

Amount (mg) of simvastatin (C_{25}H_{36}O_{4})

\[M_S = \frac{M_A}{A_T} \times \frac{1}{V} \times \frac{C}{45/2} \]

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 238 nm).
Column: A stainless steel column 3.9 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 50°C.
Mobile phase: A mixture of methanol and 0.02 mol/L potassium dihydrogen phosphate TS (4:1).
Flow rate: Adjust so that the retention time of simvastatin is about 4 minutes.

System suitability—
System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of simvastatin are not less than 3000 and not more than 2.0, respectively. System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of simvastatin is not more than 1.0%.

Assay Weigh accurately the mass of not less than 20 Simvastatin Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 50 mg of simvastatin (C_{25}H_{36}O_{4}), add 200 mL of a mixture of acetonitrile and 0.05 mol/L acetate buffer solution (pH 4.0) (4:1), and sonicate for 15 minutes. After cooling, add the same mixture to make exactly 250 mL, and centrifuge. Pipet 5 mL of the supernatant liquid, add the same mixture to make exactly 10 mL, and use this solution as the sample solution. Separately, weigh accurately about 20 mg of Simvastatin RS (separately determine the loss on drying <2.41> under the same conditions as simvastatin), dissolve in acetonitrile to make exactly 100 mL. Pipet 5 mL of this solution, add the mobile phase to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL of each of the sample solution and standard solution as directed under Liquid Chromatography <2.01>, according to the following conditions, and determine the peak areas, A_T and A_S, of simvastatin in each solution.

Dissolution rate (%) with respect to the labeled amount of simvastatin (C_{25}H_{36}O_{4})

\[M_S = M_A \times A_T / A_S \times V / V \times 1 / C \times 45/2 \]

M_S: Amount (mg) of Simvastatin RS taken, calculated on the dried basis
C: Labeled amount (mg) of simvastatin (C_{25}H_{36}O_{4}) in 1 tablet

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 238 nm).
Column: A stainless steel column 3.9 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 50°C.
Mobile phase: A mixture of methanol and 0.02 mol/L potassium dihydrogen phosphate TS (4:1).
Flow rate: Adjust so that the retention time of simvastatin is about 4 minutes.

System suitability—
System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of simvastatin are not less than 3000 and not more than 2.0, respectively. System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of simvastatin is not more than 1.0%.
ter and 25 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 45°C.

Mobile phase: Dissolve 3.90 g of sodium dihydrogen phosphate dihydrate in 900 mL of water, adjust to pH 4.5 with sodium hydroxide TS or phosphoric acid, and add water to make 1000 mL. To 700 mL of this solution add 1300 mL of acetonitrile.

Flow rate: Adjust so that the retention time of simvastatin is about 9 minutes.

System suitability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of simvastatin are not less than 6000 and 0.9 – 1.1, respectively.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of simvastatin is not more than 1.0%.

Containers and storage Containers—Tight containers.

Sitagliptin Phosphate Hydrate
シタグリプチンリン酸塩水和物

C_{16}H_{26}F_{16}N_{6}O_{10}.H_{2}PO_{4}.H_{2}O: 523.32
(3R)-3-Amino-1-(3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-f]pyrazin-7(8H)-yl)-4-(2,4,5-trifluorophenyl)butan-1-one monophosphate monohydrate [543471-77-9]

Sitagliptin Phosphate Hydrate contains not less than 98.0% and not more than 102.0% of sitagliptin phosphate (C_{16}H_{26}F_{16}N_{6}O_{10}H_{2}PO_{4}: 505.31), calculated on the anhydrous basis.

Description Sitagliptin Phosphate Hydrate occurs as a white powder.

It is soluble in water, sparingly soluble in methanol, very slightly soluble in acetonitrile and in ethanol (95.9).

Identification (1) Determine the absorption spectrum of a solution of Sitagliptin Phosphate Hydrate (1 in 10,000) as directed under Ultraviolet-visible Spectrophotometry <2.26>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Sitagliptin Phosphate RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Sitagliptin Phosphate Hydrate as directed in the past method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of Sitagliptin Phosphate RS: both spectra exhibit similar intensities of absorption at the same wave numbers. Alternatively, perform the test by the potassium bromide disk method or the ATR method, and compare the spectrum with the spectrum of Sitagliptin Phosphate RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) A solution of Sitagliptin Phosphate Hydrate (1 in 25) responds to Qualitative Tests <1.09> (1) for phosphate.

Purity (1) Heavy metals—Being specified separately when the drug is granted approval based on the Law.

(2) Related substances—Use the sample solution obtained in the Assay as the sample solution. Pipet 1 mL of the sample solution, add a mixture of diluted phosphoric acid (1 in 1000) and acetonitrile for liquid chromatography (19:1) to make exactly 1000 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions. Determine each peak area by the automatic integration method: the area of the peak other than sitagliptin obtained from the sample solution is not larger than the peak area of sitagliptin from the standard solution, and the relative strength of the peaks other than sitagliptin from the sample solution is not larger than 5 times the peak area of sitagliptin from the standard solution. For this calculation the peak area not larger than 1/2 times the peak area of sitagliptin from the standard solution is excluded.

Operating conditions—

Detector, column, column temperature, mobile phase and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 5.5 times as long as the retention time of sitagliptin, beginning after the solvent peak.

System suitability—

System performance: Proceed as directed in the system suitability in the Assay.

Test for required detectability: Pipet 5 mL of the standard solution, and add a mixture of diluted phosphoric acid (1 in 1000) and acetonitrile for liquid chromatography (19:1) to make exactly 10 mL. When the procedure is run with 20 μL of this solution under the above operating conditions, the SN ratio of the peak of sitagliptin is not less than 10.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of sitagliptin is not more than 2.0%.

(3) Enantiomer—Dissolve 80 mg of Sitagliptin Phosphate Hydrate in a mixture of methanol and water (9:1) to make 10 mL, and use this solution as the sample solution. Perform the test with 10 μL of the sample solution as directed under Liquid Chromatography <2.07> according to the following conditions. Determine the total peak area, A_{T}, of sitagliptin and related substance A (enantiomer), having the relative retention time of about 0.9 to sitagliptin and the peak area, A_{o}, of related substance A (enantiomer), and calculate the amount of the enantiomer by the following equation: not more than 0.5%.

Amount (%) of enantiomer = \frac{A_o}{A_T} \times 100

Operating conditions—

Detector: An ultraviolet absorption photometer (wave-length: 268 nm).

Column: A stainless steel column 4,6 mm in inside diameter and 25 cm in length, packed with silica gel coated with amyllose tris-(3,5-dimethylphenylcarbamate) coated silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 35°C.
Mobile phase: A mixture of ethanol (99.5), heptane, water and diethylamine (600:400:1:1).
Flow rate: 0.8 mL per minute.

System suitability—
Test for required detectability: Pipet 1 mL of the sample solution, and dissolve in a mixture of methanol and water (9:1) to make exactly 100 mL. Pipet 1 mL of this solution, add a mixture of methanol and water (9:1) to make exactly 10 mL. When the procedure is run with 10 μL of this solution under the above operating conditions, the SN ratio of the peak of sitagliptin is not less than 10.

System performance: Dissolve 8 mg of Sitagliptin Phosphate for System Suitability RS in 1 mL of a mixture of methanol and water (9:1). When the procedure is run with 10 μL of this solution under the above operating conditions, the resolution between the peaks of related substance A (enantiomer) and sitagliptin is not less than 1.5.

Water <2.48> 3.3 – 3.7% (0.3 g, volumetric titration, direct titration).

Residue on ignition <2.44> Not more than 0.2% (1 g, platinum crucible).

Assay Weigh accurately about 20 mg each of Sitagliptin Phosphate Hydrate and Sitagliptin Phosphate RS (separately determine the water <2.48> in the same manner as Sitagliptin Phosphate Hydrate), dissolve each in a mixture of diluted phosphoric acid (1 in 1000) and acetonitrile for liquid chromatography (19:1) to make exactly 200 mL, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with exactly 20 μL of each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, AT and AS, of sitagliptin in each solution.

\[M_S = \frac{A_T}{A_S} \]

Amount (mg) of sitagliptin phosphate
\[(C_6H_5F_3N_2O_3H_2PO_4) = M_S \times S \]

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 205 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with cyanopropylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 30°C.
Mobile phase: Dissolve 1.36 g of potassium dihydrogen phosphate in 900 mL of water, adjust to pH 2.0 with phosphoric acid, and add water to make 1000 mL. To 850 mL of this solution add 150 mL of acetonitrile for liquid chromatography.
Flow rate: 1.0 mL per minute.

System suitability—
System performance: Place 10 mg of Sitagliptin Phosphate RS and 1 mg of sodium stearyl fumarate in a vial, and add 1 mL of water. Stopper the vial tightly, and heat at 80°C for 20 to 48 hours. Take out the contents of the vial, wash the vial 3 times with a mixture of diluted phosphoric acid (1 in 1000) and acetonitrile for liquid chromatography (19:1), combine the washings and the content, and add a mixture of diluted phosphoric acid (1 in 1000) and acetonitrile for liquid chromatography (19:1) to make 100 mL. Stir this solution for 1 hour, and centrifuge for 10 minutes or until the solution becomes clear. Use the supernatant liquid as the solution for system suitability test. When the procedure is run with 20 μL of the solution for system suitability test under the above operating conditions, the resolution between sitagliptin and the peak having the relative retention time of about 1.2 to sitagliptin is not less than 1.5.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of sitagliptin is not more than 1.0%.

Containers and storage Containers—Tight containers.

Others Related substance A (enantiomer): (3S)-3-Amino-1-[3-(trifluoromethyl)-5,6-dihydro[1,2]triazolo[4,3-d]pyrazin-7(8H)-yl]-4-(2,4,5-trifluorophenyl) butan-1-one

Sitagliptin Phosphate Tablets

シタグリプチンリン酸塩錠

Sitagliptin Phosphate Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of sitagliptin (C16H15F3N3O: 407.31).

Method of preparation Prepare as directed under Tablets, with Sitagliptin Phosphate Hydrate.

Manufacture The management strategy of Sitagliptin Phosphate Tablets is based on systematic development methods, which put emphasis on prior setting targets, understanding of products and processes, and process control, and which is based on quality risk management and proven science. In addition when it can be scientifically possible to explain that a disintegration test ensure quality with distinguishability equal or better than a dissolution test, the following disintegration is alternative for the estimation of dissolution.

Disintegration <6.09> Perform the test for 5 minutes: it meets the requirement.

Identification (1) To 1 tablet of Sitagliptin Phosphate Tablets add water so that each mL contains about 0.2 mg of sitagliptin (C16H15F3N3O), and shake thoroughly to disintegrate. Centrifuge this solution. Determine the absorption spectrum of the supernatant liquid as directed under Ultraviolet-visible Spectrophotometry <2.24>; it exhibits a maximum between 265 nm and 269 nm.

(2) Perform the test with 20 μL of the sample solution and standard solution obtained in the Assay as directed under Liquid Chromatography <2.01> according to the operating conditions in the Assay: the retention times of the principal peaks in the chromatograms obtained from the sample solution and the standard solution are the same.

Purity Related substances—Use the sample solution obtained in the Assay as the sample solution. Separately, pipet 1 mL of the standard solution obtained in the Assay, add a mixture of diluted phosphoric acid (1 in 1000) and aceto-
nitrile for liquid chromatography (19:1) to make exactly 500 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography \(<2.0\%)\) according to the following conditions. Determine the peak area, \(A_T\), of related substance obtained from the sample solution and the peak area, \(A_S\), of sitagliptin from the standard solution, and calculate the amount of related substances by the following equation: the total amount of related substances is not more than 0.2%. For this calculation the peak area of the related substance not more than 0.1% is excluded.

\[
\text{Amount (mg) of related substance} = M_S \times A_T / A_S \times V' / V \times 1 / C \times 1 / 50 \times 0.806
\]

\(M_S\): Amount (mg) of Sitagliptin Phosphate RS taken, calculated on the anhydrous basis
\(V' / V\): Dilution factor for the sample solution in the Assay
\(C\): Labeled amount (mg) of sitagliptin \((C_{16}H_{12}F_{3}N_{0})\) in 1 tablet

Operating conditions

- Detector, column, column temperature, mobile phase and flow rate: Proceed as directed in the operating conditions in the Assay.
- Time span of measurement: About 5.5 times as long as the retention time of sitagliptin, beginning after the solvent peak.

System suitability

- System performance and system repeatability: Proceed as directed in the system suitability in the Assay.

Assay

Test for required detectability: To 5 mL of the standard solution add a mixture of diluted phosphoric acid (1 in 1000) and acetonitrile for liquid chromatography (19:1) to make exactly 10 mL. When the procedure is run with 20 μL of this solution under the above operating conditions, the relative standard deviation of the peak factor of the peak of sitagliptin are not less than 5000 and not more than 1.5, respectively.

Uniformity of dosage units

Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirements.

To 1 tablet of Sitagliptin Phosphate Tablets add a mixture of diluted phosphoric acid (1 in 1000) and acetonitrile for liquid chromatography (19:1) to make exactly 25 mL, and stir thoroughly. Pipet \(V\) mL of this solution, and add a mixture of diluted phosphoric acid (1 in 1000) and acetonitrile for liquid chromatography (19:1) to make exactly \(V'\) mL so that each mL contains about 80 μg of sitagliptin \((C_{16}H_{12}F_{3}N_{0})\). Centrifuge this solution, and use the supernatant liquid as the sample solution. Then, proceed as directed in the Assay.

\[
\text{Amount (mg) of sitagliptin} = M_S \times A_T / A_S \times V' / V \times 1 / 10 \times 0.806
\]

\(M_S\): Amount (mg) of Sitagliptin Phosphate RS taken, calculated on the anhydrous basis

Dissolution

When the test is performed at 100 revolutions per minute according to the Basket method, using 900 mL of water as the dissolution medium, the dissolution rate in 15 minutes of Sitagliptin Phosphate Tablets is not less than 85%.

Start the test with 1 tablet of Sitagliptin Phosphate Tablets, withdraw not less than 4 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size of 0.45 μm. Discard not less than 2 mL of the first filtrate, pipet \(V\) mL of the subsequent filtrate, add water to make exactly \(V'\) mL so that each mL contains about 14 μg of sitagliptin \((C_{16}H_{12}F_{3}N_{0})\), and use this solution as the sample solution. Separately, weigh accurately about 29 mg of Sitagliptin Phosphate RS (separately determine the water \(<2.4\%)\) in the same manner as Sitagliptin Phosphate Hydrate, and dissolve in a solution of sodium chloride (37 in 25000) to make exactly 100 mL. Pipet 6 mL of this solution, and add a solution of sodium chloride (37 in 25000) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography \(<2.0\%) \) according to the following conditions, and determine the peak areas, \(A_T\) and \(A_S\), of sitagliptin in each solution.

\[
\text{Dissolution rate (mg)} = M_S \times A_T / A_S \times V' / V \times 1 / C \times 54 \times 0.806
\]

\(M_S\): Amount (mg) of Sitagliptin Phosphate RS taken, calculated on the anhydrous basis

Operating conditions

- Column, column temperature and flow rate: Proceed as directed in the operating conditions in the Assay.
- Detector: An ultraviolet absorption photometer (wavelength: 267 nm).
- Mobile phase: Dissolve 1.36 g of potassium dihydrogen phosphate in 900 mL of water, adjust to pH 2.0 with phosphoric acid, and add water to make 1000 mL. To 750 mL of this solution add 250 mL of acetonitrile for liquid chromatography.

System suitability

- System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of sitagliptin are not less than 5000 and not more than 1.5, respectively.
- System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of sitagliptin is not more than 1.0%.

Assay

To 10 Sitagliptin Phosphate Tablets add a mixture of diluted phosphoric acid (1 in 1000) and acetonitrile for liquid chromatography (19:1) to make exactly 250 mL, and stir thoroughly. Pipet \(V\) mL of this solution, and add a mixture of diluted phosphoric acid (1 in 1000) and acetonitrile for liquid chromatography (19:1) to make exactly \(V'\) mL so that each mL contains about 80 μg of sitagliptin \((C_{16}H_{12}F_{3}N_{0})\). Centrifuge this solution, and use the supernatant liquid as the sample solution. Separately, weigh accurately about 26 mg of Sitagliptin Phosphate RS (separately determine the water \(<2.4\%)\) in the same manner as Sitagliptin Phosphate Hydrate, dissolve in a mixture of diluted phosphoric acid (1 in 1000) and acetonitrile for liquid chromatography (19:1) to make exactly 250 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography \(<2.0\%)\) according to the following conditions, and determine the peak areas, \(A_T\) and \(A_S\), of sitagliptin in each solution.

\[
\text{Amount (mg) of sitagliptin} = M_S \times A_T / A_S \times V' / V \times 1 / 10 \times 0.806
\]

\(M_S\): Amount (mg) of Sitagliptin Phosphate RS taken, calculated on the anhydrous basis
Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 205 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with cyanopropylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 30°C.

Mobile phase: Dissolve 1.36 g of potassium dihydrogen phosphate in 900 mL of water, adjust to pH 2.0 with phosphoric acid, and add water to make 1000 mL. To 850 mL of this solution add 150 mL of acetonitrile for liquid chromatography.

Flow rate: 1.0 mL per minute.

System suitability—

System performance: Proceed as directed in the system suitability in the Assay under Sitagliptin Phosphate Hydrate.

The following method can be applied when sodium stearyl fumarate is contained in the additive of the tablet.

Crush 1 tablet of Sitagliptin Phosphate Tablets, transfer to a vial, and add 1 mL of water. Stopper the vial tightly, and heat at 80°C for 20 to 48 hours. Take out the contents of the vial, wash the vial 3 times with a mixture of diluted phosphoric acid (1 in 1000) and acetonitrile for liquid chromatography, and add acetonitrile for liquid chromatography to make 100 mL. Stir this solution for 1 hour and centrifuge for 10 minutes or until the solution becomes clear. When the procedure is run with 20 μL of the supernatant liquid under the above operating conditions, the resolution between sitagliptin and the peak having the relative retention time of about 1.2 to sitagliptin is not less than 1.5.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of sitagliptin is not more than 1.0%.

Containers and storage Containers—Tight containers.

Sivelestat Sodium Hydrate

シベレスタットナトリウム水和物

\[
\text{C}_{35}\text{H}_{37}\text{N}_{4}\text{O}_{9}\cdot\text{Na}\cdot\text{H}_{2}\text{O} : 528.51
\]

Monosodium N-[2-(4-[2,2-dimethylpropanoyloxy]phenoxy)sulfonyl]amino[benzoyl]aminooacetate tetrahydrate
[201677-61-4]

Sivelestat Sodium Hydrate contains not less than 98.0% and not more than 102.0% of sivelestat sodium (C₃₅H₃₇N₄O₉S: 456.44), calculated on the anhydrous basis.

Description Sivelestat Sodium Hydrate occurs as a white crystalline powder.

It is freely soluble in methanol, slightly soluble in ethanol (99.5), and practically insoluble in water.

It dissolves in sodium hydroxide TS.

Melting point: about 190°C (with decomposition, after drying in vacuum, 60°C, 2 hours).

Identification (1) Determine the absorption spectrum of a solution of Sivelestat Sodium Hydrate in boric acid-potassium chloride-sodium hydroxide buffer solution (pH 9.0) (1 in 40,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Sivelestat Sodium Hydrate as directed in the paste method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) Dissolve 50 mg of Sivelestat Sodium Hydrate in 5 mL of water with one drop of ammonia TS: the solution responds to Qualitative Tests <1.09> for sodium salt.

Purity (1) Heavy metals <1.07>—Proceed with 2.0 g of Sivelestat Sodium Hydrate according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Related substances—Dissolve 10 mg of Sivelestat Sodium Hydrate in 10 mL of a mixture of water and acetonitrile (1:1), and use this solution as the sample solution. Pipet 1 mL of the sample solution, add a mixture of water and acetonitrile (1:1) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak, having the relative retention time of about 1.2 to sivelestat, obtained from the sample solution is not larger than 1/2 times the peak area of sivelestat from the standard solution, the areas of the peaks, having the relative retention time of about 0.25, about 0.60, and about 2.7, from the sample solution is not larger than 3/10 times the peak area of sivelestat from the standard solution, the area of the peaks other than sivelestat and peaks mentioned above from the sample solution is not larger than 1/10 times the peak area of sivelestat from the standard solution, and the total area of the peaks other than sivelestat from the sample solution is not larger than the peak area of sivelestat from the standard solution.

Operating conditions—

Column, column temperature, mobile phase and flow rate: Proceed as directed in the operating conditions in the Assay.

Detector: An ultraviolet absorption photometer (wavelength: 205 nm).

Time span of measurement: About 4 times as long as the retention time of sivelestat, beginning after the solvent peak.

System suitability—

Test for required detectability: Pipet 1 mL of the standard solution, and add a mixture of water and acetonitrile (1:1) to make exactly 20 mL. Confirm that the peak area of sivelestat obtained with 10 μL of this solution is equivalent to 4 to 6% of that with 10 μL of the standard solution.

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of sivelestat are not less than 5000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak...
Sivelestat Sodium for Injection

注射用シベレスタットナトリウム

Sivelestat Sodium for Injection is a preparation for injection which is dissolved before use.

It contains not less than 95.0% and not more than 105.0% of the labeled amount of sivelestat sodium hydrate (C₂₉H₂₇N₂NaO₇S·4H₂O: 528.51).

Method of preparation Prepare as directed under Injection which is dissolved before use.

Contraindications, with Sivelestat Sodium Hydrate.

Description Sivelestat Sodium for Injection occurs as white, masses or powder.

Identification (1) Dissolve an amount of Sivelestat Sodium for Injection, equivalent to 0.1 g of Sivelestat Sodium Hydrate, in 10 mL of water. To 1 mL of this solution add boric acid-potassium chloride-sodium hydroxide buffer solution (pH 9.0) to make 100 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry (2.24): it exhibits a maximum between 311 nm and 315 nm.

(2) Take an amount of Sivelestat Sodium for Injection, equivalent to 0.1 g of Sivelestat Sodium Hydrate, add 10 mL of methanol, and shake. Take 1 mL of the supernatant liquid, add methanol to make 10 mL, and use this solution as the sample solution. Separately, dissolve 10 mg of sivelestat sodium hydrate in 10 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography (2.07). Spot 5 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate and acetic acid (100:20:1) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the principal spot obtained from the sample solution and the spot from the standard solution show the same Rf value.

pH Being specified separately when the drug is granted approval based on the Law.

Purity Related substances—Dissolve an amount of Sivelestat Sodium for Injection, equivalent to 1.0 g of Sivelestat Sodium Hydrate, in water to make 100 mL. To 1 mL of this solution add 9 mL of a mixture of acetonitrile and water (5:4), and use the solution as the sample solution. Pipet 1 mL of the sample solution, add a mixture of water and acetonitrile (1:1) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography (2.01) according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak, having the relative retention time of about 0.25 to sivelestat, obtained from the sample solution is not larger than 3 times the peak area of sivelestat from the standard solution.

Operating conditions—

Column, column temperature, mobile phase and flow rate: Proceed as directed in the operating conditions in the Assay under Sivelestat Sodium Hydrate.

Detector: An ultraviolet absorption photometer (wavelength: 220 nm).

System suitability—

Column, column temperature, mobile phase and flow rate: Proceed as directed in the operating conditions in the Assay under Sivelestat Sodium Hydrate.
bran filtration method: it meets the requirement.

Assay Take a number of Sivelestat Sodium for Injection, equivalent to about 1 g of sivelestat sodium hydrate (C₉H₇N₂NaO₅-5H₂O), and dissolve all the contents in water to make exactly 100 mL. Pipet 5 mL of this solution, add water to make exactly 100 mL. Pipet 10 mL of this solution, add exactly 5 mL of the internal standard solution and 5 mL of acetonitrile. To 2 mL of this solution add 3 mL of a mixture of water and acetonitrile (1:1), and use the solution as the sample solution. Then, proceed as directed in the Assay under Sivelestat Sodium Hydrate.

Sodium Acetate Hydrate

\[H₂O−CO₂Na • 3H₂O \]

\(\text{C}_3\text{H}_7\text{NaO}_3\cdot3\text{H}_2\text{O} \): 136.08

Monosodium acetate trihydrate

[6131-90-4]

Sodium Acetate Hydrate, when dried, contains not less than 99.5% of sodium acetate (C₃H₇NaO₃: 82.03).

Description Sodium Acetate Hydrate occurs as colorless crystals or a white crystalline powder. It is odorless or has a slight, acetous odor. It has a cool, saline and slightly bitter taste.

It is very soluble in water, freely soluble in acetic acid (100), soluble in ethanol (95), and practically insoluble in diethyl ether.

It is efflorescent in warm, dry air.

Identification A solution of Sodium Acetate Hydrate (1 in 10) responds to Qualitative Tests <1.09> for acetate and for sodium salt.

Purity (1) Clarity and color of solution—Dissolve 2.0 g of Sodium Acetate Hydrate in 20 mL of water: the solution is clear and colorless.

(2) Acidity or alkalinity—Dissolve 1.0 g of Sodium Acetate Hydrate in 20 mL of freshly boiled and cooled water, and add 3 drops of phenolphthalein TS: a red color develops. When cooled to 10°C, or 1.0 mL of 0.01 mol/L hydrochloric acid VS is added after cooling to 10°C, the red color disappears.

(3) Chloride <1.09>—Perform the test with 1.0 g of Sodium Acetate Hydrate. Prepare the control solution with 0.30 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.011%).

(4) Sulfate <1.14>—Perform the test with 1.0 g of Sodium Acetate Hydrate. Prepare the control solution with 0.35 mL of 0.005 mol/L sulfuric acid VS (not more than 0.017%).

(5) Heavy metals <1.07>—Proceed with 2.0 g of Sodium Acetate Hydrate according to Method 1, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(6) Calcium and magnesium—Dissolve 4.0 g of Sodium Acetate Hydrate in 25 mL of water, add 6 g of ammonium chloride, 20 mL of ammonia solution (28) and 0.25 mL of a solution of sodium sulfite heptahydrate (1 in 10), and titrate <2.50> with 0.01 mol/L disodium dihydrogen ethylenediamine tetraacetate VS until the blue color changes to grayish blue (indicator: 0.1 g of methylthymol blue-potassium nitrate indicator): the amount of 0.01 mol/L disodium dihydrogen ethylenediamine tetraacetate VS consumed is not more than 0.5 mL.

(7) Arsenic <1.10>—Prepare the test solution with 1.0 g of Sodium Acetate Hydrate, according to Method 1, and perform the test (not more than 2 ppm).

(8) Potassium permanganate-reducing substance—Dissolve 1.0 g of Sodium Acetate Hydrate in 100 mL of water, add 5 mL of dilute sulfuric acid, boil, add 0.50 mL of 0.002 mol/L potassium permanganate VS, and further boil for 5 minutes: the red color of the solution does not disappear.

Loss on drying <2.41> 39.0 – 40.5% (1 g, first at 80°C for 2 hours, and then at 130°C for 2 hours).
Sodium Aurothiomalate occurs as a white to light yellow, powder or granules. It is very soluble in water, and practically insoluble in ethanol (99.5). It is hygroscopic.

Identification (1) To 2 mL of a solution of Sodium Aurothiomalate (1 in 10) add 1 mL of a solution of calcium nitrate tetrahydrate (1 in 10): a white precipitate is produced, and it dissolves in dilute nitric acid and reappears on the addition of ammonium acetate TS.

(2) To 2 mL of a solution of Sodium Aurothiomalate (1 in 10) add 3 mL of silver nitrate TS: a yellow precipitate is produced, and it dissolves in dilute nitric acid and reappears on the addition of ammonium acetate TS.

(3) Place 2 mL of a solution of Sodium Aurothiomalate (1 in 10) in a porcelain crucible, add 1 mL of ammonia TS and 1 mL of hydrogen peroxide (30%), evaporate to dryness, and ignite. Add 20 mL of water to the residue, and filter: the residue on the filter paper occurs as a yellow or dark yellow, powder or granules.

(4) The filtrate obtained in (3) responds to Qualitative Tests <1.09> for sodium salt.

(5) The filtrate obtained in (3) responds to Qualitative Tests <1.09> for sulfate.

pH <2.50> Dissolve 1.0 g of Sodium Aurothiomalate in 10 mL of water: the pH of this solution is between 5.8 and 6.5.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Sodium Aurothiomalate in 10 mL of water: the solution is clear and light yellow.

(2) Heavy metals <1.07>—Proceed with 1.0 g of Sodium Aurothiomalate according to Method 2, and perform the test. Prepare the control solution with 3.0 mL of Standard Lead Solution (not more than 30 ppm).

(3) Arsenic <1.1D>—Prepare the test solution with 1.0 g of Sodium Aurothiomalate according to Method 3, and perform the test (not more than 2 ppm).

(4) Ethanol—Weigh accurately about 0.2 g of Sodium Aurothiomalate, add exactly 3 mL of the internal standard solution and 2 mL of water to dissolve, and use this solution as the sample solution. Separately, pipet 3 mL of ethanol (99.5), and add water to make exactly 1000 mL. Pipet 2 mL of this solution, add exactly 3 mL of the internal standard solution, and use this solution as the standard solution. Perform the test with 2 μL each of the sample solution and standard solution as directed under Gas Chromatography <2.02> according to the following conditions, and calculate the ratios of the peak area of ethanol to that of the internal standard, Q_S and Q_S: the amount of ethanol is not more than 3.0%.

Amount (mg) of ethanol = Q_S/Q_S × 6 × 0.793

0.793: Density (g/mL) of ethanol (99.5) at 20°C

Internal standard solution—A solution of 2-propanol (1 in 500).

Operating conditions—
Detector: A hydrogen flame-ionization detector.
Column: A column 3 mm in inside diameter and 3 m in length, packed with porous styrene-divinylbenzene copolymer for gas chromatography (particle diameter: 150 – 180 μm) (average pore size: 0.0085 μm; 300 – 400 m²/g).
Column temperature: A constant temperature of about 180°C.
Carrier gas: Nitrogen.
Flow rate: Adjust so that the retention time of the internal standard is about 7 minutes.

System suitability—
System performance: When the procedure is run with 2 μL of the standard solution under the above operating conditions, ethanol and the internal standard are eluted in order with the resolution between these peaks being not less than 4.
System repeatability: When the test is repeated 6 times with 2 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of ethanol to that of the internal standard is not more than 2.0%.

Water <2.48> Not more than 5.0% (0.1 g, coulometric titration). Use a water vaporizer (heating temperature: 105°C; heating time: 30 minutes).

Assay Weigh accurately about 0.2 g of Sodium Aurothiomalate, previously dried, dissolve in 50 mL of acetic acid (100), and titrate <2.5D> with 0.1 mol/L perchloric acid VS until the color of the solution changes from yellow to green (indicator: 1 mL of p-naphtholphthalein TS). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 8.203 mg of Na₂H₂NaO₂

Containers and storage Containers—Tight containers.
Sodium Benzoate

Description
Sodium Benzoate occurs as white, granules, crystals or crystalline powder. It is odorless, and has a sweet and saline taste.

Sodium Benzoate, when dried, contains not less than 99.0% of sodium benzoate (C₇H₅NaO₂).

Purity
1. Clarity and color of solution—Dissolve 1.0 g of Sodium Benzoate in 5 mL of water: the solution is clear and colorless.

2. Acidity or alkalinity—Dissolve 2.0 g of Sodium Benzoate in 20 mL of freshly boiled and cooled water, and add 2 drops of phenolphthalein TS and 0.20 mL of 0.05 mol/L sulfuric acid VS: the solution remains colorless. To this solution add 0.40 mL of 0.1 mol/L sodium hydroxide VS: a red color develops.

3. Sulfate—Dissolve 0.40 g of Sodium Benzoate in 40 mL of water, add slowly 3.5 mL of dilute hydrochloric acid with thorough stirring, allow to stand for 5 minutes, and filter. Discard the first 5 mL of the filtrate, take the subsequent 20 mL of the filtrate, add water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution with 0.40 mL of 0.005 mol/L sulfuric acid VS (not more than 0.120%).

4. Heavy metals—Dissolve 2.0 g of Sodium Benzoate in 44 mL of water, add gradually 5 mL of dilute hydrochloric acid with thorough stirring, and filter. Discard the first 5 mL of the filtrate, take the subsequent 25 mL of the filtrate, neutralize with ammonia TS, add 2 mL of dilute acetic acid and water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution as follows: to 2.0 mL of Standard Lead Solution add 2 mL of dilute acetic acid and water to make 50 mL (not more than 20 ppm).

5. Arsenic—Mix well 1.0 g of Sodium Benzoate with 0.40 g of calcium hydroxide, ignite, dissolve the residue in 10 mL of dilute hydrochloric acid, and perform the test using this solution as the test solution (not more than 2 ppm).

6. Chlorinated compounds—Dissolve 1.0 g of Sodium Benzoate in 10 mL of water, add 10 mL of dilute sulfuric acid, and extract with two 20-mL portions of diethyl ether. Combine the diethyl ether extracts, and evaporate the diethyl ether on a water bath. Place 0.5 g of the residue and 0.7 g of calcium carbonate in a crucible, mix with a small amount of water, and dry. Ignite it at about 600°C, dissolve in 20 mL of dilute nitric acid, and filter. Wash the residue with 15 mL of water, combine the filtrate and the washing, add water to make 50 mL, and add 0.5 mL of silver nitrate TS: this solution has no more turbidity than the following control solution.

Control solution: Dissolve 0.7 g of calcium carbonate in 20 mL of dilute nitric acid, and filter. Wash the residue with 15 mL of water, combine the filtrate and the washing, add 1.2 mL of 0.01 mol/L hydrochloric acid VS and water to make 50 mL, and add 0.5 mL of silver nitrate TS.

7. Phthalic acid—To 0.10 g of Sodium Benzoate add 1 mL of water and 1 mL of resorcinol-sulfuric acid TS, and heat the mixture in an oil bath heated at a temperature between 120°C and 125°C to evaporate the water, then heat the residue for further 90 minutes, cool, and dissolve in 5 mL of water. To 1 mL of the solution add 10 mL of a solution of sodium hydroxide (43 in 500), shake, then examine under light at a wavelength between 470 nm and 490 nm: the green fluorescence of the solution is not more intense than that of the following control solution.

Control solution: Dissolve 61 mg of potassium phthalate in water to make exactly 1000 mL. Pipet exactly 1 mL of the solution, add 1 mL of resorcinol-sulfuric acid TS, and proceed as directed above.

Loss on drying—Not more than 1.5% (2 g, 110°C, 4 hours).

Assay
Weigh accurately about 1.5 g of Sodium Benzoate, previously dried, and transfer to a 300-mL glass-stoppered flask. Dissolve in 25 mL of water, add 75 mL of diethyl ether and 10 drops of bromophenol blue TS, and titrate with 0.50 mol/L hydrochloric acid VS, while mixing the aqueous and diethyl ether layers by vigorous shaking, until a persistent, light green color is produced in the aqueous layer.

Each mL of 0.5 mol/L hydrochloric acid VS corresponds to 23.05 mg of C₇H₅NaO₂.

Containers and storage—Containers—Well-closed containers.

Sodium Bicarbonate

Sodium Hydrogen Carbonate

Description
Sodium Bicarbonate occurs as white, crystals or crystalline powder. It is odorless, and has a sweet and saline taste.

Sodium Bicarbonate contains not less than 99.0% of sodium bicarbonate (NaHCO₃).

Purity
1. Clarity and color of solution—Dissolve 1.0 g of Sodium Bicarbonate in 5 mL of water: the solution is clear and colorless.

2. Acidity or alkalinity—Dissolve 2.0 g of Sodium Bicarbonate in 20 mL of freshly boiled and cooled water, and add 1.2 mL of 0.01 mol/L hydrochloric acid VS and water to make 50 mL, and add 0.5 mL of silver nitrate TS.

3. Phthalic acid—To 0.10 g of Sodium Bicarbonate add 1 mL of water and 1 mL of resorcinol-sulfuric acid TS, and heat the mixture in an oil bath heated at a temperature between 120°C and 125°C to evaporate the water, then heat the residue for further 90 minutes, cool, and dissolve in 5 mL of water. To 1 mL of the solution add 10 mL of a solution of sodium hydroxide (43 in 500), shake, then examine under light at a wavelength between 470 nm and 490 nm: the green fluorescence of the solution is not more intense than that of the following control solution.

Control solution: Dissolve 61 mg of potassium phthalate in water to make exactly 1000 mL. Pipet exactly 1 mL of the solution, add 1 mL of resorcinol-sulfuric acid TS, and proceed as directed above.

Loss on drying—Not more than 1.5% (2 g, 110°C, 4 hours).

Assay
Weigh accurately about 1.5 g of Sodium Bicarbonate, previously dried, and transfer to a 300-mL glass-stoppered flask. Dissolve in 25 mL of water, add 75 mL of diethyl ether and 10 drops of bromophenol blue TS, and titrate with 0.50 mol/L hydrochloric acid VS, while mixing the aqueous and diethyl ether layers by vigorous shaking, until a persistent, light green color is produced in the aqueous layer.

Each mL of 0.5 mol/L hydrochloric acid VS corresponds to 23.05 mg of C₇H₅NaO₂.

Containers and storage—Containers—Well-closed containers.
add 4 mL of dilute nitric acid, heat to boil, cool, and add 6 mL of dilute nitric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 0.45 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.04%).

3. Carbonate—Dissolve 1.0 g of Sodium Bicarbonate in 20 mL of freshly boiled and cooled water with very gentle swirling at a temperature not exceeding 15°C. Add 2.0 mL of 0.1 mol/L hydrochloric acid VS and 2 drops of phenolphthalein TS: no red color develops immediately.

4. Ammonium—Heat 1.0 g of Sodium Bicarbonate: the gas evolved does not change moistened red litmus paper to blue.

(5) Heavy metals <1.07>—Dissolve 4.0 g of Sodium Bicarbonate in 5 mL of water and 4.5 mL of hydrochloric acid, and evaporate on a water bath to dryness. Dissolve the residue in 2 mL of dilute acetic acid, 35 mL of water and 1 drop of ammonia TS, dilute with water to 50 mL, and perform the test using this solution as the test solution. Prepare the control solution as follows: evaporate 4.5 mL of hydrochloric acid to dryness, and add 2 mL of dilute acetic acid, 2.0 mL of Standard Lead Solution and water to make 50 mL (not more than 5 ppm).

(6) Arsenic <1.10>—Dissolve 1.0 g of Sodium Bicarbonate in 3 mL of water and 2 mL of hydrochloric acid, and perform the test using this solution as the test solution (not more than 2 ppm).

Assay Weigh accurately about 2 g of Sodium Bicarbonate, dissolve in 25 mL of water, and titrate with 0.5 mol/L sulfuric acid VS. When the color of the solution changes from blue to yellow-green, boil with caution, cool, and continue the titration until a greenish yellow color develops (indicator: 2 drops of bromocresol green TS).

Each mL of 0.5 mol/L sulfuric acid VS = 84.01 mg of NaHCO₃

Containers and storage Containers—Tight containers.

Sodium Bicarbonate Injection

炭酸水素ナトリウム注射液

Sodium Bicarbonate Injection is an aqueous injection.

It contains not less than 95.0% and not more than 105.0% of the labeled amount of sodium hydrogen carbonate (NaHCO₃: 84.01).

Method of preparation Prepare as directed under Injections, with Sodium Bicarbonate.

Description Sodium Bicarbonate Injection is a clear, colorless liquid.

Identification To a volume of Sodium Bicarbonate Injection, equivalent to 1 g of Sodium Bicarbonate, add water to make 30 mL: the solution responds to Qualitative Tests <1.09> for sodium salt and for bicarbonate.

pH <2.54> 7.0 – 8.5

Bacterial endotoxins <4.01> Less than 5.0 EU/mEq.

Extractable volume <6.07> It meets the requirement.

Foreign insoluble matter <6.06> Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter <6.07> It meets the requiremen.

Sterility <4.06> Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Measure exactly a volume of Sodium Bicarbonate Injection, equivalent to about 2 g of sodium hydrogen carbonate (NaHCO₃), titrate with 0.5 mol/L sulfuric acid VS, and proceed as directed in the Assay under Sodium Bicarbonate.

Each mL of 0.5 mol/L sulfuric acid VS = 84.01 mg of NaHCO₃

Containers and storage Containers—Hermetic containers. Plastic containers for aqueous injections may be used.

Sodium Bisulfite

亜硫酸水素ナトリウム

NaHSO₃: 104.06

Sodium Bisulfite is a mixture of sodium hydrogen-sulfite and sodium pyrosulfite.

It contains not less than 64.0% and not more than 67.4% of sulfur dioxide (SO₂: 64.06).

Description Sodium Bisulfite occurs as white, granules or powder, having the odor of sulfur dioxide.

It is freely soluble in water, and practically insoluble in ethanol (95) and in diethyl ether.

A solution of Sodium Bisulfite (1 in 20) is acid. Sodium Bisulfite is slowly affected by air or by light.

Identification A solution of Sodium Bisulfite (1 in 20) responds to Qualitative Tests <1.09> for sodium salt and for bisulfite.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Sodium Bisulfite in 10 mL of water: the solution is clear and colorless.

(2) Thiourea—Dissolve 1.0 g of Sodium Bisulfite in 15 mL of water, add slowly 5 mL of dilute hydrochloric acid, shake, and allow to stand for 5 minutes: no turbidity is produced.

(3) Heavy metals <1.07>—Dissolve 1.0 g of Sodium Bisulfite in 10 mL of water, add 5 mL of hydrochloric acid, and evaporate on a water bath to dryness. To the residue add 2 mL of dilute acetic acid and water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution as follows: evaporate 5 mL of hydrochloric acid on a water bath to dryness, and add 2 mL of dilute acetic acid and 2.0 mL of Standard Lead Solution, and dilute with water to make 50 mL (not more than 20 ppm).

(4) Iron <1.10>—Prepare the test solution with 1.0 g of Sodium Bisulfite according to Method 1, and perform the test according to Method A. Prepare the control solution with 2.0 mL of Standard Iron Solution (not more than 20 ppm).

(5) Arsenic <1.10>—Dissolve 0.5 g of Sodium Bisulfite in 10 mL of water. Add 1 mL of sulfuric acid, heat on a sand bath until white fumes are evolved, add water to make 5 mL, and perform the test with this solution as the test solution (not more than 4 ppm).

Assay Weigh accurately about 0.15 g of Sodium Bisulfite, and transfer immediately into an iodine flask containing...
Sodium Borate

ボウ砂

Na₂B₄O₇·10H₂O: 381.37

Sodium Borate contains not less than 99.0% and not more than 103.0% of sodium borate (Na₂B₄O₇·10H₂O).

Description Sodium Borate occurs as colorless or white crystals or a white crystalline powder. It is odorless, and has a slightly characteristic, saline taste.

It is freely soluble in glycerin, soluble in water, and practically insoluble in ethanol (95), in ethanol (99.5) and in diethyl ether.

When placed in dry air, Sodium Borate effloresces and is coated with a white powder.

Identification A solution of Sodium Borate (1 in 20) responds to Qualitative Tests <1.09> for sodium salt and for borate.

pH <2.54> Dissolve 1.0 g of Sodium Borate in 20 mL of water: the pH of this solution is between 9.1 and 9.6.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Sodium Borate in 20 mL of water by warming slightly: the solution is clear and colorless.

(2) Carbonate or bicarbonate—Dissolve 1.0 g of powdered Sodium Borate in 20 mL of freshly boiled and cooled water, and add 3 mL of dilute hydrochloric acid: the solution does not effervesce.

(3) Heavy metals <1.07>—Dissolve 1.5 g of Sodium Borate in 25 mL of water and 7 mL of 1 mol/L hydrochloric acid TS, add 1 drop of phenolphthalein TS, and add ammonia TS until a pale red color develops. Then add dilute acetic acid until the solution becomes colorless again, add 2 mL of dilute acetic acid, and add water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution as follows: to 3.0 mL of Standard Lead Solution add 2 mL of dilute acetic acid and water to make 50 mL (not more than 20 ppm).

(4) Arsenic <1.11>—Prepare the test solution with 0.40 g of Sodium Borate according to Method 1, and perform the test (not more than 5 ppm).

(5) Assay Weigh accurately about 2 g of Sodium Borate, dissolve in 50 mL of water, and titrate <2.50> with 0.5 mol/L hydrochloric acid VS (indicator: 3 drops of methyl red TS).

Each mL of 0.5 mol/L hydrochloric acid VS = 95.34 mg of Na₂B₄O₇·10H₂O

Containers and storage Containers—Tight containers.

Sodium Bromide

臭化ナトリウム

NaBr: 102.89

Sodium Bromide, when dried, contains not less than 99.0% of sodium bromide (NaBr).

Description Sodium Bromide occurs as colorless or white, crystals or crystalline powder. It is odorless. It is freely soluble in water, and soluble in ethanol (95). It is hygroscopic, but not deliquescent.

Identification A solution of Sodium Bromide (1 in 10) responds to Qualitative Tests <1.09> for sodium salt and for bromide.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Sodium Bromide in 3 mL of water: the solution is clear and colorless.

(2) Alkalinity—Dissolve 1.0 g of Sodium Bromide in 10 mL of water, add 0.10 mL of 0.005 mol/L sulfuric acid VS and 1 drop of phenolphthalein TS, heat to boil, and cool: the solution is colorless.

(3) Chloride—Make a calculation from the result obtained in the Assay. Not more than 97.9 mL of 0.1 mol/L silver nitrate VS is consumed for 1 g of Sodium Bromide.

(4) Sulfate <1.14>—Perform the test with 2.0 g of Sodium Bromide. Prepare the control solution with 1.0 mL of 0.005 mol/L sulfuric acid VS (not more than 0.024%).

(5) Iodide—Dissolve 0.5 g of Sodium Bromide in 10 mL of water, add 2 to 3 drops of iron (III) chloride TS and 1 mL of chloroform, and shake: no red-purple color develops in the chloroform layer.

(6) Bromate—Dissolve 1.0 g of Sodium Bromide in 10 mL of freshly boiled and cooled water, and add 2 drops of potassium iodide TS, 1 mL of starch TS and 3 drops of dilute sulfuric acid. Shake the mixture gently, and allow to stand for 5 minutes: no blue color develops.

(7) Heavy metals <1.07>—Proceed with 2.0 g of Sodium Bromide according to Method 1, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(8) Barium—Dissolve 0.5 g of Sodium Bromide in 10 mL of water, add 0.5 mL of dilute hydrochloric acid and 1 mL of potassium sulfate TS, and allow to stand for 10 minutes: no turbidity is produced.

(9) Arsenic <1.11>—Prepare the test solution with 1.0 g of Sodium Bromide according to Method 1, and perform the test (not more than 2 ppm).

Loss on drying <2.41> Not more than 5.0% (1 g, 110°C, 4 hours).

Assay Weigh accurately about 0.4 g of Sodium Bromide, previously dried, and dissolve in 50 mL of water. Add 10 mL of dilute nitric acid and 50 mL of 0.1 mol/L silver nitrate VS, exactly measured, and titrate <2.50> the excess silver nitrate with 0.1 mol/L ammonium thiocyanate VS (indicator: 2 mL of ammonium iron (III) sulfate TS). Perform a blank determination in the same manner.

Each mL of 0.1 mol/L silver nitrate VS = 10.29 mg of NaBr

Containers and storage Containers—Tight containers.
Sodium Carbonate Hydrate contains not less than 99.0% and not more than 103.0% of sodium carbonate hydrate (Na₂CO₃·10H₂O).

Description Sodium Carbonate Hydrate occurs as colorless or white crystals.

It is freely soluble in water, and practically insoluble in ethanol (95) and in diethyl ether.

A solution of Sodium Carbonate Hydrate (1 in 10) is alkaline.

Sodium Carbonate Hydrate is hygroscopic.

Identification A solution of Sodium Carbonate Hydrate (1 in 10) responds to Qualitative Tests for sodium salt and for carbonate.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Sodium Carbonate Hydrate in 10 mL of water: the solution is clear and colorless.

(2) Chloride (See the General Notices 5.)

Dissolve 0.5 g of Sodium Carbonate Hydrate in 10 mL of water, add 12 mL of dilute nitric acid, dilute with water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution with 1.0 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.071%).

(3) Heavy metals

Dissolve 1.0 g of Sodium Carbonate Hydrate in 10 mL of water, add 7.5 mL of dilute hydrochloric acid, and evaporate on a water bath to dryness. Dissolve the residue in 35 mL of water and 2 mL of dilute acetic acid, dilute with water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution as follows: evaporate 7.5 mL of dilute hydrochloric acid on a water bath to dryness, add 2 mL of dilute acetic acid and 2.0 mL of Standard Lead Solution, and dilute with water to make 50 mL (not more than 20 ppm).

(4) Arsenic

Dissolve 0.65 g of Sodium Carbonate Hydrate according to Method 1, and perform the test (not more than 3.1 ppm).

Loss on drying (See the General Notices 5.)

Dissolve about 1.2 g of Sodium Carbonate Hydrate, weighed accurately, in 25 mL of water, and titrate with 0.5 mol/L sulfuric acid VS until the color of the solution changes from blue to yellow-green. Then boil cautiously, cool, and further titrate until a greenish yellow color develops (indicator: 2 drops of bromocresol green TS).

Each mL of 0.5 mol/L sulfuric acid VS = 53.00 mg of Na₂CO₃

Containers and storage Containers—Tight containers.

Sodium Carbonate Hydrate occurs as white crystals or crystalline powder.

It is freely soluble in water, and practically insoluble in ethanol (95) and in diethyl ether.

A solution of Dried Sodium Carbonate (1 in 10) is alkaline.

Dried Sodium Carbonate is hygroscopic.

Identification A solution of Dried Sodium Carbonate (1 in 20) responds to Qualitative Tests for sodium salt and for carbonate.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Dried Sodium Carbonate in 5 mL of water: the solution is clear and colorless.

(2) Chloride (See the General Notices 5.)

Dissolve 0.5 g of Dried Sodium Carbonate in 10 mL of water, add 7 mL of dilute nitric acid, dilute with water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution with 1.0 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.071%).

(3) Heavy metals

Dissolve 2.0 g of Dried Sodium Carbonate in 10 mL of water, add 8 mL of dilute hydrochloric acid, and evaporate to dryness on a water bath. Dissolve the residue in 35 mL of water and 2 mL of dilute acetic acid, dilute with water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution as follows: evaporate 8 mL of dilute hydrochloric acid on a water bath to dryness, add 2 mL of dilute acetic acid and 2.0 mL of Standard Lead Solution, and dilute with water to make 50 mL (not more than 10 ppm).

(4) Arsenic

Dissolve 0.65 g of Dried Sodium Carbonate Hydrate according to Method 1, and perform the test (not more than 3.1 ppm).

Loss on drying (See the General Notices 5.)

Dissolve about 3 g of Sodium Carbonate Hydrate, weighed accurately, in 25 mL of water, and titrate with 0.5 mol/L sulfuric acid VS until the color of the solution changes from blue to yellow-green. Boil cautiously, cool, and further titrate until a greenish yellow color appears (indicator: 2 drops of bromocresol green TS).

Each mL of 0.5 mol/L sulfuric acid VS = 143.1 mg of Na₂CO₃·10H₂O

Containers and storage Containers—Tight containers.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.)
Sodium Chloride
塩化ナトリウム

NaCl: 58.44

This monograph is harmonized with the European Pharmacopoeia and the U.S. Pharmacopeia.

The parts of the text that are not harmonized are marked with symbols (◆)

Information on the harmonization with the European Pharmacopoeia and the U.S. Pharmacopeia is available on the website of the Pharmaceuticals and Medical Devices Agency.

Sodium Chloride contains not less than 99.0% and not more than 100.5% of sodium chloride (NaCl), calculated on the dried basis.

◆Description Sodium Chloride occurs as colorless or white, crystals or crystalline powder.

It is freely soluble in water, and practically insoluble in ethanol (99.5).

Identification (1) A solution of Sodium Chloride (1 in 20) responds to Qualitative Tests <1.09> for sodium salt.

(2) A solution of Sodium Chloride (1 in 20) responds to Qualitative Tests <1.09> for chloride.

Purity ♦(1) Clarity and color of solution—Dissolve 1.0 g of Sodium Chloride in 5 mL of water: the solution is clear and colorless.♦

(2) Acidity or alkalinity—Dissolve 20.0 g of Sodium Chloride in freshly boiled and cooled water to make exactly 100 mL, and use this solution as the sample solution. To 20 mL of the sample solution add 0.1 mL of bromothymol blue-sodium hydroxide-ethanol TS and 0.5 mL of 0.01 mol/L hydrochloric acid VS: the color of the solution is yellow.

Separately, to 20 mL of the sample solution add 0.1 mL of bromothymol blue-sodium hydroxide-ethanol TS and 0.5 mL of 0.01 mol/L sodium hydroxide VS: the color of the solution is blue.

(3) Sulfates—To 7.5 mL of the sample solution obtained in (2) add water to make exactly 30 mL, and use this solution as the sample solution. Separately, dissolve 0.181 g of potassium sulfate in diluted ethanol (3 in 10) to make exactly 500 mL. Pipet 5 mL of this solution, and add diluted ethanol (3 in 10) to make exactly 100 mL. To 4.5 mL of this solution add 3 mL of a solution of barium chloride dihydrate (1 in 4), shake, and allow to stand for 1 minute. To 2.5 mL of this solution add 15 mL of the sample solution and 0.5 mL of acetic acid (31), and allow to stand for 5 minutes: any turbidity produced does not more than that produced in the following control solution.

Control solution: Dissolve 0.181 g of potassium sulfate in water to make exactly 500 mL. Pipet 5 mL of this solution, add water to make exactly 100 mL, and proceed in the same manner as directed above using this solution instead of the sample solution.

(4) Phosphates—To 2.0 mL of the sample solution obtained in (2) add water to make exactly 100 mL, then add 4 mL of molybdenium-sulfuric acid TS, mix, add 0.1 mL of tin (II) chloride-hydrochloric acid TS, and allow to stand for 10 minutes: the color of the solution is not darker than the following control solution.

Control solution: To 1.0 mL of Standard Phosphoric Acid Solution add 12.5 mL of 2 mol/L sulfuric acid TS and water to make exactly 250 mL. Then, proceed in the same manner as above with 100 mL of this solution.

(5) Bromides—To 0.50 mL of the sample solution obtained in (2) add 4.0 mL of water, 2.0 mL of dilute phenol red TS and 1.0 mL of a freshly prepared solution of sodium toluenesulfonchloramide trihydrate (1 in 10,000), and mix immediately. After allowing to stand for 2 minutes, add 0.15 mL of 0.1 mol/L sodium thiosulfate VS, mix, add water to make exactly 10 mL, and use this solution as the sample solution. Separately, to 5.0 mL of a solution of potassium bromide (3 in 1,000,000) add 2.0 mL of dilute phenol red TS and 1.0 mL of a solution of sodium toluenesulfonchloramide trihydrate (1 in 10,000), and mix immediately. Proceed in the same manner as the preparation of the sample solution, and use the solution so obtained as the standard solution. Perform the test with the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry <2.24> using water as the control: the absorbance at 590 nm of the sample solution is not more than that of the standard solution.

(6) Iodides—Wet 5 g of Sodium Chloride by adding dropwise a freshly prepared mixture of soluble starch TS, 0.5 mol/L sulfuric acid TS and sodium nitrite TS (1:1000:40:3), allow to stand for 5 minutes, and examine: a blue color does not appear.

(7) Ferrocyanides—Dissolve 2.0 g of Sodium Chloride in 6 mL of water, and add 0.5 mL of a mixture of a solution of iron (II) sulfate heptahydrate (1 in 100) and a solution of ammonium iron (III) sulfate dodecahydrate in diluted sulfuric acid (1 in 400) (1 in 100) (19:1): a blue color does not develop within 10 minutes.

◆(8) Heavy metals <1.07>—Proceed with 5.0 g of Sodium Chloride according to Method 1, and perform the test. Prepare the control solution with 1.5 mL of Standard Lead Solution (not more than 3 ppm).◆

(9) Iron—To 10 mL of the sample solution obtained in (2) add 2 mL of a solution of citric acid monohydrate (1 in 5) and 0.1 mL of mercapto acetic acid, alkalize the solution with ammonia TS, add water to make exactly 20 mL, and allow to stand for 5 minutes: the solution has not more color than the following control solution.

Control solution: Pipet 1 mL of Standard Iron Solution, and add water to make exactly 25 mL. To 10 mL of this solution add 2 mL of a solution of citric acid monohydrate (1 in 5) and 0.1 mL of mercapto acetic acid, and proceed in the same manner as directed for the sample solution.

(10) Barium—To 5.0 mL of the sample solution obtained in (2) add 5.0 mL of water and 2.0 mL of dilute sulfuric acid, and allow to stand for 2 hours: the solution has not more turbidity than the following control solution.

Control solution: To 5.0 mL of the sample solution obtained in (2) add 7.0 mL of water, and allow to stand for 2 hours.

(11) Magnesium and alkaline-earth materials—To 200 mL of water add 0.1 g of hydroxyquinolinium chloride, 10 mL of ammonium chloride buffer solution (pH 10), 1 mL of 0.1 mol/L zinc sulfate VS and 0.15 g of eriochrome black T-sodium chloride indicator, and warm to 40°C. Add 0.01 mol/L disodium dihydrogen ethylenediamine tetraacetate VS dropwise until the purple color of the solution changes to blue. To this solution add a solution prepared by dissolving 10.0 g of Sodium Chloride in 100 mL of water, and add 2.5 mL of 0.01 mol/L disodium dihydrogen ethylenediamine tetraacetate VS: the color of the solution is a blue.

◆(12) Arsenic <1.11>—Prepare the test solution with 1.0 g of Sodium Chloride according to Method 1, and perform the test (not more than 2 ppm).◆
Isotonic Sodium Chloride Solution

0.9% Sodium Chloride Injection

Description
Isotonic Sodium Chloride Solution is an aqueous injection. It contains not less than 0.85 w/v% and not more than 0.95 w/v% of sodium chloride (NaCl: 58.44).

Method of preparation

Sodium Chloride 9 g
Water for Injection or Sterile Water 100 g

Prepare as directed under Injections, with the above ingredients. No preservative is added.

Description
Isotonic Sodium Chloride Solution is a clear, colorless liquid. It has a slightly saline taste.

Identification
Isotonic Sodium Chloride Solution responds to Qualitative Tests <1.09> for sodium salt and for chloride.

pH
4.5 – 8.0

Purity

(1) Heavy metals <1.07>—Concentrate 100 mL of Isotonic Sodium Chloride Solution to about 40 mL on a water bath, and add 2 mL of dilute acetic acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 3.0 mL of Standard Lead Solution and 2 mL of dilute acetic acid, and add water to make 50 mL (not more than 0.3 ppm).

(2) Arsenic <1.11>—Prepare the test solution with 20 mL of Isotonic Sodium Chloride Solution, and perform the test (not more than 0.1 ppm).

Bacterial endotoxins
Less than 0.50 EU/mL.

Extractable volume
It meets the requirement.

Containers and storage
Containers—Hermetic containers.
Plastic containers for aqueous injections may be used.
Sodium Chromate (\(^{51}\text{Cr}\)) Injection

クロム酸ナトリウム (\(^{51}\text{Cr}\)) 注射液

Sodium Chromate (\(^{51}\text{Cr}\)) Injection is an aqueous injection.
It contains a chromium-51 (\(^{51}\text{Cr}\)) in the form of sodium chromate.
It conforms to the requirements of Sodium Chromate (\(^{51}\text{Cr}\)) Injection in the Minimum Requirements for Radiopharmaceuticals.

Test for Extractable Volume of Parenteral Preparations and Insoluble Particulate Matter Test for Injections are not applied to this injection.

Description Sodium Chromate (\(^{51}\text{Cr}\)) Injection is a clear, light yellow liquid. It is odorless or has an odor of the preservatives.

Sodium Citrate Hydrate

クエン酸ナトリウム水和物

\[\text{Na}_3\text{C}_6\text{H}_5\text{O}_7\cdot2\text{H}_2\text{O} \]

Sodium Citrate Hydrate, when dried, contains not less than 99.0% and not more than 101.0% of sodium citrate (\(\text{C}_6\text{H}_5\text{Na}_3\text{O}_7\cdot2\text{H}_2\text{O} : 258.07\)).

Description Sodium Citrate Hydrate occurs as colorless crystals, or a white crystalline powder. It is odorless, and has a cooling, saline taste.

It is freely soluble in water, and practically insoluble in ethanol (95) and in diethyl ether.

Identification A solution of Sodium Citrate Hydrate (1 in 20) responds to Qualitative Tests \(<1.09\) for citrate and for sodium salt.

pH \(<2.54\) Dissolve 1.0 g of Sodium Citrate Hydrate in 20 mL of water: the pH of this solution is between 7.5 and 8.5.

Purity (1) Clarity and color of solution—A solution of 1.0 g of Sodium Citrate Hydrate in 10 mL of water is clear and colorless.

(2) Chloride \(<1.05\)—Take 0.6 g of Sodium Citrate Hydrate, and perform the test. Prepare the control solution with 0.25 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.015%).

(3) Sulfate \(<1.14\)—To 0.5 g of Sodium Citrate Hydrate add water to make 40 mL, then add 3.0 mL of dilute hydrochloric acid and water to make 50 mL, and perform the test. Prepare the control solution with 0.50 mL of 0.005 mol/L sulfuric acid VS (not more than 0.048%).

(4) Heavy metals \(<1.07\)—Proceed with 2.5 g of Sodium Citrate Hydrate according to Method 2, and perform the test. Prepare the control solution with 2.5 mL of Standard Lead Solution (not more than 10 ppm).

(5) Arsenic \(<1.11\)—Prepare the test solution with 1.0 g of Sodium Citrate Hydrate according to Method 1, and perform the test (not more than 2 ppm).

(6) Tartrate—To a solution of 1.0 g of Sodium Citrate Hydrate in 2 mL of water add 1 mL of potassium acetate TS and 1 mL of acetic acid (31): no crystalline precipitate is formed after the sides of the tube have been rubbed with a glass rod.

(7) Oxalate—Dissolve 1.0 g of Sodium Citrate Hydrate in a mixture of 1 mL of water and 3 mL of dilute hydrochloric acid, add 4 mL of ethanol (95) and 0.2 mL of calcium chloride TS, and allow to stand for 1 hour: the solution is clear.

(8) Readily carbonizable substances \(<1.15\)—Take 0.5 g of Sodium Citrate Hydrate, and perform the test by heating at 90°C for 1 hour: the solution has no more color than Matching Fluid K.

Loss on drying \(<2.41\) 10.0 – 13.0% (1 g, 180°C, 2 hours).

Assay Weigh accurately about 0.2 g of Sodium Citrate Hydrate, previously dried, add 30 mL of acetic acid for nonaqueous titration, warm to dissolve, and titrate \(<2.50\) with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS
\[= 8.602 \text{ mg of C}_6\text{H}_5\text{Na}_3\text{O}_7\]

Containers and storage Containers—Tight containers.

Sodium Citrate Injection for Transfusion

輸血用クエン酸ナトリウム注射液

Sodium Citrate Injection for Transfusion is an aqueous injection.
It contains not less than 9.5 w/v% and not more than 10.5 w/v% of sodium citrate hydrate (\(\text{C}_6\text{H}_5\text{Na}_3\text{O}_7\cdot2\text{H}_2\text{O} : 294.10\)).

Method of preparation

<table>
<thead>
<tr>
<th>Sodium Citrate Hydrate</th>
<th>100 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water for Injection or Sterile Water</td>
<td></td>
</tr>
<tr>
<td>To make</td>
<td>1000 mL</td>
</tr>
</tbody>
</table>

Prepare as directed under Injections, with the above ingredients.

No preservatives may be added.

Description Sodium Citrate Injection for Transfusion is a clear, colorless liquid.

Identification Sodium Citrate Injection for Transfusion responds to Qualitative Tests \(<1.09\) for sodium salt and for citrate.

pH \(<2.54\) 7.0 – 8.5

Bacterial endotoxins \(<4.01\) Less than 5.6 EU/mL.

Extractable volume \(<6.05\) It meets the requirement.

Foreign insoluble matter \(<6.06\) Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter \(<6.07\) It meets the requirement.

Sterility \(<4.06\) Perform the test according to the Membrane filtration method: it meets the requirement.
Sodium Cromoglicate

クロモグリ酸ナトリウム

\[
\text{Na}_2\text{H}_2\text{Na}_2\text{O}_{12} \cdot 2\text{H}_2\text{O}
\]

\[
\text{C}_2\text{H}_4\text{Na}_2\text{O}_{11} : 512.33
\]

Disodium 5,5\(^{-}\)-(2-hydroxypropane-1,3-diyl)bis(oxy)bis(4-oxo-4H-chromene-2-carboxylate)

[15826-37-6]

Sodium Cromoglicate contains not less than 98.0% of sodium cromoglicate (C\(_2\)H\(_4\)Na\(_2\)O\(_{11}\)), calculated on the dried basis.

Description Sodium Cromoglicate occurs as a white crystalline powder. It is odorless and tasteless at first, and later develops a slightly bitter taste.

It is freely soluble in water, sparingly soluble in propylene glycol, very slightly soluble in ethanol (95%), and practically insoluble in 2-propanol and in diethyl ether.

It is hygroscopic.

It gradually acquires a yellow color by light.

Identification (1) Dissolve 0.1 g of Sodium Cromoglicate in 2 mL of water, add 2 mL of sodium hydroxide TS, and boil for 1 minute: a yellow color is produced. After cooling, add 0.5 mL of concentrated diazobenzene sulfonic acid TS: a dark red color is produced.

(2) Determine the absorption spectrum of a solution of Sodium Cromoglicate in phosphate buffer solution (pH 7.4) (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.2>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(3) Sodium Cromoglicate responds to Qualitative Tests <1.09> for sodium salt.

Purity (1) Clarity and color of solution—Dissolve 0.5 g of Sodium Cromoglicate in 10 mL of water: the solution is clear and colorless to pale yellow.

(2) Acidity or alkalinity—Dissolve 2.0 g of Sodium Cromoglicate in 40 mL of freshly boiled and cooled water, add 6 drops of bromothymol blue TS, and use this solution as the standard solution. To 20 mL of the sample solution add 0.25 mL of 0.1 mol/L sodium hydroxide VS: a blue color is produced. To another 20 mL of the sample solution add 0.25 mL of 0.1 mol/L hydrochloric acid VS: a yellow color is produced.

(3) Heavy metals <1.07>—Proceed with 1.0 g of Sodium Cromoglicate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(4) Oxalate—Dissolve 0.25 g of Sodium Cromoglicate in water to make exactly 50 mL, and use this solution as the sample solution. Separately, dissolve 49 mg of oxalic acid dihydrate, exactly weighed, in water to make exactly 100 mL. Pipet 5 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution. Pipet 20 mL each of the sample solution and standard solution, add exactly 5 mL of iron salicylate TS to each solution, and add water to make 50 mL. Determine the absorbances of these solutions as directed under Ultraviolet-visible Spectrophotometry <2.2> using water as the blank: the absorbance of

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.)
the sample solution at 480 nm is not smaller than that of the standard solution.

(5) Related substances—Dissolve 0.20 g of Sodium Cromoglicate in 10 mL of water, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add water to make exactly 10 mL, pipet 1 mL of this solution, add water to make exactly 20 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.07>. Spot 10 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of methanol, chloroform and acetic acid (100) (9:9:2) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): spots other than the principal spot obtained from the sample solution is not more intense than the spot from the standard solution.

Loss on drying <2.41> Not more than 10.0% (1 g, in vacuum, 105°C, 4 hours).

Assay Weigh accurately about 0.18 g of Sodium Cromoglicate, and dissolve in a mixture of 25 mL of propylene glycol and 5 mL of 2-propanol by warming. After cooling, add 30 mL of 1.4-dioxane, and titrate <2.50> with 0.1 mol/L perchloric acid-1,4-dioxane VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid-1,4-dioxane VS

= 25.62 mg of C₁₂H₁₄Na₃O₇

Containers and storage Containers—Tight containers.

Storage—Light-resistant.

Disodium Edetate Hydrate

エデト酸ナトリウム水和物

C₁₀H₁₄N₂Na₃O₈·2H₂O: 372.24
Disodium dihydrogen ethylenediaminetetraacetate dihydrate [6381-92-6]

Disodium Edetate Hydrate contains not less than 99.0% of disodium edetate hydrate (C₁₀H₁₄N₂Na₃O₈·2H₂O).

Description Disodium Edetate Hydrate occurs as white, crystals or crystalline powder. It is odorless and has a slight, acid taste.

It is soluble in water, and practically insoluble in ethanol (95) and in diethyl ether.

Identification (1) Dissolve 0.01 g of Disodium Edetate Hydrate in 5 mL of water, add 2 mL of a solution of potassium chromate (1 in 200) and 2 mL of arsenic trioxide TS, and heat in a water bath for 2 minutes: a purple color develops.

(2) Dissolve 0.5 g of Disodium Edetate Hydrate in 20 mL of water, and add 1 mL of dilute hydrochloric acid: a white precipitate is produced. Collect the precipitate, wash with 50 mL of water, and dry at 105°C for 1 hour: the precipitate melts <2.60> between 240°C and 244°C (with decomposition).

(3) A solution of Disodium Edetate Hydrate (1 in 20) responds to Qualitative Tests <1.09> (1) for sodium salt.

pH <2.54> Dissolve 1.0 g of Disodium Edetate Hydrate in 100 mL of water: the pH of this solution is between 4.3 and 4.7.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Disodium Edetate Hydrate in 50 mL of water: the solution is clear and colorless.

(2) Cyanide—Transfer 1.0 g of Disodium Edetate Hydrate to a round-bottomed flask, dissolve in 100 mL of water, add 10 mL of phosphoric acid, and distil. Place 15 mL of 0.5 mol/L sodium hydroxide VS in a 100-mL measuring cylinder, which is used as a receiver, and immerse the bottom end of the condenser into the solution. Distil the mixture until the distillate measures 100 mL, and use this solution as the sample solution. Transfer 20 mL of the sample solution to a glass-stoppered test tube, add 1 drop of phenolphthalein TS, neutralize with dilute acetic acid, and add 5 mL of phosphate buffer solution (pH 6.8) and 1.0 mL of diluted sodium tolenesulfonylchloramide TS (1 in 5). Immediately stopper the tube, mix gently, and allow to stand for a few minutes. Mix well with 5 mL of pyridine-pyrazolone TS, and allow to stand between 20°C and 30°C for 50 minutes: the solution has no more color than the following control solution.

Control solution: Pipet 1.0 mL of Standard Cyanide Solution, add 15 mL of 0.5 mol/L sodium hydroxide VS and water to make exactly 1000 mL, transfer 20 mL of this solution to a glass-stoppered test tube, and proceed as directed for the sample solution.

(3) Heavy metals <1.07>—Proceed with 2.0 g of Disodium Edetate Hydrate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(4) Arsenic <1.11>—Prepare the test solution with 1.0 g of Disodium Edetate Hydrate according to Method 1, and perform the test (not more than 2 ppm).

Residue on ignition <2.44> 37.0 – 39.0% (1 g).

Assay Weigh accurately about 1 g of Disodium Edetate Hydrate, dissolve in 50 mL of water, add 2 mL of ammonium-ammonium chloride buffer solution (pH 10.7) and 0.04 g of eriochrome black T-sodium chloride indicator, and titrate <2.50> with 0.1 mol/L zinc VS until the color of the solution changes from blue to red.

Each mL of 0.1 mol/L zinc VS

= 37.22 mg of C₁₉H₁₁N₃Na₂O₄·2H₂O

Containers and storage Containers—Well-closed containers.
Sodium Fusidate

フシジン酸ナトリウム

\[
\text{C}_{31}\text{H}_{42}\text{NaO}_{6} : \text{MW} 538.69
\]

Monosodium (17Z)-ent-16α-acetoxy-3β,11β-dihydroxy-4β,8β,14α-trimethyl-18-nor-5β,10α-cholest-24-dien-21-oate

Identification

1 Determine the infrared absorption spectra of Sodium Fusidate as directed in the potassium bromide disk method under Infrared Spectrophotometry <2,25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

2 Sodium Fusidate responds to Qualitative Tests <1.09> (1) for sodium salt.

Purity

1 Heavy metals <1.07>—Proceed with 2.0 g of Sodium Fusidate according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

2 Related substances—Dissolve 25 mg of Sodium Fusidate in a mixture of acetonitrile for liquid chromatography, diluted phosphoric acid (3 in 1000) and methanol (5:4:1) to make 10 mL, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add water to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL of each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions. Determine each peak area by the automatic integration method: the peak area of the related substance A, having the relative retention time of about 0.4 to fusidic acid, obtained from the sample solution is not larger than 3/10 times the peak area of fusidic acid from the standard solution, the peak area of the related substance B, having the relative retention time of about 0.5, from the sample solution is not larger than 2/5 times the peak area of fusidic acid from the standard solution, the peak areas of the related substance C having the relative retention time of about 0.6, the related substance D having the relative retention time of about 0.63, the unknown substance having the relative retention time of about 0.65, the related substance E having the relative retention time of about 0.7, the related substance G having the relative retention time of about 0.96 and the related substance H having the relative retention time of about 1.18, from the sample solution are not larger than 1/5 times the peak area of fusidic acid from the standard solution, the peak area of the related substance F, having the relative retention time of about 0.82, from the sample solution is not larger than 7/10 times the peak area of fusidic acid from the standard solution, the peak area of the related substance I, having the relative retention time of about 1.23, from the sample solution is not larger than 1/2 times the peak area of fusidic acid from the standard solution, the peak area of the related substance J, having the relative retention time of about 1.4, from the sample solution is not larger than 1/10 times the peak area of fusidic acid from the standard solution, the area of the peak other than fusidic acid and the peaks mentioned above from the sample solution is not larger than 1/10 times the peak area of fusidic acid from the standard solution. Furthermore, the total area of the peaks other than fusidic acid from the sample solution is not larger than 2 times the peak area of fusidic acid from the standard solution. For the areas of the peaks, the related substances C, D, E, G and H, multiply their correction factors, 0.7, 0.7, 0.3, 0.6 and 0.6, respectively.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 235 nm).

Column: A stainless steel column, 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (3.5 μm in particle diameter).

Column temperature: A constant temperature of about 30°C.

Mobile phase A: A mixture of diluted phosphoric acid (3 in 1000), acetonitrile for liquid chromatography and methanol (2:2:1).

Mobile phase B: A mixture of acetonitrile for liquid chromatography, methanol and diluted phosphoric acid (3 in 1000) (7:2:1).

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 3</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>3 – 28</td>
<td>100 → 0</td>
<td>0 → 100</td>
</tr>
<tr>
<td>28 – 33</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Flow rate: 1.0 mL per minute.

Time span of measurement: For 33 minutes after injection, beginning after the solvent peak.

System suitability—

Test for required detectability: Pipet 1 mL of the standard solution, and add a mixture of acetonitrile for liquid chromatography, diluted phosphoric acid (3 in 1000) and methanol (5:4:1) to make exactly 20 mL. Confirm that the peak area of fusidic acid obtained with 20 μL of this solution is equivalent to 3.5 to 6.5% of that with 20 μL of the standard solution.

System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of fusidic acid are not less than 43,000 and not more than 1.5, respectively.
System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of fusidic acid is not more than 2.0%.

Water Not more than 2.0% (1 g, volumetric titration, direct titration).

Assay Perform the test according to the Cylinder-plate method as directed under Microbial Assay for Antibiotics <4.02> according to the following conditions.

(i) Test organism—*Staphylococcus aureus* ATCC 6538 P

(ii) Culture medium—Use the medium ii in 3) under (1) Agar media for seed and base layer.

(iii) Standard solutions—Weigh accurately an amount of Diethanolamine Fusidate RS, equivalent to about 20 mg (potency), dissolve in 2 mL of ethanol (95), add water to make exactly 20 mL, and use this solution as the standard stock solution. Keep the standard stock solution at a temperature not exceeding 5°C and use within 7 days. Take exactly a suitable amount of the standard stock solution before use, add phosphate buffer solution (pH 6.0) to make solutions so that each mL contains 4 μg (potency) and 1 μg (potency), and use these solutions as the high concentration standard solution and the low concentration standard solution, respectively.

(iv) Sample solutions—Weigh accurately an amount of Sodium Fusidate, equivalent to about 20 mg (potency), and dissolve in water to make exactly 20 mL. Take exactly a suitable amount of this solution, add phosphate buffer solution (pH 6.0) to make solutions so that each mL contains 4 μg (potency) and 1 μg (potency), and use these solutions as the high concentration sample solution and the low concentration sample solution, respectively.

Containers and storage Containers—Tight containers.

Storage—Light-resistant, and at a temperature 2 to 8°C.

Others

Related substance A:
(24RS,17Z)-**ent**-16α-Acetoxy-3β,11β,24,25-tetrahydroxy-4β,8β,14α-trimethyl-18-nor-5β,10α-androstan-16α-yl acetate

Related substance B:
(17Z)-ent-3β,11β-Dihydroxy-17-[6(SR)]-6-hydroxy-7,7-dimethyl-2-oxooxepan-3-ylidene]-4β,8β,14α-trimethyl-18-nor-5β,10α-androstan-16α-yl acetate

Related substance C:
(17Z)-**ent**-3β,11β-Dihydroxy-17-[6(S)]-6-(2-hydroxypropan-2-yl)-2-oxodihydro-2H-pyran-3(4H)-ylidene]-4β,8β,14α-trimethyl-18-nor-5β,10α-androstan-16α-yl acetate

Related substance D:
(17Z)-**ent**-3β,11β-Dihydroxy-17-[6(R)]-6-(2-hydroxypropan-2-yl)-2-oxodihydro-2H-pyran-3(4H)-ylidene]-4β,8β,14α-trimethyl-18-nor-5β,10α-androstan-16α-yl acetate

Related substance E:
(17Z,24EZ)-**ent**-16α-Acetoxy-3β,11β-dihydroxy-4β,8β,14α-trimethyl-26-oxo-18-nor-5β,10α-cholesta-17(20),24-dien-21-oic acid

Related substance F:
(17Z)-**ent**-16α-Acetoxy-11β-hydroxy-4β,8β,14α-trimethyl-18-nor-5β,10α-cholesta-17(20),24-dien-21-oic acid

Related substance G:
(17Z)-ent-3β,11β,16β-Trihydroxy-4β,8β,14α-trimethyl-18-nor-5β,10α-cholesta-17(20),24-dien-21-oic acid
Purified Sodium Hyaluronate

精製ヒアルロン酸ナトリウム

\[
(C_{10}H_{28}NNaO_{11})_n \\
[9067-32-7]
\]

Purified Sodium Hyaluronate is the sodium salt of glycosaminoglycans composed of disaccharide units of \(\alpha \)-glucuronic acid and \(N \)-acyetyl-\(\beta \)-glucosamine obtained from coelomocoe or microorganisms.

It contains not less than 90.0\% and not more than 105.5\% of sodium hyaluronate \([C_{10}H_{28}NNaO_{11}]_n\), calculated on the dried basis.

It is composed of an average molecular mass of the sodium salt of hyaluronic acid between 500,000 and 1,490,000 or between 1,500,000 and 3,900,000.

The average molecular mass of Purified Sodium Hyaluronate should be labeled.

Description

Purified Sodium Hyaluronate occurs as white, powder, granules or fibrous masses.

It is sparingly soluble in water, and practically insoluble in ethanol (99.5).

It is hygroscopic.

Identification (1)

Determine the infrared absorption spectrum of Purified Sodium Hyaluronate, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry \(<2.25\rangle\), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(2) A solution of Purified Sodium Hyaluronate (1 in 1000) responds to Qualitative Tests \(<1.09\rangle (1) for sodium salt.

Viscosity

\(<2.33\rangle\)

Weigh accurately an amount of Purified Sodium Hyaluronate so that the downflowing time of its solution in 100 mL of 0.2 mol/L sodium chloride TS is 2.0 to 2.4 times longer than that of 0.2 mol/L sodium chloride TS, dissolve in 0.2 mol/L sodium chloride TS to make exactly 100 mL, and use this solution as the sample solution (1).

Pipet 16 mL, 12 mL and 8 mL of the sample solution (1), to each add 0.2 mol/L sodium chloride TS to make exactly 20 mL, and use these solutions as the sample solutions (2), (3) and (4), respectively. Perform the test with the sample solutions (1), (2), (3) and (4) as directed under Method 1 at 30 ± 0.1°C using an Ubbelohde-type viscometer in which the downflowing time for 0.2 mol/L sodium chloride TS is 200 to 300 seconds: the intrinsic viscosity calculated on the dried basis is between 10.0 dL/g and 24.9 dL/g or between 25.0 dL/g and 55.0 dL/g.

Purity

(1) Clarity and color of solution—Dissolve 0.10 g of Purified Sodium Hyaluronate in 10 mL of water: the solution is clear and colorless.

(2) Chloride \(<1.05\rangle—Dissolve 0.20 g of Purified Sodium Hyaluronate in 15 mL of water, add 6 mL of dilute nitric acid, and heat on a water bath for 30 minutes. After cooling, add water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 0.70 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.124\%).

(3) Heavy metals \(<1.07\rangle—Proceed with 1.0 g of Purified Sodium Hyaluronate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(4) Protein—Weigh accurately about 20 mg of Purified Sodium Hyaluronate, calculated on the dried basis, dissolve in 1.0 mL of dilute sodium hydroxide TS, and use this solution as the sample solution. Separately, weigh accurately about 10 mg of bovine serum albumin, dissolve in dilute sodium hydroxide TS to make exactly 1000 mL, and use this solution as the standard solution. To 1.0 mL of each of the sample solution and standard solution add 5.0 mL of alkaline copper TS (2), immediately stir, allow to stand at room temperature for 10 minutes, add 0.5 mL of diluted Folin’s phenol reagent (1 in 2), immediately stir, and allow to stand at room temperature for 30 minutes. Perform the test with these solutions as directed under Ultraviolet-visible Spectrophotometry \(<2.24\rangle\), using a solution, prepared with 1.0 mL of dilute sodium hydrochloride in the same manner, as the blank: the absorbance of the sample solution at 750 nm does not exceed the absorbance of the standard solution (not more than 0.05\%).

(5) Nucleic acid—Determine the absorbance of a solution of 0.10 g Purified Sodium Hyaluronate in 50 mL of water as directed under Ultraviolet-visible Spectrophotome-
try <2.24, using water as the blank: the absorbance at 260 nm is not more than 0.02.

(6) Other acidic mucopolysaccharides—(In the case of chicken-derived samples) Dissolve 0.25 g of Purified Sodium Hyaluronate in 100 mL of water, and use this solution as the sample solution. Immerse a cellulose acetate membrane 6 cm in length in 0.2 mol/L pyridine-formic acid buffer solution (pH 3.0). Take out the membrane and remove excessive buffer solution using a filter paper. Place the membrane in an electrophoresis vessel saturated with 0.2 mol/L pyridine-formic acid buffer solution (pH 3.0) and run at 0.5 mA/cm for 1 minute. Apply 2 μL of the sample solution to the membrane in an area 1 cm in width at 1.5 cm from the anode. Carry out electrophoresis at 0.5 mA/cm for 1 hour. After the electrophoresis, stain the membrane by immersing it in alcian blue staining solution for 10 to 20 minutes. After staining, decolorize sufficiently with diluted acetic acid (100) (3 in 100): no bands other than the principal band appears.

(7) Hemolytic streptococci—(In the case of microorganism-derived samples) Dissolve 0.5 g of Purified Sodium Hyaluronate in sterile isotonic sodium chloride solution to make exactly 100 mL. Take 0.5 mL of this solution, apply to 2 blood agar plates, respectively, using a Conradi stick, and incubate at 37°C for 48 hours: no hemolytic colonies appear, or if any, no streptococci are observed in the colony under a microscope.

(8) Hemolysis—(In the case of microorganism-derived samples) Dissolve 0.40 g of Purified Sodium Hyaluronate in sterile isotonic sodium chloride solution to make exactly 100 mL. To 0.5 mL of this solution add 0.5 mL of 1% blood suspension, mix, allow to stand at 37°C for 2 hours, and, if necessary, centrifuge at 3000 revolutions per minute for 10 minutes: the erythrocytes precipitate and the supernatant liquid is clear as in a blank determination performed in the same manner using 0.5 mL of sterile isotonic sodium chloride solution as the blank and 0.5 mL of sterile purified water as the positive control.

Loss on drying <2.41 Not more than 15.0% (0.1 g, reduced pressure not exceeding 0.67 kPa, phosphorus (V) oxide, 60°C; 5 hours).

Microbial limit <0.5 The acceptance criteria of TMC and TYMC are 10^6 CFU/g and 10^3 CFU/g, respectively. In the case of the sample of the labeled average molecular mass between 500,000 and 1,490,000, perform the test with 1 g, and of the labeled average molecular mass between 1,500,000 and 3,900,000, perform the test with 0.3 g.

Average molecular mass

1) In the case of the labeled average molecular mass of between 500,000 and 1,490,000.

Calculate the average molecular mass of Purified Sodium Hyaluronate according to the following equation: it is between 500,000 and 1,490,000. For $[n]$, use the maximum viscosity under Viscosity.

$$\text{Average molecular mass} = \left(\frac{[n] \times 10^5}{36} \right)^{0.73}$$

2) In the case of the labeled average molecular mass of between 1,500,000 and 3,900,000.

Calculate the average molecular mass of Purified Sodium Hyaluronate according to the following equation: it is between 1,500,000 and 3,900,000. For $[n]$, use the maximum viscosity under Viscosity.

$$\text{Average molecular mass} = \left(\frac{[n] \times 10^5}{22.8} \right)^{0.816}$$

Assay Weigh accurately about 50 mg of Purified Sodium Hyaluronate, and dissolve in water to make exactly 50 mL. Pipet 1 mL of this solution, add water to make exactly 20 mL, and use this solution as the sample solution. Separately, weigh accurately about 20 mg of α-Glucuronolactone RS, previously dried (under reduced pressure not exceeding 0.67 kPa, silica gel, 24 hours), and dissolve in water to make exactly 100 mL. Pipet 1 mL of this solution, add water to make exactly 10 mL, and use this solution as the standard solution. Pipet 1 mL each of the sample solution and standard solution, gently add into the 5.0 mL of sodium tetaborate-sulfuric acid TS, previously cooled in ice water, stir while cooling, heat in a water bath for 10 minutes, and cool in ice water. To each solution add exactly 0.2 mL of carbazole TS, stir well, heat in a water bath for 15 minutes, and cool in ice water to room temperature. Determine the absorbances, A_t and A_s, of the sample solution and standard solution at 350 nm as directed under Ultraviolet-visible Spectrophotometry $<2.24>$, using a solution, prepared with 1 mL of water in the same manner, as the blank.

$$\text{Amount (mg) of sodium hyaluronate } \left[(C_4H_9O_3Na)_n \right] = \frac{M_s 	imes A_t}{A_s} \times 2.279$$

M_s: Amount (mg) of α-Glucuronolactone RS taken.

Containers and storage Containers—Tight containers.

Storage—Light-resistant, at not exceeding 15°C.

Purified Sodium Hyaluronate Injection

精製ヒアルロン酸ナトリウム注射液

Purified Sodium Hyaluronate Injection is an aqueous injection.

It contains not less than 90.0% and not more than 110.0% of the labeled amount of sodium hyaluronate [(C4H9O3Na)104].

Method of preparation Prepare as directed under Injections, with Purified Sodium Hyaluronate.

Description Purified Sodium Hyaluronate Injection occurs as a clear, colorless, and viscous liquid.

Identification (1) To 1 mL of a solution of Purified Sodium Hyaluronate Injection (1 in 10) add 6 mL of sulfuric acid, and heat in a water bath for 10 minutes. After cooling, add 0.2 mL of carbazole TS, and allow to stand at room temperature: a red to red-purple color develops.

(2) To 1 mL of a solution of Purified Sodium Hyaluronate Injection (1 in 10) add 0.2 mL of 1 mol/L acetic acid-sodium acetate buffer solution (pH 6.0) and 5 units of hyaluronidase, and allow to stand at 50°C for 1 hour. To this solution add 1 mL of a solution of dipotassium tetraborate tetrahydrate (1 in 20), heat in a water bath for 7 minutes. After cooling, add 6 mL of acetic acid (100) and 2.4 mL of 4-dimethylaminobenzaldehyde-hydrochloric acid-acetic acid TS, and allow to stand at room temperature: a yellowish red to red color develops.

(3) To 1 mL of a solution of Purified Sodium Hyaluronate Injection (1 in 10) add 2 to 3 drops of a solution of cetylpyridinium chloride monohydrate (1 in 20): a white precipitate is formed.

Viscosity $<2.53>$

1) Apply to the preparation which labeled average mo-
Weigh accurately an amount of Purified Sodium Hyaluronate Injection, equivalent to about 10 mg of Purified Sodium Hyaluronate, add 0.2 mol/L sodium chloride TS to make exactly 20 mL, and use this solution as the sample solution. Perform the test with the sample solution at 30 ± 0.1°C according to Method 1, using a Ubbelohde-type viscometer showing the downflowing time of 0.2 mol/L sodium chloride TS is between 200 and 300 seconds. Calculate the intrinsic viscosity \([\eta] \) according to the following equation, where \(c \) is the content obtained in the Assay expressed as the concentration (g/mL): 11.8 – 19.5 mL/g.

\[
[\eta] = \frac{2\eta_{sp} - \ln \eta_{rd}}{c} × 0.87 + 1.33
\]

\(\eta_{rd} \) (specific viscosity) = \(\eta_{rel} - 1 \)
\(\eta_{rel} \) (relative viscosity) = \(\eta_{rel} / \eta_{0} \)

M: Amount (g) of Purified Sodium Hyaluronate Injection taken

Osmotic pressure ratio Being specified separately when the drug is granted approval based on the Law.

pH Being specified separately when the drug is granted approval based on the Law.

Bacterial endotoxins \(< 0.01\) Less than 0.003 EU/mg.

Extractable volume \(< 0.05\) It meets the requirements.

Foreign insoluble matter \(< 0.05\) Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter \(< 0.05\) It meets the requirement.

Sterility \(< 0.06\) Perform the test according to the Direct inoculation method: it meets the requirement.

Average molecular mass

1) Apply to the preparation which labeled average molecular mass of sodium hyaluronate is 1,500,000 to 2,000,000. Weigh accurately an amount of Purified Sodium Hyaluronate Injection, equivalent to about 4 mg of Purified Sodium Hyaluronate, add 0.2 mol/L sodium chloride TS to make exactly 20 mL, and use this solution as the sample solution. Perform the test with the sample solution at 30 ± 0.1°C according to Method 1, using a Ubbelohde-type viscometer showing the downflowing time of 0.2 mol/L sodium chloride TS is between 200 and 300 seconds. Calculate the intrinsic viscosity \([\eta] \) according to the following equation: 24.5 – 31.5 mL/g.

\[
[\eta] = (1 - 10^{-0.432 - \ln \eta_{rd}})/(0.0108 × M)
\]

\(\eta_{rel} \) (relative viscosity) = \(t/t_{0} \)

M: Amount (g) of Purified Sodium Hyaluronate Injection taken

2) Apply to the preparation which labeled average molecular mass of sodium hyaluronate is 1,500,000 to 2,000,000. Weigh accurately an amount of Purified Sodium Hyaluronate Injection, equivalent to about 10 mg of Purified Sodium Hyaluronate, and add 0.2 mol/L sodium chloride TS to make exactly 20 mL. Pipet 1 mL of this solution, add water to make exactly 10 mL, and use this solution as the sample solution. Then, proceed as directed in the Assay under Purified Sodium Hyaluronate.

Content (mg) of sodium hyaluronate \([C_{14}H_{22}N_{2}O_{11}Na_{1}]\) per mL of Purified Sodium Hyaluronate Injection

\[
M_{2} = \frac{M_{L}}{A_{L}/A_{S} × 1/5 × p × 2.279}
\]

M_{2}: Amount (mg) of \(\beta \)-glucuronolactone RS taken

\(\rho \): Density (g/mL) of Purified Sodium Hyaluronate Injection taken

Osmotic pressure ratio Being specified separately when the drug is granted approval based on the Law.

pH Being specified separately when the drug is granted approval based on the Law.

JP XVIII Official Monographs / Purified Sodium Hyaluronate Ophthalmic Solution 1711

Purified Sodium Hyaluronate Ophthalmic Solution

精製ヒアルロン酸ナトリウム点眼液

Purified Sodium Hyaluronate Ophthalmic Solution is an aqueous ophthalmic preparation.

It contains not less than 90.0% and not more than 110.0% of the labeled amount of purified sodium hyaluronate \([C_{14}H_{22}N_{2}O_{11}Na_{1}]\).

Method of preparation Prepare as directed under Ophthalmic Liquids and Solutions, with Purified Sodium Hyaluronate.

Description Purified Sodium Hyaluronate Ophthalmic Solution occurs as a clear, colorless, and viscous liquid.

Identification (1) To 1 mL of Purified Sodium Hyaluronate Ophthalmic Solution add 0.2 mL of 1 mol/L acetic acid-sodium acetate buffer solution (pH 6.0) and 5 units of hyaluronidase, and allow to stand at 50°C for 1 hour. Add 1 mL of a solution of dipotassium tetraborate tetrahydrate (1 in 20), and heat in a water bath for 7 minutes. After cooling, add 6 mL of acetic acid (100) and 2.4 mL of 4-dimethylaminobenzaldehyde-hydrochloric acid-acetic acid TS, and allow to stand at room temperature: a yellowish red to red color develops.

(2) To 1 volume of Purified Sodium Hyaluronate Ophthalmic Solution, equivalent to 7.5 mg of purified sodium hyaluronate \([C_{14}H_{22}N_{2}O_{11}Na_{1}]\), add 2 volumes of acetone, shake well, and centrifuge at 3000 rpm for 10 minutes. Remove the acetone, wash the precipitate with a mixture of acetone and water (5:1), dry the precipitate under reduced pressure (not exceeding 0.67 kPa) at 60°C for 5 hours using phosphorus (V) oxide as a desiccant, and determine the infrared absorption spectrum as directed in ATR method under Infrared Spectrophotometry \(< 2.25\): it exhibits absorption at the wave numbers of about 1605 cm⁻¹, 1404 cm⁻¹, 1375 cm⁻¹, 1150 cm⁻¹, 1025 cm⁻¹ and 945 cm⁻¹.

Osmotic pressure ratio Being specified separately when the drug is granted approval based on the Law.

pH Being specified separately when the drug is granted approval based on the Law.
Viscosity <2.53> Perform the test according to Method 1 at 30 ± 0.1°C; the kinematic viscosity is 3.0 to 4.0 mm²/s or 17 to 30 mm²/s.

Foreign insoluble matter <6.11> It meets the requirement.

Insoluble particulate matter <6.08> It meets the requirement.

Sterility <4.06> Perform the test according to the Membrane filtration method: it meets the requirement.

Average molecular mass When determined by the following method it is between 600,000 and 1,200,000.

(i) Determination of viscosity <2.53>

Weigh accurately an amount of Purified Sodium Hyaluronate Ophthalmic Solution, equivalent to about 15 mg of purified sodium hyaluronate \([C_nH_{28}NNaO_1]_a\), add 0.2 mol/L sodium chloride TS to make exactly 30 mL, and use this solution as the sample solution. Perform the test with the sample solution according to Method 1 at 30 ± 0.1°C, using an Ubbelohde-type viscometer with the descending time of 0.2 mol/L sodium chloride TS is between 200 and 300 seconds. Calculate the intrinsic viscosity \([\eta]\) according to the following equation, where \(c\) is the content obtained in the Assay expressed as the concentration (g/dL):

\[
[\eta] = \frac{2(\eta_0 - \eta_{rel})/c \times 0.87 + 1.33}{\eta_0 - \eta_{rel}}
\]

\(\eta_0\) (specific viscosity) = \(\eta_{rel} - 1\)

\(\eta_{rel}\) (relative \(\eta\) viscosity) = \(t/\tau_0\)

(ii) Calculation of average molecular mass

Calculate by the following equation, using the intrinsic viscosity obtained in (i) for \([\eta]\).

Average molecular mass = \(\left[\frac{[\eta] \times 10^3}{36}\right]^{1/3}\)

Assay To exactly \(V\) mL of Purified Sodium Hyaluronate Ophthalmic Solution, equivalent to about 1.5 mg of purified sodium hyaluronate \([C_nH_{28}NNaO_1]_a\), add the mobile phase to make exactly 30 mL, and use this solution as the sample solution. Separately, weigh accurately about 50 mg of sodium hyaluronate for assay, previously dried under reduced pressure (not exceeding 0.67 kPa) at 60°C for 5 hours using phosphorus (V) oxide as a desiccant, and dissolve in a solution of sodium chloride (9 in 1000) to make exactly 50 mL. Pipet 1 mL of this solution, add the mobile phase to make exactly 20 mL, and use this solution as the standard solution. Perform the test with exactly 20 \(\mu\)L each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, \(A_f\) and \(A_s\), of hyaluronate in each solution.

Amount (mg) of purified sodium hyaluronate
\([C_nH_{28}NNaO_1]_a\) = \(M_b \times A_f/A_s \times 1/V \times 3/100\)

\(M_b\): Amount (mg) of sodium hyaluronate for assay taken

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 210 nm).

Column: A stainless steel column 7.8 mm in inside diameter and 30 cm in length, packed with porous polymethacrylate for liquid chromatography (7 \(\mu\)m in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: Dissolve 32.2 g of sodium sulfate decahydrate in water to make 1000 mL.

Flow rate: Adjust so that the retention time of hyaluronic acid is about 5 minutes.

System suitability—

System performance: Dissolve 50 mg of purified sodium hyaluronate in 50 mL of sodium chloride solution (9 in 1000). To 1 mL of this solution and 2 mL of a solution of \(\epsilon\)-aminocaproic acid (1 in 500) add the mobile phase to make 20 mL, and use this solution as the solution for system suitability test. When the procedure is run with 20 \(\mu\)L of the solution for system suitability test under the above operating conditions, hyaluronic acid and \(\epsilon\)-aminocaproic acid are eluted in this order with the resolution between these peaks being not less than 5.

System repeatability: When the test is repeated 6 times with 20 \(\mu\)L of the standard solution under the above operating conditions, the relative standard deviation of the peak area of hyaluronic acid is not more than 2.0%.

Containers and storage Containers—Tight containers.

Sodium Hydroxide 水酸化ナトリウム

NaOH: 40.00

Sodium Hydroxide contains not less than 95.0% of sodium hydroxide (NaOH).

Description Sodium Hydroxide occurs as white, fused masses, in small pellets, in flakes, in sticks, and in other forms. It is hard and brittle, and shows a crystalline fracture.

It is freely soluble in water and in ethanol (95), and practically insoluble in diethyl ether.

It rapidly absorbs carbon dioxide in air.

It deliquesces in moist air.

Identification (1) A solution of Sodium Hydroxide (1 in 500) is alkaline.

(2) A solution of Sodium Hydroxide (1 in 25) responds to Qualitative Tests <1.00> for sodium salt.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Sodium Hydroxide in 20 mL of water: the solution is clear and colorless.

(2) Chloride <1.03>—Dissolve 2.0 g of Sodium Hydroxide in water, and add water to make 100 mL. To 25 mL of the solution add 10 mL of dilute nitric acid and water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution with 0.7 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.050%).

(3) Heavy metals <1.07>—Dissolve 1.0 g of Sodium Hydroxide in 5 mL of water, add 11 mL of dilute hydrochloric acid, and evaporate on a water bath to dryness. Dissolve the residue in 35 mL of water, add 2 mL of dilute acetic acid and 1 drop of ammonia TS, add water to make 50 mL, and perform the test using this solution as the test solution. Evaporate 11 mL of dilute hydrochloric acid on a water bath to dryness, dissolve the residue in 2 mL of dilute acetic acid and 3.0 mL of Standard Lead Solution, add water to make 50 mL, and use this solution as the control solution (not more than 30 ppm).

(4) Potassium—Dissolve 0.10 g of Sodium Hydroxide in water and dilute with water to make 40 mL. Add 1.0 mL of dilute acetic acid to 4.0 mL of this solution, and shake. Add 5.0 mL of a solution of sodium tetraphenylboron (1 in 30), shake immediately, and allow to stand for 10 minutes: the
solution has no more turbidity than the following control solution.

Control solution: Dissolve 9.5 mg of potassium chloride in water, and dilute with water to make 1000 mL. Add 1.0 mL of dilute acetic acid to 4.0 mL of this solution, shake, and proceed as directed above.

(5) Sodium carbonate—The amount of sodium carbonate (Na$_2$CO$_3$; 105.99) is not more than 2.0%, when calculated by the following equation using B (mL) which is obtained in the Assay.

$$\text{Amount (mg) of sodium carbonate } = 105.99 \times B$$

(6) Mercury—Dissolve 2.0 g of Sodium Hydroxide in 1 mL of a solution of potassium permanganate (3 in 50) and 30 mL of water, neutralize gradually with purified hydrochloric acid, and add 5 mL of diluted sulfuric acid (1 in 2). To this solution add a solution of hydroxylammonium chloride (1 in 5) until the precipitate of manganese dioxide disappears, add water to make exactly 100 mL, and use this solution as the sample solution. Perform the tests according to Atomic Absorption Spectrophotometry 2.23. (Cold vapor type) with the sample solution. Place the sample solution in the sample bottle of an atomic absorption spectrophotometer, add 10 mL of tin (II) chloride-sulfuric acid TS, connect the bottle immediately to the atomic absorption spectrophotometer, and circulate air. Read the absorbance A_T of the sample solution when the indication of the recorder rises rapidly and becomes constant at the wavelength of 253.7 nm. On the other hand, to 2.0 mL of Standard Mercury Solution add 1 mL of a solution of potassium permanganate (3 in 50), 30 mL of water and a volume of purified hydrochloric acid equal to that used in the preparation of the sample solution, and read the absorbance A_S of the solution obtained by the same procedure as used for the sample solution: A_T is smaller than A_S.

Assay Weigh accurately about 1.5 g of Sodium Hydroxide, and dissolve in 40 mL of freshly boiled and cooled water. Cool the solution to 15°C, add 2 drops of phenolphthalein TS, and titrate $<2.50^\circ$ with 0.5 mol/L sulfuric acid VS until the red color of the solution disappears. Record the amount, A (mL), of 0.5 mol/L sulfuric acid VS consumed. Then add 2 drops of methyl orange TS to the solution, and further titrate $<2.50^\circ$ with 0.5 mol/L sulfuric acid VS until the solution shows a persistent light red color. Record the amount, B (mL), of 0.5 mol/L sulfuric acid VS consumed. Calculate the amount of NaOH from the difference, $A (mL) - B (mL)$.

Each mL of 0.5 mol/L sulfuric acid VS = 40.00 mg of NaOH

Containers and storage Containers—Tight containers.

Sodium Iodide

ヨウ化ナトリウム

NaI: 149.89

Sodium Iodide, when dried, contains not less than 99.0% of sodium iodide (NaI).

Description Sodium Iodide occurs as colorless crystals or a white crystalline powder. It is odorless. It is very soluble in water, and freely soluble in glycerin and in ethanol (95).

It deliquesces in moist air.

Identification A solution of Sodium Iodide (1 in 20) responds to Qualitative Tests 2.09 for sodium salt and for iodide.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Sodium Iodide in 2 mL of water: the solution is clear and colorless.

(2) Alkalinity—Dissolve 1.0 g of Sodium Iodide in 10 mL of freshly boiled and cooled water, and add 1.0 mL of 0.005 mol/L sulfuric acid VS and 1 drop of phenolphthalein TS: no color is produced.

(3) Chloride, bromide and thiosulfate—Dissolve 0.20 g of Sodium Iodide in 10 mL of ammonium hydroxide TS, add 15.0 mL of 0.1 mol/L silver nitrate VS, shake for a few minutes, and filter. To 10 mL of the filtrate add 15 mL of dilute nitric acid: no brown color appears. The solution has no more turbidity than the following control solution.

Control solution: To 0.30 mL of 0.01 mol/L hydrochloric acid VS add 2.5 mL of ammonia TS, 7.5 mL of 0.1 mol/L silver nitrate VS and 15 mL of dilute nitric acid.

(4) Nitrate, nitrite and ammonium—Place 1.0 g of Sodium Iodide in a 40-mL test tube, and add 5 mL of water, 5 mL of sodium hydroxide TS and 0.2 g of aluminum wire. Insert a pledget of absorbent cotton in the mouth of the test tube, and place a piece of moistened red litmus paper on the cotton. Heat the test tube on a water bath for 15 minutes: the evolved gas does not turn moistened red litmus paper blue.

(5) Cyanide—Dissolve 0.5 g of Sodium Iodide in 10 mL of water. To 5 mL of this solution add 1 drop of iron (II) sulfate TS and 2 mL of sodium hydroxide TS, warm, and add 4 mL of hydrochloric acid: no green color develops.

(6) Iodate—Dissolve 0.5 g of Sodium Iodide in 10 mL of freshly boiled and cooled water, and add 2 drops of dilute sulfuric acid and 1 drop of starch TS: no blue color develops immediately.

(7) Heavy metals 1.07—Proceed with 2.0 g of Sodium Iodide according to Method 1, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(8) Barium—Dissolve 0.5 g of Sodium Iodide in 10 mL of water, add 1 mL of dilute sulfuric acid, and allow to stand for 5 minutes: no turbidity is produced.

(9) Potassium—Dissolve 1.0 g of Sodium Iodide in water, and add water to make 100 mL. To 4.0 mL of this solution add 1.0 mL of dilute acetic acid, shake, add 5.0 mL of a solution of sodium tetraphenylboron (1 in 30), immediately shake, and allow to stand for 10 minutes: the solution has no more turbidity than the following control solution.

Control solution: Dissolve 9.5 mg of potassium chloride in water, and add water to make 1000 mL. To 4.0 mL of this solution add 1.0 mL of dilute acetic acid, shake, and then proceed as directed above.

(10) Arsenic 1.11—Prepare the test solution with 0.40 g of Sodium Iodide according to Method 1, and perform the test (not more than 5 ppm).

Loss on drying 2.41 Not more than 5.0% (2 g, 120°C, 2 hours).

Assay Weigh accurately about 0.4 g of Sodium Iodide, previously dried, in an iodine flask, dissolve in 10 mL of water, add 35 mL of hydrochloric acid and 5 mL of chloroform, and titrate $<2.50^\circ$ with 0.05 mol/L potassium iodate VS while shaking vigorously until the red-purple color of the chloroform layer disappears. The end point is attained when the red-purple color does not reappear in the chloroform
layer within 5 minutes after the layer has been decolorized.

Each mL of 0.05 mol/L potassium iodate VS = 14.99 mg of NaI

Containers and storage Containers—Tight containers.

Storage—Light-resistant.

Sodium Iodide (123I) Capsules

ヨウ化ナトリウム (123I) カプセル

Sodium Iodide (123I) Capsules contain iodine-123 in the form of sodium iodide.

It conforms to the requirements of Sodium Iodide (123I) Capsules in the Minimum Requirements for Radiopharmaceuticals.

Sodium Iodide (131I) Capsules

ヨウ化ナトリウム (131I) カプセル

Sodium Iodide (131I) Capsules contain iodine-131 in the form of sodium iodide.

It conforms to the requirements of Sodium Iodide (131I) Capsules in the Minimum Requirements for Radiopharmaceuticals.

Sodium Iodide (131I) Solution

ヨウ化ナトリウム (131I) 液

Sodium Iodide (131I) Solution contains iodine-131 (131I) in the form of sodium iodide.

It conforms to the requirements of Sodium Iodide (131I) Solution in the Minimum Requirements for Radiopharmaceuticals.

Description Sodium Iodide (131I) Solution is a clear, colorless liquid. It is odorless, or has an odor due to the preservatives or stabilizers.

Sodium Iodohippurate (131I) Injection

ヨウ化ヒプル酸ナトリウム (131I) 注射液

Sodium Iodohippurate (131I) Injection is an aqueous injection containing iodine-131 (131I) in the form of sodium o-iodohippurate.

It conforms to the requirements of Sodium Iodohippurate (131I) Injection in the Minimum Requirements for Radiopharmaceuticals.

Test for Extractable Volume of Parenteral Preparations and Insoluble Particulate Matter Test for Injections are not applied to this injection.

Description Sodium Iodohippurate (131I) Injection is a clear, colorless liquid. It is odorless or has an odor of the preservatives or stabilizers.

Sodium Iotalamate Injection

イオタラム酸ナトリウム注射液

Sodium Iotalamate Injection is an aqueous injection.

It contains not less than 95.0% and not more than 105.0% of the labeled amount of iotalamic acid (C11H13I2N2O6: 613.91).

Method of preparation

(1)	Iotalamic Acid	645 g
	Sodium Hydroxide	42 g
Water for Injection or Sterile Water for Injection in Containers	a sufficient quantity	
To make	1000 mL	

(2)

Iotalamic Acid	772.5 g
Sodium Hydroxide	50.5 g
Water for Injection or Sterile Water for Injection in Containers	a sufficient quantity
To make	1000 mL

Prepare as directed under Injections, with the above ingredients (1) or (2).

Description Sodium Iotalamate Injection is a clear, colorless or pale yellow, slightly viscous liquid.

It is gradually colored by light.

Identification (1) To a volume of Sodium Iotalamate Injection, equivalent to 1 g of Iotalamic Acid, add 25 mL of water, and add 2.5 mL of dilute hydrochloric acid with thorough stirring: a white precipitate is produced. Filter the precipitate by suction through a glass filter (G4), wash the precipitate with two 10-mL portions of water, and dry at 105°C for 1 hour. Proceed with the precipitate as directed in the Identification (2) under Iotalamic Acid.

(2) Sodium Iotalamate Injection responds to Qualitative Tests <1.09> (1) for sodium salt.

pH <2.5> 6.5 – 7.7

Purity (1) Primary aromatic amines—To a volume of Sodium Iotalamate Injection, equivalent to 0.20 g of Iotalamic Acid, add 15 mL of water, shake, add 4 mL of a solution of sodium nitrite (1 in 100) under ice-cooling, and proceed as directed in the Purity (2) under Iotalamic Acid: the absorbance is not more than 0.17.

(2) Iodine and iodide—To a volume of Sodium Iotalamate Injection, equivalent to 1.5 g of Iotalamic Acid, add 20 mL of water and 5 mL of dilute sulfuric acid, shake well, and filter the precipitate by suction through a glass filter (G4). To the filtrate add 5 mL of toluene, and shake vigorously: the toluene layer is colorless. Then add 2 mL of a solution of sodium nitrite (1 in 100), and shake vigorously: the toluene layer has no more color than the following control solution.

Control solution: Dissolve 0.25 g of potassium iodide in water to make 1000 mL. To 2.0 mL of this solution add 20 mL of water, 5 mL of dilute sulfuric acid, 5 mL of toluene and 2 mL of a solution of sodium nitrite (1 in 100), and shake vigorously.

Bacterial endotoxins <4.0> Less than 3.4 EU/mL.
Extractable volume <6.05> It meets the requirement.

Foreign insoluble matter <6.05> Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter <6.07> It meets the requirement.

Sterility <4.06> Perform the test according to the Direct inoculation method: it meets the requirement.

Assay Pipet a volume of Sodium Iotalamate Injection, equivalent to about 4 g of iotalamic acid (C₈H₁₅L₃N₅O₇), add water to make exactly 200 mL. Pipet 2 mL of this solution, add water to make exactly 200 mL. To exactly 5 mL of this solution add exactly 5 mL of the internal standard solution, add the mobile phase to make 100 mL, and use this solution as the sample solution. Separately, weigh accurately about 0.4 g of iotalamic acid for assay, previously dried at 105°C for 4 hours, dissolve in 100 mL of water and 1 mL of sodium hydroxide TS, and add water to make exactly 200 mL. Pipet 5 mL of this solution, add water to make exactly 50 mL. To exactly 5 mL of this solution add exactly 5 mL of the internal standard solution, add the mobile phase to make 100 mL, and use this solution as the standard solution. Perform the test with 10 µL of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and calculate the ratios, Q₁ and Q₅, of the peak area of iotalamic acid to that of the internal standard.

\[
\text{Amount (mg) of iotalamic acid (C₈H₁₅L₃N₅O₇)} = M_s \times Q₁/Q₅
\]

\[M_s: \text{Amount (mg) of iotalamic acid for assay taken}\]

Internal standard solution—A solution of L-tryptophan in the mobile phase (3 in 2500).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 240 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 µm in particle diameter).

Column temperature: A constant temperature of about 20°C.

Mobile phase: To 3.9 g of phosphoric acid and 2.8 mL of triethylamine add water to make 2000 mL. To this solution add 100 mL of acetonitrile.

Flow rate: Adjust so that the retention time of iotalamic acid is about 6 minutes.

System suitability—

System performance: When the procedure is run with 10 µL of the standard solution under the above operating conditions, iotalamic acid and the internal standard are eluted in this order with the resolution between these peaks being not less than 5.

System repeatability: When the test is repeated 6 times with 10 µL of the standard solution under the above operating conditions, the relative standard deviation of the ratios of the peak area of iotalamic acid to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Hermetic containers, and colored containers may be used.

Storage—Light-resistant.

Sodium L-Lactate Solution

L-乳酸ナトリウム液

Sodium L-Lactate Solution is an aqueous solution of sodium salt of L-lactic acid.

It contains not less than 95.0% and not more than 105.0% of the labeled amount of sodium L-lactate (C₃H₅NaO₃).

The label states the content amount of sodium L-lactate.

Description Sodium L-Lactate Solution occurs as a clear and colorless viscous liquid. It has no odor or has a slight characteristic odor, and has a slight saline taste.

It is miscible with water or with ethanol (99.5).

Identification To an amount of Sodium L-Lactate Solution, equivalent to 1 g of sodium L-lactate (C₃H₅NaO₃), add water to make 50 mL. This solution responds to Qualitative Tests <1.09> for sodium salt and for lactate.

Optical rotation <2.49> [α]D 20° = −38° to −44°. To an exact amount of Sodium L-Lactate Solution, equivalent to 2.5 g of sodium L-lactate (C₃H₅NaO₃), add 30 mL of water and 5 g of hexaammonium heptamolybdate tetrahydrate, then add water to make exactly 50 mL, and determine using a 100-mm cell.

pH <2.5> To an amount of Sodium L-Lactate Solution, equivalent to 5 g of sodium L-lactate (C₃H₅NaO₃), add water to make 50 mL: the pH of this solution is between 6.5 and 7.5.

Purity (1) Chloride <1.03>—Perform the test with an amount of Sodium L-Lactate Solution, equivalent to 1.0 g of sodium L-lactate (C₃H₅NaO₃). Prepare the control solution with 0.40 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.014%).

(2) Sulfate <1.14>—To an amount of Sodium L-Lactate Solution, equivalent to 2.0 g of sodium L-lactate (C₃H₅NaO₃), add 7 mL of dilute hydrochloric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 0.40 mL of 0.005 mol/L sulfuric acid VS (not more than 0.01%).

(3) Heavy metals <1.07>—To an amount of Sodium L-Lactate Solution, equivalent to 2.0 g of sodium L-lactate (C₃H₅NaO₃), add 5 mL of dilute hydrochloric acid, 2 mL of dilute acetic acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution as follows: To 2.0 mL of Standard Lead Solution add 2 mL of dilute acetic acid and water to make 50 mL (not more than 10 ppm).

(4) Iron <1.10>—Prepare the test solution with an amount of Sodium L-Lactate Solution, equivalent to 2.0 g of sodium L-lactate (C₃H₅NaO₃), according to Method 1, and perform the test according to Method A. Prepare the control solution with 1.0 mL of Standard Iron Solution (not more than 5 ppm).

(5) Arsenic <1.11>—To an amount of Sodium L-Lactate Solution, equivalent to 2.5 g of sodium L-lactate (C₃H₅NaO₃), and add water to make 10 mL. Perform the test using 2 mL of this solution as the test solution (not more than 4 ppm).

(6) Sugars—To an amount of Sodium L-Lactate Solution, equivalent to 1.0 g of sodium L-lactate (C₃H₅NaO₃), add 10 mL of water and 10 mL of Fehling’s TS, and boil for 5 minutes: no red precipitate is produced.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
(7) Citric, oxalic, phosphoric and l-tartaric acids—To an amount of Sodium L-Lactate Solution, equivalent to 1.0 g of sodium l-lactate (C₆H₇NaO₃), add 1 mL of water and 1 mL of dilute hydrochloric acid, then add 40 mL of calcium hydroxide TS, and boil for 2 minutes: the solution is not changed.

(8) Volatile fatty acids—To an amount of Sodium L-Lactate Solution, equivalent to 3.0 g of sodium l-lactate (C₆H₇NaO₃), add 2 mL of dilute sulfuric acid, and heat on a water bath: no acetic acid like nor lactic acid like odor is produced.

(9) Cyanide—Transfer an amount of Sodium L-Lactate Solution, equivalent to 1.0 g of sodium l-lactate (C₆H₇NaO₃), to a Nessler tube, add 10 mL of water and 1 drop of phenolphthalein TS, then add dropwise a solution of sodium hydroxide (1 in 10) while shaking until a pale red color appears. Add further 1.5 mL of a solution of sodium hydroxide (1 in 10) and water to make 20 mL, and heat in a water bath for 10 minutes. After cooling, add dropwise dilute hydrochloric acid until a red color of the solution disappears, then add 1 drop of acetic acid (31), 10 mL of phosphate buffer solution (pH 6.8) and 0.25 mL of sodium toluenesulfonchloramide TS, stopper immediately, mix gently, and allow to stand for 5 minutes. Add 15 mL of pyridine-pyrazolone TS and water to make 50 mL, and allow to stand at 25°C for 30 minutes: the color of the solution is not more intense than that of the following control solution.

Control solution: To 1.0 mL of Standard Cyanide Solution add water to make 20 mL. Transfer 1.0 mL of this solution to a Nessler tube, add 10 mL of water and 1 drop of phenolphthalein TS, then proceed in the same manner as described above.

(10) Methanol—Transfer an amount of Sodium L-Lactate Solution, equivalent to 5.0 g of sodium l-lactate (C₆H₇NaO₃), to a distilling flask of the apparatus for alcohol number determination <1.01>, add 10 mL of water, and distill. Pipet 5 mL of the distillate, add water to make exactly 10 mL, and use this solution as the sample solution. Separately, to exactly 1.0 mL of methanol add water to make exactly 100 mL. Pipe 5 mL of this solution, add water to make exactly 200 mL. Pipet 5 mL of this solution, add water to make exactly 10 mL, and use this solution as the standard solution. Perform the test with exactly 10 µL each of the sample solution and standard solution as directed under Gas Chromatography <2.02> according to the following conditions: the peak area of methanol obtained from the standard solution is not larger than that from the sample solution (not more than 0.025%).

Detector—A hydrogen flame-ionization detector.

Column: A glass column 3 mm in inside diameter and 1.5 m in length, packed with porous ethyl vinylbenzene-divinylbenzene copolymer for gas chromatography (149 – 177 µm in particle diameter).

Column temperature: A constant temperature of about 120°C.

Injection port and detector temperature: A constant temperature of about 125°C.

Carrier gas: Nitrogen.

Flow rate: Adjust so that the retention time of methanol is about 2 minutes.

System suitability—

System performance: To 1 mL of methanol and 1 mL of ethanol (99.5) add water to make 100 mL. To 5 mL of this solution add water to make 200 mL. To 5 mL of this solution add water to make 10 mL. When the procedure is run with 10 µL of this solution under the above operating conditions, methanol and ethanol are eluted in this order with the resolution between these peaks being not less than 2.0.

System repeatability: When the test is repeated 6 times with 10 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of methanol is not more than 5%.

Assay Weigh accurately an amount of Sodium L-Lactate Solution, equivalent to about 0.25 g of sodium l-lactate (C₆H₇NaO₃), dry at 105°C for 4 hours, add 50 mL of acetic acid (100), and titrate <2.50> with 0.1 mol/L perchloric acid VS until the color of solution changes from purple to yellow-green through blue-green (indicator: 2 drops of crystal violet TS). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 11.21 mg of C₆H₇NaO₃

Containers and storage Containers—Tight containers.

Sodium L-Lactate Ringer’s Solution

乳酸ナトリウムリンゲル液

Sodium L-Lactate Ringer’s Solution is an aqueous injection.

It contains not less than 0.285 w/v% and not more than 0.330 w/v% of sodium (as Na: 22.99), not less than 0.0149 w/v% and not more than 0.0173 w/v% of potassium (as K: 39.10), not less than 0.00518 w/v% and not more than 0.00600 w/v% of calcium (as Ca: 40.08), not less than 0.369 w/v% and not more than 0.427 w/v% of chloride (as Cl: 35.45), and not less than 0.234 w/v% and not more than 0.271 w/v% of L-lactic acid (as C₆H₇O₃: 89.07).

Method of preparation

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium Chloride</td>
<td>6.0 g</td>
</tr>
<tr>
<td>Potassium Chloride</td>
<td>0.30 g</td>
</tr>
<tr>
<td>Calcium Chloride Hydrate</td>
<td>0.20 g</td>
</tr>
<tr>
<td>Sodium L-Lactate Solution</td>
<td>3.1 g</td>
</tr>
<tr>
<td>Water for Injection or Sterile Water for Injection</td>
<td>a sufficient amount</td>
</tr>
</tbody>
</table>

Total amount 1000 mL

Prepare as directed under Injections, with the components above. Any preservatives are not added.

Description Sodium L-Lactate Ringer’s Solution occurs as a clear and colorless liquid.

Identification (1) Sodium L-Lactate Ringer’s Solution responds to Qualitative Tests <1.09> (1) for sodium salt.

(2) A solution, obtained by concentrating 10 mL of Sodium L-Lactate Ringer’s Solution to 5 mL by heating on a water bath, responds to Qualitative Tests <1.09> (1) for potassium salt.

(3) A solution, obtained by concentrating 10 mL of Sodium L-Lactate Ringer’s Solution to 5 mL by heating on a water bath, responds to Qualitative Tests <1.09> (3) for calcium salt.

(4) Sodium L-Lactate Ringer’s Solution responds to Qualitative Tests <1.09> (2) for chloride.

(5) Sodium L-Lactate Ringer’s Solution responds to Qualitative Tests <1.09> for lactate.

pH <2.54> 6.0 – 7.5

Purity Heavy metals <1.07>—Concentrate 100 mL of So-
dium L-Lactate Ringer’s Solution on a water bath to about 40 mL, and add 2 mL of dilute acetic acid and water to make 50 mL. Perform the test with this solution as the test solution. Prepare the control solution with 3.0 mL of Standard Lead Solution by adding 2 mL of dilute acetic acid and water to make 50 mL (not more than 0.3 ppm).

Bacterial endotoxins Less than 0.25 EU/mL.

Extractable volume It meets the requirement.

Foreign insoluble matter Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter It meets the requirement.

Sterility Perform the test according to the Membrane filtration method: it meets the requirement.

Assay (1) Sodium, potassium, and calcium—Pipet 10 mL of Sodium L-Lactate Ringer’s Solution, add exactly 5 mL of the internal standard solution and water to make 50 mL, and use this solution as the sample solution. Separately, pipet 10 mL of standard stock solution, add exactly 5 mL of the internal standard solution and water to make 50 mL, and use this solution as the standard solution. Perform the test with 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography according to the following conditions, and calculate the ratios, Q_{Na}, Q_{K}, and Q_{Ca}, of respective peak area of sodium, potassium and calcium to that of the internal standard in the sample solution, and the ratios, Q_{Na}, Q_{K} and Q_{Ca}, of respective peak area of sodium, potassium and calcium to that of the internal standard in the standard solution.

\[
\text{Amount (w/v)}\% \text{ of sodium (Na)} = \left(M_{\text{Na}} / f \times 100 \times 0.205 + M_{\text{Na2}} \times 0.393 \right) \times Q_{\text{Na}} / Q_{\text{Na2}} \times 1/10
\]

\[
\text{Amount (w/v)}\% \text{ of potassium (K)} = M_{\text{K}} \times Q_{\text{K}} / Q_{\text{K2}} \times 1/10 \times 0.524
\]

\[
\text{Amount (w/v)}\% \text{ of calcium (Ca)} = M_{\text{Ca}} \times Q_{\text{Ca}} / Q_{\text{Ca2}} \times 1/10 \times 0.273
\]

\[M_{\text{Na}}: \text{Amount (g)} \text{ of sodium L-lactate solution for assay taken}
\]

\[f: \text{Content} \% \text{ of sodium L-lactate solution for assay}
\]

\[M_{\text{Na2}}: \text{Amount (g)} \text{ of sodium chloride for assay taken}
\]

\[M_{\text{K}}: \text{Amount (g)} \text{ of potassium chloride for assay taken}
\]

\[M_{\text{Ca}}: \text{Amount (g)} \text{ of calcium chloride hydrate for assay taken}
\]

Standard stock solution: Weigh accurately an amount of sodium L-lactate solution for assay equivalent to about 3.1 g of sodium L-lactate (C7H2NaO2), about 6 g of dried sodium chloride for assay, about 0.3 g of dried potassium chloride for assay and about 0.2 g of calcium chloride hydrate for assay, respectively, and dissolve in water to make exactly 1000 mL.

Internal standard solution—A solution of rubidium chloride (1 in 200).

Operating conditions—Detector: A conductivity detector.

Column: A plastic column 4 mm in inside diameter and 25 cm in length, packed with a weakly acidic ion-exchange resin for liquid chromatography composed with carboxylic acid and phosphonic acid groups combining ethylvinylbenzene-divinylbenzene copolymer (8.5 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: To 4 mL of methanesulfonic acid add water to make 3000 mL.

Flow rate of mobile phase: Adjust so that the retention time of potassium is about 6 minutes.

Suppressor: An anion elimination device with anion-exchange membrane.

Refreshing liquid: Diluted 40% tetrabutylammonium hydroxide TS (1 in 40).

Flow rate of refreshing liquid: 2 mL per minute.

System suitability—System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, sodium, potassium, the internal standard and calcium are eluted in this order with the resolution between these peaks being not less than 1.5.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of sodium, potassium and calcium to that of the internal standard is not more than 1.0%.

(2) Chlorine—Pipet 1 mL of Sodium L-Lactate Ringer’s Solution, add exactly 5 mL of the internal standard solution and water to make 100 mL, and use this solution as the sample solution. Separately, pipet 10 mL of standard stock solution obtained in (1), and add water to make exactly 50 mL. Take exactly 4 mL and 6 mL of this solution, add exactly 5 mL of the internal standard solution to them and water to make 100 mL, and use these solutions as the low concentration standard solution and the high concentration standard solution, respectively. Perform the test with 20 μL each of the sample solution, the low concentration standard solution and the high concentration standard solution as directed under Liquid Chromatography according to the following conditions, and calculate the ratios, Q_{Na}, Q_{Na} and Q_{Na}, of the peak area of chlorine to that of the internal standard.

\[
\text{Amount (w/v)}\% \text{ of chlorine (Cl)} = \left(M_{\text{Cl}} \times 0.607 + M_{\text{Cl2}} \times 0.476 + M_{\text{Cl3}} \times 0.482 \right) \times \left(Q_{\text{Cl}} - 3Q_{\text{Na}} + 2Q_{\text{Na}} \times (Q_{\text{Cl}} - Q_{\text{Na}}) \right) \times 1/25
\]

\[M_{\text{Cl}}: \text{Amount (g)} \text{ of sodium chloride for assay taken}
\]

\[M_{\text{Cl2}}: \text{Amount (g)} \text{ of potassium chloride for assay taken}
\]

\[M_{\text{Cl3}}: \text{Amount (g)} \text{ of calcium chloride hydrate for assay taken}
\]

Internal standard solution—A solution of sodium bromide (1 in 500).

Operating conditions—Detector: A conductivity detector.

Column: A plastic column 4 mm in inside diameter and 25 cm in length, packed with a strongly basic ion-exchange resin for liquid chromatography composed with quaternary ammonium group combining ethylvinylbenzene-divinylbenzene copolymer (9 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: Dissolve 0.25 g of sodium hydrogen carbonate and 0.64 g of anhydrous sodium carbonate in 2000 mL of water.

Flow rate of mobile phase: Adjust so that the retention time of chlorine is about 4 minutes.

Suppressor: A cation elimination device with cation-exchange membrane.

Refreshing liquid: Diluted sulfuric acid (3 in 4000).

Flow rate of refreshing liquid: 2 mL per minute.

System suitability—System performance: When the procedure is run with 20 μL of the low concentration standard solution under the...
above operating conditions, lactic acid, chloride and the internal standard are eluted in this order and the resolution between the peaks of lactic acid and chlorine is not less than 1.5.

System repeatability: When the test is repeated 6 times with 20 \(\mu \text{L} \) of the low concentration standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of chloride to that of the internal standard is not more than 1.0%.

(3) L-Lactic acid—Pipet 20 mL of Sodium L-Lactate Ringer’s Solution, add exactly 5 mL of the internal standard solution and water to make 50 mL, and use this solution as the sample solution. Separately, pipet 20 mL of standard stock solution obtained in (1), add exactly 5 mL of the internal standard solution and water to make 50 mL, and use this solution as the standard solution. Perform the test with 20 \(\mu \text{L} \) each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and calculate the ratios, \(Q_T \) and \(Q_S \), of the peak area of lactic acid to that of the internal standard.

\[
\text{Amount (w/v\%)} \text{ of L-lactic acid (C_3H_7O_3)} = M_S \times f / 100 \times Q_T / Q_S \times 1/10 \times 0.795
\]

\(M_S \): Amount (g) of sodium L-lactate solution for assay taken
\(f \): Content (%) of sodium L-lactate solution for assay

Internal standard solution—A solution of sodium acetate trihydrate (1 in 50).

Operating conditions—
Detector: A conductivity detector.
Column: A stainless steel column 7.8 mm in inside diameter and 30 cm in length, packed with a strongly acidic ion-exchange resin for liquid chromatography composed with sulfonic acid group combining styrene-divinylbenzene co-polymer (5 \(\mu \text{m} \) in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase: To 3000 mL of water add 0.5 mL of heptfluorobutyric acid.
Flow rate of mobile phase: Adjust so that the retention time of lactic acid is about 9 minutes.
Suppressor: A cation elimination device with cation-exchange membrane.
Refreshing liquid: Diluted 40% tetrabutylammonium hydroxide TS (13 in 2000).
Flow rate of refreshing liquid: 2 mL per minute.

System suitability—
System performance: When the procedure is run with 20 \(\mu \text{L} \) of the standard solution under the above operating conditions, lactic acid and the internal standard are eluted in this order with the resolution between these peaks being not less than 2.0.
System repeatability: When the test is repeated 6 times with 20 \(\mu \text{L} \) of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of lactic acid to that of the internal standard is not more than 1.0%.

Containers and storage—Containers—Hermetic containers. Plastic containers for aqueous injections may be used.

Sodium Lauryl Sulfate

ラウリル硫酸ナトリウム

C\(_{12}\)H\(_{25}\)NaO\(_4\)S: 288.38
Monosodium monododecyl sulfate [151-21-3]

This monograph is harmonized with the European Pharmacopoeia and the U.S. Pharmacopeia.

The corresponding part of the attributes/provisions which are agreed as non-harmonized within the scope of the harmonization is marked with symbols (\(\mathbb{E} \), \(\mathbb{C} \)), and the corresponding parts which are agreed as the JP local requirement other than the scope of the harmonization are marked with symbols (\(\mathbb{C} \).)

Information on the harmonization with the European Pharmacopoeia and the U.S. Pharmacopeia is available on the website of the Pharmaceuticals and Medical Devices Agency.

Sodium Lauryl Sulfate is a mixture of sodium alkyl sulfate consisting chiefly of sodium lauryl sulfate.

It contains not less than 85.0% of sodium alkyl sulfate [as sodium lauryl sulfate (C\(_{12}\)H\(_{25}\)NaO\(_4\)S)].

Description

Sodium Lauryl Sulfate occurs as white to light yellow, crystals or powder. It has a slightly characteristic odor.

It is sparingly soluble in ethanol (95).

A solution of 1 g of Sodium Lauryl Sulfate in 10 mL of water is a clear or an opalescent solution.◆

Identification

(1) Determine the infrared absorption spectrum of Sodium Lauryl Sulfate as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(2) Put 2.5 g of Sodium Lauryl Sulfate in a platinum or quartz crucible, and add 2 mL of 5 mol/L sulfuric acid TS. Heat on a water bath, cautiously raise the temperature gradually with a burner, and ignite. Ignite, preferably in an electric furnace, at 600 ± 25°C and incinerate the residue completely. After cooling, add a few drops of 1 mol/L sulfamic acid TS, and heat and ignite as above. After cooling, add a few drops of ammonium carbonate TS, evaporate to dryness, and further ignite as above. After cooling, dissolve the residue in 50 mL of water, and stir. To 2 mL of this solution add 4 mL of potassium hexahydroxostannate (V) TS. If necessary, rub the inside wall of the vessel with a glass rod: a white crystalline precipitate is formed.

(3) Acidify a solution of Sodium Lauryl Sulfate (1 in 10) with hydrochloric acid, and boil for 20 minutes: no precipitate is formed. To this solution add barium chloride TS: a white precipitate is formed.

Purity

(1) Alkalinity—Dissolve 1.0 g of Sodium Lauryl Sulfate in 100 mL of water, add 0.1 mL of phenol red TS, and titrate with 0.1 mol/L hydrochloric acid VS: the consumed volume is not more than 0.5 mL.

(2) Sodium chloride—Dissolve about 5 g of Sodium Lauryl Sulfate, accurately weighed, in 50 mL of water, neutralize the solution with dilute nitric acid, if necessary, add exactly 5 mL of 0.1 mol/L sodium chloride TS, and titrate with 0.1 mol/L silver nitrate VS until the color of the solution changes from yellow-green through yellow to
Sodium Pertechnetate (99mTc) Injection

過テクネチウム酸ナトリウム (99mTc) 注射液

Sodium Pertechnetate (99mTc) Injection is an aqueous injection. It contains technetium-99m (99mTc) in the form of sodium pertechnetate.

It conforms to the requirements of Sodium Pertechnetate (99mTc) Injection in the Minimum Requirements for Radiopharmaceuticals.

Test for Extractable Volume of Parenteral Preparations and Insoluble Particulate Matter Test for Injections are not applied to this injection.

Description Sodium Pertechnetate (99mTc) Injection is a clear, colorless liquid.

Dibasic Sodium Phosphate Hydrate

リン酸水素ナトリウム水和物

Na₂HPO₄·12H₂O: 358.14

Dibasic Sodium Phosphate Hydrate contains not less than 98.0% of disodium hydrogen phosphate (Na₂HPO₄: 141.96), calculated on the dried basis.

Description Dibasic Sodium Phosphate Hydrate occurs as colorless or white crystals. It is odorless.

It is freely soluble in water, and practically insoluble in ethanol (95%) and in diethyl ether.

It effloresces in warm, dry air.

Identification (1) A solution of Dibasic Sodium Phosphate Hydrate (1 in 10) responds to Qualitative Tests <1.09> (1) and (2) for sodium salt.

(2) A solution of Dibasic Sodium Phosphate Hydrate (1 in 10) responds to Qualitative Tests <1.09> (1) and (3) for phosphate.

(3) Dissolve 0.1 g of Dibasic Sodium Phosphate Hydrate in 5 mL of dilute nitric acid, warm at 70°C for 1 to 2 minutes, and add 2 mL of hexaammonium heptamolybdate TS: a yellow precipitate is formed.

pH <2.54> Dissolve 1.0 g of Dibasic Sodium Phosphate Hydrate in 50 mL of water: the pH of this solution is between 9.0 and 9.4.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Dibasic Sodium Phosphate Hydrate in 20 mL of water: the solution is clear and colorless.

(2) Chloride <1.05>—Dissolve 1.0 g of Dibasic Sodium Phosphate Hydrate in 7 mL of dilute nitric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 0.40 mol/L hydrochloric acid VS (not more than 0.014%).

(3) Sulfate <1.14>—Dissolve 0.5 g of Dibasic Sodium Phosphate Hydrate in 2 mL of dilute hydrochloric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 0.40 mL of 0.005 mol/L sulfuric acid VS (not more than 0.038%).

(4) Carbonate—To 2.0 g of Dibasic Sodium Phosphate Hydrate add 5 mL of water, boil, and add 2 mL of hydrochloric acid after cooling: the solution does not effervesce.

(5) Heavy metals <1.07>—Dissolve 2.0 g of Dibasic So-
Sodium Picosulfate Hydrate

Identification (1) Mix 5 mg of Sodium Picosulfate Hydrate with 0.01 g of 1-chloro-2,4-dinitrobenzene, and melt by gentle heating for 5 to 6 seconds. After cooling, add 4 mL of potassium hydroxide-ethanol TS: an orange-red color develops.

(2) To 0.2 g of Sodium Picosulfate Hydrate add 5 mL of dilute hydrochloric acid, boil for 5 minutes, cool, and add 1 mL of barium chloride TS: a white precipitate is formed.

(3) Determine the absorption spectrum of a solution of Sodium Picosulfate Hydrate (1 in 25,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave-lengths.

(4) Determine the infrared absorption spectrum of Sodium Picosulfate Hydrate, previously dried at 105°C in vacuum for 4 hours, as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(5) A solution of Sodium Picosulfate Hydrate (1 in 10) responds to Qualitative Tests <1.09> for sodium salt.

Assay Weigh accurately about 6 g of Dibasic Sodium Phosphate Hydrate, dissolve in 50 mL of water, and then titrate <2.50> with 0.5 mol/L sulfuric acid VS at 15°C until the green color of the solution changes to dark-greenish red-purple (indicator: 3 to 4 drops of methyl orange-xylene cyanol FF TS).

Each mL of 0.5 mol/L sulfuric acid VS = 142.0 mg of Na$_2$HPO$_4$

Containers and storage Containers—Tight containers.

Sodium Picosulfate Hydrate

ビコスルファートナトリウム水和物

![Sodium Picosulfate Hydrate structure]

C$_{18}$H$_{13}$NNa$_2$O$_8$S$_2$·H$_2$O: 499.42
Disodium 4,4’-(pyridin-2-ylmethylene)bis(phenyl sulfate) monohydrate

[10040-45-6, anhydride]

Sodium Picosulfate Hydrate contains not less than 98.5% of sodium picosulfate (C$_{18}$H$_{13}$NNa$_2$O$_8$S$_2$·H$_2$O: 481.41), calculated on the anhydrous basis.

Description Sodium Picosulfate Hydrate occurs as a white crystalline powder. It is odorless and tasteless.

It is very soluble in water, soluble in methanol, slightly soluble in ethanol (99.5), and practically insoluble in diethyl ether.

It is gradually colored by light.

The pH of a solution of 1.0 g of Sodium Picosulfate Hydrate in 20 mL of water is between 7.4 and 9.4.

Containers and storage Containers—Tight containers.

Sodium Picosulfate Hydrate

 JP XVIII

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
Sodium Polystyrene Sulfonate

ポリスチレンスルホン酸ナトリウム

Sodium Polystyrene Sulfonate is a cation exchange resin prepared as the sodium form of the sulfonated styrene divinylbenzene copolymer.

It contains not less than 9.4% and not more than 11.0% of sodium (Na: 22.99), calculated on the anhydrous basis.

Each g of Sodium Polystyrene Sulfonate, calculated on the anhydrous basis, exchanges with not less than 0.110 g and not more than 0.135 g of potassium (K: 39.10).

Description Sodium Polystyrene Sulfonate occurs as a yellow-brown powder. It is odorless and tasteless.

It is practically insoluble in water, in ethanol (95), in acetone and in diethyl ether.

Identification (1) Determine the infrared absorption spectrum of Sodium Polystyrene Sulfonate as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(2) To 1 g of Sodium Polystyrene Sulfonate add 10 mL of dilute hydrochloric acid, stir, and filter. Add ammonia TS to the filtrate to neutralize: the solution responds to Qualitative Tests <1.09> for sodium salt.

Purity (1) Ammonium—Place 1.0 g of Sodium Polystyrene Sulfonate in a flask, add 5 mL of sodium hydroxide TS, cover the flask with a watch glass having a moistened strip of red litmus paper on the underside, and boil for 15 minutes: the gas evolved does not change the red litmus paper to blue.

(2) Heavy metals <1.07>—Proceed with 2.0 g of Sodium Polystyrene Sulfonate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(3) Arsenic <1.17>—Prepare the test solution with 2.0 g of Sodium Polystyrene Sulfonate according to Method 3, and perform the test (not more than 1 ppm).

(4) Styrene—To 10.0 g of Sodium Polystyrene Sulfonate add 10 mL of acetone, shake for 30 minutes, centrifuge, and use the supernatant liquid as the sample solution. Separately, dissolve 10 mg of styrene in acetone to make exactly 100 mL. Pipet 1 mL of this solution, add acetone to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine peak areas, As and Af, of styrene in each solution: Af is not larger than As.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 254 nm).

Column: A stainless steel column 4 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: A mixture of water and acetonitrile (1:1).

Flow rate: Adjust so that the retention time of styrene is about 8 minutes.

System suitability—

System performance: Dissolve 20 mg each of styrene and butyl parahydroxybenzoate in 100 mL of acetone. To 5 mL of this solution add acetone to make 100 mL. When the procedure is run with 20 μL of this solution under the above operating conditions, butyl parahydroxybenzoate and styrene are eluted in this order with the resolution between these peaks being not less than 5.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of styrene is not more than 2.0%.

Water <2.48> Not more than 10.0% (0.2 g, volumetric titration, direct titration).

Assay (1) Sodium—Weigh accurately about 1 g of Sodium Polystyrene Sulfonate, calculated on the anhydrous basis, in a glass-stoppered flask, add exactly 50 mL of 3 mol/L hydrochloric acid TS, shake for 60 minutes, and filter. Discard the first 20 mL of the filtrate, pipet 5 mL of the subsequent filtrate, and add water to make exactly 100 mL. Pipet 20 mL of this solution, add water to make exactly 1000 mL, and use this solution as the sample solution. Separately, pipet a suitable quantity of Standard Sodium Stock Solution, dilute exactly with water so that each mL of the solution contains 1 to 3 μg of sodium (Na: 22.99), and use these solutions as the standard solutions. Perform the test with the sample solution and the standard solutions as directed under Atomic Absorption Spectrophotometry <2.23> according to the following conditions, and calculate the amount of sodium in the sample solution using the calibration curve obtained from the standard solutions.

Gas: Combustible gas—Acetylene.

Supporting gas—Air.

Lamp: A sodium hollow-cathode lamp.

Wavelength: 589.0 nm.

(2) Potassium exchange capacity—Weigh accurately about 1.5 g of Sodium Polystyrene Sulfonate, calculated on the anhydrous basis, in a glass-stoppered flask, add exactly 100 mL of Standard Potassium Stock Solution, shake for 15 minutes, and filter. Discard the first 20 mL of the filtrate, pipet 10 mL of the subsequent filtrate, and add water to make exactly 100 mL. Pipet 10 mL of this solution, add water to make exactly 1000 mL, and use this solution as the sample solution. Separately, pipet a suitable quantity of Standard Potassium Stock Solution, dilute exactly with water so that each mL of the solution contains 1 to 5 μg of potassium (K: 39.10), and use these solutions as the standard solutions. Perform the test with these solutions as directed under Atomic Absorption Spectrophotometry <2.23> according to the following conditions, and calculate the amount Y (mg) of potassium in 1000 mL of the sample solution using the calibration curve obtained from the standard solution. The quantity of potassium absorbed on each g of Sodium Polystyrene Sulfonate, calculated on the anhydrous basis, is calculated from the following equation: it is between 0.110 g and 0.135 g.

Quantity (mg) of potassium (K) **absorbed on 1 g of Sodium Polystyrene Sulfonate, calculated on the anhydrous basis**

\[
X = \frac{1000}{M} \times (X - 100T) / M
\]

X: Amount (mg) of potassium in 100 mL of the Standard Potassium Stock Solution before exchange

M: Mass (g) of Sodium Polystyrene Sulfonate taken, calculated on the anhydrous basis

Gas: Combustible gas—Acetylene.

Supporting gas—Air.

Lamp: A potassium hollow-cathode lamp.
Sodium Pyrosulfite

Sodium Metabisulfite

ピロ亜硫酸ナトリウム

Na₂S₂O₅: 190.11

Sodium Pyrosulfite contains not less than 95.0% of sodium pyrosulfite (Na₂S₂O₅).

Description

Sodium Pyrosulfite occurs as white, crystals or crystalline powder. It has the odor of sulfur dioxide.

It is freely soluble in water, very slightly soluble in ethanol (95), and practically insoluble in diethyl ether.

A solution of Sodium Pyrosulfite (1 in 20) is acid.

It is hygroscopic.

It decomposes slowly on exposure to air.

Identification

A solution of Sodium Pyrosulfite (1 in 20) responds to Qualitative Tests <1.09> for sodium salt and for bisulfite.

Purity (1)

Clarity and color of solution—Dissolve 1.0 g of Sodium Pyrosulfite in 10 mL of water: the solution is clear and colorless.

Thiosulfate—Dissolve 1.0 g of Sodium Pyrosulfite in 15 mL of water, add slowly 5 mL of dilute hydrochloric acid, shake, and allow to stand for 5 minutes: no turbidity is produced.

Heavy metals <1.07>—Dissolve 1.0 g of Sodium Pyrosulfite in 10 mL of water, and evaporate with 5 mL of hydrochloric acid on a water bath to dryness. Dissolve the residue in 10 mL of water, add 1 drop of phenolphthalein TS, and add ammonia TS until the solution becomes slightly red. Add 2 mL of dilute acetic acid and water to make 50 mL. Perform the test using this solution as the test solution.

Prepare the control solution as follows: evaporate 5 mL of hydrochloric acid on a water bath to dryness, and to the residue add 2 mL of dilute acetic acid, 2.0 mL of Standard Lead Solution and water to make 50 mL (not more than 20 ppm).

Iron <1.10>—Prepare the test solution with 1.0 g of Sodium Pyrosulfite according to Method A, and perform the test according to Method A. Prepare the control solution with 2.0 mL of Standard Iron Solution (not more than 20 ppm).

Arsenic <1.11>—Dissolve 0.5 g of Sodium Pyrosulfite in 10 mL of water, heat with 1 mL of sulfuric acid on a sand bath until white fumes are evolved, and add water to make 5 mL. Perform the test with this solution as the test solution (not more than 4 ppm).

Assay

Weigh accurately about 0.15 g of Sodium Pyrosulfite, and transfer to an iodine flask containing an exactly measured 50 mL of 0.05 mol/L iodine VS. Stopper tightly, shake well, and allow to stand for 5 minutes in a dark place.

Add 1 mL of hydrochloric acid, and titrate <2.50> the excess of iodine with 0.1 mol/L sodium thiosulfate VS (indicator: 1 mL of starch TS). Perform a blank determination in the same manner.

Each mL of 0.05 mol/L iodine VS = 4.753 mg of Na₂S₂O₅

Containers and storage—Tight containers.

Sodium Risedronate Hydrate

リセドロン酸ナトリウム水和物

C₉H₁₀NNaO₄P₂·2½H₂O: 350.13

Monosodium trihydrogen 1-hydroxy-2-(pyridin-3-yl)ethane-1,1-diylidinephosphonate hemipentahydrate

[329003-65-8]

Sodium Risedronate Hydrate contains not less than 98.0% and not more than 102.0% of sodium risedronate (C₉H₁₀NNaO₄P₂: 305.09), calculated on the anhydrous basis.

Description

Sodium Risedronate Hydrate occurs as a white crystalline powder.

It is soluble in water, and practically insoluble in ethanol (99.5).

It dissolves in diluted dilute sodium hydroxide TS (1 in 20).

Identification (1)

Determine the absorption spectrum of a solution of Sodium Risedronate Hydrate in diluted dilute sodium hydroxide TS (1 in 20) (1 in 20,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Sodium Risedronate Hydrate as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) Sodium Risedronate Hydrate responds to Qualitative Tests <1.09> (1) for sodium salt.

Purity (1)

Heavy metals—To 0.50 g of Sodium Risedronate Hydrate in 5 mL of a solution of sodium hydroxide (1 in 5), and perform the test (not exceeding 30°C).

Containers and storage—Light-resistant, preferably well-filled, and not exceeding 30°C.
more than 2 ppm).

(3) Related substance 1—Dissolve 50 mg of Sodium Risedronate Hydrate in 1.5 mL of 0.2 mol/L sodium hydroxide TS, add the mobile phase to make 50 mL, and use this solution as the sample solution. Pipet 2.5 mL of the sample solution, and add the mobile phase to make exactly 50 mL. Pipet 2 mL of this solution, add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak other than risedronic acid obtained from the sample solution is not larger than the peak area of risedronic acid from the standard solution.

Operating conditions—

Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 2 times as long as the retention time of risedronic acid, beginning after the solvent peak.

System suitability—

System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of risedronic acid are not less than 4500 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of risedronic acid is not more than 5.0%.

(4) Related substance 2—Dissolve 0.10 g of Sodium Risedronate Hydrate in 3 mL of 0.2 mol/L sodium hydroxide TS, add the diluting solution below to make 50 mL, and use this solution as the sample solution. Pipet 2.5 mL of the sample solution, and add the diluting solution to make exactly 50 mL. Pipet 2 mL of this solution, add the diluting solution to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 50 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak other than risedronic acid obtained from the sample solution is not larger than the peak area of risedronic acid from the standard solution.

Diluting solution: Dissolve 0.11 g of disodium dihydrogen ethylenediamine tetracetate dihydrate and 2.47 g of tetraacetyltrimethylammonium bromide in 1000 mL of water, and adjust to pH 6.5 with 0.2 mol/L sodium hydroxide TS. To 700 mL of this solution add 300 mL of acetonitrile.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 263 nm).

Column: A stainless steel column 4 mm in inside diameter and 15 cm in length, packed with octadecylsilsanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: Dissolve 0.14 g of disodium dihydrogen ethylenediamine tetracetate dihydrate, 3.16 g of tetraacetyltrimethylammonium bromide, 4.81 g of ammonium dihydrogen phosphate and 2.93 g of diammonium hydrogen phosphate in 1280 mL of water, and add 720 mL of acetonitrile.

Flow rate: Adjust so that the retention time of risedronic acid is about 5 minutes.

Time span of measurement: About 10 times as long as the retention time of risedronic acid, beginning after the solvent peak.

System suitability—

System performance: When the procedure is run with 50 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of risedronic acid are not less than 5000 and not more than 1.4, respectively.

System repeatability: When the test is repeated 6 times with 50 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of risedronic acid is not more than 2.0%.

Water <2.48> 11.9 – 13.9% (40 mg, volumetric titration, direct titration. Use a mixture of formamide for water determination and methanol for water determination (1:1) instead of methanol for water determination).

Assay Weigh accurately about 50 mg of Sodium Risedronate Hydrate, dissolve in 1.5 mL of 0.2 mol/L sodium hydroxide TS, and add the mobile phase to make exactly 25 mL. Pipet 10 mL of this solution, add exactly 5 mL of the internal standard solution, then add the mobile phase to make 25 mL, and use this solution as the sample solution. Separately, weigh accurately about 50 mg of Risedronic Acid RS (separately determine the water <2.48> using 80 mg, in the same manner as Sodium Risedronate Hydrate), dissolve in 3 mL of 0.2 mol/L sodium hydroxide TS, and add the mobile phase to make exactly 25 mL. Pipet 10 mL of this solution, add exactly 5 mL of the internal standard solution, then add the mobile phase to make 25 mL, and use this solution as the standard solution. Perform the test with 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> under the following conditions, and calculate the ratios, Q₆ and Q₇, of the peak area of risedronic acid to that of the internal standard.

\[Q₆ = \frac{M₅ \times Q₇}{Q₅ \times 1.078} \]

M₅: Amount (mg) of sodium risedronate (C₁₉H₂₆bNNaO₇P₂)

Internal standard solution—A solution of sodium benzoate in the mobile phase (1 in 125).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 263 nm).

Column: A polyether ether ketone column 4 mm in inside diameter and 25 cm in length, packed with quaternary alkylated styrene-divinylbenzene copolymer for liquid chromatography (10 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: Dissolve 1.8 g of disodium dihydrogen ethylenediamine tetracetate dihydrate in 1000 mL of water, and adjust to pH 9.5 with 0.2 mol/L sodium hydroxide TS.

Flow rate: Adjust so that the retention time of risedronic acid is about 14 minutes.

System suitability—

System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the internal standard and risedronic acid are eluted in this order with the resolution between these peaks being not less than 6.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operat-
Sodium Risedronate Tablets

リセドロン酸ナトリウム錠

Sodium Risedronate Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of sodium risedronate (C$_{10}$H$_{10}$NNaO$_{2}$P$_{2}$: 305.09).

Method of preparation
Prepare as directed under Tablets, with Sodium Risedronate Hydrate.

Identification
Powder Sodium Risedronate Tablets. To a portion of the powder, equivalent to 2.5 mg of sodium risedronate (C$_{10}$H$_{10}$NNaO$_{2}$P$_{2}$), add 50 mL of diluted dilute sodium hydroxide TS (1 in 20), shake, and centrifuge. Filter the supernatant liquid through a membrane filter with a pore size not exceeding 0.2 µm. Discard the first 2 mL of the filtrate, and determine the absorption spectrum of the subsequent filtrate as directed under Ultraviolet-visible Spectrophotometry. It exhibits a maximum between 260 nm and 264 nm.

Uniformity of dosage units
Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement.

To 1 tablet of Sodium Risedronate Tablets add exactly 10 mL of the mobile phase, shake, and allow to stand for 10 minutes. Disperse the particles by sonicating for 10 minutes with occasional shaking, then centrifuge, and filter the supernatant liquid through a membrane filter with a pore size not exceeding 0.2 µm. Discard the first 1 mL of the filtrate, pipet exactly V mL of the subsequent filtrate, equivalent to about 1.75 mg of sodium risedronate (C$_{10}$H$_{10}$NNaO$_{2}$P$_{2}$), add exactly 1 mL of the internal standard solution and the mobile phase to make 10 mL, and use this solution as the sample solution. Separately, weigh accurately about 70 mg of Risedronic Acid RS (separately determine the water using 80 mg, in the same manner as Sodium Risedronate Hydrate), dissolve in 3 mL of 0.2 mol/L sodium hydroxide TS, and add water to make exactly 100 mL. Pipet 5 mL of this solution, and add water to make exactly 100 mL. Pipet 5 mL of this solution, add water to make exactly 100 mL. Pipet 5 mL of this solution, and use this solution as the standard solution. Perform the test with exactly 200 µL each of the sample solution and standard solution as directed under Liquid Chromatography according to the following conditions, and determine the peak areas, A$_T$ and A$_S$, of risedronic acid in each solution.

Dissolution
When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 20 minutes of Sodium Risedronate Tablets is not less than 80%.

Start the test with 1 tablet of Sodium Risedronate Tablets, withdraw 10 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 µm. Discard not less than 2 mL of the first filtrate, pipet V mL of the subsequent filtrate, add water to make exactly V mL so that each mL contains about 2.8 µg of sodium risedronate (C$_{10}$H$_{10}$NNaO$_{2}$P$_{2}$), and use this solution as the sample solution. Separately, weigh accurately about 50 mg of Risedronic Acid RS (separately determine the water using 80 mg, in the same manner as Sodium Risedronate Hydrate), dissolve in 3 mL of 0.2 mol/L sodium hydroxide TS, and add water to make exactly 50 mL. Pipet 5 mL of this solution, and add water to make exactly 100 mL. Pipet 5 mL of this solution, add water to make exactly 100 mL. Pipet 5 mL of this solution, and use this solution as the standard solution. Perform the test with exactly 200 µL each of the sample solution and standard solution as directed under Liquid Chromatography according to the following conditions, and determine the peak areas, A$_T$ and A$_S$, of risedronic acid in each solution.

Operating conditions
Detector: An ultraviolet absorption photometer (wavelength: 263 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilylized silica gel for liquid chromatography (5 µm in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase: Dissolve 0.15 g of disodium dihydrogen ethylenediaminetetraacetate dihydrate, 3.36 g of tetradeuter trimethylammonium bromide, 5.11 g of ammonium dihydrogen phosphate and 3.11 g of diammonium hydrogen phosphate in 1360 mL of water, and add 640 mL of acetonitrile.
Flow rate: Adjust so that the retention time of risedronic acid is about 12 minutes.
System suitability
System performance: When the procedure is run with 200 µL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of risedronic acid are not less than 5000 and not more than 1.5, respectively.
System repeatability: When the test is repeated 6 times with 200 µL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of risedronic acid to that of the internal standard is not more than 1.0%.
neutralization. The relative standard deviation of the peak area of risedronic acid is not more than 2.0%.

Assay Weigh accurately the mass of not less than 20 Sodium Risedronate Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 50 mg of sodium risedronate (C$_{30}$H$_{21}$NNaO$_7$P$_2$), add exactly 10 mL of the internal standard solution, add 190 mL of the mobile phase, shake, and allow to stand for 10 minutes. Disperse the particles by sonicating with occasional shaking, then centrifuge, and filter through a membrane filter with a pore size not exceeding 0.2 μm. Discard the first 2 mL of the filtrate, and use the subsequently filtered as the sample solution. Separately, weigh accurately about 50 mg of Risedronic Acid RS (separately determine the water (<2.4%) using 80 mg, in the same manner as Sodium Risedronate Hydrate), dissolve in 3 mL of 0.2 mol/L sodium hydroxide TS, add exactly 10 mL of the internal standard solution, then add the mobile phase to make 200 mL, and use this solution as the standard solution. Then, proceed as directed in the Assay under Sodium Risedronate Hydrate.

\[
M_c = \frac{M_5 \times Q_2}{Q_1 \times 1.078}
\]

where:
- \(M_5\): Amount (mg) of Risedronic Acid RS taken, calculated on the anhydrous basis

Internal standard solution A solution of sodium benzoate in the mobile phase (1 in 100).

Containers and storage Containers—Well-closed containers.

Sodium Salicylate

サリチル酸ナトリウム

C$_7$H$_6$NaO$_3$: 160.10

Monosodium 2-hydroxybenzoate [54-21-7]

Sodium Salicylate, when dried, contains not less than 99.5% of sodium salicylate (C$_7$H$_6$NaO$_3$).

Description Sodium Salicylate occurs as white, crystals or crystalline powder.

It is very soluble in water, freely soluble in acetic acid (100), and soluble in ethanol (95).

It is gradually colored by light.

Identification

1. Determine the infrared absorption spectrum of Sodium Salicylate, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare with the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

2. A solution of Sodium Salicylate (1 in 20) responds to Qualitative Tests <1.09> for sodium salt.

pH <2.54> The pH of a solution of 2.0 g of Sodium Salicylate in 20 mL of water is between 6.0 and 8.0.

Purity

1. Clarity of solution—Dissolve 1.0 g of Sodium Salicylate in 10 mL of water: the solution is clear, and its absorbance at 420 nm determined as directed under Ultraviolet-visible Spectrophotometry <2.24> is not more than 0.02.

2. Chloride <1.03>—Dissolve 0.5 g of Sodium Salicylate in 15 mL of water, add 6 mL of dilute nitric acid and ethanol (95) to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution with 0.30 mL of 0.01 mol/L hydrochloric acid VS, 28 mL of ethanol (95), 6 mL of dilute nitric acid and water to make 50 mL (not more than 0.021%).

3. Sulfate—Dissolve 0.25 g of Sodium Salicylate in 5 mL of water, and add 0.5 mL of barium chloride TS: the solution shows no change.

4. Sulfite and thiosulfate—Dissolve 1.0 g of Sodium Salicylate in 20 mL of water, add 1 mL of hydrochloric acid, and filter. Add 0.15 mL of 0.05 mol/L iodine VS to the filtrate: a yellow color develops.

5. Heavy metals <1.07>—Proceed with 1.0 g of Sodium Salicylate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

6. Arsenic <1.17>—To 1.0 g of Sodium Salicylate in a decomposition flask add 5 mL of nitric acid and 2 mL of sulfuric acid, and heat carefully until white fumes are evolved. After cooling, add 2 mL of nitric acid, and heat. After cooling, add several 2-mL portions of hydrogen peroxide (30), and heat until the solution is colorless to pale yellow. Repeat the procedure of adding nitric acid and hydrogen peroxide (30) and heating, if necessary. After cooling, add 2 mL of a saturated solution of ammonium oxalate monohydrate, and heat until white fumes are evolved. After cooling, add water to make 5 mL, and perform the test with this solution (not more than 2 ppm).

Loss on drying <2.41> Not more than 0.5% (1 g, 105°C, 2 hours).

Assay Weigh accurately about 0.3 g of Sodium Salicylate, previously dried, dissolve in 50 mL of acetic acid (100), and titrate <2.50> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 16.01 mg of C$_7$H$_6$NaO$_3$

Containers and storage Containers—Tight containers. Storage—Light-resistant.

Sodium Starch Glycolate

デンプングリコール酸ナトリウム

[9063-38-1]

This monograph is harmonized with the European Pharmacopoeia and the U.S. Pharmacopeia.

The parts of the text that are not harmonized are marked with symbols (● ●).

Information on the harmonization with the European Pharmacopoeia and the U.S. Pharmacopeia is available on the website of the Pharmaceuticals and Medical Devices Agency.

Sodium Starch Glycolate is the sodium salt of a carboxymethyl ether of starch or of a cross-linked carboxymethyl ether of starch.

There are two neutralization types of Sodium Starch Glycolate, Type A and Type B, and their insoluble matter in a mixture of ethanol (99.5) and water (8:2),
when dried, contains not less than 2.8% and not more than 4.2%, and not less than 2.0% and not more than 3.4% of sodium (Na: 22.99), respectively.

The label states the type of neutralization.

Description Sodium Starch Glycolate occurs as a white powder, and has a characteristic salty taste.

It practically insoluble in ethanol (99.5).

It swells with water, and becomes viscous, pasty liquid.

It is hygroscopic.

Identification (1) Acify 5 mL of a solution of Sodium Starch Glycolate (1 in 500) with dilute hydrochloric acid, then add one drop of iodine TS, and stir: a blue to violet color is produced.

(2) Determine the infrared absorption spectrum of Sodium Starch Glycolate as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) The sample solution obtained in the Purity (2) responds to Qualitative Tests <1.07> (2) for sodium salt. Perform the test using 2 mL of the sample solution and 4 mL of potassium hexahydroxammoniate (V) TS.

Purity (1) Heavy metals <1.07>—Proceed with 1.0 g of Sodium Starch Glycolate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(2) Iron

(i) Sample solution Take 2.5 g of Sodium Starch Glycolate in a silica or platinum crucible, add 2 mL of 5 mol/L sulfuric acid TS. Heat on a water bath, then ignite cautiously with a gas burner or preferably in an electric furnace at 600 ± 25°C, and incinerate the residue completely. Allow to cool, add a few drops of 1 mol/L sulfuric acid TS, and heat and ignite as above. Allow to cool, add a few drops of ammonium carbonate TS, evaporate to dryness on a water bath, and heat and ignite as above. After cooling, dissolve the residue by adding 50 mL of water.

(ii) Standard solution Weigh accurately 863.4 mg of ammonium iron (III) sulfate decahydrate, dissolve in water, add 25 mL of 1 mol/L sulfuric acid TS, and add water to make exactly 500 mL. Pipet 10 mL of this solution, and add water to make exactly 100 mL. Each mL of this solution contains 1.0 g of iron (Fe).

(iii) Procedure Pipet 10 mL each of the sample solution and standard solution, and to each solution add 2 mL of citric acid solution (1 in 5) and 0.1 mL of thioglycolic acid. Then add ammonia solution (28) dropwise to render the solution alkaline, using litmus paper as an indicator. Add water to make 20 mL, and use these solutions as the test solution and the control solution, respectively. Allow these solutions to stand for 5 minutes, and compare the color of the solutions using white background: the color of the test solution is not deeper than that of the control solution (not more than 20 ppm).

(3) Sodium glycolate—Conduct this procedure without exposure to light, using light-resistant vessels.

(i) Sample solution Weigh accurately 0.200 g of Sodium Starch Glycolate in a beaker, add 4 mL of 6 mol/L acetic acid TS and 5 mL of water, and stir to dissolve. Add 50 mL of acetone and 1 g of sodium chloride, stir, and filter through a filter paper previously soaked with acetone. Rinse the beaker and the filter paper with acetone, combine the filtrate and washings, and add acetone to make exactly 100 mL. Allow to stand for 24 hours, and use the supernatant liquid as the sample solution.

(ii) Standard solution To exactly 0.310 g of glycolic acid, previously dried in a desiccator (silica gel) for 18 hours, add water to dissolve to make exactly 500 mL. Pipet 5 mL of this solution, add 4 mL of 6 mol/L acetic acid TS, and allow to stand for 30 minutes. Add 50 mL of acetone and 1 g of sodium chloride, proceed as (i) above, and use the supernatant liquid as the standard solution.

(iii) Procedure Pipet 2.0 mL each of the sample solution and standard solution into 25-mL stoppered test tubes, and heat on a water bath for 20 minutes to remove acetone. After cooling, add 20.0 mL of 2,7-dihydroxynaphthalene TS to the residue, stopper the test tube, and heat on a water bath for 20 minutes. Cool under running water, and transfer whole quantity of the content to a 25-mL volumetric flask. Maintain the flask under running water, and add sulfuric acid to make 25 mL. Within 10 minutes, determine the absorbance of these solutions at 540 nm using water as the blank as directed under Ultraviolet-visible Spectrophotometry <2.24>; the absorbance of the sample solution is not larger than that of the standard solution (not more than 2.0%).

(4) Sodium chloride—Weigh accurately about 0.5 g of Sodium Starch Glycolate in a beaker, disperse in 100 mL of water, and add 1 mL of nitric acid. Titrate <2.50> with 0.1 mol/L silver nitrate VS (potentiometric titration): the amount of sodium chloride (NaCl: 58.44) is not more than 7.0%.

Each mL of 0.1 mol/L silver nitrate VS = 5.844 mg of NaCl

Loss on drying <2.41> Not more than 10.0% (1 g, 130°C, 90 minutes).

Microbial limits <4.05> Salmonella and Escherichia coli are not observed.

Assay To about 1 g of Sodium Starch Glycolate add 20 mL of a mixture of ethanol (99.5) and water (8:2), stir for 10 minutes, and filter. Repeat this procedure until no more turbidity is produced by adding silver nitrate TS, and dry the residue on the filter paper at 105°C to constant mass. Weigh accurately 0.7 g of the mass, add 80 mL of acetic acid (100), and heat the mixture under a reflux condenser on a water bath for 2 hours. After cooling, titrate <2.50> with 0.1 mol/L perchloric acid VS (potentiometric titration).

Content (%) of sodium (Na) = $V \times \frac{2.299 \times 100}{M}$

V: Consumed amount (mL) of 0.1 mol/L perchloric acid VS

M: Mass (mg) of the dried residue

Containers and storage Containers—Tight containers.
Dried Sodium Sulfite
乾燥亜硫酸ナトリウム

Na₂SO₃: 126.04

Dried Sodium Sulfite contains not less than 97.0% of sodium sulfite (Na₂SO₃).

Description Dried Sodium Sulfite is white, crystals or powder. It is odorless. It is freely soluble in water, and practically insoluble in ethanol (95%) and in diethyl ether. The pH of a solution of 1.0 g of Dried Sodium Sulfite in 10 mL of water is about 10.

It gradually changes in moist air.

Identification An aqueous solution of Dried Sodium Sulfite (1 in 20) responds to Qualitative Tests <1.09> for sodium salt and sulfite.

Purity (1) Thiosulfate—Dissolve 1.0 g of Dried Sodium Sulfite in 15 mL of water, add gradually 5 mL of hydrochloric acid, shake, and allow to stand for 5 minutes: no turbidity is produced.

(2) Heavy metals <1.07>—Dissolve 1.0 g of Dried Sodium Sulfite in 5 mL of water, add 2 mL of hydrochloric acid gradually, and evaporate the mixture on a water bath to dryness. Add 3 mL of boiling water and 1 mL of hydrochloric acid to the residue, and again evaporate to dryness on a water bath. Dissolve the residue in 2 mL of dilute acetic acid and water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution as follows: evaporate 3 mL of hydrochloric acid to dryness, and add 2 mL of dilute acetic acid, 2.0 mL of Standard Lead Solution and water to make 50 mL (not more than 20 ppm).

(3) Calcium—Dissolve 1.0 g of Sodium Thiosulfate in 10 mL of water, add 2 mL of ammonium oxalate TS, and allow to stand for 4 minutes: no turbidity is produced.

(4) Arsenic <1.11>—To 0.40 g of Sodium Thiosulfate add 3 mL of nitric acid and 5 mL of water, evaporate on a water bath to dryness, and perform the test with the residue. Prepare the test solution according to Method 2, and perform the test (not more than 5 ppm).

Assay Weigh accurately about 0.2 g of Dried Sodium Sulfite, transfer immediately to an iodine flask containing exactly 50 mL of 0.05 mol/L iodine VS, stopper, shake, and allow to stand for 5 minutes in a dark place. Add 1 mL of hydrochloric acid, and titrate <2.50> the excess iodine with 0.1 mol/L sodium thiosulfate VS (indicator: 1 mL of starch TS). Perform a blank determination in the same manner.

Each mL of 0.05 mol/L iodine VS = 6.302 mg of Na₂SO₃

Containers and storage Containers—Tight containers.

Sodium Thiosulfate Hydrate
チオ硫酸ナトリウム水和物

Na₂S₂O₅·5H₂O: 248.18

Sodium Thiosulfate Hydrate, when dried, contains not less than 99.0% and not more than 101.0% of sodium thiosulfate (Na₂S₂O₅: 158.11).

Description Sodium Thiosulfate Hydrate occurs as colorless, crystals or crystalline powder. It is odorless. It is very soluble in water, and practically insoluble in ethanol (99.5). It effloresces in dry air, and is deliquescent in moist air.

Identification (1) A solution of Sodium Thiosulfate Hydrate (1 in 10) responds to Qualitative Tests <1.09> for thiosulfate.

(2) A solution of Sodium Thiosulfate Hydrate (1 in 10) responds to Qualitative Tests <1.09> for sodium salt.

pH <2.54> Dissolve 1.0 g of Sodium Thiosulfate Hydrate in 10 mL of water: the pH of the solution is between 6.0 and 8.0.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Sodium Thiosulfate Hydrate in 10 mL of water: the solution is clear and colorless.

(2) Heavy metals <1.07>—Dissolve 1.0 g of Sodium Thiosulfate Hydrate in 10 mL of water, add slowly 5 mL of dilute hydrochloric acid, and evaporate on a water bath to dryness. Add 15 mL of water to the residue, boil gently for 2 minutes, and filter. Heat the filtrate to boil, and add bromine TS to the hot filtrate to produce a clear solution and provide a slight excess of bromine. Boil the solution to expel the bromine. Cool, add 1 drop of phenolphthalein TS, and add dropwise sodium hydroxide TS until a slight red color is produced. Add 2 mL of dilute acetic acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution as follows: to 2.0 mL of Standard Lead Solution add 2 mL of dilute acetic acid and water to make 50 mL (not more than 20 ppm).

(3) Calcium—Dissolve 1.0 g of Sodium Thiosulfate in 10 mL of water, add 2 mL of ammonium oxalate TS, and allow to stand for 4 minutes: no turbidity is produced.

(4) Arsenic <1.11>—To 0.40 g of Sodium Thiosulfate add 3 mL of nitric acid and 5 mL of water, evaporate on a water bath to dryness, and perform the test with the residue. Prepare the test solution according to Method 2, and perform the test (not more than 5 ppm).

Loss on drying <2.41> 32.0–37.0% (1 g, in vacuum, 40–45°C, 16 hours).

Assay Weigh accurately about 0.4 g of Sodium Thiosulfate, previously dried, dissolve in 30 mL of water, and titrate <2.50> with 0.05 mol/L iodine VS (indicator: 1 mL of starch TS).

Each mL of 0.05 mol/L iodine VS = 15.81 mg of Na₂S₂O₅

Containers and storage Containers—Tight containers.

Sodium Thiosulfate Injection
チオ硫酸ナトリウム注射液

Sodium Thiosulfate Injection is an aqueous injection.

It contains not less than 95.0% and not more than 105.0% of the labeled amount of sodium thiosulfate hydrate (Na₂S₂O₅·5H₂O: 248.18).

Method of preparationPrepare as directed under Injections, with Sodium Thiosulfate Hydrate.

Description Sodium Thiosulfate Injection is a clear, colorless liquid.

Identification Sodium Thiosulfate Injection responds to Qualitative Tests <1.09> for sodium salt and for thiosulfate.
Bacterial endotoxins <4.01> Less than 0.01 EU/mg.

Extractable volume <5.05> It meets the requirement.

Foreign insoluble matter <6.06> Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter <6.07> It meets the requirement.

Sterility <4.06> Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Measure exactly a volume of Sodium Thiourea Injection, equivalent to about 0.5 g of sodium thiourea hydrate (Na₂S₂O₃·5H₂O), add water to make 30 mL, and titrate with 0.05 mol/L iodine VS (indicator: 1 mL of starch TS).

Each mL of 0.05 mol/L iodine VS = 24.82 mg of Na₂S₂O₃·5H₂O

Containers and storage Containers—Hermetic containers.

Sodium Valproate

バルプロ酸ナトリウム

C₃H₁₅NaO₂: 166.19
Monosodium 2-propylpentanoate [1069-66-5]

Sodium Valproate, when dried, contains not less than 98.5% and not more than 101.0% of sodium valproate (C₃H₁₅NaO₂).

Description Sodium Valproate occurs as a white crystalline powder.

It is very soluble in water, freely soluble in ethanol (99.5) and in acetic acid (100).

It is hygroscopic.

Identification (1) To 5 mL of a solution of Sodium Valproate (1 in 20) add 1 mL of a solution of cobalt (II) nitrate hexahydrate (1 in 20) and warm on a water bath: a purple precipitate is formed.

(2) Dissolve 0.5 g of Sodium Valproate in 5 mL of water, add 5 mL of diethyl ether and 1 mL of 2 mol/L hydrochloric acid TS, and shake vigorously for 1 minute. Separate the diethyl ether layer, dehydrate with anhydrous sodium sulfate, and filter. Evaporate the solvent of the filtrate, determine the infrared spectrum of the residue as directed in the liquid film method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) A solution of Sodium Valproate (1 in 10) responds to Qualitative Tests <1.09> for sodium salt.

pH <2.54> Dissolve 1.0 g of Sodium Valproate in 20 mL of water: the pH of this solution is between 7.0 and 8.5.

Purity (1) Heavy metals <1.07>—Dissolve 2.0 g of Sodium Valproate in 44 mL of water, shake with 6 mL of dilute hydrochloric acid, allow to stand for 5 minutes, and filter. Discard the first 5 mL of the filtrate, neutralize 25 mL of the subsequent filtrate with ammonia TS, and add 2 mL of dilute acetic acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution as follows: to 2.0 mL of Standard Lead Solution add 2 mL of dilute acetic acid and water to make 50 mL (not more than 20 ppm).

(2) Related substances—Dissolve 0.10 g of Sodium Valproate in 10 mL of a mixture of formic acid and methyl acetate (1:1), and use this solution as the sample solution. Pipet 1 mL of the sample solution, add a mixture of formic acid and methyl acetate (1:1) to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 2 µL each of the sample solution and standard solution as directed under Gas Chromatography <2.02> according to the following conditions. Determine each peak area of both solutions by automatic integration method: the total area of the peaks other than valproic acid obtained from the sample solution is not larger than the peak area of valproic acid from the standard solution.

Operating conditions—

Detector: A hydrogen flame-ionization detector.

Column: A glass column 3 mm in inside diameter and 2 m in length, packed with silicaceous earth for gas chromatography (150 to 180 µm in particle diameter) coated with diethylene glycol adipate ester for gas chromatography and phosphoric acid at the ratios of 5% and 1%, respectively.

Column temperature: A constant temperature of about 145°C.

Carrier gas: Nitrogen.

Flow rate: Adjust so that the retention time of valproic acid is about 7 minutes.

Time span of measurement: About 2 times as long as the retention time of valproic acid, beginning after the solvent peak.

System suitability—

System performance: To 2 mL of the sample solution and 8 µL of n-valerianic acid, add a mixture of formic acid and methyl acetate (1:1) to make 10 mL. When the procedure is run with 2 µL of this solution under the above operating conditions, n-valerianic acid and valproic acid are eluted in this order with the resolution between these peaks being not less than 5.

System repeatability: Pipet 2 mL of the standard solution and add a mixture of formic acid and methyl acetate (1:1) to make exactly 10 mL. When the test is repeated 6 times with 2 µL of this solution under the above operating conditions, the relative standard deviation of the peak area of valproic acid is not more than 5.0%.

Loss on drying <2.41> Not more than 1.0% (1 g, 105°C, 3 hours).

Assay Weigh accurately about 0.2 g of Sodium Valproate, previously dried, dissolve in 80 mL of acetic acid (100), and titrate with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 16.62 mg of C₃H₁₅NaO₂

Containers and storage Containers—Tight containers.
Sodium Valproate Extended-release Tablets A

バルプロ酸ナトリウム徐放錠 A

Sodium Valproate Extended-release Tablets A contain not less than 95.0% and not more than 105.0% of the labeled amount of sodium valproate (C$_{8}$H$_{10}$NaO$_{2}$: 166.19).

Method of preparation Prepare as directed under Tables, with Sodium Valproate.

Identification To a quantity of powdered Sodium Valproate Extended-release Tablets A, equivalent to 0.2 g of Sodium Valproate, add 20 mL of water, shake thoroughly, and centrifuge. To 2 mL of the supernatant liquid add 1 mL of a solution of cobalt (II) nitrate hexahydrate (1 in 20), and heat on a water bath: a purple precipitate is formed.

Uniformity of dosage units 6.02 Perform the test according to the following method: it meets the requirements of the Content uniformity test.

Crush 1 tablet of Sodium Valproate Extended-release Tablets A, add exactly V/40 mL of the internal standard solution, add 4V/5 mL of a mixture of methanol and water (3:2), shake vigorously, add a mixture of methanol and water (3:2) to make V mL so that each mL contains about 1 mg of sodium valproate (C$_{8}$H$_{10}$NaO$_{2}$), and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 5 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 0.1 g of sodium valproate for assay, previously dried at 105°C for 3 hours, add exactly 2.5 mL of the internal standard solution, add a mixture of methanol and water (3:2) to make 100 mL, and use this solution as the standard solution. Then, proceed as directed in the Assay.

\[
\text{Amount (mg) of sodium valproate (C}_8\text{H}_{10}\text{NaO}_2) = M_S \times \frac{Q_T}{Q_S} \times \frac{V}{100}
\]

\(M_S\): Amount (mg) of sodium valproate for assay taken

Internal standard solution—A solution of ethyl parahydroxybenzoate in a mixture of methanol and water (3:2) (in 5000).

Dissolution 6.10 When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rates of a 100-mg tablet in 4 hours, in 6 hours and in 12 hours are 15 to 45%, 40 to 70%, and not less than 75%, respectively, and those of a 200-mg tablet in 4 hours, in 6 hours and in 12 hours are 15 to 45%, 35 to 65%, and not less than 75%, respectively.

Start the test with 1 tablet of Sodium Valproate Extended-release Tablets A, withdraw exactly 20 mL of the medium at the specified minutes after starting the test and supply exactly 20 mL of water warmed to 37 ± 0.5°C immediately after withdrawing of the medium every time. Filter the medium through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add water to make exactly V mL so that each mL contains about 0.11 mg of sodium valproate (C$_8$H$_{10}$NaO$_2$), and use these solutions as the sample solutions. Separately, weigh accurately about 56 mg of sodium valproate for assay, previously dried at 105°C for 3 hours, and dissolve in water to make exactly 50 mL. Pipet 5 mL of this solution, add water to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly 50 μL each of the sample solutions and standard solution as directed under Liquid Chromatography 2.01D according to the following conditions, and determine the peak areas, \(A_{1500}\) and \(A_{S}\), of valproic acid in each solution.

Dissolution rate (%) with respect to the labeled amount of sodium valproate (C$_8$H$_{10}$NaO$_2$) on the nth medium withdrawing \((n=1, 2, 3)\) is calculated by the following equation, and determine the peak areas, \(A_{1500}\) and \(A_{S}\), of valproic acid in each solution.

\[
M_S = \frac{A_{1500}}{A_S} \sum_{i=1}^{n-1} \left(\frac{A_{1500}}{A_S} \times \frac{1}{45} \right) \times V' \times \frac{1}{V} \times 180
\]

\(M_S\): Amount (mg) of sodium valproate for assay taken

C: Labeled amount (mg) of sodium valproate (C$_8$H$_{10}$NaO$_2$) in 1 tablet

Operating conditions—Proceded as directed in the operating conditions in the Assay.

System suitability—

System performance: When the procedure is run with 50 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of valproic acid are not less than 3000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 50 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of valproic acid is not more than 1.5%.

Assay Weigh accurately the mass of not less than 20 Sodium Valproate Extended-release Tablets A, and powder. Weigh accurately a portion of the powder, equivalent to about 0.1 g of sodium valproate (C$_8$H$_{10}$NaO$_2$), add about 80 mL of the mobile phase, shake thoroughly, add the mobile phase to make exactly 100 mL, and centrifuge. Pipet 20 mL of the supernatant liquid, add exactly 5 mL of the internal standard solution, and use this solution as the sample solution. Separately, weigh accurately about 0.1 g of sodium valproate for assay, previously dried at 105°C for 3 hours, dissolve in the mobile phase to make exactly 100 mL. Pipet 20 mL of this solution, add exactly 5 mL of the internal standard solution, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography 2.01D according to the following conditions, and calculate the ratios, \(Q_T\) and \(Q_S\), of the peak area of valproic acid to that of the internal standard.

\[
\text{Amount (mg) of sodium valproate (C}_8\text{H}_{10}\text{NaO}_2) = M_S \times \frac{Q_T}{Q_S}
\]

\(M_S\): Amount (mg) of sodium valproate for assay taken

Internal standard solution—A solution of ethyl parahydroxybenzoate in the mobile phase (1 in 50,000).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 210 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: A mixture of 0.05 mol/L sodium dihydrogen phosphate TS (pH 3.0) and acetonitrile for liquid chromatography (1:1).

Flow rate: Adjust so that the retention time of valproic acid is about 6 minutes.
Sodium Valproate Extended-release Tablets B

パルプロ酸ナトリウム徐放錠 B

Sodium Valproate Extended-release Tablets B contain not less than 95.0% and not more than 105.0% of the labeled amount of sodium valproate (C₇H₁₃O₂Na, 166.19).

Method of preparation Prepare as directed under Tablets, with Sodium Valproate.

Identification To a quantity of the powdered Sodium Valproate Extended-release Tablets B, equivalent to 1.0 g of Sodium Valproate, add 10 mL of water, heat on a water bath for 30 minutes, and filter. To 2.5 mL of the filtrate add 2.5 mL of water and 1 mL of a solution of cobalt (II) nitrate hexahydrate (1 in 20), and heat on a water bath: a purple precipitate is formed.

Uniformity of dosage units (<0.02) Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement.

To 1 tablet of Sodium Valproate Extended-release Tablets B add 150 mL of the mobile phase, allow to stand for not less than 16 hours, shake until the film is disintegrated, and add the mobile phase to make exactly 200 mL. Pipet V mL of this solution, and add the mobile phase to make exactly V’ mL so that each mL contains about 1 mg of sodium valproate (C₇H₁₃O₂Na). Centrifuge this solution, and filter the supernatant liquid through a membrane filter with a pore size not exceeding 0.45 µm. Discard the first 5 mL of the filtrate, pipet 20 mL of the subsequent filtrate, add exactly 5 mL of the internal standard solution, and use this solution as the sample solution. Then, proceed as directed in the Assay.

Amount (mg) of sodium valproate (C₇H₁₃O₂Na) = \(M_S \times \frac{Q_T}{Q_S} \times \frac{V’}{V} \times 2 \)

\(M_S \): Amount (mg) of sodium valproate for assay taken

Internal standard solution—A solution of methyl para-hydroxybenzoate in the mobile phase (1 in 50,000).

Dissolution (<6.10) When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rates of a 200-mg tablet in 8 hours, in 11 hours and in 20 hours are 15 to 45%, 35 to 65%, and not less than 70%, respectively, and those of a 400-mg tablet in 9 hours, in 12 hours and in 21 hours are 15 to 45%, 35 to 65%, and not less than 70%, respectively.

Start the test with 1 tablet of Sodium Valproate Extended-release Tablets B, withdraw exactly 20 mL of the medium at the specified minutes after starting the test and supply exactly 20 mL of water warmed to 37 ± 0.5°C immediately after withdrawing of the medium every time. Filter the medium through a membrane filter with a pore size not exceeding 0.45 µm. Discard not less than 2 mL of the first filtrate, pipet V mL of the subsequent filtrate, add water to make exactly V’ mL so that each mL contains about 0.22 mg of sodium valproate (C₇H₁₃O₂Na), and use these solutions as the sample solutions. Separately, weigh accurately about 55 mg of sodium valproate for assay, previously dried at 105°C for 3 hours, dissolve in water to make exactly 250 mL, and use this solution as the standard solution. Perform the test with exactly 20 µL each of the sample solutions and standard solution as directed under Liquid Chromatography (<2.01> according to the following conditions, and determine the peak areas, \(A_{T(10)} \) and \(A_s \), of valproic acid in each solution.

Dissolution rate (%) with respect to the labeled amount of sodium valproate (C₇H₁₃O₂Na) on the n-th medium withdrawing (n = 1, 2, 3)

\[
\text{Dissolution rate} = \frac{M_S \times \left(A_{T(10)} \times \frac{Q_T}{Q_S} \times \frac{A_{T(10)}}{A_S} \times \frac{1}{45} \right) \times \frac{V’}{V} \times \frac{1}{C} \times 360}{M_C}
\]

\(M_C \): Amount (mg) of sodium valproate for assay taken

\(C \): Labeled amount (mg) of sodium valproate (C₇H₁₃O₂Na) in 1 tablet

Operating conditions—Proceed as directed in the operating conditions in the Assay.

System suitability—

System performance: When the procedure is run with 20 µL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of valproic acid are not less than 3000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 20 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of valproic acid is not more than 1.0%.

Assay To 20 Sodium Valproate Extended-release Tablets B add 150 mL of the mobile phase, allow to stand for not less than 16 hours, shake until the film is disintegrated, and add the mobile phase to make exactly 200 mL. Pipet 5 mL of this solution, add the mobile phase to make exactly V mL so that each mL contains about 1 mg of sodium valproate (C₇H₁₃O₂Na). Centrifuge this solution, and filter the supernatant liquid through a membrane filter with a pore size not exceeding 0.45 µm. Discard the first 5 mL of the filtrate, pipet 20 mL of the subsequent filtrate, add exactly 5 mL of the internal standard solution, and use this solution as the sample solution. Separately, weigh accurately about 0.1 g of sodium valproate for assay, previously dried at 105°C for 3 hours, dissolve in the mobile phase to make exactly 100 mL. Pipet 20 mL of this solution, add exactly 5 mL of the internal standard solution, and use this solution as the standard solution. Perform the test with 10 µL each of the sample solution and standard solution as directed under Liquid Chromatography (<2.01>) according to the following conditions, and calculate the ratios, \(Q_T \) and \(Q_S \), of the peak area of valproic acid to that of the internal standard.

Amount (mg) of sodium valproate (C₇H₁₃O₂Na) in 1 tablet

\[
\text{Amount} = \frac{M_S \times Q_T / Q_S \times V / 50}{50}
\]

\(M_S \): Amount (mg) of sodium valproate for assay taken

Internal standard solution—A solution of methyl para-hydroxybenzoate in the mobile phase (1 in 50,000).
Sodium Valproate Syrup

パルプロ酸ナトリウムシロップ

Sodium Valproate Syrup contains not less than 95.0% and not more than 105.0% of the labeled amount of sodium valproate (C\textsubscript{8}H\textsubscript{15}NaO\textsubscript{2}: 166.19).

Method of preparation Prepare as directed under Syrups, with Sodium Valproate.

Identification To a volume of Sodium Valproate Syrup, equivalent to 50 mg of Sodium Valproate, add water to make 10 mL. To 5 mL of this solution add 1 mL of a solution of cobalt (II) nitrate hexahydrate (1 in 20) and warm on a water bath: a purple precipitate is formed.

Microbial limit The acceptance criteria of TAMP and TYMC are 10\(^4\) CFU/mL and 10\(^5\) CFU/mL, respectively. *Escherichia coli* is not observed.

Assay Pipet a volume of Sodium Valproate Syrup, equivalent to about 0.1 g of sodium valproate (C\textsubscript{8}H\textsubscript{15}NaO\textsubscript{2}) and add water to make exactly 100 mL. Pipet 20 mL of this solution, add exactly 5 mL of internal standard solution, and use this solution as the sample solution. Separately, weigh accurately about 50 mg of sodium valproate for assay, previously dried at 105°C for 3 hours, dissolve in water to make exactly 50 mL. Pipet 20 mL of this solution, add exactly 5 mL of the internal standard solution, and use this solution as the standard solution. Perform the test with 10 \(\mu\)L of each of the sample solution and standard solution as directed under Liquid Chromatography (2.01) according to the following conditions, and calculate the ratios, \(Q_1\) and \(Q_2\), of the peak area of valproic acid to that of the internal standard.

Amount (mg) of sodium valproate (C\textsubscript{8}H\textsubscript{15}NaO\textsubscript{2})

\[
M_5 = M_3 \times Q_r/Q_5 \times 2
\]

\(M_3\): Amount (mg) of sodium valproate for assay taken

Internal standard solution—A solution of ethyl parahydroxybenzoate in the mobile phase (1 in 50,000).

Operating conditions

Detector: An ultraviolet absorption photometer (wavelength: 210 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 \(\mu\)m in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: A mixture of 0.05 mol/L sodium dihydrogen phosphate TS (pH 3.0) and acetonitrile for liquid chromatography (1:1).

Flow rate: Adjust so that the retention time of valproic acid is about 6 minutes.

System suitability

- System performance: When the procedure is run with 10 \(\mu\)L of the standard solution under the above operating conditions, the internal standard and valproic acid are eluted in this order with the resolution between these peaks being not less than 7.
- System reductability: When the test is repeated 6 times with 10 \(\mu\)L of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of valproic acid to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Tight containers.

Sodium Valproate Tablets

パルプロ酸ナトリウム錠

Sodium Valproate Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of sodium valproate (C\textsubscript{8}H\textsubscript{15}NaO\textsubscript{2}: 166.19).

Method of preparation Prepare as directed under Tablets, with Sodium Valproate.

Identification To a quantity of powdered Sodium Valproate Tablets, equivalent to 0.5 g of Sodium Valproate, add 10 mL of water, shake well, and centrifuge. To 5 mL of the supernatant liquid add 1 mL of a solution of cobalt (II) nitrate hexahydrate (1 in 20) and warm on a water bath: a purple precipitate is formed.

Uniformity of dosage units The acceptance criteria of TAMP and TYMC are 10\(^4\) CFU/mL and 10\(^5\) CFU/mL, respectively. *Escherichia coli* is not observed.

Assay Pipet a volume of Sodium Valproate Tablets, equivalent to 50 mg of Sodium Valproate, add water to make 10 mL. Pipet 20 mL of this solution, add exactly 5 mL of internal standard solution, and use this solution as the sample solution. Perform the test with 10 \(\mu\)L of each of the sample solution and standard solution as directed under Liquid Chromatography (2.01) according to the following conditions, and calculate the ratios, \(Q_1\) and \(Q_2\), of the peak area of valproic acid to that of the internal standard.

Amount (mg) of sodium valproate (C\textsubscript{8}H\textsubscript{15}NaO\textsubscript{2})

\[
M_5 = M_3 \times Q_r/Q_5 \times V/100
\]

\(M_3\): Amount (mg) of sodium valproate for assay taken

Internal standard solution—A solution of ethyl parahydroxybenzoate in the mobile phase (1 in 50,000).

Operating conditions

Detector: An ultraviolet absorption photometer (wavelength: 210 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 \(\mu\)m in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: A mixture of 0.05 mol/L sodium dihydrogen phosphate TS (pH 3.0) and acetonitrile (1:1).

Flow rate: Adjust so that the retention time of valproic acid is about 6 minutes.

System suitability

- System performance: When the procedure is run with 10 \(\mu\)L of the standard solution under the above operating conditions, the internal standard and valproic acid are eluted in this order with the resolution between these peaks being not less than 7.
- System reductability: When the test is repeated 6 times with 10 \(\mu\)L of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of valproic acid to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Tight containers.
is not less than 85%.

Start the test with 1 tablet of Sodium Valproate Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add water to make exactly V’ mL so that each mL contains about 0.11 mg of sodium valproate (C_{4}H_{7}NaO_{2}), and use this solution as the sample solution. Separately, weigh accurately about 56 mg of sodium valproate for assay, previously dried at 105°C for 3 hours, and dissolve in water to make exactly 50 mL. Pipet 5 mL of this solution, add water to make exactly 50 mL of the solution, and use this solution as the standard solution.

Dissolution rate (％) with respect to the labeled amount of sodium valproate (C_{4}H_{7}NaO_{2})

\[M_{S} = M_{S} \times V/100 \times V' / V \times 1/C \times 180 \]

\[M_{S} = \text{Amount (mg) of sodium valproate for assay taken} \]

\[C = \text{Labeled amount (mg) of sodium valproate (C_{4}H_{7}NaO_{2}) in 1 tablet} \]

Operating conditions—

Proceed as directed in the operating conditions in the Assay.

System suitability—

System performance: When the procedure is run with 50 μL of the standard solution under the above operating conditions, the number of theoretical plates and symmetry factor of the peak of valproic acid are not less than 3000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 50 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of valproic acid is not more than 1.5%.

Assay Weigh accurately the mass of not less than 20 Sodium Valproate Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 0.2 g of sodium valproate (C_{4}H_{7}NaO_{2}), add about 160 mL of the mobile phase, shake well, add the mobile phase to make exactly 200 mL, and centrifuge. Filter the supernatant liquid, pipet 20 mL of the filtrate, add exactly 5 mL of the internal standard solution, and use this solution as the sample solution. Separately, weigh accurately about 0.1 g of sodium valproate for assay, previously dried at 105°C for 3 hours, and dissolve in the mobile phase to make exactly 100 mL. Pipet 20 mL of this solution, add exactly 5 mL of the internal standard solution, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A_{T} and A_{S}, of valproic acid in each solution.

\[\frac{A_{T}}{A_{S}} < 1.5 \]

\[\frac{A_{T}}{A_{S}} > 2.0 \]

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the internal standard and valproic acid are eluted in this order with the resolution between these peaks being not less than 7.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of valproic acid to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Tight containers.

Sorbitan Sesquioleate

ソルビタンセスキオレイン酸エステル

Sorbitan Sesquioleate is a mixture of monoester and diester of sorbitol anhydride, partially esterified with oleic acid.

Description Sorbitan Sesquioleate is a pale yellow to light yellow-brown, viscous oily liquid. It has a faint, characteristic odor and a slightly bitter taste.

It is freely soluble in diethyl ether, slightly soluble in ethanol (95%), and very slightly soluble in methanol.

It is dispersed as fine oily drops in water.

Identification (1) To 0.5 g of Sorbitan Sesquioleate add 5 mL of ethanol (95) and 5 mL of dilute sulfuric acid, and heat on a water bath for 30 minutes. Cool, shake with 5 mL of petroleum ether, and allow to stand, and separate the upper layer and the lower layer. Shake 2 mL of the lower layer with 2 mL of freshly prepared catechol solution (1 in 10), then with 5 mL of sulfuric acid: a red to red-brown color develops.

(2) Heat the upper layer obtained in (1) on a water bath, and evaporate petroleum ether. To the residue add 2 mL of diluted nitric acid (1 in 2), and then add 0.5 g of potassium nitrite between 30°C and 35°C with stirring: the solution develops an opalescence, and, when cooled, crystals are formed.

Specific gravity <1.13> \(d_{25}^{20} \): 0.960 – 1.020

Saponification value <1.13> 150 – 168

Purity (1) Acidity—To 2.0 g of Sorbitan Sesquioleate add 50 mL of neutralized ethanol, and heat on a water bath nearly to boiling with stirring once or twice. Cool, add 4.3 mL of 0.1 mol/L sodium hydroxide VS and 5 drops of phenolphthalein TS: a red color develops.

(2) Heavy metals <1.07>—Proceed with 1.0 g of Sorbitan Sesquioleate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(3) Arsenic <1.12>—Prepare the test solution with 1.0 g of Sorbitan Sesquioleate according to Method 2, and per-
form the test (not more than 2 ppm).

Water \(<2.48>\) Not more than 3.0% (1 g, volumetric titration, direct titration, stir for 30 minutes).

Residue on ignition \(<2.48>\) Not more than 1.0% (1 g).

Containers and storage Containers—Tight containers.

D-Sorbitol

D-ソルビトール

\(\text{C}_6\text{H}_{14}\text{O}_6; 182.17\)

D-Sorbitol Solution

\(\text{D-ソルビトール液}\)

Purity (1) Clarity and color of solution, and acidity or alkalinity—Dissolve 5 g of D-Sorbitol in 20 mL of water by warming with shaking: the solution is colorless, clear, and neutral.

(2) Chloride \(<1.00>\)—Perform the test with 2.0 g of D-Sorbitol. Prepare the control solution with 0.30 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.005%).

(3) Sulfate \(<1.14>\)—Perform the test with 4.0 g of D-Sorbitol. Prepare the control solution with 0.50 mL of 0.005 mol/L sulfuric acid VS (not more than 0.006%).

(4) Heavy metals \(<1.00>\)—Proceed with 5.0 g of D-Sorbitol according to Method 1, and perform the test. Prepare the control solution with 2.5 mL of Standard Lead Solution (not more than 5 ppm).

(5) Nickel—Dissolve 0.5 g of D-Sorbitol in 5 mL of water, add 3 drops of dimethylglyoxime TS and 3 drops of ammonia TS, and allow to stand for 5 minutes: no red color develops.

(6) Arsenic \(<1.17>\)—Prepare the test solution with 1.5 g of D-Sorbitol according to Method 1, and perform the test (not more than 1.3 ppm).

(7) Glucose—Dissolve 20.0 g of D-Sorbitol in 25 mL of water, and boil gently with 40 mL of Fehling’s TS for 3 minutes. After cooling, filter the supernatant liquid cautiously through a glass filter (G4), leaving the precipitate in the flask as much as possible, wash the precipitate with hot water until the last washings no longer show an alkali reaction, and filter the washings through the glass filter. Dissolve the precipitate in the flask in 20 mL of iron (III) sulfate TS, filter through the glass filter, and wash with water. Combine the filtrate and the washings, heat at 80°C, and titrate \(<2.50>\) with 0.02 mol/L potassium permanganate VS: not more than 6.3 mL of volume of titration consumed or consumption is required.

(8) Sugars—Dissolve 20.0 g of D-Sorbitol in 25 mL of water, and heat with 8 mL of dilute hydrochloric acid under a reflux condenser in a water bath for 3 hours. After cooling, add 2 drops of methyl orange TS, followed by sodium hydroxide TS until an orange color develops, and add water to make 100 mL. Boil gently 10 mL of this solution with 10 mL of water and 40 mL of Fehling’s TS for 3 minutes and proceed as directed in (7).

Loss on drying \(<2.48>\) Not more than 2.0% (0.5 g, in vacuum, phosphorus (V) oxide, 80°C, 3 hours).

Residue on ignition \(<2.48>\) Not more than 0.02% (5 g).

Assay Weigh accurately about 0.2 g of D-Sorbitol, previously dried, dissolve in water and add water to make exactly 100 mL. Pipet 10 mL of the solution into an iodine flask, add exactly 50 mL of potassium periodate TS, and heat for 15 minutes in a water bath. Cool, add 2.5 g of potassium iodide, immediately stopper tightly, and shake well. Allow to stand for 5 minutes in a dark place, and titrate \(<2.50>\) with 0.1 mol/L sodium thiosulfate VS (indicator: 3 mL of starch TS). Perform a blank determination in the same manner.

Each mL of 0.1 mol/L sodium thiosulfate VS = 1.822 mg of \(\text{C}_6\text{H}_{14}\text{O}_6\).

Containers and storage Containers—Tight containers.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.)
Containers—Tight containers.

D Measure exactly a volume of To 5 mL of a solution of Spectinomycin Hydrochloride Hydrate in 5 mL of water, and use this solution as the sample solution. Pipet 1 mL of the sample solution into an iodine flask, add exactly 50 mL of potassium iodide solution, and immediately stopper tightly.

To 3 mL of a solution of Spectinomycin Hydrochloride Hydrate in 10 mL of water: the pH of the solution is between 4.0 and 5.6.

Purity Related substances—Dissolve 0.20 g of Spectinomycin Hydrochloride Hydrate in 5 mL of water, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add water to make exactly 100 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography (2.25). Spot 5 µL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of 1-propanol, water, pyridine

Spectinomycin Hydrochloride Hydrate

スベクチノマシン塩酸塩水和物

C_{14}H_{22}N_2O_7·2HCl·5H_2O: 495.35

(2R,4aR,5aR,7S,8R,9S,9aR,10aS)-4a,7,9-Trihydroxy-2-methyl-6,8-bis(methylamino)-2,3,4,5a,6,7,8,9,9a,10a-decahydro-4H-pyrano[2,3-b][1,4]benzodioxin-4-one dihydrochloride pentahydrate [22189-32-8]

Spectinomycin Hydrochloride Hydrate is the hydrochloride of a substance having antibacterial activity produced by the growth of Streptomyces spectabilis. It contains not less than 763 µg (potency) and not more than 831 µg (potency) per mg, calculated on the anhydrous basis. The potency of Spectinomycin Hydrochloride Hydrate is expressed as mass (potency) of spectinomycin (C_{14}H_{22}N_2O_7): 332.35.

Description Spectinomycin Hydrochloride Hydrate occurs as a white to light yellow-white crystalline powder. It is freely soluble in water, and practically insoluble in ethanol (95).

Identification (1) To 5 mL of a solution of Spectinomycin Hydrochloride Hydrate (1 in 100) add gently anthrone TS: a blue to blue-green color is produced at the zone of contact.

(2) Determine the infrared absorption spectra of Spectinomycin Hydrochloride Hydrate and Spectinomycin Hydrochloride RS as directed in the paste method under Infrared Spectrophotometry (2.25), and compare these spectra: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) To 3 mL of a solution of Spectinomycin Hydrochloride Hydrate (1 in 150) add 1 drop of silver nitrate TS: a white turbidity is produced.

Optical rotation (2.49) [α]_{D}^{20} +15 - +21° (2.1 g calculated on the anhydrous basis, water, 25 mL, 200 mm).

pH (2.54) Dissolve 0.10 g of Spectinomycin Hydrochloride Hydrate in 10 mL of water: the pH of the solution is between 4.0 and 5.6.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.)
and acetic acid (100) (10:8:1:1) to a distance of about 12 cm, and air-dry the plate. Spray evenly alkaline 1.6% potassium periodate-0.2% potassium permanganate TS: the spot other than the principal spot obtained from the sample solution is not more intense than the spot from the standard solution.

Water <2.48> Not less than 16.0% and not more than 20.0% (0.3 g, volumetric titration, direct titration).

Residue on ignition <2.44> Not more than 1.0% (1 g).

Assay Weigh accurately an amount of both Spectinomycin Hydrochloride Hydrate and Spectinomycin Hydrochloride RS, equivalent to about 20 mg (potency), add exactly 10 mL of the internal standard solution to them, add 1 mL of 1,1,1,3,3,3-hexamethyldisilazan, allow to stand at room temperature for 1 hour, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with 1 µL each of the sample solution and standard solution as directed under Gas Chromatography <2.02> according to the following conditions, and calculate the ratios, \(Q_T \) and \(Q_S \), of the peak area of spectinomycin to that of the internal standard.

\[
\text{Amount [µg (potency)] of spectinomycin (C}_{14}\text{H}_{22}\text{N}_2\text{O}_3} = M_\text{S} \times \frac{Q_T}{Q_S} \times 1000
\]

\(M_\text{S} \): Amount [mg (potency)] of Spectinomycin Hydrochloride RS taken

Internal standard solution—A solution of triphenylantimony in N,N-dimethylformamide (1 in 500).

Operating conditions—

- **Detector:** A hydrogen flame-ionization detector.
- **Column:** A glass column 3 mm in inside diameter and 60 cm in length, packed with 150 to 180 µm siliceous earth for gas chromatography coated in 5% with 5% phenyl-methyl silicone polymer for gas chromatography.
- **Column temperature:** A constant temperature of about 190°C.
- **Injection port temperature:** A constant temperature of about 215°C.
- **Detector temperature:** A constant temperature of about 220°C.
- **Carrier gas:** Helium.
- **Flow rate:** Adjust so that the retention time of spectinomycin is about 10 minutes.

System suitability—

- **System performance:** When the procedure is run with 1 µL of the standard solution under the above operating conditions, the internal standard and spectinomycin are eluted in this order with the resolution between these peaks being not less than 2.0.
- **System repeatability:** When the test is repeated 6 times with 1 µL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of spectinomycin to that of the internal standard of not more than 1.5%.

Containers and storage Containers—Tight containers.

Spectinomycin Hydrochloride for Injection

注射用スペクチノマイシン塩酸塩

Spectinomycin Hydrochloride for Injection is a preparation for injection which is suspended before use.

It contains not less than 97.5% and not more than 117.5% of the labeled potency of spectinomycin \((\text{C}_{14}\text{H}_{22}\text{N}_2\text{O}_3) : 332.35\).

Method of preparation Prepare as directed under Injections, with Spectinomycin Hydrochloride Hydrate.

Description Spectinomycin Hydrochloride for Injection occurs as a white to light yellow-white crystalline powder.

Identification Proceed as directed in the Identification (2) under Spectinomycin Hydrochloride Hydrate.

pH <2.54> Dissolve an amount of Spectinomycin Hydrochloride for Injection, equivalent to 70 mg (potency) of Spectinomycin Hydrochloride Hydrate, in 10 mL of water: the \(\text{pH} \) of the solution is between 4.0 and 5.6.

Purity Clarity and color of solution—A solution dissolved an amount of Spectinomycin Hydrochloride for Injection, equivalent to 0.70 g (potency) of Spectinomycin Hydrochloride Hydrate, in 10 mL of water is clear, and its absorbance at 425 nm, determined as directed under Ultraviolet-visible Spectrophotometry <2.24>, is not more than 0.10.

Water <2.48> 16.0 – 20.0% (0.3 g, volumetric titration, direct titration).

Uniformity of dosage units <6.02> It meets the requirement of the Mass variation test (T: 107.5%).

Sterility <4.06> Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Weigh accurately the mass of the contents of not less than 10 Spectinomycin Hydrochloride for Injection. Weigh accurately a portion of the content, equivalent to about 20 mg (potency) of Spectinomycin Hydrochloride Hydrate, dissolve in exactly 10 mL of the internal standard solution, add 1 mL of 1,1,1,3,3,3-hexamethyldisilazan, allow to stand at room temperature for 1 hour, and use this solution as the sample solution. Separately, weigh accurately an amount of Spectinomycin Hydrochloride RS, equivalent to about 20 mg (potency), dissolve in exactly 10 mL of the internal standard solution, add 1 mL of 1,1,1,3,3,3-hexamethyldisilazan, allow to stand at room temperature for 1 hour, and use this solution as the standard solution. Then, proceed as directed in the Assay under Spectinomycin Hydrochloride Hydrate.

\[
\text{Amount [mg (potency)] of spectinomycin (C}_{14}\text{H}_{22}\text{N}_2\text{O}_3} = M_\text{S} \times \frac{Q_T}{Q_S}
\]

\(M_\text{S} \): Amount [mg (potency)] of Spectinomycin Hydrochloride RS taken

Internal standard solution—A solution of triphenylantimony in N,N-dimethylformamide (1 in 500).

Containers and storage Containers—Hermetic containers.
Spiramycin Acetate

スピラマイシン酢酸エステル

(Spiramycin II Acetate (Spiramycin I Acetate))

\[3R,4S,5S,6R,8R,9R,10E,12E,15R \]-Acetoxy-5-[4-O-acetyl-2,6-dideoxy-3-C-methyl-α-L-ribo-hexopyranosyl-(1-→4)-3,6-dideoxy-3-dimethylamino-β-D-glucopyranosyl-9-(2,3,4,6-tetrahydroxy-4-dimethylamino-β-D-erythro-hexopyranosyl)oxy]-6-formylmethyl-4-methoxy-8-methylhexadeca-10,12-dien-15-olide

[871114-2-0]

(Spiramycin III Acetate)

\[3R,4S,5S,6R,8R,9R,10E,12E,15R \]-Acetoxy-2,6-dideoxy-3-C-methyl-α-L-ribo-hexopyranosyl-(1-→4)-3,6-dideoxy-3-dimethylamino-β-D-glucopyranosyl-9-(2,3,4,6-tetrahydroxy-4-dimethylamino-β-D-erythro-hexopyranosyl)oxy]-6-formylmethyl-4-methoxy-8-methyl-3-propanoyloxyhexadeca-10,12-dien-15-olide

[112501-15-2]

Spiramycin Acetate is a derivative of a mixture of macrocide substances having antibacterial activity produced by the growth of Streptomyces ambifaciens.

It contains not less than 900 μg (potency) and not more than 1450 μg (potency) per mg, calculated on the dried basis. The potency of Spiramycin Acetate is expressed as mass (potency) of spiramycin II acetate (C_{27}H_{37}NO_{16}: 927.13). One mg (potency) of Spiramycin Acetate is equivalent to 0.7225 mg of spiramycin II acetate (C_{27}H_{37}NO_{16}).

Description Spiramycin Acetate occurs as a white to light yellow-white powder.

It is very soluble in acetonitrile and in methanol, freely soluble in ethanol (99.5), and practically insoluble in water.

Identification

1. Determine the absorption spectrum of a solution of Spiramycin Acetate in methanol (1 in 50 mL) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

2. Determine the infrared absorption spectrum of Spiramycin Acetate as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Content ratio of the active principle Dissolve 25 mg of Spiramycin Acetate in 25 mL of the mobile phase, and use this solution as the sample solution. Perform the test with 5 μL of the sample solution as directed under Liquid Chromatography <2.07> according to the following conditions, and determine the areas, A_{1111}, A_{111}, A_{11v}, A_{1v}, A_{v1}, and A_{lv}, of the peaks of spiramycin II acetate, spiramycin III acetate, spiramycin IV acetate, spiramycin V acetate, spiramycin VI acetate and spiramycin VII acetate, respectively, by the automatic integration method, and calculate the ratios of the amounts of A_{1111}, A_{11v} and the total of A_{1111} and A_{1v} to the total amount of all these peaks: the amount of A_{1111} is 30 - 45%, A_{11v} is 30 - 45%, and the total of A_{1111} and A_{1v} is not more than 25%. The relative retention times of spiramycin III acetate, spiramycin IV acetate, spiramycin V acetate, spiramycin VI acetate and spiramycin VII acetate to spiramycin II acetate are about 1.3, about 1.7, about 2.3, about 0.85 and about 1.4, respectively.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 231 nm).

Column: A stainless steel column 6 mm in inside diameter and 15 cm in length, packed with octadecysilsilanol silica gel for liquid chromatography (3 μm in particle diameter).

Column temperature: A constant temperature of about 35°C.

Mobile phase: A mixture of acetonitrile, 0.02 mol/L potassium dihydrogen phosphate TS and a solution of dipotassium hydrogen phosphate (87 in 25,000) (26:7:7).

Flow rate: Adjust so that the retention time of spiramycin II acetate is about 10 minutes.

System suitability—

System performance: Dissolve 25 mg of Spiramycin II Acetate RS in the mobile phase to make 100 mL. When the procedure is run with 5 μL of this solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of spiramycin II acetate are not less than 14,500 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 5 μL of the sample solution under the above operating conditions, the relative standard deviation of the peak area of spiramycin II acetate is not more than 2.0%.

Purity Heavy metals <1.07>—Proceed with 1.0 g of Spiramycin Acetate according to Method 2, and perform the test. Prepare the control solution with 1.0 mL of Standard Lead Solution (not more than 10 ppm).

Loss on drying <2.47> Not more than 3.0% (1 g, in vacuum, phosphorus (V) oxide, 60°C, 3 hours).

Residue on ignition <2.44> Not more than 0.5% (1 g).

Assay Perform the test according to the Cylinder-plate method as directed under Microbial Assay for Antibiotics <4.02> according to the following conditions.

(i) Test organism—*Bacillus subtilis* ATCC 6633

(ii) Culture medium—Use the medium i in 1 under (1) Agar media for seed and base layer.

(iii) Standard solutions—Weigh accurately an amount of Spiramycin II Acetate RS, equivalent to about 50 mg (potency), dissolve in 20 mL of methanol, add 0.1 mol/L phosphate buffer solution for antibiotics (pH 8.0) to make exactly 50 mL, and use this solution as the standard stock solution. Keep the standard stock solution at not exceeding 5°C, and use within 3 days. Take exactly a suitable amount of the
standard stock solution before use, add 0.1 mol/L phosphate buffer solution for antibiotics (pH 8.0) to make solutions so that each mL contains 80 μg (potency) and 20 μg (potency), and use these solutions as the high concentration standard solution and the low concentration standard solution, respectively.

(iv) Sample solutions—Weigh accurately an amount of Spiramycin Acetate, equivalent to about 50 mg (potency), dissolve in 20 mL of methanol, and add 0.1 mol/L phosphate buffer solution for antibiotics (pH 8.0) to make exactly 50 mL. Take exactly a suitable amount of this solution, add 0.1 mol/L phosphate buffer solution for antibiotics (pH 8.0) to make solutions so that each mL contains 80 μg (potency) and 20 μg (potency), and use these solutions as the high concentration sample solution and the low concentration sample solution, respectively.

Containers and storage Containers—Tight containers.

Spironolactone

スピロノラクトン

\[
C_{24}H_{37}O_4S: 416.57
\]

7α-Acetylsulfonyl-3-oxo-17α-pregn-4-ene-21,17-carbolactone [52-01-7]

Spironolactone, when dried, contains not less than 97.0% and not more than 103.0% of spironolactone (C_{24}H_{37}O_4S).

Description Spironolactone occurs as a white to light yellow-brown fine powder.

It is freely soluble in chloroform, soluble in ethanol (95), slightly soluble in methanol, and practically insoluble in water.

Melting point: 198 – 207°C (Insert the capillary tube into a bath at about 125°C, and continue the heating so that the temperature rises at a rate of about 10°C per minute in the range between 140°C and 185°C, and when the temperature is near the expected melting range, reduce the heating so that the temperature rises at a rate of about 3°C per minute.)

It shows crystal polymorphism.

Identification (1) Determine the absorption spectrum of a solution of Spironolactone in methanol (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Spironolactone RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Spironolactone, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of Spironolactone RS: both spectra exhibit similar intensities of absorption at the same wave numbers. If any difference appears between the spectra, dissolve Spironolactone and Spironolactone RS in methanol, respectively, then evaporate methanol to dryness, and repeat the test on the residues.

Optical rotation \([\alpha]_\text{D}^2 = -33 \sim -37^\circ \) (after drying, 0.25 g, chloroform, 25 mL, 20 mm).

Purity (1) Mercapto compounds—Shake 2.0 g of Spironolactone with 20 mL of water, and filter. To 10 mL of the filtrate add 1 mL of starch TS and 0.05 mL of 0.01 mol/L iodine VS, and mix: a blue color develops.

(2) Related substances—Dissolve 0.20 g of Spironolactone in 10 mL of ethanol (95), and use this solution as the sample solution. Pipet 1 mL of the sample solution, add ethanol (95) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.05>. Spot 5 μL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with n-butyl acetate to a distance of about 15 cm, and air-dry the plate. Spray evenly a solution of sulfuric acid in methanol (1 in 10) on the plate, and heat the plate at 105°C for 10 minutes: the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying <2.41> Not more than 0.5% (1 g, 105°C, 2 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 50 mg each of Spironolactone and Spironolactone RS, previously dried at 105°C for 2 hours, dissolve in methanol to make exactly 250 mL. Pipet 5 mL of each of these solutions, add methanol to make exactly 100 mL, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with these solutions as directed under Ultraviolet-visible Spectrophotometry <2.24>, and determine the absorbances, \(A_1 \) and \(A_3 \), of the sample solution and standard solution at 238 nm.

\[
\text{Amount (mg) of spironolactone (C}_{24}\text{H}_{37}\text{O}_4\text{S)} = M_S \times A_1/A_3
\]

\(M_S \): amount (mg) of Spironolactone RS taken

Containers and storage Containers—Tight containers.

Spironolactone Tablets

スピロノラクトン錠

Spironolactone Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of spironolactone (C_{24}H_{37}O_4S: 416.57).

Method of preparation Prepare as directed under Tablets, with Spironolactone.

Identification To an amount of powdered Spironolactone Tablets, equivalent to 10 mg of Spironolactone, add 100 mL of methanol, shake vigorously, and centrifuge. To 5 mL of the supernatant liquid add methanol to make 50 mL, and determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.24>: it exhibits a maximum between 236 nm and 240 nm.

Uniformity of dosage units <6.02> Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement.

To 1 tablet of Spironolactone Tablets add a mixture of water and acetonitrile (1:1) to make exactly \(V \) mL so...
that each mL contains about 0.5 mg of spironolactone (C_{24}H_{32}O_{5}). After stirring for 30 minutes, centrifuge, and use the supernatant liquid as the sample solution. Then, proceed as directed in the Assay.

Amount (mg) of spironolactone (C_{24}H_{32}O_{5})
\[M_S = \frac{M_X \times A_T}{A_S} \times \frac{V}{V/50} \]

\(M_S \): Amount (mg) of Spironolactone RS taken

Dissolution When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of a solution prepared by dissolving 1 g of polysorbate 80 in water to make 900 mL as the dissolution medium, the dissolution rate in 30 minutes of a 25-mg tablet and a 50-mg tablet are not less than 80% and not less than 70%, respectively.

Start the test with 1 tablet of Spironolactone Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet \(V' \) mL of the subsequent filtrate, add the dissolution medium to make exactly \(V' \) mL so that each mL contains about 14 μg of spironolactone (C_{24}H_{32}O_{5}), and use this solution as the sample solution. Separately, weigh accurately about 28 mg of Spironolactone RS, previously dried at 105°C for 2 hours, dissolve in 20 mL of ethanol (95), and add the dissolution medium to make exactly 100 mL. Pipet \(5 \) mL of this solution, add the dissolution medium to make exactly 100 mL, and use this solution as the standard solution. Determine the absorbances, \(A_T \) and \(A_S \), at 243 nm of the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry 2.2.41, using the dissolution medium as the blank.

Dissolution rate (%) with respect to the labeled amount of spironolactone (C_{24}H_{32}O_{5})
\[= \frac{M_X \times A_T}{A_S} \times \frac{V' \times V}{V \times C} \times 45 \]

\(M_S \): Labeled amount (mg) of spironolactone (C_{24}H_{32}O_{5}) in 1 tablet

Assay Weigh accurately the mass of not less than 10 Spironolactone Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 50 mg of spironolactone (C_{24}H_{32}O_{5}), add a mixture of water and acetonitrile (1:1) to make exactly 100 mL. After stirring this solution for 30 minutes, centrifuge, and use the supernatant liquid as the sample solution. Separately, weigh accurately about 25 mg of Spironolactone RS, previously dried at 105°C for 2 hours, dissolve in a mixture of water and acetonitrile (1:1) to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly 10 mL of each of the sample solution and standard solution as directed under Liquid Chromatography 2.2.41 according to the following conditions, and determine the peak areas, \(A_T \) and \(A_S \), of spironolactone in each solution.

Amount (mg) of spironolactone (C_{24}H_{32}O_{5})
\[= \frac{M_X \times A_T}{A_S} \times 2 \]

\(M_S \): Amount (mg) of Spironolactone RS taken

Operating conditions

- **Detector:** An ultraviolet absorption photometer (wavelength: 230 nm).
- **Column:** A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
- **Column temperature:** A constant temperature of about 25°C.
- **Mobile phase:** A mixture of methanol and water (3:2).
- **Flow rate:** Adjust so that the retention time of spironolactone is about 11 minutes.

System suitability

- **System performance:** When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of spironolactone are not less than 4000 and not more than 1.5, respectively.
- **System repeatability:** When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of spironolactone is not more than 1.0%.

Containers and storage Containers—Tight containers.

Corn Starch

トウモロコシデンプン

This monograph is harmonized with the European Pharmacopoeia and the U.S. Pharmacopeia.

The parts of the text that are not harmonized are marked with symbols (● ●). Information on the harmonization with the European Pharmacopoeia and the U.S. Pharmacopeia is available on the website of the Pharmaceuticals and Medical Devices Agency.

Corn Starch consists of starch granules derived from the ripen seeds of Zea mays Linnè (Gramineae).

- **Description** Corn Starch occurs as white to pale yellow-white, masses or powder.
- **Purity** (1) Iron—To 1.5 g of Corn Starch add 15 mL of 2 mol/L hydrochloric acid TS, mix, filter, and use the filtrate as the test solution. To 2.0 mL of Standard Iron Solution add water to make 20 mL, and use this solution as the control solution. Put 10 mL of each of the test solution and control solution in test tubes, add 2 mL of a solution of citric acid (1 in 5) and 0.1 mL of mercapto acetic acid, and mix. Alkalize with ammonia solution (28) to litmus paper, add water to make 20 mL, and mix. Transfer 10 mL of each of these solutions into test tubes, allow to stand for 5 minutes,
and compare the color of these solutions against a white background: the color of the test solution is not more intense than that of the control solution (not more than 10 ppm).

(2) Oxidizing substances—To 4.0 g of Corn Starch add 50.0 mL of water, shake for 5 minutes, and centrifuge. To 30.0 mL of the supernatant liquid add 1 mL of acetic acid (100) and 0.5 to 1.0 g of potassium iodide, shake, and allow to stand for 25 to 30 minutes at a dark place. Add 1 mL of starch TS, and titrate <2.50 with 0.002 mol/L sodium thiosulfate VS until the color of the solution disappears. Perform a blank determination in the same manner, and make any necessary correction: the volume of 0.002 mol/L sodium thiosulfate VS consumed is not more than 1.4 mL (not more than 20 ppm, calculated as hydrogen peroxide).

(3) Sulfur dioxide—
(i) Apparatus Use as shown in the following figure.

(ii) Procedure Introduce 150 mL of water into the three-necked round-bottom flask, close the tap of the cylindrical dropping funnel, and pass carbon dioxide through the whole system at a rate of 100 ± 5 mL per minute. Pass cooling water through the condenser, and place 10 mL of hydrogen peroxide-sodium hydroxide TS in the test tube. After 15 minutes, remove the funnel without interrupting the stream of carbon dioxide, and introduce through the opening into the flask about 25 g of Corn Starch, accurately weighed, with the aid of 100 mL of water. Apply tap grease to the outside of the connection part of the funnel, and load the funnel. Close the tap of the funnel, pour 80 mL of 2 mol/L hydrochloric acid TS into the funnel, open the tap to introduce the hydrochloric acid into the flask, and close the tap while several mL of the hydrochloric acid remains, in order to avoid losing sulfur dioxide. Place the flask in a water bath, and heat the mixture for 1 hour. Transfer the contents of the test tube with the aid of a little water to a wide-necked conical flask. Heat in a water bath for 15 minutes, and cool. Add 0.1 mL of bromphenol blue TS, and titrate <2.50 with 0.1 mol/L sodium hydroxide VS until the color changes from yellow to violet-blue lasting for at least 20 seconds. Perform a blank determination in the same manner, and make any necessary correction. Calculate the amount of sulfur dioxide by applying the following formula: it is not more than 50 ppm.

$$\text{Amount (ppm) of sulfur dioxide} = \frac{V}{M} \times 1000 \times 3.203$$

M: Amount (g) of Corn Starch taken
V: Amount (mL) of 0.1 mol/L sodium hydroxide VS consumed

(4) Foreign matter—Under a microscope <5.01, Corn Starch does not contain starch granules of any other origin. It may contain a minute quantity, if any, of fragments of the tissue of the original plant.◆

Loss on drying <2.41 Not more than 15.0% (1 g, 130°C, 90 minutes).

Residue on ignition <2.44 Not more than 0.6% (1 g).
◆Containers and storage Containers—Well-closed containers.

Potato Starch

バレイショデンプン

This monograph is harmonized with the European Pharmacopoeia and the U.S. Pharmacopeia.

The parts of the text that are not harmonized are marked with symbols (◆◆). Information on the harmonization with the European Pharmacopoeia and the U.S. Pharmacopeia is available on the website of the Pharmaceuticals and Medical Devices Agency.

Potato Starch consists of starch granules derived from the tuber of Solanum tuberosum Linné (Solanaceae).

◆Description Potato Starch occurs as a white powder.

It is practically insoluble in water and in ethanol (99.5).◆

Identification (1) Examined under a microscope <5.01, using a mixture of water and glycerin (1:1), Potato Starch presents granules, either irregularly shaped, ovoid or pear-shaped, usually 30 – 100 μm in size but occasionally exceeding 100 μm, or rounded, 10 – 35 μm in size. There are occasional compound granules having two to four components. The ovoid and pear-shaped granules have an eccentric hilum and the rounded granules acentric or slightly eccentric hilum. All granules show clearly visible concentric striations. Between orthogonally oriented polarizing plates or prisms, the granules show a distinct black cross intersecting at the hilum.

(2) To 1 g of Potato Starch add 50 mL of water, boil for 1 minute, and allow to cool: a thick, opalescent mucilage is formed.

(3) To 1 mL of the mucilage obtained in (2) add 0.05 mL of diluted iodine TS (1 in 10): an orange-red to deep blue color is formed, and the color disappears by heating.

$\text{pH} < 2.5$ Put 5.0 g of Potato Starch in a non-metal vessel, add 25.0 mL of freshly boiled and cooled water, mix gently for 1 minute, and allow to stand for 15 minutes: the pH of the solution is between 5.0 and 8.0.

Purity (1) Iron—To 1.5 g of Potato Starch add 15 mL of 2 mol/L hydrochloric acid TS, mix, filter, and use the filtrate as the test solution. To 2.0 mL of Standard Iron Solution add water to make 20 mL, and use this solution as the control solution. Put 10 mL each of the test solution and the
control solution in test tubes, add 2 mL of a solution of citric acid (1 in 5) and 0.1 mL of mercapto acetic acid, and mix. Alkalize with ammonia solution (28) to litmus paper, add water to make 20 mL, and mix. Transfer 10 mL each of these solutions into test tubes, allow to stand for 5 minutes, and compare the color of these solutions against a white background: the color of the test solution is not more intense than that of the control solution (not more than 10 ppm).

(2) Oxidizing substances—To 4.0 g of Potato Starch add 50.0 mL of water, shake for 5 minutes, and centrifuge. To 30.0 mL of the supernatant liquid add 1 mL of acetic acid (100) and 0.5 to 1.0 g of potassium iodide, shake, and allow to stand for 25 to 30 minutes at a dark place. Add 1 mL of starch TS, and titrate with 0.002 mol/L sodium thiosulfate VS until the color of the solution disappears. Perform a blank determination in the same manner, and make any necessary correction: the volume of 0.002 mol/L sodium thiosulfate VS consumed is not more than 1.4 mL (not more than 20 ppm, calculated as hydrogen peroxide).

(3) Sulfur dioxide—

(i) Apparatus Use as shown in the figure.

(ii) Procedure Introduce 150 mL of water into the three-necked round-bottom flask, close the tap of the cylindrical dropping funnel, and pass carbon dioxide through the whole system at a rate of 100 ± 5 mL per minute. Pass cooling water through the condenser, and place 10 mL of hydrogen peroxide-sodium hydroxide TS in the test tube. After 15 minutes, remove the funnel without interrupting the stream of carbon dioxide, and introduce through the opening into the flask about 25 g of Potato Starch, accurately weighed, with the aid of 100 mL of water. Apply tap grease to the outside of the connection part of the funnel, and load the funnel. Close the tap of the funnel, pour 80 mL of 2 mol/L hydrochloric acid TS into the funnel, open the tap to introduce the hydrochloric acid into the flask, and close the tap while several mL of the hydrochloric acid remains, in order to avoid losing sulfur dioxide. Place the flask in a water bath, and heat the mixture for 1 hour. Transfer the contents of the test tube with the aid of a little water to a wide-necked conical flask. Heat in a water bath for 15 minutes, and cool. Add 0.1 mL of bromophenol blue TS, and titrate with 0.1 mol/L sodium hydroxide VS until the color changes from yellow to violet-blue lasting for at least 20 seconds. Perform a blank determination in the same manner, and make any necessary correction. Calculate the amount of sulfur dioxide by applying the following formula: it is not more than 50 ppm.

\[
\text{Amount (ppm) of sulfur dioxide} = \frac{V \times M}{1000 \times 3.203} \\
M: \text{Amount (g) of Potato Starch taken} \\
V: \text{Amount (mL) of 0.1 mol/L sodium hydroxide VS consumed}
\]

(4) Foreign matter—Under a microscope <5.0>, Potato Starch does not contain starch granules of any other origin. It may contain a minute quantity, if any, of fragments of the tissue of the original plant.

Loss on drying <2.4> Not more than 20.0% (1 g, 130°C, 90 minutes).

Residue on ignition <2.4> Not more than 0.6% (1 g).

Containers and storage Containers—Well-closed containers.

Rice Starch

コメデンプン

This monograph is harmonized with the European Pharmacopoeia and the U.S. Pharmacopeia.

The parts of the text that are not harmonized are marked with symbols (• •). Information on the harmonization with the European Pharmacopoeia and the U.S. Pharmacopeia is available on the website of the Pharmaceuticals and Medical Devices Agency.

Rice Starch consists of the starch granules obtained from the caryopsis of *Oryza sativa* Linné (Gramineae).

Description Rice Starch occurs as a white mass or powder. It is practically insoluble in water and in ethanol (99.5). •

Identification (1) Examined under a microscope <5.0> using a mixture of water and glycerin (1:1), Rice Starch presents polyhedral, simple grains 1 – 10 μm, mostly 4 – 6 μm, in size. These simple grains often gather in ellipsoidal, compound grains 50 – 100 μm in diameter. The granules have a clearly visible central hilum and there are no concentric striations. Between orthogonally orientated polarizing plates or prisms, the starch granules show a distinct black cross intersecting at the hilum.

(2) To 1 g of Rice Starch add 50 mL of water, boil for 1 minute, and allow to cool: a thin, cloudy mucilage is formed.

(3) To 1 mL of the mucilage obtained in (2) add 0.05 mL of diluted iodine TS (1 in 10): an orange-red to dark-blue color is produced which disappears on heating.

pH <2.5> To 5.0 g of Rice Starch add 25 mL of freshly boiled and cooled water, and mix gently for 1 minute to achieve suspension. Allow to stand for 15 minutes: the pH of the solution is between 5.0 and 8.0.

Purity (1) Iron—To 1.5 g of Rice Starch add 15 mL of 2 mol/L hydrochloric acid TS, mix, filter, and use the filtrate as the test solution. To 2.0 mL of Standard Iron Solution...
add water to make 20 mL, and use this solution as the control solution. Put 10 mL of each of the test solution and the control solution in test tubes, add 2 mL of a solution of citric acid (1 in 5) and 0.1 mL of mercapto acetic acid, and mix. Add ammonia solution (28) to these solutions until the color of a litmus paper changes from red to blue, add water to make 20 mL, and mix. Transfer 10 mL of each of these solutions into test tubes, allow to stand for 5 minutes, and compare the color of these solutions against a white background: the color of the test solution is not more intense than that of the control solution (not more than 10 ppm).

(2) Oxidizing substances—To 4.0 g of Rice Starch add 50 mL of water, shake for 5 minutes, and centrifuge. To 30 mL of the supernatant liquid add 1 mL of acetic acid (100) and 0.5 to 1.0 g of potassium iodide, shake, and allow to stand for 25 to 30 minutes in the dark. Add 1 mL of starch TS, and titrate \(<2.50 \times 0.002 \) mol/L sodium thiosulfate VS until the starch-iodine color disappears. Perform a blank determination in the same manner, and make any necessary correction. Not more than 1.4 mL of 0.002 mol/L sodium thiosulfate VS is required (not more than 20 ppm, calculated as hydrogen peroxide).

(3) Sulfur dioxide—

(i) Apparatus Use as shown in the figure.

(ii) Procedure Introduce 150 mL of water into the three-necked round-bottom flask, close the tap of the cylindrical dropping funnel, and pass carbon dioxide through the whole system at a rate of 100 ± 5 mL per minute. Pass cooling water through the condenser, and place 10 mL of hydrogen peroxide-sodium hydroxide TS in the test tube. After 15 minutes, remove the funnel without interrupting the stream of carbon dioxide, and introduce through the opening into the flask about 25 g of Rice Starch, accurately weighed, with the aid of 100 mL of water. Apply tap grease to the outside of the connection part of the funnel, and load the funnel. Close the tap of the funnel, pour 80 mL of 2 mol/L hydrochloric acid TS into the funnel, open the tap to introduce the hydrochloric acid into the flask, and close the tap while several mL of the hydrochloric acid remains, in order to avoid losing sulfur dioxide. Place the flask in a water bath, and heat the mixture for 1 hour. Transfer the contents of the test tube with the aid of a little water to a wide-necked conical flask. Heat on a water bath for 15 minutes and allow to cool. Add 0.1 mL of bromophenol blue TS, and titrate \(<2.50 \times 0.001 \) mol/L sodium hydroxide VS until the color changes from yellow to violet-blue lasting for at least 20 seconds. Perform a blank determination in the same manner, and make any necessary correction. Calculate the amount of sulfur dioxide by applying the following formula: it is not more than 50 ppm.

\[
\text{Amount (ppm) of sulfur dioxide} = \frac{V}{M} \times 1000 \times 3.203
\]

\(M \): Amount (g) of Rice Starch taken
\(V \): Amount (mL) of 0.1 mol/L sodium hydroxide VS consumed

(2) Foreign matter—Under a microscope \(<5.0 \times \), Rice Starch does not contain starch granules of any other origin. It may contain a minute quantity, if any, of fragments of the tissue of the original plant.

Loss on drying \(<2.4 \times \) Not more than 15.0% (1 g, 130°C, 90 minutes).

Residue on ignition \(<2.4 \times \) Not more than 0.6% (1 g).

Containers and storage Containers—Well-closed containers.

Wheat Starch

コムギデンプン

This monograph is harmonized with the European Pharmacopoeia and the U.S. Pharmacopeia.

The corresponding part of the attributes/provisions which are agreed as non-harmonized within the scope of the harmonization is marked with symbols (○・), and the corresponding parts which are agreed as the JP local requirement other than the scope of the harmonization are marked with symbols (○ ●). Information on the harmonization with the European Pharmacopoeia and the U.S. Pharmacopeia is available on the website of the Pharmaceuticals and Medical Devices Agency.

Wheat Starch consists of the starch granules obtained from Caryopsis of wheat, Triticum aestivum Linné (Gramineae).

Description Wheat Starch occurs as white masses or powder.

It is practically insoluble in water and in ethanol (99.5) ●

Identification (1) Examine under a microscope \(<5.0 \times \) using a mixture of water and glycerin (1:1), Wheat Starch presents large and small granules, and, very rarely, intermediate sizes. The large granules, usually 10 – 60 μm in diameter, are discoid or, more rarely, reniform when seen face-on. The central hilum and striations are invisible or barely visible and the granules sometimes show cracks on the edges. Seen in profile, the granules are elliptical and fusiform and the hilum appears as a slit along the main axis. The small granules, rounded or polyhedral, are 2 – 10 μm in diameter. Between orthogonally oriented polarizing plates or prisms, the granules show a distinct black cross intersecting at the hilum.

(2) To 1 g of Wheat Starch add 50 mL of water, boil for 1 minute, and allow to cool: a thin, cloudy mucilage is
formed.

(3) To 1 mL of the mucilage obtained in (2) add 0.05 mL of diluted iodine TS (1 in 10): a deep blue color is formed, and the color disappears by heating.

\[\text{pH} \leq 2.5 \]

Put 5.0 g of Wheat Starch in a non-metal vessel, add 25.0 mL of freshly boiled and cooled water, mix gently for 1 minute, and allow to stand for 15 minutes: the pH of the solution is between 4.5 and 7.0.

Purity (1) Iron—To 1.5 g of Wheat Starch add 15 mL of 2 mol/L hydrochloric acid TS, mix, filter, and use the filtrate as the test solution. To 2.0 mL of Standard Iron Solution add water to make 20 mL, and use this solution as the control solution. Put 10 mL each of the test solution and the control solution in test tubes, add 2 mL of a solution of citric acid (2 in 10) and 0.1 mL of mercapto acetic acid, and mix. Alkalize with ammonia solution (28) to litmus paper, add water to make 20 mL, and mix. Transfer 10 mL each of these solutions into test tubes, allow to stand for 5 minutes, and compare the color of these solutions against a white background: the color of the test solution is not more intense than that of the control solution (not more than 10 ppm).

(2) Oxidizing substances—To 4.0 g of Wheat Starch add 50 mL of water, shake for 5 minutes, and centrifuge. To 30 mL of the supernatant liquid add 1 mL of acetic acid (100) and 0.5 to 1.0 g of potassium iodide, shake, and allow to stand for 25 to 30 minutes at a dark place. Add 1 mL of starch TS, and titrate with 0.002 mol/L sodium thiosulfate VS until the color of the solution disappears. Perform a blank determination in the same manner, and make any necessary correction: the volume of 0.002 mol/L sodium thiosulfate VS consumed is not more than 1.4 mL (not more than 20 ppm, calculated as hydrogen peroxide).

(3) Sulfur dioxide—

(i) Apparatus

Use as shown in the figure.

(ii) Procedure

Introduce 150 mL of water into the three-necked round-bottom flask, close the tap of the cylindrical dropping funnel, and pass carbon dioxide through the whole system at a rate of 100 ± 5 mL per minute. Pass cooling water through the condenser, and place 10 mL of hydrogen peroxide-sodium hydroxide TS in the test tube. After 15 minutes, remove the funnel without interrupting the stream of carbon dioxide, and introduce through the opening into the flask about 25 g of Wheat Starch, accurately weighed, with the aid of 100 mL of water. Apply tap water to the outside of the connection part of the funnel, and load the funnel. Close the tap of the funnel, pour 80 mL of 2 mol/L hydrochloric acid TS into the funnel, open the tap to introduce the hydrochloric acid into the flask, and close the tap while several mL of the hydrochloric acid remains, in order to avoid losing sulfur dioxide. Place the flask in a water bath, and heat the mixture for 1 hour. Transfer the contents of the test tube with the aid of a little water to a wide-necked conical flask. Heat in a water bath for 15 minutes, and cool. Add 0.1 mL of bromphenol blue TS, and titrate with 0.1 mol/L sodium hydroxide VS until the color changes from yellow to violet-blue lasting for at least 20 seconds. Perform a blank determination in the same manner, and make any necessary correction. Calculate the amount of sulfur dioxide by applying the following formula: it is not more than 50 ppm.

\[
\text{Amount (ppm) of sulfur dioxide} = \frac{V \times M}{W} \times 3.203
\]

\(M \): Amount (g) of Wheat Starch taken

\(V \): Amount (mL) of 0.1 mol/L sodium hydroxide VS consumed

Foreign matter. Under a microscope <5.0>, Wheat Starch does not contain starch granules of any other origin. It may contain a minute quantity, if any of fragments of the tissue of the original plant.

(5) Total protein—Weigh accurately about 3 g of Wheat Starch, place it in a Kjeldahl flask, add 4 g of a decomposition accelerator (a powdered mixture of 100 g of potassium sulfate, 3 g of copper (II) sulfate pentahydrate and 3 g of titanium (IV) oxide), wash down any adhering substances from the neck of the flask with a fine jet of water, add 25 mL of sulfuric acid allowing to flow down the inside wall of the flask, and mix the contents. Close the mouth of the flask loosely, for example by means of a glass bulb with a short stem, to avoid excessive loss of the sulfuric acid. Heat the flask gradually at first, then increase the temperature until there is vigorous boiling with condensation of sulfuric acid in the neck of the flask, preventing the upper part of the flask from becoming overheated. Continue the heating until the solution becomes clear, and the inside wall of the flask is free from a carbonaceous material. After cooling, dissolve the solid material by adding cautiously 25 mL of water, cool again, and place in a steam-distillation apparatus previously washed by passing steam. Add exactly 25 mL of 0.01 mol/L hydrochloric acid VS and a suitable amount of water into the receiver, and immerse the tip of the condenser in this acid solution. Add the same quantity of a solution of sodium hydroxide (21 in 50) as used for a blank determination through the funnel, and distill immediately by passing steam through the mixture. Collect about 40 mL of distillate, lower the receiver so that the tip of the condenser is above the surface of the acid solution, then continue the distillation for a while, and rinse the end part of the condenser with a small amount of water. Titrate with 0.025 mol/L sodium hydroxide VS until the color of the solution changes from red-purple through grayish blue to green (indicator: 3 drops of methyl red-methylene blue TS). Perform a blank determination in the same manner. The amount of a solution of sodium hydroxide (21 in 50) to be added from the funnel is sufficient to change the color of the solution in the flask from bluish green to dark brown or black.
Amount (% of nitrogen) = \((a - b) \times 0.035/M \)

\(M \): Amount (g) of Wheat Starch taken
\(a \): Volume (mL) of 0.025 mol/L sodium hydroxide VS consumed in a blank determination
\(b \): Volume (mL) of 0.025 mol/L sodium hydroxide VS consumed in the sample determination

The amount of total protein is not more than 0.3% [0.048% as nitrogen (N:14.01) (using conversion factor of nitrogen to protein, 6.25)].

Loss on drying <2.4> Not more than 15.0% (1 g, 130°C, 90 minutes).

Residue on ignition <2.4> Not more than 0.6% (1 g).

Containers and storage Containers—Well-closed containers.

Stearic Acid

ステアリン酸

This monograph is harmonized with the European Pharmacopoeia and the U.S. Pharmacopeia.

The parts of the text that are not harmonized are marked with symbols (◆ ◆). Information on the harmonization with the European Pharmacopoeia and the U.S. Pharmacopeia is available on the website of the Pharmaceuticals and Medical Devices Agency.

Stearic Acid is a mixture consisting mainly of stearic acid (C₁₈H₃₄O₂; 284.48) and palmitic acid (C₁₆H₃₂O₂; 256.42) obtained from fats or oils of vegetable or animal origin.

It occurs as three types, stearic acid 50, stearic acid 70 and stearic acid 95, composed with different fatty acid composition. Each type contains respectively the amount of stearic acid and the sum of stearic acid and palmitic acid as shown in the following table.

<table>
<thead>
<tr>
<th>Type</th>
<th>Fatty acid composition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Steric acid (%) Sum of stearic acid and palmitic acid (%)</td>
</tr>
<tr>
<td>Steric acid 50</td>
<td>40.0 – 60.0 not less than 90.0</td>
</tr>
<tr>
<td>Steric acid 70</td>
<td>60.0 – 80.0 not less than 90.0</td>
</tr>
<tr>
<td>Steric acid 95</td>
<td>not less than 90.0 not less than 96.0</td>
</tr>
</tbody>
</table>

The label states the type of Stearic Acid.

Description Stearic acid occurs as white, unctuous masses, crystalline masses or powder. It has a faint, fatty odor.

It is soluble in ethanol (99.5), and practically insoluble in water.

Congealing point The apparatus consists of a test tube about 25 mm in diameter and 150 mm long placed inside a test tube about 40 mm in diameter and 160 mm long. The inner tube is closed by a stopper which carries a thermometer about 175 mm long and graduated in 0.2°C fixed so that the upper end of the bulb is above 15 mm above the bottom of the tube. The stopper has a hole allowing the passage of the stem of a stirrer made from a glass rod or other suitable material formed at one end into a loop of about 18 mm overall diameter at right angles to the rod. The inner tube with its jacket is supported centrally in a 1-L beaker containing a suitable cooling liquid to within 20 mm of the top. A thermometer is supported in the cooling bath.

Place in the inner tube sufficient quantity of the liquid or previously melted substance to be examined, to cover the thermometer bulb and determine the approximate congealing point by cooling rapidly. Place the inner tube in a bath about 5°C above the approximate congealing point until all but the last traces of crystals are melted. Fill the beaker with water or a saturated solution of sodium chloride, at a temperature about 5°C lower than the expected congealing point, insert the inner tube into the outer tube, ensuring that some seed crystals are present, and stir thoroughly until solidification takes place. Note the highest temperature observed during solidification.

The apparatus directed under Congealing Point Determination <2.4> is also can be used. Transfer the melted sample into sample container B up to the marked line C. Adjust the immersion line H of thermometer F to the same level of the meniscus of the sample, and then determine the approximate congealing point by cooling rapidly. Place the sample container B in a bath at a temperature about 5°C above the approximate congealing point until all but the last traces of crystals are melted. Fill bath D with water or a saturated solution of sodium chloride, at a temperature about 5°C lower than the expected congealing point, and set the sample container B in A. Ensuring that some seed crystals are present, stir thoroughly until solidification takes place. Note the highest temperature observed during solidification.

The congealing point of stearic acid 50 is 53 – 59°C, of stearic acid 70 is 57 – 64°C, and of stearic acid 95 is 64 – 69°C.

Acid value <1.13> 194 – 212

Iodine value Introduce about 1 g of Stearic Acid, weighed accurately, into a 250-mL flask fitted with a ground-glass stopper and previously dried or rinsed with acetic acid (100), and dissolve it in 15 mL of chloroform unless otherwise prescribed. Add very slowly exactly 25 mL of iodine bromide (II) TS. Close the flask and keep it in the dark for 30 minutes unless otherwise prescribed, shaking frequently. Add 10 mL of a solution of potassium iodine (1 in 10) and 100 mL of water. Titrate <2.503> with 0.1 mol/L sodium thiosulfate VS, shaking vigorously until the yellow color is almost discharged. Add 5 mL of starch TS and continue the titration adding the 0.1 mol/L sodium thiosulfate VS dropwise until the color is discharged. Perform a blank determination in the same manner. When the iodine value is calculated by the following equation, that of stearic acid 50 and 70 is not more than 4.0, and of stearic acid 95 is not more than 1.5.

\[\text{Iodine value} = (a - b) \times 1.269/M \]

\(M \): Amount (g) of Stearic Acid taken
\(a \): Volume (mL) of 0.1 mol/L sodium thiosulfate VS consumed in the blank determination
\(b \): Volume (mL) of 0.1 mol/L sodium thiosulfate VS consumed in the test

Purity (1) Acidity—Melt 5.0 g, shake for 2 minutes with 10 mL of hot carbon dioxide-free water, cool slowly and filter. To the filtrate add 0.05 mL of methyl orange TS: no red color develops.

(2) Heavy metals <1.07>—Proceed with 1.0 g of Stearic Acid according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).
Stearyl Alcohol

Assay Place 0.100 g of Stearic Acid in a small conical flask fitted with a reflux condenser. Add 5.0 mL of boron trifluoride-methanol TS, shake, and boil under reflux for about 10 minutes to dissolve. Add 4 mL of heptane through the condenser, and boil again under reflux for 10 minutes. Allow to cool, add 20 mL of a saturated solution of sodium chloride, shake and allow the layers to separate. Remove 2 mL of the separated heptane layer, and dry it over about 0.2 g of anhydrous sodium sulphate, previously washed with heptane. Take 1.0 mL of the dried heptane layer in a 10-mL volumetric flask, add heptane to make up to 10 mL, and use this solution as the sample solution. Perform the test with 1 µL of the sample solution as directed under Gas Chromatography <2.02> according to the following conditions, and determine the peak area of methyl stearate, A, and the area of all of fatty acid ester peaks, B, and calculate the content (%) of stearic acid in the fatty acid fraction by the following equation.

\[
\text{Content (\%) of stearic acid} = \frac{A}{B} \times 100
\]

In the same way, calculate the content (%) of palmitic acid, and calculate the sum (%) of stearic acid and palmitic acid.

Operating conditions—

Detector: A hydrogen flame-ionization detector.

Column: A fused silica column 0.32 mm in inside diameter and 30 m in length, coated the inside surface with a layer about 0.5 µm thick of polyethylene glycol 20 M for gas chromatography.

Column temperature: Maintain at 70°C for 2 minutes after injection, raise the temperature at a rate of 5°C per minute to 240°C, and maintain at 240°C for 5 minutes.

Injection port temperature: A constant temperature of about 220°C.

Detector temperature: A constant temperature of about 260°C.

Carrier gas: Helium.

Flow rate: 2.4 mL per minute.

Splitless.

Time span of measurement: For 41 minutes after sample injection, beginning after the solvent peak.

System suitability—

Test for required detectability: Put 50 mg each of stearic acid for gas chromatography and palmitic acid for gas chromatography in a small conical flask fitted with a reflux condenser. Add 5.0 mL of boron trifluoride-methanol TS, mix, then proceed as the same manner for the sample solution, and use the solution so obtained as the solution for system suitability test. Pipet 1 mL of the solution for system suitability test, add heptane to make exactly 10 mL. Pipet 1 mL of this solution, add heptane to make exactly 10 mL. Again, pipet 1 mL of this solution, and add heptane to make exactly 10 mL. Confirm that the peak area of methyl stearate obtained with 1 µL of this solution is equivalent to 0.05 to 0.15% of that with 1 µL of the solution for system suitability test.

System performance: When the procedure is run with 1 µL of the solution for system suitability test under the above operating conditions, the relative retention time of methyl palmitate to methyl stearate is about 0.9, and the resolution between these peaks is not less than 5.0.

System repeatability: When the test is repeated 6 times with 1 µL of the solution for system suitability test under the above operating conditions, the relative standard deviation of the peak areas of methyl palmitate and methyl stearate is not more than 3.0%. Furthermore, the relative standard deviation of the ratio of the peak area of methyl palmitate to the peak area of methyl stearate obtained from the 6-time repetition is not more than 1.0%.

Containers and storage Containers—Well-closed containers.

Stearyl Alcohol

Stearyl Alcohol is a mixture of solid alcohols, and consists chiefly of stearyl alcohol (C_{18}H_{35}O: 270.49).

Description Stearyl Alcohol occurs as a white unctuous mass. It has a faint, characteristic odor. It is tasteless.

It is freely soluble in ethanol (95), in ethanol (99.5) and in diethyl ether, and practically insoluble in water.

Melting point 56 – 62°C Prepare the sample according to Method 2 under Melting Point Determination, then attach tightly a capillary tube to the bottom of the thermometer by means of a rubber band or by any suitable means, and make the bottom of the capillary tube equal in position to the lower end of the thermometer. Insert this thermometer into a test tube about 17 mm in inside diameter and about 170 mm in height, fasten the thermometer with cork stopper so that the lower end of the thermometer is about 25 mm distant from the bottom of the test tube. Suspend the test tube in a beaker containing water, and heat the beaker with constant stirring until the temperature rises to 5°C below the expected melting point. Then regulate the rate of increase to 1°C per minute. The temperature at which the sample is transparent and no turbidity is produced is taken as the melting point.

Acid value Not more than 1.0.

Ester value Not more than 3.0.

Hydroxyl value 200 – 220

Iodine value Not more than 2.0.

Purity (1) Clarity of solution—Dissolve 3.0 g of Stearyl Alcohol in 25 mL of ethanol (99.5) by warming: the solution is clear.

(2) Alkalinity—To the solution obtained in (1) add 2 drops of phenolphthalein TS: no red color develops.

Residue on ignition Not more than 0.05% (2 g).

Containers and storage Containers—Well-closed containers.
Streptomycin Sulfate

ストレプトマイシン硫酸塩

\[(C_2H_3N-O_2)_2•3H_2SO_4\] 1457.38

2-Deoxy-2-methylamino-α-D-glucopyranosyl-(1→2)-5-deoxy-3-C-formyl-α-L-lyxofuranosyl-(1→4)-N,N′-diamidino-p-streptamine sesquisulfate

[3810-74-0]

Streptomycin Sulfate is the sulfate of an amino-glycoside substance having antibacterial activity produced by the growth of Streptomyces griseus.

It contains not less than 740 μg (potency) and not more than 820 μg (potency) per mg, calculated on the dried basis. The potency of Streptomycin Sulfate is expressed as mass (potency) of streptomycin \(\text{C}_{21}\text{H}_{30}\text{N}_{20}\text{O}_{12}: 581.57\).

Description Streptomycin Sulfate occurs as a white to light yellow-white powder.

It is freely soluble in water, and very slightly soluble in ethanol (95).

Identification (1) Dissolve 50 mg of Streptomycin Sulfate in 5 mL of water, add 1 mL of ninhydrin TS and 0.5 mL of pyridine, and heat for 10 minutes: a purple color is developed.

(2) Dissolve 10 mg each of Streptomycin Sulfate and Streptomycin Sulfate RS in 10 mL of water, and use these solutions as the sample solution and standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography \(<2.07\). Spot 10 μL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a solution of potassium dihydrogen phosphate (7 in 100) to a distance of about 12 cm, and air-dry the plate. Spray evenly a mixture of a solution of 1,3-diaminopropane and dilute sulfuric acid (1 in 500) on the plate, and heat the plate at 110°C for 5 minutes: the spot obtained from the sample solution corresponding to the spot from the standard solution is not more intense than the spot from the standard solution.

Assay Perform the test according to the Cylinder-plate method as directed under Microbial Assay for Antibiotics \(<4.08\) according to the following conditions.

(i) Test organism—*Bacillus subtilis* ATCC 6633

(ii) Culture medium—Use the medium i in 1 under (1) Agar media for seed and base layer, having pH 7.8 – 8.0 after sterilization.

(iii) Standard solutions—Weigh accurately an amount of Streptomycin Sulfate RS, previously dried, equivalent to about 20 mg (potency), dissolve in distilled phosphate buffer solution (pH 6.0) (1 in 2) to make exactly 50 mL, and use this solution as the standard stock solution.

(iv) Sample solutions—Weigh accurately an amount of Streptomycin Sulfate, equivalent to about 20 mg (potency),
dissolve in water to make exactly 50 mL. Take exactly a suitable amount of this solution, add 0.1 mol/L phosphate buffer solution (pH 8.0) to make solutions so that each mL contains 8 μg (potency) and 2 μg (potency), and use these solutions as the high concentration sample solution and the low concentration sample solution, respectively.

Containers and storage Containers—Tight containers.

Streptomycin Sulfate for Injection

Streptomycin Sulfate for Injection is a preparation for injection, which is dissolved before use.

It contains not less than 90.0% and not more than 110.0% of the labeled potency of streptomycin (C_{22}H_{22}O_{7}S_{8}: 982.80), calculated on the dried basis.

Description Streptomycin Sulfate for Injection occurs as a white or light yellow-white, masses or powder.

Identification Perform the test as directed in the Identification (2) under Streptomycin Sulfate.

Osmotic pressure ratio Being specified separately when the drug is granted approval based on the Law.

pH < 2.5 Not the pH of a solution prepared by dissolving an amount of Streptomycin Sulfate for Injection, equivalent to 2.0 g (potency) of Streptomycin Sulfate, in 10 mL of water is 4.5 to 7.0.

Purity Clarity and color of solution—Dissolve an amount of Streptomycin Sulfate for Injection, equivalent to 1.0 g (potency) of Streptomycin Sulfate, in 3 mL of water: The solution is clear, and the absorbance of this solution at 400 nm, determined as directed under Ultraviolet-visible Spectrophotometry < 2.24, is not more than 0.50.

Loss on drying < 2.4 Not more than 4.0% (0.5 g, reduced pressure not exceeding 0.67 kPa, 60°C, 3 hours).

Bacterial endotoxins < 0.01 Less than 0.10 EU/mg (potency).

Uniformity of dosage units < 0.02 It meets the requirement of the Mass variation test.

Foreign insoluble matter < 0.06 Perform the test according to Method 2: it meets the requirement.

Insoluble particulate matter < 0.07 It meets the requirement.

Sterility < 0.05 Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Perform the test according to the Cylinder-plate method as directed under Microbial Assay for Antibiotics < 0.02 according to the following conditions.

(i) Test organisms, culture medium and standard solutions—Proceed as directed in the Assay under Streptomycin Sulfate.

(ii) Sample solution—Weigh accurately the contents of not less than 10 Streptomycin Sulfate for Injection. Weigh accurately an amount of the contents, equivalent to 1 g (potency) of Streptomycin Sulfate, and dissolve in water to make exactly 200 mL. Take exactly a suitable amount of this solution, add 0.1 mol/L phosphate buffer solution (pH 8.0) to make a solutions so that each mL contains 8 μg (potency) and 2 μg (potency), and use these solutions as the high concentration sample solution and the low concentration sample solution, respectively.

Containers and storage Containers—Hermetic containers.

Sucralfate Hydrate

スクラルファート水和物

C_{12}H_{30}Al_{5}O_{3}(S_{5}xAl(OH)_{y})yH_{2}O

[54182-58-0]

Sucralfate Hydrate contains not less than 17.0% and not more than 21.0% of aluminum (Al: 26.98) and not less than 34.0% and not more than 43.0% of sucrose octasulfate ester (C_{12}H_{22}O_{26}S_{8}: 982.80), calculated on the dried basis.

Description Sucralfate Hydrate occurs as a white powder. It is odorless and tasteless.

It is practically insoluble in water, in hot water, in ethanol (95) and in diethyl ether.

It dissolves in dilute hydrochloric acid and in sulfuric acid-sodium hydroxide TS.

Identification (1) To 0.05 g of Sucralfate Hydrate in a small test tube add 0.05 g of fresh pieces of sodium, and melt by careful heating. Immerse the test tube immediately in 100 mL of water, break the test tube, shake well, and filter. To 5 mL of the filtrate add 1 drop of sodium pentacyanonitrosylferrate (III) TS: a red-purple color develops.

2. Dissolve 40 mg of Sucralfate Hydrate in 2 mL of dilute sulfuric acid, and add gently 2 mL of anthrone TS to make 2 layers: a blue color develops at the zone of contact, and gradually changes to blue-green.

3. Dissolve 0.5 g of Sucralfate Hydrate in 10 mL of dilute hydrochloric acid: the solution responds to Qualitative Tests < 0.09 for aluminum.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Sucralfate Hydrate in 10 mL of dilute sulfuric acid: the solution is clear and colorless.

2. Chloride < 0.05—Dissolve 0.5 g of Sucralfate Hydrate in 30 mL of dilute nitric acid, and heat gently to boiling. After cooling, add water to make 100 mL, and to 10 mL of this solution add 3 mL of dilute nitric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 0.70 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.50%)

3. Heavy metals < 0.05—Dissolve 1.0 g of Sucralfate Hydrate in 20 mL of a solution of sodium chloride (1 in 5) and 1 mL of dilute hydrochloric acid, and to this solution add 2 mL of dilute acetic acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution as follows: evaporate 1 mL of dilute hydrochloric acid on a water bath to dryness, and add 20 mL of a solution of sodium chloride (1 in 5), 2 mL of dilute acetic acid, 2.0 mL of Standard Lead Solution and water to make 50 mL (not more than 20 ppm).
(4) Arsenic ≤ 1.17—Dissolve 1.0 g of Sucralfate Hydrate in 5 mL of dilute hydrochloric acid, use this solution as the test solution, and perform the test (not more than 2 ppm).

(5) Free aluminum—To 3.0 g of Sucralfate Hydrate add 50 mL of water, heat in a water bath for 5 minutes, cool, and filter. Wash the residue with four 5-mL portions of water, combine the filtrate with the washings, add 2 mL of dilute hydrochloric acid, and heat in a water bath for 30 minutes. After cooling, neutralize the solution with sodium hydroxide TS, add water to make exactly 100 mL, and use this solution as the sample solution. Pipet 50 mL of the sample solution, add exactly 25 mL of 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS and 20 mL of acetic acid-ammonium acetate buffer solution (pH 4.5) and boil for 5 minutes. After cooling, add 50 mL of ethanol (95), and titrate <2.50 the excess disodium dihydrogen ethylenediamine tetraacetate with 0.05 mol/L zinc acetate VS until the color of the solution changes from green-purple through purple to red (indicator: 3 mL of dithizone TS). Perform a blank determination in the same manner (not more than 0.2%).

Each mL of 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS = 1.349 mg of Al

(6) Related substances—Proceed with 50 mL of the sample solution obtained in the Assay (2) Sucralfate ester as directed in the Assay (2) Sucralfate ester, and perform the test as directed under Liquid Chromatography $<2.01>$. Determine the peak area of sucrose octasulfate ester obtained from the sample solution and that of a related substance with the relative retention time about 0.7 to sucrose octasulfate ester by the automatic integration method, and calculate the ratio of the peak area of the related substance to that of sucrose octasulfate ester: it is not more than 0.1.

Detection sensitivity: Adjust so that the peak height of sucrose octasulfate ester from 50 µL of the standard solution obtained in the Assay (2) Sucralfate ester composes 60 to 100% of the full scale.

Loss on drying $<2.41>$ Not more than 14.0% (1 g, 105°C, 3 hours).

Acid-consuming capacity Weigh accurately about 0.25 g of Sucralfate Hydrate, previously dried, place in a 200-mL glass-stoppered conical flask, add exactly 100 mL of 0.1 mol/L hydrochloric acid VS, stopper the flask tightly, and shake at 37 ± 2°C for exactly 1 hour (150 shakings per minute, amplitude: 20 mm). After cooling in water for 5 minutes, pipet 10 mL of the supernatant liquid, and titrate <2.50 the excess acid with 0.1 mol/L sodium hydroxide VS until the pH becomes 3.5. Perform a blank determination in the same manner. The amount of 0.1 mol/L hydrochloric acid VS consumed per g of Sucralfate Hydrate is not less than 130 mL.

Assay (1) Aluminum—Weigh accurately about 1 g of Sucralfate Hydrate, dissolve in 10 mL of dilute hydrochloric acid by warming on a water bath, cool, and add water to make exactly 250 mL. Pipet 25 mL of this solution, add exactly 25 mL of 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS and 20 mL of acetic acid-ammonium acetate buffer solution (pH 4.5) and boil for 5 minutes. After cooling, add 50 mL of ethanol (95), and titrate <2.50 the excess disodium dihydrogen ethylenediamine tetraacetate with 0.05 mol/L zinc acetate VS until the color of the solution changes from green-purple through purple to red (indicator: 3 mL of dithizone TS). Perform a blank determination in the same manner.

Each mL of 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS = 1.349 mg of Al

(2) Sucrose octasulfate ester—Weigh accurately about 0.55 g of Sucralfate Hydrate, add exactly 10 mL of sulfuric acid-sodium hydroxide TS, shake vigorously, and dissolve by sonicating at below 30°C for 5 minutes. To this solution add 0.1 mol/L sodium hydroxide VS to make exactly 25 mL, and use this solution as the sample solution. Separately, weigh accurately about 0.25 g of Potassium Sucrose Octasulfate RS, add the mobile phase to make exactly 25 mL, and use this solution as the standard solution. Prepare rapidly the sample solution and the standard solution, and perform the test as directed under Liquid Chromatography $<2.01>$ according to the following conditions. Determine the peak areas, A_1 and A_2, of sucrose octasulfate ester in each solution.

Amount (mg) of sucrose octasulfate ester ($C_{12}H_{22}O_{12}S_8$) = $M_3 × A_1 / A_2 × 0.763$

M_3: Amount (mg) of Potassium Sucrose Octasulfate RS taken, calculated on the anhydrous basis

Operating conditions—
Detector: A differential refractometer.
Column: A stainless steel column about 4 mm in inside diameter and about 30 cm in length, packed with amino-propylsilanized silica gel for liquid chromatography (about 8 µm in particle diameter).
Column temperature: Room temperature.
Mobile phase: Dissolve a suitable amount (26 to 132 g) of ammonium sulfate in 1000 mL of water, and adjust with phosphoric acid to pH 3.5. Allow a solution of Potassium Sucrose Octasulfate RS in dilute hydrochloric acid (1 in 100) to stand at 60°C for 10 minutes, cool, and perform the test immediately. Adjust the amount of ammonium sulfate in the mobile phase so that the peak of a related substance with the relative retention time about 0.7 to sucrose octasulfate ester almost returns to the base line, and the peak of sucrose octasulfate ester elutes most rapidly.

Flow rate: Adjust so that the retention time of sucrose octasulfate ester is between 6 and 11 minutes.
Selection of column: Allow a solution of Potassium Sucrose Octasulfate RS in dilute hydrochloric acid (1 in 100) to stand at 60°C for 10 minutes, cool, and proceed immediately with 50 µL of this solution under the above operating conditions. Use a column with a resolution being not less than 1.5 between sucrose octasulfate ester and a related substance with the relative retention time about 0.7 to sucrose octasulfate ester.

System repeatability: Repeat the test 6 times with the standard solution under the above operating conditions: the relative standard deviation of the peak area of sucrose octasulfate ester is not more than 2.0%.

Containers and storage Containers—Tight containers
White Soft Sugar

白糖

C_{12}H_{22}O_{11}: 342.30
β-D-Fructofuranosyl α-D-glucopyranoside
[57-50-1]

Description White Soft Sugar is colorless or white, crystals or crystalline powder. It is odorless and has a sweet taste.

It is very soluble in water, very slightly soluble in ethanol (95), and practically insoluble in diethyl ether.

A solution of White Soft Sugar (1 in 10) is neutral.

Identification (1) When 1 g of White Soft Sugar is ignited, it melts and swells, and decomposes, emitting an odor of caramel, to bulky charcoal.

(2) To 0.1 g of White Soft Sugar add 2 mL of dilute sulfuric acid, boil, add 4 mL of sodium hydroxide TS and 3 mL of Fehling’s TS, and heat to boiling: a red to dark red precipitate is produced.

Purity (1) Clarity and color of solution—Dissolve 100 g of White Soft Sugar in 100 mL of water, take 50 mL of this solution, and boil the mixture exactly for 5 minutes, and collect the precipitate in a tared glass filter (G4). Wash the residue on the filter with water until the last washing is neutral, then wash with 10 mL of ethanol (95) and 10 mL of diethyl ether, and dry at 105°C for 30 minutes; the mass of the residual precipitate is not more than 0.120 g.

Loss on drying <2.49> Not more than 1.30% (15 g, 105°C, 2 hours).

Residue on ignition <2.49> Not more than 0.1% (2 g).

Containers and storage Containers—Well-closed containers.

Sucrose

精製白糖

C_{12}H_{22}O_{11}: 342.30
β-D-Fructofuranosyl α-D-glucopyranoside
[57-50-1]

This monograph is harmonized with the European Pharmacopoeia and the U.S. Pharmacopeia.

The parts of the text that are not harmonized are marked with symbols (•).

Information on the harmonization with the European Pharmacopoeia and the U.S. Pharmacopeia is available on the website of the Pharmaceuticals and Medical Devices Agency.

Sucrose contains no additives.

For Sucrose used for preparation of the parenteral infusions, the label states the purpose.

Description Sucrose is a white crystalline powder, or lustrous colorless or white crystals.

It is very soluble in water, and practically insoluble in ethanol (99.5%).

Identification Determine the infrared absorption spectrum of Sucrose as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation <2.49> [α]D + 66.3° – + 67.0° (26 g, water, 100 mL, 100 mm).

Purity (1) Color value—Dissolve 50.0 g of Sucrose in 50.0 mL of water, filter through a membrane filter with 0.45 μm in pore size, degas, and use this solution as the sample solution. Measure the absorbance of the sample solution at 420 nm as directed under Ultraviolet-visible Spectrophotometry <2.24>, using a cell of at least 4 cm (a cell length of
10 cm or more is preferred, and calculate the color value by the following equation: not more than 45.

\[\text{Color value} = A \times 1000/b/c \]

A: Absorbance measured at 420 nm
b: Path length (cm)
c: Concentration (g/mL) of Sucrose in the sample solution, calculated from the refractive index (nD) obtained as directed under Refractive Index Determination 2.45. Use the following table and interpolate the value, if necessary.

<table>
<thead>
<tr>
<th>nD</th>
<th>c (g/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4138</td>
<td>0.570</td>
</tr>
<tr>
<td>1.4159</td>
<td>0.585</td>
</tr>
<tr>
<td>1.4179</td>
<td>0.600</td>
</tr>
<tr>
<td>1.4200</td>
<td>0.615</td>
</tr>
<tr>
<td>1.4221</td>
<td>0.630</td>
</tr>
<tr>
<td>1.4243</td>
<td>0.645</td>
</tr>
<tr>
<td>1.4264</td>
<td>0.661</td>
</tr>
</tbody>
</table>

System suitability

System repeatability: When the test is repeated 2 times with the sample solution, the difference between 2 results is not larger than 3.

(2) Clarity of solution—Dissolve 50.0 g of Sucrose in water to make 100 mL, and use this solution as the sample solution: the sample solution is clear, and its clarity is not different from water, or its opalescence is not more than that of reference suspension 1.

(3) Sulfite

(i) Enzyme reaction: Sulfite is oxidized by sulfite oxidase to sulfurous acid and hydrogen peroxide which in turn is reduced by nicotinamide adenine dinucleotide peroxidase in the presence of nicotinamide adenine dinucleotide reduced form (NADH). The amount of NADH oxidized is proportional to the amount of sulfite. Calculate the amount of oxidized NADH from the degree of reduction of the absorbance at 340 nm. A suitable kit may be used.

(ii) Procedure: Dissolve 4.0 g of Sucrose in freshly prepared distilled water to make exactly 10 mL, and use this solution as the sample solution. Separately, dissolve 4.0 g of Sucrose in freshly prepared distilled water, add exactly 0.5 mL of Standard Sulfite Solution, then add freshly prepared distilled water to make exactly 10 mL, and use this solution as the standard solution. Use freshly prepared distilled water as a blank. Separately, introduce 2.0 mL of each of the sample solution, the standard solution, and the blank in 10-mm cells, add 1.00 mL of \(\beta \)-nicotinamide adenine dinucleotide reduced form TS and 10.0 mL of NADH peroxidase TS, stir with a plastic stirring rod, and allow to stand at 20 – 25°C for 5 minutes. Measure the absorbance of these solutions at 340 nm, \(A_{T1} \), \(A_{S2} \) and \(A_{B2} \), as directed under Ultraviolet-visible Spectrophotometry 2.24, using water as the blank. Then, to these solutions add 50 \(\mu \)L of each of sulfite and tartaric acid TS, stir, allow to stand at 20 – 25°C for 30 minutes, then measure the absorbance of these solutions in the same manner as above, \(A_{T2} \), \(A_{S2} \) and \(A_{B2} \): the result of \((A_{T1} - A_{T2}) - (A_{B1} - A_{B2}) \) is not larger than half the result of \((A_{S1} - A_{S2}) - (A_{B1} - A_{B2}) \) (not more than 10 ppm expressed as SO\(_2\)).

(4) Reducing sugars—Transfer 5 mL of the sample solution obtained in (2) to a test-tube about 150 mm long and about 16 mm in diameter, add 5 mL of water, 1.0 mL of 1 mol/L sodium hydroxide VS and 1.0 mL of methylene blue

TS, mix, and heat in a water bath. After exactly 2 minutes, take the tube out of the bath, and examine the solution immediately: the blue color does not disappear completely. Ignore any blue color at the air and solution interface.

Conductivity 2.31 Dissolve 31.3 g of Sucrose in freshly prepared distilled water to make 100 mL, and use this solution as the sample solution. Measure the conductivity of the sample solution (\(\kappa_1 \) (\(\mu S/cm^{-1} \))) while gently stirring with a magnetic stirrer at 20 ± 1°C. Measure the conductivity of the water used for preparing the sample solution (\(\kappa_2 \) (\(\mu S/cm^{-1} \))) in the same manner as above. The measured conductivity must be stable within 1% in the rate of change per 30 seconds. Calculate the corrected conductivity of the sample solution (\(\kappa_C \)) by the following expression: \(\kappa_C \) is not more than 35 \(\mu S/cm^{-1} \).

\[\kappa_C = \kappa_1 - 0.35 \kappa_2 \]

Loss on drying 2.41 Not more than 0.1% (2 g, 105°C, 3 hours).

Dextrins For Sucrose used to prepare parenteral infusions, to 2 mL of the sample solution obtained in the Purity (2) add 8 mL of water, 0.05 mL of 2 mol/L hydrochloric acid and 0.05 mL of iodine TS: the solution remains yellow.

Bacterial endotoxins 2.01 Less than 0.25 EU/mg, for Sucrose used to prepare parenteral infusions.

Containers and storage Containers—Well-closed containers.

Sublactam Sodium

スルバクタムナトリウム

C\(_{33}\)H\(_{58}\)N\(_{2}\)Na\(_{2}\)O\(_{2}\)S: 255.22

Monosodium (2S,5R)-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid, 4,4-dioxide [69388-84-7]

Sublactam Sodium contains not less than 875 μg (potency) and not more than 941 μg (potency) per mg, calculated on the anhydrous basis. The potency of Sublactam Sodium is expressed as mass (potency) of sublactam (C\(_{33}\)H\(_{58}\)N\(_{2}\)O\(_{2}\)S: 233.24).

Description Sublactam Sodium occurs as a white to yellowish white crystalline powder.

It is freely soluble in water, sparingly soluble in methanol, very slightly soluble in ethanol (99.5), and practically insoluble in acetonitrile.

Identification (1) Determine the infrared absorption spectrum of Sublactam Sodium as directed in the potassium bromide disk method under Infrared Spectrophotometry 2.25, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(2) Sublactam Sodium responds to Qualitative Tests 1.09 (1) for sodium salt.

Optical rotation 2.49 [α]\(_{D}\): +219 – +233° (1 g, water, 100 mL, 100 mm).
Internal standard solution—A solution of ethyl parahydroxybenzoate in the mobile phase (7 in 1000).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 220 nm).
Column: A stainless steel column 3.9 mm in inside diameter and 30 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (10 μm in particle diameter).
Column temperature: A constant temperature of about 35°C.
Mobile phase: To 750 mL of 0.005 mol/L tetrabutylammonium hydroxide TS add 250 mL of acetonitrile for liquid chromatography.
Flow rate: Adjust so that the retention time of sulbactam is about 6 minutes.

System suitability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, sulbactam and the internal standard are eluted in this order with the resolution between these peaks being not less than 1.5.
System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of sulbactam is not more than 1.0%.

Containers and storage Containers—Tight containers.

Sulbenicillin Sodium

スルベニシリンナトリウム

C₁₆H₁₆N₂O₅S₃: 458.42
Disodium (2S,5R,6R)-3,3-dimethyl-7-oxo-6-[(2R)-2-phenyl-2-sulfonatoacetylamino]-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylate
[28002-18-8]

Sulbenicillin Sodium contains not less than 900 μg (potency) and not more than 970 μg (potency) per mg, calculated on the anhydrous basis. The potency of Sulbenicillin Sodium is expressed as mass (potency) of sulbenicillin (C₁₆H₁₆N₂O₅S₃): 414.45.

Description Sulbenicillin Sodium occurs as white to light yellow-white powder.

It is very soluble in water, freely soluble in methanol, and slightly soluble in ethanol (99.5).

It is hygroscopic.

Identification (1) Determine the infrared absorption spectrum of Sulbenicillin Sodium as directed in the potassium bromide disk method under Infrared Spectrophotometry<2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of Sulbenicillin Sodium RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

(2) Sulbenicillin Sodium responds to Qualitative Tests<1.09> (1) for sodium salt.

Optical rotation<2.49> [α]D₂₀ +167 – +182° (1 g calculated on the anhydrous basis, water, 20 mL, 100 mm).

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
pH <2.5> The pH of a solution obtained by dissolving 0.20 g of Sulbenicillin Sodium in 10 mL of water is between 4.5 and 7.0.

Purity (1) Clarity and color of solution—Dissolve 2.5 g of Sulbenicillin Sodium according to Method 1, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(2) Heavy metals <1.07>—Proceed with 1.0 g of Sulbenicillin Sodium according to Method 1, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(3) Arsenic <1.1D>—Prepare the test solution with 1.0 g of Sulbenicillin Sodium according to Method 1, and perform the test (not more than 2 ppm).

(4) Related substances—Dissolve 0.10 g of Sulbenicillin Sodium in 15 mL of the mobile phase, and use this solution as the sample solution. Perform the test with 10 μL of the sample solution as directed under Liquid Chromatography <2.01> according to the following conditions, determine each peak area by the automatic integration method, and calculate the amount of these peaks by the area percentage method: the amount of the each peak other than the two peaks of sulbenicillin is not more than 2.0%, and the total amount of the peaks other than the two peaks of sulbenicillin is not more than 5.0%.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 254 nm).
Column: A stainless steel column 3.9 mm in inside diameter and 30 cm in length, packed with octadecylsilylized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase: Dissolve 10 g of potassium dihydrogen phosphate in 750 mL of water, adjust the pH to 6.0 ± 0.1 with sodium hydroxide TS, and add water to make 1000 mL. To 940 mL of this solution add 60 mL of acetonitrile.
Flow rate: Adjust so that the retention time of the lately eluted peak of sulbenicillin is about 18 minutes.
Time span of measurement: About 15 times as long as the retention time of the lately eluted peak of sulbenicillin, beginning after the solvent peak.

System suitability—
Test for required detectability: Measure exactly 1 mL of the sample solution, add the mobile phase to make exactly 100 mL, and use this solution as the solution for system suitability test. Pipet 1 mL of the solution of the mobile phase to make exactly 10 mL. Confirm that the total area of the two peaks of sulbenicillin obtained with 10 μL of this solution is equivalent to 7 to 13% of that with 10 μL of the solution for system suitability test.

System performance: When the procedure is run with 10 μL of the sample solution under the above operating conditions, the resolution between the two peaks of sulbenicillin is not less than 2.0.
System repeatability: When the test is repeated 6 times with 10 μL of the solution for system suitability test under the above operating conditions, the relative standard deviation of the total areas of the two peaks of sulbenicillin is not more than 5.0%.

Water <2.48> Not more than 6.0% (0.5 g, volumetric titration, direct titration).

Assay Perform the test according to the Cylinder-plate method as directed under Microbial Assay for Antibiotics <4.02> according to the following conditions.

(i) Test organism— Bacillus subtilis ATCC 6633
(ii) Culture medium—Use the medium i in 1) under (1) Agar media for seed and base layer. Adjust the pH of the medium so that it will be 6.4 to 6.6 after sterilization.
(iii) Standard solutions—Weigh accurately an amount of Sulbenicillin Sodium RS, equivalent to about 50 mg (potency), dissolve in phosphate buffer solution (pH 6.0) to make exactly 50 mL, and use this solution as the standard stock solution. Keep the standard stock solution in a freezer, and use within 4 days. Take exactly a suitable amount of the standard stock solution before use, add phosphate buffer solution (pH 6.0) to make solutions so that each mL contains 40 μg (potency) and 10 μg (potency), and use these solutions as the high concentration standard solution and the low concentration standard solution, respectively.
(iv) Sample solutions—Weigh accurately an amount of Sulbenicillin Sodium, equivalent to about 50 mg (potency), and dissolve in phosphate buffer solution (pH 6.0) to make exactly 50 mL. Take exactly a suitable amount of this solution, add phosphate buffer solution (pH 6.0) to make solutions so that each mL contains 40 μg (potency) and 10 μg (potency), and use these solutions as the high concentration sample solution and the low concentration sample solution, respectively.

Containers and storage Containers—Hermetic containers.

Sulfadiazine Silver

スルファジアジン銀

\[
\text{C}_9\text{H}_8\text{AgN}_4\text{O}_6\text{S}: 357.14 \\
\text{Monosilver 4-amino-N-(pyrimidin-2-yl)-benzenesulfonamidate} \\
[22199-08-2]
\]

Sulfadiazine Silver, when dried, contains not less than 99.0% and not more than 102.0% of sulfadiazine silver (C₉H₈AgN₄O₆S).

Description Sulfadiazine Silver occurs as a white to pale yellow crystalline powder. It is odorless.

It is practically insoluble in water, in ethanol (95) and in diethyl ether.

It dissolves in ammonia TS.

It is gradually colored by light.

Melting point: about 275°C (with decomposition).

Identification Determine the infrared absorption spectrum of Sulfadiazine Silver, previously dried, as directed in the paste method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of previously dried Sulfadiazine Silver RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Purity (1) Nitrate—To 250 mL of water add 1.0 g of Sulfadiazine Silver, shake well for 50 minutes, filter, and use this filtrate as the sample solution. Separately, weigh accurately 0.25 g of potassium nitrate, and dissolve in water to make exactly 2000 mL. Pipet 5 mL of this solution and add water to make exactly 200 mL, and use this solution as the standard solution. Pipet 2.0 mL each of the sample solution
and standard solution, and add 5 mL of a solution of disodium chromotropate dihydrate in sulfuric acid (1 in 10,000) and sulfuric acid to make exactly 10 mL. Determine the absorbances, \(A_1 \) and \(A_5 \), of the sample solution and standard solution at 408 nm as directed under Ultraviolet-visible Spectrophotometry \(<2.2d> \), using a solution, prepared with exactly 2.0 mL of water in the same manner, as the blank: \(A_1 \) is not larger than \(A_5 \) (not more than 0.05%).

(2) Related substances—Dissolve 50 mg of Sulfadiazine Silver in 5 mL of a mixture of ethanol (95) and ammonia solution (28) (3:2), and use this solution as the sample solution. Pipet 2 mL of the sample solution, and add a mixture of ethanol (95) and ammonia solution (28) (3:2) to make exactly 20 mL. Pipet 2 mL of this solution, add a mixture of ethanol (95) and ammonia solution (28) (3:2) to make exactly 20 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography \(<2.0b> \). Spot 5 \(\mu L \) each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of chloroform, methanol and ammonia solution (28) (10:5:2) to a distance of about 15 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot and spot of the starting point obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying \(<2.4d>\) Not more than 0.5% (1 g, in vacuum, phosphorus (V) oxide, 80°C, 4 hours).

Residue on ignition \(<2.4d>\) 41–45% (1 g).

Silver content Weigh accurately about 50 mg of Sulfadiazine Silver, previously dried, dissolve in 2 mL of nitric acid, and add water to make exactly 100 mL. Pipet 1 mL of this solution, add water to make exactly 100 mL, and use this solution as the sample solution. Measure accurately a suitable quantity of Standard Silver Solution for Atomic Absorption Spectrophotometry, dilute with water to make solutions containing 1.0 to 2.0 \(\mu g \) of silver (Ag:107.87) per mL, and use these solutions as the standard solutions. Perform the test with the sample solution and standard solutions as directed under Atomic Absorption Spectrophotometry \(<2.2d>\) according to the following conditions, and calculate the silver content of the sample solution from the calibration curve obtained from the absorbances of the standard solutions: it contains not less than 28.7% and not more than 30.8% of silver.

Gas: Combustible gas—Acetylene.
Supporting gas—Air.
Wavelength: 328.1 nm.

Assay Weigh accurately about 0.1 g each of Sulfadiazine Silver and Sulfadiazine Silver RS, each previously dried, and add ammonia TS to make exactly 100 mL, respectively. Pipet 1 mL each of these solutions, add water to make exactly 100 mL, and use these solutions as the sample solution and the standard solution, respectively. Determine the absorbances, \(A_1 \) and \(A_5 \), of the sample solution and standard solution at 255 nm, as directed under Ultraviolet-visible Spectrophotometry \(<2.2d>\), using a solution, prepared with exactly 1 mL of ammonia and TS and a sufficient water to make exactly 100 mL, as the blank.

\[
\text{Amount (mg) of sulfadiazine silver (C}_{10}\text{H}_{10}\text{AgN}_{2}\text{O}_{2}\text{S}) = M_5 \times A_1 / A_5
\]

\(M_5 \): Amount (mg) of Sulfadiazine Silver RS taken

Containers and storage Containers—Well-closed containers.
Storage—Light-resistant.

Sulfamethizole

![Structure of Sulfamethizole](image)

\(\text{C}_{10}\text{H}_{10}\text{N}_{2}\text{O}_{2}\text{S}: 270.33 \)

4-Amino-N-(5-methyl-1,3,4-thiadiazol-2-yl)-benzenesulfonamide

[S144-82-1]

Sulfamethizole, when dried, contains not less than 99.0% of sulfamethizole (\(\text{C}_{10}\text{H}_{10}\text{N}_{2}\text{O}_{2}\text{S} \)).

Description Sulfamethizole occurs as white to yellowish white, crystals or crystalline powder. It is odorless.

It is slightly soluble in ethanol (95), and in acetic acid (100) and practical insoluble in water and in diethyl ether.

It dissolves in dilute hydrochloric acid and in sodium hydroxide TS.

It is gradually colored by light.

Identification Determine the infrared absorption spectrum of Sulfamethizole, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry \(<2.2s>\), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point \(<2.0o>\) 208 – 211°C

Purity (1) Clarity and color of solution—Dissolve 0.5 g of Sulfamethizole in 3 mL of sodium hydroxide TS and 20 mL of water: the solution is clear and colorless.

(2) Acidity—To 1.0 g of Sulfamethizole add 50 mL of water, warm at 70°C for 5 minutes, allow to stand for 1 hour in an ice bath, and filter. To 25 mL of the filtrate add 2 drops of methyl red TS and 0.60 mL of 0.1 mol/L sodium hydroxide VS: a yellow color develops.

(3) Heavy metals \(<1.0o>\) Proceed with 1.0 g of Sulfamethizole according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(4) Arsenic \(<1.1o>\) Prepare the test solution with 1.0 g of Sulfamethizole according to Method 3, and perform the test (not more than 2 ppm).

(5) Related substances—Dissolve 0.1 g of Sulfamethizole in 10 mL of acetone, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add acetone to make exactly 50 mL, then pipet 5 mL of this solution, add acetone to make exactly 20 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography \(<2.0e>\). Spot 5 \(\mu L \) each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate and acetic acid (100) (20:1) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.
intense than the spot from the standard solution.

Loss on drying Not more than 0.5% (1 g, 105°C, 4 hours).

Residue on ignition Not more than 0.1% (1 g).

Assay Weigh accurately about 0.4 g of Sulfamethizole, previously dried, dissolve in 5 mL of hydrochloric acid and 50 mL of water, and add 10 mL of a solution of potassium bromide (3 in 10), cool below 15°C, and titrate with 0.1 mol/L sodium nitrite VS according to the potentiometric titration method or the amperometric titration method.

Each mL of 0.1 mol/L sodium nitrite VS is equivalent to 27.03 mg of C\(_8\)H\(_{11}\)N\(_2\)O\(_3\)S

Containers and storage Containers—Well-closed containers.

Storage—Light-resistant.

Sulfamethoxazole

 스ルファメトキシンサゾール

\[
\text{C}_{10}\text{H}_{11}\text{N}_{2}\text{O}_{3}\text{S}: 253.28
\]

4-Amino-N-(5-methylisoxazol-3-yl)benzenesulfonamide [723-46-6]

Sulfamethoxazole, when dried, contains not less than 99.0% of sulfamethoxazole (C\(_{10}\)H\(_{11}\)N\(_2\)O\(_3\)S).

Description Sulfamethoxazole occurs as white, crystals or crystalline powder. It is odorless, and has a slightly bitter taste.

It is very soluble in N,N-dimethylformamide, sparingly soluble in ethanol (95), slightly soluble in diethyl ether, and very slightly soluble in water.

It dissolves in sodium hydroxide TS.

It is gradually colored by light.

Identification Determine the infrared absorption spectrum of Sulfamethoxazole, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry,^{2.25} and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point 169 – 172°C

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Sulfamethoxazole in 5 mL of sodium hydroxide TS, and add 20 mL of water: the solution is clear and colorless.

(2) Acidity—To 1.0 g of Sulfamethoxazole add 50 mL of water, heat at 70°C for 5 minutes, allow to stand in ice water for 1 hour, and filter. To 25 mL of the filtrate add 2 drops of methyl red TS and 0.60 mL of 0.1 mol/L sodium hydroxide VS; a yellow color develops.

(3) Heavy metals <1.07>—Proceed with 1.0 g of Sulfamethoxazole according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 2 ppm).

(4) Arsenic <1.11>—Prepare the test solution with 1.0 g of Sulfamethoxazole according to Method 3, and perform the test (not more than 2 ppm).

(5) Related substances—Dissolve 0.20 g of Sulfamethoxazole in 10 mL of a solution of ammonia solution (28) in methanol (1 in 50), and use this solution as the sample solution. Pipet 1 mL of the sample solution, add a solution of ammonia solution (28) in methanol (1 in 50) to make exactly 10 mL. Pipet 1 mL of this solution, add a solution of ammonia solution (28) in methanol (1 in 50) to make exactly 20 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 5 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate, acetonitrile and diluted ammonia solution (28) (7 in 100) (10:8:1) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying Not more than 0.5% (1 g, 105°C, 4 hours).

Residue on ignition Not more than 0.1% (1 g).

Assay Weigh accurately about 0.4 g of Sulfamethoxazole, previously dried, dissolve in 30 mL of N,N-dimethylformamide, add 10 mL of water, and titrate with 0.1 mol/L sodium hydroxide VS until a light blue color is produced (indicator: 0.5 mL of thymolphthalein TS). Separately, perform a blank determination in the same manner with a mixture of 30 mL of N,N-dimethylformamide and 26 mL of water, and make any necessary correction.

Each mL of 0.1 mol/L sodium hydroxide VS is equivalent to 25.33 mg of C\(_8\)H\(_{11}\)N\(_2\)O\(_3\)S

Containers and storage Containers—Well-closed containers.

Storage—Light-resistant.

Sulfamonomethoxine Hydrate

スルファモノメトキシン水和物

\[
\text{C}_{10}\text{H}_{12}\text{N}_{2}\text{O}_{3}\text{S.H}_2\text{O}: 298.32
\]

4-Amino-N-(6-methoxypyrimidin-4-yl)benzenesulfonamide monohydrate [1220-83-3, anhydride]

Sulfamonomethoxine Hydrate, when dried, contains not less than 99.0% of sulfamonomethoxine (C\(_{10}\)H\(_{12}\)N\(_2\)O\(_3\)S; 280.31).

Description Sulfamonomethoxine Hydrate occurs as white to pale yellow, crystals, granules or crystalline powder. It is odorless.

It is soluble in acetone, slightly soluble in ethanol (95), very slightly soluble in diethyl ether, and practically insoluble in water.

It dissolves in dilute hydrochloric acid and in sodium hydroxide TS.
It is gradually colored by light.

Identification Determine the infrared absorption spectrum of Sulfamonomethoxine Hydrate as directed in the potassium bromide disk method under Infrared Spectrophotometry \(<2.25\) and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point \(<2.60\) 204 – 206°C

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Sulfamonomethoxine Hydrate in 5 mL of sodium hydroxide TS and 20 mL of water: the solution is clear and colorless to pale yellow. Dissolve 0.5 g of Sulfamonomethoxine Hydrate in 5 mL of sodium hydroxide TS, and heat: no turbidity is produced. After cooling, add 5 mL of acetone: the solution is clear.

(2) Heavy metals \(<1.07\) Proceed with 1.0 g of Sulfamonomethoxine Hydrate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(3) Arsenic \(<1.1D\) Prepare the test solution with 1.0 g of Sulfamonomethoxine Hydrate according to Method 3, and perform the test (not more than 2 ppm).

(4) Related substances—Dissolve 0.02 g of Sulfamonomethoxine Hydrate in 10 mL of ethanol (95), and use this solution as the sample solution. Pipet 1 mL of the sample solution, add ethanol (95) to make exactly 200 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography \(<2.03\). Spot 5 mL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of 1-butanol and ammonia solution (28) (4:1) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not larger and not more intense than the spot from the standard solution.

Loss on drying \(<2.41\) 4.5 – 6.5% (1 g, 105°C, 4 hours).

Residue on ignition \(<2.44\) Not more than 0.10% (1 g).

Assay Weigh accurately about 0.5 g of Sulfamonomethoxine Hydrate, previously dried, dissolve in 5 mL of hydrochloric acid and 50 mL of water, add 10 mL of a solution of potassium bromide (3 in 10), cool below 15°C, and titrate \(<2.50\) with 0.1 mol/L sodium nitrite VS (potentiometric titration or amperometric titration).

Each mL of 0.1 mol/L sodium nitrite VS = 28.03 mg of \(C_{11}H_{13}N_{3}O_{5}\)

Containers and storage Containers—Well-closed containers. Storage—Light-resistant.

Sulfisoxazole

Sulfisoxazole

It is freely soluble in pyridine and in n-butylamine, soluble in methanol, sparingly soluble in ethanol (95), slightly soluble in acetic acid (100), and very slightly soluble in water and in diethyl ether.

It dissolves in dilute hydrochloric acid, in sodium hydroxide TS and in ammonia TS. It is gradually colored by light.

Identification (1) Dissolve 0.01 g of Sulfisoxazole in 1 mL of dilute hydrochloric acid and 4 mL of water: the solution responds to Qualitative Tests \(<1.09\) for primary aromatic amines.

(2) Dissolve 0.02 g of Sulfisoxazole in 5 mL of water and 1 mL of n-butylamine, add 2 to 3 drops of copper (II) sulfate TS, and shake well. Add 5 mL of chloroform, shake, and allow to stand: a blue-green color develops in the chloroform layer.

(3) Dissolve 0.01 g of Sulfisoxazole in 1 mL of pyridine, add 2 drops of copper (II) sulfate TS, and shake. Add 3 mL of water and 5 mL of chloroform, shake, and allow to stand: a light yellow-brown color develops in the chloroform layer.

(4) To 0.5 g of Sulfisoxazole add 2 mL of acetic acid (100), dissolve by heating under a reflux condenser, add 1 mL of acetic anhydride, and boil for 10 minutes. Add 10 mL of water, cool, and alkalize with about 7 mL of a solution of sodium hydroxide (3 in 10). Filter, if necessary, immediately acidify by adding acetic acid (100) dropwise, collect the produced precipitate, recrystallize from methanol, and dry at 105°C for 1 hour; the crystals melt \(<2.60\) between 208°C and 210°C.

Melting point \(<2.60\) 192 – 196°C (with decomposition).

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Sulfisoxazole in 5 mL of sodium hydroxide TS and 20 mL of water: the solution is clear and colorless to pale yellow.

(2) Acidity—To 1.0 g of Sulfisoxazole add 50 mL of water, warm at 70°C for 5 minutes, allow to stand in an ice bath for 1 hour, and filter. To 25 mL of the filtrate add 2 drops of methyl red TS and 0.20 mL of 0.1 mol/L sodium hydroxide VS: a yellow color develops.

(3) Heavy metals \(<1.07\) Proceed with 1.0 g of Sulfisoxazole according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

Loss on drying \(<2.41\) Not more than 0.5% (2 g, 105°C, 4 hours)
Sulfobromophthalein Sodium

スルホプロモフタレインナトリウム

C₂₀H₁₄Br₄Na₂O₈S₂: 838.00
Disodium 5,5-(4,5,6,7-tetramethyl-3-oxo-1,3-diyldibis(2-hydroxybenzenesulfonate)

Sulfobromophthalein Sodium, when dried, contains not less than 96.0% and not more than 104.0% of sulfobromophthalein sodium (C₂₀H₁₄Br₄Na₂O₈S₂).

Description Sulfobromophthalein Sodium occurs as a white crystalline powder. It is odorless.

It is soluble in water, and practically insoluble in ethanol (95) and in diethyl ether.

It is hygroscopic.

Identification (1) Dissolve 0.02 g of Sulfobromophthalein Sodium in 10 mL of water, and add 1 mL of sodium carbonate TS: a blue-purple color is produced. Add 1 mL of dilute hydrochloric acid to the solution: the color of the solution disappears.

(2) Transfer 0.2 g of Sulfobromophthalein Sodium to a porcelain crucible, mix well with 0.5 g of anhydrous sodium carbonate, and ignite until the mixture is charred. After cooling, add 15 mL of hot water to the residue, heat for 5 minutes on a water bath, filter, and render the filtrate slightly acid with hydrochloric acid: the solution responds to Qualitative Tests <1.09> for bromide, and (1) and (2) for sulfate.

(3) Sulfobromophthalein Sodium responds to Qualitative Tests <1.09> (1) for sodium salt.

pH <2.54> The pH of a solution of 1.0 g of Sulfobromophthalein Sodium in 20 mL of water is between 4.0 and 5.5.

Purity (1) Clarity and color of solution—Dissolve 0.5 g of Sulfobromophthalein Sodium in 10 mL of water: the solution is clear and colorless to pale yellow.

(2) Chloride <1.03>—Perform the test with 2.0 g of Sulfobromophthalein Sodium. Prepare the control solution with 0.10 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.002%).

(3) Sulfate—To 10 mL of a solution of Sulfobromophthalein Sodium (1 in 500) add 5 drops of dilute hydrochloric acid, heat to boil, and add 1 mL of hot barium chloride TS: the solution is clear when observed 1 minute after the addition of the barium chloride TS.

(4) Calcium—Weigh accurately about 5 g of Sulfobromophthalein Sodium, transfer to a porcelain dish, heat gently to char, and heat strongly between 700°C and 750°C until the residue is incinerated. After cooling, add 10 mL of dilute hydrochloric acid, and heat for 5 minutes on a water bath. Transfer the contents to a flask with 50 mL of water, and add 5 mL of 8 mol/L potassium hydroxide TS and 0.1 g of NN indicator. Titrate <2.50> with 0.01 mol/L disodium dihydrogen ethylenediamine tetracetate VS until the red-purple color of the solution changes to blue.

Each mL of 0.01 mol/L disodium dihydrogen ethylenediamine tetracetate VS = 0.4008 mg of Ca

The content of calcium (Ca: 40.08) is not more than 0.05%.

(5) Heavy metals <1.07>—Proceed with 1.0 g of Sulfobromophthalein Sodium according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(6) Arsenic <1.11>—Transfer 0.65 g of Sulfobromophthalein Sodium to a crucible, add 10 mL of a solution of magnesium nitrate hexahydrate in ethanol (95) (1 in 50), fire to burn, then heat gently until the residue is incinerated. If any carbon remains, moisten the residue with a small amount of nitric acid, and incinerate again by ignition. After cooling, add 10 mL of dilute sulfuric acid, and heat until white fumes are evolved. After cooling, add 5 mL of water to the residue, and perform the test with this solution as the test solution (not more than 3.1 ppm).

Loss on drying <2.41> Not more than 5.0% (0.5 g, 105°C, 3 hours).

Residue on ignition <2.44> 14 – 19% (after drying, 0.5 g, 700 – 750°C).

Assay Dissolve about 0.1 g of Sulfobromophthalein Sodium, previously dried and accurately weighed, in water to make exactly 500 mL. Pipet 5 mL of this solution, and add a solution of anhydrous sodium carbonate (1 in 100) to make exactly 200 mL. Perform the test with this solution as directed under Ultraviolet-visible Spectrophotometry <2.24>.

Determine the absorbance A of this solution at the wavelength of maximum absorption at about 580 nm, using water as the blank.

Amount (mg) of sulfobromophthalein sodium
(C₂₀H₁₄Br₄Na₂O₈S₂)

\[\text{Amount} = \frac{A}{881 \times 200,000} \]

Containers and storage Containers—Light-resistant.

JP XVIII

Official Monographs / Sulfobromophthalein Sodium 1755

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
Sulfobromophthalein Sodium Injection

スルホブロモフタレインナトリウム注射液

Sulfobromophthalein Sodium Injection is an aqueous Injection. It contains not less than 94.0% and not more than 106.0% of the labeled amount of sulfobromophthalein sodium (C₈H₄BrNS₂O₆: 838.00).

Method of preparation Prepare as directed under Injections, with Sulfobromophthalein Sodium.

Description Sulfobromophthalein Sodium Injection is a clear and colorless or pale yellow liquid.

pH: 5.0 – 6.0

Identification (1) Measure a volume of Sulfobromophthalein Sodium Injection, equivalent to 0.02 g of Sulfobromophthalein Sodium, and proceed as directed in the Identification (1) under Sulfobromophthalein Sodium.

(2) Measure a volume of Sulfobromophthalein Sodium Injection, equivalent to 0.1 g of Sulfobromophthalein Sodium, add 0.5 g of anhydrous sodium carbonate, and evaporate on a water bath to dryness. Ignite the residue until it is charred. Proceed as directed in the Identification (2) under Sulfobromophthalein Sodium.

Extractable volume It meets the requirement.

Pyrogen Add isotonic sodium chloride solution to Sulfobromophthalein Sodium Injection to make a 0.5 w/v% solution of Sulfobromophthalein Sodium. Inject into each of the rabbits 5 mL of this solution per kg of body mass: it gives a pungent odor of sulfur dioxide.

Assay Measure exactly a volume of Sulfobromophthalein Sodium Injection, equivalent to about 0.1 g of sulfobromophthalein sodium (C₈H₄BrNS₂O₆), add water to make exactly 500 mL, and proceed as directed in the Assay under Sulfobromophthalein Sodium.

Amount (mg) of sulfobromophthalein sodium

\[
(\text{C}_8\text{H}_4\text{BrNS}_2\text{O}_6)_{\text{S}} = \frac{A}{881} \times 200,000
\]

Containers and storage Containers—Hermetic containers.

Storage—Light-resistant.

Sulfur

イオウ

S: 32.07

Sulfur, when dried, contains not less than 99.5% of sulfur (S).

Description Sulfur occurs as a light yellow to yellow powder. It is odorless and tasteless.

It is freely soluble in carbon disulfide, and practically insoluble in water, in ethanol (95%) and in diethyl ether.

Identification (1) Ignite Sulfur: it burns with a blue flame and gives a pungent odor of sulfur dioxide.

(2) Dissolve 5 mg of Sulfur in 5 mL of sodium hydroxide TS by heating in a water bath, cool, and add 1 drop of sodium pentacyanonitrosylferrate (III) TS: a blue-purple color develops.

(3) Boil 1 mg of Sulfur with 2 mL of pyridine and 0.2 mL of sodium hydrogen carbonate TS: a blue color develops.

Purity (1) Clarity of solution—Dissolve 1.0 g of Sulfur in a mixture of 20 mL of a solution of sodium hydroxide (1 in 6) and 2 mL of ethanol (95) by boiling: the solution is clear.

Dissolve 2.0 g of Sulfur in 10 mL of carbon disulfide: the solution is almost clear or slightly opalescent.

(2) Acidity or alkalinity—Shake 2.0 g of Sulfur with 50 mL of freshly boiled and cooled water, and add 2 drops of phenolphthalein TS: no red color develops. Further add 1.0 mL of 0.1 mol/L sodium hydroxide VS: a red color develops.

(3) Arsenic—Prepare the test solution with 0.20 g of Sulfur according to Method 3, and perform the test (not more than 10 ppm).

Loss on drying Not more than 1.0% (1 g, in vacuum, not more than 0.67 kPa, silica gel, 4 hours).

Residue on ignition Not more than 0.2% (1 g).

Assay Weigh accurately about 0.4 g of Sulfur, previously dried, dissolve in 20 mL of potassium hydroxide-ethanol TS and 10 mL of water by boiling, cool, and add water to make exactly 100 mL. Transfer exactly 25 mL of the solution to a 400-mL beaker, add 50 mL of hydrogen peroxide TS, and heat on a water bath for 1 hour. Acidify the solution with dilute hydrochloric acid, add 200 mL of water, heat to boil, add hot barium chloride TS dropwise until no more precipitate is formed, and heat on a water bath for 1 hour. Collect the precipitate, and wash with water until the last washing shows no opalescence with silver nitrate TS. Dry the precipitate, heat strongly to constant mass, and weigh as barium sulfate (BaSO₄: 233.39). Perform a blank determination in the same manner, and make any necessary correction.

Amount (mg) of sulfur (S)

\[
\text{Amount} = \text{amount} \times (\text{BaSO}_4) \times 10.0079
\]

Containers and storage Containers—Well-closed containers.

Sulfur and Camphor Lotion

イオウ・カンフルローション

Method of preparation

Sulfur 60 g
D-Camphor or d-L-Camphor 5 g
Hydroxypropylcellulose 4 g
Calcium Hydroxide 1 g
Ethanol 4 mL
Water, Purified Water or Purified Water in Containers a sufficient quantity

To make 1000 mL

Dissolve Hydroxypropylcellulose in 200 mL of Water, Purified Water or Purified Water in Containers. Add this solution in small portions to the triturate of Sulfur with the Ethanol solution of d-Camphor or dl-Camphor, and triturate again the mixture. Separately, dissolve Calcium Hydroxide in 500 mL of Water, Purified Water or Purified Water in Containers, stopper tightly, shake, and allow to stand. Add 300 mL of this supernatant liquid to the above
Sulfur and Camphor Lotion is a light yellow suspension.

A part of the components separates out on standing.

Identification (1) To 5 mL of well shaken Sulfur and Camphor Lotion add 25 mL of water, and centrifuge [use this supernatant liquid for test (3)]. To 0.02 g of the precipitate add 2 mL of pyridine and 0.2 mL of sodium hydroxide carbonate TS, and boil: a blue color develops (sulfur).

(2) To 10 mL of well shaken Sulfur and Camphor Lotion add 5 mL of diethyl ether, and mix. Separate the diethyl ether layer, and filter through a pledget of cotton. Wash the cotton with a small portion of diethyl ether, combine the washings with the filtrate, and distil cautiously on a water bath to remove the diethyl ether. Dissolve the residue in 1 mL of methanol, add 1 mL of 2,4-dinitrophenylhydrazine TS, and heat for about 2 minutes on a water bath. Cool, dilute with water to make about 5 mL, and allow to stand. Filter the produced precipitate through a glass filter (G4), and wash the residue on the filter with water until the last washing is colorless. Dissolve the residue in 10 mL of ethanol (95), add 5 mL of sodium hydroxide TS, and allow to stand for 2 minutes: a red color develops (d-camphor or dl-camphor).

(3) The supernatant liquid obtained in (1) responds to Qualitative Tests <1.09> (2) and (3) for calcium salt.

Containers and storage Containers—Tight containers.

Sulfur, Salicylic Acid and Thianthol Ointment

イオウ・サリチル酸・チアントール軟膏

<table>
<thead>
<tr>
<th>Method of preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfur 100 g</td>
</tr>
<tr>
<td>Salicylic Acid, finely powdered 30 g</td>
</tr>
<tr>
<td>Thianthol 100 mL</td>
</tr>
<tr>
<td>Zinc Oxide, very finely powdered 100 g</td>
</tr>
<tr>
<td>Simple Ointment or a suitable ointment base a sufficient quantity</td>
</tr>
</tbody>
</table>

Prepare as directed under Ointments, with above ingredients.

Description Sulfur, Salicylic Acid and Thianthol Ointment is light yellow in color.

Identification (1) Stir well 0.5 g of Sulfur, Salicylic Acid and Thianthol Ointment with 10 mL of water while heating, cool, and filter. To 1 mL of the filtrate add 5 mL of iron (III) nitrate TS: a purple color is produced (salicylic acid).

(2) Shake 1 g of Sulfur, Salicylic Acid and Thianthol Ointment with 20 mL of diethyl ether, remove the supernatant liquid and floating materials. Wash the residue with 10 mL of diethyl ether, and remove the diethyl ether by suction. To the residue add 2 mL of pyridine and 0.2 mL of sodium hydroxide carbonate TS, and boil: a light blue to blue color is produced (sulfur).

(3) To 1 g of Sulfur, Salicylic Acid and Thianthol Ointment add 15 mL of ethanol (95), stir well while warming on a water bath, cool, and filter. Use the filtrate as the sample solution. Dissolve 0.01 g each of salicylic acid and thianthol in 5 mL of ethanol (95), and use these solutions as the standard solution (1) and standard solution (2). Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>.

Purity (1) Heavy metals <1.09>—Proceed with 2.0 g of Sulindac according to Method 2 and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 2 ppm).

(2) Arsenic <1.11>—Proceed the test solution with 1.0 g of Sulindac according to Method 3 and perform the test (not more than 2 ppm).

(3) Related substances—Dissolve 0.25 g of Sulindac in 10 mL of methanol and use this solution as the sample solution. Pipet 1 mL of the sample solution and add methanol to make exactly 100 mL. Pipet 5 mL, 4 mL and 2 mL of this solution, to each add methanol to make exactly 10 mL, and...
use these solutions as the standard solutions (1), (2) and (3). Perform the test with these solutions as directed under Thin-layer Chromatography <2.07>. Spot 4 μL of each of the sample solution, standard solution (1), (2) and (3) on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate and acetic acid (100) (97:3) to a distance of about 17 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution (1), and the total intensity of spots other than the principal spot from the sample solution is not more than 1.0% calculated on the basis of intensities of the spots from the standard solution (1), (2) and (3).

Loss on drying <2.41> Not more than 0.5% (1 g, in vacuum not exceeding 0.7 kPa, 100°C, 2 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g, platinum crucible).

Assay Weigh accurately about 0.3 g of Sulindac, previously dried, dissolve in 50 mL of methanol and titrate <2.50> with 0.1 mol/L sodium hydroxide VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L sodium hydroxide VS = 35.64 mg of C₁₅H₂₃N₃O₅S

Containers and storage Containers—Tight containers.

Sulpiride

![Sulpiride Structure](image)

C₁₅H₂₃N₃O₅S: 341.43
N-(1-Ethylpyrrolidin-2-ylmethyl)-2-methoxy-5-sulfamoylbenzamide [15676-16-1]

Sulpiride, when dried, contains not less than 98.5% and not more than 101.0% of sulpiride (C₁₅H₂₃N₃O₅S).

Description Sulpiride is a white crystalline powder.

It is freely soluble in acetic acid (100) and in dilute acetic acid, sparingly soluble in methanol, slightly soluble in ethanol (99.5), and practically insoluble in water.

It is soluble in 0.05 mol/L sulfuric acid TS.

A solution of Sulpiride in methanol (1 in 100) shows no optical rotation.

Melting point about 178°C (with decomposition).

Identification (1) Dissolve 0.1 g of Sulpiride in 0.05 mol/L sulfuric acid TS to make 100 mL. Dilute 5 mL of the solution with water to make 100 mL. Determine the absorption spectrum of the solution as directed under Ultraviolet-visible Spectrophotometry <2.26>, using water as the blank, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelength.

(2) Determine the infrared absorption spectrum of Sulpiride as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelength numbers.

Purity (1) Clarity and color of solution—Dissolve 2.0 g of Sulpiride in 7 mL of dilute acetic acid, and add water to make 20 mL: the solution is clear. Perform the test with the solution as directed under Ultraviolet-visible Spectrophotometry <2.26>, using water as the blank: the absorbance at a wavelength of 450 nm does not exceed 0.020.

(2) Heavy metals <1.87>—Proceed with 2.0 g of Sulpiride as directed under Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(3) Related substances—Dissolve 50 mg of Sulpiride in 10 mL of methanol, and use this solution as the sample solution. Dilute 1 mL of the sample solution, accurately measured, with methanol to make exactly 100 mL. Dilute 2 mL of this solution, accurately measured, with methanol to make exactly 10 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.07>. Spot 20 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of 1-butanol, water and acetic acid (100) (4:2:1) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the number of the spots other than the principal spot obtained from the sample solution is not more than 2, and they have no more intense than the spot from the standard solution. When the plate is exposed to iodine vapor for 30 minutes, the number of the spots other than the principal spot from the sample solution is not more than 2, and they have no more intense than the spot from the standard solution.

Loss on drying <2.41> Not more than 0.5% (1 g, 105°C, 3 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Dissolve about 0.4 g of Sulpiride, previously dried and accurately weighed, in 80 mL of acetic acid (100), and titrate <2.50> with 0.1 mol/L perchloric acid VS (indicator: 2 drops of crystal violet TS) until the color of the solution changes from violet through blue to bluish green. Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 34.14 mg of C₁₅H₂₃N₃O₅S

Containers and storage Containers—Well-closed containers.

Sulpiride Capsules

Sulpiride Capsules contain not less than 95.0% and not more than 105.0% of the labeled amount of sulpiride (C₁₅H₂₃N₃O₅S: 341.43).

Method of preparation Prepare as directed under Capsules, with Sulpiride.

Identification Determine the absorption spectrum of the sample solution obtained in the Assay as directed under Ultraviolet-visible Spectrophotometry <2.26>, using water as the blank: it exhibits a maximum between 289 nm and 293
Uniformity of dosage units <6.02> Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement.

To 1 capsule of Sulpiride Capsules add 30 mL of 0.05 mol/L sulfuric acid TS, shake for 30 minutes, add 0.05 mol/L sulfuric acid TS to make exactly V mL so that each mL contains about 1 mg of sulpiride (C$_{15}$H$_{23}$N$_{2}$O$_{5}$S), and filter. Discard the first 20 mL of the filtrate, pipet 5 mL of the subsequent filtrate, add water to make exactly 100 mL, and use this solution as the sample solution. Proceed as directed in the Assay.

Amount (mg) of sulpiride (C$_{15}$H$_{23}$N$_{2}$O$_{5}$S) = $M_5 \times A_T/A_S \times V/50$

M_5: Amount (mg) of sulpiride for assay taken

Dissolution Being specified separately when the drug is granted approval based on the Law.

Assay Cut the capsule of not less than 20 Sulpiride Capsules, weigh accurately the mass of the contents, and powder. Weigh accurately a portion of the powder, equivalent to about 0.1 g of sulpiride (C$_{15}$H$_{23}$N$_{2}$O$_{5}$S), add 70 mL of 0.05 mol/L sulfuric acid TS, shake for 30 minutes, and add 0.05 mol/L sulfuric acid TS to make exactly 100 mL, and filter. Discard the first 20 mL of the filtrate, pipet 5 mL of the subsequent filtrate, add water to make exactly 100 mL, and use this solution as the sample solution. Separately, weigh accurately about 50 mg of sulpiride for assay, previously dried at 105°C for 3 hours, and in 0.05 mol/L sulfuric acid TS to make exactly 50 mL. Pipet 5 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution. Determine the absorbances, A_T and A_S, of the sample solution and standard solution at 291 nm as directed under Ultraviolet-visible Spectrophotometry <2.24>, using water as the blank:

Amount (mg) of sulpiride (C$_{15}$H$_{23}$N$_{2}$O$_{5}$S) = $M_5 \times A_T/A_S \times 2$

M_5: Amount (mg) of sulpiride for assay taken

Containers and storage Containers—Tight containers.

Sulpiride Tablets

スルピリド錠

Sulpiride Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of sulpiride (C$_{15}$H$_{23}$N$_{2}$O$_{5}$S: 341.43).

Method of preparation Prepare as directed under Tablets, with Sulpiride.

Identification Determine the absorption spectrum of the sample solution obtained in the Assay as directed under Ultraviolet-visible Spectrophotometry <2.24>, using water as the blank: it exhibits a maximum between 289 nm and 293 nm.

Uniformity of dosage units <6.02> Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement.

To 1 tablet of Sulpiride Tablets add 30 mL of 0.05 mol/L sulfuric acid TS, shake for 30 minutes, add 0.05 mol/L sulfuric acid TS to make exactly V mL so that each mL contains about 1 mg of sulpiride (C$_{15}$H$_{23}$N$_{2}$O$_{5}$S), and filter the solution. Discard the first 20 mL of the filtrate, pipet 5 mL of the subsequent filtrate, add water to make exactly 100 mL, and use this solution as the sample solution. Proceed as directed in the Assay.

Amount (mg) of sulpiride (C$_{15}$H$_{23}$N$_{2}$O$_{5}$S) = $M_5 \times A_T/A_S \times V/50$

M_5: Amount (mg) of sulpiride for assay taken

Dissolution <6.10> When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of 2nd fluid for dissolution test as the dissolution medium, the dissolution rate of a 50-mg tablet in 30 minutes is not less than 80%, that of a 100-mg tablet in 45 minutes is not less than 75%, and that of a 200-mg tablet in 45 minutes is not less than 70%.

Start the test with 1 tablet of Sulpiride Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.5 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add the dissolution medium to make exactly V’ mL so that each mL contains about 56 μg of sulpiride (C$_{15}$H$_{23}$N$_{2}$O$_{5}$S), and use this solution as the sample solution. Separately, weigh accurately about 28 mg of sulpiride for assay, previously dried at 105°C for 3 hours, and dissolve in the dissolution medium to make exactly 100 mL. Pipet 5 mL of this solution, add the dissolution medium to make exactly 25 mL, and use this solution as the standard solution. Determine the absorbances, A_T and A_S, at 291 nm of the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry <2.24>.

Dissolution rate (%) with respect to the labeled amount of sulpiride (C$_{15}$H$_{23}$N$_{2}$O$_{5}$S) = $M_5 \times A_T/A_S \times V'/V \times 1/C \times 180$

M_5: Amount (mg) of sulpiride for assay taken

C: Labeled amount (mg) of sulpiride (C$_{15}$H$_{23}$N$_{2}$O$_{5}$S) in 1 tablet

Assay Weigh accurately, and powder not less than 20 Sulpiride Tablets. Weigh accurately a portion of the powder, equivalent to about 0.1 g of sulpiride (C$_{15}$H$_{23}$N$_{2}$O$_{5}$S), add 70 mL of 0.05 mol/L sulfuric acid TS, shake for 30 minutes, and add 0.05 mol/L sulfuric acid TS to make exactly 100 mL, and filter. Discard the first 20 mL of the filtrate, pipet 5 mL of the subsequent filtrate, add water to make exactly 100 mL, and use this solution as the sample solution. Separately, weigh accurately about 50 mg of sulpiride for assay, previously dried at 105°C for 3 hours, and dissolve in 0.05 mol/L sulfuric acid TS to make exactly 50 mL. Pipet 5 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution. Determine the absorbances, A_T and A_S, of the sample solution and standard solution at 291 nm as directed under Ultraviolet-visible Spectrophotometry <2.24>, using water as the blank:

Amount (mg) of sulpiride (C$_{15}$H$_{23}$N$_{2}$O$_{5}$S) = $M_5 \times A_T/A_S \times 2$

M_5: Amount (mg) of sulpiride for assay taken

Containers and storage Containers—Tight containers.
Sulpyrine Hydrate

スルピリン水和物

C₁₃H₁₆N₃NaO₅.S.H₂O: 351.35
Monosodium [(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)(methyl)amino]methanesulfonate monohydrate

[5907-38-0]

Sulpyrine Hydrate contains not less than 98.5% of sulpyrine (C₁₃H₁₆N₃NaO₅.S: 333.34), calculated on the dried basis.

Description Sulpyrine Hydrate occurs as white to light yellow, crystals or crystalline powder. It is odorless, and has a bitter taste.

It is very soluble in water, slightly soluble in ethanol (95), and practically insoluble in diethyl ether.

It is colored by light.

Identification (1) Add 2 drops of dilute sulfuric acid and 1 mL of chlorinated lime TS to 3 mL of a solution of Sulpyrine Hydrate (1 in 15): a deep blue color develops at first, but the color immediately turns red, then gradually changes to yellow.

(2) Boil 5 mL of a solution of Sulpyrine Hydrate (1 in 25) with 3 mL of dilute hydrochloric acid: the odor of sulfur dioxide is perceptible at first, and on further boiling, the odor of formaldehyde is perceptible.

(3) A solution of Sulpyrine Hydrate (1 in 10) responds to Qualitative Tests for sodium salt.

Purity (1) Clarity of solution, and acidity or alkalinity—Dissolve 1.0 g of Sulpyrine Hydrate in 10 mL of water: the solution is clear and neutral.

(2) Sulfate <1.14>—Dissolve 0.20 g of Sulpyrine Hydrate in 0.05 mol/L hydrochloric acid VS to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution with 0.50 mL of 0.005 mol/L sulfuric acid VS and 0.05 mol/L hydrochloric acid VS to make 50 mL (not more than 0.120%).

(3) Heavy metals <1.07>—Proceed with 1.0 g of Sulpyrine Hydrate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(4) Merbiline—Transfer 0.10 g of Sulpyrine Hydrate with 2 mL of water and 1 mL of dilute sulfuric acid into a flask, cover with a funnel, and boil gently for 15 minutes. Cool, add 2 mL of a solution of sodium acetate trihydrate (1 in 2) and water to make 5 mL, shake this solution with 5 mL of benzaldehyde-saturated solution, and allow to stand for 5 minutes: the solution is clear.

(5) Chloroform-soluble substances—Mix, by frequent shaking, 1.0 g of Sulpyrine Hydrate and 10 mL of chloroform for 30 minutes. Collect the precipitate, wash with two 5-mL portions of chloroform, combine the washings with the filtrate, and evaporate on a water bath to dryness. Dry the residue at 105°C for 4 hours: the mass of the residue is not more than 5.0 mg.

Loss on drying <2.41> Not more than 6.0% (1 g, 105°C, 4 hours).

Assay Weigh accurately about 0.25 g of Sulpyrine Hydrate, dissolve in 100 mL of diluted hydrochloric acid (1 in 20), previously cooled below 10°C. Titrate <2.50> immediately with 0.05 mol/L iodine VS while keeping the temperature between 5°C and 10°C, until the color of the solution remains blue upon shaking vigorously for 1 minute after the addition of 0.05 mol/L iodine VS (indicator: 1 mL of starch TS).

Each mL of 0.05 mol/L iodine VS = 16.67 mg of C₁₃H₁₆N₃NaO₅.S

Containers and storage Containers—Tight containers.

Storage—Light-resistant.

Sulpyrine Injection

スルピリン注射液

Sulpyrine Injection is an aqueous injection.

It contains not less than 95.0% and not more than 105.0% of the labeled amount of sulpyrine hydrate (C₁₃H₁₆N₃NaO₅.S.H₂O: 351.35).

Method of preparation Prepare as directed under Injections, with Sulpyrine Hydrate.

Description Sulpyrine Injection is a clear, colorless or pale yellow liquid.

pH: 5.0 – 8.5

Identification (1) To a volume of Sulpyrine Injection, equivalent to 0.2 g of Sulpyrine Hydrate, add water to make 3 mL, then add 2 drops of dilute sulfuric acid and 1 mL of chlorinated lime TS: a deep blue color develops at first, and the color immediately turns red and gradually changes to yellow.

(2) To a volume of Sulpyrine Injection, equivalent to 0.2 g of Sulpyrine Hydrate, add water to make 5 mL, and boil this solution with 3 mL of dilute hydrochloric acid: the odor of sulfur dioxide is perceptible at first, and on further boiling the odor of formaldehyde is perceptible.

Extractable volume <6.05> It meets the requirement.

Foreign insoluble matter <6.06> Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter <6.07> It meets the requirement.

Sterility <4.06> Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Pipet 2 mL of Sulpyrine Injection, dilute with water to exactly 100 mL. Measure exactly a volume (V mL) of this solution, equivalent to about 50 mg of sulpyrine hydrate (C₁₃H₁₆N₃NaO₅.S.H₂O), and add water to make exactly 100 mL. Pipet 5 mL of this solution, add water to exactly 100 mL, and use this solution as the sample solution. Weigh accurately about 50 mg of sulpyrine for assay (previously determine the loss on drying <2.41> under the same conditions as Sulpyrine Hydrate), and dissolve in water to make exactly 100 mL. Pipet 5 mL of this solution, add water to exactly 100 mL, and use this solution as the sample solution. Pipet 2 mL each of the sample solution and standard solution into separate 25-mL volumetric flasks, add 5 mL of ethanol (95), 2 mL of a solution of 4-dimethylaminocinnamaldehyde in ethanol (95) (1 in 250) and 2 mL of acetic acid (100) to each
of these solutions, shake well, allow to stand for 15 minutes, and add water to make 25 mL. Perform the test with these solutions as directed under Ultraviolet-visible Spectrophotometry <2.24>, using a solution prepared with 2 mL of water in the same manner as the blank. Determine the absorbances, A_T and A_0, of the subsequent solutions of the sample solution and the standard solution at 510 nm.

Amount (mg) of sulpyrine hydrate (C$_{25}$H$_{33}$N$_2$O$_{10}$S.H$_2$O)

$M_x = A_T/A_0 \times 50/V \times 1.054$

M_x: Amount (mg) of sulpyrine for assay taken, calculated on the dried basis

Containers and storage
Containers—Hermetic containers, and colored containers may be used.
Storage—Light-resistant, and under nitrogen atmosphere.

Sultamicillin Tosilate Hydrate

\[
\text{Sultamicillin Tosilate Hydrate}
\]

Sultamicillin Tosilate Hydrate contains not less than 698 μg (potency) and not more than 800 μg (potency) per mg, calculated on the anhydrous and residual solvent-free basis. The potency of Sultamicillin Tosilate Hydrate is expressed as mass (potency) of sultamicillin (C$_{25}$H$_{33}$N$_2$O$_{10}$S$_2$): 594.66.

Description

Sultamicillin Tosilate Hydrate occurs as a white to yellowish white crystalline powder.

It is freely soluble in acetonitrile, in methanol and in ethanol (99.5), and very slightly soluble in water.

Identification (1)

Determine the absorption spectrum of a solution of Sultamicillin Tosilate Hydrate in methanol (1 in 1000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Sultamicillin Tosilate RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Sultamicillin Tosilate Hydrate as directed in the paste method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of Sultamicillin Tosilate RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation<2.29> [α]$_D$2: +173° to +187° (0.5 g calculated on the anhydrous bases, a mixture of water and acetonitrile (3:2), 25 mL, 100 mm).

Purity (1) Heavy metals <1.0—Proceed with 1.0 g of Sultamicillin Tosilate Hydrate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL Standard Lead Solution (not more than 20 ppm).

(2) Ampicillin—Perform the procedure rapidly. Weigh accurately about 20 mg of Sultamicillin Tosilate Hydrate, dissolve in the mobile phase to make exactly 50 mL, and use this solution as the sample solution. Separately, weigh accurately an amount of Ampicillin RS, equivalent to about 20 mg (potency), dissolve in the mobile phase to make exactly 100 mL. Pipet 6 mL of this solution, add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 25 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak area of ampicillin by the automatic integration method: the peak area obtained from the sample solution is not larger than that from the standard solution.

Operating conditions—

Detector, column, and column temperature: Proceed as directed in the operating conditions in the Assay.

Mobile phase: Dissolve 3.12 g of sodium dihydrogen phosphate dihydrate in about 750 mL of water, adjust to pH 3.0 with diluted phosphoric acid (1 in 10), and add water to make 1000 mL. To 80 mL of acetonitrile for liquid chromatography add this solution to make 1000 mL.

Flow rate: Adjust so that the retention time of ampicillin is about 14 minutes.

System suitability—

System performance: Dissolve 12 mg of Ampicillin RS, 4 mg of Sulbactam RS and 4 mg of p-toluenesulfonic acid monohydrate in 1000 mL of the mobile phase. When the procedure is run with 25 μL of this solution under the above operating conditions, sulbactam, p-toluenesulfonic acid and ampicillin are eluted in this order, and the resolutions between these peaks are not less than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 25 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of ampicillin is not more than 2.0%.

(3) Sulbactam—Perform the procedure rapidly. Weigh accurately about 20 mg of Sultamicillin Tosilate Hydrate, dissolve in the mobile phase to make exactly 50 mL, and use this solution as the sample solution. Separately, weigh accurately an amount of Sulbactam RS, equivalent to about 20 mg (potency), dissolve in the mobile phase to make exactly 100 mL. Pipet 2 mL of this solution, add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 25 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak area of sulbactam of each solution by the automatic integration method: the peak area obtained from the sample solution is not larger than that from the standard solution.

Operating conditions—

Proceed as directed in the operating conditions in the Purity (2).

System suitability—

Proceed as directed in the system suitability in the Purity (2).

(4) Penicilloic acids—Weigh accurately about 25 mg of Sultamicillin Tosilate Hydrate, dissolve in 1 mL of acetonitrile, and add 25 mL of 0.02 mol/L phosphate buffer solu-
tion (pH 3.0) in a 100-mL glass-stoppered flask. Add exactly 5 mL of 0.005 mol/L iodine VS, and allow to stand the stoppered flask for 5 minutes. Titrate 2.50mL with 0.005 mol/L sodium thiosulfate VS (indicator: 1.0 mL of starch TS). Perform a blank determination in the same manner, and make any necessary correction. Calculate the amount of penicilloic acid (C$_2$H$_3$N$_2$O$_5$S$_2$: 630.69) by using the following equation: it is not more than 3.0%.

Each mL of 0.005 mol/L sodium thiosulfate VS

$$= 0.2585 \text{ mg of C}_2\text{H}_3\text{N}_2\text{O}_5\text{S}_2$$

(5) Residual solvent $<2.46\%$—Weigh accurately about 0.1 g of Sultamicillin Tosilate Hydrate, dissolve in 2 mL of methanol, add water to make exactly 20 mL, and use this solution as the sample solution. Separately, weigh accurately about 1 g of ethyl acetate, and mix with water to make exactly 200 mL. Pipet 2 mL of this solution, add 10 mL of methanol, then add water to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 5 mL each of the sample solution and standard solution as directed under Gas Chromatography $<2.02>$ according to the following conditions, and determine the peak areas, A_1 and A_2, of ethyl acetate in each solution. Calculate the amount of ethyl acetate by the following equation: not more than 2.0%.

Amount ($\%)$ of ethyl acetate

$$= \frac{M_2}{M_1} \times \frac{A_1}{A_2} \times 1.5$$

M_2: Amount (mg) of ethyl acetate taken

M_1: Amount (mg) of the Sultamicillin Tosilate Hydrate taken

Operating conditions—

Detector: A hydrogen flame-ionization detector.

Column: A column 3 mm in inside diameter and 1 m in length, packed with porous styrene-divinylbenzene copolymer for gas chromatography (average pore diameter: 0.0085 mm, 300—400 m2/g) (150 to 180 μm in particle diameter).

Column temperature: A constant temperature of about 155$^\circ$C.

Carrier gas: Nitrogen.

Flow rate: Adjust so that the retention time of ethyl acetate is about 6 minutes.

System suitability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, p-toluenesulfonic acid, sultamicillin and the internal standard are eluted in this order with the resolution between these peaks being not less than 2.0.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of sultamicillin is not more than 2.0%.

Containers and storage—Containers—Tight containers.

Sultamicillin Tosilate Tablets

スルタミシリンチル酸塩

Sultamicillin Tosilate Tablets contains not less than 90.0% and not more than 105.0% of the labeled potency of sultamicillin (C$_2$H$_3$N$_2$O$_5$S$_2$: 594.66).

Method of preparation—Prepare as directed under Tablets, with Sultamicillin Tosilate Hydrate.

Identification—Powder Sultamicillin Tosilate Tablets, take a portion of the powder, equivalent to 7 mg (potency) of Sultamicillin Tosilate Hydrate, add 2 mL of methanol and shake well, then centrifuge this solution. To 1 mL of the supernatant liquid add 1 mL of hydroxyammonium chloride ethanol TS, allow to stand for 3 minutes, then add 1 mL of acidic ammonium iron (III) sulfate TS: a red-brown color is produced.

Purity—Penicilloic acid—Weigh accurately the mass of not less than 5 Sultamicillin Tosilate Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 30 mg (potency) of Sultamicillin Tosilate Hydrate, add 0.02 mol/L phosphate buffer (pH 3.0) and sonicate for 5 minutes with occasional shaking, then add 0.02 mol/L phosphate buffer (pH 3.0) to make exactly 50 mL. Filter this solution through a membrane filter with a pore size not exceeding 0.45 μm, and discard the first 5 mL of the filtrate. Pipet 10 mL of the subsequent filtrate into a glass-stoppered flask, add exactly 5 mL of 0.005 mol/L iodine VS, and stop-
per tightly. After standing for 5 minutes, titrate this solution with 0.005 mol/L sodium thiosulfate VS (indicator: 1.0 mL of starch TS). Perform a blank determination in the same manner, and make any necessary correction: the amount of penicilloic acid (C_{13}H_{14}N_{2}O_{5}) is not more than 5.5%.

Each mL of 0.005 mol/L sodium thiosulfate VS = 0.2585 mg of C_{22}H_{32}N_{2}O_{5}

Uniformity of dosage units 6.02 Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement.

Perform the procedure within 2 hours after preparation of the sample solution and standard solution. To 1 tablet of Sultamicillin Tosilate Tablets add a suitable amount of the mobile phase, disperse the tablet by sonication, and add the mobile phase to make exactly 200 mL. If it is necessary, filter or centrifuge. Pipet V mL of this solution, equivalent to about 5.6 mg (potency) of Sultamicillin Tosilate Hydrate, add exactly 5 mL of the internal standard solution, then add the mobile phase to make 25 mL, and use this solution as the sample solution. Separately, weigh accurately about 47 mg (potency) of Sultamicillin Tosilate RS, dissolve in the mobile phase to make exactly 25 mL. Pipet 3 mL of this solution, add exactly 5 mL of the internal standard solution, add the mobile phase to make 25 mL, and use this solution as the standard solution. Then, proceed as directed in the Assay under Sultamicillin Tosilate Hydrate.

Amount [mg (potency)] of Sultamicillin (C_{22}H_{32}N_{2}O_{5}) = M_S \times 0.5/L \times 24/V

M_S: Amount [mg (potency)] of Sultamicillin Tosilate RS taken

Internal standard solution: A solution of isopropyl-4-aminobenzoate in the mobile phase (1 in 2500).

Dissolution 6.10 When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 15 minutes of Sultamicillin Tosilate Tablets is not less than 75%.

Start the test with 1 tablet of Sultamicillin Tosilate Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add water to make exactly V’ mL so that each mL contains about 0.42 mg (potency) of Sultamicillin (C_{22}H_{32}N_{2}O_{5}), and use this solution as the sample solution. Separately, weigh accurately about 27 mg of p-toluenesulfonic acid monohydrate, previously dried in a desiccator using sulfuric acid as desiccant for 18 hours, dissolve in water to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography 2.00 according to the following conditions, and determine the peak areas, A_T and A_S, of p-toluenesulfonic acid in each solution.

Dissolution rate (%) with respect to the labeled amount of sultamicillin (C_{22}H_{32}N_{2}O_{5}) = M_S \times A_T / A_S \times V’/V \times 1/C \times 450 \times 3.126

M_S: Amount (mg) of p-toluenesulfonic acid monohydrate taken

C: Labeled amount [mg (potency)] of sultamicillin (C_{22}H_{32}N_{2}O_{5}) in 1 tablet

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 222 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 35°C.

Mobile phase: Dissolve 13.6 g of potassium dihydrogen phosphate in water to make 1000 mL, and adjust to pH 5.5 with potassium hydroxide TS. To 950 mL of this solution add 50 mL of acetonitrile.

Flow rate: Adjust so that the retention time of p-toluenesulfonic acid is about 8 minutes.

System suitability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of p-toluenesulfonic acid are not less than 4000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of p-toluenesulfonic acid is not more than 1.5%.

Assay Perform the procedure within 2 hours after the preparation of the sample solution and standard solution. Weigh accurately the mass of not less than 20 tablets of Sultamicillin Tosilate Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 50 mg (potency) of Sultamicillin Tosilate Hydrate, add 40 mL of the mobile phase, sonicate, and add the mobile phase to make exactly 50 mL. If it is necessary, filter or centrifuge. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution, add the mobile phase to make 25 mL, and use this solution as the sample solution. Separately, weigh accurately about 50 mg (potency) of Sultamicillin Tosilate RS, dissolve in the mobile phase to make exactly 50 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution, add the mobile phase to make 25 mL, and use this solution as the standard solution. Then, proceed as directed in the Assay under Sultamicillin Tosilate Hydrate.

Amount [mg (potency)] of sultamicillin (C_{22}H_{32}N_{2}O_{5}) = M_S \times Q_S / Q_T

M_S: Amount [mg (potency)] of Sultamicillin Tosilate RS taken

Internal standard solution: A solution of isopropyl-4-aminobenzoate in the mobile phase (1 in 2500).

Containers and storage Containers—Tight containers.
Sultiame

スルチアム

\[
\begin{align*}
\text{C}_2\text{H}_4\text{N}_2\text{O}_5\text{S}_2 & : 290.36 \\
4-(3,4,5,6\text{-Tetrahydro}-2\text{-H}-1,2\text{-thiazin}-2\text{-y})\text{benzenesulfonamide S,S-dioxide} & [61-56-3]
\end{align*}
\]

Sultiame, when dried, contains not less than 98.5% of sultiame (\(\text{C}_6\text{H}_{14}\text{N}_2\text{O}_5\text{S}_2\)).

Description Sultiame occurs as white, crystals or crystalline powder. It is odorless, and has a slightly bitter taste.

It is very soluble in \(N\),\(N\)-dimethylformamide, freely soluble in \(n\)-butylamine, slightly soluble in methanol and in ethanol (95), very slightly soluble in water, and practically insoluble in diethyl ether.

It dissolves in sodium hydroxide TS.

Identification (1) Dissolve 0.02 g of Sultiame in 5 mL of water and 1 mL of \(n\)-butylamine, add 2 to 3 drops of copper (II) sulfate TS, and shake well. To this solution add 5 mL of chloroform, shake, and allow to stand: a green color develops in the chloroform layer.

(2) Mix 0.1 g of Sultiame with 0.5 g of sodium carbonate decahydrate, and melt carefully: the gas evolved changes moistened red litmus paper to blue. After cooling, crush the fused substance with a glass rod, stir with 10 mL of water, and filter. To 4 mL of the filtrate add 2 drops of hydrogen peroxide (30), 5 mL of diluted hydrochloric acid (1 in 5) and 2 to 3 drops of barium chloride TS: a white precipitate is formed.

(3) Determine the absorption spectrum of a solution of Sultiame in methanol (1 in 100,000) as directed under Ultra-violet-visible Spectrophotometry 2.24, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

Melting point 2.60° 185 – 188°C

Purity (1) Chloride \(<1.03\>—Dissolve 1.0 g of Sultiame in 20 mL of sodium hydroxide TS by warming, cool, and add 2 mL of acetic acid (100) and water to make 100 mL. After shaking, filter, and discard the first 10 mL of the filtrate. To 40 mL of the subsequent filtrate add 6 mL of dilute nitric acid and water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution as follows: to 0.25 mL of 0.01 mol/L hydrochloric acid VS add 8 mL of sodium hydroxide TS, 0.8 mL of acetic acid (100), 6 mL of dilute nitric acid and water to make 50 mL (not more than 0.022%).

(2) Sulfate \(<1.14\>—Dissolve 1.0 g of Sultiame in 20 mL of sodium hydroxide TS by warming, cool, and add 8 mL of dilute hydrochloric acid and water to make 100 mL. After shaking, filter, and discard the first 10 mL of the filtrate. To 40 mL of the subsequent filtrate add 1 mL of dilute hydrochloric acid and water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution as follows: to 0.40 mL of 0.005 mol/L sulfuric acid VS add 8 mL of sodium hydroxide TS, 4.2 mL of dilute hydrochloric acid and water to make 50 mL (not more than 0.048%).

(3) Heavy metals \(<1.07\>—Proceed with 2.0 g of Sultiame according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(4) Arsenic \(<1.11\>—Prepare the test solution with 1.0 g of Sultiame according to Method 3, and perform the test (not more than 2 ppm).

(5) Related substances—Dissolve 0.10 g of Sultiame in methanol to make exactly 20 mL, and use this solution as the sample solution. Separately, dissolve 10 mg of sulfanilamide in methanol to make exactly 100 mL. Pipet 10 mL of this solution, add methanol to make exactly 100 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography 2.60. Spot 20 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of chloroform, methanol and ammonia solution (28) (30:8:1) to a distance of about 12 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying \(<2.41\>—Not more than 0.5% (1 g, 105°C, 3 hours).

Residue on ignition \(<2.44\>—Not more than 0.1% (1 g).

Assay Weigh accurately about 0.8 g of Sultiame, previously dried, dissolve in 70 mL of \(N\),\(N\)-dimethylformamide, and titrate \(<2.50\> with 0.2 mol/L tetramethylammonium hydroxide VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.2 mol/L tetramethylammonium hydroxide VS = 58.07 mg of \(\text{C}_6\text{H}_{14}\text{N}_2\text{O}_5\text{S}_2\).

Containers and storage Containers—Well-closed containers.

Suxamethonium Chloride Hydrate

スキサメトニウム塩化物水和物

\[
\begin{align*}
\text{C}_4\text{H}_9\text{Cl}_2\text{N}_2\text{O}_4\cdot 2\text{H}_2\text{O} & : 397.34 \\
2,2'\text{-Succinyldioxybis(\(N\),\(N\)-trimethyleneaminium)} & \text{dichloride dihydrate} [6101-15-1]
\end{align*}
\]

Suxamethonium Chloride Hydrate contains not less than 98.0% of suxamethonium chloride (\(\text{C}_4\text{H}_9\text{Cl}_2\text{N}_2\text{O}_4\)); 361.31), calculated on the anhydrous basis.

Description Suxamethonium Chloride Hydrate occurs as a white crystalline powder.

It is freely soluble in water, in methanol and in acetic acid (100), slightly soluble in ethanol (95), very slightly soluble in acetic anhydride, and practically insoluble in diethyl ether.

Identification (1) Determine the infrared absorption spec-
trum of Suxamethonium Chloride Hydrate as directed in the potassium bromide disk method under Infrared Spectroscopy \(<2.25 \), and compare the spectrum with the Reference Spectrum; both spectra exhibit similar intensities of absorption at the same wave numbers.

(2) A solution of Suxamethonium Chloride Hydrate (1 in 20) responds to Qualitative Tests \(<1.09 \) for chloride.

pH \(< 2.54 \): The pH of a solution of 0.1 g of Suxamethonium Chloride Hydrate in 10 mL of water is between 4.0 and 5.0.

Melting point \(< 2.60 \): 159 - 164°C (hydrate form).

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Suxamethonium Chloride Hydrate in 10 mL of water; the solution is clear and colorless.

(2) Related substances—Dissolve 0.25 g of Suxamethonium Chloride Hydrate in 5 mL of water, and use this solution as the sample solution. Perform the test with these solutions as directed under Thin-layer Chromatography \(< 2.09 \). Spot 1 \(\mu L \) each of the sample solution and standard solution on a plate of cellulose for thin-layer chromatography. Develop the plate with a mixture of a solution of ammonium acetate (1 in 100), acetone, 1-butanol and formic acid (20:20:20:1) to a distance of about 10 cm, and dry the plate at 105°C for 15 minutes. Spray evenly hexachloroplatinate (IV)-potassium iodide TS on the plate, and allow to stand for 15 minutes: the spots other than the principal spot from the sample solution are not more intense than the spot from the standard solution.

Water \(< 2.48 \): 8.0 - 10.0% (0.4 g, volumetric titration, direct titration).

Residue on ignition \(< 2.44 \): Not more than 0.1% (1 g).

Assay Weigh accurately about 0.4 g of Suxamethonium Chloride Hydrate, dissolve in 80 mL of a mixture of acetic anhydride and acetic acid (100:7:3), and titrate \(< 2.50 \) with 0.1 mol/L perchloric acid VS (potentiometric titration).

Each mL of 0.1 mol/L perchloric acid VS = 18.07 mg of \(\text{C}_{14}\text{H}_{29}\text{Cl}_{5}\text{N}_{2}\text{O}_{4} \).

Containers and storage Containers—Tight containers.

Suxamethonium Chloride Injection

スキサメトニウム塩化物注射液

Suxamethonium Chloride Injection is an aqueous injection.

It contains not less than 93.0% and not more than 107.0% of the labeled amount of suxamethonium chloride (\(\text{C}_{14}\text{H}_{29}\text{Cl}_{5}\text{N}_{2}\text{O}_{4} \): 361.31).

The concentration of Suxamethonium Chloride Injection should be stated as the amount of suxamethonium chloride (\(\text{C}_{14}\text{H}_{29}\text{Cl}_{5}\text{N}_{2}\text{O}_{4} \)).

Method of preparation Prepare as directed under Injections, with Suxamethonium Chloride Hydrate.

Description Suxamethonium Chloride Injection is a clear, colorless liquid.

Identification Take a volume of Suxamethonium Chloride Injection, equivalent to 0.05 g of Suxamethonium Chloride Hydrate, add water to make 10 mL, and use this solution as the sample solution. Separately, dissolve 0.05 g of suxamethonium chloride for thin-layer chromatography in 10 mL of water, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography \(< 2.07 \). Spot 1 \(\mu L \) each of the sample solution and standard solution on a plate of cellulose for thin-layer chromatography. Develop the plate with a mixture of a solution of ammonium acetate (1 in 100), acetone, 1-butanol and formic acid (20:20:20:1) to a distance of about 10 cm, and dry the plate at 105°C for 15 minutes. Spray evenly hexachloroplatinate (IV)-potassium iodide TS on the plate: the spots obtained from the sample solution and standard solution are blue-purple in color and have similar \(R_f \) value.

pH \(< 2.54 \): 3.0 - 5.0

Purity Hydrolysis products—Perform the preliminary neutralization with 0.1 mol/L sodium hydroxide VS in the Assay: not more than 0.7 mL of 0.1 mol/L sodium hydroxide VS is required for each 200 mg of Suxamethonium Chloride (\(\text{C}_{14}\text{H}_{29}\text{Cl}_{5}\text{N}_{2}\text{O}_{4} \) taken.

Bacterial endotoxins \(< 4.0 \): Less than 2.0 EU/mg.

Extractable volume \(< 6.0 \): It meets the requirement.

Foreign insoluble matter \(< 6.0 \): Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter \(< 6.0 \): It meets the requirement.

Sterility \(< 4.0 \): Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Transfer to a separator an accurately measured 25 mL of 0.1 mol/L sodium hydroxide VS, add 30 mL of freshly boiled and cooled water, and wash the solution with five 20-mL portions of diethyl ether. Combine the diethyl ether washings, and extract the combined diethyl ether layer with two 10-mL portions of freshly boiled and cooled water. Wash the combined water extracts with two 10-mL portions of diethyl ether. Combine the solution and the water extracts, add 2 drops of bromothymol blue TS, and neutralize with 0.1 mol/L sodium hydroxide VS, and boil for 40 minutes under a reflux condenser, and cool. Titrate \(< 2.50 \) the excess sodium hydroxide with 0.1 mol/L hydrochloric acid VS. Transfer 50 mL of the freshly boiled and cooled water to a flask, add 2 drops of bromothymol blue TS, neutralize the solution with 0.1 mol/L sodium hydroxide VS, and perform a blank determination in the same manner.

Each mL of 0.1 mol/L sodium hydroxide VS = 18.07 mg of \(\text{C}_{14}\text{H}_{29}\text{Cl}_{5}\text{N}_{2}\text{O}_{4} \).

Containers and storage Containers—Hermetic containers.

Shelf life 12 months after preparation.
Suxamethonium Chloride for Injection

注射用スキサメトニウム塩化物

Suxamethonium Chloride for Injection is a preparation for injection which is dissolved before use.
It contains not less than 93.0% and not more than 107.0% of the labeled amount of suxamethonium chloride (C_{27}H_{39}Cl_{2}N_{2}O_{3})

The concentration of Suxamethonium Chloride for Injection should be stated as the amount of suxamethonium chloride (C_{27}H_{39}Cl_{2}N_{2}O_{3}).

Method of preparation Prepare as directed under Injections, with Suxamethonium Chloride Hydrate.

Description Suxamethonium Chloride for Injection occurs as a white, crystalline powder or mass.

Identification Take an amount of Suxamethonium Chloride for Injection, equivalent to 0.05 g of Suxamethonium Chloride Hydrate, dissolve in water to make 10 mL, and use this solution as the sample solution. Separately, dissolve 0.05 g of suxamethonium chloride for thin-layer chromatography in 10 mL of water, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography (<2.02>). Spot 1 μL of each of the sample solution and standard solution on a plate of cellulose for thin-layer chromatography. Develop the plate with a mixture of a solution of ammonium acetate (1 in 100), acetone, l-butanol and formic acid (20:20:20:1) to a distance of about 10 cm, and dry the plate at 105°C for 15 minutes. Spray evenly hydrogen hexachloroplatinate (IV)-potassium iodide TS on the plate: the spots obtained from the sample solution and standard solution are blue-purple in color and have similar RF value.

pH <2.54> The pH of a solution of 0.1 g of Suxamethonium Chloride for Injection in 10 mL of water is between 4.0 and 5.0.

Purity Related substances—Take an amount of Suxamethonium Chloride for Injection, equivalent to 0.25 g of Suxamethonium Chloride Hydrate, and proceed as directed in the Purity (2) under Suxamethonium Chloride Hydrate.

Bacterial endotoxins <4.01> Less than 1.5 EU/mg.

Uniformity of dosage units <6.02> It meets the requirement of the Mass variation test.

Foreign insoluble matter <6.06> Perform the test according to Method 2: it meets the requirement.

Insoluble particulate matter <6.07> It meets the requirement.

Sterility <4.06> Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Weigh accurately the contents of not less than 10 preparations of Suxamethonium Chloride for Injection. Weigh accurately about 0.5 g of the contents, and proceed as directed in the Assay under Suxamethonium Chloride Hydrate.

Each mL of 0.1 mol/L perchloric acid VS = 18.07 mg of C_{27}H_{39}Cl_{2}N_{2}O_{3}

Containers and storage Containers—Hermetic containers.

Tacalcitol Hydrate

タカルシトール水和物

C_{27}H_{44}O_{5}, H_{2}O; 434.65 (1S,3R,5Z,7E,24R)-9,10-Secocholesta-5,7,10(19)-triene-1,3,24-triol monohydrate [91129-94-3]

Tacalcitol Hydrate contains not less than 97.0% and not more than 103.0% of tacalcitol (C_{27}H_{44}O_{5}; 416.64), calculated on the anhydrous basis.

Description Tacalcitol Hydrate occurs as white, crystals or crystalline powder.

It is very soluble in methanol and in ethanol (99.5), and practically insoluble in water.

It decomposes on exposure to light.

Melting point: about 100°C. Place Tacalcitol Hydrate in a capillary tube and immediately flame-seal, put the tube in a bath heated at a temperature of about 10°C below the predicted melting point, then start the determination by rising the temperature at the rate of 1°C per minute.

Identification (1) Determine the absorption spectrum of a solution of Tacalcitol Hydrate in ethanol (99.5) (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Tacalcitol RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Tacalcitol Hydrate as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of Tacalcitol RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation <2.49> [α]_{D}^{20}: +58° +63° (25 mg calculated on the anhydrous basis, ethanol (99.5), 5 mL, 100 mm).

Purity (1) 1α,24(S)-Dihydroxycolecalciferol — Conduct this procedure avoiding contact to the air as possible and using light-resistant vessels. Dissolve 1 mg of Tacalcitol Hydrate in 20 mL of methanol, and use this solution as the sample solution. Perform the test with 30 μL of the sample solution as directed under Liquid Chromatography <2.02> according to the following conditions. Determine the peak area of tacalcitol, A_{x}, and the area of a peak, having the relative retention time of about 1.1 to tacalcitol, A_{y}, by the automatic integration method: A_{x}/(A_{x} + A_{y}) is not more than 0.02.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 265 nm).
Tacalcitol Lotion

Tacalcitol Lotion contains not less than 90.0% and not more than 110.0% of tacalcitol (C\textsubscript{27}H\textsubscript{40}O\textsubscript{4}: 416.64).

Method of preparation

Prepare as directed under Lotions, with Tacalcitol Hydrate.

Identification

Perform the test with 30 \(\mu \)L each of the sample solution and standard solution, both are obtained in the Assay, as directed under Liquid Chromatography \(\leq 2.0 \Omega \) according to the following conditions: the retention time of the principal peaks in the chromatograms obtained from the sample solution and standard solution is the same, and both adsorption spectra of these peaks exhibit similar intensities of absorption at the same wavelengths.

Operating conditions—

Column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Detector: A photodiode array detector (wavelength: 265 nm; spectrum range of measurement: 210 - 400 nm).

System suitability—

System performance: Proceed as directed in the system suitability in the Assay.

Assay

Weigh accurately about 1 mg each of Tacalcitol Hydrate and Tacalcitol RS (separately determine the water \(\leq 2.4 \% \) in the same manner as Tacalcitol Hydrate), and dissolve each in methanol to make exactly 50 mL. Pipet 5 mL of each solution, add methanol to make exactly 20 mL, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with 40 \(\mu \)L of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of tacalcitol are not less than 1500 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 40 \(\mu \)L of the standard solution under the above operating conditions, the relative standard deviation of the peak area of tacalcitol is not more than 1.0%.

Containers and storage

Containers—Tight containers.

Storage—Light-resistant, and at a temperature of 2 - 8°C.

JP XVIII

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with triacontylsilanized silica gel for liquid chromatography (3 \(\mu \)m in particle diameter).

Temperature: A constant temperature of about 15°C.

Mobile phase: A mixture of acetonitrile and water (3:2).

Flow rate: Adjust so that the retention time of tacalcitol is about 26 minutes.

System suitability—

Test for required detectability: To 2 mL of the sample solution add methanol to make 20 mL, and use this solution as the solution for system suitability test. Pipet 4 mL of the solution for system suitability test, and add methanol to make exactly 20 mL. Confirm that the peak area of tacalcitol obtained with 30 \(\mu \)L of this solution is equivalent to 15 to 25% of that with 30 \(\mu \)L of the solution for system suitability test.

System performance: Dissolve 1 mg of Tacalcitol Hydrate in ethanol (99.5) to make 20 mL. Put 1 mL of this solution in a glass ampoule, flame-seal, heat at 100°C for 1 hour, and cool quickly to room temperature. Open the ampoule, evaporate to dryness the content under the nitrogen stream. Dissolve the residue with 1 mL of methanol. When the procedure is run with 30 \(\mu \)L of this solution under the above operating conditions, the resolution between the peaks corresponding to pre-tacalcitol, having the relative retention time of about 0.85 to tacalcitol and tacalcitol is not less than 4.

System repeatability: When the test is repeated 6 times with 30 \(\mu \)L of the solution for system suitability test under the above operating conditions, the relative standard deviation of the peak area of tacalcitol is not more than 2.0%.

(2) Related substances—Dissolve 1 mg of Tacalcitol Hydrate in 0.2 mL of ethanol (99.5), and use this solution as the sample solution. Pipet 50 \(\mu \)L of the sample solution, add ethanol (99.5) to make exactly 5 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography \(\leq 2.0 \). Spot 20 \(\mu \)L each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of toluene and acetone (4:3) to a distance of about 15 cm, and air-dry the plate. Spray evenly a mixture of sulfuric acid and methanol (1:1) on the plate, and heat the plate at 105°C for 5 minutes: the spot other than the principal spot obtained from the sample solution is not more than one, and not more intense than the spot from the standard solution.

Water \(\leq 2.4 \% \)

Assay

Conduct this procedure avoiding contact to the air as possible and using light-resistant vessels. Weigh accurately about 1 mg each of Tacalcitol Hydrate and Tacalcitol RS and add water to make exactly 10 mL. Pipet 1 mL of each solution, add methanol to make exactly 20 mL, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with exactly 40 \(\mu \)L each of the sample solution and standard solution as directed under Liquid Chromatography \(\leq 2.0 \), according to the following conditions, and determine the peak area, \(A_1 \) and \(A_2 \), of tacalcitol in each solution.

Amount (mg) of tacalcitol (C\textsubscript{27}H\textsubscript{40}O\textsubscript{4}) = \(M_5 \times A_1/A_2 \)

\(M_5 \): Amount (mg) of Tacalcitol RS taken, calculated on the anhydrous basis.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 265 nm).
not exceeding 0.2 μm, and use the filtrate as the standard solution. Perform the test with 30 μL each of the sample solution and standard solution as directed under Liquid Chromatography (2.01) according to the following conditions, and calculate the ratios, Q_1 and Q_2, of the peak area of tacalcitol to that of the internal standard.

\[
M_S = M_5 \times \frac{Q_1}{Q_2} \times 2
\]

M_S: Amount (mg) of Tacalcitol RS taken, calculated on the anhydrous basis

Internal standard solution—A solution of hexyl parahydroxybenzoate in methanol (3 in 2,500,000).

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 265 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 30°C.
Mobile phase: A mixture of acetonitrile for liquid chromatography and diluted 0.25 mol/L acetic acid TS (1 in 10) (13:7).
Flow rate: Adjust so that the retention time of tacalcitol is about 18 minutes.

System suitability—
System performance: When the procedure is run with 30 μL of the standard solution under the above operating conditions, the internal standard and tacalcitol are eluted in this order with the resolution between these peaks being not less than 14.
System repeatability: When the test is repeated 6 times with 30 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of tacalcitol to that of the internal standard is not more than 2.0%.

Containers and storage Containers—Tight containers.
Storage—Light-resistant.

Tacalcitol Ointment

システム

Tacalcitol Ointment contains not less than 90.0% and not more than 115.0% of the labeled amount of tacalcitol (C$_{27}$H$_{44}$O$_{3}$: 416.64).

Method of preparation Prepare as directed under Ointments, with Tacalcitol Hydrate.

Identification Perform the test with 30 μL each of the sample solution and standard solution, both are obtained in the Assay, as directed under Liquid Chromatography (2.01) according to the following conditions: the retention time of the principal peaks in the chromatograms obtained from the sample solution and standard solution is the same, and both adsorption spectra of these peaks exhibit similar intensities of absorption at the same wavelengths.

Operating conditions—
Column, column temperature, mobile phase and flow rate: Proceed as directed in the operating conditions in the Assay.

System suitability—
System performance: Proceed as directed in the system suitability in the Assay.

Purity Related substances—This test is only applied to the preparations of 20 μg/g.

Conduct this procedure using light-resistant vessels. To an amount of Tacalcitol Ointment, equivalent to about 20 μg of tacalcitol (C$_{27}$H$_{44}$O$_{3}$), add 5 mL of hexane and 5 mL of methanol, shake thoroughly for 15 minutes, and centrifuge. Discard the upper layer, pipet 5 mL of the lower layer, and evaporate the solvents in vacuum. Dissolve the residue in 1 mL of methanol, filter this solution through a membrane filter with a pore size not exceeding 0.2 μm, and use the filtrate as the sample solution. Perform the test with 30 μL of the sample solution as directed under Liquid Chromatography (2.01) according to the following conditions. Determine each peak area by the automatic integration method, and calculate their amounts by the area percentage method: the amount of the peak other than tacalcitol and pre-tacalcitol, having a relative retention time of about 0.83 to tacalcitol, is not more than 0.8%, and the total amount of the peaks other than tacalcitol and pre-tacalcitol is not more than 2.0%.

Operating conditions—
Detector, column and column temperature: Proceed as directed in the operating conditions in the Assay.
Mobile phase A: Water.
Mobile phase B: Acetonitrile for liquid chromatography.
Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 30</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>30 – 50</td>
<td>40 → 0</td>
<td>60 → 100</td>
</tr>
<tr>
<td>50 – 60</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Flow rate: Adjust so that the retention time of tacalcitol is about 24 minutes.

Time span of measurement: For 60 minutes after injection, beginning after the solvent peak.

System suitability—
Test for required detectability: To 0.5 mL of the sample solution add methanol to make 50 mL, and use this solution as the solution for system suitability test. Pipet 4 mL of the solution for system suitability test, and add methanol to make exactly 10 mL. Confirm that the peak area of tacalcitol obtained with 30 μL of this solution is equivalent to 28 to 52% of that with 30 μL of the solution for system suitability test.

System performance: When the procedure is run with 30 μL of the sample solution under the above operating conditions, pre-tacalcitol and tacalcitol are eluted in this order with the resolution between these peaks being not less than 5.
System repeatability: When the test is repeated 6 times with 30 μL of the solution for system suitability test under the above operating conditions, the relative standard deviation of the peak area of tacalcitol is not more than 10%.

Assay Weigh accurately an amount of Tacalcitol Ointment, equivalent to about 2 μg of tacalcitol (C$_{27}$H$_{44}$O$_{3}$), add exactly 5 mL of hexane, exactly 4 mL of methanol, and exactly 1 mL of the internal standard solution, shake thoroughly for 15 minutes, and centrifuge. Filter the lower layer through a membrane filter with a pore size not exceeding 0.2
μm, and use the filtrate as the sample solution. Separately, weigh accurately about 1 mg of Tacrolimus RS (separately determine the water \(<2.4\%\) in the same manner as Tacrolimus Hydrate), and dissolve in methanol to make exactly 20 mL. Pipet 1 mL of this solution, and add methanol to make exactly 100 mL. Pipet 4 mL of this solution, add exactly 1 mL of the internal standard solution and exactly 5 mL of hexane, shake thoroughly for 15 minutes, and centrifuge. Filter the lower layer through a membrane filter with a pore size not exceeding 0.2 μm, and use the filtrate as the standard solution. Perform the test with 30 μL each of the sample solution and standard solution as directed under Liquid Chromatography \(<2.0\%\) according to the following conditions, and calculate the ratios, \(Q_7\) and \(Q_8\), of the peak area of tacrolimus to that of the internal standard.

\[
M_5 = \frac{M_s \times Q_7}{Q_8} \times 2
\]

\(M_s\): Amount (mg) of Tacrolimus RS taken, calculated on the anhydrous basis

Internal standard solution—A solution of hexyl para-hydroxybenzoate in methanol (3 in 2,500,000).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 265 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadeccsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 30°C.

Mobile phase: A mixture of acetonitrile for liquid chromatography and diluted 0.25 mol/L acetic acid TS (1 in 10) (13:7).

Flow rate: Adjust so that the retention time of tacrolimus is about 18 minutes.

System suitability—

System performance: When the procedure is run with 30 μL of the standard solution under the above operating conditions, the internal standard and tacrolimus are eluted in this order with the resolution between these peaks being not less than 14.

System repeatability: When the test is repeated 6 times with 30 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of tacrolimus to that of the internal standard is not more than 2.0%.

Containers and storage—Containers—Tight containers.

Storage—Light-resistant.

Tacrolimus Hydrate

タクロリムス水和物

C_{44}H_{60}NO_{12}.H_2O: 822.03

[109581-93-3]

Tacrolimus Hydrate contains not less than 98.0% and not more than 102.0% of tacrolimus (C_{44}H_{60}NO_{12}: 804.02), calculated on the anhydrous basis.

Description—Tacrolimus Hydrate occurs as white, crystals or crystalline powder.

It is very soluble in methanol and in ethanol (99.5), freely soluble in N,N-dimethylformamide and in ethanol (95), and practically insoluble in water.

Identification (1)—Dissolve 5 mg of Tacrolimus Hydrate in 1 mL of ethanol (95), add 1 mL of 1,3-dinitrobenzene TS and 1 mL of sodium hydroxide TS, and shake: a red-purple color develops.

(2) Determine the infrared absorption spectrum of Tacrolimus Hydrate as directed in the paste method under Infrared Spectrophotometry \(<2.2\%\), and compare the spectrum with the Reference Spectrum or the spectrum of Tacrolimus RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation \(<2.4\%\) [\(\omega\)]; \(-112^{\circ} - -117^{\circ}\) (0.2 g calculated on the anhydrous basis, N,N-dimethylformamide, 20 mL, 100 mm).

Purity (1)—Heavy metals \(<1.0\%\)—Proceed with 2.0 g of Tacrolimus Hydrate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Related substances—Being specified separately when the drug is granted approval based on the Law.

Water \(<2.4\%\); 1.9 - 2.5% (0.5 g, volumetric titration, direct titration).

Residue on ignition \(<2.4\%\); Not more than 0.1% (1 g).

Isomer—Being specified separately when the drug is granted approval based on the Law.

Assay—Weigh accurately about 25 mg each of Tacrolimus Hydrate and Tacrolimus RS (separately determine the water \(<2.4\%\) in the same manner as Tacrolimus Hydrate) and dis-
solve each in 15 mL of ethanol (99.5), to each add exactly 10 mL of the internal standard solution, add 25 mL of water, allow to stand for 6 hours, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography 2.017 according to the following conditions, and calculate the ratios, Q_1 and Q_5, of the peak area of tacrolimus to that of the internal standard.

Amount (mg) of tacrolimus ($C_{44}H_{69}NO_{12}$) = $M_S \times Q_1/Q_5$

M_S: Amount (mg) of Tacrolimus RS taken, calculated on the anhydrous basis

Internal standard solution—A solution of heptyl parahydroxybenzoate in ethanol (99.5) (3 in 4000).

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 220 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 50°C.
Mobile phase: A mixture of water, 2-propanol for liquid chromatography and tetrahydrofuran for liquid chromatography (5:2:2).
Flow rate: Adjust so that the retention time of tacrolimus is about 10 minutes.

System suitability—
System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, tacrolimus and the internal standard are eluted in this order with the resolution between these peaks being not less than 6.
System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of tacrolimus to that of internal standard is not more than 1.0%.

Containers and storage Containers—Well-closed containers.

Tacrolimus Capsules

タクロリムスカプセル

Tacrolimus Capsules contain not less than 93.0% and not more than 107.0% of the labeled amount of tacrolimus ($C_{44}H_{69}NO_{12}$: 804.02).

Method of preparation Prepare as directed under Capsules, with Tacrolimus Hydrate.

Identification Take out the contents of Tacrolimus Capsules, to a quantity of the contents, equivalent to 5 mg of tacrolimus ($C_{44}H_{69}NO_{12}$), add 2 mL of ethanol (95), shake for 10 minutes, and centrifuge. To 1 mL of the supernatant liquid add 0.5 mL of 1,3-dinitrobenzene TS and 0.5 mL of sodium hydroxide TS, shake, and allow to stand for 3 minutes: a light red-purple develops.

Purity Related substances—Being specified separately when the drug is granted approval based on the Law.

Isomer Being specified separately when the drug is granted approval based on the Law.

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 capsule of Tacrolimus Capsules add exactly 3V/5 mL of the internal standard solution, then add ethanol (99.5) to make V mL so that each mL contains about 0.1 mg of tacrolimus ($C_{44}H_{69}NO_{12}$), and sonicate for 10 minutes with occasional shaking. Centrifuge this solution, take 2 mL of the supernatant liquid, add 2 mL of water, allow to stand 6 hours, and use this solution as the sample solution. Separately, weigh accurately about 25 mg of Tacrolimus RS (separately determine the water <2.489 in the same manner as Tacrolimus Hydrate), and dissolve in ethanol (99.5) to make exactly 100 mL. Pipet 2 mL of this solution, add exactly 3 mL of the internal standard solution, add 5 mL of water, allow to stand for 6 hours, and use this solution as the standard solution. Then, proceed as directed in the Assay.

Amount (mg) of tacrolimus ($C_{44}H_{69}NO_{12}$) = $M_S \times Q_1/Q_5 \times V/250$

M_S: Amount (mg) of Tacrolimus RS taken, calculated on the anhydrous basis

Internal standard solution—A solution of heptyl parahydroxybenzoate in ethanol (99.5) (1 in 20,000).

Dissolution Being specified separately when the drug is granted approval based on the Law.

Assay Take out the contents of not less than 20 Tacrolimus Capsules, weigh accurately the mass of the contents, and powder. Weigh accurately a portion of the powder, equivalent to about 25 mg of tacrolimus ($C_{44}H_{69}NO_{12}$), add 15 mL of ethanol (99.5) and exactly 10 mL of the internal standard solution, and sonicate for 10 minutes with occasional shaking. Centrifuge this solution, to 5 mL of the supernatant liquid add 5 mL of water, allow to stand for 6 hours, and use this solution as the sample solution. Separately, weigh accurately about 25 mg of Tacrolimus RS (separately determine the water <2.489 in the same manner as Tacrolimus Hydrate), dissolve in 15 mL of ethanol (99.5), add exactly 10 mL of the internal standard solution, add 25 mL of water, allow to stand for 6 hours, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography 2.017 according to the following conditions, and calculate the ratios, Q_1 and Q_5, of the peak area of tacrolimus to that of internal standard.

Amount (mg) of tacrolimus ($C_{44}H_{69}NO_{12}$) = $M_S \times Q_1/Q_5$

M_S: Amount (mg) of Tacrolimus RS taken, calculated on the anhydrous basis

Internal standard solution—A solution of heptyl parahydroxybenzoate in ethanol (99.5) (3 in 4000).

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 220 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 50°C.
Mobile phase: A mixture of water, 2-propanol for liquid chromatography and tetrahydrofuran for liquid chromatography (5:2:2).
Flow rate: Adjust so that the retention time of tacrolimus is about 10 minutes.
System suitability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, tacrolimus and the internal standard are eluted in this order with the resolution between these peaks being not less than 6, and the number of theoretical plates and the symmetry factor of the peak of tacrolimus are not less than 3000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 5 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of tacrolimus to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Tight containers.

Talampicillin Hydrochloride

タランピシリン塩酸塩

C_{24}H_{19}N_{4}O_{4}S.HCl: 517.98
3-Oxo-1,3-dihydroisobenzofuran-1-yl (2S,5R,6R)-6-[(2R)-2-amino-2-phenylacetylaminio]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylate monohydrochloride [47747-56-8]

Talampicillin Hydrochloride is the hydrochloride of ampicillin phthalidyl ester.

It contains not less than 600 μg (potency) and not more than 700 μg (potency) per mg, calculated on the anhydrous basis. The potency of Talampicillin Hydrochloride is expressed as mass (potency) of ampicillin (C_{16}H_{19}N_{4}O_{4}S: 349.40).

Description Talampicillin Hydrochloride occurs as a white to light yellow-white powder.

It is very soluble in methanol, and freely soluble in water and in ethanol (99.5).

Identification (1) To 1 mL of a solution of Talampicillin Hydrochloride (in 30) add 1 mL of sodium hydroxide TS, mix, allow to stand for 5 minutes, and add 2 mL of dilute sulfuric acid and 2 to 3 drops of 2,4-dinitrophenylhydrazine TS: an orange-yellow precipitate is formed.

(2) Determine the infrared absorption spectrum of Talampicillin Hydrochloride as directed in the potassium bromide disk method under Infrared Spectrophotometry \(2.25\), and compare the spectrum with the Reference Spectrum or the spectrum of Talampicillin Hydrochloride RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) To 10 mL of a solution of Talampicillin Hydrochloride (in 300) add 1 mL of dilute nitric acid, and add silver nitrate TS: a white precipitate is formed.

Optical rotation \(\angle 2.49\) \(\left[\alpha\right]_D^2: +151^\circ - +171^\circ\) (0.2 g calculated on the anhydrous basis, ethanol (99.5), 20 mL, 100 mm).

Purity (1) Heavy metals \(<1.07\)—Proceed with 1.0 g of Talampicillin Hydrochloride according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(2) Arsenic \(<1.13\)—Prepare the test solution with 1.0 g of Talampicillin Hydrochloride according to Method 4, and perform the test (not more than 2 ppm).

(3) Related substances—Dissolve 50 mg of Talampicillin Hydrochloride in ethanol (99.5) to make exactly 10 mL, and use this solution as the sample solution. Pipet 1 mL, 2 mL and 3 mL of the sample solution, add ethanol (99.5) to each to make exactly 100 mL, and use these solutions as the standard solution (1), the standard solution (2) and the standard solution (3), respectively. Perform the test with these solutions as directed under Thin-layer Chromatography \(<2.07\). Spot 10 μL each of the sample solution and standard solutions (1), (2) and (3) on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of tetrahydrofuran, ethyl acetate, water and ethanol (95) (4:4:2:1) to a distance of about 13 cm, and air-dry the plate. Spray evenly a solution of ninhydrin in ethanol (99.5) (1 in 500) on the plate, and heat the plate at 110°C for 5 minutes: the spots other than the principal spot obtained from the sample solution is not more intense than the spot from the standard solution (3), and the total of the amount of each spot other than the principal spot from the sample solution, which is calculated by the comparison with the spots from the standard solutions (1), (2) and (3), is not more than 5%.

(4) 2-Formylbenzoic acid—Dissolve 50 mg of Talampicillin Hydrochloride in ethanol (99.5) to make exactly 10 mL, and use this solution as the sample solution. Separately, dissolve 10 mg of 2-formylbenzoic acid in ethanol (99.5) to make exactly 100 mL. Pipet 5 mL of this solution, add ethanol (99.5) to make exactly 10 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography \(<2.07\). Spot 10 μL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography, develop the plate with a mixture of chloroform and acetic acid (100) (4:1) to a distance of about 13 cm, and air-dry the plate. Spray evenly a solution of 2,4-dinitrophenylhydrazine in diluted sulfuric acid (6 in 25) (1 in 500): the spot of 2-formylbenzoic acid obtained from the sample solution is not more intense than that from the standard solution.

Water \(<2.48\) Not more than 3.0% (0.5 g, volumetric titration, direct titration).

Assay Weigh accurately an amount of Talampicillin Hydrochloride and Talampicillin Hydrochloride RS, equivalent to about 20 mg (potency), dissolve in water to make exactly 20 mL each, and use these solutions as the sample solution and the standard solution. The standard solution should be prepared before use. Pipet 2 mL each of the sample solution and standard solution in separate 100-mL glass-stoppered flasks, add 2.0 mL of sodium hydroxide TS, and allow them to stand for exactly 15 minutes. Add 2.0 mL of diluted hydrochloric acid (1 in 10) and exactly 10 mL of 0.005 mol/L iodine VS, allow them to stand for exactly 15 minutes, and titrate \(\angle 2.50\) with 0.01 mol/L sodium thiosulfate VS until the color of the solution is disappeared. If necessary, add 0.2 to 0.5 mL of starch TS. Separately, pipet 2 mL each of the sample solution and the standard solution in separate 100-mL glass-stoppered flasks, add exactly 10 mL of 0.005 mol/L iodine VS, titrate \(\angle 2.50\) with 0.01 mol/L sodium thiosulfate VS until the color of the solution is disappeared, and make any necessary correction. For this titration, add 0.2 to 0.5 mL of starch TS, if necessary. Calculate the
Talc occurs as a white to grayish white, fine, powder. It is unctuous, and adheres readily to the skin. It is practically insoluble in water and in ethanol (99.5). It contains no asbestos.

Description

Talc is a powdered, selected, natural, hydrated magnesium silicate. Pure t alc is Mg₃Si₂O₇(OH)₂: 379.27. It may contain related mineral substances consisting chiefly of chlorite (hydrous magnesium aluminum silicate), magnesite (magnesium carbonate), calcite (calcium carbonate) and dolomite (calcium magnesium carbonate).

Containers and storage

Containers—Tight containers.

Talc

タルク

This monograph is harmonized with the European Pharmacopoeia and the U.S. Pharmacopoeia.

The parts of the text that are not harmonized are marked with symbols (**). Information on the harmonization with the European Pharmacopoeia and the U.S. Pharmacopoeia is available on the website of the Pharmaceuticals and Medical Devices Agency.

Talc is a powdered, selected, natural, hydrated magnesium silicate. Pure t alc is Mg₃Si₂O₇(OH)₂: 379.27. It may contain related mineral substances consisting chiefly of chlorite (hydrous magnesium aluminum silicate), magnesite (magnesium carbonate), calcite (calcium carbonate) and dolomite (calcium magnesium carbonate).

Containers and storage

Containers—Tight containers.

Talc

This monograph is harmonized with the European Pharmacopoeia and the U.S. Pharmacopoeia.

The parts of the text that are not harmonized are marked with symbols (**). Information on the harmonization with the European Pharmacopoeia and the U.S. Pharmacopoeia is available on the website of the Pharmaceuticals and Medical Devices Agency.

Talc is a powdered, selected, natural, hydrated magnesium silicate. Pure t alc is Mg₃Si₂O₇(OH)₂: 379.27. It may contain related mineral substances consisting chiefly of chlorite (hydrous magnesium aluminum silicate), magnesite (magnesium carbonate), calcite (calcium carbonate) and dolomite (calcium magnesium carbonate).

Containers and storage

Containers—Tight containers.
Taltirelin Hydrate

\[
\text{C}_{17}\text{H}_{23}\text{N}_7\text{O}_5\cdot\text{4H}_2\text{O}: \text{477.47}
\]

\[
\text{N-[(4S)-1-Methyl-2,6-dioxohexahydropyrimidine-4-carbonyl]-L-histidyl-L-prolinamide tetrahydrate}
\]

Taltirelin Hydrate contains not less than 98.5% and not more than 101.0% of taltirelin (C_{17}H_{23}N_7O_5: 405.41), calculated on the anhydrous basis.

Description Taltirelin Hydrate occurs as white, crystals or crystalline powder.

It is freely soluble in water, in ethanol (99.5) and in acetic acid (100), and soluble in methanol.

It dissolves in 1 mol/L hydrochloric acid TS.

It shows crystal polymorphism.

Identification (1) Dissolve 30 mg of Taltirelin Hydrate in 10 mL of water. To 0.5 mL of this solution add 2 mL of a solution of 4-nitrobenzenediazonium fluoroborate (1 in 2000) and 3 mL of boric acid-potassium chloride-sodium hydroxide buffer solution (pH 9.0): a red color is produced.

(2) Determine the infrared absorption spectrum of Taltirelin Hydrate as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation \(<2.49> \left[\alpha\right]_D^{20}: -22.5 \pm 24.5^\circ (1 \text{ g calculated on the anhydrous basis, } 1 \text{ mol/L hydrochloric acid TS, } 50 \text{ mL, } 100 \text{ mm})
\]

Purity (1) Heavy metals \(<1.0>: \text{Proceed with } 2.0 \text{ g of Taltirelin Hydrate according to Method 4, and perform the test. Prepare the control solution with } 2.0 \text{ mL of Standard Lead Solution (not more than } 10 \text{ ppm).}

(2) Related substances—Dissolve 10 mg of Taltirelin Hydrate in 20 mL of the mobile phase, and use this solution as the sample solution. Perform the test with 20\muL of the sample solution as directed under Liquid Chromatography <2.01> according to the following conditions, determine each peak area by the automatic integration method, and calculate their amounts by the area percentage method: the amount of the peak other than taltirelin is not more than 0.1\% and the total amount of the peaks other than taltirelin is not more than 0.5\%.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 210 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecysilanized silica gel for liquid chromatography (5 \mu m in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: Dissolve 3.4 g of potassium dihydrogen phosphate in 1000 mL of water, adjust to \text{pH} 2.5 with phos-
Being specified separately when the drug is 1.178 (0.2 g, volumetric titration, beginning from 1/3 times the Official Monographs.

Prepare as directed under Tablets, × < and not more than 105.0

Weigh accurately about 0.7 g of Taltirelin Orally Disintegrating Tablets. To a portion of the powder, equivalent to 30 mg of Taltirelin Hydrate, add 10 mL of water, shake for 5 minutes, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 2 mL of the filtrate, and use the subsequent filtrate as the sample solution. Perform the test with 20 μL of the sample solution as directed under Liquid Chromatography 2.9.8 according to the following conditions. Determine each peak area by the automatic integration method, and calculate their amounts by the area percentage method: the amount of the peak with the relative retention time of about 0.7 to taltirelin is not more than 0.7% and the peaks with the relative retention time of about 0.8 and about 0.9, respectively, are not more than 0.3%, and the peak other than taltirelin and the peaks mentioned above is not more than 0.1%. And the total amount of the peaks other than taltirelin is not more than 1.0%.

Operating conditions—
Detector, column, and column temperature: Proceed as directed in the operating conditions in the Assay.
Mobile phase: Dissolve 3.4 g of potassium dihydrogen phosphate in 1000 mL of water, adjust to pH 2.5 with phosphoric acid, and add 1.7 g of sodium 1-octanesulfonate. To 900 mL of this solution add 100 mL of acetonitrile.
Flow rate: Adjust so that the retention time of taltirelin is about 15 minutes.
Time span of measurement: About 1.5 times as long as the retention time of taltirelin, beginning from 1/3 times the retention time of taltirelin.
System suitability—
Test for required detectability: To 1 mL of the sample solution add the mobile phase to make 100 mL, and use this solution as the system suitability test. Pipet 1 mL of the solution for system suitability test, and add the mobile phase to make exactly 20 mL. Confirm that the peak area of taltirelin obtained with 20 μL of this solution is equivalent to 3.5 to 6.5% of that with 20 μL of the solution for system suitability test.
System performance: When the procedure is run with 20 μL of the solution for system suitability test under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of taltirelin are not less than 7000 and not more than 1.5, respectively.
System repeatability: When the test is repeated 6 times with 20 μL of the solution for system suitability test under the above operating conditions, the relative standard deviation of the peak area of taltirelin is not more than 2.0%.

Water 2.4.11 14.0 - 15.5% (0.2 g, volumetric titration, direct titration).
Residue on ignition 2.4.11 Not more than 0.1% (1 g).
Assay Weigh accurately about 0.7 g of Taltirelin Hydrate, dissolve in 70 mL of acetic acid (100), and titrate 2.5.9 with 0.1 mol/L perchloric acid VS until the color of solution changes from violet through blue to blue-green (indicator: 3 drops of crystal violet TS). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 40.54 mg of C7H7N3O5

Containers and storage Containers—Well-closed containers.

Taltirelin Orally Disintegrating Tablets
タルチレリン口腔内崩壊錠

Taltirelin Orally Disintegrating Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of taltirelin hydrate (C7H7N3O5·4H2O: 477.47).

Method of preparation Prepare as directed under Tablets, with Taltirelin Hydrate.

Identification Powder Taltirelin Orally Disintegrating Tablets. To a portion of the powder, equivalent to 30 mg of Taltirelin Hydrate, add 10 mL of water, shake for 5 minutes, and filter. To 0.5 mL of the filtrate add 2 mL of a solution of 4-nitrobenzenediazonium fluoroborate (1 in 2000) and 3 mL of boric acid-potassium chloride-sodium hydroxide buffer solution (pH 9.0): a red color is produced.

Purity Related substances—Powder Taltirelin Orally Disintegrating Tablets. To a portion of the powder, equivalent to 5 mg of Taltirelin Hydrate, add 20 mL of the mobile phase, shake for 5 minutes, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 2 mL of the filtrate, and use the subsequent filtrate as the sample solution. Perform the test with 20 μL of the sample solution as directed under Liquid Chromatography 2.9.8 according to the following conditions. Determine each peak area by the automatic integration method, and calculate their amounts by the area percentage method: the amount of the peak with the relative retention time of about 0.7 to taltirelin is not more than 0.7% and the peaks with the relative retention time of about 0.8 and about 0.9, respectively, are not more than 0.3%, and the peak other than taltirelin and the peaks mentioned above is not more than 0.1%. And the total amount of the peaks other than taltirelin is not more than 1.0%.

Internal standard solution—A solution of o-acetanisidide (1 in 2500).

Disintegration Being specified separately when the drug is granted approval based on the Law.

Dissolution 6.10 When the test is performed at 50 revolu-

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
Taltirelin Tablets

Assay

Weigh accurately, and powder not less than 20 Taltirelin Orally Disintegrating Tablets. Weigh accurately a portion of the powder, equivalent to about 5 mg of taltirelin hydrate (C₁₇H₂₃N₂O₅·4H₂O), add 25 mL of the mobile phase, shake for 5 minutes, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 2 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 20 mg of taltirelin hydrate for assay (separately determine the water <2.48% in the same manner as Taltirelin Hydrate), and dissolve in water to make exactly 100 mL. Pipet 2 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07>, according to the following conditions, and determine the peak areas, A₁ and A₅, of taltirelin in each solution.

Dissolution rate (%) with respect to the labeled amount of taltirelin hydrate (C₁₇H₂₃N₂O₅·4H₂O)

\[Mₛ = \frac{Mₛ}{A₁ / A₅} \times \frac{V'}{V} \times \frac{1}{C} \times 18 \times 1.178 \]

- **Mₛ**: Amount (mg) of taltirelin hydrate for assay taken, calculated on the anhydrous basis
- **C**: Labeled amount (mg) of taltirelin hydrate (C₁₇H₂₃N₂O₅·4H₂O) in 1 tablet

Operating conditions

Proceed as directed in the operating conditions in the Assay.

System suitability

- System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, taltirelin and the internal standard are eluted in this order with the resolution between these peaks being not less than 10.
- System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of taltirelin to that of the internal standard is not more than 1.0%.

Containers and storage

Containers—Tight containers.

Taltirelin Tablets

Taltirelin Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of taltirelin hydrate (C₁₇H₂₃N₂O₅·4H₂O: 477.47).

Method of preparation

Prepare as directed under Tablets, with Taltirelin Hydrate.

Identification

Powder Taltirelin Tablets. To a portion of the powder, equivalent to 30 mg of Taltirelin Hydrate, add 10 mL of water, shake for 15 minutes, and filter. To 0.5 mL of the filtrate add 2 mL of a solution of 4-nitrobenzidine-nium fluoroborate (1 in 2000) and 3 mL of boric acid-potassium chloride-sodium hydroxide buffer solution (pH 9.0): a red color is produced.

Purity

Related substances—Powder Taltirelin Tablets. To a portion of the powder, equivalent to 5 mg of Taltirelin Hydrate, add 20 mL of the mobile phase, shake for 20 minutes, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 2 mL of the filtrate, and use the subsequent filtrate as the sample solution. Perform the test with 20 μL of the sample solution as directed under Liquid Chromatography <2.07> according to the following conditions. Determine each peak area by the automatic integration method, and calculate these amounts by the area percentage method: the amount of the peak with the relative retention time of about 0.7 to taltirelin is not more than 0.7% and the peaks with the relative retention time of about 0.8 and 0.9, respectively, are not more than 0.3%, and the peak other than taltirelin and the peaks mentioned above is not more than 0.1%. And the total amount of the peaks...
other than taltirelin is not more than 1.0%.

Operating conditions—

Detector, column, and column temperature: Proceed as directed in the operating conditions in the Assay.

Mobile phase: Dissolve 3.4 g of potassium dihydrogen phosphate in 1000 mL of water, adjust to pH 2.5 with phosphoric acid, and add 1.7 g of sodium 1-octanesulfonate. To 900 mL of this solution add 100 mL of acetonitrile.

Flow rate: Adjust so that the retention time of taltirelin is about 15 minutes.

Time span of measurement: About 1.5 times as long as the retention time of taltirelin, beginning from 1/3 times the retention time of taltirelin.

System suitability—

Test for required detectability: To 1 mL of the sample solution add the mobile phase to make 100 mL, and use this solution as the solution for system suitability test. Pipet 1 mL of the solution for system suitability test, and add the mobile phase to make exactly 20 mL. Confirm that the peak area of taltirelin obtained with 20 μL of this solution is equivalent to 3.5 to 6.5% of that with 20 μL of the solution for system suitability test.

System performance: When the procedure is run with 20 μL of the solution for system suitability test under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of taltirelin are not less than 7000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 20 μL of the solution for system suitability test under the above operating conditions, the relative standard deviation of the peak area of taltirelin is not more than 2.0%.

Uniformity of dosage units <6.02>

Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 tablet of Taltirelin Tablets add V/2 mL of the mobile phase and exactly V/10 mL of the internal standard solution, and sonicate for 10 minutes while occasional shaking. Then, add the mobile phase to make V mL so that each mL contains about 0.1 mg of taltirelin hydrate (C₁₇H₁₉N₅O₄.4H₂O), and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 2 mL of the filtrate, and use the subsequent filtrate as the sample solution. Then, proceed as directed in the Assay.

Amount (mg) of taltirelin hydrate (C₁₇H₁₉N₅O₄.4H₂O) = $M_s \times \frac{Q_T}{Q_s} \times \frac{V}{500} \times 1.178$

M_s: Amount (mg) of taltirelin hydrate for assay taken, calculated on the anhydrous basis

Internal standard solution— A solution of o-acetanisidide (1 in 2500).

Dissolution <6.10>

When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 30 minutes of Taltirelin Tablets is not less than 85%.

Start the test with 1 tablet of Taltirelin Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add water to make exactly V’ mL so that each mL contains about 5.6 μg of taltirelin hydrate (C₁₇H₁₉N₅O₄.4H₂O), and use this solution as the sample solution. Separately, weigh accurately about 28 mg of taltirelin hydrate for assay (separately determine the water <2.48> in the same manner as Taltirelin Hydrate), and dissolve in water to make exactly 100 mL. Pipet 2 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution.

Perform the test with 20 μL of each of the sample solution and standard solution as directed under Liquid Chromatography <2.07>, according to the following conditions, and determine the peak areas, A_S and A_T, of taltirelin in each solution.

Dissolution rate (%) with respect to the labeled amount of taltirelin hydrate (C₁₇H₁₉N₅O₄.4H₂O)

$$M_s = \frac{M_s \times \frac{Q_T}{Q_s} \times \frac{V}{500}}{1/10 \times 1.178}$$

M_s: Amount (mg) of taltirelin hydrate for assay taken, calculated on the anhydrous basis

C_s: Labeled amount (mg) of taltirelin hydrate (C₁₇H₁₉N₅O₄.4H₂O) in 1 tablet

Operating conditions—

Proceed as directed in the operating conditions in the Assay.

System suitability—

System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of taltirelin are not less than 3000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of taltirelin is not more than 2.0%.

Assay

Weigh accurately, and powder not less than 20 Taltirelin Tablets. Weigh accurately a portion of the powder, equivalent to about 5 mg of taltirelin hydrate (C₁₇H₁₉N₅O₄.4H₂O), add 25 mL of the mobile phase and exactly 5 mL of the internal standard solution, shake for 20 minutes, add the mobile phase to make 50 mL, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 2 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 50 mg of taltirelin hydrate for assay (separately determine the water <2.48> in the same manner as Taltirelin Hydrate), and dissolve in the mobile phase to make exactly 50 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution, add the mobile phase to make 50 mL, and use this solution as the standard solution. Perform the test with 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07>, according to the following conditions, and calculate the ratios, Q_T and Q_s, of the peak area of taltirelin to that of the internal standard.

Amount (mg) of taltirelin hydrate (C₁₇H₁₉N₅O₄.4H₂O) = $M_s \times \frac{Q_T}{Q_s} \times \frac{V}{1000} \times 1.178$

M_s: Amount (mg) of taltirelin hydrate for assay taken, calculated on the anhydrous basis

Internal standard solution— A solution of o-acetanisidide (1 in 2500).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 210 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadeclsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: Dissolve 3.4 g of potassium dihydrogen phosphate in 1000 mL of water, adjust to pH 2.5 with phosphoric acid, and add 1.7 g of sodium 1-octanesulfonate. To
850 mL of this solution add 150 mL of acetonitrile.
Flow rate: Adjust so that the retention time of taltirelin is about 5 minutes.

System suitability—
System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, taltirelin and the internal standard are eluted in this order with the resolution between these peaks being not less than 10.
System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of taltirelin to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Tight containers.

Tamoxifen Citrate
タモキシフェンクエン酸塩

C₂₆H₂₃NO₃C₄H₇O₇: 563.64
2-[4-[[1(1)Z]-1.2-Diphenylbut-1-en-1-yl]phenoxo]-N,N-dimethylhexylamine monocitrate [54965-24-1]

Tamoxifen Citrate, when dried, contains not less than 99.0% and not more than 101.0% of tamoxifen citrate (C₂₆H₂₃NO₃C₄H₇O₇).

Description Tamoxifen Citrate occurs as a white crystalline powder.
It is freely soluble in acetic acid (100), sparingly soluble in methanol, and slightly soluble in water and in ethanol (99.5).

Identification (1) Determine the absorption spectrum of a solution of Tamoxifen Citrate in methanol (1 in 50,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.
(2) Determine the infrared absorption spectrum of Tamoxifen Citrate as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.
(3) A solution of Tamoxifen Citrate (1 in 100) responds to Qualitative Tests <1.09> (1) for citrate.

Purity (1) Heavy metals <1.07>—Proceed with 2.0 g of Tamoxifen Citrate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).
(2) Related substances—Conduct this procedure rapidly, using light-resistant vessels. Dissolve 15 mg of Tamoxifen Citrate in 10 mL of the mobile phase, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions. Determine each peak area by the automatic integration method: the area of the peak other than tamoxifen obtained from the sample solution is not larger than 3/10 times the peak area of tamoxifen from the standard solution, and the total area of the peaks other than tamoxifen from the sample solution is not larger than 4/5 times the peak area of tamoxifen from the standard solution.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 240 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecysilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase: Dissolve 4.8 g of N,N-dimethyl-n-octylamine in 1000 mL of water. Separately, dissolve 0.9 g of sodium dihydrogen phosphate dihydrate in 1000 mL of water. Mix these solutions, and adjust to pH 3.0 with phosphoric acid. To 600 mL of this solution add 400 mL of acetonitrile.
Flow rate: Adjust so that the retention time of tamoxifen is about 21 minutes.
Time span of measurement: About 2.5 times as long as the retention time of tamoxifen, beginning after the solvent peak.

System suitability—
Test for required detectability: Pipet 1 mL of the standard solution, and add the mobile phase to make exactly 10 mL. Confirm that the peak area of tamoxifen obtained with 10 μL of this solution is equivalent to 8 to 12% of that with 10 μL of the standard solution.
System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of tamoxifen are not less than 5000 and not more than 1.5, respectively.
System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of tamoxifen is not more than 1.5%.

Loss on drying <2.41> Not more than 0.5% (1 g, 105°C, 4 hours).
Residue on ignition <2.44> Not more than 0.1% (1 g).
Assay Weigh accurately about 1 g of Tamoxifen Citrate, previously dried, dissolve in 150 mL of acetic acid (100), and titrate <2.50> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform the blank determination in the same manner, and make any necessary correction.
Each mL of 0.1 mol/L perchloric acid VS = 56.36 mg of C₂₆H₂₃NO₃C₄H₇O₇.

Containers and storage Containers—Well-closed containers.
Storage—Light-resistant.
Tamsulosin Hydrochloride

Description
Tamsulosin Hydrochloride occurs as white crystals.

It is freely soluble in formic acid, sparingly soluble in water, slightly soluble in acetic acid (100), and very slightly soluble in ethanol (99.5).

Melting point: about 230°C (with decomposition).

Identification (1)
Determine the absorption spectrum of a solution of Tamsulosin Hydrochloride (3 in 160,000) as directed under Ultraviolet-visible Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Tamsulosin Hydrochloride as directed in the potassium chloride disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) To 5 mL of an ice cooled solution of Tamsulosin Hydrochloride (3 in 400) add 3 mL of dilute nitric acid, shake well, allow to stand at room temperature for 30 minutes, and filter: the filtrate responds to Qualitative Tests <1.00> for chloride.

Optical rotation <2.49> [α]D: −17.5° to −20.5° (after drying, 0.15 g, water, warming, after cooling, 20 mL, 100 mm).

Purity (1)
Heavy metals <1.07>—Procede with 1.0 g of Tamsulosin Hydrochloride according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(2) Related substances—
(i) Dissolve 50 mg of Tamsulosin Hydrochloride in 10 mL of the mobile phase, and use this solution as the sample solution. Pipet 2 mL of the sample solution, and add the mobile phase to make exactly 50 mL. Pipet 2.5 mL of this solution, add the mobile phase to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak other than tamsulosin obtained from the sample solution is not larger than 1/2 times the peak area of tamsulosin from the standard solution.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 225 nm). Column: A stainless steel column 4 mm in inside diameter and 15 cm in length, packed with octadecysilanized silica gel for liquid chromatography (5 μm in particle diameter).

Mobile phase: Dissolve 4.4 mL of perchloric acid and 1.5 g of sodium hydroxide in 950 mL of water, adjust the pH to 2.0 with sodium hydroxide TS, and add water to make 1000 mL. To 700 mL of this solution add 300 mL of acetonitrile for liquid chromatography.

Flow rate: Adjust so that the retention time of tamsulosin is about 6 minutes.

Time span of measurement: Until tamsulosin is eluted, beginning after the solvent peak.

System suitability—
Test for required detectability: Measure exactly 1 mL of the standard solution, and add the mobile phase to make exactly 50 mL. Confirm that the peak area of tamsulosin obtained with 10 μL of this solution is equivalent to 1.4 to 2.6% of that with 10 μL of the standard solution.

System performance: Dissolve 5 mg of Tamsulosin Hydrochloride and 10 mg of propyl parahydroxybenzoate in 20 mL of the mobile phase. To 2 mL of this solution add the mobile phase to make 20 mL. When the procedure is run with 10 μL of this solution under the above operating conditions, tamsulosin and propyl parahydroxybenzoate are eluted in this order with the resolution between these peaks being not less than 12.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of tamsulosin is not more than 4.0%.

(ii) Perform the test with exactly 10 μL each of the sample solution and standard solution which are obtained in above (i) as directed under Liquid Chromatography <2.01> according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak other than tamsulosin obtained from the sample solution is not larger than 1/2 times the peak area of tamsulosin from the standard solution.

Operating conditions—
Detector, column, and column temperature: Proceed as directed in the operating conditions in the Purity (2) (i).

Mobile phase: Dissolve 4.4 mL of perchloric acid and 1.5 g of sodium hydroxide in 950 mL of water, adjust the pH to 2.0 with sodium hydroxide TS, and add water to make 1000 mL. To this solution add 1000 mL of acetonitrile for liquid chromatography.

Flow rate: Adjust so that the retention time of tamsulosin is about 2.5 minutes.

Time span of measurement: About 5 times as long as the retention time of tamsulosin, beginning after the peak of tamsulosin.

System suitability—
System performance: Proceed as directed in the system suitability in the Purity (2) (i).

Test for required detectability: Measure exactly 1 mL of the standard solution, and add the mobile phase used in the Purity (2) (i) to make exactly 50 mL. Confirm that the peak area of tamsulosin obtained with 10 μL of this solution is equivalent to 1.4 to 2.6% of that with 10 μL of the standard solution.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of tamsulosin is not more than 4.0%.

Loss on drying <2.41> Not more than 0.5% (1 g, 105°C, ...
Residue on ignition \(<2.44\%\) Not more than 0.1\% (1 g).

Assay Weigh accurately about 0.7 g of Tamsulosin Hydrochloride, previously dried, dissolve in 5 mL of formic acid, add 75 mL of a mixture of acetic acid (100) and acetic anhydride (3:2), and immediately titrate \(<2.50\%\) with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 44.50 mg of \(C_{20}H_{28}N_2O_5S.HCl\)

Containers and storage Containers—Well-closed containers.

Tamsulosin Hydrochloride Extended-release Tablets

Tamsulosin Hydrochloride Extended-release Tablets contain not less than 94.0\% and not more than 106.0\% of the labeled amount of tamsulosin hydrochloride (\(C_{20}H_{28}N_2O_5S.HCl\): 444.97).

Method of preparation Prepare as directed under Tablets, with Tamsulosin Hydrochloride.

Identification To an amount of powdered Tamsulosin Hydrochloride Extended-release Tablets, equivalent to 1 mg of Tamsulosin Hydrochloride, add about 5 g of porcelain balls with about 5 mm in diameter, add 20 mL of 0.2 mol/L sodium hydroxide TS, warm at 50\(^\circ\)C for 10 minutes, and shake vigorously for 15 minutes. Then, add 7 mL of acetonitrile, shake slightly, and centrifuge. Take the supernatant liquid, add 2.5 g of sodium chloride and 5 mL of ethyl acetate, shake vigorously for 5 minutes, and centrifuge. Take the supernatant liquid, evaporate to dryness at 50\(^\circ\)C in a water bath under reduced pressure, dissolve the residue with 20 mL of water, and filter through a membrane filter with a pore size not exceeding 0.45 \(\mu\)m. Determine the absorption spectrum of the filtrate as directed under Ultraviolet-visible Spectrophotometry \(<2.24\%\): it exhibits maxima between 222 nm and 226 nm, and between 278 nm and 282 nm.

Uniformity of dosage units \(<6.02\%\) Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 tablet of Tamsulosin Hydrochloride Extended-release Tablets add about 5 g of porcelain balls with about 5 mm in diameter and 5 mL of water, and shake to disintegrate the tablet. Add 20 mL of a solution of sodium hydroxide (1 in 500), warm at 50\(^\circ\)C for 10 minutes, shake vigorously for 30 minutes, and add 10 mL of acetonitrile and 5 mL of 0.2 mol/L hydrochloric acid TS. To this solution add exactly 5 mL of the internal standard solution, then add acetonitrile of the same sample solution. Separately, weigh accurately about 10 mg of tamsulosin hydrochloride for assay, previously dried at 105\(^\circ\)C for 2 hours, and dissolve in the mobile phase to make exactly 100 mL. Pipet 2 mL of this solution, add exactly 10 mL of the internal standard solution, add the mobile phase to make 100 mL, and use this solution as the standard solution. Perform the test with 20 \(\mu\)L each of the sample solution and standard solution as directed under Liquid Chromatography \(<2.01\%\) according to the following conditions, and calculate the ratios, \(Q_1\) and \(Q_2\), of the peak area of tamsulosin to that of the internal standard.

Amount (mg) of tamsulosin hydrochloride

\[
(C_{20}H_{28}N_2O_5S.HCl) = M_S \times \frac{Q_1}{Q_2} \times V'/V \times 1/100
\]

\(M_S\): Amount (mg) of tamsulosin hydrochloride for assay taken

Internal standard solution—A solution of methyl parahydroxybenzoate in the mobile phase (1 in 25,000).

Dissolution Being specified separately when the drug is granted approval based on the Law.

Assay Weigh accurately the mass of not less than 20 Tamsulosin Hydrochloride Extended-release Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 0.1 mg of tamsulosin hydrochloride (\(C_{20}H_{28}N_2O_5S.HCl\)), add about 5 g of porcelain balls with about 5 mm in diameter and 5 mL of water, shake, then add 20 mL of a solution of sodium hydroxide (1 in 500), warm at 50\(^\circ\)C for 10 minutes, and shake vigorously for 30 minutes. To this solution add 10 mL of acetonitrile, 5 mL of 0.2 mol/L hydrochloric acid TS and exactly 5 mL of the internal standard solution, then add 5 mL of the mobile phase, shake slightly, and centrifuge. Filter the supernatant liquid through a membrane filter with a pore size not exceeding 0.45 \(\mu\)m, and use the filtrate as the sample solution. Separately, weigh accurately about 10 mg of tamsulosin hydrochloride for assay, previously dried at 105\(^\circ\)C for 2 hours, and dissolve in the mobile phase to make exactly 100 mL. Pipet 2 mL of this solution, add exactly 10 mL of the internal standard solution, add the mobile phase to make 100 mL, and use this solution as the standard solution. Perform the test with 20 \(\mu\)L each of the sample solution and standard solution as directed under Liquid Chromatography \(<2.01\%\) according to the following conditions, and calculate the ratios, \(Q_1\) and \(Q_2\), of the peak area of tamsulosin to that of the internal standard.

Amount (mg) of tamsulosin hydrochloride

\[
(C_{20}H_{28}N_2O_5S.HCl) = M_S \times \frac{Q_1}{Q_2} \times V'/V \times 1/100
\]

\(M_S\): Amount (mg) of tamsulosin hydrochloride for assay taken

Internal standard solution—A solution of methyl parahydroxybenzoate in the mobile phase (1 in 25,000).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 225 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadeclisilanized silica gel for liquid chromatography (5 \(\mu\)m in particle diameter).

Column temperature: A constant temperature of about 40\(^\circ\)C.

Mobile phase: Dissolve 4.4 mL of perchloric acid and 1.5 g of sodium hydroxide in 950 mL of water, adjust to pH 2.0 with sodium hydroxide TS, and add water to make 1000 mL. To 700 mL of this solution add 300 mL of acetonitrile for liquid chromatography.

Flow rate: Adjust so that the retention time of tamsulosin is about 20 \(\mu\)L.

System suitability—

System performance: When the procedure is run with 20 \(\mu\)L of the standard solution under the above operating conditions, the internal standard and tamsulosin are eluted in this order with the resolution between these peaks being not less than 6.

System repeatability: When the test is repeated 6 times with 20 \(\mu\)L of the standard solution under the above operat-
ing conditions, the relative standard deviation of the ratio of the peak area of tamsulosin to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Well-closed containers.

Tannic Acid
タンニン酸

Tannic Acid is the tannin usually obtained from nutgalls or rhusgalls.

Description Tannic Acid occurs as a yellow-white to light brown amorphous powder, glistening leaflets, or spongy masses. It is odorless or has a faint, characteristic odor, and has a strongly astringent taste.

It is very soluble in water and in ethanol (95), and practically insoluble in diethyl ether.

Identification (1) To 5 mL of a solution of Tannic Acid (1 in 400) add 2 drops of iron (III) chloride TS: a blue-black color develops. Allow the solution to stand: a blue-black precipitate is produced.

(2) To 5 mL of a solution of Tannic Acid (1 in 20) add 1 drop each of albumin TS, gelatin TS, or 1 mL of starch TS: a precipitate is produced in each solution.

Purity (1) Gum, dextrin and sucrose—Dissolve 3.0 g of Tartaric Acid occurs as colorless crystals or a white crystalline powder. It is odorless, and has a strong acid taste.

It is very soluble in water, freely soluble in ethanol (95), and slightly soluble in diethyl ether.

A solution of Tartaric Acid (1 in 10) is dextrorotatory.

Identification (1) Ignite Tartaric Acid gradually: it decomposes and an odor of burning sugar is perceptible.

(2) A solution of Tartaric Acid (1 in 10) changes blue litmus paper to red, and responds to Qualitative Tests 1.09 for tartrate.

Purity (1) Sulfate 1.17—Perform the test with 0.5 g of Tartaric Acid. Prepare the control solution with 0.50 mL of 0.005 mol/L sulfuric acid VS (not more than 0.048%).

(2) Oxalate—Dissolve 1.0 g of Tartaric Acid in 10 mL of water, and add 2 mL of calcium chloride TS: no turbidity is produced.

(3) Heavy metals 1.07—Proceed with 2.0 g of Tartaric Acid according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(4) Calcium—Neutralize a solution of 1.0 g of Tartaric Acid in 10 mL of water with ammonia TS, and add 1 mL of ammonium oxalate TS: no turbidity is produced.

(5) Arsenic 1.17—Prepare the test solution with 2.0 g of Tartaric Acid according to Method 1, and perform the test (not more than 1 ppm).

Loss on drying <2.41> Not more than 0.5% (3 g, silica gel, 3 hours).

Residue on ignition <2.44> Not more than 1.0% (0.5 g).

Containers and storage Containers—Light-resistant.

Tartaric Acid
酒石酸

C₄H₄O₆: 150.09
(2R,3R)-2,3-Dihydroxybutanedioic acid [87-69-4]

Tartaric Acid, when dried, contains not less than 99.7% of tartaric acid (C₄H₄O₆).

Description Tartaric Acid occurs as colorless crystals or a white crystalline powder. It is odorless, and has a strong acid taste.

It is very soluble in water, freely soluble in ethanol (95), and slightly soluble in diethyl ether.

A solution of Tartaric Acid (1 in 10) is dextrorotatory.

Identification (1) Ignite Tartaric Acid gradually: it decomposes and an odor of burning sugar is perceptible.

(2) A solution of Tartaric Acid (1 in 10) changes blue litmus paper to red, and responds to Qualitative Tests 1.09 for tartrate.

Purity (1) Sulfate 1.17—Perform the test with 0.5 g of Tartaric Acid. Prepare the control solution with 0.50 mL of 0.005 mol/L sulfuric acid VS (not more than 0.048%).

(2) Oxalate—Dissolve 1.0 g of Tartaric Acid in 10 mL of water, and add 2 mL of calcium chloride TS: no turbidity is produced.

(3) Heavy metals 1.07—Proceed with 2.0 g of Tartaric Acid according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(4) Calcium—Neutralize a solution of 1.0 g of Tartaric Acid in 10 mL of water with ammonia TS, and add 1 mL of ammonium oxalate TS: no turbidity is produced.

(5) Arsenic 1.17—Prepare the test solution with 2.0 g of Tartaric Acid according to Method 1, and perform the test (not more than 1 ppm).

Loss on drying <2.41> Not more than 0.5% (3 g, silica gel, 3 hours).

Residue on ignition <2.44> Not more than 0.05% (1 g).

Assay Weigh accurately about 1.5 g of Tartaric Acid, previously dried, dissolve in 40 mL of water, and titrate <2.50> with 1 mol/L sodium hydroxide VS (indicator: 2 drops of phenolphthalein TS).

Each mL of 1 mol/L sodium hydroxide VS = 75.05 mg of C₄H₄O₆

Containers and storage Containers—Well-closed containers.

Taurine
タウリン

C₇H₁₅NO₃S: 125.15
2-Aminoethanesulfonic acid [107-35-7]

Taurine, when dried, contains not less than 99.0% and not more than 101.0% of taurine (C₇H₁₅NO₃S).

Description Taurine occurs as colorless or white crystals, or a white crystalline powder.

It is soluble in water, and practically insoluble in ethanol (99.5).

The pH of a solution prepared by dissolving 1.0 g of Taurine in 20 mL of freshly boiled and cooled water is between 4.1 and 5.6.

Identification Determine the infrared absorption spectrum of Taurine as directed in the potassium bromide disk method under Infrared Spectrophotometry 2.25, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Purity (1) Clarity and color of solution—A solution obtained by dissolving 1.0 g of Taurine in 20 mL of water is clear and colorless.

(2) Chloride 1.03—Perform the test with 1.0 g of Taurine. Prepare the control solution with 0.30 mL of 0.01
mol/L hydrochloric acid VS (not more than 0.011%).

(3) Sulfate <1.14>-Perform the test with 2.0 g of Taurine. Prepare the control solution with 0.40 mL of 0.005 mol/L sulfuric acid VS (not more than 0.010%).

(4) Ammonium <1.02>-Perform the test with 0.25 g of Taurine. Prepare the control solution with 5.0 mL of Standard Ammonium Solution (not more than 0.02%).

(5) Heavy metals <1.07>-Proceed with 2.0 g of Taurine according to Method 1, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(6) Iron <1.10>-Prepare the test solution with 2.0 g of Taurine according to Method 1, and perform the test according to Method A. Prepare the control solution with 2.0 mL of Standard Iron Solution (not more than 10 ppm).

(7) Related substances—Dissolve 1.0 g of Taurine in 50 mL of water, and use this solution as the sample solution. Pipet 1 mL of the sample solution, and add water to make exactly 50 mL. Pipet 1 mL of this solution, add water to make exactly 10 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 5 µL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of water, ethanol (99.5), 1-butanol and acetic acid (100): (150:150:100:1) to a distance of about 10 cm, and air-dry the plate. Spray evenly ninhydrin-butanol TS on the plate, and heat the plate at 105°C for 5 minutes: the spot other than the principle spot obtained from the sample solution is not more than one spot, and it is not more intense than the spot from the standard solution.

Loss on drying <2.41>-Not more than 0.20% (1 g, 105°C, 2 hours).

Residue on ignition <2.44>-Not more than 0.1% (1 g).

Assay Weigh accurately about 0.2 g of Taurine, previously dried, dissolve in 50 mL of water, add 5 mL of formaldehyde solution, and titrate <2.50> with 0.1 mol/L sodium hydroxide VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L sodium hydroxide VS = 12.32 mg of C₂H₅N₂O₃S

Containers and storage Containers—Well-closed containers.

Tazobactam

タゾバクタム

C₃₀H₃₁N₆O₅S: 300.29
(2S,35S,5R)-3-Methyl-7-oxo-3-(1H-1,2,3-triazol-1-ylmethyl)-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid 4,4-dioxide

[89786-04-9]

Tazobactam contains not less than 980 µg (potency) and not more than 1020 µg (potency) per 1 mg, calculated on the anhydrous basis. The potency of Tazobactam is expressed as mass (potency) of tazobactam (C₃₀H₃₁N₆O₅S).

Description Tazobactam occurs as a white to pale yellow-white crystalline powder.

It is freely soluble in dimethyl sulfoxide and in N,N-dimethylformamide, and slightly soluble in water, in ethanol and in ethanol (99.5).

It dissolves in a solution of sodium hydrogen carbonate (3 in 100).

Identification (1) Determine the infrared absorption spectrum of Tazobactam as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>.

(2) Determine the H spectrum of a solution of Tazobactam in deuterated dimethyl sulfoxide for nuclear magnetic resonance spectroscopy (1 in 35) as directed under Nuclear Magnetic Resonance Spectroscopy <2.22>.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Tazobactam in 10 mL of sodium hydrogen carbonate (3 in 100): the solution is clear. Perform the test with the solution as directed under Ultraviolet-visible Spectrophotometry <2.25>: the absorbance at 420 nm is not more than 0.14.

(2) Heavy metals <1.07>-Proceed with 1.0 g of Tazobactam according to Method 2, and perform the test. Prepare the control solution with 1.0 mL of Standard Lead Solution (not more than 10 ppm).

(3) Related substances—This operation must be performed quickly. Dissolve 50 mg of Tazobactam in 20 mL of the mobile phase, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add the mobile phase to make exactly 100 mL, and use this solution as the standard solution (1). Pipet 1 mL of the standard solution (1), add the mobile phase to make exactly 10 mL, and use this solution as the standard solution (2). Perform the test with exactly 50 µL each of the sample solution, the standard solutions (1) and (2) as directed under Liquid Chromatogra-
phy < 0.01 according to the following conditions. Determine each peak area of these solutions by the automatic integration method: the area of the peak, having the relative retention time of about 0.17 to tazobactam, obtained from the sample solution is not larger than 4/5 times the peak area of tazobactam from the standard solution (1), the area of the peak other than tazobactam and the peak having the relative retention time of about 0.17 from the sample solution is not larger than the peak area of tazobactam from the standard solution (2), and the total area of the peaks other than tazobactam and the peak having the relative retention time of about 0.17 from the sample solution is not larger than 2 times the peak area of tazobactam from the standard solution (2).

Operating conditions

Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 3 times as long as the retention time of tazobactam.

System suitability

Test for required detectability: Pipet 1 mL of the standard solution (1), and add the mobile phase to make exactly 20 mL. Confirm that the peak area of tazobactam obtained with 50 μL of this solution is equivalent to 3 to 7% of that of tazobactam with 50 μL of the standard (1).

System performance: When the procedure is run with 50 μL of the standard solution (1) under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of tazobactam are not less than 2000 and 0.8 - 1.2, respectively.

System repeatability: When the test is repeated 6 times with 50 μL of the standard solution (1) under the above operating conditions, the relative standard deviations of the peak area of tazobactam is not more than 1.0%.

Water < 0.45 Not more than 0.5% (1 g, volumetric titration, direct titration. Use a mixture of formamide for water determination and methanol for water determination (3:1) instead of methanol for water determination).

Residue on ignition < 2.46 Not more than 0.1% (1 g).

Bacterial endotoxins < 0.01 Less than 0.04 EU/mg (potency).

Assay Weigh accurately an amount of Tazobactam and Tazobactam RS, equivalent to about 50 mg (potency), dissolve each in exactly 10 mL of the internal standard solution, add water to make 100 mL, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with 10 μL each of the sample solution and standard solution as directed under the Liquid Chromatography < 2.01 according to the following conditions, and calculate the ratios, Q_1 and Q_2, of the peak areas of tazobactam to that of the internal standard.

Amount [mcg (potency)] of tazobactam (C$_{18}$H$_{20}$N$_2$O$_5$S) = $M_S \times (Q_2/Q_1) \times 1000$

M_S: Amount [mg (potency)] of Tazobactam RS taken

Internal standard solution—A solution of phenylalanine (1 in 400).

Operating conditions

Detector: An ultraviolet absorption photometer (wavelength: 210 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecylsilylized silica gel for liquid chromatography (10 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: Dissolve 1.32 g of diammonium hydrogen phosphate in 750 mL of water, adjust the pH to 2.5 with phosphoric acid, add water to make 1000 mL, and add 25 mL of acetonitrile.

Flow rate: Adjust so that the retention time of tazobactam is about 10 minutes.

System suitability

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the internal standard and tazobactam are eluted in this order with the resolution between these peaks being not less than 4.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratios of the peak area of tazobactam to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Tight containers.

Shelf life 24 months after preparation.

Tazobactam and Piperacillin for Injection

Identification (1) Determine 1H spectrum of a solution of Tazobactam and Piperacillin for Injection in heavy water for nuclear magnetic resonance spectroscopy (1 in 10) as directed under Nuclear Magnetic Resonance Spectroscopy $< 2.21>$, using sodium 3-trimethylsilylpropionate-d_4 for nuclear magnetic resonance spectroscopy as an internal reference compound: it exhibits a singlet signal A at around δ 4.2 ppm, a multiplet signal B at δ 7.3 - 7.5 ppm, a doublet signal C at around δ 7.8 ppm and a doublet signal D at around δ 8.1 ppm. The ratio of integrated intensity of these signals, A:B and C:D, is about 1:5 and about 1:1, respectively.

(2) Tazobactam and Piperacillin for Injection responds to Qualitative Tests < 1.09 (1) for sodium salt.

pH < 2.54 The pH of a solution of an amount of Tazobactam and Piperacillin for Injection, equivalent to 4.0 g (potency) of Piperacillin Hydrate, in 40 mL of water is 5.1 to 6.3.

Purity (1) Clarity and color of solution—A solution of an amount of Tazobactam and Piperacillin for Injection, equivalent to 4.0 g (potency) of Piperacillin Hydrate, in 40 mL of water is clear and colorless.

(2) Related substances—Keep the sample solution at
Dissolve an amount of Tazobactam and Piperacillin for Injection, equivalent to 0.1 g (potency) of Piperacillin Hydrate, in 100 mL of dissolving solution, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add dissolving solution to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 µL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak, having the relative retention time of about 0.06 to piperacillin, obtained from the sample solution is not larger than 1.3 times the peak area of tazobactam from the standard solution, the area of the peak, having the relative retention time of about 0.05, about 0.07, about 0.19, about 0.45 and about 0.53, from the sample solution is not larger than 1/10 times the peak area of tazobactam from the standard solution, and the total area of the peaks, having the relative retention time of about 0.05, about 0.06, about 0.07, about 0.19, about 0.45 and about 0.53, from the sample solution is not larger than 1.5 times the peak area of piperacillin from the standard solution. Furthermore, the area of the peak, having the relative retention time of about 1.20 and about 1.36, from the sample solution is not larger than 1/5 times the peak area of piperacillin from the standard solution, the area of the peak, having the relative retention time of about 0.15 and about 0.63, from the sample solution is not larger than 3/10 times the peak area of piperacillin from the standard solution, the area of the peak, having the relative retention time of about 0.91 and about 1.53, from the sample solution is not larger than 2/5 times the peak area of piperacillin from the standard solution, the total area of the peaks eluted between the relative retention time of about 0.85 and about 0.87, from the sample solution is not larger than 1/2 times the peak area of piperacillin from the standard solution, the total area of the peaks, having the relative retention time of about 0.85 and about 0.87, from the sample solution is not larger than 1.5 times the peak area of piperacillin from the standard solution, and the area of the peak other than tazobactam, piperacillin and the peaks mentioned above from the sample solution is not larger than 1/10 times the peak area of piperacillin from the standard solution. The total area of the peaks other than tazobactam, piperacillin and the peaks, having the relative retention time of about 0.05, about 0.06, about 0.07, about 0.19, about 0.45 and about 0.53, from the sample solution is not larger than 4.0 times the peak area of piperacillin from the standard solution. For the area of the peaks, having the relative retention time of about 0.05, about 0.06, about 0.07, about 0.15, about 0.19, about 0.45, about 0.53, about 0.63, about 0.68, about 0.79, about 0.91 and about 1.53, multiply their correction factors 2.09, 0.70, 0.92, 0.42, 0.69, 0.56, 0.19, 1.37, 1.93, 1.64, 1.73 and 1.29, respectively, and for the total area of the peaks having the relative retention time of about 0.85 and about 0.87 and the total area of the peaks that are eluted between the peaks having the relative retention time of about 0.85 and about 0.87, multiply their correction factors 1.79 and 2.50, respectively.

Dissolving solution: To 950 mL of diluted 1 mol/L dipotassium hydrogen phosphate TS for buffer solution (1 in 100) adjusted to pH 6.5 with phosphoric acid, add 50 mL of acetonitrile.

Operating conditions—

Detector, column, column temperature, mobile phase A, mobile phase B, flowing of mobile phase and flow rate: Proceed as directed in the operating conditions in the Assay (1).

Time span of measurement: For 36 minutes after injection, beginning after the solvent peak.

System suitability—

Test for required detectability: To exactly 1 mL of the standard solution add dissolving solution to make exactly 20 mL. Confirm that the peak area of tazobactam obtained with 20 µL of this solution is equivalent to 3.5 to 6.5% of that with 20 µL of the standard solution.

System performance: When the procedure is run with 20 µL of the standard solution under the above operating conditions, tazobactam and piperacillin are eluted in this order with the resolution between these peaks being not less than 50, and the number of theoretical plates and the symmetry factor of the peak of tazobactam are not less than 40,000 and not more than 1.5, respectively, and those of piperacillin are not less than 150,000 and not more than 1.5, respectively. Furthermore, when warm the sample solution at 40°C for 60 minutes and proceed with 20 µL of this solution under the above conditions, the resolution between the two peaks, having the relative retention time of about 0.85 and about 0.87 to piperacillin, is not less than 2.9.

System repeatability: When the test is repeated 6 times with 20 µL of the standard solution under the above conditions, the relative standard deviations of the peak area of tazobactam and piperacillin are not more than 2.0%, respectively.

Water <2.48> Weigh accurately the mass of the content of 1 container of Tazobactam and Piperacillin for Injection, dissolve in 20 mL of methanol for water determination, and perform the test with this solution according to the direct titration of Volumetric titration: not more than 0.6%. Perform a blank determination in the same manner, and make any necessary correction.

Bacterial endotoxins <6.01> Less than 0.07 EU/mg (potency) of Piperacillin Hydrate.

Uniformity of dosage units <6.02> It meets the requirement of the Mass variation test.

Foreign insoluble matter <6.06> Perform the test according to Method 2: it meets the requirement.

Insoluble particulate matter <6.07> It meets the requirement.

Sterility <4.06> Perform the test according to the Membrane filtration method: it meets the requirement.

Assay (1) Tazobactam—Dissolve the contents of 10 containers of Tazobactam and Piperacillin for Injection in a suitable amount of dissolving solution. Wash out these empty containers with dissolving solution, combine the washings and the former solution, and add dissolving solution to make exactly V mL so that each mL contains about 5 mg (potency) of Tazobactam. Pipet 5 mL of this solution, add dissolving solution to make exactly 200 mL, and use this solution as the sample solution. Separately, weigh accurately about 25 mg (potency) of Tazobactam RS, dissolve in 10 mL of acetonitrile, dilute with an amount of diluted 1 mol/L dipotassium hydrogen phosphate TS for buffer solution (1 in 100) adjusted to pH 6.5 with phosphoric acid to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 20 µL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions and determine the peak areas, A_T and A_S, of tazobactam in each solution.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
Teceleukin (Genetical Recombination)

Amount [g (potency)] of tazobactam (C₁₆H₂₀N₅O₇S) in 1 container of Tazobactam and Piperacillin for Injection = M₅ × A₅/A₃ × V/50,000

M₅: Amount [mg (potency)] of Tazobactam RS taken

Dissolving solution: To 950 mL of diluted 1 mol/L dipotassium hydrogen phosphate TS for buffer solution (1 in 100) adjusted to pH 6.5 with phosphoric acid, add 50 mL of acetonitrile.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 220 nm).

Column: A stainless steel column 3.9 mm in inside diameter and 10 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (3 μm in particle diameter).

Column temperature: A constant temperature of about 35°C.

Mobile phase A: Dissolve 1.74 g of dipotassium hydrogen phosphate in 1000 mL of water, and adjust to pH 2.6 with phosphoric acid.

Mobile phase B: Acetonitrile.

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 5</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>5 – 15</td>
<td>100 → 76</td>
<td>0 → 24</td>
</tr>
<tr>
<td>15 – 25</td>
<td>76 → 65</td>
<td>24 → 35</td>
</tr>
<tr>
<td>25 – 36</td>
<td>65</td>
<td>35</td>
</tr>
</tbody>
</table>

Flow rate: 1.5 mL per minute.

System suitability—

System performance: Dissolve 50 mg (potency) of piperacillin hydrate in the standard solution to make 50 mL, and use this solution as the solution for system suitability test. When the procedure is run with 20 μL of the solution for system suitability test under the above operating conditions, tazobactam and piperacillin are eluted in order with the resolution between these peaks being not less than 50, and the number of theoretical plates and the symmetry factor of the peak of piperacillin are not less than 100,000, and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above conditions, the relative standard deviations of the peak area of piperacillin is not more than 1.0%.

Containers and storage—

Containers—Hermetic containers.

Teceleukin (Genetical Recombination)

テセロイキン（遺伝子組換え）

Teceleukin (Genetical Recombination) is a recombinant human interleukin-2, and is a protein consisting of 134 amino acid residues with methionine at the N-terminus. It is a solution.

It contains potency between 7.7 × 10⁶ and 1.54 × 10⁷ units per mL, and not less than 7.7 × 10⁶ units per mg of protein.

Description—

Teceleukin (Genetical Recombination) occurs as a clear and colorless liquid.

Identification (1) Pipet an appropriate amount of Teceleukin (Genetical Recombination), and add an accurate amount of potency measuring medium for teceleukin so that each mL contains about 200 units, and use this solution as the sample stock solution. Dilute reference anti-interleukin-2 antibody for teceleukin with potency measuring medium for teceleukin to a concentration of approximately 200 neutral units per mL and use this solution as the interleukin-2 neutral antibody solution. Accurately add an equivalent volume of the interleukin-2 neutral antibody solution to the sample stock solution, shake, and then leave for 1 hour in a 37°C incubator in air containing 5% carbon dioxide. This solution is used as the sample solution. Prepare a standard solution by accurately adding an equivalent volume of potency meas-
uring medium for teceleukin to the sample stock solution, mixing, and then processing in the same way. Process the sample and standard solutions according to the assay method, determine their respective dilution coefficients, \(D_A\) and \(D_T\), and then calculate the neutralization rate, which should be at least 90%, using the following formula.

Neutralization rate (%) = \(\frac{(D_T - D_A)}{D_T} \times 100\)

If the mean values of the absorbance of the maximum uptake control solution and absorbance of the minimum uptake control solution do not fit the standard curve, the neutralization coefficient is to be determined within the following range.

Neutralization coefficient (%) > \(\frac{(D_T - 2)}{D_T} \times 100\)

(2) When hydrolyzed according to modified Method 2 and Method 4 as directed in 1. Hydrolysis of Protein and Peptide, and performed the test according to Method 1 in 2. Methodologies of Amino Acid Analysis under Amino Acid Analysis of Proteins 2.4.4, the molar ratios of the respective amino acids are as follows: aspartic acid is 11.4 to 12.6, glutamic acid is 17.1 to 18.9, proline is 4.5 to 5.5, glycine is 1.8 to 2.2, cysteine 2.7 to 3.3, methionine is 4.5 to 5.5, leucine is 20.9 to 23.1, tyrosine is 2.7 to 3.3, tryptophan is 5.4 to 6.6, lysine is 10.5 to 11.6, histidine is 2.7 to 3.3, tryptophan is 0.7 to 1.2, and arginine is 3.6 to 4.4. Furthermore, the peaks of the constituent 18 amino acids are observed in the chromatogram obtained from the sample solution (1).

(i) Hydrolysis—Place a volume of Teceleukin (Genetical Recombination) corresponding to approximately 50 \(\mu\)g of protein in 2 test tubes for hydrolysis, evaporate to dryness under vacuum, and use one as the sample (1). To the other, add 50 \(\mu\)L of a mixture of formic acid and hydrogen peroxide (30) (9:1) that has been left at room temperature for 1 hour, cool for 4 hours in ice, add 0.5 mL of water, and then evaporate to dryness under vacuum to give the sample (2). To 1.3 mL of methanesulfonic acid add 3.7 mL of water, mix well, and dissolve 10 mg of 3-(2-aminoethylin)dole, to make a 4 mol/L methanesulfonic acid solution. Dissolve 39.2 g of trisodium citrate dihydrate, 33 mL of hydrochloric acid, 40 mL of thiodiglycol, and 4 mL of thiodiglycol in 700 mL of water, adjust the pH to 2.2, add water to make 1000 mL, add 100 \(\mu\)L of capric acid, and mix to make a sodium citrate solution for dilution. Add 50 \(\mu\)L of freshly prepared 4 mol/L methanesulfonic acid to the sample (1) and sample (2), cool to \(-70^\circ\)C, and then deaerate under vacuum. Heat to 115\(^\circ\)C ± 2\(^\circ\)C for 24 hours after sealing these test tubes under reduced pressure. After cooling, unseal, add 50 \(\mu\)L of 4 mol/L sodium hydroxide TS followed by 0.4 mL of sodium citrate solution for dilution to make the sample solution (1) and sample solution (2). Separately, weigh accurately 0.25 mmol of \(L\)-aspartic acid, \(L\)-threonine, \(L\)-serine, \(L\)-glutamic acid, \(L\)-proline, glycine, \(L\)-alanine, \(L\)-valine, \(L\)-methionine, \(L\)-isoleucine, \(L\)-leucine, \(L\)-tyrosine, \(L\)-phenylalanine, \(L\)-lysine hydrochloride, ammonium chloride, \(L\)-histidine hydrochloride monohydrate, and \(L\)-arginine hydrochloride as well as 0.125 mmol of \(L\)-cysteine, and then dissolve in 0.1 mol/L hydrochloric acid TS to make exactly 100 mL. This solution is used as the amino acid standard stock solution. Pipet 1 mL of the amino acid standard stock solution, and add sodium citrate solution for dilution to make exactly 25 mL. This solution is used as solution A. Weigh accurately about 20 mg of \(L\)-tryptophan and dissolve in water to make exactly 1000 mL. This solution is used as solution B. Pipet 10 mL of both solution A and solution B, combine together, and add sodium citrate solution for dilution to make exactly 50 mL. This solution is used as the amino acid standard solution. Separately, weigh accurately about 17 mg of \(L\)-cysteic acid and dissolve in sodium citrate solution for dilution to make exactly 50 mL. Pipet 1 mL of this solution and add sodium citrate solution for dilution to make exactly 100 mL. This solution is used as the cysteic acid standard solution.

(ii) Amino acid analysis—Accurately measure 0.25 mL of each of the sample solution (1), the sample solution (2), the amino acid standard solution, and the cysteic acid standard solution, and perform the test by Liquid Chromatography 2.4.7 under the following conditions, and confirm the peaks of amino acids appeared on the chromatogram obtained from the sample solution (1). Also, measure the peak area of each amino acid in the sample solution (1) and the amino acid standard solution, and taking the molar number of alanine in the sample solution (1) as 5.0, determine the concentrations of aspartic acid, glutamic acid, proline, glycine, methionine, leucine, tyrosine, phenylalanine, lysine, histidine, tryptophan, and arginine and then calculate the molar ratio for each amino acid. Also, measure the cysteic acid peak areas of the sample solution (2) and the cysteic acid standard solution, determine the concentration of the cysteine, and calculate the molar ratio of cysteine taking the molar number of alanine in the sample solution (2) as 5.0.

Operating conditions—

Detector: Visible absorption photometer [wavelengths: 440 nm (proline) and 570 nm (amino acids other than proline)].

Column: A stainless steel column 4 mm in inside diameter and 25 cm in length, packed with a strongly acidic ion exchange resin for liquid chromatography consisting of polystyrene to which sulfonate group binds (5 \(\mu\m) in particle diameter).

Column temperature: A constant temperature of about 50\(^\circ\)C when the sample is injected. After a certain time, increase the temperature to a constant temperature of about 62\(^\circ\)C.

Reaction temperature: A constant temperature of about 98\(^\circ\)C.

Time for color formation: Approximately 2 minutes.

Mobile phase: After preparing mobile phases A, B, and C according to the following table, add 0.1 mL of capric acid to each.

<table>
<thead>
<tr>
<th>Mobile phase</th>
<th>Mobile phase</th>
<th>Mobile phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Citric acid</td>
<td>Trisodium citrate</td>
<td>Sodium chloride</td>
</tr>
<tr>
<td>monohydrate</td>
<td>dihydrate</td>
<td>60 mL</td>
</tr>
<tr>
<td>18.70 g</td>
<td>7.74 g</td>
<td>7.07 g</td>
</tr>
<tr>
<td>10.50 g</td>
<td>14.71 g</td>
<td>2.92 g</td>
</tr>
<tr>
<td>7.10 g</td>
<td>26.67 g</td>
<td>54.35 g</td>
</tr>
<tr>
<td>Benzy alcohol</td>
<td>Benzy alcohol</td>
<td>Benzy alcohol</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ethanol (99.5)</td>
<td>Tridiglycol</td>
<td>4 mL</td>
</tr>
<tr>
<td>60 mL</td>
<td>5 mL</td>
<td>4 mL</td>
</tr>
<tr>
<td>10 mL</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Lauramocrogol solution (1 in 4)</td>
<td>Lauramocrogol solution (1 in 4)</td>
<td>Lauramocrogol solution (1 in 4)</td>
</tr>
<tr>
<td>4 mL</td>
<td>4 mL</td>
<td>—</td>
</tr>
<tr>
<td>Water</td>
<td>Water</td>
<td>Water</td>
</tr>
<tr>
<td>pH</td>
<td>pH</td>
<td>pH</td>
</tr>
<tr>
<td>3.2</td>
<td>4.3</td>
<td>4.7</td>
</tr>
<tr>
<td>Appropriate amount</td>
<td>Appropriate amount</td>
<td>Appropriate amount</td>
</tr>
<tr>
<td>Total volume</td>
<td>Total volume</td>
<td>Total volume</td>
</tr>
<tr>
<td>1000 mL</td>
<td>1000 mL</td>
<td>1000 mL</td>
</tr>
</tbody>
</table>

Changing mobile phases and column temperature: When operating under the above conditions using 0.25 mL of the amino acid standard solution, the amino acids will elute in the following order: aspartic acid, threonine, serine, glutamic acid, proline, glycine, alanine, cystine, valine, methionine, isoleucine, leucine, tyrosine, phenylalanine, lysine, ammonia, histidine, tryptophan, and arginine. Switchover to the
mobile phases A, B, and C, in sequence so that the resolution between the peaks of cystine and valine is 2.0 or more and that between ammonia and histidine is 1.5 or more. Also, increase the temperature after a constant length of time so that the resolution between the peaks of glutamic acid and proline is at least 2.0.

Reaction reagents: Dissolve 408 g of lithium acetate dihydrate in water, and add 100 mL of acetic acid (100) and water to make 1000 mL. To this solution add 1200 mL of dimethylsulfoxide and 800 mL of 2-methoxyethanol. This solution is used as solution (I). Separately, mix together 600 mL of dimethylsulfoxide and 400 mL of 2-methoxyethanol and then add 80 g of ninhydrin and 0.15 g of sodium borohydride. This solution is used as solution (II). After gassing 3000 mL of the solution (I) for 20 minutes with nitrogen, rapidly add 1000 mL of the solution (II) and then mix by gassing for 10 minutes with nitrogen.

Mobile phase flow rate: About 0.275 mL per minute.

Reaction reagent flow rate: About 0.3 mL per minute.

System suitability
System performance: When the procedure is run with 0.25 mL of the amino acid standard solution under the above operating conditions, the resolution between the peaks of threonine and serine is at least 1.5.

Molecular mass Dissolve 0.242 g of 2-amino-2-hydroxymethyl-1,3-propanediol, 5.0 g of sodium lauryl sulfate, and 74 mg of disodium dihydrogen tetraacetate dihydrate in 60 mL of water. After adjusting the pH to 8.0 with 1 mol/L hydrochloric acid TS, add water to make 100 mL. This solution is used as the molecular mass determination buffer solution. Pipet 20 μL of Teceleukin (Genetical Recombination), add exactly 20 μL of the molecular mass determination buffer solution and exactly 2 μL of 2-mercaptopoethanol, and then heat at 90 to 100°C for 5 minutes on a water bath without allowing any water evaporation from the mixture. After cooling, add exactly 1 μL of bromophenol blue solution (1 in 2000) and then shake. This solution is used as the sample solution. Separately, pipet 5 μL of molecular mass marker for teceleukin, and add exactly 50 μL of water, exactly 55 μL of the molecular mass determination buffer solution, and exactly 5 μL of 2-mercaptopoethanol, and then heat at 90 to 100°C for 5 minutes on a water bath without allowing any water evaporation from the mixture. After cooling, add exactly 1 μL of bromophenol blue solution (1 in 2000), and shake well. This solution is used as the molecular mass standard solution. When conducting a test using SDS-polyacrylamide gel electrophoresis with 1 μL each of the sample solution and the molecular mass standard solution, the molecular mass of the main band is between 14,000 and 16,000.

Operating conditions—
Equipment: Horizontal electrophoresis vessel with a cooling unit, a device that accumulates load voltage over time, and a direct current power source device that controls the amperage, voltage, wattage.

Spotting of solutions: Solutions are spotted on concentrating gel of polyacrylamide gel sheets.

Electrophoresis conditions
Polyacrylamide gel sheet: Polyester sheet to which a polyacrylamide gel (width, about 43 mm, length, about 50 mm, and thickness, about 0.5 mm) is closely adhered. The polyacrylamide gel consists of a concentrating gel with a gel support concentration of 7.5% and a 3% degree of crosslinking and a separating gel with corresponding values of 20% and 2%. The gel contains tris-acetate buffer (pH 6.5).

Buffer solution for electrode: Prepared by dissolving 35.83 g of tricine, 24.23 g of 2-amino-2-hydroxymethyl-1,3-propanediol, and 5.5 g of sodium lauryl sulfate in water to make 1000 mL.

Cooling temperature of gel support plate: 15°C. Running conditions
Pre-electrophoresis and electrophoresis: The voltage, amperage, and wattage should not exceed 250 V, 10 mA, and 3 W, respectively. The amperage and wattage should be proportional to the number of polyacrylamide sheets.

Immediately after adding sample: The voltage, amperage, and wattage should not exceed 250 V, 1 mA, and 3 W, respectively. The amperage and wattage should be proportional to the number of polyacrylamide sheets.

Electrophoresis time
Before adding sample: Until value of load voltage integrated to time reaches 60 V·h.

Immediately after adding sample: Until value of load voltage integrated to time reaches 1 V·h.

Main electrophoresis: Until value of load voltage integrated to time reaches 140 V·h.

Fixation and staining
Dissolve 25 g of anhydrous sodium carbonate and 0.8 mL of formaldehyde solution in water to make 1000 mL. This solution is used as the developing solution. After immersing the polyacrylamide gel sheet in a mixture of ethanol (99.5), water and acetic acid (100) (5:4:1) for 2 minutes, immerse for 2 minutes in a mixture of water, ethanol (99.5) and acetic acid (100) (17:2:1). Change the mixture, immerse for another 4 minutes, immerse in water for 2 minutes to rinse the polyacrylamide gel sheet, and change the water to immerse for 2 minutes. This procedure is carried out with warming to 50°C. Next, while warming at 40°C, immerse for 10 to 15 minutes in diluted silver nitrate TS (1 in 7), warm to 30°C, and gently rinse the polyacrylamide gel sheet with water. While warming at 30°C, immerse the polyacrylamide gel sheet in freshly prepared developing solution. After obtaining adequate color formation, immerse the polyacrylamide gel sheet in diluted acetic acid (100) (1 in 20) to terminate the color formation.

Estimation of molecular mass
Plot graphs for each band obtained from the molecular mass standard solution, distance from the border of the concentrating gel and separating gel, and the logarithm of the molecular mass of proteins in each band. Calculate the molecular mass by reading the corresponding position of the major band obtained from the sample solution on the graph.

Isoelectric point The isoelectric point determined from the electrophoresis position is 7.4 to 7.9 when 3 μL of Teceleukin (Genetical Recombination) and 8 μL of isoelectric marker for teceleukin are tested by the polyacrylamide gel isoelectric method.

Operating conditions—
Equipment: Horizontal electrophoretic vessel with a cooling unit and direct current power source that can perform constant wattage control.

Preparation of polyacrylamide gel: Dissolve 1.62 g of N,N'-methylenebisacrylamide in water to make 25 mL. Accurately measure 7.5 mL of this solution, 2 mL of a 10 mL solution prepared by adding water to 5 g of glycercin, and 0.64 mL of a pH 3 to pH 10 amphoter electrolyte solution, and degas under reduced pressure while stirring thoroughly. Next, accurately measure 74 μL of freshly prepared ammonium peroxodisulfate solution (1 in...
50), 3 µL of N,N′,N″-tetramethylendiamine, and 50 µL of freshly prepared riboflavin sodium phosphate solution (1 in 1000), stir well, immediately pour on a gel preparation plate (10 cm wide, 11 cm long, and 0.8 mm thick), and then expose to a fluorescent light source for 60 minutes to gelate. Spotting

Add Teceleukin (Genetical Recombination) or isoelectric marker for teceleukin 30 minutes after starting electrophoresis to wells in gel plates to which plastic tape (3.5 mm wide, 3.5 mm long, 0.4 mm thick) has been applied in advance and that have undergone gelation.

Electrophoresis conditions

Cathode solution: Sodium hydroxide TS.

Anode solution: DL-Aspartic acid solution (133 in 25,000).

Cooling temperature of gel support plate: 2 ± 1°C.

Running conditions: After starting the electrophoresis, a constant wattage of 10 W for 20 minutes and 20 W thereafter. However, the voltage should be 3000 V or less.

Running time: 120 to 140 minutes while blowing Nitrogen into the electrophoresis vessel.

Fixation and washing

Dissolve 28.75 g of trichloroacetic acid and 8.65 g of 5-sulfosalicylic acid dihydrate in 75 mL of methanol and 175 mL of water. Immerse the gel in this solution for 60 minutes to fix the protein to the gel. After fixation, immerse for 10 minutes in a mixture of water, ethanol (99.5) and acetic acid (100) (67:25:8).

Staining and decolorization

Dissolve 0.11 g of Coomassie brilliant blue G-250 in 25 mL of ethanol (99.5), and add 8 mL of acetic acid (100) and water to make 100 mL. This solution is used as the staining solution. Immerse the gel for 10 minutes while warming at 60°C in freshly filtered staining solution. After staining, decolorize by immersing in a mixture of water, ethanol (99.5) and acetic acid (100) (67:25:8).

Determination of isoelectric point

Plot the protein isoelectric points and the distance from the cathode of each band obtained from the isoelectric markers for teceleukin. Calculate the isoelectric point from the corresponding position of the major bands obtained from the sample solution.

\[\text{pH} < 2.54 = 2.7 - 3.5 \]

Purity (1) Desmethionyl form—To Teceleukin (Genetical Recombination) add water so that each mL contains about 0.17 mg of protein, and use this solution as the sample solution. Perform the test with 1.2 mL of the sample solution as directed under Liquid Chromatography 2.2.01 according to the following conditions. Determine the peak area, \(A_1 \), of teceleukin and the peak area of the desmethionyl form having the relative retention time of about 0.8 to teceleukin, \(A_2 \), by the automatic integration method. The amount of the desmethionyl form is not more than 1.0% when determined using the following formula.

\[\text{Amount (\%)} = \frac{A_1}{(A_1 + A_2)} \times 100 \]

Operating conditions—

Detector: Ultraviolet absorption photometer (wavelength: 280 nm).

Columns: Two stainless steel columns with inside diameters of 7.5 mm and lengths of 7.5 cm connected in sequence and packed with 10 µm synthetic polymer bound to diethylaminoethyl base for liquid chromatography.

Column temperature: A constant temperature of about 25°C.

Mobile phase A: Mix 0.658 g of diethanolamine in 400 mL of water, adjust the pH to 9.0 with 1 mol/L hydrochloric acid TS, and then add water to make 500 mL.

Mobile phase B: Add 300 mL of water to 2.6 mL of a pH 6 to 9 amphoteric electrolyte solution and 0.5 mL of a pH 8 to 10.5 amphoteric electrolyte solution, adjust to pH 7 with diluted hydrochloric acid (9 in 100), and then add water to make 400 mL.

Switching mobile phases and sample injection: Inject the sample solution while running the mobile phase A. Randomly inject 10 times a sample solution volume of 0.11 mL followed by a single injection of 100 µL. After injecting the entire volume and running mobile phase A for 60 minutes, switch to mobile phase B. After measuring the sample solution and after running 1 mol/L sodium chloride TS for 10 minutes for posttreatment and cleaning of the columns, inject 100 µL of sodium hydroxyte SL while running the mobile phase A and then 55 minutes later start injection of the next sample solution.

Flow rate: Adjust the flow of the mobile phase B so that the retention time for teceleukin is 45 to 65 minutes. Measure the retention time from the point at which the mobile phase is switched to the mobile phase B.

System suitability—

System performance: Dissolve in water a mixture of two kinds of equine heart-derived myoglobin whose isoelectric points are 6.76 and 7.16 to make a concentration of approximately 0.5 mg/mL. Mix together 50 µL of this solution, 50 µL of Teceleukin (Genetical Recombination), and 1.47 mL of water. When the procedure is run with 1.2 mL of this solution under the above operating conditions, myoglobin and teceleukin are eluted in this order, and their respective peaks are completely separated.

(2) Dimer—Prepare a sample solution by adding 20 µL of 0.2% sodium laurylsulfate TS to 20 µL of Teceleukin (Genetical Recombination). Perform the test as directed under Liquid Chromatography 2.2.01 with 20 µL of the sample solution according to the following conditions. Determine the teceleukin peak area, \(A_2 \), and the peak area, \(A_1 \), of the dimer with the relative retention time of 0.8 to 0.9 in relation to teceleukin, by the automatic integration method. The amount of the dimer is not more than 1.0% by the following formula.

\[\text{Amount (\%)} = \frac{A_1}{(A_1 + A_2)} \times 100 \]

Operating conditions—

Detector: Ultraviolet absorption photometer (wavelength: 220 nm).

Columns: A stainless steel column 7.5 mm in inside diameter and 60 cm in length, packed with glycol etherifized silica gel for liquid chromatography (10 µm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: Dissolve 1.0 g of sodium laurylsulfate in 0.1 mol/L sodium phosphate buffer (pH 7.0) to make 1000 mL.

Flow rate: Adjust so that the retention time of teceleukin is 30 to 40 minutes.

System suitability—

System performance: Add 20 µL of 0.2% sodium laurylsulfate TS to 20 µL of a solution consisting of 5 mg of carbolic anhydrase and 5 mg of α-lactoalbumin dissolved in 100 mL of water. When the procedure is run with 20 µL of this solution under the above operating conditions, carbolic anhydrase and α-lactoalbumin are eluted in this order with the resolution between these peaks being not less than 1.5.

System repeatability: To exactly 1 mL of the sample solution add the mobile phase to make exactly 20 mL. To exactly...
1 mL of this solution add the mobile phase to make exactly 10 mL. When the test is repeated 3 times with 20 μL of this solution under the above operating conditions, the relative standard deviation of the teceleukin peak area is not more than 7%.

(3) Tetracycline hydrochloride—Serially subculture through 2 passages at 35 to 37°C the test bacteria Kocuria rhizophila ATCC9341 in a slant culture of test bacteria inoculation media for teceleukin and then dilute this 100-fold by adding sterilized purified water. This solution is used as the test bacteria solution. Store the test bacteria solution at 5°C or less and use the solution within 5 days. Dilute the test bacteria solution serially by adding sterilized purified water, add an appropriate amount to 100 mL of normal agar medium for teceleukin, conduct a preliminary test, and determine the amount of tetracycline hydrochloride that shows an inhibition zone corresponding to standard solution containing 0.5 μg (potency) of tetracycline hydrochloride (C_22H_32N_2O_8.HCl) in 1 mL. Add this amount to 100 mL of normal agar medium for teceleukin dissolved and then cooled to 45 to 50°C and mix. Pipet 25 mL of this solution into square Petri dishes (135 × 95 mm) and spread horizontally to solidify. Prepare plates for testing by making an appropriate number of wells in this agar medium. The volume of the test bacteria solution to which 100 mL of normal agar medium for teceleukin has been added is 0.25 to 1.0 mL. Pipet an appropriate amount of Tetracycline Hydrochloride RS and dilute accurately with water to make a clear solution with a concentration of 1 mg (potency) of tetracycline hydrochloride (C_22H_32N_2O_8.HCl) per mL. Pipet an appropriate amount of this solution and dilute precisely with water to make standard solutions with concentrations of 4, 2, 1 and 0.5 μg (potency)/mL. Separately, dilute Teceleukin (Genetical Recombination) with diluted acetic acid (100) (3 in 1000), if necessary, or alternatively concentrate under reduced pressure, to make a sample solution with a protein concentration of 0.8 to 1.2 mg/mL. Pipet 25 μL of the sample solution and each standard solution, and add each to the wells in the same test plate. Repeat the same procedure for at least 3 more test plates. Leave the test plates at room temperature for 30 to 60 minutes and then incubate at 35 to 37°C for 16 to 18 hours. Measure the inhibition zones to a diameter of 0.25 mm. Determine the mean among the test plates for each of the solutions.

Prepare a standard curve by plotting a graph with the concentration of each standard solution in logarithmic scale on the horizontal axis and the diameter of the inhibition zone on the vertical axis. Match the diameter of the inhibition zone of each standard solution to the standard curve and determine A_z, the concentration of tetracycline hydrochloride. When the amount of tetracycline hydrochloride per mg of protein is determined by the following formula, the amount is not more than 0.7 μg. However, if an inhibition zone is not seen, or is seen but the diameter is smaller than 0.5 μg/mL on the standard curve, A is taken as being 0.5 μg/mL or less. Amount [μg (potency)] of tetracycline hydrochloride (C_22H_32N_2O_8.HCl) per mg of protein

\[A = \frac{P}{Q} \]

P: The protein concentration (mg/mL) of the sample solution.

(4) Other related proteins—Perform the test with 5 μL of Teceleukin (Genetical Recombination) as directed under Liquid Chromatography <2.07> according to the following conditions, and measure the area of each peak by the automatic integration method. When the amounts of the peak are calculated by the area percent method, the total amount of peaks other than the teceleukin and solvent peaks is not more than 1.0%.

Operating conditions—

- Detector: Ultraviolet absorption photometer (wavelength: 220 nm).
- Column: A stainless steel column with an inside diameter of 4.6 mm and 15 cm in length, packed with octadecyl-silanized silica gel for liquid chromatography (5 μm in particle diameter).
- Column temperature: A constant temperature of about 30°C.
- Mobile phase A: A solution of trifluoroacetic acid in a mixture of water and acetonitrile (19:1) (1 in 1000).
- Mobile phase B: A solution of trifluoroacetic acid in acetonitrile (7 in 10,000).

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as follows.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 12</td>
<td>60 → 50</td>
<td>40 → 50</td>
</tr>
<tr>
<td>12 – 25</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>25 – 45</td>
<td>50 → 0</td>
<td>50 → 100</td>
</tr>
<tr>
<td>45 – 50</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Flow rate: 1.0 mL per minute.

Time span of measurement: About 1.2 times as long as the retention time of teceleukin.

System suitability—

System performance: Add 3.8 μL of water and 16.6 μL of polysorbate 80 solution (1 in 100) to 83.6 μL of Teceleukin (Genetical Recombination) and let stand for at least 1 hour. When the procedure is run with 5 μL of this solution under the above operating conditions, there is complete separation between the teceleukin peak and the peak with the relative retention time of about 0.98 to the teceleukin.

(5) Host cell proteins—Being specified separately when the drug is granted approval based on the Law.

(6) Host cell DNA—Being specified separately when the drug is granted approval based on the Law.

Bacterial endotoxins <4.01> Less than 5 EU per mg of protein.

Acetic acid Pipet 0.25 mL of Teceleukin (Genetical Recombination) and add exactly 0.25 mL of the internal standard solution to make the sample solution. Separately, pipet 3 mL of acetic acid (100) and add water to make exactly 100 mL. Pipet 10 mL of this solution and add water to make exactly 100 mL. Pipet 2 mL of this solution and add exactly 2 mL of the internal standard solution to make the standard solution. Perform the test with 1 μL each of the sample solution and standard solution as directed under Gas Chromatography <2.02> according to the following conditions. Calculate the ratios of the peak area of acetic acid to that of the internal standard, Q_r and Q_o, and the amount of acetic acid (C_2H_4O_2) in 1 mL of Teceleukin (Genetical Recombination) calculated by the following formula is between 2.85 mg and 3.15 mg.

\[\text{Amount (mg) of acetic acid (C}_2\text{H}_4\text{O}_2) \text{ in 1 mL of Teceleukin (Genetical Recombination)} = \frac{Q_r}{Q_o} \times 1.5 \times 1.049 \times 2 \]

1.5: Concentration (μL/mL) of acetic acid (100) in the standard solution.

The *JP* Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
1.049: Density (mg/μL) of acetic acid (100) at 25°C
2: Dilution factor

Internal standard solution—Diluted propionic acid (1 in 500).

Operating conditions—
- Detector: A hydrogen flame-ionization detector.
- Column: A glass column with an inside diameter of 1.2 mm and 40 m in length, whose inside is covered with chemically-bound polyethylene glycol for gas chromatography 1.0 μm in thickness.
- Column temperature: A constant temperature of about 110°C.
- Carrier gas: Helium.
- Flow rate: Adjust so that the retention time of acetic acid is about 8 minutes.

System suitability—
- System performance: When the procedure is run with 1 μL of the standard solution under the above operating conditions, acetic acid and the internal standard are eluted in this order with the resolution between these peaks being not less than 3.
- System repeatability: When the test is repeated 6 times with 1 μL of standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of acetic acid to that of the internal standard is not more than 5%.

Specific activity—Pipet an appropriate amount of Teceleukin (Genetical Recombination), and add water accurately so that each mL contains about 0.1 mg. This solution is used as the sample solution. Separately, pipet about 25 mg of human serum albumin for assay, dissolve in water to make exactly 50 mL. Pipet an appropriate amount of this solution, and accurately dilute with water to make standard solutions with concentrations of 0.05, 0.10, and 0.15 mg per mL. Pipet 1 mL each of the sample solution, the standard solutions, and water, add 2.5 mL of alkaline copper solution, mix, leave for at least 10 minutes to dissolve, add exactly 2.5 mL of water and 0.5 mL of diluted Folin TS (1 in 2), immediately shake vigorously, and then leave at 37°C for 30 minutes. Perform the test with these leaves, with water as a control, as directed under Ultraviolet-visible Spectrophotometry 2.2.47, and measure the absorbance at 750 nm. With the concentration of the standard solution as the x-axis and the absorbance as the y-axis, perform linear regression using their respective reciprocals, and calculate the protein content.

Calculate the ratio of the potency determined by Assay and the protein content.

Assay—Pipet an appropriate amount of Teceleukin (Genetical Recombination) and, depending on the cell sensitivity, dilute precisely by adding potency measuring medium for teceleukin to a constant concentration of 10 to 50 units/mL (estimated value). This solution is used as the sample solution. Separately, dissolve Interleukin-2 RS in 1 mL of sterilized purified water, dilute exactly with potency measuring medium for teceleukin to a constant concentration of 10 to 50 units/mL. This solution is used as the standard solution. Add exactly 50 μL of potency measuring medium for teceleukin to all but 8 wells in a 96-well microplate. Add exactly 50 μL of the sample solution and standard solution to 2 wells each containing potency measuring medium for teceleukin. From these 4 wells, remove exactly 50 μL and add to 4 other wells containing potency measuring medium for teceleukin. From these 4 wells, remove exactly 50 μL and add to 4 other wells containing potency measuring medium for teceleukin and repeat this procedure to prepare 2 wells that contain each of 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, and 1/256 dilutions of the sample solution and standard solution. Add 50 μL of the standard solution to each of the 8 empty wells to make maximum uptake controls. The 8 wells containing only potency measuring medium for teceleukin serve as the minimum uptake controls. After adding exactly 50 μL of cell suspension solution for teceleukin to each well in the microplate, leave for 15 to 17 hours in an incubator at 37°C filled with air containing 5% carbon dioxide. After adding exactly 25 μL of MTT TS to each of the wells in the microplate, leave for 4 hours in an incubator at 37°C filled with air containing 5% carbon dioxide. Transfer the culture medium in all of the wells to empty wells into another microplate. To each of the empty wells from which the culture medium was removed, add 100 μL of hydrochloric acid-2-propanol TS, and then shake the plates horizontally for 5 minutes to elute the pigment. After returning the transferred culture medium to each original well, perform the test with the solution in each well, determine the difference in absorption at wavelengths of 560 nm and 690 nm, and calculate the mean values of the identical respective solutions in the two wells (dilution solutions of the sample solution and standard solutions) as well as the 8 wells containing the maximum or minimum uptake controls. Prepare standard curves by plotting the values obtained from each dilution solution of the sample solution, with the dilution coefficient of the sample solution on the microplate in logarithmic scale on the horizontal axis and the absorbance on the vertical axis. Determine the mean absorbance values of the maximum and minimum uptake controls, find the values on the standard curve, and then calculate the dilution coefficient, DT. Perform the same plot for the dilution solution of the standard solution, calculate the dilution coefficient, DS, and then calculate the potency in 1 mL by the following formula.

\[
\text{Teceleukin potency (unit) in 1 mL of Teceleukin (Genetical Recombination)} = S \times \frac{D_T}{D_S} \times d
\]

S: Concentration of standard solution (unit/mL)
D: Dilution coefficient when sample solution prepared

Containers and storage—Containers—Tight containers
Storage—Store at ~70°C or lower.

Teceleukin for Injection (Genetical Recombination)

注射用テセロイキン（遺伝子組換え）

Teceleukin for Injection (Genetical Recombination) is a preparation for injection which is dissolved before use.

It contains not less than 70.0% and not more than 150.0% of the labeled amount of teceleukin (genetical recombination) (C69H112N17O20S5; 15547.01).

Method of preparation—Prepare as directed under Injection, with Teceleukin (Genetical Recombination).

Description—Teceleukin for Injection (Genetical Recombination) occurs as a white, light mass or powder.

Identification—Dissolve the content of 1 container of Teceleukin for Injection (Genetical Recombination) in 1 mL of sterilized purified water, dilute exactly with potency measuring medium for teceleukin to make the sample stock solu-
Tegafur

Description
Tegafur occurs as a white crystalline powder.
It is soluble in methanol, and sparingly soluble in water and in ethanol (95).
It dissolves in dilute sodium hydroxide TS.
A solution of Tegafur in methanol (1 in 50) shows no optical rotation.
It shows crystal polymorphism.

Identification
(1) Prepare the test solution with 0.01 g of Tegafur as directed under Oxygen Flask Combustion Method <1.06>, using a mixture of 0.5 mL of 0.01 mol/L sodium hydroxide TS and 20 mL of water as an absorbing liquid: the test solution responds to Qualitative Tests <1.09> (2) for fluoride.
(2) Determine the absorption spectrum of a solution of Tegafur in 0.01 mol/L sodium hydroxide TS (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.
(3) Determine the infrared absorption spectrum of Tegafur, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers. If any difference appears between the spectra, recrystallize the sample with a mixture of methanol and acetone (1:1), filter and dry the crystals, and perform the test with the crystals.

pH
Dissolve 0.5 g of Tegafur in 50 mL of water: the pH of this solution is between 4.2 and 5.2.

Melting point
166 – 171°C

Purity
(1) Clarity and color of solution—Dissolve 0.2 g of Tegafur in 10 mL of dilute sodium hydroxide TS: the solution is clear and colorless.
(2) Chloride <1.05>—Dissolve 0.8 g of Tegafur in 40 mL of water by warming, cool, filter if necessary, and add 6 mL of dilute nitric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 0.25 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.011%).
(3) Heavy metals <1.07>—Dissolve 1.0 g of Tegafur in 40 mL of water by warming, cool, filter if necessary, and add 2 mL of dilute acetic acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 1.0 mL of Standard Lead Solution (not more than 10 ppm).
(4) Arsenic <1.11>—Prepare the test solution in a platinum crucible with 1.0 g of Tegafur according to Method 4, incinerating by ignition between 750°C and 850°C, and perform the test (not more than 2 ppm).

(5) Related substances—Dissolve 0.10 g of Tegafur in 10 mL of methanol, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add methanol to make exactly 200 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 5 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of chloroform and ethanol (95:1) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying <2.41> Not more than 0.5% (1 g, 105°C, 4 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g, platinum crucible).

Assay Weigh accurately about 0.15 g of Tegafur, previously dried, place in an iodine bottle, dissolve in 75 mL of water, and add exactly 25 mL of 1/60 mol/L potassium bromate VS. Add rapidly 1.0 g of potassium bromide and 12 mL of hydrochloric acid, stopper the bottle tightly at once, and allow to stand for 30 minutes with occasional shaking. To this solution add 1.6 g of potassium iodide, shake gently, allow to stand for exactly 5 minutes, and titrate <2.50> the liberated iodine with 0.1 mol/L sodium thiosulfate VS (indicator: 2 mL of starch TS). Perform a blank determination in the same manner.

Each mL of 1/60 mol/L potassium bromate VS = 10.01 mg of C₈₈H₉₅Cl₂N₉O₃₃: 1877.64

Containers and storage Containers—Tight containers.
Teicoplanin is a mixture of glycopeptide substances having antibacterial activity produced by the growth of Actinoplanes teichomyceticus.

It contains not less than 900 μg (potency) and not more than 1120 μg (potency) per 1 mg, calculated on the anhydrous, sodium chloride-free and residual solvent-free basis. The potency of Teicoplanin is expressed as mass (potency) of teicoplanin (C₇₂H₇₈N₈O₂₈S₃).

Description

Teicoplanin occurs as a white to light yellowish white powder.

It is freely soluble in water, sparingly soluble in N,N-dimethylformamide, and practically insoluble in acetone, in methanol, in ethanol (95), in acetone, in acetic acid (100) and in diethyl ether.

Identification

(1) To 1 mL of a solution of Teicoplanin (1 in 100) add 2 mL of ninhydrin TS, and warm for 5 minutes: a blue-purple color develops.

(2) To 1 mL of a solution of Teicoplanin (3 in 100) add slowly 2 mL of anthrone TS, and shake gently: a dark brown color develops.

(3) Determine the infrared absorption spectra of Teicoplanin and Teicoplanin RS as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the spectrum of Teicoplanin RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

pH

<2.54> Dissolve 0.5 g of Teicoplanin in 10 mL of water: the pH of the solution is between 6.3 and 7.7.

Content ratio of the active principle

Dissolve about 20 mg of Teicoplanin in water to make 10 mL, and use this solution as the sample solution. Perform the test with 20 μL of the sample solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the sum of peak areas of teicoplanin A₁ group, S₁, the sum of peak areas of teicoplanin A₂ group, S₂, and the sum of peak areas of other contents, S₃, from the sample solution by the automatic integration method. Calculate the content ratio of them by the formula given below: teicoplanin A₂₉ group, teicoplanin A₂₃ group, and the other are not less than 80.0%, not more than 15.0% and not more than 5.0%, respectively.

The elution order of each content and the relative retention time of each content to teicoplanin A₂₉ are shown in the following table.

<table>
<thead>
<tr>
<th>Name of content</th>
<th>Elution order</th>
<th>Relative retention time</th>
</tr>
</thead>
<tbody>
<tr>
<td>teicoplanin A₁₁ group</td>
<td>1</td>
<td>≤0.42</td>
</tr>
<tr>
<td>teicoplanin A₁₂₁ group</td>
<td>2</td>
<td>0.91</td>
</tr>
<tr>
<td>teicoplanin A₁₂₂ group</td>
<td>3</td>
<td>1.00</td>
</tr>
<tr>
<td>teicoplanin A₁₂₃ group</td>
<td>4</td>
<td>1.04</td>
</tr>
<tr>
<td>teicoplanin A₁₂₄ group</td>
<td>5</td>
<td>1.17</td>
</tr>
<tr>
<td>teicoplanin A₁₂₅ group</td>
<td>6</td>
<td>1.20</td>
</tr>
</tbody>
</table>

Content ratio (%) of teicoplanin A₂ group

= S₂/(S₁ + 0.83S₁ + S₃) × 100

Content ratio (%) of teicoplanin A₃ group

= 0.83S₁/(S₁ + 0.83S₁ + S₃) × 100

Content ratio (%) of others

= S₃/(S₁ + 0.83S₁ + S₃) × 100
Operating conditions—
Detector: An ultraviolet absorption photometer (wave-length: 254 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecylsilylized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase A: Dissolve 7.80 g of sodium dihydrogen phosphate dihydrate in 1650 mL of water, add 300 mL of acetonitrile, adjust pH to 6.0 with sodium hydroxide TS, and add water to make 2000 mL.
Mobile phase B: Dissolve 7.80 g of sodium dihydrogen phosphate dihydrate in 550 mL of water, add 1400 mL of acetonitrile, adjust the pH to 6.0 with sodium hydroxide TS, and add water to make 2000 mL.

Flowing of mobile phase: Flow mobile phase A for 10 minutes before injection. After injection, control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 32</td>
<td>100 → 70</td>
<td>0 → 30</td>
</tr>
<tr>
<td>32 – 40</td>
<td>70 → 50</td>
<td>30 → 50</td>
</tr>
<tr>
<td>40 – 42</td>
<td>50 → 100</td>
<td>50 → 0</td>
</tr>
</tbody>
</table>

Flow rate: About 1.8 mL per minute.
Time span of measurement: About 1.7 times as long as the retention time of teicoplanin A₂₂, beginning after the solvent peak.

System suitability—
Test for required detectability: Confirm that peak height of teicoplanin A₂₂ obtained with the sample solution is equivalent to 90% of the full scale.
System performance: When the procedure is run with 20 μL of the sample solution under the above operating conditions, the symmetry factor of the peak of teicoplanin A₂₂ is not more than 2.2.
System repeatability: When the test is repeated 3 times with 20 μL of the sample solution under the above operating conditions, the relative standard deviation of the peak area of teicoplanin A₂₂ is not more than 2.0%.

Purity (1) Clarity and color of solution—Dissolve 0.8 g of Teicoplanin in 10 mL of water: the solution is clear. Perform the test with this solution according to Method 1 under Methods for Color Matching <2.65>:

(2) Sodium chloride—Weigh accurately about 0.5 g of Teicoplanin, dissolve in 50 mL of water, titrate <2.50> with 0.1 mol/L silver nitrate VS (indicator: 1 mL of potassium chromate TS), and calculate an amount of sodium chloride: not more than 5.0%.

Each mL of 0.1 mol/L silver nitrate VS = 5.844 mg of NaCl

(3) Heavy metals <1.07>—Place 2.0 g of Teicoplanin in a quartz or porcelain crucible, cover loosely with a lid, and heat gently to carbonize. After cooling, add 2 mL of nitric acid and 5 drops of sulfuric acid, heat cautiously until white fumes are no longer evolved, and incinerate by ignition between 500°C and 600°C. If a carbonized substance remains, add 2 mL of nitric acid and 5 drops of sulfuric acid, heat in the same manner as above, and incinerate by ignition between 500°C and 600°C. Cool, then proceed according to Method 2, and perform the test. The control solution is prepared as follows: Evaporate a mixture of 4 mL of nitric acid, 10 drops of sulfuric acid and 2 mL of hydrochloric acid on a water bath, further evaporate to dryness on a sand bath, and moisten the residue with 3 drops of hydrochloric acid. Then proceed in the same manner as the test solution, and add 1.0 mL of Standard Lead Solution and water to make 50 mL (not more than 5 ppm).

(4) Arsenic <1.11>—Prepare the test solution with 1.0 g of Teicoplanin according to Method 3, and perform the test (not more than 2 ppm).

(5) Residual solvents <2.46>—Weigh accurately about 0.1 g of Teicoplanin, dissolve in N,N-dimethylformamide to make exactly 10 mL, and use this solution as the sample solution. Separately, weigh accurately about 1 g each of methanol and acetone, and add N,N-dimethylformamide to make exactly 100 mL. Pipet 1 mL of this solution, add N,N-dimethylformamide to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 4 μL each of the sample solution and standard solution as directed under Gas Chromatography <2.02> according to the following conditions. Determine the peak area of methanol, A₁, and the peak area of acetone, A₂, obtained from the sample solution, and the peak area of methanol, A₃, and the peak area of acetone, A₄, from the standard solution by the automatic integration method, and calculate the amounts of methanol and acetone by the following formula: not more than 0.5% and not more than 1.0%, respectively.

Amount (%) of methanol
\[M₁ = \frac{A₁}{A₃} \times 0.001 \times 1/M₄ \times 100 \]

Amount (%) of acetone
\[M₂ = \frac{A₂}{A₄} \times 0.001 \times 1/M₄ \times 100 \]

Amount (g) of methanol taken
\[M₁g = \frac{M₁ \times 500}{10} \]

Amount (g) of acetone taken
\[M₂g = \frac{M₂ \times 500}{10} \]

Operating conditions—
Detector: A Hydrogen flame-ionization detector.
Column: A glass column 2 mm in inside diameter and 3 m in length, packed with graphite carbon for gas chromatography, 150 to 180 μm in particle diameter, coated with 0.1% of polyethylene glycol esterified.
Column temperature: Injectable the sample at a constant temperature of about 70°C, maintain the temperature for 4 minutes, then program to raise the temperature to 210°C at the rate of 8°C per minute.
Detector temperature: A constant temperature of about 240°C.
Carrier gas: Nitrogen.
Flow rate: Adjust so that the retention times of methanol and acetone are about 2 minutes and 5 minutes, respectively.
System suitability—
Test for required detectability: Confirm that the peak height of acetone obtained from 4 μL of the standard solution is equivalent to about the full scale.
System performance: When the procedure is run with 4 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak areas of acetone is not more than 3%.
Water <2.48> Not more than 15.0% (0.2 g, volumetric titration, direct titration).
Telmisartan / Official Monographs

Assay Perform the test according to the Cylinder-plate method as directed under Microbial Assay for Antibiotics <4.02> according to the following conditions.

(i) Test organism—Bacillus subtilis ATCC 6633
(ii) Culture medium—Use the medium in (i) under (1) Agar media for seed and base layer.
(iii) Standard solutions—Weigh accurately an amount of Teicoplanin RS equivalent to about 50 mg (potency), dissolve in phosphate buffer solution (pH 6.0) to make exactly 50 mL, and use this solution as the standard stock solution. Keep the standard stock solution at not exceeding 5°C and use within 14 days. Take exactly a suitable amount of this solution before use, add phosphate buffer solution (pH 6.0) to make solutions so that each mL contains 160 μg (potency) and 40 μg (potency), and use these solutions as the high concentration standard solution and the low concentration standard solution, respectively.
(iv) Sample solutions—Weigh accurately an amount of Teicoplanin equivalent to about 50 mg (potency), dissolve in phosphate buffer solution (pH 6.0) to make exactly 50 mL. Take exactly a suitable amount of this solution, add phosphate buffer solution (pH 6.0) to make solutions so that each mL contains 160 μg (potency) and 40 μg (potency), and use these solutions as the high concentration sample solution and the low concentration sample solution, respectively.

Containers and storage Containers—Tight containers.
Storage—Light-resistant, at a temperature between 2°C and 8°C.

Telmisartan

C_{33}H_{39}N_{2}O_{6}: 514.62
4’-[4-Methyl-6-(1-methyl-1H-benimidazol-2-yl)-2-propyl-1H-benimidazol-1-yl]methyl]biphenyl-2-carboxylic acid [144701-48-4]

Telmisartan, when dried, contains not less than 99.0% and not more than 101.0% of telmisartan (C_{33}H_{39}N_{2}O_{6}).

Description Telmisartan occurs as a white to pale yellow crystalline powder.

It is freely soluble in formic acid, slightly soluble in methanol, very slightly soluble in ethanol (99.5), and practically insoluble in water.

It shows crystal polymorphism.

Identification (1) Determine the absorption spectrum of a solution of Telmisartan in methanol (7 in 1,000,000) as directed under Ultraviolet-visible Spectrophotometry <2.2>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers. If any difference appears between the spectra, dissolve Telmisartan in ethanol (95%) by warming, and cool in ice. Collect the crystals formed, dry, and perform the test with the crystals.

Purity (1) Heavy metals <1.07>—Proceed with 2.0 g of Telmisartan according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead solution (not more than 10 ppm).

(2) Related substances—To 25 mg of Telmisartan add 5 mL of methanol and 0.1 mL of sodium hydroxide TS, and dissolve by sonication. To this solution add methanol to make 10 mL, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add methanol to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 2 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak, having the relative retention time of about 1.7 to telmisartan, obtained from the sample solution is not larger than 1/5 times the peak area of telmisartan from the standard solution, the area of the peak other than telmisartan and the peak mentioned above from the sample solution is not larger than 1/10 times the peak area of telmisartan from the standard solution, and the total area of the peaks other than telmisartan from the sample solution is not larger than the peak area of telmisartan from the standard solution. For the area of the peak, having the relative retention time of about 0.7, multiply its correction factor 1.2.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 230 nm).
Column: A stainless steel column 4.0 mm in inside diameter and 12.5 cm in length, packed with octadecylsilylated silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase A: Dissolve 2.0 g of potassium dihydrogen phosphate and 3.4 g of sodium 1-pentanesulfonate in 1000 mL of water, and adjust to pH 3.0 with diluted phosphoric acid (1 in 10).
Mobile phase B: A mixture of acetonitrile and methanol (4:1).
Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 25</td>
<td>70 → 20</td>
<td>30 → 80</td>
</tr>
</tbody>
</table>

Flow rate: 1.0 mL per minute.
Time span of measurement: About 2 times as long as the retention time of telmisartan, beginning after the solvent peak.

System suitability—
Test for required detectability: Pipet 5 mL of the standard solution, add methanol to make exactly 100 mL. Confirm that the peak area of telmisartan obtained with 2 μL of this solution is equivalent to 3.5 to 6.5% of that with 2 μL of the standard solution.
System performance: When the procedure is run with 2 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of telmisartan are not less than 45,000 and not more than 1.2, respectively.

System repeatability: When the test is repeated 6 times with 2 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of telmisartan is not more than 5%.

Loss on drying 2.47 Not more than 0.5% (1 g, 105°C, 4 hours).

Residue on ignition 2.48 Not more than 0.1% (1 g).

Assay Weigh accurately about 0.19 g of Telmisartan, previously dried, dissolve in 5 mL of formic acid, add 75 mL of acetic anhydride, and titrate 2.50 with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 25.73 mg of C15H18N4O2

Containers and storage Containers—Tight containers.

Telmisartan and Amlodipine Besilate Tablets

テルミサルタン・アムロジピンベシル酸塩錠

Telmisartan and Amlodipine Besilate Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of telmisartan (C13H18N4O2: 514.62) and amlodipine besilate (C20H25ClN2O5: C6H2O5S: 567.05).

Method of preparation Prepare as directed under Tablets, with Telmisartan and Amlodipine Besilate.

Identification (1) Perform the test with 5 μL each of the sample solution and standard solution obtained in the Assay (1) as directed under Liquid Chromatography 2.07 according to the following conditions: the retention times of the peaks of telmisartan in the chromatograms obtained from the sample solution and the standard solution are the same, and both absorption spectra of these peaks exhibit similar intensities of absorption at the same wavelengths.

Operating conditions—
Column, column temperature, mobile phase A, mobile phase B, flowing of mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay (2).

Detector: A photodiode array detector (wavelength: 237 nm; spectrum range of measurement: 210 – 400 nm).

System suitability—
System performance: Proceed as directed in the system suitability in the Assay (2).

Uniformity of dosage unit 6.02 Perform the test according to the following method: it meets the requirement of the Content uniformity test.

(1) Telmisartan—To 1 tablet of Telmisartan and Amlodipine Besilate Tablets add 4V/5 mL of the dissolving solution, disintegrate by sonicating, and add the dissolving solution to make exactly V mL so that each mL contains about 1.6 mg of telmisartan (C13H18N4O2). Centrifuge this solution, pipet 5 mL of the supernatant liquid, add the buffer solution to make exactly 25 mL, and use this solution as the sample solution. Then, proceed as directed in the Assay (1).

Amount (mg) of telmisartan (C13H18N4O2) = M5 × A1/A5 × V/50

M5: Amount (mg) of telmisartan for assay taken

Dissolving solution: Dissolve 2 g of ammonium dihydrogen phosphate in 1000 mL of water, and adjust to pH 1.8 with phosphoric acid. To 1000 mL of this solution add 1000 mL of acetonitrile.

Buffer solution: Dissolve 2 g of ammonium dihydrogen phosphate in 1000 mL of water, and adjust to pH 1.8 with phosphoric acid.

(2) Amlodipine Besilate—To 1 tablet of Telmisartan and Amlodipine Besilate Tablets add 4V/5 mL of the dissolving solution, disintegrate by sonicating, and add the dissolving solution to make exactly V mL so that each mL contains about 0.138 mg of amlodipine besilate (C20H25ClN2O5: C6H2O5S). Centrifuge this solution, pipet 5 mL of the supernatant liquid, add the buffer solution to make exactly 25 mL, and use this solution as the sample solution. Then, proceed as directed in the Assay (2).

Amount (mg) of amlodipine besilate (C20H25ClN2O5: C6H2O5S) = M5 × A1/A5 × V/250

M5: Amount (mg) of Amlodipine Besilate RS taken, calculated on the anhydrous basis

Dissolving solution: Dissolve 2 g of ammonium dihydrogen phosphate in 1000 mL of water, and adjust to pH 1.8 with phosphoric acid. To 1000 mL of this solution add 1000 mL of acetonitrile.

Buffer solution: Dissolve 2 g of ammonium dihydrogen phosphate in 1000 mL of water, and adjust to pH 1.8 with phosphoric acid.

Dissolution 6.10 (1) Telmisartan—Being specified separately when the drug is granted approval based on the Law.

(2) Amlodipine Besilate—Being specified separately when the drug is granted approval based on the Law.

Assay (1) Telmisartan—Weigh accurately the mass of not less than 20 Telmisartan and Amlodipine Besilate Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 80 mg of telmisartan (C13H18N4O2), add 40 mL of the dissolving solution, disintegrate by sonicating, and add the dissolving solution to make exactly 50 mL. Centrifuge this solution, pipet 5 mL of the supernatant liquid, add the buffer solution to make exactly 25 mL, and use this solution as the sample solution. Separately, weigh accurately...
about 80 mg of telmisartan for assay, previously dried at 105°C for 4 hours, add the dissolving solution to make exactly 50 mL, and use this solution as the telmisartan standard stock solution. Pipet 5 mL of the telmisartan standard stock solution, add the buffer solution to make exactly 25 mL, and use this solution as the standard solution. Perform the test with exactly 5 µL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, \(A_T \) and \(A_S \), of telmisartan in each solution.

\[
\text{Amount (mg) of telmisartan} = M_S \times \frac{A_T}{A_S}
\]

\(M_S \): Amount (mg) of telmisartan for assay taken

Dissolving solution: Dissolve 2 g of ammonium dihydrogen phosphate in 1000 mL of water, and adjust to pH 1.8 with phosphoric acid. To 1000 mL of this solution add 1000 mL of acetonitrile.

Buffer solution: Dissolve 2 g of ammonium dihydrogen phosphate in 1000 mL of water, and adjust to pH 3.5 with phosphoric acid.

Operating conditions

- **Detector:** An ultraviolet absorption photometer (wavelength: 270 nm).
- **Column:** A stainless steel column 3.0 mm in inside diameter and 7.5 cm in length, packed with octylsilinezed silica gel for liquid chromatography (5 µm in particle diameter).
- **Column temperature:** A constant temperature of about 40°C.
- **Mobile phase A:** Dissolve 2 g of ammonium dihydrogen phosphate in 1000 mL of water, and adjust to pH 3.5 with phosphoric acid.
- **Mobile phase B:** Acetonitrile.
- **Flowing of mobile phase:** Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 2.0</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>2.0 – 7.0</td>
<td>90 (\rightarrow) 20</td>
<td>10 (\rightarrow) 80</td>
</tr>
<tr>
<td>7.0 – 8.0</td>
<td>20</td>
<td>80</td>
</tr>
</tbody>
</table>

Flow rate: 0.8 mL per minute.

System suitability

- **System performance:** To each 5 mL of the telmisartan standard stock solution and the amlodipine besilate standard stock solution obtained in (2) add the buffer solution to make 25 mL. When the procedure is run with 5 µL of this solution under the above operating conditions, amlodipine and telmisartan are eluted in this order with the resolution between these peaks being not less than 5.

- **System repeatability:** When the test is repeated 6 times with 5 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of telmisartan is not more than 1.0%.

(2) Amlodipine Besilate—Weigh accurately the mass of not less than 20 Telmisartan and Amlodipine Besilate Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 6.9 mg of amlodipine besilate \((C_{20}H_{22}ClN_2O_5 \cdot C_7H_7O_3S) \), add 40 mL of the dissolving solution, disintegrate by sonicing, and add the dissolving solution to make exactly 50 mL. Centrifuge this solution, pipet 5 mL of the supernatant liquid, add the buffer solution to make exactly 25 mL, and use this solution as the sample solution. Separately, weigh accurately about 35 mg of Amlodi-
Telmisartan Tablets

Telmisartan Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of telmisartan (C₃₃H₃₆N₄O₂: 514.62).

Method of preparation Prepare as directed under Tablets, with Telmisartan.

Identification Powder Telmisartan Tablets. To a portion of the powder, equivalent to 0.7 mg of Telmisartan, add 100 mL of methanol, shake well, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Determine the absorption spectrum of the filtrate as directed under Ultraviolet-visible Spectrophotometry <2.24>; it exhibits maxima between 226 nm and 230 nm and between 295 nm and 299 nm.

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 tablet of Telmisartan Tablets add 4V/5 mL of a mixture of water and methanol (1:1), disintegrate the tablet by sonicating, and add a mixture of water and methanol (1:1) to make exactly V mL so that each mL contains about 0.8 mg of telmisartan (C₃₃H₃₆N₄O₂). Filter this solution through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 10 mL of the filtrate, pipet 5 mL of the subsequent filtrate, add a mixture of water and methanol (1:1) to make exactly 50 mL, and use this solution as the sample solution. Then, proceed as directed in the Assay.

Amount (mg) of telmisartan (C₃₃H₃₆N₄O₂) = M₅ × A₅/₁⁴ × V/25

M₅: Amount (mg) of telmisartan for assay taken

Dissolution <6.10> When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of 2nd fluid for dissolution test as the dissolution medium, the dissolution rate in 30 minutes of Telmisartan Tablets is not less than 85%.

Start the test with 1 tablet of Telmisartan Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 5 mL of the first filtrate, pipet V mL of the subsequent filtrate, add the dissolution medium to make exactly V mL so that each mL contains about 11 μg of telmisartan (C₃₃H₃₆N₄O₂), and use this solution as the sample solution. Separately, weigh accurately about 22 mg of telmisartan for assay, previously dried at 105°C for 4 hours, add 10 mL of a solution of meglumine in methanol (1 in 500), dissolve by shaking well, and add methanol to make exactly 50 mL. Pipet 5 mL of this solution, add the dissolution medium to make exactly 200 mL, and use this solution as the standard solution. Determine the absorbances, A₅ and Aₐ, at 296 nm of the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry <2.24>, using the dissolution medium as the control.

Dissolution rate (%) with respect to the labeled amount of telmisartan (C₃₃H₃₆N₄O₂) = M₂ × A₅/₁⁴ × V'/V × 1/C × 45

M₂: Amount (mg) of telmisartan for assay taken

C: Labeled amount (mg) of telmisartan (C₃₃H₃₆N₄O₂) in 1 tablet

Assay Weigh accurately the mass of not less than 20 Telmisartan Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 80 mg of telmisartan (C₃₃H₃₆N₄O₂), add 80 mL of a mixture of water and methanol (1:1), shake thoroughly, and add a mixture of water and methanol (1:1) to make exactly 100 mL. Filter this solution through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 10 mL of the filtrate, pipet 5 mL of the subsequent filtrate, add a mixture of water and methanol (1:1) to make exactly 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 20 mg of telmisartan for assay, previously dried at 105°C for 4 hours, add 10 mL of a solution of meglumine in a mixture of water and methanol (1:1) (1 in 500), dissolve by shaking well, and add a mixture of water and methanol (1:1) to make exactly 25 mL. Pipet 5 mL of this solution, add a mixture of water and methanol (1:1) to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, Aₐ and Aₕ, of telmisartan in each solution.

Amount (mg) of telmisartan (C₃₃H₃₆N₄O₂) = M₅ × Aₕ/₁⁴ × 4

M₅: Amount (mg) of telmisartan for assay taken

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 295 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: Dissolve 2 g of diammonium hydrogen phosphate in 1000 mL of water, and adjust to pH 3.0 with diluted phosphoric acid (1 in 10). To 300 mL of this solution add 700 mL of methanol.

Flow rate: Adjust so that the retention time of telmisartan is about 6 minutes.

System suitability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of telmisartan are not less than 3000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of telmisartan is not more than 1.0%.

Containers and storage Containers—Tight containers.
Telmisartan and Hydrochlorothiazide Tablets

デルミサルタン・ヒドロクロロチアジド錠

Telmisartan and Hydrochlorothiazide Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of telmisartan (C\textsubscript{31}H\textsubscript{33}N\textsubscript{7}O\textsubscript{3}) and hydrochlorothiazide (C\textsubscript{8}H\textsubscript{5}ClN\textsubscript{3}O\textsubscript{3}S\textsubscript{2} : 297.74).

Method of preparation Prepare as directed under Tablets, with Telmisartan and Hydrochlorothiazide.

Identification (1) Perform the test with 5 µL each of the sample solution and standard solution obtained in the Assay (1) as directed under Liquid Chromatography (<2.0%) according to the following conditions: the retention times of the peaks of telmisartan in the chromatograms obtained from the sample solution and standard solution are the same, and absorption spectra of these peaks exhibit similar intensities of absorption at the same wavelengths.

Operating conditions
- Column: Zorbax Eclipse XDB-C18 (5 µm, length: 270 mm).
- Spectral range of measurement: 210 – 400 nm.
- Flow rate: 1.0 mL per minute.
- Detector: A photodiode array detector (wavelength: 270 nm).
- System suitability:
 - Column performance: Proceed as directed in the system suitability in the Assay (1).
 - System performance: Proceed as directed in the system suitability in the Assay (1).

Purity Related substances—To a quantity of powdered Telmisartan and Hydrochlorothiazide Tablets, equivalent to 12.5 mg of Hydrochlorothiazide, add 40 mL of the dissolving solution, disperse by sonicating, add the dissolving solution to make exactly 50 mL. Centrifuge this solution, and use the supernatant liquid as the sample solution. Pipet 1 mL of the sample solution, add the dissolving solution to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 µL each of the sample solution and standard solution as directed under Liquid Chromatography (<2.0%) according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak having the relative retention time of about 0.9 to hydrochlorothiazide, obtained from the sample solution is not larger than the peak area of hydrochlorothiazide from the standard solution.

Dissolving solution Dissolve 2 g of ammonium dihydrogen phosphate in 1000 mL of water, and adjust to pH 1.8 with phosphoric acid. To 1000 mL of this solution add 1000 mL of acetonitrile.

Operating conditions
- Detector: An ultraviolet absorption photometer (wavelength: 270 nm).
- Column: A stainless steel column 4.0 mm in inside diameter and 15 cm in length, packed with octylsilanized silica gel for liquid chromatography (3 µm in particle diameter).
- Flow rate: 1.0 mL per minute.
- System suitability:
 - Test for required detectability: Pipet 5 mL of the standard solution and add the dissolving solution to make exactly 50 mL. Confirm that the peak area of hydrochlorothiazide obtained with 20 µL of this solution is equivalent to 7 to 13% of that with 20 µL of the standard solution.
- System performance:
 - When the procedure is run with 20 µL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of hydrochlorothiazide are not less than 6000 and not more than 2.0, respectively.
- System repeatability:
 - When the test is repeated 6 times with 20 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of hydrochlorothiazide is not more than 2.0%.

Uniformity of dosage units (<0.2) Perform the test according to the following method: it meets the requirement of the Content uniformity test.

1. Telmisartan—To 1 tablet of Telmisartan and Hydrochlorothiazide Tablets add 4V/5 mL of the dissolving solution, disintegrate by sonicating, add the dissolving solution to make exactly V mL so that each mL contains about 1.6 mg of telmisartan (C\textsubscript{31}H\textsubscript{33}N\textsubscript{7}O\textsubscript{3}). Centrifuge this solution, pipet 5 mL of the supernatant liquid, add the buffer solution to make exactly 25 mL, and use this solution as the sample solution. Proceed as directed in the Assay (1).

Amount (mg) of telmisartan (C\textsubscript{31}H\textsubscript{33}N\textsubscript{7}O\textsubscript{3})

\[M_S = \frac{M \times A}{A_S \times V/50} \]

\[M_S: \text{Amount (mg) of telmisartan for assay taken} \]

Dissolving solution: Dissolve 2 g of ammonium dihydrogen phosphate in 1000 mL of water, and adjust to pH 1.8 with phosphoric acid. To 1000 mL of this solution add 1000 mL of acetonitrile.

Buffer solution: Dissolve 2 g of ammonium dihydrogen phosphate in 1000 mL of water, and adjust to pH 1.8 with phosphoric acid.

2. Hydrochlorothiazide—To 1 tablet of Telmisartan...
and Hydrochlorothiazide Tablets add 4V/5 mL of the dissolving solution, disintegrate by sonication, add the dissolving solution to make exactly V mL so that each mL contains about 0.25 mg of hydrochlorothiazide (C₃₅H₇₃CIN₂O₅S₂). Centrifuge this solution, pipet 5 mL of the supernatant liquid, and use this solution to make exactly 25 mL, and use this solution as the sample solution. Proceed as directed in the Assay (2).

Amount (mg) of hydrochlorothiazide (C₃₅H₇₃CIN₂O₅S₂) = Mₛ × Aₛ/₁₈ × V/₅₀

Mₛ: Amount (mg) of Hydrochlorothiazide RS taken

Dissolving solution: Dissolve 2 g of ammonium dihydrogen phosphate in 1000 mL of water, and adjust to pH 1.8 with phosphoric acid.

Buffer solution: Dissolve 2 g of ammonium dihydrogen phosphate in 1000 mL of water, and adjust to pH 1.8 with phosphoric acid.

Dissolution 6.10D (1) Telmisartan—When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of 2nd fluid for dissolution test as the dissolving medium, the dissolution rate in 45 minutes of a telmisartan 40-mg and hydrochlorothiazide 12.5-mg tablet and a telmisartan 80-mg and hydrochlorothiazide 12.5-mg tablet are not less than 85% and not less than 80%, respectively.

Start the test with 1 tablet of Telmisartan and Hydrochlorothiazide Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 15 mL of the first filtrate, pipet V mL of the subsequent filtrate, add the dissolution medium to make exactly V mL so that each mL contains about 14 μg of hydrochlorothiazide (C₃₅H₇₃CIN₂O₅S₂), and use this solution as the sample solution. Separately, weigh accurately about 14 mg of Hydrochlorothiazide RS, previously dried at 105°C for 2 hours, and dissolve in methanol to make exactly 50 mL. Pipet 5 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 25 μL each of the sample solution and standard solution as directed under Liquid Chromatography 2.01D according to the following conditions, and determine the peak areas, A₁ and A₅, of hydrochlorothiazide in each solution.

Dissolution rate (%) with respect to the labeled amount of hydrochlorothiazide (C₃₅H₇₃CIN₂O₅S₂) = Mₛ × A₁/₁₈ × V'/₉ × 1/C × 90

Mₛ: Amount (mg) of Hydrochlorothiazide RS taken

C: Labeled amount (mg) of hydrochlorothiazide (C₃₅H₇₃CIN₂O₅S₂) in 1 tablet

Operating conditions—

Proceed as directed in the operating conditions in the Assay (1).

System suitability—

System performance: When the procedure is run with 25 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of hydrochlorothiazide are not less than 1000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 25 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of hydrochlorothiazide is not more than 2.0%.

Assay (1) Telmisartan—Weigh accurately the mass of not less than 20 Telmisartan and Hydrochlorothiazide Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 80 mg of telmisartan (C₃₃H₂₈N₂O₃), add 40 mL of the dissolving solution, sonicate, and add the dissolving solution to make exactly 50 mL. Centrifuge this solution, pipet 5 mL of the supernatant liquid, add the buffer solution to make exactly 25 mL, and use this solution as the sample solution. Separately, weigh accurately about 80 mg of telmisartan for assay, previously dried at 105°C for 4 hours, and dissolve in the dissolving solution to make exactly 50 mL. Pipet 5 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 5 μL each of the sample solution and standard solution as directed under Liquid Chromatography 2.01D according to the following conditions, and determine the peak areas, A₁ and A₅, of telmisartan in each solution.

Amount (mg) of telmisartan (C₃₃H₂₈N₂O₃) = Mₛ × A₁/₁₈ × V'/₉ × 1/C × 90

Mₛ: Amount (mg) of telmisartan for assay taken
Dissolving solution: Dissolve 2 g of ammonium dihydrogen phosphate in 1000 mL of water, and adjust to pH 1.8 with phosphoric acid. To 1000 mL of this solution add 1000 mL of acetonitrile.

Buffer solution: Dissolve 2 g of ammonium dihydrogen phosphate in 1000 mL of water, and adjust to pH 1.8 with phosphoric acid.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 270 nm).
Column: A stainless steel column 3.0 mm in inside diameter and 7.5 cm in length, packed with octylsilanized silica gel (5 μm particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase A: Dissolve 2 g of ammonium dihydrogen phosphate in 1000 mL of water, and adjust to pH 3.5 with phosphoric acid.
Mobile phase B: Acetonitrile.
Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 2</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>2 – 7</td>
<td>90 → 20</td>
<td>10 → 80</td>
</tr>
<tr>
<td>7 – 8</td>
<td>20</td>
<td>80</td>
</tr>
</tbody>
</table>

Flow rate: 0.8 mL per minute.

System suitability—
System performance: When the procedure is run with 5 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of hydrochlorothiazide are not less than 1500 and not more than 2.0, respectively.
System repeatability: When the test is repeated 6 times with 5 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of hydrochlorothiazide is not more than 1.0%.

(2) Hydrochlorothiazide—Weigh accurately about 12.5 mg of hydrochlorothiazide (C₈H₇N₂O₃S₂), add 40 mL of the dissolving solution, sonicate, and add the dissolving solution to make exactly 50 mL. Centrifuge this solution, pipet 5 mL of the supernatant liquid, add the buffer solution to make exactly 25 mL, and use this solution as the sample solution. Separately, weigh accurately about 12.5 mg of Hydrochlorothiazide RS, previously dried at 105°C for 2 hours, and dissolve in the dissolving solution to make exactly 50 mL. Pipet 5 mL of this solution, add the buffer solution to make exactly 25 mL, and use this solution as the standard solution. Perform the test with exactly 5 μL each of the sample solution and standard solution as directed under Liquid Chromatography (2.2.27) according to the following conditions, and determine the peak areas, A₁ and A₅, of hydrochlorothiazide in each solution.

Amount (mg) of hydrochlorothiazide (C₈H₇N₂O₃S₂) = M₅ × A₁/A₅

M₅: Amount (mg) of Hydrochlorothiazide RS taken

Dissolving solution: Dissolve 2 g of ammonium dihydrogen phosphate in 1000 mL of water, and adjust to pH 1.8 with phosphoric acid. To 1000 mL of this solution add 1000 mL of acetonitrile.

Buffer solution: Dissolve 2 g of ammonium dihydrogen phosphate in 1000 mL of water, and adjust to pH 1.8 with phosphoric acid.

Operating conditions—
Proceed as directed in the operating conditions in (1).

System suitability—
System performance: When the procedure is run with 5 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of hydrochlorothiazide are not less than 1500 and not more than 2.0, respectively.
System repeatability: When the test is repeated 6 times with 5 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of hydrochlorothiazide is not more than 1.0%.

Containers and storage — Containers—Tight containers.

Temocapril Hydrochloride

C₂₃H₂₈N₂O₅S₂.HCl: 513.07
2-[(2S,6R)-6-[(1S)-1-(Ethoxycarbonyl)-3-phenylpropyl]amino]-5-oxo-2-(thiophen-2-yl)-2,3,6-tetrahydro-1,4-thiazepin-4(5H)-yl] acetic acid monohydrchloride [110221-44-8]

Temocapril Hydrochloride contains not less than 99.0% and not more than 101.0% of temocapril hydrochloride (C₂₃H₂₈N₂O₅S₂.HCl), calculated on the anhydrous basis.

Description Temocapril Hydrochloride occurs as a white crystalline powder.

It is freely soluble in ethanol (99.5), and very slightly soluble in water.

Identification (1) Determine the absorption spectrum of a solution of Temocapril Hydrochloride in ethanol (99.5) (1 in 50,000) as directed under Ultraviolet-visible Spectrophotometry (2.2.28), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Temocapril Hydrochloride as directed in the paste method under Infrared Spectrophotometry (2.2.25), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) A solution of Temocapril Hydrochloride in ethanol (99.5) (1 in 100) responds to Qualitative Tests (1.09) (2) for chloride.

Optical rotation <2.49> [α]D₂₀: +60° to +64° (0.2 g calculated on the anhydrous basis, ethanol (99.5), 20 mL, 100 mm).

Purity (1) Heavy metals <1.07>—Proceed with 1.0 g of Temocapril Hydrochloride according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(2) Related substances—Dissolve 50 mg of Temocapril Hydrochloride in 100 mL of diluted acetonitrile (1 in 2), and...
use this solution as the sample solution. Pipet 1 mL of the sample solution, add diluted acetonitrile (1 in 2) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area by the automatic integration method: the area of the peak other than temocapril obtained from the sample solution is not larger than 1/5 times the peak area of temocapril from the standard solution, and the total area of the peaks other than temocapril from the sample solution is not larger than 1/2 times the peak area of temocapril from the standard solution.

Operating conditions

- **Detector:** An ultraviolet absorption photometer (wavelength: 234 nm).
- **Column:** A stainless steel column 6.0 mm in inside diameter and 15 cm in length, packed with octadecysilanized silica gel for liquid chromatography (5 μm in particle diameter).
- **Column temperature:** A constant temperature of about 40°C.
- **Mobile phase:** A mixture of diluted phosphoric acid (1 in 500) and acetonitrile (63:37).
- **Flow rate:** Adjust so that the retention time of temocapril is about 11 minutes.
- **Time span of measurement:** About 4 times as long as the retention time of temocapril, beginning after the solvent peak.

System suitability

- Test for required detectability: Pipet 1 mL of the standard solution, and add diluted acetonitrile (1 in 2) to make exactly 10 mL. Confirm that the peak area of temocapril obtained with 10 μL of this solution is equivalent to 7 to 13% of that with 10 μL of the standard solution.
- **System performance:** When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of temocapril are not less than 7000 and not more than 1.5, respectively.
- **System repeatability:** When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of temocapril is not more than 2.0%.

Water <2.48> Not more than 1.0% (0.3 g, coulometric titration).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.8 g of Temocapril Hydrochloride, dissolve in 80 mL of a mixture of acetic anhydride and acetic acid (100) (7:3), and titrate <2.50> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 51.31 mg of C₂₃H₃₈N₂O₅S₂.HCl

Containers and storage Containers—Well-closed containers.

Temocapril Hydrochloride Tablets

Temocapril Hydrochloride Tablets

TEMOCAPRIL HYDROCHLORIDE TABLETS

Temocapril Hydrochloride Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of temocapril hydrochloride (C₂₃H₃₈N₂O₅S₂.HCl: 513.07).

Method of preparation Prepare as directed under Tablets, with Temocapril Hydrochloride.

Identification To an amount of powdered Temocapril Hydrochloride Tablets, equivalent to 2.5 mg of Temocapril Hydrochloride, add 25 mL of diluted acetonitrile (1 in 2), shake vigorously for 10 minutes, and centrifuge. To 5 mL of the supernatant liquid add diluted acetonitrile (1 in 2) to make 25 mL, and determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.24> for its maximum between 232 nm and 236 nm.

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 tablet of Temocapril Hydrochloride Tablets add exactly 20 mL of diluted acetonitrile (1 in 2), and sonicate for 10 minutes. Furthermore, shake for 10 minutes, and centrifuge. Pipet V mL of the supernatant liquid equivalent to about 0.8 mg of temocapril hydrochloride (C₂₃H₃₈N₂O₅S₂.HCl), add exactly 2 mL of the internal standard solution, then add diluted acetonitrile (1 in 2) to make 20 mL, and use this solution as the sample solution. Separately, weigh accurately about 40 mg of temocapril hydrochloride for assay (separately determine the water <2.49> in the same manner as Temocapril Hydrochloride), dissolve in diluted acetonitrile (1 in 2) to make exactly 200 mL. Pipet 4 mL of this solution, add exactly 2 mL of the internal standard solution, then add diluted acetonitrile (1 in 2) to make 20 mL, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and calculate the ratios, Q₁ and Q₃, of the peak area of temocapril to that of the internal standard.

\[
M_1: \text{Amount (mg) of temocapril hydrochloride (C}_2\text{H}_3\text{H}_8\text{N}_2\text{O}_5\text{S}_2\text{HCl}) = M_s \times Q_1 / Q_3 \times 1/V \times 2/5
\]

Internal standard solution—A solution of propyl parahydroxybenzoate in diluted acetonitrile (1 in 2) (1 in 3000).

Operating conditions—

Proceed as directed in the operating conditions in the Assay.

System suitability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, temocapril and the internal standard are eluted in conditions, temocapril and the internal standard are eluted in the order with the resolution between these peaks being not less than 7.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of temocapril to that of the internal standard is not more than 1.0%.

Dissolution <6.10> When the test is performed at 50 revolu-
tions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 30 minutes of Temocapril Hydrochloride Tablets is not less than 85%.

Start the test with 1 tablet of Temocapril Hydrochloride Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 µm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add water to make exactly V mL so that each mL contains about 1.1 µg of temocapril hydrochloride (C₂₉H₂₈N₂O₅S₂·HCl), and use this solution as the sample solution. Separately, weigh accurately about 22 mg of temocapril hydrochloride for assay (separately determine the water ≤0.47% in the same manner as Temocapril Hydrochloride), and dissolve in diluted acetonitrile (1 in 2) to make exactly 50 mL. Pipet 5 mL of this solution, and add water to make exactly 100 mL. Pipet 5 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 50 µL of each solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the areas, A₁ and A₃, of temocapril in each solution.

Dissolution rate (%) with respect to the labeled amount of temocapril hydrochloride (C₂₉H₂₈N₂O₅S₂·HCl) = Mₛ × A₁/ₐ₁ × V'/V × 1/C × 9/2

Mₛ: Amount (mg) of temocapril hydrochloride for assay taken, calculated on the anhydrous basis
C: Labeled amount (mg) of temocapril hydrochloride (C₂₉H₂₈N₂O₅S₂·HCl) in 1 tablet

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 234 nm).
Column: A stainless steel column 6.0 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 µm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase: A mixture of diluted phosphoric acid (1 in 500) and acetonitrile (63:37).
Flow rate: Adjust so that the retention time of temocapril is about 10 minutes.
System suitability—
System performance: When the procedure is run with 10 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of temocapril to that of the internal standard is not more than 1.0%.
System repeatability: When the test is repeated 6 times with 10 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of temocapril to that of the internal standard is not more than 1.0%.

Containers and storage—
Well-closed containers.

Teprenone

Teprenone / Official Monographs

Description
Teprenone is comprised of mono-cis and all-trans isomers, with their ratio being about 2:3.

Assay
Weigh accurately the mass of not less than 20 Temocapril Hydrochloride Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 10 mg of temocapril hydrochloride (C₂₉H₂₈N₂O₅S₂·HCl), add exactly 20 mL of the internal standard solution, and sonicate for 10 minutes. Furthermore, shake for 10 minutes, and centrifuge. To 2 mL of the supernatant liquid add diluted acetonitrile (1 in 2) to make 20 mL, and use this solution as the sample solution. Separately, weigh accurately about 50 mg of temocapril hydrochloride for assay (separately determine the water ≤0.47% in the same manner as Temocapril Hydrochloride), and dissolve in diluted acetonitrile (1 in 2) to make exactly 50 mL. Pipet 5 mL of this solution, add exactly 10 mL of the internal standard solution, then add diluted acetonitrile (1 in 2) to make 100 mL, and use this solution as the standard solution. Perform the test with 10 µL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and calculate the ratios, Q₁ and Q₂, of the peak area of temocapril to that of the internal standard.

System performance—
System performance: When the procedure is run with 10 µL of the standard solution under the above operating conditions, temocapril and the internal standard are eluted in this order with the resolution between these peaks being not less than 7.

System repeatability—
When the test is repeated 6 times with 10 µL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of temocapril to that of the internal standard is not more than 1.0%.

General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.)

Temocapril Hydrochloride Tablets, and powder. Weigh accurately about 50 mg of temocapril hydrochloride (C₂₉H₂₈N₂O₅S₂·HCl) in 1 tablet.

Internal standard solution—
A solution of propyl parahydroxybenzoate in diluted acetonitrile (1 in 2) (1 in 3000).

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 234 nm).
Column: A stainless steel column 6.0 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 µm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase: A mixture of diluted phosphoric acid (1 in 500) and acetonitrile (63:37).
Flow rate: Adjust so that the retention time of temocapril is about 10 minutes.

System suitability—
System performance: When the procedure is run with 10 µL of the standard solution under the above operating conditions, temocapril and the internal standard are eluted in this order with the resolution between these peaks being not less than 7.

**System repeatability: When the test is repeated 6 times with 10 µL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of temocapril to that of the internal standard is not more than 1.0%.

Containers and storage—
Well-closed containers.

Teprenone

C₂₉H₂₈O₅: 330.55

(5E,9E,13E)-6,10,14,18-Tetramethylnonadeca-5,9,13,17-tetraen-2-one

(5S,9E,13E)-6,10,14,18-Tetramethylnonadeca-5,9,13,17-tetraen-2-one

[6809-52-3]

Teprenone contains not less than 97.0% and not more than 101.0% of teprenone (C₂₉H₃₈O).
It is oxidized by air, and gradually turns yellow.

Identification (1) To 2 mL of a solution of Teprenone in ethanol (99.5) (1 in 100) add 1 mL of a solution of phosphomolybdic acid n-hydrate in acetic acid (100) (1 in 100), heat in a water bath for 5 minutes, and continue heating with addition of 5 to 6 drops of sulfuric acid: blue to bluish green color develops.

(2) To 2 mL of a solution of Teprenone in ethanol (99.5) (1 in 100) add 2 mL of 2,4-dinitrophenylhydrazine TS, and shake: a yellow to orange-yellow precipitate is formed.

(3) Determine the infrared absorption spectrum of Teprenone as directed in the liquid film method under Infrared Spectrophotometry <2.25> and compare the spectrum with the Reference Spectrum or the spectrum of Teprenone RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Refractive index <2.45> \(n_D^{20} \): 1.485 – 1.491

Specific gravity <2.50> \(d_{20}^{60} \): 0.882 – 0.890

Purity (1) Clarity and color of solution—To 1.0 mL of Teprenone add 9 mL of ethanol (99.5) and shake: the solution is clear, and its absorbance at 400 nm determined as directed under Ultraviolet-visible Spectrophotometry <2.24> is not more than 0.02.

(2) Heavy metals <1.07>—Proceed with 1.0 g of Teprenone according to Method 2 and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(3) Related substances—Dissolve 30 mg of Teprenone in 6 mL of hexane, and use this solution as the sample solution. Perform the test with 3 \(\mu L \) of the sample solution as directed under Gas Chromatography <2.02> according to the following conditions. Determine each peak area from the sample solution by the automatic integration method and calculate the amounts of them by the area percentage method: the peak area of the di-cis isomer of teprenone, having the relative retention time of about 0.8 to the all-trans isomer of teprenone, is not more than 0.5%, and each area of the peaks other than the mono-cis and all-trans isomers of the teprenone and the other than mentioned above is not more than 0.2%. Furthermore, the total area of the peaks other than the mono-cis, all-trans and di-cis isomers of teprenone is not more than 1.0%.

Operating conditions—
Detector, column, column temperature, carrier gas and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 2 times as long as the retention time for the all-trans isomer of teprenone, beginning after the solvent peak.

System suitability—
Test for required detectability: To 1 mL of the sample solution add hexane to make 100 mL, and use this solution as the solution for system suitability test. Pipet 1 mL of the solution for system suitability test, and add hexane to make exactly 10 mL. Confirm that the sum of the peak areas of the mono-cis and all-trans isomers of teprenone obtained with 3 \(\mu L \) of this solution is 7 to 13% of the peak areas of the mono-cis and all-trans isomers of teprenone with 3 \(\mu L \) of the solution for system suitability test.

System performance: When the procedure is run with 3 \(\mu L \) of the solution for system suitability test under the above operating conditions, the mono-cis and all-trans isomers of teprenone are eluted in this order with the resolution between these peaks being not less than 1.1.

System repeatability: When the test is repeated 6 times with 3 \(\mu L \) of the solution for system suitability test under the above operating conditions, the relative standard deviation of the sum of the peak areas of the mono-cis and all-trans isomers of teprenone is not more than 3.0%.

Residue on ignition <2.44> Not more than 0.1% (1 g).

Isomer ratio Dissolve 30 mg of Teprenone in 6 mL of hexane, and use this solution as the sample solution. Perform the test with 3 \(\mu L \) of the sample solution as directed under Gas Chromatography <2.02> according to the following conditions. Determine the areas of two adjacent peaks, \(A_\text{A} \) and \(A_\text{B} \), having retention times of about 18 minutes, where \(A_\text{B} \) is the peak area of the mono-cis isomer, having the shorter retention time, and \(A_\text{A} \) is the peak area of the all-trans isomer, having the longer retention time: \(A_\text{A}/A_\text{B} \) is 0.60 to 0.70.

Operating conditions—
Proceed as directed in the operating conditions in the Assay.
System suitability—
System performance, and system repeatability: Proceed as directed in the system suitability in the Purity (3).

Assay Weigh accurately about 50 mg each of Teprenone and Teprenone RS, dissolve each in exactly 5 mL of the internal standard solution, add ethyl acetate to make 50 mL, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with 3 \(\mu L \) each of the sample solution and standard solution as directed under Gas Chromatography <2.02> according to the following conditions, and calculate the ratios, \(Q_\text{T} \) and \(Q_\text{S} \), of the peak area of teprenone (sum of the peak areas of mono-cis and all-trans isomers) to that of the internal standard.

Amount (mg) of teprenone (C₁₅H₂₅O₄) \(= M_s \times Q_\text{T}/Q_\text{S} \)

Mₜ: Amount (mg) of Teprenone RS taken

Internal standard solution—A solution of di-n-butyl phthalate in ethyl acetate (1 in 200).

Operating conditions—
Detector: A hydrogen flame-ionization detector.
Column: A glass column 3 mm in inside diameter and 2 m in length, packed with 149 to 177 \(\mu \)m silica-gel for gas chromatography coated in 5% with polyethylene glycol 2-nitroterephthalate for gas chromatography.
Column temperature: A constant temperature of about 235°C.
Carrier gas: Nitrogen or helium.
Flow rate: Adjust so that the retention time of the peak of all-trans isomer of teprenone, having the larger retention time among the adjacent two main peaks appearing at a retention time of about 18 minutes, is about 19 minutes.

System suitability—
System performance: When the procedure is run with 3 \(\mu L \) of the standard solution under the above operating conditions, the internal standard and the mono-cis and all-trans isomers of teprenone are eluted in this order with the resolution between the mono-cis and all-trans isomers being not less than 1.1.

System repeatability: When the test is repeated 6 times with 3 \(\mu L \) of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the sum of the peak areas of the mono-cis and all-trans isomers of teprenone to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Tight Containers.
Storage—Under Nitrogen atmosphere at 2 to 8°C.
Teprenone Capsules

Teprenone Capsules contain not less than 95.0% and not more than 105.0% of the labeled amount of teprenone (C₂₃H₃₈O₄: 330.55).

Method of preparation Prepare as directed under Capsules, with Teprenone.

Identification (1) Take out the contents of Teprenone Capsules, to a quantity of the content, equivalent to 0.1 g of Teprenone, add 10 mL of ethanol (99.5), shake well, and centrifuge. To 2 mL of the supernatant liquid add 1 mL of a solution of phosphomolybdic acid n-hydrate in acetic acid (100) (1 in 100), heat in a water bath for 5 minutes, add 5-6 drops of sulfuric acid, and continue heating: a blue to bluish green color develops.

(2) Take out the contents of Teprenone Capsules, to a quantity of the content, equivalent to 0.1 g of Teprenone, add 10 mL of ethanol (99.5), shake well, and centrifuge. To 2 mL of the supernatant liquid add 2 mL of 2,4-dinitrophenyl hydrazine TS, and shake: a yellow to orange-yellow precipitate is formed.

Uniformity of dosage units <6.02> Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement of the Content uniformity test.

Take out the contents of 1 capsule of Teprenone Capsules, add exactly 1 mL of the internal standard solution for each 10 mg of teprenone (C₂₃H₃₈O₄), and add ethyl acetate to make V mL so that each mL contains 1 mg of teprenone (C₂₃H₃₈O₄). Stand for 30 minutes with shaking occasionally, and filter. Discard the first 10 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 50 mg of Teprenone RS, add exactly 5 mL of the internal standard solution, then add ethyl acetate to make 50 mL, and use this solution as the standard solution. Then, proceed as directed in the Assay.

Amount (mg) of teprenone (C₂₃H₃₈O₄) = Mₜ × Qₜ/Qₛ × V/50

Mₜ: Amount (mg) of Teprenone RS taken

Internal standard solution — A solution of di-n-butyl phthalate in ethyl acetate (1 in 200).

Dissolution <6.10> When the test is performed at 100 revolutions per minute according to the Paddle method using the sinker, using 900 mL of a solution of sodium lauryl sulfate in disodium hydrogen phosphate-citric acid buffer solution (pH 6.8) (1 in 20) as the dissolution medium, the dissolution rate in 60 minutes of Teprenone Capsules is not less than 70%.

Start the test with 1 capsule of Teprenone Capsules, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 µm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add the dissolution medium to make exactly V mL so that each mL contains about 56 µg of teprenone (C₂₃H₃₈O₄), and use this solution as the sample solution. Separately, weigh accurately about 28 mg of Teprenone RS, and dissolve in ethanol (99.5) to make exactly 50 mL. Pipet 5 mL of this solution, add the dissolution medium to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly 10 µL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the sum of the peak areas of the mono-cis and all-trans isomer of teprenone, A₁ and A₅₀, in each solution.

Dissolution rate (%) with respect to the labeled amount of teprenone (C₂₃H₃₈O₄) = Mₚ × A₁/A₅₀ × V/V × 1/C × 180

Mₚ: Amount (mg) of Teprenone RS taken
C: Labeled amount (mg) of teprenone (C₂₃H₃₈O₄) in 1 capsule

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 210 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilylated silica gel for liquid chromatography (5 µm in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: A mixture of acetonitrile and water (87:13).

Flow rate: Adjust so that the retention time of all-trans isomer of teprenone is about 8 minutes.

System suitability—

System performance: When the procedure is run with 10 µL of the standard solution under the above operating conditions, the mono-cis and the all-trans isomer of teprenone are eluted in this order with the resolution between these peaks being not less than 1.0.

System repeatability: When the test is repeated 6 times with 10 µL of the standard solution under the above operating conditions, the relative standard deviation of the sum of the peak areas of the mono-cis and all-trans isomer of teprenone is not more than 1.5%.

Assay Take out the contents of not less than 20 Teprenone Capsules. Weigh accurately the total mass of the contents, and powder. Weigh accurately a portion of the powder, equivalent to about 50 mg of teprenone (C₂₃H₃₈O₄), add exactly 5 mL of the internal standard solution, add ethyl acetate to make 50 mL. Stand for 30 minutes with shaking occasionally, and filter. Discard the first 10 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 50 mg of Teprenone RS, add exactly 5 mL of the internal standard solution, add ethyl acetate to make 50 mL, and use this solution as the standard solution. Then, proceed as directed in the Assay under Teprenone.

Amount (mg) of teprenone (C₂₃H₃₈O₄) = Mₚ × Qₚ/Qₛ

Mₚ: Amount (mg) of Teprenone RS taken

Internal standard solution — A solution of di-n-butyl phthalate in ethyl acetate (1 in 200).

Containers and storage Containers—Tight containers.
Terbinafine Hydrochloride

Description
Terbinafine Hydrochloride occurs as a white to pale yellow-white crystalline powder.

It is freely soluble in methanol, in ethanol (99.5) and in acetic acid (100), and slightly soluble in water.

The pH of a solution of 1.0 g of Terbinafine Hydrochloride in 1000 mL of water is 3.5 to 4.5.

Melting point: about 205°C (with decomposition).

Identification (1) Determine the absorption spectrum of a solution of Terbinafine Hydrochloride in methanol (1 in 40,000) as directed under Ultraviolet-visible Spectrophotometry (2.24), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelength.

(2) Determine the infrared absorption spectrum of Terbinafine Hydrochloride, previously dried, as directed in the potassium chloride disk method under Infrared Spectrophotometry (2.25), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) A solution of Terbinafine Hydrochloride in ethanol (99.5) (1 in 100) responds to Qualitative Tests (1.09) (2) for chloride.

Purity (1) Heavy metals (1.07)—Proceed with 1.0 g of Terbinafine Hydrochloride according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(2) Related substances—Conduct this procedure using light-resistant vessels. Dissolve 50 mg of Terbinafine Hydrochloride in 100 mL of a mixture of water and acetonitrile (1:1), and use this solution as the sample solution. Pipet 1 mL of the sample solution, and add a mixture of water and acetonitrile (1:1) to make exactly 100 mL. Pipet 5 mL of this solution, add a mixture of water and acetonitrile (1:1) to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly 20 µL of each of the sample solution and standard solution as directed under Liquid Chromatography (2.01) according to the following conditions, and determine each peak area by the automatic integration method: the peak area of a dimer, having the relative retention time of about 1.7 to terbinafine obtained from the sample solution is not larger than 1/2 times the peak area of terbinafine from the standard solution, the area of the peaks other than terbinafine and the dimer from the sample solution is not larger than the peak area of terbinafine from the standard solution, and the total area of the peaks other than terbinafine is not larger than 3 times the peak area of terbinafine from the standard solution.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 280 nm).
Column: A stainless steel column 3 mm in inside diameter and 15 cm in length, packed with octadecysilicized silica gel for liquid chromatography (5 µm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase A: To 700 mL of a mixture of methanol and acetonitrile (3:2) add 300 mL of a solution of triethylamine (1 in 500) adjusted to pH 7.5 with dilute acetic acid.
Mobile phase B: To 950 mL of a mixture of methanol and acetonitrile (3:2) add 50 mL of a solution of triethylamine (1 in 500) adjusted to pH 7.5 with dilute acetic acid.
Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 4</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>4 - 25</td>
<td>100 → 0</td>
<td>0 → 100</td>
</tr>
<tr>
<td>25 - 30</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Flow rate: Adjust so that the retention time of terbinafine is about 15 minutes.
Time span of measurement: About 2 times as long as the retention time of terbinafine, beginning after the solvent peak.

System suitability—
Test for required detectability: Pipet 5 mL of the standard solution, and add a mixture of water and acetonitrile (1:1) to make exactly 20 mL. Confirm that the peak area of terbinafine obtained with 20 µL of this solution is equivalent to 18 to 32% of that with 20 µL of the standard solution.
System performance: Dissolve 20 mg of Terbinafine Hydrochloride in 20 mL of a mixture of water and acetonitrile (1:1), and irradiate under a short-wave lamp (main wavelength: 254 nm) for 1 hour. When the procedure is run with 20 µL of this solution under the above operating conditions, the resolution between the peak of cis-terbinafine, having the relative retention time of about 0.94 to terbinafine, and the peak of terbinafine is not less than 2.0.
System repeatability: When the test is repeated 6 times with 20 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of terbinafine is not more than 2.0%.

Loss on drying (2.41) Not more than 0.5% (1 g, 105°C, 4 hours).

Residue on ignition (2.44) Not more than 0.1% (1 g).

Assay Weigh accurately about 0.26 g of Terbinafine Hydrochloride, previously dried, dissolve in 5 mL of acetic acid (100), add 50 mL of acetic anhydride, and titrate (2.50) with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 32.79 mg of C₂₁H₂₅N.HCl.

Containers and storage Containers—Tight containers. Storage—Light-resistant.
Terbinafine Hydrochloride Cream

テルビナフィン塩酸塩クリーム

Terbinafine Hydrochloride Cream contains not less than 95.0% and not more than 105.0% of the labeled amount of terbinafine hydrochloride (C$_{21}$H$_{25}$N.HCl: 327.89).

Method of preparation Prepare as directed under Creams, with Terbinafine Hydrochloride.

Identification To quantity of Terbinafine Hydrochloride Cream, equivalent to 10 mg of terbinafine hydrochloride, dissolve in 20 mL of 2-propanol, and use this solution as the sample solution. Separately, dissolve 10 mg of terbinafine hydrochloride for assay in 20 mL of 2-propanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 10 µL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with the upper layer of a mixture of 80 volumes of hexane, 20 volumes of ethyl acetate and 1 volume of ammonia solution (28) to a distance of about 15 cm, and air-dry the plate. Examine the plate under ultraviolet light (main wavelength: 254 nm): the principal spot obtained from the sample solution shows the same Rf value with the spot from the standard solution.

Assay Weigh accurately an amount of Terbinafine Hydrochloride Cream, equivalent to about 10 mg of terbinafine hydrochloride (C$_{21}$H$_{25}$N.HCl), dissolve in 2-propanol to make exactly 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 40 mg of terbinafine hydrochloride for assay, previously dried at 105°C for 4 hours, and dissolve in 2-propanol to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 10 µL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A_T and A_S, of terbinafine in each solution.

\[
\text{Amount (mg) of terbinafine hydrochloride (C}_{21}\text{H}_{25}\text{N.HCl)} = M_S \times A_T/A_S \times 1/4
\]

M_S: Amount (mg) of terbinafine hydrochloride for assay taken

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 282 nm).

Column: A stainless steel column 4.0 mm in inside diameter and 125 mm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 µm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: A mixture of a solution of tetramethylammonium hydroxide (9 in 2000) adjusted to pH 8.0 with diluted phosphoric acid (1 in 25), acetonitrile and tetrahydrofuran (2:2:1).

Flow rate: Adjust so that the retention time of terbinafine is about 8.5 minutes.

System suitability—

System performance: Dissolve 40 mg of terbinafine hydrochloride for assay and 3.5 mg of terphenyl in 200 mL of methanol. When the procedure is run with 10 µL of this solution under the above operating conditions, terphenyl and terbinafine are eluted in this order with the resolution between these peaks being not less than 6.

System repeatability: When the test is repeated 6 times with 10 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of terbinafine is not more than 1.0%.

Containers and storage Containers—Tight containers.

Terbinafine Hydrochloride Solution

テルビナフィン塩酸塩液

Terbinafine Hydrochloride Solution is a liquid for external use.

It contains not less than 95.0% and not more than 105.0% of the labeled amount of terbinafine hydrochloride (C$_{21}$H$_{25}$N.HCl: 327.89).

Method of preparation Prepare as directed under Liquids and Solutions for Cutaneous Application, with Terbinafine Hydrochloride.

Identification To a volume of Terbinafine Hydrochloride Solution, equivalent to 10 mg of Terbinafine Hydrochloride, add methanol to make 10 mL, and use this solution as the sample solution. Separately, dissolve 10 mg of terbinafine hydrochloride for assay in 10 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 5 µL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with the upper layer of a mixture of 80 volumes of hexane, 20 volumes of ethyl acetate and 1 volume of ammonia solution (28) to a distance of about 15 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the principal spot obtained from the sample solution shows the same Rf value with the spot from the standard solution.

pH Being specified separately when the drug is granted approval based on the Law.

Assay Weigh accurately an amount of Terbinafine Hydrochloride Solution, equivalent to about 10 mg of terbinafine hydrochloride (C$_{21}$H$_{25}$N.HCl), add methanol to make exactly 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 40 mg of terbinafine hydrochloride for assay, previously dried at 105°C for 4 hours, and dissolve in methanol to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 10 µL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A_T and A_S, of terbinafine in each solution.

\[
\text{Amount (mg) of terbinafine hydrochloride (C}_{21}\text{H}_{25}\text{N.HCl)} = M_S \times A_T/A_S \times 1/4
\]

M_S: Amount (mg) of terbinafine hydrochloride for assay taken

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 282 nm).

Column: A stainless steel column 4.0 mm in inside diameter and 125 mm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 µm in particle diameter).
Column temperature: A constant temperature of about 25°C.

Mobile phase: A mixture of a solution of tetramethylammonium hydroxide (9 in 2000) adjusted to pH 8.0 with diluted phosphoric acid (1 in 25), acetonitrile and tetrahydrofuran (2:2:1).

Flow rate: Adjust so that the retention time of terbinafine is about 8.5 minutes.

System suitability—

System performance: Dissolve 40 mg of terbinafine hydrochloride for assay and 3.5 mg of terphenyl in 200 mL of methanol. When the procedure is run with 10 μL of this solution under the above operating conditions, terphenyl and terbinafine are eluted in this order with the resolution between these peaks being not less than 6.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of terbinafine is not more than 1.0%.

Containers and storage Containers—Tight containers.

Terbinafine Hydrochloride Spray

テルビナフィン塩酸塩スプレー

Terbinafine Hydrochloride Spray contains not less than 95.0% and not more than 105.0% of the labeled amount of terbinafine hydrochloride (C₂₁H₂₆N.HCl: 327.89).

Method of preparation Prepare as directed under Pump Sprays for Cutaneous Application, with Terbinafine Hydrochloride.

Identification To an amount of Terbinafine Hydrochloride Spray, equivalent to 10 mg of Terbinafine Hydrochloride, add methanol to make 10 mL, and use this solution as the sample solution. Separately, dissolve 10 mg of terbinafine hydrochloride for assay in 10 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 5 μL of each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with the upper layer of a mixture of 80 volumes of hexane, 20 volumes of ethyl acetate and 1 volume of ammonia solution (28) to a distance of about 15 cm, and air-dry the plate. Examine the plate under ultraviolet light (main wavelength: 254 nm): the principal spot obtained from the sample solution shows the same Rf value with the spot from the standard solution.

pH Being specified separately when the drug is granted approval based on the Law.

Assay Weigh accurately an amount of Terbinafine Hydrochloride Spray, equivalent to about 10 mg of terbinafine hydrochloride (C₂₁H₂₆N.HCl), dissolve in methanol to make exactly 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 40 mg of terbinafine hydrochloride for assay, previously dried at 105°C for 4 hours, dissolve in methanol to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions, and determine the peak areas, A₁ and A₅, of terbinafine in each solution.

Amount (mg) of terbinafine hydrochloride (C₂₁H₂₆N.HCl) = \(M_s \times A_1 / A_5 \times 1/4\)

M₃: Amount (mg) of terbinafine hydrochloride for assay taken

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 282 nm).

Column: A stainless steel column 4.0 mm in inside diameter and 125 mm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: A mixture of a solution of tetramethylammonium hydroxide (9 in 2000) adjusted to pH 8.0 with diluted phosphoric acid (1 in 25), acetonitrile and tetrahydrofuran (2:2:1).

Flow rate: Adjust so that the retention time of terbinafine is about 8.5 minutes.

System suitability—

System performance: Dissolve 40 mg of terbinafine hydrochloride for assay and 3.5 mg of terphenyl in 200 mL of methanol. When the procedure is run with 10 μL of this solution under the above operating conditions, terphenyl and terbinafine are eluted in this order with the resolution between these peaks being not less than 6.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of terbinafine is not more than 1.0%.

Containers and storage Containers—Tight containers.

Terbinafine Hydrochloride Tablets

テルビナフィン塩酸塩錠

Terbinafine Hydrochloride Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of terbinafine hydrochloride (C₂₁H₂₆N.HCl: 327.89).

Method of preparation Prepare as directed under Tablets, with Terbinafine Hydrochloride.

Identification To an amount of powdered Terbinafine Hydrochloride Tablets, equivalent to 10 mg of Terbinafine Hydrochloride, add 10 mL of methanol, shake thoroughly, centrifuge, and use the supernatant liquid as the sample solution. Separately, dissolve 10 mg of terbinafine hydrochloride for assay in 10 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 5 μL of each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with the upper layer of a mixture of 80 volumes of hexane, 20 volumes of ethyl acetate and 1 volume of ammonia solution (28) to a distance of about 15 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the principal spot obtained from the sample solution and the spot from the standard solution show the same Rf value.

Uniformity of dosage units <6.02> Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement.
To 1 tablet of Terbinafine Hydrochloride Tablets add 40 mL of methanol, shake thoroughly until completely integrated, and add methanol to make exactly 50 mL. Centrifuge this solution, pipet V mL of the supernatant liquid, add methanol to make exactly V mL so that each mL contains about 0.28 mg of terbinafine hydrochloride (C₁₅H₂₁N₂O₂S·HCl), and use this solution as the sample solution. Then, proceed as directed in the Assay.

Amount (mg) of terbinafine hydrochloride (C₁₅H₂₁N₂O₂S·HCl) = Mₛ × Aₛ / Aₐ × V / V × V / 1/2

Mₛ: Amount (mg) of terbinafine hydrochloride for assay taken

Dissolution

When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of 0.05 mol/L acetic acid-sodium acetate buffer solution (pH 4.0) as the dissolution medium, the dissolution rate in 30 minutes of Terbinafine Hydrochloride Tablets is not less than 75%.

Start the test with 1 tablet of Terbinafine Hydrochloride Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.5 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add the dissolution medium to make exactly V mL so that each mL contains about 0.16 mg of terbinafine hydrochloride (C₁₅H₂₁N₂O₂S·HCl). Pipet 2 mL of this solution, add diluted acetic acid (100) (1 in 100) to make exactly 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 16 mg of terbinafine hydrochloride for assay, previously dried at 105°C for 4 hours, dissolve in diluted acetic acid (100) (1 in 100) to make exactly 100 mL. Pipet 5 mL of this solution, add 5 mL of the dissolution medium, add diluted acetic acid (100) (1 in 100) to make exactly 50 mL, and use this solution as the standard solution. Determine the absorbances, Aₛ and Aₐ, at 283 nm of the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry 2.2.4.1, using a solution, prepared by adding diluted acetic acid (100) (1 in 100) to 5 mL of the dissolution medium to make 50 mL, as the blank.

Dissolution rate (%) with respect to the labeled amount of terbinafine hydrochloride (C₁₅H₂₁N₂O₂S·HCl) = Mₛ × Aₛ / Aₐ × V / V × 1/3 × 900

Mₛ: Amount (mg) of terbinafine hydrochloride for assay taken

C: Labeled amount (mg) of terbinafine hydrochloride (C₁₅H₂₁N₂O₂S·HCl) in 1 tablet

Assay

Weigh accurately the mass of not less than 20 Terbinafine Hydrochloride Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 0.14 g of terbinafine hydrochloride (C₁₅H₂₁N₂O₂S·HCl), add 40 mL of methanol, shake thoroughly, then add methanol to make exactly 50 mL. Centrifuge, pipet 5 mL of the supernatant liquid, add methanol to make exactly 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 28 mg of terbinafine hydrochloride for assay, previously dried at 105°C for 4 hours, dissolve in methanol to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography 2.07 according to the following conditions, and determine the peak areas, Aₛ and Aₐ, of terbinafine in each solution.

Amount (mg) of terbinafine hydrochloride (C₁₅H₂₁N₂O₂S·HCl) = Mₛ × Aₛ / Aₐ × 5

Mₛ: Amount (mg) of terbinafine hydrochloride for assay taken

Operating conditions

Detector: An ultraviolet absorption photometer (wavelength: 282 nm).

Column: A stainless steel column 4.0 mm in inside diameter and 125 mm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: A mixture of a solution of tetramethylammonium hydroxide (9 in 2000) adjusted to pH 8.0 with diluted phosphoric acid (1 in 25), acetonitrile and tetrahydrofuran (2:2:1).

Flow rate: Adjust so that the retention time of terbinafine is about 8.5 minutes.

System suitability

System performance: Dissolve 40 mg of terbinafine hydrochloride for assay and 3.5 mg of telphenyl in 200 mL of methanol. When the procedure is run with 10 μL of this solution under the above operating conditions, telphenyl and terbinafine are eluted in this order with the resolution between these peaks being not less than 6.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of terbinafine is not more than 1.0%.

Containers and storage

Containers—Tight containers.

Terbinafine Sulfate

Terbutaline Sulfate contains not less than 98.5% of terbinafine sulfate [(C₁₅H₂₀N₂O₄·H₂SO₄·5H₂O)], calculated on the anhydrous basis.

Description

Terbinafine Sulfate is white to brownish white, crystals or crystalline powder. It is odorless or has a faint odor of acetic acid.

It is freely soluble in water, and practically insoluble in acetonitrile, in ethanol (95), in acetic acid (100), in chloroform, and in diethyl ether.

It is gradually colored by light and by air.

Melting point: about 255°C (with decomposition).

Identification (1)

Dissolve 1 mg of Terbinal Sulfate in 1 mL of water, and add 5 mL of Tris buffer solution (pH 9.5), 0.5 mL of 4-aminoantipyrine solution (1 in 50) and 2 drops of potassium hexacyanoferrate (III) solution (2 in 25): a reddish purple color is produced.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
JP XVIII

Official Monographs / Testosterone Enanthate 1809

(2) Determine the absorption spectrum of a solution of Terbutaline Sulfate in 0.01 mol/L hydrochloric acid TS (1 in 10,000) as directed under Ultraviolet-visible Spectrophotometry <2.2.4>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths. This maximum can be biphasic.

(3) A solution of Terbutaline Sulfate (1 in 50) responds to Qualitative Tests <1.09> for sulfate.

pH <2.54> Dissolve 0.10 g of Terbutaline Sulfate in 10 mL of water: the pH of this solution is between 4.0 and 4.8.

Purity (1) Clarity and color of solution—Dissolve 0.10 g of Terbutaline Sulfate in 10 mL of water: the solution is clear and colorless or pale yellow.

(2) Chloride <1.03> Perform the test with 2.0 g of Terbutaline Sulfate. Prepare the control solution with 0.25 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.004%).

(3) Acetic acid—Dissolve 0.50 g of Terbutaline Sulfate in a solution of phosphoric acid (59 in 1000) to make exactly 10 mL, and use this solution as the sample solution. Separately, dissolve 1.50 g of acetic acid (100 in 1000) to make 100 mL. Dilute 2 mL of this solution, accurately measured, with a solution of phosphoric acid (59 in 1000) to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 2 μL each of the sample solution and standard solution as directed under Gas Chromatography <2.02> according to the following conditions. Determine the peak areas, A1 and A8, of acetic acid in each solution: A1 is not larger than A8.

Operating conditions—
Detector: A hydrogen flame-ionization detector.
Column: A glass column 3 mm in inside diameter and 1 m in length, packed with 10% of macrogol 6000 on 180- to 250-μm terephthalic acid for gas chromatography.
Column temperature: A constant temperature at about 120°C.
Carrier gas: Nitrogen.
Flow rate: Adjust so that the retention time of acetic acid is about 5 minutes.
System suitability—
System performance: Mix 0.05 g each of acetic acid (100) and propionic acid in 100 mL of diluted phosphoric acid (59 in 1000). When the procedure is run with 2 μL of this solution under the above conditions, acetic acid and propionic acid are eluted in this order with the resolution between these peaks being not less than 2.0.
System repeatability: When the test is repeated 6 times with 2 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak areas of acetic acid is not more than 3.0%.

(4) 3,5-Dihydroxy-ω-tert-butylaminoacetophenone sulfate—Dissolve 0.50 g of Terbutaline Sulfate in 0.01 mol/L hydrochloric acid TS to make exactly 25 mL, and perform the test as directed under Ultraviolet-visible Spectrophotometry <2.2.5>; the absorbance at a wavelength of 330 nm does not exceed 0.47.

(5) Heavy metals <1.07>—Proceed with 2.0 g of Terbutaline Sulfate as directed under Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(6) Arsenic <1.10>—Prepare the test solution with 1.0 g of Terbutaline Sulfate according to method 3, and perform the test (not more than 2 ppm).

Water <2.49> Not more than 0.5% (1 g, volumetric titration, direct titration).
Residue on ignition <2.49> Not more than 0.2% (1 g).
Assay Weigh accurately about 0.5 g of Terbutaline Sulfate, dissolve in 50 mL of a mixture of acetonitrile and acetic acid (100:1) by stirring and warming. Allow to cool, and titrate <2.50> with 0.1 mol/L perchloric acid VS (potentiometric titration, substituting a saturated solution of potassium chloride in methanol for the internal fluid).

Each mL of 0.1 mol/L perchloric acid VS = 54.87 mg of (C18H35NO3)2·H2SO4
Containers and storage Containers—Tight containers.
Storage—Light-resistant.

Testosterone Enanthate

テストステロンエンanthateエステル

C39H60O5: 400.59
3-Oxandrost-4-en-17β-yl heptanoate [315-37-7]

Testosterone Enanthate, when dried, contains not less than 95.0% and not more than 105.0% of testosterone enanthate (C39H60O5).

Description Testosterone Enanthate occurs as white to pale yellow, crystals or crystalline powder, or a pale yellow-brown viscous liquid. It is odorless or has a slight, characteristic odor.

It is freely soluble in ethanol (99.5), and practically insoluble in water.

Melting point: about 36°C

Identification Heat 25 mg of Testosterone Enanthate with 2 mL of a solution of potassium hydroxide in methanol (1 in 100) under a reflux condenser on a water bath for 1 hour, cool, and add 10 mL of water. Collect the precipitate by suction, wash with water until the last washing is neutral, and dry the precipitate in a desiccator (in vacuum, phosphorus (V) oxide) for 4 hours: the precipitate melts <2.60> between 151°C and 157°C.

Optical rotation <2.49> [α]D: +76° to +86° (after drying, 0.1 g, ethanol (99.5), 10 mL, 100 mm).

Purity Acidity—Dissolve 0.5 g of Testosterone Enanthate in 10 mL of ethanol (95) which has previously been rendered neutral to bromothymol blue TS, and add 2 drops of bromothymol blue TS and 0.50 mL of 0.01 mol/L sodium hydroxide VS: the color of the solution is light blue.

Loss on drying <2.41> Not more than 0.5% (0.5 g, in vacuum, phosphorus (V) oxide, 4 hours).

Residue on ignition <2.49> Not more than 0.1% (0.5 g).

Assay Weigh accurately about 0.1 g of Testosterone Enanthate, previously dried, and dissolve in ethanol (95) to make exactly 100 mL. Measure exactly 10 mL of this solution, and
Testosterone Enanthate Injection

Testosterone Enanthate Injection is an oily solution for injection.

It contains not less than 90.0% and not more than 110.0% of the labeled amount of testosterone enanthate (C_{29}H_{40}O_3; 400.59).

Method of preparation Prepare as directed under Injections, with Testosterone Enanthate.

Description Testosterone Enanthate Injection is a clear, colorless or pale yellow oily liquid.

Identification Measure a volume of Testosterone Enanthate Injection, equivalent to 0.05 g of Testosterone Enanthate, add 8 mL of petroleum ether, and extract with three 10-mL portions of diluted acetic acid (100) (7 in 10). Combine the extracts, wash with 10 mL of petroleum ether, add 0.5 mL of diluted sulfuric acid (7 in 10) to 0.1 mL of the extract, and heat on a water bath for 5 minutes. Cool, and add 0.5 mL of iron (III) chloride-acetic acid TS: the color of the solution is blue.

Extractable volume

Foreign insoluble matter Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter Perform the test according to Method 2: it meets the requirement.

Sterility Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Measure accurately a volume of Testosterone Enanthate Injection, equivalent to about 25 mg of testosterone enanthate (C_{29}H_{40}O_3), and dissolve in chloroform to make exactly 25 mL. Pipet 3 mL of this solution, add chloroform to make exactly 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 25 mg of Testosterone Propionate RS, proceed in the same manner as for the sample solution, and use this solution as the standard solution. Pipet 5 mL each of the sample solution and standard solution, and add exactly 10 mL of isolonidaz TS, add methanol to make exactly 20 mL, and allow to stand for 45 minutes. Determine the absorbances, A_S and A_As, of these solutions at 380 nm, respectively, as directed under Ultraviolet-visible Spectrophotometry, using a solution obtained by proceeding with 5 mL of chloroform as the blank.

Amount (mg) of testosterone enanthate (C_{29}H_{40}O_3) = M_S × A_S / M_{As} × 1.163

M_S: Amount (mg) of Testosterone Propionate RS taken

Containers and storage Containers—Hermetic containers.

Storage—Light-resistant.

Testosterone Propionate

Testosterone Propionate, when dried, contains not less than 97.0% and not more than 103.0% of testosterone propionate (C_{22}H_{32}O_3).

Description Testosterone Propionate occurs as white to pale yellow, crystals or crystalline powder.

It is freely soluble in methanol and in ethanol (95), and practically insoluble in water.

Identification (1) Determine the absorption spectrum of a solution of Testosterone Propionate in ethanol (95) (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Testosterone Propionate RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Testosterone Propionate, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry, and compare the spectrum with the Reference Spectrum or the spectrum of Testosterone Propionate RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation [α]D^22: +83° to +90° (after drying, 0.1 g, ethanol (95), 10 mL, 100 mm).

Melting point 118 – 123°C

Purity Related substances—Dissolve 40 mg of Testosterone Propionate in 2 mL of ethanol (95), and use this solution as the sample solution. Pipet 1 mL of the sample solution, add ethanol (95) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography. Spot 10 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of chloroform and diethylamine (9:1) to a distance of about 15 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying Not more than 0.5% (0.5 g, in vacuum, phosphorus (V) oxide, 4 hours).

Residue on ignition Not more than 0.1% (0.5 g).

Assay Weigh accurately each about 10 mg of Testosterone Propionate and Testosterone Propionate RS, previously dried, and dissolve in methanol to make exactly 100 mL. To
Testosterone Propionate Injection

テストステロンプロピオン酸エステル注射液

Testosterone Propionate Injection is an oily solution for injection. It contains not less than 92.5% and not more than 107.5% of the labeled amount of testosterone propionate (C_{19}H_{28}O_3: 344.49).

Method of preparation
Prepare as directed under Injections, with Testosterone Propionate.

Description
Testosterone Propionate Injection is a clear, colorless or pale yellow oily liquid.

Identification
Dissolve the residue obtained as directed in the procedure in the Assay in exactly 20 mL of methanol, and use this solution as the sample solution. Separately, dissolve 1 mg of Testosterone Propionate RS in 10 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.05>. Spot 10 μL of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of chloroform and diethylamine (19:1) to a distance of about 15 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the Rf values of the principal spot obtained from the sample solution and of the spot from the standard solution are not different each other.

Extractable volume <5.05>
It meets the requirement.

Foreign insoluble matter <5.06>
Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter <5.07>
Perform the test according to Method 2: it meets the requirement.

Sterility <6.06>
Perform the test according to the Membrane filtration method: it meets the requirement.

Assay
(i) Chromatographic tube A glass tube about 1 cm in inside diameter and about 18 cm in length, with a glass filter (G3) at the lower end.
(ii) Chromatographic column To about 2 g of silica gel for liquid chromatography add 5 mL of dichloromethane, and mix gently. Transfer and wash into the chromatographic tube with the aid of dichloromethane, allow to elute the dichloromethane through the column, and put a filter paper on the upper end of the silica gel.
(iii) Standard solution Weigh accurately about 10 mg of Testosterone Propionate RS, previously dried at 105°C for 4 hours, and dissolve in methanol to make exactly 100 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution and methanol to make 20 mL.
(iv) Sample stock solution To exactly a volume of Testosterone Propionate Injection, equivalent to about 20 mg of testosterone propionate (C_{19}H_{28}O_3), add dichloromethane to make exactly 20 mL.
(v) Procedure Transfer exactly 2 mL of the sample stock solution into the chromatographic column, and elute to the upper surface of the silica gel. Wash the inner surface of the chromatographic tube with 15 mL of dichloromethane, elute to the upper surface of the silica gel, and discard the effluent. Elute 15 mL of a mixture of dichloromethane and methanol (39:1), discard the first 5 mL of the effluent, and collect the subsequent effluent. Wash the lower part of the column with a few amount of dichloromethane, combine the washings and the effluent, and evaporate the solvent under reduced pressure. Dissolve the residue so obtained with methanol to make exactly 20 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution and methanol to make 20 mL, and use this solution as the sample solution. Perform the test with 5 μL each of the sample solution and standard solution as directed in the Assay under Testosterone Propionate.

Amount (mg) of testosterone propionate (C_{19}H_{28}O_3) = M_s × Q_{1s}/Q_3

M_s: Amount (mg) of Testosterone Propionate RS taken

Containers and storage
Containers—Tight containers.
Storage—Light-resistant.
Adsorbed Tetanus Toxoid

Adsorbed Tetanus Toxoid is a liquid for injection containing tetanus toxoid prepared by treating tetanus toxin with formaldehyde by a method involving no appreciable loss of the immunogenicity and rendered insoluble by the addition of aluminum salt. It conforms to the requirements of Adsorbed Tetanus Toxoid in the Minimum Requirements for Biological Products.

Description Adsorbed Tetanus Toxoid becomes a uniform white-turbid liquid on shaking.

Tetracaine Hydrochloride

Tetracaine Hydrochloride occurs as white, crystalline powder. It is odorless, and has a slightly bitter taste followed by a sense of numbness on the tongue.

It is very soluble in formic acid, freely soluble in water, soluble in ethanol (95), sparingly soluble in ethanol (99.5), slightly soluble in acetic anhydride, and practically insoluble in diethyl ether.

A solution of Tetracaine Hydrochloride (1 in 10) is neutral.

Melting point: about 148°C.

Identification (1) 0.5 g of Tetracaine Hydrochloride in 50 mL of water, add 5 mL of ammonia TS, shake, and allow to stand in a cold place. Collect the precipitate, recrystallize from water, and dry at 80°C for 2 hours: it melts <2.60° between 42°C and 44°C.

(2) 80 mL of acetic anhydride, allow to stand at 30°C on a water bath for 15 minutes, cool, and titrate <2.50° with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 30.08 mg of C\textsubscript{13}H\textsubscript{22}N\textsubscript{2}O\textsubscript{8}.HCl.

Containers and storage Containers—Tight containers.

Tetracycline Hydrochloride

Tetracycline Hydrochloride is the hydrochloride of a tetracycline substance having antibacterial activity produced by the growth of Streptomyces aureofaciens.

It contains not less than 950 µg (potency) and not more than 1010 µg (potency) per mg, calculated on the dried basis. The potency of Tetracycline Hydrochloride is expressed as mass (potency) of tetracycline hydrochloride (C\textsubscript{22}H\textsubscript{24}N\textsubscript{2}O\textsubscript{8}.HCl).

Description Tetracycline Hydrochloride occurs as a yellow to pale brownish yellow crystalline powder.

It is freely soluble in water, and sparingly soluble in ethanol (95).

Identification (1) Determine the absorption spectrum of a solution of Tetracycline Hydrochloride (1 in 62,500) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Tetracycline Hydrochloride RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Tetracycline Hydrochloride as directed in the potassium chloride disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of Tetracycline Hydrochloride RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Purity Heavy metals <1.07>—Proceed with 1.0 g of Tetracycline Hydrochloride according to Method 1, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

Loss on drying <2.41> Not more than 1.0% (1 g, 105°C, 4 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.5 g of Tetracycline Hydrochloride, previously dried, dissolve in 2 mL of formic acid, add 80 mL of acetic anhydride, allow to stand at 30°C on a water bath for 15 minutes, cool, and titrate <2.50° with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 30.08 mg of C\textsubscript{13}H\textsubscript{22}N\textsubscript{2}O\textsubscript{8}.HCl.

Containers—Tight containers.
(3) A solution of Tetracycline Hydrochloride (1 in 100) responds to Qualitative Tests <1.09> (2) for chloride.

pH <2.50> Dissolve 1.0 g of Tetracycline Hydrochloride in 100 mL of water: the pH of the solution is between 1.8 and 2.8.

Purity (1) Heavy metals <1.07>—Proceed with 1.0 g of Tetracycline Hydrochloride according to Method 2, and perform the test. Prepare the control solution with 1.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Related substances—Dissolve 25 mg of Tetracycline Hydrochloride in 50 mL of 0.01 mol/L hydrochloric acid TS, and use this solution as the sample solution. Pipet 3 mL of the sample solution, add 0.01 mol/L hydrochloric acid TS to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak other than tetracycline obtained from the sample solution is not larger than the peak area of tetracycline from the standard solution, and the total area of the peaks other than tetracycline from the sample solution is not larger than 3 times the peak area of tetracycline from the standard solution.

Operating conditions—
Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 7 times as long as the retention time of tetracycline, beginning after the solvent peak.

System suitability—
System performance: Proceed as directed in the system suitability in the Assay.

Test for required detectability: Pipet 3 mL of the standard solution, add 0.1 mol/L hydrochloric acid TS to make exactly 100 mL, and confirm that the peak area of tetracycline obtained with 20 μL of this solution is equivalent to 1 to 5% of that with 20 μL of the standard solution.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of tetracycline is not more than 1.0%.

Loss on drying <2.47> Not more than 2.0% (1 g, in vacuum, 60°C, 3 hours).

Residue on ignition <2.44> Not more than 0.3% (1.0 g).

Assay Weigh accurately an amount of Tetracycline Hydrochloride and Tetracycline Hydrochloride RS, equivalent to about 25 mg (potency), and dissolve each in 0.1 mol/L hydrochloric acid TS to make exactly 50 mL, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with exactly 20 μL each of these solutions as directed under Liquid Chromatography <2.07> according to the following conditions, and determine the peak areas, A7 and A5, of tetracycline in each solution.

Amount [μg (potency)] of tetracycline hydrochloride
(C22H20N2O8·HCl) = M5 × A7/A5 × 1000

M5: Amount [mg (potency)] of Tetracycline Hydrochloride RS taken

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 254 nm).

Theophylline

Theophylline, when dried, contains not less than 99.0% of theophylline (C8H8N4O4).

C8H8N4O4: 180.16
1,3-Dimethyl-1H-purine-2,6(3H,7H)-dione
[58-55-9]
Thiamazole / Official Monographs

Description

Thiamazole occurs as white, crystals or crystalline powder.

It is freely soluble in water and in ethanol (95). It is slightly soluble in diethyl ether.

The pH of a solution of 1.0 g of Thiamazole in 50 mL of water is between 5.0 and 7.0.

Identification (1)

Dissolve 5 mg of Thiamazole in 1 mL of water, shake with 1 mL of sodium hydroxide TS, and add 3 drops of sodium pentacyanonirotiferate (III) TS: a yellow color develops, and it gradually changes to yellow-green to green. To this solution add 1 mL of acetic acid (31): it changes to blue.

(2) To 2 mL of a solution of Thiamazole (1 in 200) add 1 mL of sodium carbonate TS and 1 mL of diluted Folin’s TS (1 in 5): a deep blue color develops.

Melting point <2.60> 144 – 147°C

Purity (1) Acidity—To 0.5 g of Thiamazole add 75 mL of water, 2.0 mL of 0.01 mol/L hydrochloric acid VS and 1 drop of methyl red TS: a yellow color develops.

(2) Heavy metals <1.07>—Proceed with 1.0 g of Thiamazole according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(3) Arsenic <1.11>—Prepare the test solution with 1.0 g of Thiamazole according to Method 3, and perform the test (not more than 2 ppm).

(4) Related substances—Dissolve 0.10 g of Thiamazole in 3 mL of N,N-dimethylformamide, add 10 mL of methanol, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add methanol to make exactly 200 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 10 µL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of acetone, chloroform, methanol, 1-butanol and ammonia solution (28) (3:3:2:2:1) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying <2.41> Not more than 0.5% (1 g, 105°C, 4 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay

Weigh accurately about 0.25 g of Thiamazole, previously dried, and dissolve in 100 mL of water, add exactly 20 mL of 0.1 mol/L silver nitrate VS, shake the mixture, and titrate <2.59> with 0.1 mol/L sodium hydroxide VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L sodium hydroxide VS = 18.02 mg of C₇H₉N₃S.

Containers and storage

Containers—Well-closed containers.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
The absorbance of of the sample solution at the wavelength of maximum absorbance at about 378 nm does not exceed the absorbance of the standard solution.

(2) Heavy metals $<1.07\%$—Proceed with 1.0 g of Thiamazole according to Method 2, and test the performance. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(3) Arsenic $<1.11\%$—Prepare the test solution with 1.0 g of Thiamazole according to Method 1, and perform the test (not more than 2 ppm).

Loss on drying $<2.4\%$ Not more than 0.5% (1 g, 105°C, 2 hours).

Residue on ignition $<2.4\%$ Not more than 0.1% (1 g).

Assay Weigh accurately about 0.25 g of Thiamazole, previously dried, dissolve in 75 mL of water, add 15 mL of 0.1 mol/L sodium hydroxide VS from a burette, and add 30 mL of 0.1 mol/L silver nitrate VS with stirring. Add 1 mL of bromothymol blue TS, and titrate $<2.5\%$ with 0.1 mol/L sodium hydroxide VS, until a persistent blue-green color is produced. Determine the total volume of 0.1 mol/L sodium hydroxide VS consumed.

Each mL of 0.1 mol/L sodium hydroxide VS $= 11.42$ mg of $C_6H_5N_2S$

Containers and storage Containers—Well-closed containers.

Storage—Light-resistant.

Thiamazole Tablets

チアマゾール錠

Thiamazole Tablets contain not less than 94.0% and not more than 96.0% of the labeled amount of thiamazole ($C_6H_5N_2S$: 114.17).

Method of preparation Prepare as directed under Tablets, with Thiamazole.

Identification (1) To a quantity of powdered Thiamazole Tablets, equivalent to 0.05 g of Thiamazole, add 20 mL of hot ethanol (95), shake for 15 minutes, filter, and evaporate the filtrate on a water bath to dryness. Dissolve the residue in 10 mL of water, filter if necessary, and use this solution as the sample solution. To 1 mL of the sample solution add 1 mL of sodium hydroxide TS, shake, and add 3 drops of sodium pentacyanonitrosylferrate (III) TS: a yellow color develops, and it gradually changes to yellow-green to green. To add 1 mL of acetic acid (31): it changes to blue.

(2) With 2 mL of the sample solution obtained in (1), proceed as directed in the Identification (2) under Thiamazole.

Assay Weigh accurately and powder not less than 20 Thiamazole Tablets. Weigh accurately a quantity of the powder, equivalent to about 0.15 g of thiamazole ($C_6H_5N_2S$), add 80 mL of water, shake for 15 minutes, add water to make exactly 100 mL, and centrifuge. Filter, discard the first 20 mL of the filtrate, pipet 50 mL of the subsequent filtrate, add 1 mL of bromothymol blue TS, and if a blue color develops, neutralize with 0.1 mol/L hydrochloric acid VS until the color of the solution changes to green. To this solution add 4.5 mL of 0.1 mol/L sodium hydroxide VS from a burette, add 15 mL of 0.1 mol/L silver nitrate VS while stirring, and titrate $<2.5\%$ with 0.1 mol/L sodium hydroxide VS. Continue the titration until a persistent blue-green color is produced, and determine the total volume of 0.1 mol/L sodium hydroxide VS consumed.

Each mL of 0.1 mol/L sodium hydroxide VS $= 11.42$ mg of $C_6H_5N_2S$

Containers and storage Containers—Well-closed containers.

Storage—Light-resistant.

Thiamine Chloride Hydrochloride

チアミン塩化物塩酸塩

C$_3$H$_4$N$_2$ClN$_4$OS.HCl: 337.27
3-(4-Amino-2-methylpyrimidin-5-ylmethyl)-5-(2-hydroxyethyl)-4-methylthiazolium chloride monohydrochloride

Thiamine Chloride Hydrochloride contains not less than 98.5% and not more than 101.0% of thiamine chloride hydrochloride ($C_6H_4ClN_2OS.HCl$), calculated on the anhydrous basis.

Description Thiamine Chloride Hydrochloride occurs as white, crystals or crystalline powder. It is odorless or has a slight, characteristic odor.

It is freely soluble in water, sparingly soluble in methanol, and slightly soluble in ethanol (95).

Melting point: about 245°C (with decomposition).

It shows crystal polymorphism.

Identification (1) To 5 mL of a solution of Thiamine Chloride Hydrochloride (1 in 500) add 2.5 mL of sodium hydroxide TS and 0.5 mL of potassium hexacyanoferrate (III) TS. Then add 5 mL of 2-methyl-1-propanol, shake the mixture vigorously for 2 minutes, allow to stand, and examine under ultraviolet light (main wavelength: 365 nm): the 2-methyl-1-propanol layer shows a blue-purple fluorescence. This fluorescence disappears when the mixture is acidified, but reappears when it is again made alkaline.

(2) Determine the absorption spectrum of a solution of Thiamine Chloride Hydrochloride (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry $<2.24\%$, and compare the spectrum with the Reference Spectrum, or the spectrum of a solution of Thiamine Chloride Hydrochloride RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(3) Determine the infrared absorption spectrum of Thiamine Chloride Hydrochloride, previously dried at 105°C for 2 hours, as directed in the potassium chloride disk method under the Infrared Spectrophotometry $<2.25\%$, and compare the spectrum with the Reference Spectrum, or the spectrum of Thiamine Chloride Hydrochloride RS previously dried at 105°C for 2 hours: both spectra exhibit similar intensities of absorption at the same wave numbers. In case when some differences are found between the spectra, repeat the test with residues obtained by dissolving these substances in
water, evaporating to dryness, and drying at 105°C for 2 hours.

(4) A solution of Thiamine Chloride Hydrochloride (1 in 500) responds to Qualitative Tests <1.09> for chloride.

pH <2.5> Dissolve 1.0 g of Thiamine Chloride Hydrochloride in 100 mL of water: the pH of this solution is between 2.7 and 3.4.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Thiamine Chloride Hydrochloride in 10 mL of water: the solution is clear, and has no more color than the following control solution.

Control solution: To 1.5 mL of 1/60 mol/L potassium dichromate VS add water to make 1000 mL.

(2) Sulfate <1.14>—Weigh 1.5 g of Thiamine Chloride Hydrochloride, and perform the test. Prepare the control solution with 0.35 mL of 0.005 mol/L sulfuric acid VS (not more than 0.011%).

(3) Nitrate—Dissolve 0.5 g of Thiamine Chloride Hydrochloride in 25 mL of water. Add 2 mL of sulfuric acid to 2 mL of this solution, shake, cool, and superimpose iron (II) sulfate TS: no dark brown ring is produced at the junction of the two layers.

(4) Heavy metals <1.07>—Proceed with 1.0 g of Thiamine Chloride Hydrochloride according to Method 1, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(5) Related substances—Dissolve 0.10 g of Thiamine Chloride Hydrochloride in 100 mL of the mobile phase, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the area of each peak by the automatic integration method: the total area of the peaks other than thiamine obtained from the sample solution is not larger than the peak area of thiamine from the standard solution.

Operating conditions—
Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 3 times as long as the retention time of thiamine.

System suitability—
System performance: Proceed as directed in the system suitability in the Assay.

Test for required detectability: To exactly 5 mL of the standard solution add water to make exactly 50 mL. Confirm that the peak area of thiamine obtained with 10 μL of this solution is equivalent to 7 to 13% of that with 10 μL of the standard solution.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of thiamine is not more than 1.0%.

Water <2.48> Not more than 5.0% (30 mg, coulometric titration).

Residue on ignition <2.44> Not more than 0.2% (1 g).

Assay Weigh accurately about 0.1 g each of Thiamine Chloride Hydrochloride and Thiamine Chloride Hydrochloride RS (separately determine the water <2.48> in the same manner as Thiamine Chloride Hydrochloride), and dissolve them in the mobile phase to make exactly 50 mL. To 10 mL each of the solutions, accurately measured, add exactly 5 mL of each of the internal standard solution, add the mobile phase to make 50 mL, and use these solutions as the sample solution and standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and calculate the ratios, Q1 and Q2, of the peak area of thiamine to that of the internal standard.

Amount (mg) of thiamine chloride hydrochloride
(C12H17ClN4OS.HCl): 337.27)

\[M_{S} = M_{X} \times Q_{1}/Q_{2}\]

M_{S}: Amount (mg) of Thiamine Chloride Hydrochloride RS taken, calculated on the anhydrous basis

Internal standard solution—A solution methyl benzoate in methanol (1 in 50).

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 254 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octdecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: Dissolve 1.1 g of sodium 1-octanesulfonate in 1000 mL of diluted acetic acid (100) (1 in 100). To 600 mL of this solution add 400 mL of a mixture of methanol and acetonitrile (3:2).

Flow rate: Adjust so that the retention time of thiamine is about 12 minutes.

System suitability—
System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, thiamine and the internal standard are eluted in this order with the resolution between these peaks being not less than 6.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of thiamine to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Tight containers.
Storage—Light-resistant.

Thiamine Chloride Hydrochloride Injection

Vitamin B Complex Hydrochloride Injection

チアミン塩化物塩酸塩注射液

Thiamine Chloride Hydrochloride Injection is an aqueous injection.

It contains not less than 95.0% and not more than 115.0% of the labeled amount of thiamine Chloride hydrochloride (C12H17ClN4OS.HCl: 337.27).

Method of preparation Prepare as directed under Injections, with Thiamine Chloride Hydrochloride.

Description Thiamine Chloride Hydrochloride Injection is a clear, colorless liquid.

pH: 2.5 - 4.5

Identification To a volume of Thiamine Chloride Hydro-
chloride Injection, equivalent to 0.05 g of Thiamine Chloride Hydrochloride, add water to make 25 mL. Proceed with 5 mL of this solution as directed in the Identification (1) under Thiamine Chloride Hydrochloride.

Bacterial endotoxins <4.01> Less than 6.0 EU/mg.

Extractable volume <6.07> It meets the requirement.

Foreign insoluble matter <6.06> Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter <6.07> It meets the requirement.

Sterility <4.06> Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Dilute with 0.001 mol/L hydrochloric acid TS if necessary, then measure exactly a volume of Thiamine Chloride Hydrochloride Injection, equivalent to about 20 mg of thiamine chloride hydrochloride (C₁₂H₁₇ClN₂OS.HCl), and add 20 mL of methanol and 0.001 mol/L hydrochloric acid TS to make exactly 100 mL. To 25 mL of this solution, exactly measured, add exactly 5 mL of the internal standard solution, add 0.001 mol/L hydrochloric acid TS to make 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 0.1 g of Thiamine Chloride Hydrochloride RS (separately determine the water <2.48> in the same manner as Thiamine Chloride Hydrochloride), and dissolve in 0.01 mol/L hydrochloric acid TS to make exactly 50 mL. To 10 mL of this solution, exactly measured, add 20 mL of methanol and 0.001 mol/L hydrochloric acid TS to make exactly 100 mL. To 25 mL of this solution, exactly measured, add exactly 5 mL of the internal standard solution, add 0.001 mol/L hydrochloric acid TS to make 50 mL, and use this solution as the standard solution. Proceed as directed in the Assay under Thiamine Chloride Hydrochloride.

Amount (mg) of thiamine chloride hydrochloride
\[
(M₅) = \frac{Q₅}{Q₄} \times \frac{1}{5}
\]

\(M₅\): Amount (mg) of Thiamine Chloride Hydrochloride RS taken, calculated on the anhydrous basis

Internal standard solution—A solution of methyl benzoate in methanol (1 in 200).

Containers and storage Containers—Hermetic containers.

Storage—Light-resistant.

Thiamine Chloride Hydrochloride Powder

Vitamin B₁ Hydrochloride Powder

チアミン塩化物塩酸塩

Thiamine Chloride Hydrochloride Powder contains not less than 95.0% and not more than 115.0% of the labeled amount of thiamine chloride hydrochloride (C₁₂H₁₇ClN₂OS.HCl: 337.27).

Method of preparation Prepare as directed under Powders, with Thiamine Chloride Hydrochloride.

Identification To a portion of Thiamine Chloride Hydrochloride Powder, equivalent to 0.02 g of Thiamine Chloride Hydrochloride, add 50 mL of water and 10 mL of dilute acetic acid, shake, and filter. Proceed with 5 mL of the filtrate as directed in the Identification (1) under Thiamine Chloride Hydrochloride.

Purity Rancidity—Thiamine Chloride Hydrochloride Powder has no unpleasant or rancid odor. It is tasteless.

Assay Weigh accurately a quantity of Thiamine Chloride Hydrochloride Powder, equivalent to about 20 mg of thiamine chloride hydrochloride (C₁₂H₁₇ClN₂OS.HCl), add 60 mL of 0.01 mol/L hydrochloric acid TS, and heat on a water bath for 30 minutes. Shake vigorously for 10 minutes, cool, add methanol to make exactly 100 mL, and centrifuge. Pipet 25 mL of the supernatant liquid, add exactly 5 mL of the internal standard solution, add water to make 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 0.1 g of Thiamine Chloride Hydrochloride RS (separately determine the water <2.48> in the same manner as Thiamine Chloride Hydrochloride), and dissolve in 0.01 mol/L hydrochloric acid TS to make exactly 50 mL. To 10 mL of this solution, exactly measured, add 50 mL of 0.01 mol/L hydrochloric acid TS, and add methanol to make exactly 100 mL. To 25 mL of this solution, exactly measured, add exactly 5 mL of the internal standard solution, add water to make 50 mL, and use this solution as the standard solution. Proceed as directed in the Assay under Thiamine Chloride Hydrochloride.

Amount (mg) of thiamine chloride hydrochloride
\[
(M₅) = \frac{Q₅}{Q₄} \times \frac{1}{5}
\]

\(M₅\): Amount (mg) of Thiamine Chloride Hydrochloride RS taken, calculated on the anhydrous basis

Thiamine Nitrate

Vitamin B₁ Nitrate

チアミン硝化物

C₁₂H₁₇N₂O₅S: 327.36
3-(4-Amino-2-methylpyrimidin-5-ylmethyl)-5-(2-hydroxyethyl)-4-methylthiazolium nitrate [532-43-4]

Thiamine Nitrate, when dried, contains not less than 98.0% and not more than 102.0% of thiamine nitrate (C₁₂H₁₇N₂O₅S).

Description Thiamine Nitrate occurs as white, crystals or crystalline powder. It is odorless or a slight, characteristic odor.

It is sparingly soluble in water, and very slightly soluble in ethanol (95), and practically insoluble in diethyl ether.

Melting point: about 193°C (with decomposition).

Identification (1) Take 2-mL portions of a solution of Thiamine Nitrate (1 in 500), and add 2 to 3 drops of iodine TS: a red-brown precipitate or turbidity is produced. Upon
Thiamylal Sodium

Description
Thiamylal Sodium occurs as light yellow, crystalline powder.

Purity

1. Chloride (<1.0%)
 - Perform the test with 0.20 g of Thiamine Nitrate. Prepare the control solution with 0.30 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.053%).

2. Sulfate (<1.4%)
 - Dissolve 1.5 g of Thiamine Nitrate in 30 mL of water and 2 mL of dilute hydrochloric acid, and add water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 0.35 mL of 0.005 mol/L sulfuric acid VS and 2 mL of dilute hydrochloric acid, and add water to make 50 mL (not more than 0.011%).

3. Heavy metals (<1.0%)
 - Dissolve 1.0 g of Thiamine Nitrate in 30 mL of water by warming, cool, and add 12 mL of 6 mol/L acetic acid TS and water to make 50 mL. Perform the test with this solution as the test solution. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

Loss on drying
- Not more than 1.0% (0.5 g, 105°C, 2 hours).

Residue on ignition
- Not more than 0.2% (1 g).

Assay
Weigh accurately about 0.1 g each of Thiamine Nitrate, previously dried, and Thiamine Chloride Hydrochloride RS (separately determine the water (<2.4%) in the same manner as Thiamine Chloride Hydrochloride), and dissolve them in the mobile phase to make exactly 50 mL. To 10 mL each of the solutions, accurately measured, add exactly 5 mL each of the internal standard solution, add the mobile phase to make 50 mL, and use these solutions as the sample solution and standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography (<2.01>) according to the following conditions and calculate the ratios, Q2 and Q3, of the peak area of thiamine to that of the internal standard.

- Amount (mg) of thiamine nitrate (C12H17N2O4S):
 \[M_5 = M_5 \times (Q_2/Q_3) \times 0.971 \]

Internal standard solution—A solution of methyl benzoate in methanol (1 in 50).

Operating conditions—
- Detector: An ultraviolet spectrophotometer (wavelength: 254 nm).
- Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecyldimethylsilanol silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 30°C.

Mobile phase: Dissolve 1.1 g of sodium 1-octanesulfonate in 1000 mL of diluted acetic acid (100) (1 in 100). To 600 mL of this solution add 400 mL of a mixture of methanol and acetonitrile (3:2).

Flow rate: Adjust so that the retention time of thiamine is about 12 minutes.

System suitability—
- System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, thiamine and the internal standard are eluted in this order with the resolution between these peaks being not less than 6.
- System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratios of the peak area of thiamine to that of the internal standard is not more than 1.0%

Containers and storage—Containers—Tight containers.
Storage—Light-resistant.

Thiamylal Sodium

Chiamarinoritoum

C₃₂H₅₂N₄NaO₈S: 276.33
Monosodium 5-allyl-5-[(1RS)-1-methylbutyl]-4,6-dioxo-1,4,5,6-tetrahydropyrimidine-2-thiolate [337-47-3]

Thiamylal Sodium contains not less than 97.5% and not more than 101.0% of thiamylal sodium (C₁₂H₁₇N₂NaO₄S), calculated on the dried basis.

Description
Thiamylal Sodium occurs as light yellow, crystals or powder.

It is very soluble in water, and freely soluble in ethanol (95). The pH of a solution of 1.0 g of Thiamylal Sodium in 10 mL of water is between 10.0 and 11.0.

It is hygroscopic.

It is gradually decomposed by light.

Its solution in ethanol (95) (1 in 10) shows no optical rotation.

Identification
1. Determine the absorption spectrum of a solution of Thiamylal Sodium in ethanol (95) (7 in 1,000,000) as directed under Ultraviolet-visible Spectrophotometry (<2.24>), and compare spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.
2. Determine the infrared absorption spectrum of Thiamylal Sodium, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry (<2.25>), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.
(3) A solution of Thiamylal Sodium (1 in 10) responds to Qualitative Tests <1.09> for sodium salt.

Purity (1) Clarity and color of solution—To 1.0 g of Thiamylal Sodium in a 11- to 13-mL glass-stoppered test tube add 10 mL of freshly boiled and cooled water, stopper tightly, allow to stand, and dissolve by occasional gentle shaking: the solution is clear and light yellow.

(2) Heavy metals <1.077>—Proceed with 1.0 g of Thiamylal Sodium according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(3) Related substances—Dissolve 0.10 g of Thiamylal Sodium in 10 mL of ethanol (95), and use this solution as the sample solution. Pipet 1 mL and 3 mL of the sample solution, add ethanol (95) to make exactly 200 mL, and use these solutions as the standard solution (1) and the standard solution (2). Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>.

Assay Weigh accurately about 0.25 g of Thiamylal Sodium, dissolve in 50 mL of methanol and 5 mL of dilute hydrochloric acid, and add methanol to make exactly 100 mL. Pipet 10 mL of this solution, and add methanol to make exactly 100 mL. Pipet 5 mL of this solution, add exactly 10 mL of the internal standard solution and the mobile phase to make 200 mL, and use this solution as the standard solution. Separately, weigh accurately about 23 mg of Thiamylal RS, previously dried at 105°C for 1 hour, dissolve in 50 mL of methanol and 0.5 mL of dilute hydrochloric acid, and add methanol to make exactly 100 mL. Pipet 5 mL of this solution, add exactly 10 mL of the internal standard solution and the mobile phase to make 200 mL, and use this solution as the sample solution. Perform the test with 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions, and calculate the ratios, QS, and QF, of the peak area of thiamylal to that of the internal standard.

\[
M_s = \frac{Q_F}{Q_S} \times 10 \times 1.086
\]

\(M_s \): Amount (mg) of Thiamylal RS taken

Internal standard solution—A solution of phenyl benzoate in methanol (3 in 500).

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 289 nm).

Column: A stainless steel column about 4 mm in inside diameter and about 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: A mixture of methanol and 0.05 mol/L acetic acid-sodium acetate buffer solution (pH 4.6) (13:7).

Flow rate: Adjust so that the retention time of thiamylal is about 6 minutes.

System suitability—
System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, thiamylal and the internal standard are eluted in this order with the resolution between these peaks being not less than 12.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of thiamylal to that of the internal standard is not more than 1.0%.

Containers and storage—Containers—Tight containers.
Storage—Light-resistant.

Thiamylal Sodium for Injection

注射用チアミラールナトリウム

Thiamylal Sodium for Injection is a preparation for injection which is dissolved before use.

It contains not less than 93.0% and not more than 107.0% of the labeled amount of thiamylal sodium (C_{12}H_{17}N_{2}NaO_{2}S: 276.33).

Method of preparation Prepare as directed under Injections, with 100 parts of Thiamylal Sodium and 7 parts of Dried Sodium Carbonate in mass.

Description Thiamylal Sodium for Injection occurs as light yellow, crystals, powder or masses.

It is hygroscopic.

It is gradually decomposed by light.

Identification (1) To 1.0 g of Thiamylal Sodium for Injection add 20 mL of ethanol (95), shake vigorously, and filter. Dissolve the precipitate so obtained in 1 mL of water, and add 1 mL of barium chloride TS: a white precipitate is produced. Centrifuge this solution, take off the supernatant liquid, and to the precipitate add dilute hydrochloric acid dropwise: the precipitate dissolves with effervescence.

(2) To 50 mg of Thiamylal Sodium for Injection add 100 mL of ethanol (95), shake vigorously, and filter. To 3 mL of the filtrate add ethanol (95) to make 200 mL. Determine the absorption spectrum of this solution as directed under Ultra-violet-visible Spectrophotometry <2.24>: it exhibits maxima between 236 nm and 240 nm, and between 287 nm and 291 nm.

pH <2.54> The pH of a solution obtained by dissolving 1.0 g of Thiamylal Sodium for Injection in 40 mL of water is between 10.5 and 11.5.

Purity Related substances—To 0.10 g of Thiamylal Sodium for Injection add 10 mL of ethanol (95), shake vigorously, and filter, and use the filtrate as the sample solution. Proceed as directed in the Purity (3) under Thiamylal Sodium.

Bacterial endotoxins <4.01> Less than 1.0 EU/mg.

Uniformity of dosage units <6.02> It meets the requirement of the Mass variation test.

Foreign insoluble matter <6.06> Perform the test according to Method 2: it meets the requirement.

Insoluble particulate matter <6.07> It meets the require-
Weigh accurately about 10 mg of Thianthol, and Acidity or alkalinity—Shake 10 g of Thianthol of sulfur (S: 32.07). Not more than 0.1 Containers—Hermetic containers.

To 0.1 g of Thianthol add cautiously 5 mL M and not more than 2.2 w/v. Perform the test according to the Mem-

To 1 mL of Compound Thianthol and Salicylic Acid Containers—Tight containers.

Thianthol

チアントール

Thianthol consists of dimethylthianthrene and ditol-

It contains not less than 23.5% and not more than 26.5% of sulfur (S: 32.07).

It is freely soluble in diethyl ether, slightly soluble in ethanol (95), and practically insoluble in water.

It, when cold, may separate crystals, which melt on warm-

Specific gravity d₂₀°: 1.19 - 1.23

Identification To 0.1 g of Thianthol add cautiously 5 mL of sulfuric acid: a blue-purple color develops. Add 5 to 6 drops of nitric acid to the solution: the color of the solution changes to yellow-red with evolution of gas.

Purity (1) Acidity or alkalinity—Shake 10 g of Thianthol with 20 mL of water, allow to stand, and separate the water layer. The solution is neutral.

(2) Sulfate—To 10 mL of the water layer obtained in (1) add 2 to 3 drops of barium chloride TS: no opalescence is produced.

Residue on ignition <2.49> Not more than 0.1% (1 g).

Assay Weigh accurately about 10 mg of Thianthol, and proceed as directed in the sulfur determination of Oxygen Flask Combustion Method <1.06>, using a mixture of 5 mL of diluted sodium hydroxide TS (1 in 10) and 1.0 mL of hydrogen peroxide TS as an absorbing liquid.

Containers and storage Containers—Tight containers.

Compound Thianthol and Salicylic Acid Solution

複方チアントール・サリチル酸液

Compound Thianthol and Salicylic Acid Solution contains not less than 1.8 w/v% and not more than 2.2 w/v% of salicylic acid (C₆H₅O₂: 138.12), and not less than 1.8 w/v% and not more than 2.2 w/v% of phenol (C₆H₅O: 94.11).

Method of preparation

<table>
<thead>
<tr>
<th>Compound Thianthol and Salicylic Acid Solution</th>
<th>200 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thianthol</td>
<td>20 g</td>
</tr>
<tr>
<td>Salicylic Acid</td>
<td>20 g</td>
</tr>
<tr>
<td>Phenol</td>
<td>50 mL</td>
</tr>
<tr>
<td>Olive Oil</td>
<td>100 mL</td>
</tr>
<tr>
<td>Petroleum Benzin</td>
<td>a sufficient quantity</td>
</tr>
</tbody>
</table>

To make 1000 mL

Dissolve Salicylic Acid and Phenol in Ether, add Thianthol, Olive Oil and Petroleum Benzin to this solution, mix and dissolve to make 1000 mL.

Description Compound Thianthol and Salicylic Acid Solution is a light yellow liquid, having a characteristic odor.

Identification (1) Place 1 mL of Compound Thianthol and Salicylic Acid Solution to a porcelain dish, and evaporate on a water bath to dryness. To the residue add cautiously 5 mL of sulfuric acid: a blue-purple color develops. Add 5 to 6 drops of nitric acid to the solution: the color of the solution changes to yellow-red with evolution of gas (thianthol).

(2) Shake 10 mL of Compound Thianthol and Salicylic Acid Solution with 10 mL of sodium hydrogen carbonate TS, and separate the water layer. To 0.5 mL of the water layer add hydrochloric acid-potassium chloride buffer solution (pH 2.0) to make 50 mL, and to 0.5 mL of this solution add 5 mL of a solution of iron (III) nitrate ene hydrate (1 in 200): a red-purple color is produced (salicylic acid).

(3) Wash the upper phase obtained in (2) with 10 mL of sodium hydrogen carbonate TS, and extract with 10 mL of dilute sodium hydroxide TS. Shake 1 mL of the extract with 1 mL of sodium nitrate TS and 1 mL of dilute hydrochloric acid, and add 3 mL of sodium hydroxide TS: a yellow color is produced (phenol).

(4) To 1 mL of Compound Thianthol and Salicylic Acid Solution add 10 mL of ethanol (95%), mix, and use this solution as the sample solution. Dissolve 0.01 g each of salicylic acid, phenol and thianthol in 5 mL each of ethanol (95%), and use each solution as standard solutions (1), (2) and (3). Perform the test with these solutions as directed under Thin-layer Chromatography <2.02>. Spot 5 μL each of the sample solution and standard solutions on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of chloroform, acetone and acetic acid (100:45:5:1) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): three spots obtained from the sample solution and the corresponding spots from the standard solutions (1), (2) and (3) show the same Rf value. Spray evenly iron (III) chloride TS on the plate: the spot from standard solution (1) and the corresponding spot from the sample solution reveal a purple color.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.)
Assay

Pipet 2 mL of Compound Thianol and Salicylic Acid Solution, add exactly 10 mL of the internal standard solution, then add 70 mL of diluted methanol (1 in 2), mix well, and add diluted methanol (1 in 2) to make 100 mL. Filter, discard the first 10 mL of the filtrate, and use the subsequent filtrate as the sample solution. Weigh accurately about 0.2 g of salicylic acid for assay, previously dried in a desiccator (silica gel) for 3 hours, and about 0.2 g of phenol for assay, dissolve in diluted methanol (1 in 2) to make exactly 50 mL. Pipet 10 mL of this solution, add exactly 10 mL of the internal standard solution and diluted methanol (1 in 2) to make 100 mL, and use this solution as the standard solution. With 5 μL each of the sample solution and standard solution, perform the test as directed under Liquid Chromatography <0.01 according to the following conditions, and calculate the ratios, Q_{SB} and Q_{TB}, of the peak area of salicylic acid and phenol to that of the internal standard in the sample solution, and the ratios, Q_{SA} and Q_{SB}, of the peak area of salicylic acid and phenol to that of the internal standard in the standard solution.

Amount (mg) of salicylic acid ($C_{7}H_{6}O_{3}$)

$$M_{SA} = Q_{SA} \times Q_{SB} \times 1 / 5$$

Amount (mg) of phenol ($C_{6}H_{5}O$)

$$M_{SB} = Q_{SA} \times Q_{SB} \times 1 / 5$$

M_{SB}: Amount (mg) of salicylic acid for assay taken

M_{SB}: Amount (mg) of phenol for assay taken

Internal standard solution—A solution of theophylline in methanol (1 in 10,000).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 270 nm).

Column: A stainless steel column about 4 mm in inside diameter and 25 to 30 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: Room temperature.

Mobile phase: A mixture of 0.1 mol/L phosphate buffer solution (pH 7.0) and methanol (3:1).

Flow rate: Adjust so that the retention time of salicylic acid is about 6 minutes.

Selection of column: Dissolve 0.2 g of benzoic acid, 0.2 g of salicylic acid, and 0.05 g of theophylline in 100 mL of diluted methanol (1 in 2). To 10 mL of this solution add 90 mL of diluted methanol (1 in 2). Proceed with 10 μL of this solution under the above operating conditions. Use a column giving elution of benzoic acid, salicylic acid, and theophylline in this order, and clearly dividing each peak.

Containers and storage—Containers—Tight containers.

Storage—Light-resistant, and not exceeding 25°C.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.)

Thiopental Sodium

C₇H₁₃N₃NaO₅S: 264.32

Monosodium 5-ethyl-5-[(1RS)-1-methylbutyl]-4,6-dioxo-1,4,5,6-tetrahydropyrimidine-2-thiolate

[71-73-8]

Thiopental Sodium, when dried, contains not less than 97.0% of thiopental sodium ($C_{11}H_{12}N_{2}NaO_{2}S$).

Description Thiopental Sodium occurs as a light yellow powder. It has a faint, characteristic odor.

It is very soluble in water, freely soluble in ethanol (95), and practically insoluble in diethyl ether.

A solution of Thiopental Sodium (1 in 10) is alkaline. It is hygroscopic.

Its solution gradually decomposes on standing.

Identification (1) Dissolve 0.2 g of Thiopental Sodium in 5 mL of sodium hydroxide TS, and add 2 mL of lead (II) acetate TS: a white precipitate, which dissolves upon heating, is produced. Boil the solution thus obtained: a black precipitate forms gradually, and the precipitate responds to Qualitative Tests <1.00 for sulfide.

(2) Dissolve 0.5 g of Thiopental Sodium in 15 mL of water, add 10 mL of dilute hydrochloric acid to produce white precipitate, and extract with four 25-mL portions of chloroform. Combine the chloroform extracts, evaporate on a water bath, and dry at 105°C for 2 hours: the residue melts <2.00 between 157°C and 162°C.

(3) A solution of Thiopental Sodium (1 in 10) responds to Qualitative Tests <1.00 (1) and (2) for sodium salt.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Thiopental Sodium in 10 mL of freshly boiled and cooled water: the solution is clear and light yellow.

(2) Heavy metals <1.07—Dissolve 2.0 g of Thiopental Sodium in 76 mL of water, add 4 mL of dilute hydrochloric acid, shake, and filter through a glass filter (G4). To 40 mL of the filtrate add 2 mL of ammonium acetate TS, dilute with water to 50 mL, and perform the test using this solution as the test solution. Prepare a control solution as follows: to 2.0 mL of Standard Lead Solution add 2 mL of dilute acetic acid, 2 mL of ammonium acetate TS and water to make 50 mL (not more than 20 ppm).

(3) Neutral and basic substances—Weigh accurately about 1 g of Thiopental Sodium, dissolve in 10 mL of water and 5 mL of sodium hydroxide TS, and shake vigorously with 40 mL of chloroform. Separate the chloroform layer, wash with two 5-mL portions of water, filter, and evaporate the filtrate on a water bath to dryness. Dry the residue at 105°C for 1 hour: the amount of the residue is not more than 0.50%.

(4) Related substances—Dissolve 50 mg of Thiopental Sodium in 50 mL of the mobile phase, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add the mobile phase to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and the standard solution as directed under Liquid Chromatography <2.01 ac-
Thiopental Sodium for Injection

Thiopental Sodium for Injection is a preparation for injection which is dissolved before use.

It contains not less than 93.0% and not more than 107.0% of the labeled amount of thiopental sodium (C₅H₇N₂NaO₅S: 264.32).

Method of preparation Prepare as directed under Injections, with 100 parts of Thiopental Sodium and 6 parts of Dried Sodium Carbonate in mass.

Description Thiopental Sodium for Injection is a light yellow, powder or mass, and has a slight, characteristic odor.

It is very soluble in water, and practically insoluble in dehydrated diethyl ether.

It is hygroscopic.

Identification (1) Dissolve 0.1 g of Thiopental Sodium for Injection in 10 mL of water, and add 0.5 mL of barium chloride TS: a white precipitate is formed. Collect the precipitate and, add dilute hydrochloric acid dropwise: the precipitate dissolves with effervescence.

(2) Proceed as directed in the Identification under Thiopental Sodium.

pH <2.5, >4.0 Dissolve 1.0 g of Thiopental Sodium for Injection in 40 mL of water: the pH of this solution is between 10.2 and 11.2.

Purity Proceed as directed in the Purity under Thiopental Sodium.

Loss on drying <2.4 Not more than 2.0% (1 g, in vacuum, 80°C, 4 hours).

Bacterial endotoxins <4.0 Less than 0.30 EU/mg.

Uniformity of dosage units <6.02 It meets the requirement of the Mass variation test.

Foreign insoluble matter <6.0 Performs the test according to Method 2: it meets the requirement.

Insoluble particulate matter <6.0 It meets the requirement.

Sterility <4.06 Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Open carefully 10 containers of Thiopental Sodium for Injection, dissolve each container with water, wash each container with water, combine the washings with the former solution, and add water to make exactly 1000 mL. Pipet 10 mL of this solution, and add water to make exactly 100 mL. Measure exactly a volume (V mL) of this solution, equivalent to about 15 mg of thiopental sodium (C₅H₇N₂NaO₅S), and add water to make exactly 100 mL. Pipet 10 mL of this solution, add 15 mL of diluted sulfate hydroxide TS (1 in 100), add water to make exactly 30 mL, and use this solution as the sample solution. Separately, weigh accurately about 46 mg of thiopental for assay, previously dried at 105°C for 3 hours, dissolve in 50 mL of dilute sulfate hydroxide TS, and add water to make exactly 200 mL. Pipet 2 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution. Perform the test with the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry <2.2, and determine the absorbances, A₁ and A₂, at 304 nm.

Containers and storage Containers—Tight containers.

Storage—Light-resistant.

According to the following conditions. Determine each peak area by the automatic integration method: the total area of peaks other than thiopental obtained from the sample solution is not larger than the peak area of thiopental from the standard solution.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 254 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadeucysilanized silica gel (5 μm in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: Dissolve 1 g of potassium dihydrogen phosphate in 1000 mL of water, and adjust the pH to 3.0 with phosphoric acid. To 700 mL of this solution add 300 mL of acetonitrile.

Flow rate: Adjust so that the retention time of thiopental is about 15 minutes.

Time span of measurement: About 1.5 times as long as the retention time of thiopental.

System suitability—

Test for required detectability: To exactly 2 mL of the standard solution add the mobile phase to make exactly 10 mL. Confirm that the peak area of thiopental obtained with 20 μL of this solution is equivalent to 15 to 25% of that with 20 μL of the standard solution.

System performance: Dissolve 5 mg each of isopropyl parahydroxybenzoate and propyl parahydroxybenzoate in 50 mL of acetonitrile, and add water to make 100 mL. When the procedure is run with 20 μL of this solution under the above operating conditions, isopropyl parahydroxybenzoate and propyl parahydroxybenzoate are eluted in this order with the resolution between these peaks being not less than 1.9.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of thiopental is not more than 2.0%.

Loss on drying <2.4 Not more than 2.0% (1 g, in vacuum, 80°C, 4 hours).

Assay Weigh accurately about 0.5 g of Thiopental Sodium, previously dried, transfer to a separator, dissolve in 20 mL of water, add 5 mL of ethanol (95) and 10 mL of dilute hydrochloric acid, and extract with 50 mL of chloroform, then with three 25-mL portions of chloroform. Combine the chloroform extracts, wash with two 5-mL portions of water, and extract the washings with two 10-mL portions of chloroform. Filter the combined chloroform extracts into a conical flask, and wash the filter paper with three 5-mL portions of chloroform. Combine the filtrate and the washings, and add 10 mL of ethanol (95). Titrate <2.5 with 0.1 mol/L potassium hydroxide-ethanol VS until the color of the solution changes from yellow through light blue to purple (indicator: 2 mL of alizarin yellow GG-thymolphthalein TS). Perform a blank determination in the same manner with a mixture of 160 mL of chloroform and 30 mL of ethanol (95), and make any necessary correction.

Each mL of 0.1 mol/L potassium hydroxide-ethanol VS = 26.43 mg of C₅H₇N₂NaO₅S

Containers and storage Containers—Tight containers.

Storage—Light-resistant.
Amount (mg) of thiopental sodium (C₅H₇N₂Na₂O₅S) in each sample of Thiopental Sodium for Injection = \(M_S \times \frac{A_r}{A_s} \times 300/V \times 1.091 \)

\(M_S \): Amount (mg) of thiopental sodium for assay taken

Containers and storage Containers—Hermetic containers.

Storage—Light-resistant.

Thioridazine Hydrochloride

Thioridazine Hydrochloride, when dried, contains not less than 99.0% of thioridazine hydrochloride (C₂₃H₂₅N₂S₂HCl).

Description Thioridazine Hydrochloride occurs as a white to pale yellow crystalline powder. It is odorless, and has a bitter taste.

It is freely soluble in water, in methanol, in ethanol (95%) and in acetic acid (100), sparingly soluble in acetic anhydride, and practically insoluble in diethyl ether.

The pH of a solution of 1.0 g of Thioridazine Hydrochloride in 100 mL of water is between 4.2 and 5.2.

It is gradually colored by light.

Identification (1) Dissolve 0.01 g of Thioridazine Hydrochloride in 2 mL of sulfuric acid: a deep blue color develops.

(2) Dissolve 0.01 g of Thioridazine Hydrochloride in 2 mL of water, and add 1 drop of cerium (IV) tetraammonium chloride in 2 mL of sulfuric acid: a deep blue color develops.

(3) Determine the infrared absorption spectrum of Thioridazine Hydrochloride, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(4) To 5 mL of a solution of Thioridazine Hydrochloride (1 in 100) add 2 mL of ammonia TS, and heat on a water bath for 5 minutes. After cooling, filter, and acidify the filtrate with dilute nitric acid: the solution responds to Qualitative Tests <1.09> (2) for chloride.

Melting point <2.60> 159 – 164°C

Purity (1) Heavy metals <1.07>—Proceed with 1.0 g of Thioridazine Hydrochloride according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(2) Arsenic <1.11>—Prepare the test solution with 1.0 g of Thioridazine Hydrochloride, according to Method 3, and perform the test (not more than 2 ppm).

(3) Related substances—Conduct this procedure without exposure to light. Dissolve 0.10 g of Thioridazine Hydrochloride in 10 mL of methanol, and use this solution as the sample solution. Pipet 1 mL of the sample solution, and add methanol to make exactly 20 mL. Pipet 2 mL of this solution, add methanol to make exactly 10 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.07>.

Dissolve 0.20 g of Thioridazine Hydrochloride in 105 mL of water: the pH of this solution is between 5.2 and 6.2.

Residue on drying <2.41> Not more than 0.5% (1 g, 105°C, 4 hours).

Dissolve 0.01 g of Thioridazine Hydrochloride in 2 mL of water, and add 1 drop of cerium (IV) tetraammonium chloride in 2 mL of sulfuric acid: a deep blue color develops.

Loss on drying <2.41> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.35 g of Thioridazine Hydrochloride, according to Method 3, and determine the infrared absorption spectrum of the potassium chloride disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Containers and storage Containers—Tight containers.

Storage—Light-resistant.

L-Threonine

L-トレオニン

C₇H₁₄NO₃: 119.12

\(\text{C}_7\text{H}_{14}\text{NO}_3 \): 119.12

1L-Threonine, when dried, contains not less than 98.5% of L-threonine (C₇H₁₄NO₃).

Description L-Threonine occurs as white, crystals or crystalline powder. It is odorless or has a slight, characteristic odor, and has a slightly sweet taste.

It is freely soluble in formic acid, soluble in water, and practically insoluble in ethanol (95).

Identification Determine the infrared absorption spectrum of L-Threonine, previously dried, as directed in the potassium bromide disk method under the Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation <2.41> [α]D₂₀ = −26.0° to −29.0° (after drying, 1.5 g, water, 25 mL, 100 mm).

pH <2.54> Dissolve 0.20 g of L-Threonine in 20 mL of water: the pH of this solution is between 5.2 and 6.2.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of L-Threonine in 20 mL of water: the solution is clear and colorless.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
(2) Chloride $<1.0\%$—Perform the test with 0.5 g of L-Threontine. Prepare the control solution with 0.30 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.021%).

(3) Sulfate $<1.1\%$—Perform the test with 0.6 g of L-Threontine. Prepare the control solution with 0.35 mL of 0.005 mol/L sulfuric acid VS (not more than 0.028%).

(4) Ammonium $<1.0\%$—Perform the test with 0.25 g of L-Threontine. Prepare the control solution with 5.0 mL of Standard Ammonium Solution (not more than 0.02%).

(5) Heavy metals $<1.0\%$—Proceed with 1.0 g of L-Threontine according to Method 1, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(6) Arsenic $<1.1\%$—Dissolve 1.0 g of L-Threontine in 5 mL of dilute hydrochloric acid, and perform the test with this solution as the test solution (not more than 2 ppm).

(7) Related substances—Dissolve 0.30 g of L-Threontine in 50 mL of water, and use this solution as the sample solution. Pipet 1 mL of the sample solution, and add water to make exactly 50 mL. Pipet 5 mL of this solution, add water to make exactly 20 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography $<2.0\%$. Spot 5 μL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of 1-butanol, water and acetic acid (100) (3:1:1) to a distance of about 10 cm, and dry the plate at 80°C for 30 minutes. Spray evenly the plate with a solution of ninhydrin for 30 minutes, and dry the plate at 80°C for 5 minutes: the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying $<2.4\%$ Not more than 0.20% (1 g, 105°C, 3 hours).

Residue on ignition $<2.4\%$ Not more than 0.1% (1 g).

Assay Weigh accurately about 0.12 g of L-Threontine, previously dried, dissolve in 3 mL of formic acid, add 50 mL of acetic acid (100), and titrate $<2.5\%$ with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS

\[= 11.91 \text{ mg of } C_8H_7NO_3 \]

Containers and storage Containers—Tight containers.

Thrombin

トロンピン

Thrombin is prepared from prothrombin obtained from blood of man or bull, through interaction with added thromboplastin in the presence of calcium ions, sterilized and lyophilized. It contains not less than 80% and not more than 150% of the labeled Units of thrombin. Each mg contains not less than 10 Units of thrombin.

Description Thrombin is a white to light yellow, amorphous substance. Thrombin (500 Units) dissolves in 1.0 mL of isotonic sodium chloride solution clearly or with slight turbidity within 1 minute.

Loss on drying $<2.4\%$ Not more than 3% (50 mg, in vacuum, phosphorus (V) oxide, 4 hours).

Sterility $<4.0\%$ It meets the requirement.

Assay (i) Fibrinogen solution—Weigh accurately about 30 mg of fibrinogen, and dissolve in 3 mL of isotonic sodium chloride solution. Allow the solution to clot sufficiently with frequent shaking after the addition of about 3 Units of thrombin. Wash the precipitated clot thoroughly until the washings yield no turbidity on addition of silver nitrate TS, weigh the clot after drying at 105°C for 3 hours, and calculate the percentage of the clot in the fibrinogen. Dissolve the fibrinogen in isotonic sodium chloride solution so that the clot should be 0.20%, adjust the pH of the solution between 7.0 and 7.4 by addition of 0.05 mol/L dibasic sodium phosphate TS (or if necessary, use 0.5 mol/L disodium hydrogenphosphate TS), and dilute with isotonic sodium chloride solution to make a 0.10% solution.

(ii) Procedure—Dissolve Thrombin RS in isotonic sodium chloride solution, and prepare four kinds of standard solutions which contain 4.0, 5.0, 6.2, and 7.5 Units in 1 mL. Transfer accurately 0.10 mL each of the standard solutions maintained at a given degree ± 1°C between 20°C and 30°C to a small test tube, 10 mm in inside diameter, 100 mm in length, blow out 0.90 mL of the fibrinogen solution at the same temperature into the test tube from a pipet, start a stop watch simultaneously, shake the tube constantly, and determine the time for the first appearance of clot. Calculate the average values of five determinations for the four kinds of standard solutions, respectively. If the deviation between the maximum and the minimum values of five determinations is more than 10% of the average value, reject the whole run, and try the experiment again. The concentration of the standard solution may be changed appropriately within the range between 14 and 60 seconds of the clotting time. The determination proceeds at the same temperature described above. Next, weigh accurately the whole contents of a single container of Thrombin, dissolve it in isotonic sodium chloride solution to provide a solution which is presumed to contain about 5 Units in each mL, treat 0.10 mL of the solution with the same reagents in the same manner five times, determine the clotting times, and calculate the average value. Plot the average values of the clotting times of the four kinds of the standard solutions on a logarithmic graph, using Units as the abscissa and clotting times as the ordinate, and draw a calibration line which best fits the four plotted points. Using this line, read the Units U from the average value of the clotting times of the sample solution.

\[\text{Units of 1 container of Thrombin} = U \times 10 \times V \]

V: The number of mL of the volume in which the contents of 1 container of Thrombin has been dissolved

Calculate the units for 1 mg of the contents.

Containers and storage Containers—Hermetic containers. Storage—Not exceeding 10°C.

Shelf life 36 months after preparation.
Thymol

チモール

\[
\text{C}_9\text{H}_8\text{O} : 150.22
\]
5-Methyl-2-(1-methylethyl)phenol
[89-83-8]

Thymol contains not less than 98.0% of thymol (C₁₀H₁₄O).

Description Thymol occurs as colorless crystals or white crystalline masses. It has an aromatic odor, and has a burning taste.

It is very soluble in acetic acid (100), freely soluble in ethanol (95) and in diethyl ether, and slightly soluble in water.

It sinks in water, but when warmed, it melts and rises to the surface of water.

Identification

1. To 1 mL of a solution of Thymol in acetic acid (100) (1 in 300) add 6 drops of sulfuric acid and 1 drop of nitric acid: a blue-green color develops by reflected light and a red-purple color develops by transmitted light.

2. Dissolve 1 g of Thymol in 5 mL of a solution of sodium hydroxide (1 in 10) by heating in a water bath, and continue heating for several minutes: a light yellow-red color slowly develops. Allow this solution to stand at room temperature: the color changes to dark yellow-brown. Shake this solution with 2 to 3 drops of chloroform: a purple color gradually develops.

3. Triturate Thymol with an equal mass of camphor or menthol: the mixture liquefies.

Melting point 2.60° 49 – 51°C

Purity

1. Non-volatile residue—Volatilize 2.0 g of Thymol by heating on a water bath, and dry the residue at 105°C for 2 hours: the mass is not more than 1.0 mg.

2. Other phenols—Shake vigorously 1.0 g of Thymol with 20 mL of warm water for 1 minute, and filter. To 5 mL of the filtrate add 1 drop of iron (III) chloride TS: a green color may develop, but no blue to purple color develops.

Assay

Weigh accurately about 0.5 g of Thymol, dissolve in 10 mL of sodium hydroxide TS, and add water to make exactly 100 mL. Measure exactly 10 mL of the solution into an iodine flask, add 50 mL of water and 20 mL of dilute sulfuric acid, and cool in ice water for 30 minutes. Add exactly 20 mL of 0.05 mol/L bromine VS, stopper tightly immediately, allow to stand for 30 minutes in ice water with occasional shaking in a dark place, add 14 mL of potassium iodide TS and 5 mL of chloroform, stopper tightly, shake vigorously, and titrate 2.50° the liberated iodine with 0.1 mol/L sodium thiosulfate VS (indicator: 3 mL of starch TS). Stopper tightly, shake vigorously near the end point, and continue the titration until the blue color in the chloroform layer disappears. Perform a blank determination in the same manner.

Each mL of 0.05 mol/L bromine VS

\[
\text{C}_{10}\text{H}_{14}\text{O} : 3.756 \text{ mg of C}_{10}\text{H}_{14}\text{O}
\]

Containers and storage

Containers—Tight containers.

Storage—Light-resistant.

Dried Thyroid

乾燥甲状腺

Dried Thyroid is the fresh thyroid gland, previously deprived of connective tissue and fat, minced, dried rapidly at a temperature not above 50°C, and powdered, or diluted with suitable diluents. It is obtained from domesticated animals that are used for food by man.

It contains not less than 0.30% and not more than 0.35% of iodine (I: 126.90) in the form of organic compounds peculiar to the thyroid gland.

Description

Dried Thyroid occurs as a light yellow to grayish brown powder. It has a slight, characteristic, meatlike odor.

Identification

Mount Dried Thyroid in diluted formaldehyde solution (1 in 10), stain in hematoxylin TS for 10 to 30 minutes, wash with water, soak in a mixture of 1 mL of hydrochloric acid and 99 mL of diluted ethanol (7 in 10) for 5 to 10 seconds, and again wash with water for about 1 hour. Stain in a solution of eosin Y (1 in 100) for 1 to 5 minutes, wash with water, dehydrate, and soak successively in diluted ethanol (7 in 10) for 5 to 10 seconds, in diluted ethanol (4 in 5) for 5 to 10 seconds, in diluted ethanol (9 in 10) for 1 to 2 minutes, in ethanol (95) for 1 to 5 minutes then in ethanol (99.5) for 1 to 5 minutes. Interpenetrate in xylene, seal with balsam, and examine under a microscope: epithelial nuclei forming follicles peculiar to the thyroid gland are observed.

Purity

1. Inorganic iodides—Mix 1.0 g of Dried Thyroid with 10 mL of a saturated solution of zinc sulfate, shake for 5 minutes, and filter. To 5 mL of the filtrate add 0.5 mL of starch TS, 4 drops of sodium nitrite TS and 4 drops of dilute sulfuric acid with thorough shaking: no blue color is produced.

2. Fat—Extract 1.0 g of Dried Thyroid with diethyl ether for 2 hours using a Soxhlet extractor. Evaporate the diethyl ether extract, and dry the residue at 105°C to constant mass: the mass of the residue is not more than 30 mg.

Loss on drying 2.41° Not more than 6.0% (1 g, 105°C, constant mass).

Total ash 5.01° Not more than 5.0% (0.5 g).

Assay

Transfer about 1 g of Dried Thyroid, accurately weighed, to a crucible, add 7 g of potassium carbonate, mix carefully, and gently tap the crucible on the table to compact the mixture. Overlay with 10 g of potassium carbonate, and compact again thoroughly by tapping. Place the crucible in a muffle furnace preheated to a temperature between 600°C and 700°C, and ignite the mixture for 25 minutes. Cool, add 20 mL of water, heat gently to boiling, and filter into a flask. To the residue add 20 mL of water, boil, and filter into the same flask. Rinse the crucible and the char on the funnel with boiling water until the filtrate measures 200 mL. Add slowly 7 mL of freshly prepared bromine TS, 40 mL of diluted phosphoric acid (1 in 2), and boil until starch iodide paper is no longer colored blue by the evolved gas. Wash down inside of the flask with water, and continue boiling for 5 minutes. During the boiling add water from time to time to maintain a volume at not less than 200 mL. Cool, add 5 mL of a solution of phenol (1 in 20), again rinse inside of the flask with water, and allow to stand for 5 minutes. Add 2 mL of diluted phosphoric acid (1 in 2) and 5 mL of potas-
sium iodide TS, and titrate $<$2.50$>$ immediately the liberated iodine with 0.01 mol/L sodium thiosulfate VS (indicator: 3 mL of starch TS). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.01 mol/L sodium thiosulfate VS $= 0.2115$ mg of I

Containers and storage Containers—Tight containers.

Tiapride Hydrochloride

![Tiapride Hydrochloride](image)

$C_{15}H_{24}N_{2}O_5S.HCl: 364.89$

$N-[2-(Diethylamino)ethyl]-2-methoxy-5-(methylsulfonyl)benzamidino monohydrochloride [51012-33-0]$

Tiapride Hydrochloride, when dried, contains not less than 99.0% and not more than 101.0% of tiapride hydrochloride ($C_{15}H_{24}N_{2}O_5SHCl$).

Description Tiapride Hydrochloride occurs as a white to pale yellow-white, crystal or crystalline powder.

It is very soluble in water, freely soluble in acetic acid (100), soluble in methanol, slightly soluble in ethanol (99.5) and very slightly soluble in acetic anhydride.

It dissolves in 0.1 mol/L hydrochloric acid TS.

Identification (1) Determine the absorption spectrum of a solution of Tiapride Hydrochloride in 0.1 mol/L hydrochloric acid TS (1 in 10,000) as directed under Ultraviolet-visible Spectrophotometry $<$2.24$, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Tiapride Hydrochloride as directed in the potassium chloride disk method under Infrared Spectrophotometry $<$2.25$: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) A solution of Tiapride Hydrochloride (1 in 20) responds to Qualitative Tests $<$1.09$>$ for chloride.

Purity (1) Heavy metals $<$1.07$:—Proceed with 1.0 g of Tiapride Hydrochloride according to Method 1 and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(2) Related substances—Dissolve 0.20 g of Tiapride Hydrochloride in 10 mL of methanol and use this solution as the sample solution. Pipet 1 mL of the sample solution, and add methanol to make exactly 100 mL. Pipet 1 mL of this solution, add methanol to make exactly 10 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography $<$2.03$. Spot rapidly 10 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography under a stream of nitrogen. Develop the plate with a mixture of water, 1-butanol and acetic acid (100) (2:2:1) to a distance of about 10 cm, and air-dry, and then dry the plate at 80°C for 30 minutes. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

**Loss on drying $<$2.41$>$ Not more than 0.5% (1 g, 105°C, 2 hours).

**Residue on ignition $<$2.44$>$ Not more than 0.1% (1 g).

Assay Weigh accurately about 0.4 g of Tiapride Hydrochloride, previously dried, dissolve in 50 mL of a mixture of acetic anhydride and acetic acid (100) (7:3), and titrate $<$2.50 with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS $= 36.49$ mg of $C_{15}H_{24}N_{2}O_5SHCl$

Containers and storage Containers—Well-closed containers.

Tiapride Hydrochloride Tablets

Tiapride Hydrochloride Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of tiapride ($C_{15}H_{24}N_{2}O_5S$: 328.43).

Method of preparation Prepare as directed under Tablets, with Tiapride Hydrochloride.

Identification To a quantity of powdered Tiapride Hydrochloride Tablets, equivalent to 10 mg of tiapride ($C_{15}H_{24}N_{2}O_5S$), add 100 mL of 0.1 mol/L hydrochloric acid TS, shake well, and filter. Determine the absorption spectrum of the filtrate as directed under Ultraviolet-visible Spectrophotometry $<$2.24$: it exhibits a maximum between 286 nm and 290 nm.

Uniformity of dosage units $<$6.02$>$ Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement.

To 1 tablet of Tiapride Hydrochloride Tablets add $V/10$ mL of 0.1 mol/L hydrochloric acid TS, sonicate until the tablet is disintegrated, and add $4V/10$ mL of methanol. To this solution add exactly $V/10$ mL of the internal standard solution, shake for 30 minutes, and add methanol to make V mL so that each mL contains about 1 mg of tiapride ($C_{15}H_{24}N_{2}O_5S$). Centrifuge this solution for 10 minutes, and use the supernatant liquid as the sample solution. Proceed as directed in the Assay.

$$\text{Amount (mg) of tiapride } = M_S \times \frac{Q_1}{Q_2} \times \frac{V}{100} \times 0.900$$

M_S: Amount (mg) of tiapride hydrochloride for assay taken

Internal standard solution—A solution of methyl parahydroxybenzoate in methanol (1 in 500).

Dissolution Being specified separately when the drug is granted approval based on the Law.

Assay Weigh accurately the mass of not less than 20 Tiapride Hydrochloride Tablets and powder. Weigh accurately a portion of the powder, equivalent to about 0.1 g of tiapride ($C_{15}H_{24}N_{2}O_5S$), add about 10 mL of 0.1 mol/L hydrochloric acid TS and 40 mL of methanol, add exactly 10 mL of the internal standard solution, shake for 30 minutes, and add methanol to make 100 mL. Centrifuge this solution
and use the supernatant liquid as the sample solution. Separately, weigh accurately about 0.11 g of tiapride chloride for assay, previously dried at 105°C for 2 hours, dissolve in 10 mL of 0.1 mol/L hydrochloric acid TS, add exactly 10 mL of the internal standard solution, add methanol to make 100 mL, and use this solution as the standard solution. Perform the test with 5 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2,17> according to the following conditions, and calculate the ratios, Q₁ and Q₉, of the peak area of Tiapride to that of the internal standard.

Amount (mg) of tiapride (C₁₅H₁₅ClN₂O₄S) = Mₛ × Q₁/ Q₉ × 0.900

Mₛ: Amount (mg) of tiapride chloride for assay taken

Internal standard solution—A solution of methyl parahydroxybenzoate in methanol (1 in 500).

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 254 nm).
Column: A stainless steel column 4 mm in inside diameter and 15 cm in length, packed with octadeccsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase: Dissolve 11.2 g of sodium perchlorate in 800 mL of water, add 5 mL of diluted perchloric acid (17 in 2000). To 800 mL of this solution add 200 mL of acetonitrile.
Flow rate: Adjust so that the retention time of tiapride is about 8 minutes.

System suitability—
System performance: When the procedure is run with 5 μL of the standard solution under the above operating conditions, tiapride and the internal standard are eluted in this order with the resolution between these peaks being not less than 8.
System repeatability: When the test is repeated 6 times with 5 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of tiapride to that of the internal standard is not more than 1.0%.

Containers and storage—Containers—Well-closed containers.

Tiaramide Hydrochloride

チアラミド塩酸塩

![Tiaramide Hydrochloride structure](image)

C₁₅H₁₅ClN₂O₄S.HCl: 392.30
5-Chloro-3-[2-(2-hydroxyethyl)piperazin-1-yl]-2-oxoethyl]-1,3-benzothiazol-2(3H)-one monohydrochloride [35941-71-0]

Tiaramide Hydrochloride, when dried, contains not less than 98.5% of tiaramide hydrochloride (C₁₅H₁₅ClN₂O₄S.HCl).

Description—Tiaramide Hydrochloride occurs as a white crystalline powder. It is odorless.

It is freely soluble in water, slightly soluble in ethanol (95) and in acetic acid (100), and practically insoluble in acetic anhydride and in diethyl ether.

The pH of a solution of 1.0 g of Tiaramide Hydrochloride in 20 mL of water is between 3.0 and 4.5.

Melting point: about 265°C (with decomposition).

Identification (1)—Dissolve 5 mg of Tiaramide Hydrochloride in 5 mL of 0.1 mol/L hydrochloric acid TS, and add 3 drops of Dragendorff’s TS: an orange precipitate is formed.

(2) Determine the infrared absorption spectrum of Tiaramide Hydrochloride, previously dried, as directed in the potassium chloride disk method under the Infrared Spectrophotometry <2,25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) A solution of Tiaramide Hydrochloride (1 in 50) responds to Qualitative Tests <1.09> for chloride.

Purity (1)—Clarity and color of solution—Dissolve 0.5 g of Tiaramide Hydrochloride in 10 mL of water: the solution is clear and colorless.

(2) Heavy metals <1.07>—Proceed with 2.0 g of Tiaramide Hydrochloride according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(3) Arsenic <1.19>—Prepare the test solution with 1.0 g of Tiaramide Hydrochloride according to Method 1, and perform the test. In the procedure, add 20 mL of diluted hydrochloric acid (1 in 2) (not more than 2 ppm).

(4) Related substances—Dissolve 0.20 g of Tiaramide Hydrochloride in 10 mL of diluted ethanol (7 in 10), and use this solution as the sample solution. Pipet 1 mL of the sample solution, and add diluted ethanol (7 in 10) to make exactly 100 mL. Pipet 2 mL of this solution, add diluted ethanol (7 in 10) to make exactly 10 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.09>.

Spot 5 μL each of the standard solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. After air-drying, immediately develop the plate with a mixture of 1-butanol, water and acetic acid (100) (4:2:1) to a distance of about 10 cm, air-dry the plate, and then dry at 100°C for 30 minutes. After cooling, examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot and the spot of the starting point obtained from the sample solution are not more intense than the spot from the standard solution. Allow the plate to stand in iodine vapor for 30 minutes: the spots other than the principal spot and the spot of the starting point from the sample solution are not more intense than the spot from the standard solution.

Loss on drying <2.47>—Not more than 0.5% (1 g, 105°C, 3 hours).

Residue on ignition <2.46>—Not more than 0.1% (1 g).

Assay—Weigh accurately about 0.5 g of Tiaramide Hydrochloride, previously dried, dissolve in 50 mL of a mixture of acetic anhydride and acetic acid (100) (7:3) by warming, cool, and titrate <2.50> with 0.1 mol/L perchloric acid VS until the color of the solution changes from red through purple to blue-purple (indicator: 3 drops of neutral red TS). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 39.23 mg of C₁₅H₁₅ClN₂O₄S.HCl

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
Containers and storage Containers—Well-closed containers.

Tiamamide Hydrochloride Tablets

チアラミド塩酸塩

Tiamamide Hydrochloride Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of tiamamide \((C_{15}H_{18}ClN_{3}O_{5}S)\; 355.84\).

Method of preparation Prepare as directed under Tablets, with Tiamamide Hydrochloride.

Identification (1) Determine the absorption spectrum of the sample solution obtained in the Assay as directed under Ultraviolet-visible Spectrophotometry \(<2.24\) it exhibits maxima between 285 nm and 289 nm, and between 292 nm and 296 nm.

(2) To a quantity of powdered Tiamamide Hydrochloride Tablets, equivalent to 0.1 g of tiamamide \((C_{15}H_{18}ClN_{3}O_{5}S)\), add 10 mL of diluted ethanol (7 in 10), shake well, filter, and use the filtrate as the sample solution. Separately, dissolve 0.11 g of tiamamide hydrochloride for assay in 10 mL of diluted ethanol (7 in 10), and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography \(<2.07\). Spot 20 \(\mu L\) each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography, develop with a mixture of 1-butanol, water and acetic acid (100) (4:2:1) to a distance of about 10 cm, and dry the plate at 100 °C for 30 minutes. Spray evenly Dragendorff’s TS for spraying to a distance of about 10 cm, and dry the plate at 100 °C. Examine the plate under ultraviolet light at 254 nm. The chromatograms show the main component to be a yellow-red spot from the standard solution are yellow-red in color and have the same \(R_f\) value.

Uniformity of dosage units \(<6.02\) Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 tablet of Tiamamide Hydrochloride Tablets add 3V/5 mL of 0.1 mol/L hydrochloric acid TS, shake for 60 minutes. Add 0.1 mol/L hydrochloric acid TS to make exactly V mL so that each mL contains about 1 mg of tiamamide \((C_{15}H_{18}ClN_{3}O_{5}S)\), and filter. Discard the first 20 mL of the filtrate, pipet 5 mL of the subsequent filtrate, add water to make exactly 100 mL, and use this solution as the sample solution. Separately, weigh accurately about 55 mg of tiamamide hydrochloride for assay, previously dried at 105 °C for 3 hours, and dissolve in 0.1 mol/L hydrochloric acid TS to make exactly 50 mL. Pipet 5 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution. Determine the absorbances, \(A_T\) and \(A_S\), of the sample solution and standard solution at 294 nm as directed under Ultraviolet-visible Spectrophotometry \(<2.24\).

\[\text{Amount (mg) of tiamamide (C}_{15}\text{H}_{18}\text{ClN}_{3}\text{O}_{5}\text{S)} = M_S \times A_T/A_S \times V/50 \times 0.907 \]

\(M_S\): Amount (mg) of tiamamide hydrochloride for assay taken

Dissolution \(<6.10\) When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rates of a 50-mg tablet in 15 minutes and of a 100-mg tablet in 30 minutes are not less than 80%.

Start the test with 1 tablet of Tiamamide Hydrochloride Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.5 \(\mu m\). Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add water to make exactly V’ mL so that each mL contains about 56 \(\mu g\) of tiamamide \((C_{15}H_{18}ClN_{3}O_{5}S)\), and use this solution as the sample solution. Separately, weigh accurately about 15 mg of tiamamide hydrochloride for assay, previously dried at 105 °C for 3 hours, and dissolve in water to make exactly 50 mL. Pipet 5 mL of this solution, add water to make exactly 25 mL, and use this solution as the standard solution. Determine the absorbances, \(A_T\) and \(A_S\), at 294 nm of the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry \(<2.24\).

\[\text{Dissolution rate (\%)} = \frac{M_S \times A_T/A_S \times V'/5 \times 1/C \times 360 \times 0.907}{100} \]

\(M_S\): Amount (mg) of tiamamide hydrochloride for assay taken

C: Labeled amount (mg) of tiamamide \((C_{15}H_{18}ClN_{3}O_{5}S)\) in 1 tablet

Assay Weigh accurately the mass of more than 20 Tiamamide Hydrochloride Tablets, and powder. Weigh accurately an amount of the powder, equivalent to about 0.1 g of tiamamide \((C_{15}H_{18}ClN_{3}O_{5}S)\), add 60 mL of 0.1 mol/L hydrochloric acid TS, shake for 30 minutes, add 0.1 mol/L hydrochloric acid TS to make exactly 100 mL, and filter. Discard the first 20 mL of the filtrate, pipet 5 mL of the subsequent filtrate, add water to make exactly 100 mL, and use this solution as the sample solution. Separately, weigh accurately about 0.11 g of tiamamide hydrochloride for assay, previously dried at 105 °C for 3 hours, and dissolve in 0.1 mol/L hydrochloric acid TS to make exactly 100 mL. Pipet 5 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution. Determine the absorbances, \(A_T\) and \(A_S\), of the sample solution and standard solution at 294 nm as directed under Ultraviolet-visible Spectrophotometry \(<2.24\).

\[\text{Amount (mg) of tiamamide (C}_{15}\text{H}_{18}\text{ClN}_{3}\text{O}_{5}\text{S)} = M_S \times A_T/A_S \times V/50 \times 0.907 \]

\(M_S\): Amount (mg) of tiamamide hydrochloride for assay taken
Ticlopidine Hydrochloride

チクロピジン塩酸塩

\[\text{C}_{14} \text{H}_{14} \text{ClN}_5 \text{HCl} : 300.25 \]

\(5\)-\((2\text{-Chlorobenzenyl})\)-4,5,6,7-tetrahydrothieno\([3,2-c]\)pyridine monohydrochloride [35885-35-1]

Ticlopidine Hydrochloride contains not less than 99.0\% of ticlopidine hydrochloride (\(\text{C}_{14} \text{H}_{14} \text{ClN}_5 \text{HCl}\), calculated on the anhydrous basis).

Description Ticlopidine Hydrochloride occurs as a white to pale yellow-white crystalline powder.

It is freely soluble in acetic acid (100), soluble in water and in methanol, sparingly soluble in ethanol (95), and practically insoluble in diethyl ether.

Identification (1) Determine the infrared absorption spectrum of Ticlopidine Hydrochloride as directed in the potassium bromide disk method under Infrared Spectrophotometry \(\langle 2.25\rangle\), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(2) A solution of Ticlopidine Hydrochloride (1 in 20) responds to Qualitative Tests \(\langle 1.07\rangle\) (2) for chloride.

Purity (1) Heavy metals \(\langle 1.07\rangle\)—Proceed with 2.0 g of Ticlopidine Hydrochloride according to Method 3, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Arsenic \(\langle 1.11\rangle\)—Prepare the test solution with 1.0 g of Ticlopidine Hydrochloride according to Method 4, and perform the test (not more than 2 ppm).

(3) Related substances—Dissolve 0.5 g of Ticlopidine Hydrochloride in 20 mL of a solution of hydrochloric acid in methanol (1 in 20,000), and use this solution as the sample solution. To exactly 5 mL of the sample solution add a solution of hydrochloric acid in methanol (1 in 20,000) to make exactly 200 mL, and use this solution as the standard solution (1). Separate, pipet 1 mL of the sample solution, add a solution of hydrochloric acid in methanol (1 in 20,000) to make exactly 50 mL, and use this solution as the standard solution (2). Perform the test with these solutions as directed under Thin-layer Chromatography \(\langle 2.03\rangle\). Spot 10 \(\mu\)L each of the sample solution and standard solution (1) on a plate of silica gel for thin-layer chromatography (Plate 1), and spot 10 \(\mu\)L each of the sample solution and standard solution (2) on another plate of silica gel for thin-layer chromatography (Plate 2). Develop the plates with an upper layer of a mixture of water, 1-butanol and acetic acid (100) (5:4:1) to a distance of about 15 cm, and air-dry the plates. Spray evenly a solution of ninhydrin in acetone (1 in 50) on Plate 1, and heat the plate at 100°C for 20 minutes: the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution (1). Allow Plate 2 to stand in an iodine vapor for 30 minutes; the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution (2).

(4) Formaldehyde—Dissolve 0.80 g of Ticlopidine Hydrochloride in 19.0 mL of water, add 1.0 mL of 4 mol/L sodium hydroxide TS, shake well, centrifuge, and filter the supernatant liquid. To 5.0 mL of the filtrate add 5.0 mL of acetylacetone TS, mix, and warm at 40°C for 40 minutes: the solution has no more color than the following control solution.

Control solution: Weigh exactly 0.54 g of formaldehyde solution, and add water to make exactly 1000 mL. To exactly 10 mL of this solution add water to make exactly 1000 mL. Prepare before use. To 8.0 mL of this solution add water to make 20.0 mL, and filter. To 5.0 mL of the filtrate add 5.0 mL of acetylacetone TS, and proceed in the same manner.

Water \(\langle 2.48\rangle\) Not more than 1.0\% (0.3 g, volumetric titration, direct titration).

Residue on ignition \(\langle 2.44\rangle\) Not more than 0.1\% (1 g).

Assay Weigh accurately about 0.4 g of Ticlopidine Hydrochloride, dissolve in 20 mL of acetic acid (100), add 40 mL of acetic anhydride, and titrate \(\langle 2.50\rangle\) with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS

\[\text{=} \ 30.03 \text{ mg of } \text{C}_{14} \text{H}_{14} \text{ClN}_5 \text{HCl} \]

Containers and storage Containers—Well-closed containers.

Ticlopidine Hydrochloride Tablets

チクロピジン塩酸塩錠

Ticlopidine Hydrochloride Tablets contain not less than 95.0\% and not more than 105.0\% of the labeled amount of ticlopidine hydrochloride (\(\text{C}_{14} \text{H}_{14} \text{ClN}_5 \text{HCl}\); 300.25).

Method of preparation Prepare as directed under Tablets, with Ticlopidine Hydrochloride.

Identification Determine the absorption spectrum of the sample solution obtained in the Uniformity of dosage units as directed under Ultraviolet-visible Spectrophotometry \(\langle 2.24\rangle\): it exhibits maxima between 212 nm and 216 nm, and between 231 nm and 235 nm.

Uniformity of dosage units \(\langle 6.02\rangle\) Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement.

To 1 tablet of Ticlopidine Hydrochloride Tablets add 70 mL of water, thoroughly shake until the tablet is completely disintegrated, then add water to make exactly 100 mL, and filter through a membrane filter with a pore size not exceeding 0.45 \(\mu\)m. Discard the first 10 mL of the filtrate, pipet 10 mL of the subsequent filtrate, add water to make exactly 50 mL so that each mL contains about 20 \(\mu\)g of ticlopidine hydrochloride (\(\text{C}_{14} \text{H}_{14} \text{ClN}_5 \text{HCl}\)), and use this solution as the sample solution. Separately, weigh accurately about 25 mg of ticlopidine hydrochloride for assay (separately determine the water \(\langle 2.49\rangle\) in the same manner as Ticlopidine Hydrochloride), and dissolve in water to make exactly 50 mL. Pipet 2 mL of this solution, add water to make exactly 50 mL, and use this solution as the standard solution. Determine the absorbances, \(A_a\) and \(A_b\), at 233 nm of the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry \(\langle 2.24\rangle\).
Amount (mg) of ticlopidine hydrochloride
\[(C_{14}H_{22}BrNOS\cdot HCl)\]

\[= M_{S} \times A_{V}/A_{S} \times V'/V \times 2/25\]

\(M_{S}\): Amount (mg) of ticlopidine hydrochloride for assay taken, calculated on the anhydrous basis

Dissolution of ticlopidine hydrochloride Tablets

When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 35 minutes of Ticlopidine Hydrochloride Tablets is not less than 85%.

Start the test with 1 tablet of Ticlopidine Hydrochloride Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet 50 mL of the subsequent filtrate, add water to make exactly 50 mL so that each mL contains about 11 μg of ticlopidine hydrochloride (C\(_{14}H_{22}BrNOS\cdot HCl\)), and use this solution as the sample solution. Separately, weigh accurately about 22 mg of ticlopidine hydrochloride for assay (separately determine the water 2.48 in the same manner as Ticlopidine Hydrochloride), and dissolve in water to make exactly 200 mL. Pipet 2 mL of this solution, add water to make exactly 20 mL, and use this solution as the standard solution. Determine the absorbances, 405 and 233 nm of the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry 2.24.

Dissolution rate (%) with respect to the labeled amount of ticlopidine hydrochloride (C\(_{14}H_{22}BrNOS\cdot HCl\))

\[= M_{S} \times A_{V}/A_{S} \times V'/V \times 1/C \times 45\]

\(M_{S}\): Amount (mg) of ticlopidine hydrochloride for assay taken, calculated on the anhydrous basis
\(C\): Labeled amount (mg) of ticlopidine hydrochloride (C\(_{14}H_{22}BrNOS\cdot HCl\)) in 1 tablet

Assay

To 20 tablets of Ticlopidine Hydrochloride Tablets, add 400 mL of a mixture of water and methanol (1:1), sonicate until the tablets are completely disintegrated, and add the mixture of water and methanol (1:1) to make exactly 500 mL. Filter this solution through a membrane filter with a pore size not exceeding 0.45 μm, discard the first 10 mL of the filtrate, pipet 50 mL of the subsequent filtrate, equivalent to about 20 mg of ticlopidine hydrochloride (C\(_{14}H_{22}BrNOS\cdot HCl\)), add exactly 4 mL of the internal standard solution, then add the mixture of water and methanol (1:1) to make 100 mL. To 2 mL of this solution add the mixture of water and methanol (1:1) to make 20 mL, and use this solution as the sample solution. Separately, weigh accurately about 25 mg of ticlopidine hydrochloride for assay (separately determine the water 2.48 in the same manner as Ticlopidine Hydrochloride), dissolve in a suitable amount of a mixture of water and methanol (1:1), add exactly 5 mL of the internal standard solution, then add the mixture of water and methanol (1:1) to make 50 mL. Pipet 2 mL of this solution, add a mixture of water and methanol (1:1) to make 50 mL, and use this solution as the standard solution. Perform the test with 10 μL of each of the sample solution and standard solution as directed under Liquid Chromatography 2.24 according to the following conditions, and calculate the when the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 35 minutes of Ticlopidine Hydrochloride Tablets is not less than 85%

Amount (mg) of ticlopidine hydrochloride (C\(_{14}H_{22}BrNOS\cdot HCl\)) in 1 tablet

\[= M_{S} \times Q_{T}/Q_{S} \times 1/V \times 20\]

\(M_{S}\): Amount (mg) of ticlopidine hydrochloride for assay taken, calculated on the anhydrous basis

Internal standard solution—A solution of butyl parahydroxybenzoate in a mixture of water and methanol (1:1) (1 in 200).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 233 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilylated silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Flow rate: Adjust so that the retention time of ticlopidine is about 8 minutes.

System suitability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the internal standard and ticlopidine are eluted in this order with the resolution between these peaks being not less than 3.
System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of ticlopidine to that of the internal standard is not more than 1.0%.

Containers and storage—Containers—Well-closed containers.

Ticlopidine Bromide Hydrate

チメピジウム臭化物水和物

C\(_{14}H_{22}BrNOS\cdot H_{2}O\): 418.41
(5RS)-3-(Dithien-2-ylmethylene)-5-methoxy-1,1-dimethylpiperidinium bromide monohydrate
[35035-05-3, anhydride]

Ticlopidine Bromide Hydrate contains not less than 98.5% of ticlopidine bromide (C\(_{17}H_{22}BrNOS\cdot 2H_{2}O\); 400.40), calculated on the anhydrous basis.

Description

Ticlopidine Bromide Hydrate occurs as white, crystals or crystalline powder.
It is very soluble in methanol and in acetic acid (100), freely soluble in ethanol (99.5), sparingly soluble in water and in acetic anhydride, and practically insoluble in diethyl ether.
The pH of a solution of 1.0 g of Ticlopidine Bromide Hydrate in 100 mL of freshly boiled and cooled water is between 5.3 and 6.3.
A solution of Ticlopidine Bromide Hydrate in methanol (1 in 20) shows no optical rotation.

Identification (1)

To 1 mL of a solution of Ticlopidine Bromide Hydrate (1 in 100) add 1 mL of ninhydrin-sulfuric acid TS: a red purple color develops.
(2) Determine the absorption spectrum of a solution of Timipidium Bromide Hydrate (1 in 50,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(3) Determine the infrared absorption spectrum of Timipidium Bromide Hydrate as directed in the potassium bromide disk method under the Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(4) A solution of Timipidium Bromide Hydrate (1 in 100) responds to Qualitative Tests <1.00> (1) for Bromide.

Purity (1) Clarity and color of solution—Dissolve 0.10 g of Timipidium Bromide Hydrate in 10 mL of water: the solution is clear and colorless.

(2) Heavy metals <1.07>—Proceed with 1.0 g of Timipidium Bromide Hydrate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(3) Related substances—Dissolve 0.10 g of Timipidium Bromide Hydrate in 10 mL of methanol, and use this solution as the sample solution. Pipet 1 mL of the sample solution, and add methanol to make exactly 100 mL. Pipet 1 mL of this solution, add methanol to make exactly 10 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.07>. Spot 10 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of chloroform, methanol, water, acetic acid (100) and ethyl acetate (5:4:1:1:1) to a distance of about 13 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Water <2.48> 3.5 – 5.0% (0.4 g, volumetric titration, direct titration).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.6 g of Timipidium Bromide Hydrate, dissolve in 60 mL of a mixture of acetic anhydride and acetic acid (100) (2:1), and titrate <2.50> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 40.04 mg of C_{17}H_{14}BrNOS_{2}

Containers and storage Containers—Tight containers. Storage—Light-resistant.

Timolol Maleate

チモロールマレイン酸塩

C_{17}H_{18}N_{2}O_{5}S·C_{4}H_{8}O_{2} · 432.49

(2S)-1-[(1,1-Dimethylethyl)amino]-3-(4-morpholin-4-yl-1,2,5-thiadiazol-3-yl)oxopropan-2-ol monomaleate [26921-17-5]

Timolol Maleate, when dried, contains not less than 98.0% and not more than 101.0% of timolol maleate (C_{17}H_{18}N_{2}O_{5}S·C_{4}H_{8}O_{2} · 432.49)

Description Timolol Maleate occurs as a white to pale yellow-white crystalline powder.

It is freely soluble in acetic acid (100), and soluble in water and in ethanol (99.5).

It dissolves in 0.1 mol/L hydrochloric acid TS.

Melting point: about 197°C (with decomposition).

Identification (1) Determine the absorption spectrum of a solution of Timolol Maleate in 0.1 mol/L hydrochloric acid TS (3 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Timolol Maleate as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) To 5 mL of a solution of Timolol Maleate (1 in 500) add 1 drop of potassium permanganate TS: the red color of the TS disappears immediately.

Optical rotation <2.49> [α]_{D}^{25} = -5.7 – -6.2° (after drying, 1.25 g, 1 mol/L hydrochloric acid TS, 25 mL, 100 mm).

pH <2.54> The pH of a solution prepared by dissolving 1.0 g of Timolol Maleate in 20 mL of water is between 3.8 and 4.3.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Timolol Maleate in 20 mL of water: the solution is clear, and its absorbance at 440 nm, determined as directed under Ultraviolet-visible Spectrophotometry <2.24>, is not more than 0.05.

(2) Heavy metals <1.07>—Proceed with 2.0 g of Timolol Maleate according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(3) Related substances—Dissolve 30 mg of Timolol Maleate in 20 mL of the mobile phase, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 25 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak other than timolol and maleic acid obtained from the sample solution is not larger than 1/5 times the peak area.
of timolol from the standard solution, and the total area of the peaks other than the peak of timolol and maleic acid is not larger than 1/2 times the peak area of timolol from the standard solution.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 280 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with phenylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: Dissolve 1.9 g of sodium 1-hexanesulfonate in 1800 mL of water, add 6.0 mL of triethylamine and 8.0 mL of formic acid, adjust to pH 3.0 with formic acid, and add water to make 2000 mL. To 1400 mL of this solution add 500 mL of methanol and 100 mL of acetonitrile.

Flow rate: Adjust so that the retention time of timolol is about 18 minutes.

Time span of measurement: About 2 times as long as the retention time of timolol, beginning after the solvent peak.

System suitability—

Test for required detectability: To exactly 1 mL of the standard solution add the mobile phase to make exactly 10 mL. Confirm that the peak area of timolol obtained with 25 μL of this solution is equivalent to 7 to 13% of that with 25 μL of the standard solution.

System performance: When the procedure is run with 25 μL of the sample solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of timolol are not less than 1500 and not more than 2.5, respectively.

System repeatability: When the test is repeated 6 times with 25 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of timolol is not more than 2.0%.

Loss on drying <2.4> Not more than 0.5% (1 g, in vacuum, 100°C, 3 hours).

Residue on ignition <2.4> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.8 g of Timolol Maleate, previously dried, dissolve in 90 mL of acetic acid (100), and titrate <2.5D> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 43.25 mg of C_{12}H_{14}N_{2}O_{3}S.C_{4}H_{6}O_{3}

Containers and storage Containers—Tight containers.

Tinidazole

Description

It is soluble in acetic anhydride and in acetone, sparingly soluble in methanol, slightly soluble in ethanol (99.5), and very slightly soluble in water.

Identification (1)

Determine the absorption spectrum of a solution of Tinidazole in methanol (1 in 50,000) as directed under Ultraviolet-visible Spectrophotometry <2.2A>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Tinidazole as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point <2.69> 125 ~ 129°C

Purity (1)

Sulfate <1.14>—To 2.0 g of Tinidazole add 100 mL of water, boil for 5 minutes, cool, add water to make 100 mL, and filter. Take 25 mL of the filtrate, and add 1 mL of dilute hydrochloric acid and water to make 50 mL. Use this solution as the test solution, and perform the test. Prepare the control solution with 0.45 mL of 0.005 mol/L sulfuric acid VS (not more than 0.043%).

(2) Heavy metals <1.07>—Proceed with 1.0 g of Tinidazole according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(3) Arsenic <1.1D>—Prepare the test solution with 2.0 g of Tinidazole according to Method 3, and perform the test (not more than 1 ppm).

(4) Related substances—Dissolve 50 mg of Tinidazole in 2 mL of acetone, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add acetone to make exactly 200 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.67>. Spot 10 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate and diethylamine (19:1) to a distance of about 10 cm, air-dry the plate, heat the plate at 100°C for 5 minute, and cool. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying <2.4> Not more than 1.0% (1 g, 105°C, 4 hours).

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
2 hours).

Residue on ignition \(<2.4\% \) Not more than 0.1% (1 g).

Assay Weigh accurately about 0.35 g of Tinidazole, previously dried, dissolve in 50 mL of acetic anhydride, and titrate \(<2.5\% \) with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 24.73 mg of C\(_{17}\)H\(_{15}\)NO\(_3\)S

Containers and storage Containers—Tight containers. Storage—Light-resistant.

Tipepidine Hibenzate

チペビジンヘンゼン酸塩

\[
\begin{align*}
\text{C}_{17}\text{H}_{17}\text{NS}_{2}\text{C}_{13}\text{H}_{10}\text{O}_{2} & : 517.66 \\
3-\text{(Dithien-2-ylmethylene)-1-methylpiperidine mono[2-(4-hydroxybenzoyl)benzoate]}[31139-87-4]
\end{align*}
\]

Tipepidine Hibenzate, when dried, contains not less than 98.5% of tipepidine hibenzate (C\(_{15}\)H\(_{13}\)NS\(_2\), C\(_{14}\)H\(_{15}\)O\(_2\)).

Description Tipepidine Hibenzate occurs as a white to light yellow crystalline powder. It is odorless and tasteless.

It is freely soluble in acetic acid (100), slightly soluble in methanol and in ethanol (95), very slightly soluble in water, and practically insoluble in diethyl ether.

Identification (1) Dissolve 0.01 g of Tipepidine Hibenzate in 5 mL of sulfuric acid: an orange-red color develops.

(2) Dissolve 0.3 g of Tipepidine Hibenzate in 10 mL of sodium hydroxide TS and 5 mL of water, and extract with two 20-mL portions of chloroform. Wash the chloroform layer. Evaporate the filtrate on a water bath to dryness, and dissolve the residue in 0.5 mL of 1 mol/L hydrochloric acid TS and 5 mL of water. To 2 mL of this solution add 5 mL of Reinecke salt TS: a light red precipitate is formed.

(3) Determine the absorption spectrum of a solution of Tipepidine Hibenzate in ethanol (99.5) (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry \(<2.2\% \), and compare the spectrum with the Reference Spectrum; both spectra exhibit similar intensities of absorption at the same wavelengths.

(4) Determine the infrared absorption spectrum of Tipepidine Hibenzate, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry \(<2.2\% \), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point \(<2.6\% \) 189 – 193°C

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Tipepidine Hibenzate in 10 mL of acetic acid (100): the solution is clear. Perform the test with this solution as directed under Ultraviolet-visible Spectrophotometry \(<2.2\% \): its absorbance at 400 nm is not more than 0.16.

(2) Heavy metals \(<1.0\% \)—Proceed with 2.0 g of Tipepidine Hibenzate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(3) Arsenic \(<11\% \)—Prepare the test solution with 1.0 g of Tipepidine Hibenzate according to Method 3, and perform the test (not more than 2 ppm).

(4) Related substances—(i) Dissolve 10 mg of Tipepidine Hibenzate in 20 mL of the mobile phase, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 \(\mu\)L each of the sample solution and standard solution as directed under Liquid Chromatography \(<2.0\% \) according to the following conditions. Determine each peak area by the automatic integration method: the total area of peaks other than hibenzic acid and tipepidine obtained from the sample solution is not larger than the peak area of the tipepidine from the standard solution.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 254 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 \(\mu\)m in particle diameter).

Column temperature: A constant temperature of about 50°C.

Mobile phase: A mixture of a solution of ammonium acetate (1 in 100) and tetrahydrofuran (32:13).

Flow rate: Adjust so that the retention time of tipepidine is about 12 minutes.

Time span of measurement: As long as the retention time of tipepidine, beginning after the solvent peak.

System suitability—

Test for required detectability: To exactly 2 mL of the standard solution add the mobile phase to make exactly 20 mL. Confirm that the peak area of tipepidine obtained with 20 \(\mu\)L of this solution is equivalent to 7 to 13% of that with 20 \(\mu\)L of the standard solution.

System performance: Dissolve 10 mg of Tipepidine Hibenzate and 3 mg of propyl parahydroxybenzoate in 100 mL of the mobile phase. When the procedure is run with 20 \(\mu\)L of this solution under the above operating conditions, hibenzic acid, tipepidine and propyl parahydroxybenzoate are eluted in this order with the resolution between the peaks of tipepidine and propyl parahydroxybenzoate being not less than 3.

System repeatability: When the test is repeated 6 times with 20 \(\mu\)L of the standard solution under the above operating conditions, the relative standard deviation of the peak area of tipepidine is not more than 1.5%.

(ii) Dissolve 10 mg of Tipepidine Hibenzate in 20 mL of the mobile phase, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 \(\mu\)L each of the sample solution and standard solution as directed under Liquid Chromatography \(<2.0\% \) according to the following conditions, and determine each peak area by the automatic integration method: the total area of peaks other than hibenzic acid and tipepidine obtained from the sample solution is not larger than 1/2 times the peak area of the tipepidine from the standard solution.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 254 nm).
Tipepidine Hibenzate Tablets / Official Monographs

Column: A stainless steel column 46.4 mm in inside diameter and 15 cm in length, packed with octadeylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: A mixture of methanol and a solution of ammonium acetate (1 in 500) (13:7).

Flow rate: Adjust so that the retention time of tipepidine is about 10 minutes.

Time span of measurement: Two times as long as the retention time of tipepidine, beginning after the peak of tipepidine.

System suitability—

Test for required detectability: To exactly 2 mL of the standard solution add the mobile phase to make exactly 20 mL. Confirm that the peak area of tipepidine obtained with 20 μL of this solution is equivalent to 7 to 13% of that with 20 μL of the standard solution.

System performance: Dissolve 12 mg of Tipepidine Hibenzate and 4 mg of xanthene in 50 mL of the mobile phase. When the procedure is run with 10 μL of this solution under the above operating conditions, hibenzic acid, tipepidine and xanthene are eluted in this order with the resolution between the peaks of tipepidine and xanthene not less than 3.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of tipepidine is not more than 3.0%.

Loss on drying 2.44 Not more than 0.5% (1 g, 60°C, in vacuum, phosphorus (V) oxide, 3 hours).

Residue on ignition 2.44 Not more than 0.1% (1 g).

Assay Weigh accurately about 1 g of Tipepidine Hibenzate, previously dried, dissolve in 40 mL of acetic acid (100), and titrate 2.59 with 0.1 mol/L perchloric acid VS until the color of the solution changes from purple through blue to green (indicator: 3 drops of crystal violet TS). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 51.77 mg of C_{15}H_{17}NS_{2}C_{6}H_{10}O_{3}.

Tipepidine Hibenzate Tablets

チペビジンヒベンゼ酸塩錠

Tipepidine Hibenzate Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of tipepidine hibenzate (C_{15}H_{17}NS_{2}C_{6}H_{10}O_{3}; 517.66).

Method of preparation—Prepare as directed under Tablets, with Tipepidine Hibenzate.

Identification (1) To a quantity of powdered Tipepidine Hibenzate Tablets, equivalent to 44 mg of Tipepidine Hibenzate, add 5 mL of water, shake for 1 minute, add 10 mL of sodium hydroxide TS, and extract with two 20-mL portions of chloroform. Combine the extracts, wash with 10 mL of water, and filter the chloroform layer. Evaporate the filtrate on a water bath to dryness, dissolve the residue in 0.2 mL of 1 mol/L hydrochloric acid TS and 2 mL of water, and add 5 mL of Reinecke salt TS: a light red precipitate is formed.

(2) To a quantity of powdered Tipepidine Hibenzate Tablets, equivalent to 11 mg of Tipepidine Hibenzate, add 30 mL of ethanol (99.5), and warm for 10 minutes with occasional shaking. After cooling, add ethanol (99.5) to make 50 mL, and filter. To 1 mL of the filtrate add ethanol (99.5) to make 20 mL, and determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry 2.24: it exhibits a maximum between 280 nm and 286 nm.

Uniformity of dosage units 6.02 Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 tablet of Tipepidine Hibenzate Tablets add 5 mL of diluted acetic acid (100) (1 in 2) and 15 mL of methanol per 11 mg of tipepidine hibenzate (C_{15}H_{17}NS_{2}C_{6}H_{10}O_{3}), and warm for 15 minutes with occasional shaking. After cooling, add diluted methanol (1 in 2) to make exactly V mL so that each mL contains about 0.44 mg of tipepidine hibenzate (C_{15}H_{17}NS_{2}C_{6}H_{10}O_{3}), and filter. Discard the first 10 mL of the filtrate, pipet 5 mL of the subsequent filtrate, add exactly 5 mL of the internal standard solution, then add diluted methanol (1 in 2) to make 25 mL, and use this solution as the sample solution. Then, proceed as directed in the Assay.

Amount (mg) of tipepidine hibenzate (C_{15}H_{17}NS_{2}C_{6}H_{10}O_{3}) = M_{2} \times \frac{Q_{2}/Q_{S}}{V/50}

M_{2}: Amount (mg) of tipepidine hibenzate for assay taken in 50 mL of diluted acetic acid.

Internal standard solution—A solution of dibucaine hydrochloride in methanol (1 in 2000).

Dissolution 6.410 When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 30 minutes of Tipepidine Hibenzate Tablets is not less than 80%.

Start the test with 1 tablet of Tipepidine Hibenzate Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, filter, discard not less than 10 mL of the first filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 0.11 g of tipepidine hibenzate for assay, previously dried in a desiccator (in vacuum, phosphorus (V) oxide, 60°C) for 3 hours, and dissolve in 80 mL of diluted ethanol (3 in 4) by warming occasionally. After cooling, add diluted ethanol (3 in 4) to make exactly 100 mL, then pipet 20 mL of this solution, add water to make exactly 900 mL, and use this solution as the standard solution. Determine the absorbances, A_{T1} and A_{S1}, at 286 nm, and A_{T2} and A_{S2}, at 360 nm of the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry 2.24:

Dissolution rate (%) with respect to the labeled amount of tipepidine hibenzate (C_{15}H_{17}NS_{2}C_{6}H_{10}O_{3})

= M_{2} \times (A_{T1} - A_{T2}/A_{S1} - A_{S2}) \times 1/C \times 20

M_{2}: Amount (mg) of tipepidine hibenzate for assay taken in 50 mL of diluted acetic acid.

C: Labeled amount (mg) of tipepidine hibenzate (C_{15}H_{17}NS_{2}C_{6}H_{10}O_{3}) in 1 tablet.

Assay Weigh accurately and powder not less than 20 Tipepidine Hibenzate Tablets. Weigh accurately a portion of the powder, equivalent to about 22 mg of tipepidine hibenzate (C_{15}H_{17}NS_{2}C_{6}H_{10}O_{3}), add 10 mL of diluted acetic acid (100) (1 in 2) and 30 mL of methanol, and warm for 10 minutes with occasional shaking. After cooling, add diluted methanol (1 in 2) to make exactly 50 mL, and filter. Discard the first 10 mL of the filtrate, pipet 5 mL of the subsequent filtrate, add 10 mL of water, and titrate 2.59 with 0.1 mol/L perchloric acid VS until the color of the solution changes from purple through blue to green (indicator: 3 drops of crystal violet TS). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 51.77 mg of C_{15}H_{17}NS_{2}C_{6}H_{10}O_{3}.

Reinecke salt TS: a light red precipitate is formed.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
When fused by heating with potassium hydrogen sulfate, with potassium hydroxide, or with potassium carbonate, it changes to soluble salts.

Shake 1 g of Titanium Oxide with 10 mL of water: the mixture is neutral.

Identification

Heat 0.5 g of Titanium Oxide with 5 mL of sulfuric acid until white fumes are evolved, cool, add cautiously water to make 100 mL, and filter. To 5 mL of the filtrate add 2 to 3 drops of hydrogen peroxide TS: a yellow-red color develops.

Purity

(1) Lead—Place 1.0 g of Titanium Oxide in a platinum crucible, add 10.0 g of potassium hydrogen sulfate, heat gently with caution at the beginning, then raise the temperature gradually, and heat strongly with occasional shaking until the contents fuse to yield a clear liquid. Cool, add 30 mL of a solution of diaminonitrobenzene citrate (9 in 20) and 50 mL of water, dissolve by heating on a water bath, cool, add water to make 100 mL, and use this solution as the sample stock solution. Take 25 mL of the sample stock solution to a separator, add 10 mL of a solution of ammonium sulfate (2 in 5) and 5 drops of thymol blue TS, neutralize with ammonia TS, and add 2.5 mL of ammonia TS. To this solution add exactly 20 mL of a solution of dibutyl acetate (1 in 500), shake for 10 minutes, and use this dibutyl acetate solution as the sample solution. Separately, place 6.0 mL of Standard Lead Solution in a platinum crucible, proceed as directed in the sample solution, and use this solution as the standard solution. Determine the absorbances of the sample solution and standard solution as directed under Atomic Absorption Spectrophotometry (<2.23>) according to the following conditions: the absorbance of the sample solution is smaller than that of the standard solution (not more than 60 ppm).

Gas: Combustible gas—Acetylene gas or hydrogen gas.

Supporting gas—Air.

Lamp: Lead hollow-cathode lamp.

Wavelength: 283.3 nm.

(2) Arsenic <1.1D>—Perform the test with 20 mL of the sample stock solution obtained in (1) as the test solution: the color is not deeper than the following color standard.

Color standard: Proceed in the same manner without Titanium Oxide, transfer 20 mL of the obtained solution to a generator bottle, add 2.0 mL of Standard Arsenic Solution, and proceed in the same manner as the test with the test solution (not more than 10 ppm).

(3) Water-soluble substances—Shake thoroughly 4.0 g of Titanium Oxide with 50 mL of water, and allow to stand overnight. Shake thoroughly with 2 mL of ammonium chloride TS, add further 2 mL of ammonium chloride TS if necessary, and allow titanium oxide to settle. Add water to make 200 mL, shake thoroughly, and filter through double filter paper. Discard the first 10 mL of the filtrate, evaporate 100 mL of the clear filtrate on a water bath, and heat strongly at 800°C to constant mass: the mass of the residue is not more than 5.0 mg.

Loss on drying <2.4I> Not more than 0.5% (1 g, 105°C, 3 hours).

Assay

Weigh accurately about 0.2 g of Titanium Oxide, previously dried, transfer to a crucible, and add 3 g of potassium disulfate. Cover, and heat gently at first, gradually raise the temperature, and then heat the fused contents for 30 minutes. Continue heating for 30 minutes at a higher temperature to make the fused mixture a deep yellow-red, almost clear liquid. Cool, transfer the contents of the crucible to a 250-mL beaker, wash the crucible with a mixture of
Tizanidine Hydrochloride

Description
Tizanidine Hydrochloride occurs as a white to light yellow-white crystalline powder.

It is soluble in water, slightly soluble in ethanol (99.5%), and practically insoluble in acetic anhydride and in acetic acid (100%).

Melting point
About 290°C (with decomposition).

Identification
(1) Determine the absorption spectrum of a solution of Tizanidine Hydrochloride in diluted 1 mol/L ammonium TS (1 in 10) (1 in 125,000) as directed under Ultraviolet-visible Spectrophotometry 2.24, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelength.

(2) Determine the infrared absorption spectrum of Tizanidine Hydrochloride as directed in the potassium chloride disk method under Infrared Spectrophotometry 2.25, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) A solution of Tizanidine Hydrochloride (1 in 50) responds to Qualitative Tests 1.09 for chloride.

Purity
Heavy metals 1.07—Proceed with 1.0 g of Tizanidine Hydrochloride according to Method 3, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(2) Related substances—Dissolve 60 mg of Tizanidine Hydrochloride in 10 mL of a mixture of water and acetonitrile (17:3), and use this solution as the sample solution. Pipet 1 mL of the sample solution, add the mixture of water and acetonitrile (17:3) to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL of the sample solution and standard solution as directed under Liquid Chromatography 2.01 according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak other than tizanidine obtained from the sample solution is not larger than 1/5 times the peak area of tizanidine from the standard solution.

Operating conditions
- **Detector:** An ultraviolet absorption photometer (wavelength: 230 nm for about 3 minutes after sample injection and 318 nm subsequently).
- **Column:** A stainless steel column 4.6 mm in inside diameter and 12.5 cm in length, packed with octadecysilanized silica gel for liquid chromatography (5 μm in particle diameter).
- **Column temperature:** A constant temperature of about 25°C.
- **Mobile phase A:** A mixture of water and formic acid (200:1), adjusted to pH 8.5 with ammonia water (28).
- **Mobile phase B:** A mixture of acetonitrile and the mobile phase A (4:1).
- **Flowing of mobile phase:** Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 10</td>
<td>81 → 68</td>
<td>19 → 32</td>
</tr>
<tr>
<td>10 – 13</td>
<td>68</td>
<td>32</td>
</tr>
<tr>
<td>13 – 26</td>
<td>68 → 10</td>
<td>32 → 90</td>
</tr>
<tr>
<td>26 – 28</td>
<td>10</td>
<td>90</td>
</tr>
</tbody>
</table>

Flow rate: Adjust so that the retention time of tizanidine is about 7 minutes.

Time span of measurement: About 4 times as long as the retention time of tizanidine, beginning after the solvent peak.

System suitability
Test for required detectability: Measure exactly 2 mL of the standard solution, and add the mixture of water and acetonitrile (17:3) to make exactly 10 mL. Confirm that the peak area of tizanidine obtained with 10 μL of this solution is equivalent to 14 to 26% of that with 10 μL of the standard solution.

System performance: Dissolve 2 mg each of Tizanidine Hydrochloride and p-toluenesulfonic acid monohydrate in 100 mL of the mixture of water and acetonitrile (17:3). When the procedure is run with 10 μL of this solution under the above operating conditions, p-toluenesulfonic acid and tizanidine are eluted in this order with the resolution between these peaks being not less than 10.

System repeatability: When the test is repeated 6 times...
Tobramycin

トブラマイシン

C_{18}H_{33}N_{13}O_{6}; 467.51
3-Amino-3-deoxy-α-D-glucopyranosyl-(1→6)-[2,6-diamino-2,3,6-trideoxy-α-D-ribo-hexopyranosyl-(1→4)]-2-deoxy-D-streptamine

Tobramycin is an aminoglycoside substance having antibacterial activity produced by the growth of Streptomyces tenebrarius.

It contains not less than 900 μg (potency) and not more than 1000 μg (potency) per mg, calculated on the anhydrous basis. The potency of Tobramycin is expressed as mass (potency) of tobramycin (C_{18}H_{33}N_{13}O_{6}).

Description Tobramycin occurs as a white to pale yellow-white powder.

It is very soluble in water, freely soluble in formamide, slightly soluble in methanol, and very slightly soluble in ethanol (95).

It is hygroscopic.

Identification (1) Determine the 1H spectrum of a solution of Tobramycin in heavy water for nuclear magnetic resonance spectroscopy (1 in 125) as directed under Nuclear Magnetic Resonance Spectroscopy <2.21D>, using sodium 3-trimethylsilylpropanesulfonate for nuclear magnetic resonance spectroscopy as an internal reference compound: it exhibits a doublet signal A at around δ 5.1 ppm, a multiplet signal B between δ 2.6 ppm and δ 4.0 ppm, and a multiplet signal C between δ 1.0 ppm and δ 2.1 ppm. The ratio of the integrated intensity of these signals, A:B:C, is about 1:8:2.

(2) Dissolve 10 mg each of Tobramycin and Tobramycin RS in 1 mL of water, and use these solutions as the sample solution and standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03D>. Spot 4 μL of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ammonia TS, 1-butanol and methanol (5:5:2) to a distance of about 10 cm, and air-dry the plate. Spray evenly ninhydrin TS on the plate, and heat the plate at 100°C for 5 minutes: the RF values of the principal spots obtained from the sample solution and the standard solution are the same.

Optical rotation <2.49> [a]_D^20 + 138° to + 148° (1 g calculated on the anhydrous basis, water, 25 mL, 100 mm).

pH <2.54> The pH of a solution obtained by dissolving 0.10 g of Tobramycin in 10 mL of water is between 9.5 and 11.5.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Tobramycin in 10 mL of water: the solution is clear, and its absorbance at 400 nm, determined as directed under Ultraviolet-visible Spectrophotometry <2.24D>, is not more than 0.05.

(2) Heavy metals <1.07>—Proceed with 1.0 g of Tobramycin according to Method 2, and perform the test. Prepare the control solution with 3.0 mL of Standard Lead Solution (not more than 30 ppm).

(3) Related substances—Dissolve 80 mg of Tobramycin in 10 mL of diluted ammonia solution (28) (1 in 250), and use this solution as the sample solution. Pipet 1 mL of the sample solution, add diluted ammonia solution (28) (1 in 250) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03D>. Spot 5 μL of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ammonia solution (28), ethanol (95) and 2-butanol (1:1:1) to a distance of about 10 cm, air-dry the plate, then further dry at 110°C for 10 minutes. Immediately spray evenly a mixture of water and sodium hypochlorite TS (4:1) on the plate, air-dry the plate, then spray potassium iodide-starch TS on the plate: the spot other than the principal spot obtained from the sample solution is not more intense than the spot from the standard solution.

Water <2.48> Not more than 11.0% (0.1 g, volumetric titration, direct titration). Use a mixture of formamide for water determination and methanol for water determination (3:1) instead of methanol for water determination.

Residue on ignition <2.44> Not more than 1.0% (0.5 g).

Assay Perform the test according to the Cylinder-plate method as directed under Microbial Assay for Antibiotics <4.02D> according to the following conditions.

(i) Test organism—Bacillus subtilis ATCC 6633
(ii) Culture medium—Use the medium i in 1 under (1) Agar media for seed and base layer.
(iii) Standard solutions—Weigh accurately about 0.05 g of Tobramycin according to Method 2, and perform the test.

Standard solutions—Dissolve 80 mg of Tobramycin in 10 mL of water: the solution is clear, and its absorbance at 400 nm, determined as directed under Ultraviolet-visible Spectrophotometry <2.24D>, is not more than 0.05.

(iii) Standard solutions—Weigh accurately about 0.05 g of Tobramycin according to Method 2, and perform the test.

Related substances—Dissolve 80 mg of Tobramycin in 10 mL of diluted ammonia solution (28) (1 in 250), and use this solution as the sample solution. Pipet 1 mL of the sample solution, add diluted ammonia solution (28) (1 in 250) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03D>. Spot 5 μL of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ammonia solution (28), ethanol (95) and 2-butanol (1:1:1) to a distance of about 10 cm, air-dry the plate, then further dry at 110°C for 10 minutes. Immediately spray evenly a mixture of water and sodium hypochlorite TS (4:1) on the plate, air-dry the plate, then spray potassium iodide-starch TS on the plate: the spot other than the principal spot obtained from the sample solution is not more intense than the spot from the standard solution.
Tobramycin Injection

Tobramycin Injection is an aqueous injection. It contains not less than 90.0% and not more than 110.0% of the labeled potency of tobramycin (C_{18}H_{27}N_{3}O_{6}: 467.51).

Method of preparation Prepare as directed under Injections, with Tobramycin.

Description Tobramycin Injection occurs as a colorless or very pale yellow, clear liquid.

Identification To a volume of Tobramycin Injection, equivalent to 10 mg (potency) of Tobramycin, add water to make 1 mL, and use this solution as the sample solution. Separately, dissolve 10 mg (potency) of Tobramycin RS in 1 mL of water, and use this solution as the standard solution. Then, proceed as directed in the Identification (2) under Tobramycin.

Osmotic pressure ratio Being specified separately when the drug is granted approval based on the Law.

pH ≤ 2.50 5.0 – 7.0

Bacterial endotoxins ≤ 0.01 Less than 0.50 EU/mg (potency).

Extractable volume ≤ 0.05 It meets the requirement.

Foreign insoluble matter ≤ 0.05 Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter ≤ 0.07 It meets the requirement.

Sterility ≤ 0.05 Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Perform the test according to the Cylinder-plate method as directed under Microbial Assay for Antibiotics ≤ 0.02 according to the following conditions.

(i) Test organism, culture medium, and standard solutions—Proceed as directed in the Assay under Tobramycin.

(ii) Sample solutions—To exactly 5 mL of Tobramycin Injection add 0.1 mol/L phosphate buffer solution (pH 8.0) so that each mL contains 1 mg (potency) of Tobramycin. Take exactly a suitable amount of this solution, add 0.1 mol/L phosphate buffer solution (pH 8.0) to make solutions so that each mL contains 8 μg (potency) and 2 μg (potency), and use these solutions as the concentration sample solution high and the low concentration sample solution, respectively.

Containers and storage Containers—Tight containers.

Tocopherol

Vitamin E

\[\text{\(\text{C}_{55}\text{H}_{90}\text{O}_2\): 430.71\)}

\[\text{\(2,5,7,8\)-Tetramethyl-2-(4,8,12-trimethyltridecyl)chroman-6-ol}\]

[10191-41-0]

Tocopherol contains not less than 96.0% and not more than 102.0% of \(\text{d}_{l}-\omega\)-tocopherol (\(\text{C}_{55}\text{H}_{90}\text{O}_2\)).

Description Tocopherol is a clear, yellow to red-brown, viscous liquid. It is odorless.

It is miscible with ethanol (99.5), with acetone, with chloroform, with diethyl ether and with vegetable oils.

It is freely soluble in ethanol (95), and practically insoluble in water.

It is optically inactive.

It is oxidized by air and light, and acquires a dark red color.

Identification (1) Dissolve 0.01 g of Tocopherol in 10 mL of ethanol (99.5), add 2 mL of nitric acid, and heat at 75°C for 15 minutes: a red to orange color develops.

(2) Determine the infrared absorption spectrum of Tocopherol as directed in the liquid film method under Infrared Spectrophotometry ≤ 2.25, and compare the spectrum with the Reference Spectrum or the spectrum of Tocopherol RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Absorbance \(≤ 2.24\) \(E^{\%}_{1cm} \) (292 nm): 71.0 – 76.0 (10 mg, ethanol (99.5), 200 mL).

Refractive index \(≤ 2.45\) \(n^\circ_{D} \): 1.503 – 1.507

Specific gravity \(≤ 2.50\) \(d_{40}^\circ \): 0.947 – 0.955

Purity (1) Clarity and color of solution—Dissolve 0.10 g of Tocopherol in 10 mL of ethanol (99.5): the solution is clear and has no more color than Matching Fluid C.

(2) Heavy metals ≤ 1.07—Proceed with 1.0 g of Tocopherol according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

Assay Dissolve about 50 mg each of Tocopherol and Tocopherol RS, accurately weighed, in ethanol (99.5) to make exactly 50 mL, and use these solutions as the sample solution and standard solution. Perform the test with exactly 20 μL each of these solutions as directed under Liquid Chromatography ≤ 2.07 according to the following conditions, and determine the peak heights, \(H_t\) and \(H_s\), of tocopherol in each solution.

Amount (mg) of tocopherol (\(\text{C}_{55}\text{H}_{90}\text{O}_2\)) = \(M_s \times H_t/H_s\)
Mₜₜ : Amount (mg) of Tocopherol RS taken

Operating conditions—
	Detector: An ultraviolet absorption photometer (wavelength: 292 nm).
	Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilylized silica gel for liquid chromatography (5 μm in particle diameter).
	Column temperature: A constant temperature of about 35°C.
	Mobile phase: A mixture of methanol and water (49:1).
	Flow rate: Adjust so that the retention time of tocopherol is about 10 minutes.

System suitability—
	System performance: Dissolve 0.05 g each of Tocopherol and tocopherol acetate in 50 mL of ethanol (99.5). When the procedure is run with 20 μL of this solution under the above operating conditions, tocopherol and tocopherol acetate are eluted in this order with the resolution between these peaks being not less than 2.6.
	System repeatability: When the test is repeated 5 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak heights of tocopherol is not more than 0.8%.

Containers and storage—Containers—Tight containers.

Storage—Light-resistant, and well-filled, or under nitrogen atmosphere.

Tocopherol Acetate

Vitamin E Acetate

トコフェロール酢酸エステル

C₃₃H₅₂O₃ : 472.74
2,5,7,8-Tetramethyl-2-(4,8,12-trimethyltridecyl)chroman-6-yl acetate
[7695-91-2]

Tocopherol Acetate contains not less than 96.0% and not more than 102.0% of dl-α-tocopherol acetate (C₃₃H₅₂O₃).

Description

Tocopherol Acetate is a clear, colorless or yellow, viscous and odorless liquid.

It is miscible with ethanol (99.5), with acetone, with chloroform, with diethyl ether, with hexane and with vegetable oils.

It is freely soluble in ethanol (95), and practically insoluble in water.

It is optically inactive.

It is affected by air and light.

Identification (1)

Dissolve 0.05 g of Tocopherol Acetate in 10 mL of ethanol (99.5), add 2 mL of nitric acid, and heat at 75°C for 15 minutes: a red to orange color is produced.

(2) Determine the infrared absorption spectrum of Tocopherol Acetate as directed in the liquid film method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of Tocopherol Acetate RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Fingerprint

Absorbance <2.24> E₅₂₀m (284 nm): 41.0 - 45.0 (10 mg, ethanol (99.5), 100 mL).

Refractive index <2.45> nD²₀: 1.494 - 1.499

Specific gravity <2.56> d₅₀/30: 0.952 - 0.966

Purity (1)

Clarity and color of solution—Dissolve 0.10 g of Tocopherol Acetate in 10 mL of ethanol (99.5): the solution is clear, and has no more color than the following control solution.

Control solution: To 0.5 mL of Iron (III) Chloride CS add 0.5 mol/L hydrochloric acid TS to make 100 mL.

(2) Heavy metals <1.07>—Carbonize 1.0 g of Tocopherol Acetate by gentle heating. Cool, add 10 mL of a solution of magnesium nitrate hexahydrate in ethanol (95) (1 in 10), and ignite the ethanol to burn. Cool, add 1 mL of sulfuric acid, proceed according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (20 ppm).

(3) α-Tocopherol—Dissolve 0.10 g of Tocopherol Acetate in exactly 10 mL of hexane, and use this solution as the sample solution. Separately, dissolve 50 mg of Tocopherol RS in hexane to make exactly 100 mL. Pipet 1 mL of this solution, add hexane to make exactly 10 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.07>.

Spot 10 μL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of toluene and acetic acid (100) (19:1) to a distance of about 10 cm, and air-dry the plate. Spray evenly a solution of iron (III) chloride hexahydrate in ethanol (99.5) (1 in 500) on the plate, then spray evenly a solution of 2,2'-bipyridyl in ethanol (99.5) (1 in 200) on the same plate, and allow to stand for 2 to 3 minutes: the spot obtained from the sample solution corresponding to that from the standard solution is not larger and not more intense than the spot from the standard solution.

Assay

Dissolve 50 mg each of Tocopherol Acetate and Tocopherol Acetate RS, accurately weighed, in ethanol (99.5) to make exactly 50 mL, and use these solutions as the sample solution and standard solution. Perform the test with exactly 20 μL each of these solutions as directed under Liquid Chromatography <2.07> according to the following conditions, and determine the peak heights, Hₗ and Hₛ, of tocopherol acetate in each solution.

Amount (mg) of tocopherol acetate (C₃₃H₅₂O₃) = (Mₛ × Hₗ/Hₛ) Mₜₜ : Amount (mg) of Tocopherol Acetate RS taken

Operating conditions—
	Detector: An ultraviolet absorption photometer (wavelength: 284 nm).
	Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilylized silica gel (5 μm in particle diameter).
	Column temperature: A constant temperature of about 35°C.
	Mobile phase: A mixture of methanol and water (49:1).
	Flow rate: Adjust so that the retention time of tocopherol acetate is about 12 minutes.

System suitability—
	System performance: Dissolve 0.05 g each of Tocopherol Acetate and tocopherol acetate in 50 mL of ethanol (99.5). When the procedure is run with 20 μL of this solution under the above operating conditions, tocopherol and tocopherol ace-
tate are eluted in this order with the resolution between these peaks being not less than 2.6.

System repeatability: When the test is repeated 5 times with 20 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak heights of tocopherol acetate is not more than 0.8%.

Containers and storage Containers—Tight containers. Storage—Light-resistant.

Tocopherol Calcium Succinate

Vitamin E Calcium Succinate

トコフェロールコハク酸エステルカルシウム

\[
\text{C}_{106}\text{H}_{106}\text{CaO}_{10} \quad 1099.62
\]

Monocalcium bis{[3-2,5,7,8-tetramethyl-2(4,8,12-trimethyltridecyl)chroman-6-yloxycarbonyl]propanoate}

[14638-18-7]

Tocopherol Calcium Succinate, when dried, contains not less than 96.0% and not more than 102.0% of dl-α-tocopherol calcium succinate (C_{106}H_{106}CaO_{10}).

Description Tocopherol Calcium Succinate occurs as a white to yellowish white powder. It is odorless.

It is freely soluble in chloroform and in carbon tetrachloride, and practically insoluble in water, in ethanol (95%) and in acetone.

Shake 1 g of Tocopherol Calcium Succinate with 7 mL of acetic acid (100); it dissolves, and produces a turbidity after being allowed to stand for a while.

It dissolves in acetic acid (100). It is optically inactive.

Identification (1) Dissolve 0.05 g of Tocopherol Calcium Succinate in 1 mL of acetic acid (100), add 9 mL of ethanol (99.5), and mix. To this solution add 2 mL of fuming nitric acid, and heat at 75°C for 15 minutes: a red to orange color develops.

(2) Dissolve 0.08 g of Tocopherol Calcium Succinate, previously dried, in 0.2 mL of carbon tetrachloride. Determine the infrared absorption spectrum of the solution as directed in the liquid film method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) Dissolve 5 g of Tocopherol Calcium Succinate in 30 mL of chloroform, add 10 mL of hydrochloric acid, shake for 10 minutes, then draw off the water layer, and neutralize with ammonia TS: the solution responds to Qualitative Tests <1.09> for calcium salt.

(4) Dissolve 0.10 g of Tocopherol Calcium Succinate in 10 mL of chloroform: the solution is clear, and has no more color than the following control solution.

Control solution: To 0.5 mL of iron (III) Chloride CS add 0.5 mol/L hydrochloric acid TS to make 100 mL.

(2) Alkalinity—To 0.20 g of Tocopherol Calcium Succinate add 10 mL of diethyl ether, 2 mL of water, 1 drop of phenolphthalein TS and 0.10 mL of 0.1 mol/L hydrochloric acid VS, and shake: no red color develops in the water layer.

(3) Chloride <1.07>—Dissolve 0.10 g of Tocopherol Calcium Succinate in 4 mL of acetic acid (100), add 20 mL of water and 50 mL of diethyl ether, shake thoroughly, and collect the water layer. To the diethyl ether layer add 10 mL of water, shake, and collect the water layer. Combine the water layers, add 6 mL of dilute nitric acid and water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution in the same manner using 0.60 mL of 0.01 mol/L hydrochloric acid VS in place of Tocopherol Calcium Succinate (not more than 0.212%).

(4) Heavy metals <1.07>—Proceed with 1.0 g of Tocopherol Calcium Succinate according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(5) Arsenic <1.11>—Prepare the test solution with 1.0 g of Tocopherol Calcium Succinate according to Method 3, and perform the test (not more than 2 ppm).

(6) α-Tocopherol—Dissolve 0.10 g of Tocopherol Calcium Succinate in exactly 10 mL of chloroform, and use this solution as the sample solution. Separately, dissolve 50 mg of Tocopherol RS in chloroform to make exactly 100 mL. Pipet 1 mL of this solution, add chloroform to make exactly 10 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.07>. Spot 10 µL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of toluene and acetic acid (100:19:1) to a distance of about 10 cm, and air-dry the plate. Spray evenly a solution of iron (III) chloride hexahydrate in ethanol (99.5) (1 in 500) on the plate, then spray evenly a solution of 2,2’-bipyridyl in ethanol (99.5) (1 in 200) on the same plate, and allow to stand for 2 to 3 minutes: the spots obtained from the sample solution corresponding to the spots from the standard solution is not larger and not more intense than the spots from the standard solution.

Loss on drying <2.41> Not more than 2.0% (1 g, in vacuum, phosphorus (V) oxide, 24 hours).

Assay Weigh accurately about 50 mg each of Tocopherol Calcium Succinate and Tocopherol Succinate RS, previously dried, dissolve in a mixture of ethanol (99.5) and dilute acetic acid (100) (1 in 5) (9:1) to make exactly 50 mL, and use these solutions as the sample solution and standard solution. Pipet exactly 20 µL each of the sample solution and standard solution, and perform the test as directed under Liquid Chromatography <2.07> according to the following operating conditions. Determine the peak heights, H_t and H_s, of tocopherol succinate in each solution.

\[
\text{Amount (mg) of tocopherol calcium succinate} \\
\left(\text{C}_{106}\text{H}_{106}\text{CaO}_{10}\right) = M_s \times \frac{H_t}{H_s} \times 1.036
\]

\text{M}_s: \text{Amount (mg) of Tocopherol Succinate RS taken}

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 284 nm).

Column: A stainless steel column about 4 mm in inside diameter and 15 to 30 cm in length, packed with octadecyliized silica gel (5 to 10 µm in particle diameter).

Column temperature: Room temperature.
Mobile phase: A mixture of methanol, water and acetic acid (100) (97:2:1).

Flow rate: Adjust so that the retention time of tocopherol succinate is about 8 minutes.

Selection of column: Dissolve 0.05 g each of tocopherol succinate and tocopherol in 50 mL of a mixture of ethanol (99.5) and dilute acetic acid (100) (1 in 5) (9:1). Proceed with 20 µL of this solution under the above operating conditions, and calculate the resolution. Use a column giving elution of tocopherol succinate and tocopherol in this order with the resolution between these peaks being not less than 2.0.

System repeatability: Repeat the test 5 times with 20 µL of the standard solution under the above operating conditions: the relative standard deviation of the peak height of tocopherol succinate is not more than 0.8%.

Containers and storage Containers—Tight containers. Storage—Light-resistant.

Tocopherol Nicotinate

Vitamin E Nicotinate

トコフェロールニコチン酸エステル

C_{35}H_{53}NO_3: 535.80
2,5,7,8-Tetramethyl-2-(4,8,12-trimethyltridecyl)chroman-6-yl nicotinate
[51898-34-1]

Tocopherol Nicotinate contains not less than 96.0% of dl-α-tocopherol nicotinate (C_{35}H_{53}NO_3).

Description Tocopherol Nicotinate occurs as a yellow to orange-yellow, liquid or solid.

It is freely soluble in ethanol (99.5), and practically insoluble in water.

A solution of Tocopherol Nicotinate in ethanol (99.5) (1 in 10) shows no optical rotation.

It is affected by light.

Identification (1) Determine the absorption spectrum of a solution of Tocopherol Nicotinate in ethanol (99.5) (1 in 20,000) as directed under Ultraviolet-visible Spectrophotometry (2.24), and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Tocopherol Nicotinate RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared spectrum of Tocopherol Nicotinate, if necessary melt by warming, as directed in the liquid film method under the Infrared Spectrophotometry (2.25), and compare the spectrum with the Reference Spectrum or the spectrum of Tocopherol Nicotinate RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Purity (1) Heavy metals <1.0%—Proceed with 1.0 g of Tocopherol Nicotinate according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(2) Arsenic <1.1D—Prepare the test solution with 1.0 g of Tocopherol Nicotinate according to Method 4, and perform the test (not more than 2 ppm).

(3) Related substances—Dissolve 0.05 g of Tocopherol Nicotinate in 50 mL of ethanol (99.5), and use this solution as the sample solution. Pipet 7 mL of the sample solution, add ethanol (99.5) to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 10 µL each of the sample solution and standard solution as directed under Liquid Chromatography (2.26) according to the following conditions. Determine each peak area by the automatic integration method: the total area of the peaks other than tocopherol nicotinate obtained from the sample solution is not larger than the area of the peak of tocopherol nicotinate from the standard solution, and the area of a peak which has a retention time of 0.8 to 0.9 times that of tocopherol nicotinate from the sample solution is not larger than 4/7 times the peak area of tocopherol nicotinate from the standard solution.

Operating conditions—

Detector, column, and column temperature: Proceed as directed in the operating conditions in the Assay.

Mobile phase: A mixture of methanol and water (19:1).

Flow rate: Adjust so that the retention time of tocopherol nicotinate is about 20 minutes.

Time span of measurement: About 1.5 times as long as the retention time of tocopherol nicotinate, beginning after the solvent peak.

System suitability—

Test for required detectability: To exactly 1 mL of the sample solution add ethanol (99.5) to make exactly 100 mL, and use this solution as the solution for system suitability test. Pipet 1 mL of the solution for system suitability test, add ethanol (99.5) to make exactly 10 mL. Confirm that the peak area of tocopherol nicotinate obtained with 10 µL of this solution is equivalent to 7 to 13% of that with 10 µL of the solution for system suitability test.

System performance: Dissolve 0.05 g of Tocopherol Nicotinate and 0.25 g of tocopherol in 100 mL of ethanol (99.5). When the procedure is run with 10 µL of this solution under the above operating conditions, tocopherol and tocopherol nicotinate are eluted in this order with the resolution between these peaks being not less than 8.

System repeatability: When the test is repeated 6 times with 10 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak areas of tocopherol nicotinate is not more than 2.0%.

Assay Weigh accurately about 50 mg each of Tocopherol Nicotinate and Tocopherol Nicotinate RS, dissolve each in ethanol (99.5) to make exactly 50 mL, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with exactly 5 µL each of the sample solution and standard solution as directed under Liquid Chromatography (2.26) according to the following conditions, and determine the peak areas, A_T and A_S, of tocopherol nicotinate in each solution.

Amount (mg) of tocopherol nicotinate (C_{35}H_{53}NO_3)

\[
M_S = A_T \times A_S
\]

M_S: Amount (mg) of Tocopherol Nicotinate RS taken
Todralazine Hydrochloride Hydrate

Identification

1. To 2 mL of a solution of Todralazine Hydrochloride Hydrate (1 in 200) add 5 mL of silver nitrate-ammonia TS: the solution becomes turbid, and a black precipitate is formed.

2. Determine the absorption spectrum of a solution of Todralazine Hydrochloride Hydrate in 0.1 mol/L hydrochloric acid TS (3 in 100,000) as directed under Ultra violet-visible Spectrophotometry <2.48>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

3. Determine the infrared absorption spectrum of Todralazine Hydrochloride Hydrate as directed in the potassium chloride disk method under the Infrared Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

4. A solution of Todralazine Hydrochloride Hydrate (1 in 50) responds to Qualitative Tests <1.09> (1) for chloride.

Purity

1. Clarity and color of solution—Dissolve 0.30 g of Todralazine Hydrochloride Hydrate in 10 mL of water: the solution is clear and colorless to pale yellow.

2. Sulfate <1.14>—Proceed the test with 2.0 g of Todralazine Hydrochloride Hydrate. Prepare the control solution with 0.50 mL of 0.005 mol/L sulfuric acid VS (not more than 0.012%).

3. Heavy metals <1.07>—Proceed with 1.0 g of Todralazine Hydrochloride Hydrate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

4. Arsenic <1.1D>—Prepare the test solution with 1.0 g of Todralazine Hydrochloride Hydrate according to Method 1, and perform the test (not more than 2 ppm).

5. Related substances—Dissolve 50 mg of Todralazine Hydrochloride Hydrate in 100 mL of the mobile phase, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add the mobile phase to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area by the automatic integration method: the total area of the peaks other than todralazine obtained from the sample solution is not larger than the peak area of todralazine from the standard solution.

Operating conditions

Detector: An ultraviolet absorption photometer (wavelength: 240 nm).

Column: A stainless steel column 3.9 mm in inside diameter and 30 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (10 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: Dissolve 1.10 g of sodium 1-heptane sulfonate in 1000 mL of diluted methanol (2 in 5). Adjust the pH of the solution to between 3.0 and 3.5 with acetic acid (100).

Flow rate: Adjust so that the retention time of todralazine is about 8 minutes.

Time span of measurement: About twice as long as the retention time of todralazine, beginning after the solvent peak.

System suitability

Test for required detectability: To exactly 5 mL of the standard solution add the mobile phase to make exactly 25 mL. Confirm that the peak area of todralazine obtained with 10 μL of this solution is equivalent to 15 to 25% of that with 10 μL of the standard solution.

System performance: Dissolve 5 mg each of Todralazine Hydrochloride Hydrate and potassium hydrogen phthalate in 100 mL of the mobile phase. When the procedure is run with 10 μL of this solution under the above operating conditions, phthalic acid and todralazine are eluted in this order with the resolution between these peaks being not less than 8.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak areas of todralazine is not more than 2.0%.

Water <2.48> 6.0 – 7.5% (0.5 g, volumetric titration, direct titration).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay

Weigh accurately about 0.4 g of Todralazine Hydrochloride Hydrate, dissolve in 5 mL of formic acid, add 70 mL of acetic anhydride, and titrate <2.50> with 0.1 mol/L nitric acid to the phenolphthalein indicator. The solution titrated should yield approximately 25 mL of nitric acid (0.1 N).
Tolbutamide occurs as white, crystals or crystals. Heavy metals: Not more than 0.01%.

Determine the absorption spectrum of a solution of tolbutamide (C₁₁H₁₄N₂O₄.S.5H₂O, HCl) at 260 nm. Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS (potentiometric titration) is equal to 26.87 mg of C₁₁H₁₄N₂O₄.S.5H₂O.1HCl.

Containers and storage Containers—Tight containers.

Tofisopam トフィソパム

C₂₂H₂₅N₇O€: 382.45
(5RS)-1-(3,4-Dimethoxyphenyl)-5-ethyl-7,8-dimethoxy-4-methyl-5H-2,3-benzodiazepine [22345-47-7]

Tofisopam, when dried, contains not less than 98.0% of tofisopam (C₂₂H₂₅N₇O₆).

Description Tofisopam occurs as a pale yellow-white crystalline powder.

It is freely soluble in acetic acid (100), soluble in acetone, sparingly soluble in ethanol (95), slightly soluble in diethyl ether, and practically insoluble in water.

A solution of Tofisopam in ethanol (95) (1 in 100) shows no optical rotation.

Identification (1) Determine the absorption spectrum of a solution of Tofisopam in ethanol (95) (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.2>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Tofisopam, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point <2.60> 155 – 159°C

Purity (1) Heavy metals <1.07>—Proceed with 1.0 g of Tofisopam according to Method 2, and perform the test. Prepare the control solution with 1.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Arsenic <1.11>—Prepare the test solution with 1.0 g of Tofisopam according to Method 3, and perform the test (not more than 2 ppm).

(3) Related substances—Dissolve 0.05 g of Tofisopam in 10 mL of glacial acetic acid, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add acetone to make exactly 25 mL, pipet 1 mL of this solution, add acetone to make exactly 20 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.60>. Spot 10 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate, acetone, methanol and formic acid (24:12:2:1) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying <2.41> Not more than 0.5% (1 g, in vacuum, silica gel, 60°C, 3 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.2 g of Tofisopam, previously dried, dissolve in 50 mL of acetic acid (100), and titrate <2.50> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 38.25 mg of C₂₂H₂₅N₇O₆.

Containers and storage Containers—Tight containers.

Storage—Light-resistant.

Tolbutamide トルブタミド

C₁₁H₁₄N₂O₄.S: 270.35
N-(Butylcarbamoyl)-4-methylbenzenesulfonamide [64-77-7]

Tolbutamide, when dried, contains not less than 99.0% of tolbutamide (C₁₁H₁₄N₂O₄.S).

Description Tolbutamide occurs as white, crystals or crystalline powder. It is odorless or has a slight, characteristic odor. It is tasteless.

It is soluble in ethanol (95), slightly soluble in diethyl ether, and practically insoluble in water.

Identification (1) Boil 0.2 g of Tolbutamide with 8 mL of diluted sulfuric acid (1 in 3) under a reflux condenser for 30 minutes. Cool the solution in ice water, collect the precipitated crystals, recrystallize from water, and dry at 105°C for 3 hours: the crystals melt <2.60> between 135°C and 139°C.

(2) Render the filtrate obtained in (1) alkaline with about 20 mL of a solution of sodium hydroxide (1 in 5), and heat: an ammonia-like odor is perceptible.

Melting point <2.60> 126 – 132°C

Purity (1) Acidity—Warm 3.0 g of Tolbutamide with 150 mL of water at 70°C for 5 minutes, allow to stand for 1 hour in ice water, and filter. To 25 mL of the filtrate add 2 drops of methyl red TS and 0.20 mL of 0.1 mol/L sodium hydroxide VS: a yellow color develops.

(2) Chloride <1.03>—To 40 mL of the filtrate obtained in (1) add 6 mL of dilute nitric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 0.25 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.011%).

(3) Sulfate <1.14>—To 40 mL of the filtrate obtained in (1) add 1 mL of dilute hydrochloric acid and water to make
Tolbutamide Tablets / Official Monographs

50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 0.35 mL of 0.005 mol/L sulfuric acid VS (not more than 0.021%).

(4) Heavy metals <1.07>—Proceed with 2.0 g of Tolbutamide according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

Loss on drying <2.44> Not more than 0.5% (1 g, 105°C, 3 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.5 g of Tolbutamide, previously dried, and dissolve in 30 mL of neutralized ethanol. Add 20 mL of water, and titrate <2.50> with 0.1 mol/L sodium hydroxide VS (indicator: 3 drops of phenolphthalein TS).

Each mL of 0.1 mol/L sodium hydroxide VS = 27.04 mg of C$_{12}$H$_{18}$N$_2$O$_5$S

Containers and storage Containers—Well-closed containers.

Tolbutamide Tablets

トルプタミド錠

Tolbutamide Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of tolbutamide (C$_{12}$H$_{18}$N$_2$O$_5$S: 270.35).

Method of preparation Prepare as directed under Tablets, with Tolbutamide.

Identification Shake a quantity of powdered Tolbutamide Tablets, equivalent to 0.5 g of Tolbutamide, with 50 mL of chloroform, filter, and evaporate the filtrate to dryness. Proceed with the residue as directed in the Identification under Tolbutamide.

Uniformity of dosage units <6.02> It meets the requirements of the Mass variation test.

Dissolution <6.10> When the test is performed at 100 revolutions per minute according to the Paddle method, using 900 mL of phosphate buffer solution (pH 7.4) as the dissolution medium, the dissolution rate in 30 minutes of Tolbutamide Tablets is not less than 80%.

Start the test with 1 tablet of Tolbutamide Tablets, withdraw not less than 20 mL of the medium at the specified time after starting the test, and filter through a membrane filter with a pore size not exceeding 0.8 µm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add water to make exactly V mL so that each mL contains about 10 µg of tolbutamide (C$_{12}$H$_{18}$N$_2$O$_5$S), and use this solution as the sample solution. Separately, weigh accurately about 50 mg of Tolbutamide RS, previously dried at 90°C for 3 hours, dissolve in 10 mL of methanol, and add the dissolution medium to make exactly 100 mL. Pipet 2 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution. Perform the test with the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry <2.24>, using water as the control, and determine the absorbances, A$_1$ and A$_3$, at 226 nm.

Dissolution rate (%) with respect to the labeled amount of tolbutamide (C$_{12}$H$_{18}$N$_2$O$_5$S) = M$_5$ × A$_1$/A$_3$ × V'/V × 1/C × 18

M$_5$: Amount (mg) of Tolbutamide RS taken
C: Labeled amount (mg) of tolbutamide (C$_{12}$H$_{18}$N$_2$O$_5$S) in 1 tablet

Containers and storage Containers—Well-closed containers.

Tolnaftate

トルナフタート

C$_{19}$H$_{17}$NOS: 307.41
O-Naphthalen-2-yl N-methyl-N-(3-methylphenyl)thio carbamate [2398-96-1]

Tolnaftate, when dried, contains not less than 98.0% of tolnaftate (C$_{19}$H$_{17}$NOS).

Description Tolnaftate occurs as a white powder. It is odorless.

It is freely soluble in chloroform, sparingly soluble in diethyl ether, slightly soluble in methanol and in ethanol (95), and practically insoluble in water.

Identification (1) To 0.2 g of Tolnaftate add 20 mL of potassium hydroxide-ethanol TS and 5 mL of water, and heat under a reflux condenser for 3 hours. After cooling, to 10 mL of this solution add 2 mL of acetic acid (100), and shake with 1 mL of lead (II) acetate TS: a black precipitate is formed.

(2) Determine the absorption spectrum of a solution of Tolnaftate in methanol (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Tolnaftate RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(3) Determine the infrared absorption spectrum of Tolnaftate, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of previously dried Tolnaftate RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point <2.60> 111 – 114°C (after drying).

Purity (1) Heavy metals <1.07>—Carbonize 1.0 g of Tolnaftate by gentle heating. After cooling, add 5 mL of nitric
Tolnaftate Solution

トルナフタート液

Tolnaftate Solution contains not less than 90.0% and not more than 110.0% of the labeled amount of tolnaftate (C_{19}H_{17}NOS: 307.41).

Method of preparation Prepare as directed under Liquids and Solutions for Cutaneous Application, with Tolnaftate.

Identification (1) Spot 1 drop of Tolnaftate Solution on filter paper. Spray hydrogen hexachloroplatinate (IV)-potassium iodide TS on the paper: a light yellow color develops in the spot.

(2) To a volume of Tolnaftate Solution, equivalent to 0.02 g of Tolnaftate, add chloroform to make 10 mL, and use this solution as the sample solution. Separately, dissolve 0.02 g of Tolnaftate RS in 10 mL of chloroform, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography. Spot 10 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with toluene to a distance of about 12 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spot obtained from the sample solution and that from the standard solution show the same Rf value.

Assay Pipet a volume of Tolnaftate Solution, equivalent to about 20 mg of tolnaftate (C_{19}H_{17}NOS), add exactly 4 mL of the internal standard solution, then add chloroform to make 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 0.4 g of Tolnaftate RS, previously dried in vacuum at a pressure not exceeding 0.67 kPa at 65°C for 3 hours, and dissolve in chloroform to make exactly 100 mL. Pipet 5 mL of this solution, add exactly 4 mL of the internal standard solution, then add chloroform to make 50 mL, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography according to the following conditions, and calculate the ratios, Q_1 and Q_2, of the peak area of tolnaftate to that of the internal standard.

\[
\text{Amount (mg) of tolnaftate (C}_{19}\text{H}_{17}\text{NOS) = } M_5 \times Q_1/Q_2 \times 1/20
\]

\[M_5: \text{Amount (mg) of Tolnaftate RS taken}\]

Internal standard solution—A solution of di phenyl phthalate in chloroform (3 in 200).

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 254 nm).

Column: A stainless steel column about 4 mm in inside diameter and 15 to 30 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 to 10 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: A mixture of methanol and water (7:3).

Flow rate: Adjust so that the retention time of tolnaftate is about 14 minutes.

Selection of column: Proceed with 10 μL of the standard solution under the above operating conditions, and calculate the resolution. Use a column giving elution of the internal standard and tolnaftate in this order with the resolution be-
Tolperisone Hydrochloride

Tolperisone Hydrochloride, when dried, contains not less than 98.5% of tolperisone hydrochloride (C₁₆H₂₃NO.HCl).

Description Tolperisone Hydrochloride occurs as a white crystalline powder. It has a slight, characteristic odor.

It is very soluble in acetic acid (100), freely soluble in water and in ethanol (95), soluble in acetic anhydride, slightly soluble in acetone, and practically insoluble in diethyl ether.

The pH of a solution of 1.0 g of Tolperisone Hydrochloride in 20 mL of water is between 4.5 and 5.5.

It is hygroscopic.

Melting point: 167 – 174°C

Identification (1) Dissolve 0.2 g of Tolperisone Hydrochloride in 2 mL of ethanol (95), add 2 mL of 1,3-dinitrobenzene TS and 2 mL of sodium hydroxide TS, and heat: a red color develops.

(2) To 5 mL of a solution of Tolperisone Hydrochloride (1 in 20) add 2 to 3 drops of iodine TS: a red-brown precipitate is produced.

(3) Dissolve 0.5 g of Tolperisone Hydrochloride in 5 mL of water, add 2 mL of ammonia TS, and filter. Acidify 5 mL of the filtrate with dilute nitric acid: the solution responds to Qualitative Tests <1.09> for chloride.

Absorbance <2.24> $E_{1%}^{1cm}$ (257 nm): 555 – 585 (after drying, 5 mg, ethanol (95), 500 mL).

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Tolperisone Hydrochloride in 10 mL of water: the solution is clear and colorless.

(2) Sulfate <1.14>—Perform the test with 4.0 g of Tolperisone Hydrochloride. Prepare the control solution with 0.40 mL of 0.005 mol/L sulfuric acid VS (not more than 0.005%).

(3) Heavy metals <1.07>—Proceed with 1.0 g of Tolperisone Hydrochloride according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(4) Piperidine hydrochloride—Dissolve 0.20 g of Tolperisone Hydrochloride in water to make exactly 10 mL, and use this solution as the sample solution. Separately, dissolve 20 mg of piperidine hydrochloride in water to make exactly 1000 mL, and use this solution as the standard solution. Transfer 5.0 mL each of the sample solution and standard solution to different separators, add 0.1 mL each of a solution of copper (II) sulfate pentahydrate (1 in 20), then add 0.1 mL each of ammonia solution (28) and exactly 10 mL each of a mixture of isoocetane and carbon disulfide (3:1), and shake vigorously for 30 minutes. Immediately after allowing to stand, separate the isoocetane-carbon disulfide mixture layer, and dehydrate with anhydrous sodium sulfate. Perform the test with these solutions as directed under Ultraviolet-visible Spectrophotometry <2.24>: the absorbance of the sample solution at 438 nm is not more than that of the standard solution.

Loss on drying <2.41> Not more than 0.5% (1 g, in vacuum, silica gel, 3 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.5 g of Tolperisone Hydrochloride, previously dried, dissolve in 70 mL of a mixture of acetic anhydride and acetic acid (100) (7:3), and titrate <2.59> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 28.18 mg C₁₆H₂₃NO.HCl.

Containers and storage Containers—Well-closed containers.

Tosufloxacin Tosilate Hydrate

Tosufloxacin Tosilate Hydrate contains not less than 98.5% and not more than 101.0% of tosufloxacin tosilate (C₁₉H₁₅F₇N₅O₅·C₃H₇O₃S·H₂O: 594.56)

7-[(3RS)-3-Aminopyrrolidin-1-yl]-1-(2,4-difluorophenyl)-6-fluoro-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carboxylic acid mono-4-toluene sulfonate hydrate

[Tosufloxacin Tosilate Hydrate]

Description Tosufloxacin Tosilate Hydrate occurs as a white to pale yellowish white crystalline powder.

It is freely soluble in N,N-dimethylformamide, sparingly soluble in methanol, and practically insoluble in water and in ethanol (99.5).

A solution of Tosufloxacin Tosilate Hydrate in methanol (1 in 100) shows no optical rotation.

Melting point: about 254°C (with decomposition).

Identification (1) Tosufloxacin Tosilate Hydrate shows a light bluish-white fluorescence under ultraviolet light (main wavelength 254 nm).

(2) Proceed 10 mg of Tosufloxacin Tosilate Hydrate as directed under Oxygen Flask Combustion Method <1.06>, using a mixture of 0.5 mL of 0.01 mol/L sodium hydroxide TS and 20 mL of water as the absorbing liquid: the solution responds to Qualitative Tests <1.09> (2) for fluoride.

(3) Determine the absorption spectrum of a solution of Tosufloxacin Tosilate Hydrate in a mixture of methanol and sodium hydroxide TS (49:1) (1 in 100,000) as directed under
Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Tosufloxacin Tosilate RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(4) Determine the infrared absorption spectrum of Tosufloxacin Tosilate Hydrate as directed in the paste method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of Tosufloxacin Tosilate RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Purity (1) Chloride <1.07>—Dissolve 1.0 g of Tosufloxacin Tosilate Hydrate in 40 mL of N,N-dimethylformamide, and add 6 mL of dilute nitric acid and N,N-dimethylformamide to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 0.20 mL of 0.01 mol/L hydrochloric acid VS, 6 mL of dilute nitric acid and N,N-dimethylformamide to make 50 mL (not more than 0.007%).

(2) Heavy metals <1.07>—Proceed with 1.0 g of Tosufloxacin Tosilate Hydrate according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(3) Arsenic <1.1D>—Prepare the test solution with 1.0 g of Tosufloxacin Tosilate Hydrate according to Method 4, and perform the test under the condition of the ignition temperature being between 750°C and 850°C, and add 10 mL of diluted hydrochloric acid to residue (not more than 2 ppm).

(4) Related substances—Dissolve 10 mg of Tosufloxacin Tosilate Hydrate in 12 mL of mobile phase B, add water to make 25 mL, and use this solution as the sample solution. Pipet 5 mL of the sample solution, and add mobile phase A to make exactly 100 mL. Pipet 2 mL of this solution, add mobile phase A to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL of each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area by the automatic integration method: the area of each peak other than tosylate and tosufloxacin obtained from the sample solution is not larger than 3/4 times the peak area of tosufloxacin from the standard solution, and the total area of the peaks other than tosylate and tosufloxacin from the sample solution is not larger than 2.5 times the peak area of tosufloxacin from the standard solution.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 272 nm).
Column: A stainless steel column 3.0 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 35°C.
Mobile phase A: To 300 to 500 mL of water add slowly 100 mL of methanesulfonic acid under ice-cooling, and add slowly 100 mL of triethylamine under ice-cooling too, and add water to make 1000 mL. To 10 mL of this solution add 143 mL of water, 40 mL of acetonitrile and 7 mL of 1 mol/L dipotassium hydrogen phosphate TS for buffer solution.
Mobile phase B: To 300 to 500 mL of water add slowly 100 mL of methanesulfonic acid under ice-cooling, and add slowly 100 mL of triethylamine under ice-cooling too, and add water to make 1000 mL. To 10 mL of this solution add 100 mL of acetonitrile, 83 mL of water and 7 mL of 1 mol/L dipotassium hydrogen phosphate TS for buffer solution.
Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>1 - 16</td>
<td>100 → 0</td>
<td>0 → 100</td>
</tr>
<tr>
<td>16 - 35</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Flow rate: 0.5 mL per minute.
Time span of measurement: About 5 times as long as the retention time of tosufloxacin.

System suitability—
Test for required detectability: Pipet 5 mL of the standard solution, and add mobile phase A to make exactly 20 mL. Confirm that the peak area of tosufloxacin obtained with 20 μL of this solution is equivalent to 18 to 32% of the peak area of tosufloxacin with 20 μL of the standard solution.
System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the number of theoretical plates and symmetry factor of the peak of tosufloxacin are not less than 10,000 and not more than 1.5, respectively.
System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of tosufloxacin is not more than 2.0%.

Water <2.48>—2.5 - 3.5% (30 mg, coulometric titration).

Assay—Weigh accurately about 30 mg each of Tosufloxacin Tosilate Hydrate and Tosufloxacin Tosilate RS (separately determine the water <2.48> in the same manner as Tosufloxacin Tosilate Hydrate), and dissolve each in methanol to make exactly 100 mL. Pipet 20 μL each of these solutions, to each add exactly 4 mL of the internal standard solution and methanol to make 100 mL, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and calculate the ratios, QT and QS, of the peak area of tosufloxacin to that of the internal standard.

Amount (mg) of tosufloxacin tosilate
\[
(C_{19}H_{15}F_3N_2O_3, C_6H_8O_3) = \frac{M_s \times Q_T}{Q_S}
\]
Mₔ: Amount (mg) of Tosufloxacin Tosilate RS taken, calculated on the anhydrous basis

Internal standard solution—A solution of methyl parahydroxybenzoate in methanol (1 in 800).

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 270 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase: To a mixture of 0.02 mol/L phosphate buffer solution (pH 3.5) and a solution of dibutylamine in methanol (1 in 2500) (3:1) add diluted phosphoric acid (1 in 10) to adjust the pH to 3.5.
Flow rate: Adjust so that the retention time of tosufloxacin is about 20 minutes.
System suitability—
System performance: When the procedure is run with 10

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
µL of the standard solution under the above operating conditions, the internal standard and tosufloxacin are eluted in this order with the resolution between these peaks being not less than 2.5.

System repeatability: When the test is repeated 6 times with 10 µL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of tosufloxacin to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Tight containers.

 Tosufloxacin Tosilate Tablets

トスフロキサシントシル酸塩錠

Tosufloxacin Tosilate Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of tosufloxacin tosilate hydrate \((C_{13}H_{25}F_2N_2O_7 \cdot C_2H_6O_7S \cdot H_2O) \) specified on the label.

Identification To a quantity of powdered Tosufloxacin Tosilate Tablets, equivalent to 75 mg of Tosufloxacin Tosilate Hydrate, add 200 mL of a mixture of methanol and sodium hydroxide TS (49:1), shake well, and centrifuge. To 2 mL of the supernatant liquid add 100 mL of a mixture of methanol and sodium hydroxide TS (49:1). Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry \(<2.4\> \): it exhibits maxima between 260 nm and 264 nm, between 341 nm and 345 nm, and between 356 nm and 360 nm.

Uniformity of dosage units \(<6.02\> \) Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement.

To I tablet of Tosufloxacin Tosilate Tablets add \(V/10 \) mL of water and shake until the tablet is disintegrated. Add methanol to make exactly \(V \) mL so that each mL contains about 1.5 mg of tosufloxacin tosilate hydrate \((C_{13}H_{25}F_2N_2O_7 \cdot C_2H_6O_7S \cdot H_2O) \). Shake this solution for 10 minutes, and centrifuge. Pipet 4 mL of the supernatant liquid, add exactly 4 mL of the internal standard solution and methanol to make 100 mL, and use this solution as the sample solution. Proceed as directed in the Assay.

Amount (mg) of tosufloxacin tosilate hydrate

\[
\text{Amount (mg) of tosufloxacin tosilate hydrate (C}_{13}\text{H}_{25}\text{F}_2\text{N}_2\text{O}_7 \cdot \text{C}_2\text{H}_6\text{O}_7\text{S} \cdot \text{H}_2\text{O}) = M_5 \times \frac{Q_T}{Q_S} \times \frac{V}{20} \times 1.031
\]

\(M_5 \): Amount (mg) of Tosufloxacin Tosilate RS taken, calculated on the anhydrous basis

Internal standard solution—A solution of methyl parahydroxybenzoate in methanol (1 in 800).

Dissolution \(<6.10\> \) When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 90 minutes of Tosufloxacin Tosilate Tablets is not less than 65%. Start the test with I tablet of Tosufloxacin Tosilate Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.5 µm. Discard not less than 10 mL of the first filtrate, pipet \(V \) mL of the subsequent filtrate, add 0.05 mol/L acetic acid-sodium acetate buffer solution (pH 4.0) to make exactly \(V' \) mL so that each mL contains about 17 µg of tosufloxacin tosilate hydrate \(\text{C}_{13}\text{H}_{25}\text{F}_2\text{N}_2\text{O}_7 \cdot \text{C}_2\text{H}_6\text{O}_7\text{S} \cdot \text{H}_2\text{O} \), and use this solution as the sample solution. Separately, weigh accurately about 21 mg of Tosufloxacin Tosilate RS (separately determine the water \(<2.48\> \) in the same manner as Tosufloxacin Tosilate Hydrate), and dissolve in \(\text{N}, \text{N}^\prime\)-dimethylformamide to make exactly 25 mL. Pipet 2 mL of this solution, add 0.05 mol/L acetic acid-sodium acetate buffer solution (pH 4.0) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry \(<2.4\> \), using 0.05 mol/L acetic acid-sodium acetate buffer solution (pH 4.0) as the blank, and determine the absorbances, \(A_T \) and \(A_S \), at 346 nm.

Dissolution rate (%) with respect to the labeled amount of tosufloxacin tosilate hydrate

\[
\text{Dissolution rate} = \frac{M_S \times A_T / A_S \times V' / V \times 1 / C \times 72 \times 1.031}{M_5}
\]

\(M_5 \): Amount (mg) of Tosufloxacin Tosilate RS taken, calculated on the anhydrous basis

\(C \): Labeled amount (mg) of tosufloxacin tosilatehydrate \((C_{13}H_{25}F_2N_2O_7 \cdot C_2H_6O_7S \cdot H_2O) \) in 1 tablet

Assay Weigh accurately the mass of not less than 20 Tosufloxacin Tosilate Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 0.15 g of tosufloxacin tosilate hydrate \((C_{13}H_{25}F_2N_2O_7 \cdot C_2H_6O_7S \cdot H_2O) \), add 10 mL of water and methanol to make exactly 100 mL, shake for 10 minutes, and centrifuge. Pipet 4 mL of the supernatant liquid, add exactly 4 mL of the internal standard solution and methanol to make 100 mL, and use this solution as the sample solution. Separately, weigh accurately about 30 mg of Tosufloxacin Tosilate RS (separately determine the water \(<2.48\> \) in the same manner as Tosufloxacin Tosilate Hydrate), add 2 mL of water, and dissolve in methanol to make exactly 100 mL. Pipet 20 mL of this solution, add exactly 4 mL of the internal standard solution and methanol to make 100 mL, and use this solution as the standard solution. Perform the test with 10 µL each of the sample solution and standard solution as directed under Liquid Chromatography \(<2.07\> \) according to the following conditions, and calculate the ratios, \(Q_T \) and \(Q_S \), of the peak area of tosufloxacin to that of the internal standard.

Amount (mg) of tosufloxacin tosilate hydrate

\[
\text{Amount (mg) of tosfloxacin tosilate hydrate (C}_{13}\text{H}_{25}\text{F}_2\text{N}_2\text{O}_7 \cdot \text{C}_2\text{H}_6\text{O}_7\text{S} \cdot \text{H}_2\text{O}) = M_S \times \frac{Q_T}{Q_S} \times 5 \times 1.031
\]

\(M_5 \): Amount (mg) of Tosufloxacin Tosilate RS taken, calculated on the anhydrous basis

Internal standard solution—A solution of methyl parahydroxybenzoate in methanol (1 in 800).

Operating conditions—

Proceed as directed in the operating conditions in the Assay under Tosufloxacin Tosilate Hydrate.

System suitability—

Proceed as directed in the system suitability in the Assay under Tosufloxacin Tosilate Hydrate.

Containers and storage Containers—Well-closed containers.
Tramadol Hydrochloride

Track Mandour Shadkak

\[
\begin{align*}
\text{H}_2\text{C} & \\text{N} \\text{CH}_3 \\
& \\text{H} \\text{CH}_3 \\
& \text{O} \ \text{CH}_3 \end{align*}
\]

and enantiomer

C\(_{16}\)H\(_{23}\)NO\(_2\)·HCl: 299.84
(1RS,2RS)-2-[(Dimethylamino)methyl]-1-(3-methoxyphenyl)cyclohexanol monohydrochloride [36282-47-0]

Tramadol Hydrochloride contains not less than 99.0% and not more than 101.0% of tramadol hydrochloride (C\(_{16}\)H\(_{23}\)NO\(_2\)·HCl), calculated on the anhydrous basis.

Description Tramadol Hydrochloride occurs as a white crystalline powder. It is very soluble in water, and freely soluble in methanol, in ethanol (95%) and in acetic acid (100%). A solution of Tramadol Hydrochloride (1 in 20) shows no optical rotation. Melting point: 180 – 184°C

Tramadol Hydrochloride shows crystal polymorphism.

Identification (1) Determine the absorption spectrum of a solution of Tramadol Hydrochloride in ethanol (95%) (1 in 10,000) as directed under Ultraviolet-visible Spectrophotometry \(2.24\), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Tramadol Hydrochloride as directed in the potassium chloride disk method under Infrared Spectrophotometry \(2.25\), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) A solution of Tramadol Hydrochloride (1 in 100) responds to Qualitative Tests \(<1.09\) (2) for chloride.

Purity (1) Acidity or alkalinity—Dissolve 1.0 g of Tramadol Hydrochloride in water to make 20 mL. To 10 mL of this solution add 0.2 mL of methyl red TS for acidity or alkalinity test and 0.2 mL of 0.01 mol/L hydrochloric acid VS: a red color develops. To this solution add 0.01 mol/L sodium hydroxide VS until the color of the solution changes from red to yellow: the consumed volume is not more than 1.07 mL, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths. Flow rate: Adjust so that the retention time of tramadol is about 5 minutes. Time span of measurement: About 4 times as long as the retention time of tramadol, beginning after the solvent peak.

System suitability— Test for required detectability: Pipet 1 mL of the standard solution, add the mobile phase to make exactly 20 mL. Confim that the peak area of tramadol obtained with 20 \(\mu\)L of this solution is equivalent to 3.5 to 6.5% of that with 20 \(\mu\)L of the standard solution.

System performance: When the procedure is run with 20 \(\mu\)L of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of tramadol are not less than 5000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 20 \(\mu\)L of the standard solution under the above operating conditions, the relative standard deviation of the peak area of tramadol is not more than 2.0%.

Water \(<2.48\) Not more than 0.5% (1 g, volumetric titration, direct titration).

Residue on ignition \(<2.44\) Not more than 0.1% (1 g).

Assay Weigh accurately about 0.18 g of Tramadol Hydrochloride, dissolve in 25 mL of acetic acid(100), add 10 mL of acetic anhydride, and titrate \(<2.50\) with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.
Tranexamic Acid

1850 Tranexamic Acid / Official Monographs

Each mL of 0.1 mol/L perchloric acid VS = 29.98 mg of C₁₈H₂₅NO₃.HCl

Containers and storage Containers—Tight containers.

Tranexamic Acid

トラネキサム酸

\[\text{C}_6\text{H}_7\text{NO}_3: 157.21 \]

\textit{trans}-4-(Aminomethyl)cyclohexanecarboxylic acid

[1197-18-8]

Tranexamic Acid, when dried, contains not less than 98.0% and not more than 101.0% of tranexamic acid (C₁₈H₂₅NO₃).

Description Tranexamic Acid occurs as white, crystals or crystalline powder.

It is freely soluble in water, and practically insoluble in ethanol (99.5).

Identification Determine the infrared absorption spectrum of Tranexamic Acid as directed in the potassium bromide disk method under Infrared Spectrophotometry 2.2.5, and compare the spectrum with the Reference Spectrum or the spectrum of Tranexamic Acid RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

pH <2.5> The pH of a solution prepared by dissolving 1.0 g of Tranexamic Acid in 20 mL of water is between 7.0 and 8.0.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Tranexamic Acid in 10 mL of water: the solution is clear and colorless.

(2) Chloride <1.03>—Perform the test with 1.0 g of Tranexamic Acid. Prepare the control solution with 0.40 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.014%).

(3) Heavy metals—Dissolve 2.0 g of Tranexamic Acid in water to make 20 mL, and use this solution as the sample stock solution. To 12 mL of the sample stock solution add 2 mL of hydrochloric acid-ammonium acetate buffer solution (pH 3.5), mix, add 1.2 mL of thioacetamide TS, mix immediately, and use this solution as the sample solution. Separately, proceed in the same manner as above with a mixture of 1 mL of Standard Lead Solution, 2 mL of the sample stock solution and 9 mL of water, and use the solution so obtained as the standard solution. Separately, proceed in the same manner with a mixture of 10 mL of water and 2 mL of the sample stock solution, and use the solution so obtained as the control solution. Conform that the color of the standard solution is slightly darker than that of the control solution. Compare the sample solution and the standard solution 2 minutes after they are prepared: the color of the sample solution is not more intense than that of the standard solution (not more than 10 ppm).

(4) Arsenic <1.11>—Prepare the test solution by dissolving 1.0 g of Tranexamic Acid in 10 mL of water, and perform the test (not more than 2 ppm).

(5) Related substances—Dissolve 0.20 g of Tranexamic Acid in 20 mL of water, and use this solution as the sample solution. Pipet 5 mL of the sample solution, and add water to make exactly 100 mL. Pipet 1 mL of this solution, add water to make exactly 10 mL, and use this solution as the standard solution. Perform the test with exactly 20 µL each of the sample solution and standard solution as directed under Liquid Chromatography 2.0.12 according to the following conditions, and determine each peak area by the automatic integration method: the area multiplied by correction factor 1.2 of the peak, having the relative retention time of about 1.5 to tranexamic acid obtained from sample solution, is not larger than 2/5 times the peak area of tranexamic acid from the standard solution, and the area of the peak, having the relative retention time of about 2.1, is not larger than 1/5 times the peak area of tranexamic acid from the standard solution. The area of each peak other than tranexamic acid and the peaks mentioned above is not larger than 1/5 times the peak area of tranexamic acid from the standard solution. For the area of the peaks, having the relative retention time of about 1.1 and about 1.3, multiply their correction factors 0.005 and 0.006, respectively. The total area of the peaks other than tranexamic acid from the sample solution is not larger than the peak area of tranexamic acid from the standard solution.

Operating conditions—

Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 3 times as long as the retention time of tranexamic acid, beginning after the solvent peak.

System suitability—

System performance: Proceed as directed in the system suitability in the Assay.

Test for required detectability: To exactly 5 mL of the standard solution add water to make exactly 25 mL. Confirm that the peak area of tranexamic acid obtained with 20 µL of this solution is equivalent to 14 to 26% of that with 20 µL of the standard solution.

System repeatability: When the test is repeated 6 times with 20 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of tranexamic acid is not more than 7%.

Loss on drying <2.4> Not more than 0.5% (1 g, 105°C, 2 hours).

Residue on ignition <2.4> Not more than 0.1% (1 g).

Assay Weigh accurately about 50 mg each of Tranexamic Acid and Tranexamic Acid RS, previously dried, dissolve in water to make exactly 25 mL, and use these solutions as the sample solution and standard solution. Perform the test with exactly 20 µL each of the sample solution and standard solution as directed under Liquid Chromatography 2.0.12 according to the following conditions, and determine the peak areas, A₁ and A₃, of tranexamic acid in each solution.

Amount (mg) of tranexamic acid (C₁₈H₂₅NO₃) = \(M_c \times \frac{A_1}{A_3} \)

\(M_c \): Amount (mg) of Tranexamic Acid RS taken

Operating conditions—

Detector: An ultraviolet absorption photometer (wave-length: 220 nm).

Column: A stainless steel column 6.0 mm in inside diameter and 25 cm in length, packed with octadecysilanized silica gel for liquid chromatography (5 µm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: Dissolve 11.0 g of anhydrous sodium dihy-
Tranexamic Acid Capsules

トラネキサム酸カプセル

Tranexamic Acid Capsules contain not less than 95.0% and not more than 105.0% of the labeled amount of tranexamic acid (C₇H₁₄NO₃: 157.21).

Method of preparation Prepare as directed under Capsules, with Tranexamic Acid.

Identification Take an amount of powdered contents of Tranexamic Acid Capsules, equivalent to 0.5 g of Tranexamic Acid, add 50 mL of water, shake well, and filter. To 5 mL of the filtrate add 1 mL of ninhydrin TS, and heat for 3 minutes: a dark purple color develops.

Uniformity of dosage units<6.02> It meets the requirement of the Mass variation test.

Dissolution<6.10> When the test is performed at 50 revolutions per minute according to the Paddle method using the sinker, using 900 mL of water as the dissolution medium, the dissolution rate in 15 minutes of Tranexamic Acid Capsules is not less than 80%.

Start the test with 1 tablet of Tranexamic Acid Capsules, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add water to make exactly V’ mL, so that each mL contains about 0.28 mg of tranexamic acid (C₇H₁₄NO₃), and use this solution as the sample solution. Separately, weigh accurately about 28 mg of Tranexamic Acid RS, previously dried at 105°C for 2 hours, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography<2.01> according to the following conditions, and determine the peak areas, A₁ and Aₙ, of tranexamic acid in each solution.

\[
\text{Dissolution rate (٪)} = \frac{M_S \times A_T}{M_A \times V' \times V \times 1/C \times 900}
\]

M₅: Amount (mg) of Tranexamic Acid RS taken
C: Labeled amount (mg) of tranexamic acid (C₇H₁₄NO₃) in 1 capsule

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 220 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecysilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase: Dissolve 11.0 g of anhydrous sodium dihydrogen phosphate in 500 mL of water, and add 10 mL of triethylamine and 1.4 g of sodium lauryl sulfate. Adjust the pH to 2.5 with phosphoric acid, add water to make 600 mL, and add 400 mL of methanol.
Flow rate: Adjust so that the retention time of tranexamic acid is about 8 minutes.
System suitability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of tranexamic acid are not less than 4000 and not more than 2.0, respectively.
System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of tranexamic acid is not more than 2.0%.

Assay Weigh accurately the mass of the contents of not less than 20 Tranexamic Acid Capsules, and powder. Weigh accurately an amount of the powder, equivalent to about 0.1 g of tranexamic acid (C₇H₁₄NO₃), add 30 mL of water, shake well, and add water to make exactly 50 mL. Centrifuge, filter the supernatant liquid through a membrane filter with pore size of not more than 0.45 μm, discard the first 10 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 50 mg of Tranexamic Acid RS, previously dried at 105°C for 2 hours, dissolve in water to make exactly 25 mL, and use this solution as the standard solution. Perform the test with exactly 30 μL each of the sample solution and standard solution as directed under Liquid Chromatography<2.01> according to the following conditions, and determine the peak areas, A₁ and Aₙ, of tranexamic acid in each solution.

\[
\text{Amount (mg) of tranexamic acid (C₇H₁₄NO₃)} = \frac{M_S \times A_T}{A_S} \times 2
\]

M₅: Amount (mg) of Tranexamic Acid RS taken

Operating conditions—

Detector, column, and mobile phase: Proceed as directed in the operating conditions in the Assay under Tranexamic Acid.
Column temperature: A constant temperature of about 35°C.
Flow rate: Adjust so that the retention time of tranexamic acid is about 16 minutes.
System suitability—

System performance: To 5 mL of the standard solution add 1 mL of a solution of 4-(aminomethyl)benzoic acid (1 in 10,000) and water to make 50 mL. When the procedure is run with 30 μL of this solution under the above operating conditions, tranexamic acid and 4-(aminomethyl)benzoic acid are eluted in this order with the resolution between these peaks being not less than 3.
System repeatability: When the test is repeated 6 times

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
with 30 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of tranexamic acid is not more than 1.0%.

Containers and storage Containers—Tight containers.

Tranexamic Acid Injection

トラネキサム酸注射液

Tranexamic Acid Injection is an aqueous injection. It contains not less than 95.0% and not more than 105.0% of the labeled amount of tranexamic acid (C₈H₁₅NO₂: 157.21).

Method of preparation Prepare as directed under Injections, with Tranexamic Acid.

Description Tranexamic Acid Injection is a clear and colorless liquid.

Identification To a volume of Tranexamic Acid Injection, equivalent to 50 mg of Tranexamic Acid, add water to make 5 mL, add 1 mL of ninhydrin TS, and heat: a dark purple color develops.

pH <2.5: 7.0 – 8.0

Bacterial endotoxins <4.01> Not more than 0.12 EU/mg.

Extractable volume <6.05> It meets the requirement.

Foreign insoluble matter <6.06> Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter <6.07> It meets the requirement.

Sterility <4.06> Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Pipet a volume of Tranexamic Acid Injection, equivalent to about 0.1 g of tranexamic acid (C₈H₁₅NO₂), add water to make exactly 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 50 mg of Tranexamic Acid RS, previously dried at 105°C for 2 hours, dissolve in water to make exactly 25 mL, and use this solution as the standard solution. Prepare the test with exactly 30 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A₁ and A₅, of tranexamic acid in each solution.

\[
M₂ = \frac{M₅ \times A₁}{A₅} \times 2
\]

\[
M₅: \text{Amount (mg) of Tranexamic Acid RS taken}
\]

Operating conditions—
Detector, column, and mobile phase: Proceed as directed in the operating conditions in the Assay under Tranexamic Acid.

Column temperature: A constant temperature of about 35°C.

Flow rate: Adjust so that the retention time of tranexamic acid is about 16 minutes.

System suitability—
System performance: To 5 mL of the standard solution add 1 mL of a solution of 4-(aminomethyl)benzoic acid (1 in 10,000) and water to make 50 mL. When the procedure is run with 30 μL of this solution under the above operating conditions, tranexamic acid and 4-(aminomethyl)benzoic acid are eluted in this order with the resolution between these peaks being not less than 3.

System repeatability: When the test is repeated 6 times with 30 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of tranexamic acid is not more than 1.0%.

Containers and storage Containers—Hermetic containers.

Tranexamic Acid Tablets

トラネキサム酸錠

Tranexamic Acid Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of tranexamic acid (C₈H₁₅NO₂: 157.21).

Method of preparation Prepare as directed under Tablets, with Tranexamic Acid.

Identification To an amount of powdered Tranexamic Acid Tablets, equivalent to 0.5 g of Tranexamic Acid, add 50 mL of water, shake well, and filter. To 5 mL of the filtrate add 1 mL of ninhydrin TS, and heat for 3 minutes: a dark purple color develops.

Uniformity of dosage units <6.02> It meets the requirement of the Mass variation test.

Dissolution Being specified separately when the drug is granted approval based on the Law.

Assay Weigh accurately the mass of not less than 20 Tranexamic Acid Tablets, and powder. Weigh accurately a quantity of the powder, equivalent to about 5 g of tranexamic acid (C₈H₁₅NO₂), add 150 mL of water, disintegrate the tablets completely by sonating, and add water to make exactly 200 mL. Centrifuge, pipet 4 mL of the supernatant liquid, and add water to make exactly 50 mL. Filter through a membrane filter with a pore size of not more than 0.45 μm, discard the first 10 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 50 mg of Tranexamic Acid RS, previously dried at 105°C for 2 hours, dissolve in water to make exactly 25 mL, and use this solution as the standard solution. Prepare the test with exactly 30 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A₁ and A₅, of tranexamic acid in each solution.

\[
\text{Amount (mg) of tranexamic acid (C₈H₁₅NO₂)} = M₂ \times A₁ / A₅ \times 100
\]

\[
M₂: \text{Amount (mg) of Tranexamic Acid RS taken}
\]

Operating conditions—
Detector, column, and mobile phase: Proceed as directed in the operating conditions in the Assay under Tranexamic Acid.

Column temperature: A constant temperature of about 35°C.

Flow rate: Adjust so that the retention time of tranexamic acid is about 16 minutes.

System suitability—
System performance: To 5 mL of the standard solution add 1 mL of a solution of 4-(aminomethyl)benzoic acid (1 in 10,000) and water to make 50 mL. When the procedure is run with 30 μL of this solution under the above operating conditions, tranexamic acid and 4-(aminomethyl)benzoic acid are eluted in this order with the resolution between these peaks being not less than 3.
peaks being not less than 3.

System repeatability: When the test is repeated 6 times with 30 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of tranexamic acid is not more than 1.0%.

Containers and storage Containers—Tight containers.

Tranilast

![Chemical Structure of Tranilast](image)

C₁₈H₁₇NO₇: 327.33
2-[[2E]-3-(3,4-Dimethoxyphenyl)prop-2-enoyl]amino]benzoic acid [55902-12-8]

Tranilast, when dried, contains not less than 99.0% and not more than 101.0% of tranilast (C₁₈H₁₇NO₇).

Description Tranilast occurs as light yellow, crystals or crystalline powder.

It is freely soluble in N,N-dimethylformamide, slightly soluble in acetonitrile, in methanol and in ethanol (99.5), and practically insoluble in water. It gradually becomes light yellow-brown on exposure to light. It shows crystal polymorphism.

Identification (1) Determine the absorption spectrum of a solution of Tranilast in methanol (1 in 200,000) as directed under Ultraviolet-visible Spectrophotometry [2.24], and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

Identification (2) Determine the infrared absorption spectrum of Tranilast, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry [2.25], and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point 207 – 210°C

Purity (1) Heavy metals ≤ 0.07—Proceed with 2.0 g of Tranilast according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

Purity (2) Related substances—Conduct this procedure without exposure to light, using light-resistant vessels. Dissolve 50 mg of Tranilast in 50 mL of acetonitrile, and use this solution as the sample solution. Pipet 1 mL of the sample solution, and add acetonitrile to make exactly 50 mL. Pipet 1 mL of this solution, add acetonitrile to make exactly 20 mL, and use this solution as the standard solution. Perform the test with exactly 5 μL each of the sample solution and standard solution as directed under Liquid Chromatography [2.01] according to the following conditions. Determine each peak area by the automatic integration method: the area of the peak other than tranilast obtained from the sample solution is not larger than the peak area of tranilast from the standard solution.

Operating conditions

- **Detector:** An ultraviolet absorption photometer (wavelength: 255 nm).
- **Column:** A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadeclsilanized silica gel for liquid chromatography (5 μm in particle diameter).
- **Column temperature:** A constant temperature of about 25°C.
- **Mobile phase:** A mixture of dilute acetic acid (100) (1 in 100) and acetonitrile (3:2).
- **Flow rate:** Adjust so that the retention time of tranilast is about 7 minutes.
- **Time span of measurement:** About 4 times as long as the retention time of tranilast, beginning after the solvent peak.

System suitability

System performance: When the procedure is run with 5 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of tranilast are not less than 5000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 5 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of tranilast is not more than 3%.

(3) **Chloroform—Weigh accurately about 1 g of Tranilast, dissolve in exactly 5 mL of a solution, prepared by adding N,N-dimethylformamide to exactly 1 mL of the internal standard solution to make exactly 100 mL, and use this solution as the sample solution. Separately, weigh accurately about 3 g of chloroform, and add N,N-dimethylformamide to make exactly 100 mL. Pipet 1 mL of this solution, add exactly 1 mL of the internal standard solution, add N,N-dimethylformamide to make 100 mL, and use this solution as the standard solution. Perform the test with 1 μL each of the sample solution and standard solution as directed under Gas Chromatography [2.02] according to the following conditions, and calculate the ratios, Q₁ and Q₂, of the peak area of chloroform to that of the internal standard: the amount of chloroform is not more than 0.006%.

\[
\text{Amount (%) of chloroform} = \frac{M_s}{M_f} \times \frac{Q_1}{Q_2} \times 1/20
\]

Mₙ: Amount (g) of chloroform taken
Mₙₑ: Amount (g) of Tranilast taken

Internal standard solution—A solution of trichloroethylene in N,N-dimethylformamide (1 in 50).

Operating conditions

- **Detector:** A hydrogen flame-ionization detector.
- **Column:** A glass column 3 mm in inside diameter and 1 m in length, packed with porous styrene-divinylbenzene copolymer for gas chromatography (0.3 – 0.4 μm in mean pore size, not exceeding 50 m²/g) (150 – 180 μm in particle diameter).
- **Column temperature:** A constant temperature of about 160°C.
- **Carrier gas:** Nitrogen.
- **Flow rate:** Adjust so that the retention time of chloroform is about 2 minutes.

System suitability

System performance: When the procedure is run with 1 μL of the standard solution under the above operating conditions, chloroform and the internal standard are eluted in this order with the resolution between these peaks being not less than 3.

System repeatability: When the test is repeated 6 times with 1 μL of the standard solution under the above operating
conditions, the relative standard deviation of the ratio of the peak area of chloroform to that of the internal standard is not more than 1.0%.

Loss on drying^{2.45} Not more than 0.3% (1 g, 105°C, 3 hours).

Residue on ignition^{2.44} Not more than 0.2% (1 g).

Assay Weigh accurately about 0.4 g of Tranilast, previously dried, dissolve in 25 mL of N,N-dimethylformamide, add 25 mL of water, and titrate^{2.50} with 0.1 mol/L sodium hydroxide VS, until a 30-seconds persistent light-red color is obtained (indicator: 3 drops of phenolphthalein TS). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L sodium hydroxide VS
\[= 32.73 \text{ mg of } \text{C}_9\text{H}_7\text{NO}_3\]

Containers and storage Containers—Well-closed containers.

Storage—Light-resistant.

Tranilast Capsules

トランイラストカプセル

Tranilast Capsules contain not less than 95.0% and not more than 105.0% of the labeled amount of tranilast (C₉H₇NO₃; 327.33).

Method of preparation Prepare as directed under Capsules, with Tranilast.

Identification To an amount of the content of Tranilast Capsules, equivalent to 0.1 g of Tranilast, add 180 mL of diethyl ether, shake thoroughly, filter, and evaporate the filtrate to dryness on a water bath. Determine the absorption spectrum of a solution of the residue in methanol (1 in 200,000) as directed under Ultraviolet-visible Spectrophotometry^{2.24}: it exhibits a maximum between 333 nm and 337 nm.

Uniformity of dosage units^{6.02} Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement.

Conduct this procedure using light-resistant vessels. Shake the contents and the empty capsule shell of 1 Tranilast Capsules with a mixture of 0.05 mol/L phosphate buffer solution (pH 7.0) and acetonitrile (7:3) to make exactly V mL so that each mL contains about 0.5 mg of tranilast (C₉H₇NO₃), and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 10 mL of the filtrate, pipet 10 mL of the subsequent filtrate, and add exactly 10 mL of the internal standard solution, then add a mixture of 0.05 mol/L phosphate buffer solution (pH 7.0) and acetonitrile (7:3) to make exactly 200 mL, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 10 mL of the filtrate, pipet 10 mL of the subsequent filtrate, and add exactly 10 mL of the internal standard solution, then add a mixture of 0.05 mol/L phosphate buffer solution (pH 7.0) and acetonitrile (7:3) to make exactly 50 mL, and use this solution as the sample solution. Perform the test with 5 mL each of the sample solution and standard solution as directed under Liquid Chromatography^{2.07} according to the following conditions, and calculate the ratios, Q_C and Q_S, of the peak area of tranilast to that of the internal standard.

\[
M_5: \text{Amount (mg) of tranilast for assay taken}
\]

\[
\text{Amount (mg) of tranilast (C}_9\text{H}_7\text{NO}_3\text{)} = M_5 \times V/Q_S \times V'/50
\]

\[
M_5: \text{Amount (mg) of tranilast for assay taken}
\]

Internal standard solution—Ethyl parahydroxybenzoate in a mixture of 0.05 mol/L phosphate buffer solution (pH 7.0) and acetonitrile (7:3) (1 in 5000).

Dissolution^{6.10} When the test is performed at 75 revolutions per minute according to the Paddle method using the sinker, using 900 mL of disodium hydrogen phosphate-citric acid buffer solution (pH 5.5) as the dissolution medium, the dissolution rate in 60 minutes of Tranilast Capsules is not less than 75%.

Conduct this procedure without exposure to light, using light-resistant vessels. Start the test with 1 capsule of Tranilast Capsules, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add 2nd fluid for dissolution test to make exactly V mL so that each mL contains about 5.6 μg of tranilast (C₉H₇NO₃), and use this solution as the sample solution. Separately, weigh accurately about 28 mg of tranilast for assay, previously dried at 105°C for 3 hours, and dissolve in 2nd fluid for dissolution test to make exactly 100 mL. Pipet 5 mL of this solution, and add 2nd fluid for dissolution test to make exactly 50 mL; then, pipet 5 mL of this solution, and add 2nd fluid for dissolution test to make exactly 25 mL, and use this solution as the standard solution. Determine the absorbances, A_T and A_S, at 332 nm of the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry^{2.24}.

\[
\text{Dissolution rate (%) with respect to the labeled amount of tranilast (C}_9\text{H}_7\text{NO}_3\text{)} = M_5 \times A_T/A_S \times V'/V \times 1/C \times 18
\]

\[
M_5: \text{Amount (mg) of tranilast for assay taken}
\]

\[
\text{C: Labeled amount (mg) of tranilast (C}_9\text{H}_7\text{NO}_3\text{) in 1 capsule}
\]

Assay Conduct this procedure using light-resistant vessels. Weigh accurately the mass of the contents of not less than 20 Tranilast Capsules, and powder. Weigh accurately a portion of the powder, equivalent to about 0.1 g of tranilast (C₉H₇NO₃), shake with a suitable amount of a mixture of 0.05 mol/L phosphate buffer solution (pH 7.0) and acetonitrile (7:3), then add the same mixture to make exactly 200 mL, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 10 mL of the filtrate, pipet 10 mL of the subsequent filtrate, add exactly 10 mL of the internal standard solution, then add a mixture of 0.05 mol/L phosphate buffer solution (pH 7.0) and acetonitrile (7:3) to make exactly 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 25 mg of tranilast for assay, previously dried at 105°C for 3 hours, and dissolve in a mixture of 0.05 mol/L phosphate buffer solution (pH 7.0) and acetonitrile (7:3) to make exactly 50 mL. Pipet 10 mL of this solution, add exactly 10 mL of the internal standard solution, then add a mixture of 0.05 mol/L phosphate buffer solution (pH 7.0) and acetonitrile (7:3) to make exactly 50 mL, and use this solution as the standard solution. Perform the test with 5 mL each of the sample solution and standard solution as directed under Liquid Chromatography^{2.07} according to the following conditions, and calculate the ratios, Q_C and Q_S, of the peak area of tranilast to that of the internal standard.

\[
\text{Amount (mg) of tranilast (C}_9\text{H}_7\text{NO}_3\text{)} = M_5 \times Q_C/Q_S \times 4
\]

\[
M_5: \text{Amount (mg) of tranilast for assay taken}
\]

Internal standard solution—Ethyl parahydroxybenzoate in a mixture of 0.05 mol/L phosphate buffer solution (pH 7.0) and acetonitrile (7:3) (1 in 5000).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 255 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Mobile phase: A mixture of dilute acetic acid (100) (1 in 100) and acetonitrile (3:2).

Flow rate: Adjust so that the retention time of tranilast is about 7 minutes.

System suitability—

System performance: When the procedure is run with 5 μL of the standard solution under the above operating conditions, the internal standard and tranilast are eluted in this order with the resolution between these peaks being not less than 8.

System repeatability: When the test is repeated 6 times with 5 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of tranilast to that of the internal standard is not more than 1.0%.

Containers and storage—Containers—Tight containers.

Storage—Light-resistant.

Tranilast Fine Granules

トラニラスト細粒

Tranilast Fine Granules contain not less than 95.0% and not more than 105.0% of the labeled amount of tranilast (C18H17NO5: 327.33).

Method of preparation—Prepare as directed under Granules, with Tranilast.

Identification—To an amount of Tranilast Fine Granules, equivalent to 0.1 g of Tranilast, add 180 mL of diethyl ether, shake thoroughly, filter, and evaporate the filtrate to dryness on a water bath. Determine the absorption spectrum of a solution of the residue in methanol (1 in 200,000) as directed under Ultraviolet-visible Spectrophotometry 2.24: it exhibits a maximum at 333 nm and 337 nm.

Uniformity of dosage units—Perform the test according to the following method: Tranilast Fine Granules in single-dose packages meet the requirement of the Content uniformity test.

Conduct this procedure using light-resistant vessels. Shake the total content of 1 package of Tranilast Fine Granules with a mixture of 0.05 mol/L phosphate buffer solution (pH 7.0) and acetonitrile (7:3) to make exactly 50 mL so that each mL contains about 0.5 mg of tranilast (C18H17NO5), shake with a suitable amount of a mixture of 0.05 mol/L phosphate buffer solution (pH 7.0) and acetonitrile (7:3), then add the same mixture to make exactly 100 mL, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 10 mL of the filtrate, pipet 10 mL of the subsequent filtrate, add exactly 10 mL of the internal standard solution, then add a mixture of 0.05 mol/L phosphate buffer solution (pH 7.0) and acetonitrile (7:3) to make exactly 50 mL, and use this solution as the sample solution. Then, proceed as directed in the Assay.

Amount (mg) of tranilast (C18H17NO5) = M0 × Qs × V/50

M0: Amount (mg) of tranilast for assay taken

Internal standard solution—Ethyl parahydroxybenzoate in a mixture of 0.05 mol/L phosphate buffer solution (pH 7.0) and acetonitrile (7:3) (1 in 5000).

Dissolution—When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of disodium hydrogen phosphate-citric acid buffer solution (pH 5.5) as the dissolution medium, the dissolution rate in 30 minutes of Tranilast Fine Granules is not less than 75%.

Conduct this procedure without exposure to light, using light-resistant vessels. Start the test with an accurately weighed amount of Tranilast Fine Granules, equivalent to about 0.1 g of tranilast (C18H17NO5), withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet 5 mL of the subsequent filtrate, add 2nd fluid for dissolution test to make exactly 100 mL, and use this solution as the sample solution. Separately, weigh accurately about 28 mg of tranilast for assay, previously dried at 105°C for 3 hours, and dissolve in 2nd fluid for dissolution test to make exactly 100 mL. Then, pipet 5 mL of this solution, and add 2nd fluid for dissolution test to make exactly 50 mL. Then, pipet 5 mL of this solution, and add 2nd fluid for dissolution test to make exactly 25 mL, and use this solution as the standard solution. Determine the absorbances, A1 and A5, at 332 nm of the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry 2.24:

Dissolution rate (%) with respect to the labeled amount of tranilast (C18H17NO5) = M0/M1 × A1/A5 × 1/C × 360

M0: Amount (mg) of tranilast for assay taken

M1: Amount (g) of Tranilast Fine Granules taken

C: Labeled amount (mg) of tranilast (C18H17NO5) in 1 g

Assay—Conduct this procedure using light-resistant vessels. Powder Tranilast Fine Granules. Weigh accurately a portion of the powder, equivalent to about 0.1 g of tranilast (C18H17NO5), shake with a suitable amount of a mixture of 0.05 mol/L phosphate buffer solution (pH 7.0) and acetonitrile (7:3), then add the same mixture to make exactly 200 mL, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 10 mL of the filtrate, pipet 10 mL of the subsequent filtrate, add exactly 10 mL of the internal standard solution, then add a mixture of 0.05 mol/L phosphate buffer solution (pH 7.0) and acetonitrile (7:3) to make exactly 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 25 mg of tranilast for assay, previously dried at 105°C for 3 hours, and dissolve in a mixture of 0.05 mol/L phosphate buffer solution (pH 7.0) and acetonitrile (7:3) to make exactly 50 mL. Then, pipet 10 mL of this solution, and add 2nd fluid for dissolution test to make exactly 50 mL, and use this solution as the standard solution. Perform the test with 5 μL each of the sample solution and standard solution as directed under Liquid Chromatography 2.24: according to the following conditions, and calculate the ratios, Q1 and Q5, of the peak area of tranilast to that of the internal standard.

Amount (mg) of tranilast (C18H17NO5) = M0 × Qs × V/50

M0: Amount (mg) of tranilast for assay taken

Internal standard solution—Ethyl parahydroxybenzoate in a mixture of 0.05 mol/L phosphate buffer solution (pH 7.0) and acetonitrile (7:3) (1 in 5000).

Operating conditions—

Detector: An ultraviolet absorption photometer (wave-
Tranilast Ophthalmic Solution

トラニラスト点眼液

Tranilast Ophthalmic Solution is an aqueous ophthalmic preparation.

It contains not less than 95.0% and not more than 105.0% of the labeled amount of tranilast (C_{18}H_{17}NO_3: 327.33).

Method of preparation Prepare as directed under Ophthalmic Liquids and Solutions, with Tranilast.

Description Tranilast Ophthalmic Solution occurs as a clear and pale yellow liquid.

Identification When add 2 mL of dilute hydrochloric acid to a volume of Tranilast Ophthalmic Solution, equivalent to about 50 mg of Tranilast, a white precipitate is produced. Collect the precipitate by filtration, wash the precipitate with two 10-mL portions of water, and dry at 105°C for 3 hours. Dissolve 5 mg of the precipitate in methanol to make 100 mL. To 5 mL of this solution add methanol to make 50 mL, and determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry (C2.24): it exhibits a maximum between 333 nm and 337 nm.

Osmotic pressure ratio Being specified separately when the drug is granted approval based on the Law.

pH Being specified separately when the drug is granted approval based on the Law.

Foreign insoluble matter <6.11> It meets the requirement.

Insoluble particulate matter <6.08> It meets the requirement.

Sterility <4.06> Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Conduct this procedure using light-resistant vessels. To exactly a volume of Tranilast Ophthalmic Solution, equivalent to about 5 mg of tranilast (C_{18}H_{17}NO_3), add exactly 10 mL of the internal standard solution, then add ethanol (99.5) to make 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 25 mg of tranilast for assay, previously dried at 105°C for 3 hours, and dissolve in ethanol (99.5) to make exactly 50 mL. Pipet 10 mL of this solution, add exactly 10 mL of the internal standard solution, then add ethanol (99.5) to make 50 mL, and use this solution as the standard solution. Perform the test with 5 µL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and calculate the ratios, Qr and Qs, of the peak area of tranilast to that of the internal standard.

Amount (mg) of tranilast: $M_s = M_x \times Q_s / Q_r \times 1/5$

M_s: Amount (mg) of tranilast for assay taken

Internal standard solution—A solution of ethyl parahydroxybenzoate in ethanol (99.5) (1 in 5000).

Operating conditions—

Detector: An ultraviolet absorption photometer (wave-length: 255 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 µm particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: A mixture of diluted acetic acid (100) (1 in 100) and acetonitrile (3:2).

Flow rate: Adjust so that the retention time of tranilast is about 7 minutes.

System suitability—

System performance: When the procedure is run with 5 µL of the standard solution under the above operating conditions, the internal standard and tranilast are eluted in this order with the resolution between these peaks being not less than 8.

System repeatability: When the test is repeated 6 times with 5 µL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of tranilast to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Tight containers.

Storage—Light-resistant.

Tranilast for Syrup

シロップ用トラニラスト

Tranilast for Syrup is a preparation for syrup, which is suspended before use.

It contains not less than 95.0% and not more than 105.0% of the labeled amount of tranilast (C_{18}H_{17}NO_3: 327.33).

Method of preparation Prepare as directed under Syrups, with Tranilast.

Identification To an amount of Tranilast for Syrup, equivalent to 0.1 g of Tranilast, add 180 mL of diethyl ether, shake thoroughly, filter, and evaporate the filtrate to dryness on a water bath. Determine the absorption spectrum of a solution of the residue in methanol (1 in 200,000) as directed under Ultraviolet-visible Spectrophotometry (C2.24): it exhibits a maximum between 333 nm and 337 nm.

Uniformity of dosage units <6.02> Perform the test accord-
ing to the following method: Tranilast for Syrup in single-dose packages meet the requirement of the Content uniformity test.

Conduct this procedure using light-resistant vessels. Shake the total content of 1 package of Tranilast for Syrup with a mixture of 0.05 mol/L phosphate buffer solution (pH 7.0) and acetonitrile (7:3), then add the same mixture to make exactly V mL so that each mL contains about 0.5 mg of tranilast (C₁₅H₁₇N₅O₅), and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 10 mL of the filtrate, pipet 10 mL of the subsequent filtrate, add exactly 10 mL of the internal standard solution, then add a mixture of 0.05 mol/L phosphate buffer solution (pH 7.0) and acetonitrile (7:3) to make 50 mL, and use this solution as the sample solution. Then, proceed as directed in the Assay.

Amount (mg) of tranilast (C₁₅H₁₇N₅O₅) = M₁ × Q₁ / Qₛ × V / 50

Mₛ: Amount (mg) of tranilast for assay taken

Internal standard solution—Ethyl parahydroxybenzoate in a mixture of 0.05 mol/L phosphate buffer solution (pH 7.0) and acetonitrile (7:3) (1 in 5000).

Dissolution

When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of disodium hydrogen phosphate-citric acid buffer solution (pH 5.5) as the dissolution medium, the dissolution rate in 60 minutes of Tranilast for Syrup is not less than 75%.

Conduct this procedure without exposure to light, using light-resistant vessels. Start the test with an accurately weighed amount of Tranilast for Syrup, equivalent to about 0.1 g of tranilast (C₁₅H₁₇N₅O₅), withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet 5 mL of the subsequent filtrate, add 2nd fluid for dissolution test to make exactly 100 mL, and use this solution as the sample solution. Separately, weigh accurately about 25 mg of tranilast for assay, previously dried at 105°C for 3 hours, and dissolve in 2nd fluid for dissolution test to make 50 mL, and use this solution as the sample solution. Then, proceed as directed in the Assay.

Amount (mg) of tranilast (C₁₅H₁₇N₅O₅) = M₂ × Q₂ / Qₛ × V / 50

Mₛ: Amount (mg) of tranilast for assay taken

Internal standard solution—Ethyl parahydroxybenzoate in a mixture of 0.05 mol/L phosphate buffer solution (pH 7.0) and acetonitrile (7:3) (1 in 5000).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 255 nm).

Mobile phase: A mixture of acetic acid (10%) (1 in 100) and acetonitrile (3:2).

Flow rate: Adjust so that the retention time of tranilast is about 7 minutes.

System suitability—

System performance: When the procedure is run with 5 μL of the standard solution under the above operating conditions, the internal standard and tranilast are eluted in this order with the resolution between these peaks being not less than 8.

System repeatability: When the test is repeated 6 times with 5 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of tranilast to that of the internal standard is not more than 1.0%.

Containers and storage—Containers—Tight containers.

Storage—Light-resistant.

Trapidil

トラピジル

C₁₀H₁₅N₅: 205.26
7-Diethylamino-5-methyl[1,2,4]triazolo[1,5-a]pyrimidine [15421-84-8]

Trapidil, when dried, contains not less than 98.5% of tranilast (C₁₅H₁₇N₅O₅).

Description—Trapidil occurs as a white to pale yellow-white crystalline powder.
It is very soluble in water and in methanol, freely soluble in ethanol (95), in acetic anhydride and in acetic acid (100), and sparingly soluble in diethyl ether.

The pH of a solution of 1.0 g of Trehapide in 100 mL of water is between 6.5 and 7.5.

Identification (1) To 5 mL of a solution of Trehapide (1 in 50) add 3 drops of Dragendorff’s TS: an orange color develops.

(2) Determine the absorption spectrum of a solution of Trehapide (1 in 25,000) as directed under Ultraviolet-visible Spectrophotometry, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

Absorbance <2.25, E_{1%1cm} (307 nm): 860 – 892 (after drying, 20 mg, water, 2500 mL).

Melting point >2.20, 101 – 105°C

Purity (1) Clarity and color of solution—Dissolve 2.5 g of Trehapide in 10 mL of water: the solution is clear and colorless to pale yellow.

(2) Chloride <1.03>—Perform the test with 0.5 g of Trehapide. Prepare the control solution with 0.25 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.018%).

(3) Ammonium—Place 0.05 g of Trehapide in a glass-stoppered conical flask, thoroughly moisten with 10 drops of sodium hydroxide TS, and stopper the flask. Allow it to stand at 37°C for 15 minutes: the gas evolved does not change moistened red litmus paper to blue.

(4) Heavy metals <1.07>—Dissolve 1.0 g of Trehapide in 40 mL of water, and add 1.5 mL of dilute hydrochloric acid, 2 mL of dilute acetic acid and water to make 100 mL. Perform the test using this solution as the test solution. Prepare the control solution as follows: to 1.0 mL of Standard Lead Solution add 2 mL of dilute acetic acid and water to make 50 mL (not more than 10 ppm).

(5) Arsenic <1.11>—Prepare the test solution with 1.0 g of Trehapide according to Method 1, and perform the test (not more than 2 ppm).

(6) Related substances—Dissolve 0.10 g of Trehapide in 4 mL of methanol, and use this solution as the sample solution. Pipet 1 mL of the sample solution, and add methanol to make exactly 20 mL. Pipet 1 mL of this solution, add methanol to make exactly 100 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 20 µL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of chloroform, ethanol (95) and acetic acid (100) (85:13:2) to a distance of about 10 cm, and air-dry the plate. Allow the plate to stand in iodine vapor for 60 minutes: the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying <2.47> Not more than 0.5% (1 g, in vacuum, silica gel, 60°C, 3 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.2 g of Trehapide, previously dried, dissolve in 20 mL of acetic acid (100), and titrate <2.50> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 20.53 mg of C₁₂H₂₂O₁₁2H₂O

Trehapide contains not less than 98.0% and not more than 101.0% of trehalose (C₁₂H₂₂O₁₁2H₂O: 378.33 α-D-Glucopyranosyl α-D-glucopyranoside dihydrate [6138-23-4].

Description Trehapide occurs as white crystals or crystalline powder.

It is freely soluble in water, and slightly soluble in methanol and in ethanol (99.5).

Identification (1) To 1 mL of a solution of Trehapide (2 in 5) add 5 – 6 drops of a solution of 1-naphthol in ethanol (95) (1 in 20), shake thoroughly, and add gently 2 mL of sulfuric acid: a purple color appears at the zone of contact.

(2) Mix 2 mL of a solution of Trehapide (1 in 25) with 1 mL of dilute hydrochloric acid, and allow standing for 20 minutes at room temperature. Then add 4 mL of sodium hydroxide TS and 2 mL of a solution of glycine (1 in 25), and heat in a water bath for 10 minutes: no brown color appears.

(3) Determine the infrared absorption spectrum of Trehapide as directed in the potassium bromide disk method under Infrared Spectrophotometry, and compare the spectrum with the Reference Spectrum or the spectrum of Trehapide RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation <2.49> [α]_D: +197 – +201° (10 g calculated on the anhydrous basis, water, 100 mL, 100 mm).

pH <2.54> The pH of a solution of 1 g of Trehapide in 10 mL of water is between 4.5 and 6.5.

Purity (1) Chloride <1.05>—Perform the test with 2.0 g of Trehapide. Prepare the control solution with 1.0 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.018%).

(2) Sulfate <1.14>—Perform the test with 2.0 g of Trehapide. Prepare the control solution with 1.0 mL of 0.005 mol/L sulfuric acid VS (not more than 0.024%).

(3) Heavy metals <1.07>—Proceed with 5.0 g of Trehapide according to Method 1, and perform the test. Prepare the control solution with 2.5 mL of Standard Lead Solution (not more than 5 ppm).

(4) Related substances—Dissolve 0.5 g of Trehapide in 10 mL of water, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add water to make exactly 100 mL, and use this solution as the standard solution.

C₁₂H₂₂O₁₁2H₂O: 378.33 α-D-Glucopyranosyl α-D-glucopyranoside dihydrate [6138-23-4]
solution. Perform the test with exactly 20 μL of each of the sample solution and standard solution as directed under Liquid Chromatography <<2.07>> according to the following conditions. Determine each peak area by the automatic integration method: the total area of the peaks which are eluted before the peak of trehalose and the total area of the peaks which are eluted after the peak of trehalose obtained from the sample solution are both not larger than 1/2 times the peak area of trehalose from the standard solution.

Operating conditions—

Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions under the Assay.

Time span of measurement: About 2 times as long as the retention time of trehalose.

System suitability—

System performance: Proceed as directed in the system suitability in the Assay.

Test for required detectability: To exactly 1 mL of the standard solution add water to make exactly 10 mL. Confirm that the peak area of trehalose obtained with 20 μL of this solution is equivalent to 7 to 13% of that with 20 μL of the standard solution.

System repeatability: To exactly 5 mL of the standard solution add water to make exactly 10 mL. When the test is repeated 6 times with 20 μL of this solution under the above operating conditions, the relative standard deviation of the peak area of trehalose is not more than 1.0%.

(5) Dextrin, soluble starch, and sulfite—Dissolve 1.0 g of Trehalose Hydrate in 10 mL of water and add 1 drop of iodine TS: a yellow color appears, which is changed to blue on addition of 1 drop of starch TS.

(6) Nitrogen—Perform the test with accurately weighed Trehalose Hydrate of about 5 g as directed under Nitrogen Determination <<1.08>>. using 30 mL of sulfuric acid for the degradation and adding 45 mL of sodium hydroxide solution (2 in 5): the amount of nitrogen (N: 14.01) is not more than 0.005%.

Water <<2.48>> Not less than 9.0% and not more than 11.0% (0.1 g, volumetric titration, direct titration).

Residue on ignition <<2.48>> Not more than 0.1% (2 g).

Assay Weigh accurately about 0.2 g each of Trehalose Hydrate and Trehalose RS (separately determine the water) in 6 mL of water, add exactly 2 mL each of the internal standard solution, add water to make them 20 mL, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <<2.01>> according to the following conditions, and calculate the ratios, Q₁ and Q₂, of the peak area of trehalose to that of the internal standard.

\[M_5: \text{Amount (mg) of Trehalose (C}_\text{16-H}_\text{22-O}_\text{5}) = M_5 \times \frac{Q_1}{Q_2} \]

Internal standard solution— A solution of glycerin (1 in 10).

Operating conditions—

Detector: A differential refractometer.

Column: A stainless steel column 8 mm in inside diameter and 30 cm in length, packed with strongly acidic ion-exchange resin for liquid chromatography consist of styrene-divinylbenzene copolymer carrying sulfonic acid groups (6 μm in particle diameter).

Column temperature: A constant temperature of about 80°C.

Mobile phase: Water.

Flow rate: Adjust so that the retention time of trehalose is about 15 minutes.

System suitability—

System performance: Dissolve 0.1 g each of maltotriose and glucose in 10 mL of the standard solution, add 1 mL of the internal standard solution, and add water to make 20 mL. When the procedure is run with 20 μL of this solution under the above operating conditions, maltotriose, trehalose, glucose, and the internal standard are eluted in this order, and the resolution between the peaks of maltotriose and trehalose is not less than 1.5, the resolution between the peaks of trehalose and glucose is not less than 4, and the resolution between the peaks of glucose and the internal standard is not less than 3.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of trehalose to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Tight containers.

Trepibutone

トレピブトン

\[C_{16}H_{22}O_5: 310.34 \]

4-Oxo-4-(2,4,5-triethoxyphenyl)butanoic acid [41826-92-0]

Trepibutone, when dried, contains not less than 98.5% of trepibutone (C_{16}H_{22}O_5).

Description Trepibutone occurs as white to yellowish white, crystals or crystalline powder. It is odorless, and is tasteless or has a slight, characteristic aftertaste.

It is soluble in acetone, sparingly soluble in ethanol (95), slightly soluble in diethyl ether, and practically insoluble in water.

It dissolves in sodium hydroxide TS.

Identification

(1) Determine the absorption spectrum of a solution of Trepibutone in deuterated chloroform for the nuclear magnetic resonance spectroscopy (1 in 10), using tetramethylsilane for the nuclear magnetic resonance spectroscopy as an internal reference compound, as directed under Nuclear Magnetic Resonance Spectroscopy <<2.21>>: it exhibits a sharp multiplet signal A at around \(\delta 1.5 \) ppm, a triplet signal B at around \(\delta 2.7 \) ppm, a triplet signal C at around \(\delta 3.3 \) ppm, a multiplet signal D at around \(\delta 4.2 \) ppm, a sharp singlet signal E at around \(\delta 6.4 \) ppm, a sharp singlet signal F at around \(\delta 7.4 \) ppm, and a singlet signal G at around \(\delta 10.5 \) ppm. The ratio of integrated intensity of each signal, A:B:C:D:E:F:G, is about 9:2:2:6:1:1:1.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs. General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
Melting point 146 – 150°C

Purity (1) Chloride 0.03—Dissolve 0.5 g of Trepibutone in 30 mL of acetone, and add 6 mL of dilute nitric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution as follows: to 0.30 mL of 0.01 mol/L hydrochloric acid VS add 30 mL of acetone, 6 mL of dilute nitric acid and water to make 50 mL (not more than 0.021%)

(2) Heavy metals 0.07—Proceed with 1.0 g of Trepibutone according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm)

(3) Related substances—Dissolve 0.10 g of Trepibutone in 10 mL of acetone, and use this solution as the sample solution. Pipet 2.0 mL of the sample solution, add acetone to make exactly 100 mL. To exactly 10 mL of this solution add acetone to make exactly 100 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography 0.03. Spot 10 µL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of isoproplol, acetone, water and formic acid (100:30:3:3) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying 2.41 Not more than 0.5% (1 g, 105°C, 4 hours)

Residue on ignition 2.44 Not more than 0.1% (1 g)

Assay Weigh accurately about 0.5 g of Trepibutone, previously dried, to make 50 mL of ethanol (95), add 50 mL of water, and titrate 2.56 with 0.1 mol/L sodium hydroxide VS (indicator: 5 drops of phenolphthalein TS). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L sodium hydroxide VS = 31.03 mg of C_{21}H_{27}O_{6}

Containers and storage Containers—Tight containers. Storage—Light-resistant.

Triamcinolone トリアムシノロン

\[
\text{C}_{21}\text{H}_{27}\text{FO}_{6}: 394.43
\]

9-Fluoro-11β,16α,17,21-tetrahydroxyprogna-1,4-diene-3,20-dione [124-94-7]

Triamcinolone, when dried, contains not less than 97.0% and not more than 103.0% of triamcinolone (C_{21}H_{27}FO_{6}).

Description Triamcinolone occurs as a white crystalline powder.

It is freely soluble in N,N-dimethylformamide, slightly soluble in methanol and in ethanol (95), and practically insoluble in water.

Melting point: about 264°C (with decomposition).

Identification (1) Dissolve 1 mg of Triamcinolone in 6 mL of ethanol (95), add 5 mL of 2,6-di-tert-butylcresol TS and 5 mL of sodium hydroxide TS, and heat on a water bath for 30 minutes under a reflux condenser: a red-purple color develops.

(2) Add 5 mL of water and 1 mL of Fehling’s TS to 0.01 g of Triamcinolone, and heat a red precipitate is produced.

(3) Proceed with 0.01 g of Triamcinolone as directed under Oxygen Flask Combustion Method 0.07, using a mixture of 0.5 mL of 0.01 mol/L sodium hydroxide TS and 20 mL of water as the absorbing liquid: the solution responds to Qualitative Tests 0.109 for fluoride.

(4) Determine the infrared absorption spectrum of Triamcinolone, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry 0.23, and compare the spectrum with the Reference Spectrum or the spectrum of previously dried Triamcinolone RS: both spectra exhibit similar intensities of absorption at the same wave numbers. If any difference appears between the spectra, dissolve 0.1 g each of Triamcinolone and Triamcinolone RS in 7 mL of a mixture of 2-propanol and water (2:1), respectively, by warming. Allow the solutions to cool in ice to effect crystals, filter, then wash the formed crystals with two 10-mL portions of water, and repeat the test on the dried crystals.

Optical rotation 0.42 \[[\alpha]_{D}^{20} = + 6.0 - +71^o \] (after drying, 0.1 g, N,N-dimethylformamide, 10 mL, 100 mm)

Purity Heavy metals 0.07—Proceed with 0.5 g of Triamcinolone according to Method 2, and perform the test. Prepare the control solution with 1.5 mL of Standard Lead Solution (not more than 30 ppm).

Loss on drying 2.41 Not more than 2.0% (0.5 g, in vacuum, phosphorus (V) oxide, 60°C, 3 hours)

Residue on ignition 2.44 Not more than 0.3% (0.5 g, platinum crucible).

Assay Dissolve about 20 mg each of Triamcinolone and Triamcinolone RS, previously dried and accurately weighed, in a solution of L-ascorbic acid in methanol (1 in 1000) to make exactly 50 mL. Pipet 5 mL each of these solutions, add exactly 5 mL each of the internal standard solution, add a solution of L-ascorbic acid in methanol (1 in 1000) to make 20 mL, and use these solutions as the sample solution and standard solution. Perform the test with 10 µL each of the sample solution and standard solution as directed under Liquid Chromatography 2.01 according to the following conditions, and calculate the ratios, \(Q_{T} \) and \(Q_{S} \), of the peak height of triamcinolone to that of the internal standard.

Amount (mg) of triamcinolone (C_{21}H_{27}FO_{6}) = \(M_{S} \times Q_{T}/Q_{S} \)

M_{S}: Amount (mg) of Triamcinolone RS taken

Internal standard solution—Dissolve 15 mg of methyl parahydroxybenzoate in a solution of L-ascorbic acid in methanol (1 in 1000) to make 100 mL.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 254 nm)

Column: A stainless steel column 4.0 mm in inside diame-
Triamcinolone Acetonide

Description

Triamcinolone Acetonide occurs as a white crystalline powder. It is sparingly soluble in ethanol (99.5) and in acetone, slightly soluble in methanol, and practically insoluble in water. Melting point: about 290°C (with decomposition). It shows crystal polymorphism.

Assay

Dissolve 40 mg of Triamcinolone Acetonide in 40 mL of ethanol (95), add 5 mL of 2,6-di-tert-butylcresol TS and 5 mL of sodium hydroxide TS, and heat on a water bath under a reflux condenser for 20 minutes: a green color develops.

Proceed with 0.01 g of Triamcinolone Acetonide as directed under Oxygen Flask Combustion Method <1.06>, using a mixture of 0.5 mL of 0.01 mol/L sodium hydroxide TS and 20 mL of water as the absorbing liquid: the solution responds to Qualitative Tests <1.09> for fluoride.

Determine the absorption spectrum of a solution of Triamcinolone Acetonide in alcohol (95) (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the spectrum of a solution of Triamcinolone Acetonide RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(5) Determine the infrared absorption spectrum of Triamcinolone Acetonide, previously dried, as directed in the potassium bromide disk method under the Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of previously dried Triamcinolone Acetonide RS: both spectra exhibit similar intensities of absorption at the same wave numbers. If any difference appears between the spectra, dissolve 0.1 g each of Triamcinolone Acetonide and Triamcinolone Acetonide RS in 20 mL of ethanol (95), respectively, then evaporate the ethanol to dryness, and repeat the test on the dried residue.

Purity (1)

Proceed with 0.5 g of Triamcinolone Acetonide according to Method 2, and perform the test. Prepare the control solution with 1.5 mL of Standard Lead Solution (not more than 30 ppm).

(2) Related substances—Dissolve 40 mg of Triamcinolone Acetonide in 4 mL of acetone, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add acetone to make exactly 100 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.07>. Spot 20 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of chloroform and methanol (93:7) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying <2.41> Not more than 2.0% (0.5 g, in vacuum, phosphorus (V) oxide, 60°C, 3 hours).

Residue on ignition <2.44> Not more than 0.2% (0.5 g, platinum crucible).

Internal standard solution

Add 5 mL of water and 1 mL of Fehling’s TS to 0.01 g of Triamcinolone Acetonide, and heat: a red precipitate is produced.

Add 5 mL of water and 1 mL of Fehling’s TS to 0.01 g of Triamcinolone Acetonide, and heat: a red precipitate is produced.

(3) Proceed with 0.01 g of Triamcinolone Acetonide as directed under Oxygen Flask Combustion Method <1.06>, using a mixture of 0.5 mL of 0.01 mol/L sodium hydroxide TS and 20 mL of water as the absorbing liquid: the solution responds to Qualitative Tests <1.09> for fluoride.

(4) Determine the absorption spectrum of a solution of Triamcinolone Acetonide in alcohol (95) (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or

Reduction of lead

Add 5 mL of water and 1 mL of Fehling’s TS to 0.01 g of Triamcinolone Acetonide, and heat: a red precipitate is produced.

Add 5 mL of water and 1 mL of Fehling’s TS to 0.01 g of Triamcinolone Acetonide, and heat: a red precipitate is produced.

System suitability

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, triamcinolone and the internal standard are eluted in this order with the resolution between these peaks being not less than 2.0.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratios of the peak height of triamcinolone to that of the internal standard is not more than 1.5%.

Containers and storage

Containers—Tight containers.

Storage—Light-resistant.
Mobile phase: A mixture of water and acetonitrile (3:1).
Flow rate: Adjust so that the retention time of triamcinolone acetonide is about 13 minutes.

System suitability—
System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the internal standard and triamcinolone acetonide are eluted in this order with the resolution between these peaks being not less than 6.
System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratios of the peak height of triamcinolone acetonide to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Tight containers.
Storage—Light-resistant.

Triamterene
トリアムテレン

\[
\text{C}_{12}\text{H}_{11}\text{N}_2: 253.26
\]
6-Phenylpteridine-2,4,7-triamine
[396-01-0]

Triamterene, when dried, contains not less than 98.5% of triamterene (C_{12}H_{11}N_2).

Description Triamterene occurs as a yellow crystalline powder. It is odorless, and tasteless.
It is sparingly soluble in dimethylsulfoxide, very slightly soluble in acetic acid (100), and practically insoluble in water, in ethanol (95), and in diethyl ether.
It dissolves in nitric acid and in sulfuric acid, but does not dissolve in dilute nitric acid, in dilute sulfuric acid and in dilute hydrochloric acid.

Identification (1) To 0.01 g of Triamterene add 10 mL of water, heat, and filter after cooling: the filtrate shows a purple fluorescence. To 2 mL of the filtrate add 0.5 mL of hydrochloric acid: the fluorescence disappears.
(2) The filtrate obtained in (1) responds to Qualitative Tests 2.09 for primary aromatic amines.
(3) Dissolve 0.01 g of Triamterene in 100 mL of acetic acid (100), and to 10 mL of the solution add water to make 100 mL. Determine the absorption spectrum of the solution as directed under Ultraviolet-visible Spectrophotometry 2.24, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

Purity (1) Heavy metals 2.07—Proceed with 1.0 g of Triamterene according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).
(2) Arsenic 2.11D—Prepare the test solution with 1.0 g of Triamterene according to Method 3, and perform the test (not more than 2 ppm).
(3) Related substances—Dissolve 0.10 g of Triamterene in 20 mL of dimethylsulfoxide. To 2 mL of this solution add methanol to make 50 mL, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add methanol to make exactly 200 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography 2.03. Spot 5 μL of each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate, ammonia solution (28) and methanol (9:1:1) to a distance of about 10 cm, and air-dry the plate. Examine the plate under ultraviolet light (main wavelength: 365 nm): the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying 2.41—Not more than 0.5% (1 g, 105°C, 4 hours).
Residue on ignition 2.44—Not more than 0.10% (1 g).

Assay Weigh accurately about 0.15 g of Triamterene, previously dried, and dissolve in 100 mL of acetic acid (100) by warming. Titrate 2.50 with 0.05 mol/L perchloric acid VS (indicator: 2 drops of crystal violet TS). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.05 mol/L perchloric acid VS = 12.66 mg of C_{12}H_{11}N_2.

Containers and storage Containers—Well-closed containers.

Triazolam
トリアゾラム

\[
\text{C}_{12}\text{H}_{10}\text{Cl}_2\text{N}_2:343.21
\]
8-Chloro-6-(2-chlorophenyl)-1-methyl-1H-1,2,4-triazolo[4,3-a][1,4]benzodiazepine
[28911-01-5]

Triazolam, when dried, contains not less than 98.0% and not more than 102.0% of triazolam (C_{12}H_{10}Cl_2N_2).

Description Triazolam occurs as a white crystalline powder.
It is sparingly soluble in N,N-dimethylformamide, slightly soluble in ethanol (95), and practically insoluble in water.
It shows crystal polymorphism.

Identification (1) Determine the absorption spectrum of a solution of Triazolam in ethanol (95) (1 in 200,000) as directed under Ultraviolet-visible Spectrophotometry 2.24, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Triazolam RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.
(2) Determine the infrared absorption spectrum of Triazolam, previously dried, as directed in the paste method under Infrared Spectrophotometry 2.25, and compare the spectrum with the Reference Spectrum or the spectrum of dried Triazolam RS: both spectra exhibit similar intensities.
of absorption at the same wave numbers.

(3) Perform the test with Triazolam as directed under Flame Coloration Test <1.04> (2); a green to blue-green color appears.

Melting point <2.60> 239 - 243°C.

Purity (1) Chloride <1.03>-To 1.0 g of Triazolam add 50 mL of water, and allow to stand for 1 hour while occasional shaking, and filter. Discard the first 10 mL of the filtrate, pipet 25 mL of the subsequent filtrate, and add 6 mL of dilute nitric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 0.40 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.028%).

(2) Heavy metals-Being specified separately when the drug is granted approval based on the Law.

(3) Related substances—Dissolve 0.14 g of Triazolam in 10 mL of N,N-dimethylformamide, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add N,N-dimethylformamide to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 12 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area by the automatic integration method; the area of peak other than triazolam obtained from the sample solution is not larger than 1/5 times the peak area of triazolam from the standard solution, and the total area of the peaks other than triazolam is not larger than the peak area of triazolam from the standard solution. For the areas of the peaks, related substance A having the relative retention time of about 0.7 to triazolam, related substance B having the relative retention time of about 1.5, and related substance C having the relative retention time of about 2.4, multiply their correction factors, 1.8, 0.6 and 4.3, respectively.

Operating conditions—

Detector, column, column temperature, mobile phase A, mobile phase B, and flow rate: Proceed as directed in the operating conditions in the Assay. Time span of measurement: For 39 minutes after injection, beginning after the solvent peak.

System suitability—

Test for required detectability: Pipet 1 mL of the standard solution, and add N,N-dimethylformamide to make exactly 10 mL. Confirm that the peak area of triazolam obtained with 12 μL of this solution is equivalent to 7 to 13% of that with 12 μL of the standard solution.

System performance: When the procedure is run with 12 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of triazolam are not less than 4500 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 12 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of triazolam is not more than 1.0%.

Loss on drying <2.47> Not more than 0.5% (1 g, 105°C, 4 hours).

Residue on ignition <2.47> Not more than 0.3% (1 g).

Assay Weigh accurately about 55 mg each of Triazolam and Triazolam RS, previously dried, dissolve each in N,N-dimethylformamide to make exactly 50 mL, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with 12 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A₁ and A₅, of triazolam in each solution.

\[
M₅: \text{Amount (mg) of Triazolam RS taken}
\]

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 254 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with phenylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase A: A mixture of methanol and dilute acetic acid-ammonium acetate buffer solution (pH 4.5) (1 in 10) (14:11).

Mobile phase B: A mixture of methanol and dilute acetic acid-ammonium acetate buffer solution (pH 4.5) (1 in 10) (19:1).

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 14</td>
<td>98</td>
<td>2</td>
</tr>
<tr>
<td>14 - 34</td>
<td>98 → 1</td>
<td>2 → 99</td>
</tr>
<tr>
<td>34 - 39</td>
<td>1</td>
<td>99</td>
</tr>
</tbody>
</table>

Flow rate: 2.0 mL per minute.

System suitability—

System performance: When the procedure is run with 12 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of triazolam are not less than 4500 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 12 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of triazolam is not more than 1.0%.

Containers and storage Containers—Tight containers.

Others

Related substance A:

3-Amino-6-chloro-4-(2-chlorophenyl)-2-methyl-3,4-dihydroquinazolin-4-ol

Related substance B:

8-Chloro-6-(2-chlorophenyl)-1-ethenyl-4H-[1,2,4]triazolo[4,3-a][1,4]benzodiazepine

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.)
Related substance C:
8-Chloro-6-(2-chlorophenyl)-6-methoxy-1-methyl-4H,6H-[1,2,4]triazolo[4,3-a][4,1]benzoxazepine

\[
\text{C}_8\text{H}_7\text{Cl}_2\text{N}_2\text{O}_4 \quad 380.66 \\
(3R,5S)-6-Chloro-3-dichloromethyl-3,4-dihydro-2H-1,2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide [133-67-5]
\]

Trichlormethiazide, when dried, contains not less than 97.5\% and not more than 102.0\% of trichlormethiazide (C\(_8\)H\(_7\)Cl\(_2\)N\(_2\)O\(_4\)).

Description

Trichlormethiazide occurs as a white powder.

It is freely soluble in N,N-dimethylformamide and in acetone, slightly soluble in acetonitrile and in ethanol (95), and practically insoluble in water.

A solution of Trichlormethiazide in acetone (1 in 50) shows no optical rotation.

Melting point: about 270°C (with decomposition).

Identification (1) Determine the absorption spectrum of a solution of Trichlormethiazide in ethanol (95) (3 in 250,000) as directed under Ultraviolet-visible Spectrophotometry <2,26> and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Trichlormethiazide RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Trichlormethiazide as directed in the potassium bromide disk method under Infrared Spectrophotometry <2,25>, and compare the spectrum with the Reference Spectrum or the spectrum of Trichlormethiazide RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) Perform the test with Trichlormethiazide as directed under Flame Coloration Test <1,047> (2): a green color appears.

Purity (1) Chloride <1.05>—Dissolve 1.0 g of Trichlormethiazide in 30 mL of acetone, add 6 mL of dilute nitric acid and water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution as follows: to 1.0 mL of 0.005 mol/L sulfuric acid VS add 30 mL of acetone, 1 mL of dilute hydrochloric acid and water to make 50 mL (not more than 0.048%).

(3) Heavy metals <1.07>—Proceed with 1.0 g of Trichlormethiazide according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(4) Arsenic <1.11>—Prepare the test solution with 0.6 g of Trichlormethiazide according to Method 5, using 20 mL of N,N-dimethylformamide, and perform the test (not more than 3.3 ppm).

(5) Related substances—Dissolve 25 mg of Trichlormethiazide in 50 mL of acetonitrile, and use the solution as the sample solution. Perform the test with 10 µL of the sample solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area by the automatic integration method, and calculate the amount of related substances by the area percentage method: the amount of 4-amino-6-chlorobenzene-1,3-disulfonamide, having the relative retention time of about 0.3 to trichlormethiazide, is not more than 2.0% and the total amount of the related substances is not more than 2.5%.

Operating conditions

Detector: An ultraviolet absorption photometer (wavelength: 268 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with phenylsilanized silica gel for liquid chromatography (5 µm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase A: A mixture of phosphoric acid (1 in 1000) and acetonitrile (3:1).

Mobile phase B: A mixture of acetonitrile and diluted phosphoric acid (1 in 1000) (3:1).

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 10</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>10 – 20</td>
<td>100 → 0</td>
<td>0 → 100</td>
</tr>
</tbody>
</table>

Flow rate: 1.5 mL per minute.

Time span of measurement: About 2.5 times as long as the retention time of trichlormethiazide, beginning after the solvent peak.

System suitability—

Test for required detectability: To exactly 1 mL of the sample solution add acetonitrile to make exactly 50 mL, and use this solution as the solution for system suitability test. Pipet 1 mL of the solution for system suitability test, and add acetonitrile to make exactly 20 mL. Confirm that the peak area of trichlormethiazide obtained with 10 µL of this solution is equivalent to 3.5 to 6.5% of that with 10 µL of the solution for system suitability test.

System performance: To 5 mL of the solution for system suitability test add 5 mL of water, and warm in a water bath at 60°C for 30 minutes. When the procedure is run with 10 µL of this solution, after cooling, under the above operating conditions, 4-amino-6-chlorobenzene-1,3-disulfonamide and trichlormethiazide are eluted in this order, the relative retention time of 4-amino-6-chlorobenzene-1,3-disulfonamide to trichlormethiazide is about 0.3, and the number of theoretical plates and the symmetry factor of the peak of trichlor-
methiazide are not less than 5000 and not more than 1.2, respectively.

System repeatability: When the test is repeated 3 times with 10 \(\mu \)L of the solution for system suitability test under the above operating conditions, the relative standard deviation of the peak area of trichlormethiazide is not more than 2.0%.

Loss on drying \(<2.4\%\) Not more than 0.5% (1 g, 105°C, 3 hours).

Residue on ignition \(<2.44\%\) Not more than 0.1% (1 g).

Assay Weigh accurately about 25 mg of Trichlormethiazide and Trichlormethiazide RS, previously dried, and dissolve separately in exactly 20 mL of the internal standard solution. To 1 mL of these solutions add acetonitrile to make 20 mL, and use these solutions as the sample solution and standard solution. Perform the test with 10 \(\mu \)L each of the sample solution and standard solution as directed under Liquid Chromatography \(<2.01\%\) according to the following conditions, and calculate the ratios, \(Q_1 \) and \(Q_2 \), of the peak area of trichlormethiazide to that of the internal standard.

\[
M_s = \frac{\text{Amount (mg) of trichlormethiazide}}{\text{Amount (mg) of Trichlormethiazide RS taken}} \times \frac{Q_1}{Q_2}
\]

\(M_s\): Amount (mg) of trichlormethiazide \((C_8H_7ClN_2O_2S_2)\)

Internal standard solution—A solution of 3-nitrophenol in acetonitrile (1 in 800).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 268 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with phenylsilanized silica gel for liquid chromatography (5 \(\mu \)m in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: A mixture of diluted phosphoric acid (1 in 1000) and acetonitrile (3:1).

Flow rate: Adjust so that the retention time of trichlormethiazide is about 8 minutes.

System suitability—

System performance: When the procedure is run with 10 \(\mu \)L of the standard solution under the above operating conditions, the internal standard and trichlormethiazide are eluted in this order with the resolution between these peaks being not less than 2.0.

System repeatability: When the test is repeated 6 times with 10 \(\mu \)L of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of trichlormethiazide to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Well-closed containers.

Trichlormethiazide Tablets

トリクロルメチアジド錠

Trichlormethiazide Tablets contain not less than 93.0% and not more than 107.0% of the labeled amount of trichlormethiazide \((C_8H_7ClN_2O_2S_2): 380.66)\).

Method of preparation Prepare as directed under Tablets, with Trichlormethiazide.

Identification To an amount of powdered Trichlormethiazide Tablets, equivalent to 4 mg of Trichlormethiazide, add 10 mL of acetonitrile, shake vigorously for 5 minutes, centrifuge, and use the supernatant liquid as the sample solution. Separately, dissolve 4 mg of Trichlormethiazide RS in 10 mL of acetonitrile, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography \(<2.0\%\). Spot 5 \(\mu \)L each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate, hexane and methanol \((10:4:1)\) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the principal spots from the sample solution and the standard solution show the same \(Rf \) value.

Purity Related substances—Powder a suitable amount of Trichlormethiazide Tablets in an agate mortar. Take an amount of the powder, equivalent to 10 mg of Trichlormethiazide, add 20 mL of acetonitrile, shake vigorously for 15 minutes, centrifuge, and use the supernatant liquid as the sample solution. Perform the test with 10 \(\mu \)L of the sample solution as directed under Liquid Chromatography \(<2.01\%\) according to the following conditions, determine each peak area by the automatic integration method, and calculate the amount of each related substance by the area percentage method: the amount of 4-amino-6-chlorobenzene-1,3-disulfonamide, having the relative retention time of about 0.3 to trichlormethiazide, is not more than 4.0%, and the total amount of the peaks other than trichlormethiazide is not more than 5.0%.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 268 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with phenylsilanized silica gel for liquid chromatography (5 \(\mu \)m in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase A: A mixture of diluted phosphoric acid (1 in 1000) and acetonitrile (3:1).

Mobile phase B: A mixture of acetonitrile and diluted phosphoric acid (1 in 1000) (3:1).

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection (sample) (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 10</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>10 – 20</td>
<td>100 -> 0</td>
<td>0 -> 100</td>
</tr>
</tbody>
</table>

Flow rate: 1.5 mL per minute.

Time span of measurement: About 2.5 times as long as the retention time of trichlormethiazide, beginning after the solvent peak.

System suitability—

Test for required detectability: Dissolve 25 mg of Trichlormethiazide in 50 mL of acetonitrile. To 1 mL of this solution add acetonitrile to make 50 mL, and use this solution as the solution for system suitability test. Pipet 1 mL of the solution for system suitability test, and add acetonitrile to make exactly 20 mL. Confirm that the peak area of trichlormethiazide obtained with 10 \(\mu \)L of this solution is equivalent to 3.5 to 6.5% of that with 10 \(\mu \)L of the solution for system suitability test.
System performance: To 5 mL of the solution for system suitability test add 5 mL of water, and warm in a water bath of 60°C for 30 minutes. When the procedure is run with 10 μL of this solution, after cooling, under the above operating conditions, 4-amino-6-chlorobenzene-1,3-disulfonamide and trichlormethiazide are eluted in this order, the relative retention time of 4-amino-6-chlorobenzene-1,3-disulfonamide to trichlormethiazide is about 0.3, and the number of theoretical plates and the symmetry factor of the peak of trichlormethiazide are not less than 5000 and not more than 1.2, respectively.

System repeatability: When the test is repeated 3 times with 10 μL of the solution for system suitability test under the above operating conditions, the relative standard deviation of the peak area of trichlormethiazide is not more than 2.0%.

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 tablet of Trichlormethiazide Tablets add V/5 mL of diluted phosphoric acid (1 in 50), and disintegrate the tablet. Add 2V/5 mL of acetonitrile, shake vigorously for 15 minutes, add the mobile phase to make exactly V mL so that each mL contains about 40 μg of trichlormethiazide (C₂H₃ClN₂O₂S₂). Filter this solution through a membrane filter with a pore size not exceeding 0.45 μm, discard the first 4 mL of the filtrate, and use the subsequent filtrate as the sample solution. Then, proceed as directed in the Assay.

Amount (mg) of trichlormethiazide (C₂H₃ClN₂O₂S₂) = Mₘ × A₁/Aₙ × V/500

Mₘ: Amount (mg) of Trichlormethiazide RS taken

Dissolution <6.10> When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 15 minutes of Trichlormethiazide Tablets is not less than 75%.

Start the test with 1 tablet of Trichlormethiazide Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add diluted phosphoric acid (1 in 50) to make exactly V’ mL so that each mL contains about 1.1 μg of trichlormethiazide (C₂H₃ClN₂O₂S₂), and use this solution as the sample solution. Separately, weigh accurately about 22 mg of Trichlormethiazide RS, previously dried at 105°C for 3 hours, and dissolve in acetonitrile to make exactly 200 mL.

Pipet 2 mL of this solution, add diluted phosphoric acid (1 in 50) to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A₁, and Aₙ, of trichlormethiazide in each solution.

Amount (mg) of trichlormethiazide (C₂H₃ClN₂O₂S₂) in 1 tablet = Mₘ × A₁/Aₙ × V/1000

Mₘ: Amount (mg) of Trichlormethiazide RS taken

Operating conditions—
Proceed as directed in the operating conditions in the Assay under Trichlormethiazide.

System suitability—
System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of trichlormethiazide are not less than 5000 and not more than 1.2, respectively.

System repeatability: When the test is repeated 6 times with 40 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of trichlormethiazide is not more than 2.0%.

Assay To 10 Trichlormethiazide Tablets add V/10 mL of diluted phosphoric acid (1 in 50), and disintegrate the tablets. Add V/2 mL of acetonitrile, shake vigorously for 15 minutes, add the mobile phase to make exactly V mL so that each mL contains about 0.2 mg of trichlormethiazide (C₂H₃ClN₂O₂S₂), and centrifuge. Pipet 5 mL of the supernatant liquid, add the mobile phase to make exactly 25 mL, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 4 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 20 mg of Trichlormethiazide RS, previously dried at 105°C for 3 hours, and dissolve in the mobile phase to make exactly 100 mL. Pipet 5 mL of this solution, add the mobile phase to make exactly 25 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A₁ and Aₙ, of trichlormethiazide in each solution.

Amount (mg) of trichlormethiazide (C₂H₃ClN₂O₂S₂) = Mₘ × A₁/Aₙ × V/1000

Mₘ: Amount (mg) of Trichlormethiazide RS taken

Operating conditions—
Proceed as directed in the operating conditions in the Assay under Trichlormethiazide.

System suitability—
System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of trichlormethiazide are not less than 5000 and not more than 1.2, respectively.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of trichlormethiazide is not more than 1.0%.

Containers and storage Containers—Tight containers.
Trichomycin

トリコマイシン

![Chemical Structure](image)

Trichomycin A

33-(3-Amino-3,6-dideoxy-β-D-mannopyranosyloxy)-17-[6-(4-aminophenyl)-4-hydroxy-1-methyl-6-oxohexyl]-1,3,5,9,11,37-hexahydroxy-18-methyl-15-dioso-16,39-dioxabicyclo[33.3.1]nonatriaconta-19,21,23,25,27,29,31-heptaene-36-carboxylic acid

Trichomycin B

33-(3-Amino-3,6-dideoxy-β-D-mannopyranosyloxy)-17-[6-(4-aminophenyl)-4-hydroxy-1-methyl-6-oxohexyl]-1,3,5,7,9,37-hexahydroxy-18-methyl-15-dioso-16,39-dioxabicyclo[33.3.1]nonatriaconta-19,21,23,25,27,29,31-heptaene-36-carboxylic acid

Description

Trichomycin is a mixture of polyene macrolide substances having antifungal and antiprotozoal activities produced by the growth of *Streptomyces hachijoensis*. It contains not less than 7000 Units per mg, calculated on the dried basis. The potency of Trichomycin is expressed as unit based on the amount of trichomycin A. One unit of Trichomycin is equivalent to 0.05 μg of trichomycin A.

Identification (1)

To 2 mg of Trichomycin add 2 mL of sulfuric acid: a blue color appears, and the color is changed to a blue-purple after allowing to stand.

(2) Dissolve 1 mg of Trichomycin in 50 mL of a solution of sodium hydroxide (1 in 200). Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry (2.24): it exhibits maxima between 359 nm and 365 nm, between 378 nm and 384 nm, and between 400 nm and 406 nm.

Content ratio of the active principle

Conduct this procedure without exposure to light, using light-resistant vessels. Dissolve 10 mg of Trichomycin in 50 mL of a mixture of tetrahydrofuran for liquid chromatography and water (3:1), and use this solution as the sample solution. Perform the test with 5 μL of the sample solution as directed under Liquid Chromatography (2.2.4) according to the following conditions, determine the peak areas by the automatic integration method, and calculate the amount of trichomycin A and trichomycin B by the area percentage method: the amount of trichomycin A is between 20% and 40%, and that of trichomycin B is between 15% and 25%. The relative retention time of trichomycin B to trichomycin A is about 1.2.

Operating conditions

- **Detector**: An ultraviolet absorption photometer (wavelength: 360 nm).
- **Column**: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecysilanized silica gel for liquid chromatography (5 μm in particle diameter).
- **Column temperature**: A constant temperature of about 25°C.
- **Mobile phase**: Dissolve 3.4 g of potassium dihydrogen phosphate and 1.7 g of sodium lauryl sulfate in a mixture of 600 mL of water and 400 mL of acetonitrile for liquid chromatography.
- **Flow rate**: Adjust so that the retention time of trichomycin A is about 8 minutes.
- **Time span of measurement**: About 4 times as long as the retention time of trichomycin A.

System suitability

Test for required detectability: Measure 5 mL of the sample solution, add a mixture of tetrahydrofuran for liquid chromatography and water (3:1) to make 50 mL, and use this solution as the solution for system suitability test. Pipet 5 mL of the solution for system suitability test, and add a mixture of tetrahydrofuran for liquid chromatography and water (3:1) to make exactly 30 mL. Confirm that the peak area of trichomycin A obtained with 5 μL of this solution is equivalent to 12 to 22% of that with 5 μL of the solution for system suitability test.

System performance: When the procedure is run with 5 μL of the solution for system suitability test under the above operating conditions, trichomycin A and trichomycin B are eluted in this order with the resolution between these peaks being not less than 2.5.

System repeatability: When the test is repeated 6 times with 5 μL of the solution for system suitability test under the above operating conditions, the relative standard deviation of the peak area of trichomycin A is not more than 2.0%.

Loss on drying (2.412) Not more than 5.0% (1 g, in vacuum, 60°C, 3 hours).

Assay

Conduct this procedure without exposure to light, using light-resistant vessels. Weigh accurately an amount of Trichomycin and Trichomycin RS, equivalent to about 150,000 units, dissolve them separately in a mixture of tetrahydrofuran for liquid chromatography and water (3:1) to make exactly 100 mL, and use these solutions as the sample solution and standard solution. Perform the test with exactly 20 μL of each sample solution and standard solution as directed under Liquid Chromatography (2.2.4) according to the following conditions, and determine the peak areas, A₁ and A₅, of trichomycin in each solution.

- **Amount (unit) of trichomycin** = Mₛ × A₁/A₅
- **Mₛ**: Amount (unit) of Trichomycin RS taken

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
System suitability—
System performance: Dissolve 5 mg of Trichomycin and 1 mg of berberine chloride hydrate in 100 mL of a mixture of tetrahydrofuran for liquid chromatography and water (3:1). When the procedure is run with 20 μL of this solution under the above operating conditions, berberine and trichomycin are eluted in this order with the resolution between these peaks being not less than 4.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of trichomycin is not more than 2.0%.

Containers and storage Containers—Tight containers.

Storage—Light-resistant, and in a cold place.

Triclofos Sodium

トリクロホスナトリウム

\[\text{C}_3\text{H}_4\text{Cl}_3\text{NaO}_3\text{P} : 251.37 \]

Monosodium 2,2,2-trichloroethyl monohydrone phosphate

[7246-20-0]

Triclofos Sodium, when dried, contains not less than 97.0% and not more than 102.0% of triclofos sodium (\(\text{C}_3\text{H}_4\text{Cl}_3\text{NaO}_3\text{P}\)), and not less than 41.0% and not more than 43.2% of chlorine (\(\text{Cl}\): 35.45).

Description Triclofos Sodium is a white crystalline powder.

It is freely soluble in water, slightly soluble in ethanol (95), and practically insoluble in diethyl ether.

It is hygroscopic.

Identification (1) Determine the infrared absorption spectrum of Triclofos Sodium as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(2) To 0.5 g of Triclofos Sodium add 10 mL of nitric acid, evaporate on a water bath to dryness, and ignite further over a flame. Dissolve the residue in 5 mL of water, and filter it necessary: the filtrate responds to Qualitative Tests <1.09> for sodium salt.

(3) To 0.1 g of Triclofos Sodium add 1 g of anhydrous sodium carbonate, and heat for 10 minutes. After cooling, dissolve the residue in 40 mL of water, filter if necessary, and render the filtrate acidic with dilute nitric acid: the solution responds to Qualitative Tests <1.09> (2) for chloride. The remainder of the filtrate responds to Qualitative Tests <1.09> (1) for chloride and to Qualitative Tests <1.09> for phosphate.

\[\text{pH <2.54>} \]

Dissolve 1.0 g of Triclofos Sodium in 50 mL of water: the pH of this solution is between 3.0 and 4.5.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Triclofos Sodium in 50 mL of water: the solution is clear and colorless.

(2) Chloride <1.07>—Perform the test with 0.20 g of Triclofos Sodium. Prepare the control solution with 1.0 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.178%).

(3) Heavy metals <1.07>—Proceed with 1.0 g of Triclofos Sodium according to Method 1, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(4) Arsenic <1.11>—Prepare the test solution with 1.0 g of Triclofos Sodium according to Method 1, and perform the test (not more than 2 ppm).

(5) Free phosphoric acid—Weigh accurately about 0.3 g of Triclofos Sodium, previously dried, dissolve in water to make exactly 100 mL, and use this solution as the sample solution. Pipet 5 mL each of the sample solution and Standard Phosphoric Acid Solution, add 2.5 mL of hexaammonium heptamolybdophosphoric acid TS and 1 mL of 1-amino-2-naphthol-4-sulfonic acid TS, shake, add water to make exactly 25 mL, and allow to stand at 20°C for 30 minutes. Perform the test with these solutions, using a solution obtained in the same manner with 5 mL of water as the blank, as directed under Ultraviolet-visible Spectrophotometry <2.24>. Determine the absorbances, \(A_T\) and \(A_S\), of each solution from the sample solution and Standard Phosphoric Acid Solution at 740 nm: the content of the free phosphoric acid is not more than 1.0%.

\[\text{Content (b) of the free phosphoric acid (H}_3\text{PO}_4\) = } \frac{1}{M} \times \frac{A_T}{A_S} \times 258.0 \]

\(M\): Amount (mg) of Triclofos Sodium taken

Loss on drying <2.41> Not more than 5.0% (1 g, in vacuum, 100°C, 3 hours).

Assay (1) Triclofos sodium—Weigh accurately about 0.2 g of Triclofos Sodium, previously dried, place in a Kjeldahl flask, add 2 mL of sulfuric acid and 2.5 mL of nitric acid, and heat until brown gas are not evolved. After cooling, add 1 mL of nitric acid, heat until white fumes are produced, and cool. Repeat this procedure until the solution becomes colorless. Transfer this solution to a flask using 150 mL of water, add 50 mL of molybdenum (VI) oxide-citric acid TS, heat gently to boil, add gradually 25 mL of quinoline TS with stirring, and heat on a water bath for 5 minutes. After cooling, filter the precipitate, and wash repeatedly with water until the washing does not indicate acidity. Transfer the precipitate to a flask using 100 mL of water, add exactly 50 mL of 0.5 mol/L sodium hydroxide VS, dissolve, and titrate <2.3> with 0.5 mol/L hydrochloric acid VS until the color of the solution changes from purple to yellow (indicator: 3 drops of phenolphthalein-thymol blue TS). Perform a blank determination in the same manner.

Each mL of 0.5 mol/L sodium hydroxide VS = 4.834 mg of \(\text{C}_3\text{H}_4\text{Cl}_3\text{NaO}_3\text{P}\)

(2) Chlorine—Weigh accurately about 10 mg of Triclofos Sodium, previously dried, perform the test according to the procedure for determination of chlorine as directed under Oxygen Flask Combustion Method <1.06>, using 1 mL of sodium hydroxide TS and 20 mL of water as the absorbing liquid.

Containers and storage Containers—Tight containers.
Triclofos Sodium Syrup トリクロホスナトリウムシロップ

Triclofos Sodium Syrup contains not less than 90.0% and not more than 110.0% of the labeled amount of triclofos sodium (C₂₉H₈N₂O₄P: 251.37).

Method of preparation Prepare as directed under Syrups, with Triclofos Sodium.

Identification (1) Weigh a portion of Triclofos Sodium Syrup, equivalent to 0.25 g of Triclofos Sodium, add 40 mL of water, shake well, add 5 mL of diluted sulfuric acid (3 in 50), and extract with 25 mL of 3-methyl-1-butanol. Take 5 mL of the extract, evaporate on a water bath to dryness, and add 1 mL of diluted sulfuric acid (1 in 2) and 1 mL of a solution of potassium permanganate (1 in 20) to the residue. Heat in a water bath for 5 minutes, add 7 mL of water, and then add a solution of oxalic acid dihydrate (1 in 20) until the color of the solution disappears. To 1 mL of this solution add 1 mL of pyridine and 1 mL of a solution of sodium hydroxide (1 in 5), and heat in a water bath, while shaking, for 1 minute: a light red color develops in the pyridine layer.

(2) Take 10 mL of the extract obtained in (1), evaporate on a water bath to dryness, add 1 g of anhydrous sodium carbonate to the residue, and heat for 10 minutes. After cooling, dissolve the residue in 40 mL of water, filter if necessary, and render the filtrate acidic with dilute nitric acid:

pH <2.54 6.0 – 6.5

Assay Weigh accurately a portion of Triclofos Sodium Syrup, equivalent to 0.13 g of Triclofos Sodium, add 15 mL of water, 1 mL of sodium hydroxide TS and 15 mL of diethyl ether, shake for 1 minute, and separate the water layer. Wash the diethyl ether layer with 1 mL of water, and combine the washing with above water layer. To this solution add 2.5 mL of diluted sulfuric acid (3 in 50), and extract with four 10-mL portions of 3-methyl-1-butanol. Combine the 3-methyl-1-butanol extracts, and add 3-methyl-1-butanol to make exactly 50 mL. Measure exactly 10 mL each of this solution, and dilute potassium hydroxide-ethanol TS, place in a glass ampule, fire-seal, mix, and heat at 120°C for 90 minutes. Cool, transfer the contents to a flask, add 20 mL of diluted nitric acid (63 in 500) and exactly 25 mL of 0.02 mol/L silver nitrate VS, shake well, and titrate <2.54> the excess silver nitrate with 0.02 mol/L ammonium thiocyanate VS (indicator: 2 to 3 drops of ammonium iron (III) sulfate TS). Perform a blank determination in the same manner.

Each mL of 0.02 mol/L silver nitrate VS

= 1.676 mg of C₂₉H₈N₂O₄P

Containers and storage Containers—Tight containers. Storage—In a cold place.

Trientine Hydrochloride トリエンチン塩酸塩

C₂₀H₂₆N₂·2HCl: 219.16 N, N'-Bis(2-aminoethyl)ethane-1,2-diamine dihydrochloride [38260-01-4]

Trientine Hydrochloride contains not less than 97.0% and not more than 101.0% of trientine hydrochloride (C₂₀H₂₆N₂·2HCl), calculated on the dried basis.

Description Trientine Hydrochloride occurs as white to pale yellow, crystals or crystalline powder. It is odorless or has slightly an ammonia-like odor.

It is freely soluble in water, soluble in methanol, and slightly soluble in ethanol (99.5).

It is hygroscopic.

Melting point: about 121°C.

Identification (1) Determine the infrared absorption spectrum of Trientine Hydrochloride, previously dried, as directed in the paste method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(2) A solution of Trientine Hydrochloride (1 in 100) responds to Qualitative Tests <1.09> for chloride.

pH <2.54 2.5 – 7.0 and 8.5.

Assay Weigh accurately about 0.22 g of Trientine Hydrochloride in 100 mL of water is between 7.0 and 8.5.

Purity (1) Heavy metals <1.07>—Proceed with 2.0 g of Trientine Hydrochloride according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead solution (not more than 10 ppm).

(2) Related substances—Dissolve 0.30 g of Trientine Hydrochloride in 100 mL of methanol, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add methanol to make exactly 100 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.63>. Spot 3 μL each of the sample solution and standard solution on two plates of silica gel for thin-layer chromatography. Develop the one plate with a mixture of 2-propanol and ammonia solution (28) (2:3) to a distance of about 6 cm, and air-dry the plate. Spray evenly ninhydrin-butanol TS on the plate, and heat the plate at 130°C for 5 minutes: the spots other than the principal spot and the spot nearby the starting point obtained from the sample solution is not more intense than the spot from the standard solution. Develop another plate with a mixture of ammonia solution (28), diethyl ether, acetonitrile, and ethanol (99.5) (10:4:3:3) to a distance of about 6 cm, and air-dry the plate. Spray evenly ninhydrin-butanol TS on the plate, and heat the plate at 130°C for 5 minutes: the spot nearby the starting point from the sample solution is not more intense than the spot from the standard solution.

Loss on drying <2.41> Not more than 2.0% (1 g, reduced pressure not exceeding 0.67 kPa, 40°C, 4 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.22 g of Trientine Hydro-
chloride, and dissolve in 10 mL of 0.1 mol/L hydrochloric acid VS, 2 mL of a solution of sodium nitrate (9 in 20), 10 mL of acetic acid-ammonium acetate buffer solution (pH 4.8) and 50 mL of water. Titrate to 580 nm with 0.1 mol/L copper (II) nitrate VS (potentiometric titration) using a copper electrode as the indicator electrode, a complex type silver-silver chloride electrode as the reference electrode, and potassium chloride solution (1 in 4) as the inner solution. Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L copper (II) nitrate VS 21.92 mg of \(\text{C}_6\text{H}_7\text{N}_4\cdot 2\text{HCl} \)

Containers and storage Containers—Tight containers. Storage—Light-resistant, substituted by argon gas, at 2 – 8°C.

Trientine Hydrochloride Capsules

トリエンチン塩酸塩カプセル

Trientine Hydrochloride Capsules contain not less than 90.0% and not more than 110.0% of the labeled amount of trientine hydrochloride (\(\text{C}_6\text{H}_7\text{N}_4\cdot 2\text{HCl} \): 219.16).

Method of preparation Prepare as directed under Capsules, with Trientine Hydrochloride.

Identification Take out the contents of Trientine Hydrochloride Capsules, weigh accurately the mass of the contents, and powder. Weigh accurately a portion of the powder, equivalent to about 0.25 g of trientine hydrochloride (\(\text{C}_6\text{H}_7\text{N}_4\cdot 2\text{HCl} \)), add 70 mL of methanol, dissolve by sonicating if necessary, and add methanol to make exactly 100 mL. Filter through a membrane filter with a pore size not exceeding 0.45 μm, discard the first 10 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 0.25 g of trientine hydrochloride for assay, previously dried under reduced pressure not exceeding 0.67 kPa at 40°C for 4 hours, dissolve in methanol to make exactly 100 mL, and use this solution as the standard solution. Pipet 5 mL each of the sample solution and standard solution separately, add exactly 10 mL of disodium hydrogen phosphate-citric acid buffer solution (pH 8.2) and exactly 1 mL of cupper (II) sulfate pentahydrate solution (1 in 20), and shake. Determine the absorbances, \(A_1 \) and \(A_2 \), at 580 nm of these solutions, obtained with the sample solution and the standard solution, as directed under Ultraviolet-visible Spectrophotometry (2.24), using a solution obtained in the same manner with 5 mL of methanol as a blank.

Amount (mg) of trientine hydrochloride (\(\text{C}_6\text{H}_7\text{N}_4\cdot 2\text{HCl} \))

\[M_S = \frac{A_1}{A_2} \]

\[M_S: \text{Amount (mg) of trientine hydrochloride for assay taken} \]

Containers and storage Containers—Tight containers. Storage—At 2 – 8°C.

Trihexyphenidyl Hydrochloride

トリヘキシフェニジル塩酸塩

\[\text{C}_3\text{H}_7\text{NO.HCl}: 337.93 \]

(1RS)-1-Cyclohexyl-1-phenyl-3-(piperidin-1-yl)propan-1-ol monohydrochloride [52-49-3]

Trihexyphenidyl Hydrochloride, when dried, contains not less than 98.5% of trihexyphenidyl hydrochloride (\(\text{C}_3\text{H}_7\text{NO.HCl} \)).

Description Trihexyphenidyl Hydrochloride occurs as a white crystalline powder. It is odorless, and has a bitter taste. It is soluble in ethanol (95), sparingly soluble in acetic acid (100), slightly soluble in water, very slightly soluble in acetic anhydride, and practically insoluble in diethyl ether.

Melting point: about 250°C (with decomposition).

Identification (1) Dissolve 1 g of Trihexyphenidyl Hydro-
chloride in 100 mL of water by warming, and cool. Use this solution as the sample solution. To 5 mL of the sample solution add 1 mL of a solution of 2.4,6-trinitrophenol in chloroform (1 in 50), and shake vigorously: a yellow precipitate is formed.

(2) To 20 mL of the sample solution obtained in (1) add 2 mL of sodium hydroxide TS: a white precipitate is formed. Collect the precipitate, wash with a small amount of water, recrystallize from methanol, and dry in a desiccator (in vacuum, silica gel) for 2 hours: the crystals so obtained melt <2.60° between 113°C and 117°C.

(3) The sample solution obtained in (1) responds to Qualitative Tests <1.09> (2) for chloride.

pH <2.54> Dissolve 1.0 g of Trihexyphenidyl Hydrochloride in 100 mL of water by warming, and cool: the pH of this solution is between 5.0 and 6.0.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Trihexyphenidyl Hydrochloride in 100 mL of water by warming: the solution is clear and colorless.

(2) Heavy metals <1.07>—Dissolve 1.5 g of Trihexyphenidyl Hydrochloride in 60 mL of water by warming on a water bath at 80°C, cool, and filter. To 40 mL of the filtrate add 2 mL of dilute acetic acid and water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution with 2.0 mL of Standard Lead Solution, 2 mL of dilute acetic acid and water to make 50 mL (not more than 20 ppm).

(3) Piperidylpropioepheno—Dissolve 0.10 g of Trihexyphenidyl Hydrochloride in 40 mL of water and 1 mL of 1 mol/L hydrochloric acid TS by warming, cool, and add water to make exactly 100 mL. Determine the absorbance of this solution at 247 nm as directed under Ultraviolet-visible Spectrophotometry <2.24>: the absorbance is not more than 0.50.

Loss on drying <2.41> Not more than 0.5% (1 g, 105°C, 3 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.5 g of Trihexyphenidyl Hydrochloride, previously dried, dissolve in 50 mL of a mixture of acetic anhydride and acetic acid (100) (1:1), and titrate <2.50> with 0.1 mol/L perchloric acid-1,4-dioxane VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid-dioxane VS = 33.79 mg of C_{31}H_{31}NO.HCl

Containers and storage Containers—Tight containers.

Trihexyphenidyl Hydrochloride Tablets

トリヘキシフェニジル塩酸塩

Trihexyphenidyl Hydrochloride Tablets contain not less than 93.0% and not more than 107.0% of the labeled amount of trihexyphenidyl hydrochloride (C_{31}H_{31}NO.HCl: 337.93).

Method of preparation Prepare as directed under Tablets, with Trihexyphenidyl Hydrochloride.

Identification (1) Weigh a quantity of powdered Trihexyphenidyl Hydrochloride Tablets, equivalent to 0.1 g of Trihexyphenidyl Hydrochloride, add 30 mL of chloroform, shake, and filter. Evaporate the filtrate on a water bath to dryness. Dissolve the residue in 10 mL of water by warming, cool, and use this solution as the sample solution. With 5 mL of the sample solution, proceed as directed in the Identification (1) under Trihexyphenidyl Hydrochloride.

(2) Shake a quantity of powdered Trihexyphenidyl Hydrochloride Tablets, equivalent to 0.01 g of Trihexyphenidyl Hydrochloride, with 5 mL of chloroform, filter, and use the filtrate as the sample solution. Dissolve 0.02 g of Trihexyphenidyl Hydrochloride RS in 10 mL of chloroform, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.07>. Spot 10 µL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of chloroform and methanol (9:1) to a distance of about 10 cm, and air-dry the plate. Spray evenly hydrogen hexachloroplatinate (IV)-potassium iodide TS on the plate: the spots from the sample solution and the standard solution show a blue-purple color and the same Rf value.

(3) The sample solution obtained in (1) responds to Qualitative Tests <1.09> (2) for chloride.

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 tablet of Trihexyphenidyl Hydrochloride Tablets add 2 mL of dilute hydrochloric acid and 60 mL of water, disintegrate by vigorous shaking for 10 minutes, and warm on a water bath with occasional shaking for 10 minutes. Cool, add 2 mL of methanol, and add water to make exactly V mL so that each mL contains about 20 µg of trihexyphenidyl hydrochloride (C_{31}H_{31}NO.HCl). Centrifuge, if necessary, and use the supernatant liquid as the sample solution. Separately, dissolve about 20 mg of Trihexyphenidyl Hydrochloride RS (determine previously its loss on drying <2.41> under the same conditions as Trihexyphenidyl Hydrochloride) in methanol to make exactly 20 mL. Pipet 2 mL of this solution, and add 2 mL of dilute hydrochloric acid and water to make exactly 100 mL, and use this solution as the standard solution. Pipet 10 mL each of the sample solution and standard solution, transfer to glass-stoppered centrifuge tubes, add exactly 10 mL of bromoresol purple-dipotassium hydrogenphosphate-citric acid TS and 15 mL of chloroform, stopper tightly, shake well, and centrifuge. Pipet 10 mL each of the chloroform layers, add chloroform to make exactly 50 mL. Determine the absorbances, A_1 and A_2, of the resultant solutions of the sample solution and standard solution at 408 nm as directed under Ultraviolet-visible Spectrophotometry <2.24>, respectively.

{\text{Amount (mg) of trihexyphenidyl hydrochloride}}
\begin{align*}
&= M_S \times A_1/A_2 \times V/1000
\end{align*}

{\text{M}_S}: \text{Amount (mg) of Trihexyphenidyl Hydrochloride RS taken, calculated on the dried basis}

Dissolution <6.10> When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of 2nd fluid for dissolution test as the dissolution medium, the dissolution rate in 30 minutes of Trihexyphenidyl Hydrochloride Tablets is not less than 70%.

Start the test with 1 tablet of Trihexyphenidyl Hydrochloride Tablets, withdraw not less than 30 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.8 µm. Discard not less than 10 mL of the first filtrate, pipet V mL.
of the subsequent filtrate, add the dissolution medium to make exactly V mL so that each mL contains about 2.2 μg of trihexyphenidyl hydrochloride (C20H21NO.HCl), and use this solution as the sample solution. Separately, weigh accurately about 10 mg of Trihexyphenidyl Hydrochloride RS, previously dried at 105°C for 3 hours, and dissolve in the dissolution medium to make exactly 100 mL. Pipet 2 mL of this solution, add the dissolution medium to make exactly 100 mL, and use this solution as the standard solution. Pipet 20 mL each of the sample solution, the standard solution and the dissolution medium, add exactly 1 mL of diluted acetic acid (31) (1 in 10), and immediately add 5 mL of bromocresol green-sodium hydroxide-acetic acid-sodium acetate TS, and shake. Then, add exactly 10 mL each of dichloromethane, shake well, centrifuge, and take the dichloromethane layer. Determine the absorbances, A1, A5 and A6, of these dichloromethane layers at 415 nm as directed under Ultraviolet-visible Spectrophotometry <2.24>, using dichloromethane as the blank.

Dissolution rate (%) with respect to the labeled amount of trihexyphenidyl hydrochloride (C20H21NO.HCl)

\[M_S = \frac{(M_A - M_B)}{(M_S - M_A)} \times V/V \times 1/C \times 18 \]

M5: Amount (mg) of Trihexyphenidyl Hydrochloride RS taken
C: Labeled amount (mg) of trihexyphenidyl hydrochloride (C20H21NO.HCl) in 1 tablet

Assay Weigh accurately and powder not less than 20 Trihexyphenidyl Hydrochloride Tablets. Weigh accurately a portion of the powder, equivalent to about 5 mg of trihexyphenidyl hydrochloride (C20H21NO.HCl), dissolve in 2 mL of dilute hydrochloric acid and 60 mL of water, and with occasional shaking. After cooling, add 2 mL of methanol and water to make exactly 100 mL, and use this solution as the sample solution. Dissolve about 50 mg of Trihexyphenidyl Hydrochloride RS (determined previously its loss on drying <2.47>) under the same conditions as Trihexyphenidyl Hydrochloride), weighed accurately, in methanol, add methanol to make exactly 20 mL. Pipet 2 mL of this solution, add 2 mL of dilute hydrochloric acid and water to make exactly 100 mL, and use this solution as the standard solution. Pipet 10 mL each of the sample solution and standard solution into glass-stoppered centrifuge tubes, add exactly 10 mL each of bromocresol purple-potassium hydrogenphosphate-citric acid TS and 15 mL each of chloroform, stopper tightly, shake thoroughly, and centrifuge. Pipet 10 mL each of the chloroform layers, and add chloroform to make exactly 50 mL. Determine the absorbances, A1, A5 and A6, of the subsequent solutions of the sample solution and standard solution at 408 nm as directed under Ultraviolet-visible Spectrophotometry <2.24>, respectively.

Amount (mg) of trihexyphenidyl hydrochloride (C20H21NO.HCl)

\[M_S = \frac{A_S}{A_1} \times 1/10 \]

M6: Amount (mg) of Trihexyphenidyl Hydrochloride RS taken, calculated on the dried basis

Containers and storage Containers—Tight containers.

Trimebutine Maleate

トリメブチンマレイン酸塩

\[
\text{C}_{22}\text{H}_{35}\text{NO}_{3}\cdot\text{C}_{4}\text{H}_{8}\text{O}_{4}: 503.54
\]

(2RS)-2-Dimethylamino-2-phenylbutyl 3,4,5-trimethoxybenzoate monomaleate

[34140-59-5]

Trimebutine Maleate, when dried, contains not less than 98.5% and not more than 101.0% of trimebutine maleate (C22H35NO3·C4H8O4).

Description Trimebutine Maleate occurs as white, crystals or crystalline powder.

It is freely soluble in N,N-dimethylformamide and in acetic acid (100), soluble in anisotol, and slightly soluble in water and in ethanol (99.5).

It dissolves in 0.01 mol/L hydrochloric acid TS.

A solution of Trimebutine Maleate in N,N-dimethylformamide (1 in 20) shows no optical rotation.

Identification (1) Determine the absorption spectrum of a solution of Trimebutine Maleate in 0.01 mol/L hydrochloric acid TS (1 in 50,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Trimebutine Maleate as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point 131 - 135°C

Purity (1) Heavy metals <1.07>—Proceed with 2.0 g of Trimebutine Maleate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Arsenic <1.17>—Prepare the test solution with 2.0 g of Trimebutine Maleate according to Method 3, and perform the test (not more than 1 ppm).

(3) Related substances—Dissolve 0.10 g of Trimebutine Maleate in 100 mL of a mixture of 0.01 mol/L hydrochloric acid TS and acetonitrile (13:7), and use this solution as the sample solution. Pipet 1 mL of the sample solution, add a mixture of 0.01 mol/L hydrochloric acid TS and acetonitrile (13:7) to make exactly 250 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak other than maleic acid and trimebutine obtained from the sample solution is not larger than 1/2 times the peak area of trimebutine from the standard solution, and the total area of the peaks other than maleic acid and trimebutine is not larger than the peak area of trimebutine from the standard solution.
Trimetazidine Hydrochloride

トリメタジジン塩酸塩

C_{14}H_{22}N_2O_3\cdot2HCl: 339.26
1-(2,3,4-Trimethoxybenzyl)piperazine dihydrochloride [13171-25-0]

Trimetazidine Hydrochloride contains not less than 98.0% and not more than 101.0% of trimetazidine hydrochloride (C_{14}H_{22}N_2O_3\cdot2HCl), calculated on the anhydrous basis.

Description Trimetazidine Hydrochloride occurs as a white crystalline powder.

It is very soluble in water and in formic acid, sparingly soluble in methanol, and slightly soluble in ethanol (99.5).

The pH of a solution of 1.0 g of Trimetazidine Hydrochloride in 20 mL of water is between 2.3 and 3.3.

Melting point: about 227°C (with decomposition).

Identification (1) Determine the absorption spectrum of a solution of Trimetazidine Hydrochloride in 0.1 mol/L hydrochloric acid TS (1 in 6250) as directed under Ultraviolet-visible Spectrophotometry <2.22>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Trimetazidine Hydrochloride as directed in the potassium chloride disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) A solution of Trimetazidine Hydrochloride (1 in 50) responds to Qualitative Tests (1.09) for chloride.

Purity (1) Heavy metals <1.07>—Proceed with 2.0 g of Trimetazidine Hydrochloride according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Related substances—Dissolve 0.2 g of Trimetazidine Hydrochloride in 50 mL of water, and use this solution as the sample solution. Pipet 2 mL of the sample solution, add water to make exactly 20 mL. Pipet 2 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 µL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak other than trimetazidine obtained from the sample solution is not larger than 1.5 times that of trimetazidine from the standard solution, and the total area of the peaks other than trimetazidine from the sample solution is not larger than 2.5 times the peak area of trimetazidine from the standard solution.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 240 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilylized silica gel for liquid chromatography (5 µm in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: To 650 mL of diluted perchloric acid (17 in 20,000), previously adjusted the pH to 3.0 with a solution of ammonium acetate (1 in 1000), add 1 g of sodium 1-pentanesulfonate to dissolve. To 650 mL of this solution add 350 mL of acetonitrile.

Flow rate: Adjust so that the retention time of trimetazidine is about 9 minutes.

Time span of measurement: About 2 times as long as the retention time of trimetazidine, beginning after the peak of maleic acid.

System suitability—
Test for required detectability: Measure exactly 5 mL of the standard solution, and add a mixture of 0.01 mol/L hydrochloric acid TS and acetonitrile (13:7) to make exactly 20 mL.Confirm that the peak area of trimetazidine obtained with 20 µL of this solution is equivalent to 20 to 30% of that with 20 µL of the standard solution.

System performance: Dissolve 40 mg of Trimetazidine Maleate and 20 mg of imipramine hydrochloride in 100 mL of a mixture of 0.01 mol/L hydrochloric acid TS and acetonitrile (13:7). When the procedure is run with 20 µL of this solution under the above operating conditions, trimetazidine and imipramine are eluted in this order with the resolution of 0.85 (n=2).

System repeatability: When the test is repeated 6 times with 20 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of trimetazidine is not more than 5%.

Loss on drying <2.41> Not more than 0.5% (1 g, 105°C, 3 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.8 g of Trimetazidine Maleate, previously dried, dissolve in 70 mL of acetic acid (100), and titrate <2.50> with 0.1 mol/L perchloric acid VS until the color of the solution changes from purple through blue to blue-green (indicator: 3 drops of crystal violet TS). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 50.35 mg of C_{22}H_{29}NO_5, C_3H_4O_4

Containers and storage Containers—Well-closed containers.
40°C.

Mobile phase A: Dissolve 2.87 g of sodium 1-heptanesulfonate in water to make 1000 mL, and adjust the pH to 3.0 with diluted phosphoric acid (1 in 10). Mix 3 volumes of this solution and 2 volumes of methanol.

Mobile phase B: Methanol.

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 50</td>
<td>95 → 75</td>
<td>5 → 25</td>
</tr>
</tbody>
</table>

Flow rate: Adjust so that the retention time of trimetazidine is about 25 minutes.

Time span of measurement: About 2 times as long as the retention time of trimetazidine, beginning after the solvent peak.

System suitability—

Test for required detectability: Pipet 5 mL of the standard solution, and add water to make exactly 20 mL. Confirm that the peak area of trimetazidine obtained with 10 μL of this solution is equivalent to 18 to 32% of that with 10 μL of the standard solution.

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of trimetazidine are not less than 15,000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of trimetazidine is not more than 2.0%.

Water Not more than 1.5% (2 g, volumetric titration, direct titration).

Residue on ignition Not more than 0.1% (1 g).

Assay Weigh accurately about 0.12 g of Trimetazidine Hydrochloride, dissolve in 5 mL of formic acid, add exactly 15 mL of 0.1 mol/L perchloric acid VS, and heat at 90 – 100°C for 30 minutes. After cooling, add 45 mL of acetic acid (100), and titrate 2.480 the excess perchloric acid with 0.1 mol/L sodium acetate VS (potentiometric titration). Perform a blank determination in the same manner.

Each mL of 0.1 mol/L perchloric acid VS

\[= 16.96 \text{ mg of } C_{14}H_{22}N_2O_3\cdot2\text{HCl} \]

Containers and storage Containers—Tight containers.

Trimetazidine Hydrochloride Tablets

トリメタジジン塩酸塩錠

Trimetazidine Hydrochloride Tablets contain not less than 94.0% and not more than 106.0% of the labeled amount of trimetazidine hydrochloride (C_{14}H_{22}N_2O_3\cdot2\text{HCl}: 339.26).

Method of preparation Prepare as directed under Tablets, with Trimetazidine Hydrochloride.

Identification Shake a quantity of powdered Trimetazidine Hydrochloride Tablets, equivalent to 10 mg of Trimetazidine Hydrochloride, with 10 mL of a mixture of ethanol (95) and water (3:1), and filter. Evaporate the filtrate on a water bath, add 2 mL of water to the residue, and shake. To 1 mL of this solution add 1 mL of p-benzoquinone TS, boil gently for 2 to 3 minutes, and cool: a red color develops.

Uniformity of dosage units Perform the test according to the following method: it meets the requirements of the Content uniformity test.

To 1 tablet of Trimetazidine Hydrochloride Tablets add 15 mL of a mixture of 0.1 mol/L hydrochloric acid TS and ethanol (99.5) (1:1) to disintegrate the tablet, and sonicate for 10 minutes. Shake the solution for 10 minutes, and add the mixture of 0.1 mol/L hydrochloric acid TS and ethanol (99.5) (1:1) to make exactly 20 mL. Centrifuge, pipet V mL of the supernatant liquid, equivalent to about 0.75 mg of trimetazidine hydrochloride (C_{14}H_{22}N_2O_3\cdot2\text{HCl}), add exactly 5 mL of the internal standard solution, add 0.1 mol/L hydrochloric acid TS to make 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 30 mg of trimetazidine hydrochloride for assay (separately determine the water <2.48> in the same manner as Trimetazidine Hydrochloride), and dissolve in the mixture of 0.1 mol/L hydrochloric acid TS and ethanol (99.5) (1:1) to make exactly 200 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution and 0.1 mol/L hydrochloric acid TS to make 50 mL, and use this solution as the standard solution. Proceed as directed in the Assay.

Amount (mg) of trimetazidine hydrochloride (C_{14}H_{22}N_2O_3\cdot2\text{HCl}) = M_S × Q_0/ Q_1 × 1/2V

Internal standard solution— A solution of parahydroxybenzoic acid in the mixture of 0.1 mol/L hydrochloric acid TS and ethanol (99.5) (1:1) (7 in 40,000).

Dissolution When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 45 minutes of Trimetazidine Hydrochloride Tablets is not less than 80%.

Start the test with 1 tablet of Trimetazidine Hydrochloride Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, and add water to make exactly V’ mL so that each mL contains about 3.5 μg of trimetazidine hydrochloride (C_{14}H_{22}N_2O_3\cdot2\text{HCl}). Pipet 3 mL of this solution, add exactly 3 mL of 0.1 mol/L hydrochloric acid TS, and use this solution as the sample solution. Separately, weigh accurately about 17 mg of trimetazidine hydrochloride for assay (separately determine the water <2.48> in the same manner as Trimetazidine Hydrochloride), and dissolve in water to make exactly 100 mL. Pipet 5 mL of this solution, and add water to make exactly 50 mL. Pipet 5 mL of this solution, and add water to make exactly 25 mL. Pipet 3 mL of this solution, add exactly 3 mL of 0.1 mol/L hydrochloric acid TS, and use this solution as the standard solution. Perform the test with exactly 50 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A_T and A_S, of trimetazidine in each solution.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
Dissolution rate (%) with respect to the labeled amount of trimetazidine hydrochloride \((C_{14}H_{12}N_2O_7\cdot2HCl)\)
\[M_S = A_1/A_2 \times V'/(V \times 1/C) \times 10 \]

\(M_S \): Amount (mg) of trimetazidine hydrochloride for assay taken, calculated on the anhydrous basis
\(C \): Labeled amount (mg) of trimetazidine hydrochloride \((C_{14}H_{12}N_2O_7\cdot2HCl)\) in 1 tablet

Operating conditions—
Proceed as directed in the operating conditions in the Assay.

System suitability—
System performance: When the procedure is run with 50 \(\mu L \) of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of trimetazidine are not less than 5000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 50 \(\mu L \) of the standard solution under the above operating conditions, the relative standard deviation of the peak area of trimetazidine is not more than 1.5%.

Assay—
Weigh accurately not less than 20 tablets of Trimetazidine Hydrochloride Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 3 mg of trimetazidine hydrochloride \((C_{14}H_{12}N_2O_7\cdot2HCl)\), add about 15 mL of a mixture of 0.1 mol/L hydrochloric acid TS and ethanol (99.5) (1:1), and sonicate for 10 minutes. Then shake for 10 minutes, add the mixture of 0.1 mol/L hydrochloric acid TS and ethanol (99.5) (1:1) to make exactly 20 mL, and centrifuge. To exactly 5 mL of the supernatant liquid add exactly 5 mL of the internal standard solution and 0.1 mol/L hydrochloric acid TS to make 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 30 mg of trimetazidine hydrochloride for assay (separately determine the water \(<2.4\% \) in the same manner as Trimetazidine Hydrochloride), and dissolve in the mixture of 0.1 mol/L hydrochloric acid TS and ethanol (99.5) (1:1) to make exactly 200 mL. To exactly 5 mL of this solution add exactly 5 mL of the internal standard solution and 0.1 mol/L hydrochloric acid TS to make 50 mL, and use this solution as the standard solution. Perform the test with 10 \(\mu L \) each of the sample solution and standard solution as directed under Liquid Chromatography \(<2.07 > \) according to the following conditions, and calculate the ratios, \(Q_1 \) and \(Q_2 \), of the peak area of trimetazidine to that of the internal standard.

\[
\text{Amount (mg) of trimetazidine hydrochloride} \quad (C_{14}H_{12}N_2O_7\cdot2HCl) = M_S \times Q_1/Q_2 \times 1/10
\]

Internal standard solution—A solution of parahydroxybenzoic acid in the mixture of 0.1 mol/L hydrochloric acid TS and ethanol (99.5) (1:1) (7 in 40,000).

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 230 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadeclsilanized silica gel for liquid chromatography (5 \(\mu m \) in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase: A mixture of 0.05 mol/L potassium dihydrogen phosphate TS (pH 3.0) and methanol (17:3).
Flow rate: Adjust so that the retention time of trimetazidine is about 7 minutes.

System suitability—
System performance: When the procedure is run with 10 \(\mu L \) of the standard solution under the above operating conditions, trimetazidine and the internal standard are eluted in this order with the resolution between these peaks being not less than 3.

System repeatability: When the test is repeated 6 times with 10 \(\mu L \) of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of trimetazidine to that of the internal standard is not more than 1.0%.

Containers and storage—Containers—Tight containers.

Trimethadione

3,5,5-Trimethyl-1,3-oxazolidine-2,4-dione

\(C_{14}H_{22}NO_2 \): 143.14

3,5,5-Trimethyl-1,3-oxazolidine-2,4-dione [127-48-0]

Trimethadione, when dried, contains not less than 98.0% of trimethadione \((C_{14}H_{22}NO_2)\).

Description—Trimethadione occurs as white, crystals or crystalline powder. It has a camphor-like odor.

It is very soluble in ethanol (95) and in chloroform, freely soluble in diethyl ether, and soluble in water.

Identification—
(1) To 5 mL of a solution of Trimethadione (1 in 50) add 2 mL of barium hydroxide TS: a precipitate is formed immediately.
(2) Determine the infrared absorption spectrum of a solution of Trimethadione in chloroform (1 in 50) as directed in the solution method under Infrared Spectrophotometry \(<2.25 > \), using a 0.1-mm fixed sodium chloride cell, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorptions at the same wave numbers.

Melting point \(<2.60 > \) 45 - 47°C

Purity—Heavy metals \(<1.07 > \)—Proceed with 2.0 g of Trimethadione according to Method 1, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

Loss on drying \(<2.41 > \) Not more than 0.5% (1 g, silica gel, 6 hours).

Residue on ignition \(<2.41 > \) Not more than 0.1% (1 g).

Assay—Weigh accurately about 0.4 g of Trimethadione, previously dried, in a glass-stoppered conical flask, dissolve in 5 mL of ethanol (95), add exactly measured 50 mL of 0.1 mol/L sodium hydroxide VS, stopper, and allow to stand for 15 minutes with occasional shaking. Titrate \(<2.50 > \) the excess sodium hydroxide with 0.1 mol/L hydrochloric acid VS (indicator: 4 drops of cresol red TS). Perform a blank determination in the same manner.

Each mL of 0.1 mol/L sodium hydroxide VS = 14.31 mg of \(C_{14}H_{22}NO_2 \)

Containers and storage—Containers—Tight containers.

Storage—Not exceeding 30°C.
Trimetoquinol Hydrochloride Hydrate

トリメトキノール塩酸塩水和物

\[
\text{C}_{19}\text{H}_{23}\text{N}_{4}\text{O}_{5}\cdot \text{HCl} \cdot \text{H}_{2}\text{O}: 399.87
\]

(1S)-1-(3,4,5-Trimethoxybenzyl)-1,2,3,4-tetrahydroisoquinoline-6,7-diol monohydrochloride monohydrate

[18559-59-6, anhydride]

Trimetoquinol Hydrochloride Hydrate contains not less than 98.5% and not more than 101.0% of trimetoquinol hydrochloride (C\text{19}H\text{23}N\text{4}O\text{5},HCl: 381.85), calculated on the anhydrous basis.

Description Trimetoquinol Hydrochloride Hydrate occurs as white, crystals or crystalline powder.

It is freely soluble in methanol, and sparingly soluble in water and in ethanol (99.5).

Melting point: about 151°C (with decomposition, after drying in vacuum, 105°C, 4 hours).

Identification (1) Determine the absorption spectrum of a solution of Trimetoquinol Hydrochloride Hydrate in 0.01 mol/L hydrochloric acid TS (1 in 20,000) as directed under Ultraviolet-visible Spectrophotometry <2.24> and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave lengths.

(2) Determine the infrared absorption spectrum of Trimetoquinol Hydrochloride Hydrate as directed in the potassium chloride disk method under Infrared Spectrophotometry <2.25> and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) A solution of Trimetoquinol Hydrochloride Hydrate (1 in 50) responds to Qualitative Tests <1.09> (1) for chloride.

Optical rotation <2.49> [\alpha]_D^20 = -16 \sim -19° (0.25 g calculated on the anhydrous basis, water, after warming and cooling, 25 mL, 100 mm).

pH <2.50> Dissolve 1.0 g of Trimetoquinol Hydrochloride Hydrate in 100 mL of water by warming, and cool: the pH of this solution is between 4.5 and 5.5.

Purity (1) Clarity and color of solution—Dissolve 0.10 g of Trimetoquinol Hydrochloride Hydrate in 10 mL of water by warming: the solution is clear and colorless.

(2) Sulfate <1.14>—Perform the test with 0.5 g of Trimetoquinol Hydrochloride Hydrate. Prepare the control solution with 0.40 mL of 0.005 mol/L sulfuric acid VS (not more than 0.038%).

(3) Heavy metals <1.07>—Proceed with 1.0 g of Trimetoquinol Hydrochloride Hydrate according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(4) Related substances—Dissolve 50 mg of Trimetoquinol Hydrochloride Hydrate in 50 mL of the mobile phase, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 \mu L each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area by the automatic integration method: the total area of the peaks other than trimetoquinol obtained from the sample solution is not larger than the peak area of trimetoquinol from the standard solution.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 283 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilylized silica gel for liquid chromatography (5 \mu m in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: Dissolve 2 g of potassium dihydrogen phosphate and 2 g of sodium 1-pentane sulfonate in 1000 mL of water. Adjust with phosphoric acid to a pH between 2.8 and 3.2, and filter through a membrane filter with a pore size of 0.4 \mu m. Add 200 mL of acetonitrile to 800 mL of the filtrate.

Flow rate: Adjust so that the retention time of trimetoquinol is about 7 minutes.

Time span of measurement: About twice as long as the retention time of trimetoquinol, beginning after the solvent peak.

System suitability—

Test for required detectability: To exactly 2 mL of the standard solution add the mobile phase to make exactly 20 mL. Confirm that the peak area of trimetoquinol obtained with 20 \mu L of this solution is equivalent to 7 to 13% of that with 20 \mu L of the standard solution.

System performance: Dissolve 5 mg of Trimetoquinol Hydrochloride Hydrate and 1 mg of procaine hydrochloride in 50 mL of the mobile phase. When the procedure is run with 20 \mu L of this solution under the above operating conditions, procaine and trimetoquinol are eluted in this order with the resolution between these peaks being not less than 4.

System repeatability: When the test is repeated 6 times with 20 \mu L of the standard solution under the above operating conditions, the relative standard deviation of the peak area of trimetoquinol is not more than 2.0%.

Water <2.48> 3.5 – 5.5% (0.3 g, volumetric titration, direct titration).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.5 g of Trimetoquinol Hydrochloride Hydrate, dissolve in 2 mL of 0.1 mol/L hydrochloric acid VS and 70 mL of ethanol (99.5) with thorough shaking, and titrate <2.50> with 0.1 mol/L potassium hydroxide-ethanol VS (potentiometric titration). Calculate the consumed volume of 0.1 mol/L potassium hydroxide-ethanol VS between the first inflection point and the second inflection point.

Each mL of 0.1 mol/L potassium hydroxide-ethanol VS = 38.19 mg of C\text{19}H\text{23}N\text{4}O\text{5},HCl

Containers and storage Containers—Well-closed containers.

Storage—Light-resistant.
Dental Triozinc Paste

Dental Triozinc Paste consists of a powder containing Paraformaldehyde, Thymol, anhydrous zinc sulfate and Zinc Oxide, and a solution containing Cresol, Potash Soap and Glycerin. Suitable amounts of the two components are triturated before use.

Method of preparation

(1) The powder
Paraformaldehyde, finely powdered 10 g
Thymol, finely powdered 3 g
Zinc Sulfate Hydrate 9 g
Zinc Oxide 82 g

To make about 100 g

Heat Zinc Sulfate Hydrate at about 250°C to obtain anhydrous zinc sulfate, cool, and pulverize to a fine powder. Mix homogeneously this powder with Thymol, Paraformaldehyde, and Zinc Oxide.

(2) The solution
Cresol 40 g
Potash Soap 40 g
Glycerin 20 g

To make 100 g

Dissolve Potash Soap in a mixture of Cresol and Glycerin.

Description The powder occurs as a fine, white powder, having a characteristic odor. The solution is a clear, yellow-brown to red-brown, viscous liquid, having the odor of cresol.

Containers and storage Containers—Tight containers.

Tropicamide

トロピカミド

\[\text{C}_{17}\text{H}_{20}\text{N}_2\text{O}_2: 284.35 \]

\[(2RS)-N\text{-Ethyl-3-hydroxy-2-phenyl-N-(pyridin-4-ylmethyl)propanamide} \]

[1508-75-4]

Tropicamide, when dried, contains not less than 98.5% of tropicamide (\(\text{C}_{17}\text{H}_{20}\text{N}_2\text{O}_2 \)).

Description Tropicamide occurs as a white crystalline powder. It is odorless, and has a bitter taste. It is freely soluble in ethanol (95) and in chloroform, slightly soluble in water and in diethyl ether, and practically insoluble in petroleum ether.

It dissolves in dilute hydrochloric acid.

The pH of a solution of 1.0 g of Tropicamide in 500 mL of water is between 6.5 and 8.0.

Identification (1) To 5 mg of Tropicamide add 0.5 mL of a solution of ammonium vanadate (V) in sulfuric acid, (1 in 200), and heat: a blue-purple color develops.

(2) Dissolve 5 mg of Tropicamide in 1 mL of ethanol (95) and 1 mL of water, add 0.1 g of 1-chloro-2,4-dinitrobenzene, and heat on a water bath for 5 minutes. Cool, and add 2 to 3 drops of a solution of sodium hydroxide (1 in 10) and 3 mL of ethanol (95): a red-purple color develops.

Absorbance \(\lambda_{\text{max}} \) 284.35 nm: 166 – 180 (after drying, 5 mg, 2 mol/L hydrochloric acid TS, 200 mL).

Melting point \(\leq 96 – 99^\circ \text{C} \)

Purity (1) Chloride \(\leq \text{1.0}\% \)—Dissolve 1.0 g of Tropicamide in 30 mL of ethanol (95), add 6 mL of dilute nitric acid and water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution with 0.45 mL of 0.01 mol/L hydrochloric acid VS, 30 mL of ethanol (95), 6 mL of dilute nitric acid, and add water to make 50 mL (not more than 0.016%).

(2) Heavy metals \(\leq \text{0.1}\% \)—Dissolve 1.0 g of Tropicamide in 30 mL of ethanol (95), add 2 mL of dilute acetic acid and water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution with 2.0 mL of Standard Lead Solution, 30 mL of ethanol (95), 2 mL of dilute acetic acid and water to make 50 mL (not more than 0.002 ppm).

(3) \(N\text{-Ethyl-\(\gamma \)-picolylamine—Dissolve 0.10 g of Tropicamide in 5 mL of water by heating, add 1 mL of a solution of acetaldehyde (1 in 20), and shake well. Add 1 to 2 drops of sodium pentacyanotrisulfonate (III) TS and 1 to 2 drops of sodium hydrogen carbonate TS, and shake: no blue color develops.} \)

(4) Tropic acid—To 10 mg of Tropicamide in 5 mL of water by heating, add 1 mL of a solution of sodium tetraborate decahydrate and 7 drops of 4-dimethylaminobenzaldehyde TS, and heat in a water bath for 3 minutes. Cool in ice water, and add 5 mL of acetic anhydride: no red-purple color develops.

Loss on drying \(\leq \text{0.30}\% \) (1 g, in vacuum, silica gel, 24 hours).

Residue on ignition \(\leq \text{0.1}\% \) (1 g).

Assay Weigh accurately about 0.5 g of Tropicamide, previously dried, dissolve in 50 mL of acetic acid (100), and titrate \(\leq \text{2.5}\% \) with 0.1 mol/L perchloric acid VS (indicator: 3 drops of crystal violet TS). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 28.44 mg of \(\text{C}_{17}\text{H}_{20}\text{N}_2\text{O}_2 \).

Containers and storage Containers—Tight containers.

Storage—Light-resistant.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
Troxipide

トロキシピド

\[
\text{C}_3\text{H}_2\text{N}_2\text{O}_3: \quad 294.35 \\
3.4.5-\text{Trimethoxy-}-N-[3\text{RS}-\text{piperidin-3-yl}]\text{benzamide} \\
[3075-05-4]
\]

Troxipide, when dried, contains not less than 98.5% and not more than 101.0% of troxipide (C\(_3\)H\(_2\)N\(_2\)O\(_3\)).

Description Troxipide occurs as a white crystalline powder. It is freely soluble in acetic acid (100), soluble in methanol, sparingly soluble in ethanol (99.5) and slightly soluble in water.

It dissolves in 0.1 mol/L hydrochloric acid TS.

A solution of Troxipide in 1 mol/L hydrochloric acid TS (1 in 5) shows no optical rotation.

Identification (1) Determine the absorption spectrum of a solution of Troxipide in 0.1 mol/L hydrochloric acid TS (1 in 62,500) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Troxipide RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Troxipide as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of Troxipide RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point <2.60> 177 – 181°C

Purity (1) Chloride <1.07>—Dissolve 1.0 g of Troxipide in 30 mL of methanol, and add 6 mL of dilute nitric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution as follows: to 0.25 mL of 0.01 mol/L hydrochloric acid VS add 30 mL of methanol, 6 mL of dilute nitric acid and water to make 50 mL (not more than 0.009%).

(2) Heavy metals <1.07>—Moisten 2.0 g of Troxipide with 1 mL of sulfuric acid, and gently heat until charred. After cooling, add 2 mL of nitric acid, carefully heat until white fumes are no longer evolved, and perform the test according to Method 2. Prepare the control solution as follows: evaporate 1 mL of sulfuric acid, 2 mL of nitric acid and 2 mL of hydrochloric acid on a water bath and then on a sand bath to dryness, and moisten the residue with 3 drops of hydrochloric acid. Proceed in the same manner for the preparation of the test solution, and add 2.0 mL of Standard Lead Solution and water to make 50 mL (not more than 10 ppm).

(3) Related substances—Dissolve 0.20 g of Troxipide in 10 mL of methanol, and use this solution as the sample solution. Pipet 2 mL of the sample solution, and add methanol to make exactly 100 mL. Pipet 2 mL of this solution, add methanol to make exactly 20 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.63>. Spot 5 \(\mu\)L each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of methanol, ethyl acetate, water, hexane and ammonia water (28):20:5:5:1 to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the number of the spots other than the principal spot obtained from the sample solution is not more than three, and they are not more intense than the spot from the standard solution.

Loss on drying <2.41> Not more than 1.0% (1 g, 105°C, 2 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.6 g of Troxipide, previously dried, dissolve in 40 mL of acetic acid (100), and titrate <2.50> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 29.44 mg of C\(_3\)H\(_2\)N\(_2\)O\(_3\).

Containers and storage Containers—Tight containers.

Troxipide Fine Granules

トロキシピド細粒

Troxipide Fine Granules contain not less than 93.0% and not more than 107.0% of the labeled amount of troxipide (C\(_3\)H\(_2\)N\(_2\)O\(_3\): 294.35).

Method of preparation Prepare as directed under Granules, with Troxipide.

Identification To a quantity of Troxipide Fine Granules, equivalent to 20 mg of Troxipide, add 100 mL of 0.1 mol/L hydrochloric acid TS, stir, and filter. To 4 mL of the filtrate add 0.1 mol/L hydrochloric acid TS to make 50 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.24>: it exhibits a maximum between 256 nm and 260 nm.

Uniformity of dosage units <6.02> Perform the test according to the following method: Troxipide Fine Granules in single-dose packages meet the requirement of the Content uniformity test.

To the total amount of the content of 1 package of Troxipide Fine Granules, add 80 mL of 0.1 mol/L hydrochloric acid TS, stir for 10 minutes, and add 0.1 mol/L hydrochloric acid TS to make exactly 1 mL so that each mL contains about 1 mg of troxipide (C\(_3\)H\(_2\)N\(_2\)O\(_3\)). Centrifuge this solution, pipet 2 mL of the supernatant liquid, add exactly 3 mL of the internal standard solution, and water to make 100 mL, and use this solution as the sample solution. Proceed as directed in the Assay.

\[
\text{Amount (mg) of troxipide (C}_3\text{H}_2\text{N}_2\text{O}_3\text{) = } M_5 \times Q_t / Q_s \times V / 25
\]

\(M_5\): Amount (mg) of Troxipide RS taken

Internal standard solution—A solution of 4-aminoacetophenone in 0.1 mol/L hydrochloric acid TS (3 in 2000).

Dissolution <6.10> When the test is performed at 50 revolutions per minute according to the Paddle method, using 900
mL of water as the dissolution medium, the dissolution rate in 60 minutes of Troxipide Fine Granules is not less than 85%.

Weigh accurately an amount of Troxipide Fine Granules, equivalent to about 0.1 g of troxipide (C₁₅H₁₉N₂O₆), withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.8 μm. Discard not less than 10 mL of the first filtrate, pipet 4 mL of the subsequent filtrate, add water to make exactly 20 mL, and use this solution as the sample solution. Separately, weigh accurately about 20 mg of Troxipide RS, previously dried at 105°C for 2 hours, and dissolve in water to make exactly 200 mL. Pipet 4 mL of this solution, add water to make exactly 20 mL, and use this solution as the standard solution. Perform the test with the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry <2,24>, and determine the absorbances, \(A_t \) and \(A_s \), at 258 nm.

Dissolution rate (%) with respect to the labeled amount of troxipide (C₁₅H₁₉N₂O₆) = \(\frac{M_s}{M_t} \times \frac{A_t}{A_s} \times \frac{1}{C} \times 450 \)

\(M_t \): Amount (mg) of Troxipide RS taken
\(M_s \): Amount (mg) of Troxipide Fine Granules taken
\(C \): Labeled amount (mg) of troxipide (C₁₅H₁₉N₂O₆) in 1 g

Assay Weigh accurately an amount of Troxipide Fine Granules, equivalent to about 0.5 g of troxipide (C₁₅H₁₉N₂O₆), add 200 mL of 0.1 mol/L hydrochloric acid TS, stir for 10 minutes, and add 0.1 mol/L hydrochloric acid TS to make exactly 250 mL. Centrifuge this solution, pipet 5 mL of the supernatant liquid, add 0.1 mol/L hydrochloric acid TS to make exactly 10 mL. Pipet 2 mL of this solution, add exactly 3 mL of the internal standard solution, and water to make 100 mL, and use this solution as the sample solution. Separately, weigh accurately about 25 mg of Troxipide RS, previously dried at 105°C for 2 hours, and dissolve in 0.1 mol/L hydrochloric acid TS to make exactly 25 mL. Pipet 2 mL of this solution, add exactly 3 mL of the internal standard solution, and water to make 100 mL, and use this solution as the standard solution. Perform the test with 20 μL of each of the sample solution and standard solution as directed under Liquid Chromatography <2,01> according to the following conditions, and calculate the ratios, \(Q_t \) and \(Q_s \), of the peak area of troxipide to that of the internal standard.

Amount (mg) of troxipide (C₁₅H₁₉N₂O₆) = \(M_s \times Q_t/Q_s \times 20 \)

\(M_t \): Amount (mg) of Troxipide RS taken

Internal standard solution—A solution of 4-aminoacetoephone in 0.1 mol/L hydrochloric acid TS (3 in 2000).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 258 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilaized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 30°C.
Mobile phase: To diluted phosphoric acid (1 in 500) add diethylylamine to adjust the pH to 3.0. To 1500 mL of this solution add 100 mL of methanol and 50 mL of tetrahydrofuran.
Flow rate: Adjust so that the retention time of troxipide is about 7 minutes.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.)
use this solution as the standard solution. Perform the test with the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry <2.24>, and determine the absorbances, \(A_1 \) and \(A_S \), at 258 nm.

Dissolution rate (\%) with respect to the labeled amount of troxipide (\(C_{15}H_{23}N_2O_4 \))

\[
M_5 = \frac{M_6 \times A_1 / A_S \times V/V \times 1/C \times 90}{100}
\]

\(M_5 \): Amount (mg) of Troxipide RS taken

\(C \): Labeled amount (mg) of Troxipide (\(C_{15}H_{23}N_2O_4 \)) in 1 tablet

Assay

Weigh accurately the mass of not less than 20 Troxipide Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 1 g of troxipide (\(C_{15}H_{23}N_2O_4 \)), add 150 mL of 0.1 mol/L hydrochloric acid TS, shake for 30 minutes, add 0.1 mol/L hydrochloric acid TS to make exactly 250 mL. Centrifuge this solution, pipet 5 mL of the supernatant liquid, and add 0.1 mol/L hydrochloric acid TS to make exactly 20 mL. Pipet 2 mL of this solution, add exactly 3 mL of the internal standard solution and water to make 100 mL, and use this solution as the sample solution. Separately, weigh accurately about 25 mg of Troxipide RS, previously dried at 105 °C for 2 hours, and dissolve in 0.1 mol/L hydrochloric acid TS to make exactly 25 mL. Pipet 2 mL of this solution, add exactly 3 mL of the internal standard solution and water to make 100 mL, and use this solution as the standard solution. Perform the test with 20 \(\mu \)L each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions, and calculate the ratios, \(Q_T \) and \(Q_S \), of the peak area of troxipide to that of the internal standard.

\[
Amount (mg) of troxipide (\(C_{15}H_{23}N_2O_4 \)) = M_5 \times Q_T / Q_S \times 40
\]

\(M_5 \): Amount (mg) of Troxipide RS taken

Internal standard solution—A solution of 4-aminoacetophenone in 0.1 mol/L hydrochloric acid TS (3 in 2000).

Operating conditions—

Detector: An ultraviolet absorbance photometer (wavelength: 258 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecysilanized silica gel for liquid chromatography (5 \(\mu \)m in particle diameter).

Column temperature: A constant temperature of about 30°C.

Mobile phase: To 1500 mL of diluted phosphoric acid (1 in 500) add diethylamine to adjust the pH to 3.0. To 1500 mL of this solution add 100 mL of methanol and 50 mL of tetrahydrofuran.

Flow rate: Adjust so that the retention time of troxipide is about 7 minutes.

System suitability—

System performance: When the procedure is run with 20 \(\mu \)L of the standard solution under the above operating conditions, troxipide and the internal standard are eluted in this order with the resolution between these peaks being not less than 3.

System repeatability: When the test is repeated 6 times with 20 \(\mu \)L of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of troxipide to that of the internal standard is not more than 1.0%.

Containers and storage

Containers—Tight containers.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)

L-Tryptophan

L-トリプトファン

\[
C_{15}H_{23}N_2O_4: 204.23
\]

(2S)-2-Amino-3-(indol-3-yl)propanoic acid

[73-22-3]

L-Tryptophan

L-Tryptophan, when dried, contains not less than 98.5% of L-tryptophan (\(C_{15}H_{23}N_2O_4 \)).

Description

L-Tryptophan occurs as white to yellowish white, crystals or crystalline powder. It is odorless, and has a slightly bitter taste.

It is freely soluble in formic acid, slightly soluble in water, and very slightly soluble in ethanol (95).

It dissolves in dilute hydrochloric acid.

Identification

Determine the infrared absorption spectrum of L-Tryptophan, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation <2.49> [\(\alpha \)D]: -30.0 to -33.0° Weigh accurately about 0.25 g of L-Tryptophan, previously dried, and dissolve in 20 mL of water by warming. After cooling, add water to make exactly 25 mL, and determine the optical rotation of the solution in a 100-mm cell.

pH <2.54> Dissolve 1.0 g of L-Tryptophan in 100 mL of water by warming, and cool: the pH of this solution is between 5.4 and 6.4.

Purity (1)

Clarity of solution—Dissolve 0.20 g of L-Tryptophan in 10 mL of 2 mol/L hydrochloric acid TS: the solution is clear.

(2) Chloride <1.03>—Dissolve 0.5 g of L-Tryptophan in 6 mL of dilute nitric acid, and add water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 0.30 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.021%).

(3) Sulfate <1.14>—Dissolve 0.6 g of L-Tryptophan in 40 mL of water and 1 mL of dilute hydrochloric acid, and add water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 0.35 mL of 0.005 mol/L sulfuric acid VS (not more than 0.028%).

(4) Ammonium <1.02>—Perform the test with 0.25 g of L-Tryptophan. Prepare the control solution with 5.0 mL of Standard Ammonium Solution (not more than 0.02%).

(5) Heavy metals <1.07>—Proceed with 1.0 g of L-Tryptophan according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(6) Arsenic <1.15>—Dissolve 1.0 g of L-Tryptophan in 3 mL of 1 mol/L hydrochloric acid TS and 2 mL of water by heating, and perform the test with this solution as the test solution (not more than 2 ppm).

(7) Related substances—Dissolve 0.30 g of L-Tryptophan in 1 mL of 1 mol/L hydrochloric acid TS, add water to make 50 mL, and use this solution as the sample solution. Pipet 1
mL of the sample solution, and add water to make exactly 50 mL. Pipet 5 mL of this solution, add water to make exactly 20 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography 2.07. Spot 5 μL of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of 1-butanol, water and acetic acid (100) (3:1:1) to a distance of about 10 cm, and dry the plate at 80°C for 30 minutes. Spray evenly a solution of ninhydrin in acetone (1 in 50) on the plate, and heat the plate at 80°C for 5 minutes: the spots other than the principal spot obtained from the sample solution are not more intense than the spot from the standard solution.

Loss on drying <2.41> Not more than 0.30% (1 g, 105°C, 3 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.2 g of L-Tryptophan, previously dried, dissolve in 3 mL of formic acid, add 50 mL of acetic acid (100), and titrate <2.50> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 20.42 mg of C\textsubscript{11}H\textsubscript{12}N\textsubscript{2}O\textsubscript{2}

Containers and storage Containers—Tight containers. Storage—Light-resistant.

Tulobuterol

ツロブテロール

![Chemical structure of Tulobuterol](image)

C\textsubscript{12}H\textsubscript{15}ClNO: 227.73

(1RS)-1-(2-Chlorophenyl)-2-(1,1-dimethylethyl)aminoethanol [41570-61-0]

Tulobuterol contains not less than 98.5% and not more than 101.0% of tulobuterol (C\textsubscript{12}H\textsubscript{15}ClNO), calculated on the anhydrous basis.

Description Tulobuterol occurs as white, crystals or crystalline powder.

It is very soluble in methanol, freely soluble in ethanol (99.5) and in acetic acid (100), and practically insoluble in water.

It dissolves in 0.1 mol/L hydrochloric acid TS.

It gradually sublimes at 40°C.

A solution of Tulobuterol in methanol (1 in 20) shows no optical rotation.

Idenfication (1) Determine the absorption spectrum of a solution of Tulobuterol in 0.1 mol/L hydrochloric acid TS (3 in 5000) as directed under Ultraviolet-visible Spectrophotometry 2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

Identification (2) Determine the infrared absorption spectrum of Tulobuterol as directed in the potassium bromide disk method under Infrared Spectrophotometry 2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point <2.60> 90 – 93°C

Purity (1) Heavy metals <1.07>—Proceed with 2.0 g of Tulobuterol according to Method 2, and perform the test. Prepare the control solution with 1.0 mL of Standard Lead Solution (not more than 5 ppm).

(2) Related substances—Dissolve 25 mg of Tulobuterol in 50 mL of the mobile phase, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add the mobile phase to make exactly 100 mL. Pipet 5 mL of this solution, add the mobile phase to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly 25 μL of each of the sample solution and standard solution as directed under Liquid Chromatography 2.01> according to the following conditions, and determine each peak area by the automatic integration method: each peak area other than tulobuterol obtained from the sample solution is not larger than the peak area of tulobuterol from the standard solution, and the total area of the peaks other than tulobuterol from the sample solution is not larger than 5 times the peak area of tulobuterol from the standard solution.

Operating conditions

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 30°C.

Mobile phase: Dissolve 3 g of sodium 1-octanesulfonate in 900 mL of water, and add 5 mL of diluted phosphoric acid (1 in 150). To 650 mL of this solution add 350 mL of acetonitrile for liquid chromatography.

Flow rate: Adjust so that the retention time of tulobuterol is about 7 minutes.

Time span of measurement: About 5 times as long as the retention time of tulobuterol, beginning after the solvent peak.

System suitability

System performance: To 1 mL of the sample solution add the mobile phase to make 100 mL. To 5 mL of this solution add the mobile phase to make 10 mL, and use this solution as the solution for system suitability test. When the procedure is run with 25 μL of the solution for system suitability test under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of tulobuterol are not less than 5000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 25 μL of the solution for system suitability test under the above operating conditions, the relative standard deviation of the peak area of tulobuterol is not more than 2.0%.

(3) Boron—Put 50 mg of Tulobuterol and 3.0 mL of Standard Boron Solution separately in platinum crucibles, and add 5 mL of potassium carbonate-sodium carbonate TS to them. After evaporating to dryness on a water bath, dry them at 120°C for 1 hour, and immediately incinerate by ignition. After cooling, add 0.5 mL of water and 3 mL of curcumin TS to the residue in the crucibles, and warm gently on a water bath for 5 minutes. After cooling, add 3 mL of acetic acid-sulfuric acid TS, and allow to stand for 30 minutes. Then add ethanol (95) to make them exactly 100 mL, filter, discard the first 10 mL of the filtrate, and use these subsequent filtrates as the sample solution and the
standard solution, respectively. Perform the test with these solutions as directed under Ultraviolet-visible Spectrophotometry <2.24> using methanol (95) as a blank: the absorbance at 555 nm of the sample solution is not more than that of the standard solution.

Water <2.48> Not more than 0.2% (2 g, volumetric titration, direct titration).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.5 g of Tulobuterol, dissolve in 20 mL of acetic acid (100), and titrate <2.50> with 0.1 mol/L perchloric acid VS until the color of the solution changes from purple to blue-green through blue (indicator: 2 drops of crystal violet TS). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 22.77 mg of C₁₂H₁₈ClNO

Containers and storage Containers—Tight containers.

Tulobuterol Transdermal Tape ソロプテロール経皮吸収型テーブ

Tulobuterol Transdermal Tape contains not less than 90.0% and not more than 110.0% of the labeled amount of tulobuterol (C₁₂H₁₈ClNO: 227.73).

Method of preparation Prepare as directed under Tapes/Plasters, with Tulobuterol.

Identification After removing the liner from an amount of Tulobuterol Transdermal Tape, equivalent to 20 mg of Tulobuterol, shake with 10 mL of hexane. Take the supernatant liquid to an another vessel, shake with 10 mL of 0.1 mol/L hydrochloric acid TS, centrifuge, and take the aqueous layer. To 3 mL of the layer add 0.1 mol/L hydrochloric acid TS to make 10 mL, and determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.24>: it exhibits maxima between 261 nm and 263 nm and between 265 nm and 267 nm, and a shoulder between 271 nm and 273 nm.

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

After removing the liner from 1 tape of Tulobuterol Transdermal Tape, add exactly V mL of the internal standard solution so that each mL contains about 0.25 mg of tulobuterol (C₁₂H₁₈ClNO), shake, and use the supernatant liquid as the sample solution. Separately, weigh accurately about 20 mg of tulobuterol for assay (separately determine the water <2.48> in the same manner as Tulobuterol), and dissolve in hexane to make exactly 100 mL. Pipet 10 mL of this solution, add exactly 1 mL of the internal standard solution, and use this solution as the standard solution. Perform the test with 1 μL each of the sample solution and standard solution as directed under Gas Chromatography <2.02> according to the following conditions, and calculate the ratios, Q₁ and Q₃, of the peak area of tulobuterol to that of the internal standard.

Amount (mg) of tulobuterol (C₁₂H₁₈ClNO) in 1 tape = M₅ × Q₁/Q₃ × V/1000

M₅: Amount (mg) of tulobuterol for assay taken, calculated on the anhydrous basis

Internal standard solution—A solution of benzyl benzoate in hexane (1 in 200).

Operating conditions—
Detector: A hydrogen flame-ionization detector.
Column: A fused-silica column 0.53 mm in inside diameter and 30 m in length, coated the inside surface with methyl silicon polymer for gas chromatography in 1.5 μm thickness.
Column temperature: A constant temperature of about 180°C.
Carrier gas: Nitrogen.
Flow rate: Adjust so that the retention time of tulobuterol is about 3 minutes.

System suitability—
System performance: When the procedure is run with 1 μL of the standard solution under the above operating conditions, tulobuterol and the internal standard are eluted in this order with the resolution between these peaks being not less than 4.
System repeatability: When the test is repeated 6 times with 1 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of tulobuterol is not more than 2.0%.

Containers and storage Containers—Tight containers.

is granted approval based on the Law.

Drug release Being specified separately when the drug is granted approval based on the Law.

Assay After removing the liner from 10 tapes of Tulobuterol Transdermal Tape, add V mL of hexane so that each mL contains 0.5 mg of tulobuterol (C₁₂H₁₈ClNO), then add exactly V/10 mL of the internal standard solution, shake, and use the supernatant liquid as the sample solution. Separately, weigh accurately about 50 mg of tulobuterol for assay (separately determine the water <2.48> in the same manner as Tulobuterol), and dissolve in hexane to make exactly 100 mL. Pipet 10 mL of this solution, add exactly 1 mL of the internal standard solution, and use this solution as the standard solution. Perform the test with 1 μL each of the sample solution and standard solution as directed under Gas Chromatography <2.02> according to the following conditions, and calculate the ratios, Q₁ and Q₃, of the peak area of tulobuterol to that of the internal standard.
Tulobuterol Hydrochloride
ツロブテロール塩酸塩

C₂₇H₂₃ClNO₂HCl: 264.19
(1RS)-1-(2-Chlorophenyl)-2-(1,1-dimethylethyl)aminoethanol monohydrochloride [56776-01-3]

Tulobuterol Hydrochloride, when dried, contains not less than 98.5% and not more than 101.0% of tulobuterol hydrochloride (C₂₇H₂₃ClNO₂HCl).

Description Tulobuterol Hydrochloride occurs as white, crystals or crystalline powder.

It is very soluble in methanol, freely soluble in water, in ethanol (95) and in acetic acid (100), sparingly soluble in acetic anhydride.

A solution of Tulobuterol Hydrochloride (1 in 20) shows no optical rotation.

Melting point: about 163°C.

Identification (1) Determine the absorption spectrum of a solution of Tulobuterol Hydrochloride (1 in 2500) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Tulobuterol Hydrochloride, previously dried, as directed in the potassium bromide disk method under Infrared Spectroscopy <2.23>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) A solution of Tulobuterol Hydrochloride (1 in 20) responds to Qualitative Tests <1.09> for chloride.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Tulobuterol Hydrochloride in 10 mL of water: the solution is clear and colorless.

(2) Heavy metals <1.07>—Proceed with 2.0 g of Tulobuterol Hydrochloride according to Method 1, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(3) Related substances—Dissolve 30 mg of Tulobuterol Hydrochloride in 50 mL of the mobile phase, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add the mobile phase to make exactly 100 mL. Pipet 5 mL of this solution, add the mobile phase to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly 25 μL of each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak other than tulobuterol obtained from the sample solution is not larger than the peak area of tulobuterol from the standard solution, and the total area of the peaks other than the peak of tulobuterol from the standard solution is not larger than 5 times the peak area of tulobuterol from the standard solution.

Operating conditions—

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 30°C.

Mobile phase: Dissolve 3 g of sodium 1-octanesulfonate in 900 mL of water, and add 5 mL of diluted phosphoric acid (1 in 150). To 650 mL of this solution add 350 mL of acetonitrile for liquid chromatography.

Flow rate: Adjust so that the retention time of tulobuterol is about 7 minutes.

Time span of measurement: About 5 times as long as the retention time of tulobuterol, beginning after the solvent peak.

System suitability—
System performance: To 1 mL of the sample solution add the mobile phase to make 100 mL. To 5 mL of this solution add the mobile phase to make 10 mL, and use this solution as the solution for system suitability test. When the procedure is run with 25 μL of the solution for system suitability test under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of tulobuterol are not less than 5000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 25 μL of the solution for system suitability test under the above operating conditions, the relative standard deviation of the peak area of tulobuterol is not more than 2.0%.

Loss on drying <2.41> Not more than 0.5% (0.5 g, in vacuum, 60°C, 4 hours).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.5 g of Tulobuterol Hydrochloride, previously dried, dissolve in 80 mL of a mixture of acetic anhydride and acetic acid (100) (7:3), and titrate <2.50> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 26.42 mg of C₂₇H₂₃ClNO₂HCl

Containers and storage Containers—Tight containers.

L-Tyrosine
L-チロシン

C₆H₉NO₂: 181.19
(2S)-2-Amino-3-(4-hydroxyphenyl)propanoic acid [60-18-4]

L-Tyrosine, when dried, contains not less than 99.0% and not more than 101.0% of L-tyrosine (C₆H₉NO₂).

Description L-Tyrosine occurs as white, crystals or a crystalline powder.

It is freely soluble in formic acid, and practically insoluble in water and in ethanol (99.5).

It dissolves in dilute hydrochloric acid and in ammonia.
Identification (1) Determine the absorption spectrum of a solution of L-Tyrosine in 0.1 mol/L hydrochloric acid (1 in 10,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of L-Tyrosine as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation $\beta_249 = [\alpha]_D^\infty = -10.5$ to -12.5° (after drying, 2.5 g, 1 mol/L hydrochloric acid TS, 50 mL, 100 mm).

Purity (1) Clarity and color of solution—Dissolve 1.0 g of L-Tyrosine in 20 mL of 1 mol/L hydrochloric acid TS by warming: the solution is clear and colorless.

(2) Chloride $<1.05>$—Dissolve 0.5 g of L-Tyrosine in 12 mL of dilute nitric acid and 20 mL of water, and add water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution as follows: To 0.30 mL of 0.01 mol/L hydrochloric acid VS add 12 mL of dilute nitric acid and water to make 50 mL (not more than 0.021%).

(3) Sulfate $<1.14>$—Dissolve 0.6 g of L-Tyrosine in 5 mL of dilute hydrochloric acid, and add water to make 45 mL. Perform the test using this solution as the test solution. Prepare the control solution as follows: To 0.35 mL of 0.005 mol/L sulfuric acid VS add 5 mL of dilute hydrochloric acid and water to make 45 mL. To the test solution and the control solution add 5 mL of barium chloride TS (not more than 0.028%).

(4) Ammonium $<1.02>$—Perform the test with 0.25 g of L-Tyrosine. Prepare the control solution with 5.0 mL of Standard Ammonium Solution (not more than 0.02%).

(5) Heavy metals $<1.07>$—Proceed with 1.0 g of L-Tyrosine according to Method 4, and perform the test. Prepare the control solution with 1.0 mL of Standard Lead Solution (not more than 10 ppm).

(6) Iron $<1.10>$—Prepare the test solution with 1.0 g of L-Tyrosine according to Method 3, and perform the test according to Method A. Prepare the control solution with 1.0 mL of Standard Iron Solution (not more than 10 ppm).

(7) Related substances—Dissolve 0.20 g of L-Tyrosine in 10 mL of diluted ammonia solution (28) (1 in 2), add water to make 20 mL, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add water to make exactly 10 mL, pipet 1 mL of this solution, add water to make exactly 50 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography $<2.07>$. Spot 5 µL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Then develop with a mixture of 1-propanol and ammonia solution (28) (67:33) to a distance of about 10 cm, and dry the plate at 80°C for 30 minutes. Spray evenly a solution of ninhydrin in a mixture of methanol and acetic acid (100) (97:3) (1 in 100) on the plate, and then heat the plate at 80°C for 10 minutes: the spot other than the principal spot obtained from the sample solution is not more intense than the spot from the standard solution.

Loss on drying $<2.41>$ Not more than 0.3% (1 g, 105°C, 3 hours).

Residue on ignition $<2.44>$ Not more than 0.1% (1 g).

Assay Weigh accurately about 0.18 g of L-Tyrosine previously dried, dissolve in 6 mL of formic acid, add 50 mL of acetic acid (100), and titrate $<2.50>$ with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS $= 18.12$ mg of $C_{13}H_{17}NO_3$.

Containers and storage Containers—Tight containers.

Ubenimex

ウベニメクス

![Structure of Ubenimex](image)

$C_{16}H_{24}N_{2}O_{4}$; 308.37

(2S)-2-[(2S,3R)-3-Amino-2-hydroxy-4-phenylbutanoylamino]-4-methylpentanoic acid

[Ubenimex when dried, contains not less than 98.5% and not more than 101.0% of Ubenimex ($C_{16}H_{24}N_{2}O_4$).

Description Ubenimex occurs as a white crystalline powder.

It is freely soluble in acetic acid (100), slightly soluble in water, and very slightly soluble in ethanol (99.5).

It dissolves in 1 mol/L hydrochloric acid TS.

Melting point: about 230°C (with decomposition).

Identification (1) Determine the absorption spectrum of a solution of Ubenimex (1 in 2000) as directed under Ultraviolet-visible Spectrophotometry $<2.24>$, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum as directed in the potassium bromide disk method under Infrared Spectrophotometry $<2.25>$, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation $\beta_249 = [\alpha]_D^\infty = -15.5$ to -17.5° (after drying, 0.5 g, 1 mol/L hydrochloric acid TS, 50 mL, 100 mm).

Purity (1) Heavy metals $<1.07>$—Proceed with 2.0 g of Ubenimex according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Related substances—Dissolve 30 mg of Ubenimex in 10 mL of the mobile phase A, and use this solution as the sample solution. Pipet 2 mL of the sample solution, add the mobile phase A to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 20 µL each of the sample solution and standard solution as directed under Liquid Chromatography $<2.01>$ according to the following conditions, and determine each peak area by the automated integration method: the area of the peak other than ubenimex obtained from the sample solution is not larger than 1/2 times the peak area of ubenimex from the standard solution. Furthermore, the total area of the peaks other than ubenimex from the sample solution is not larger than the peak area of ubenimex from the standard solution.

Operating conditions—

Detector: An ultraviolet absorption photometer (wave-
JP XVIII

Official Monographs / Ubenimex Capsules 1885

length: 220 mm).

Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadeclsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase A: A mixture of diluted 0.1 mol/L potassium dihydrogen phosphate TS (13 in 20) and acetonitrile for liquid chromatography (17:3).

Mobile phase B: A mixture of acetonitrile for liquid chromatography and diluted 0.1 mol/L potassium dihydrogen phosphate TS (13 in 20) (2:1).

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 20</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>20 – 60</td>
<td>100 → 0</td>
<td>0 → 100</td>
</tr>
<tr>
<td>60 – 70</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Flow rate: Adjust so that the retention time of ubenimex is about 14 minutes.

Time span of measurement: About 5 times as long as the retention time of ubenimex, beginning after the solvent peak.

System suitability—

Test for required detectability: Pipet 1 mL of the standard solution, and add the mobile phase A to make exactly 10 mL. Confirm that the peak area of ubenimex obtained with 20 μL of this solution is equivalent to 7 to 13% of that with 20 μL of the standard solution.

System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of ubenimex are not less than 5000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of ubenimex is not more than 2.0%.

Loss on drying <2.41> Not more than 0.5% (0.5 g, in vacuum, 80°C, 4 hours).

Residue on ignition <2.42> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.5 g of Ubenimex, previously dried, dissolve in 60 mL of acetic acid (100), and titrate <2.50> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 30.84 mg of C16H23N2O4

Containers and storage Containers—Tight containers.

Ubenimex Capsules

ウベニメクスカプセル

Ubenimex Capsules contain not less than 93.0% and not more than 107.0% of the labeled amount of ubenimex (C16H23N2O4; 308.37).

Method of preparation Prepare as directed under Capsules, with Ubenimex.

Identification To a quantity of the contents of Ubenimex Capsules, equivalent to 25 mg of Ubenimex, add water to make 50 mL, shake well, and filter. Determine the absorption spectrum of the filtrate as directed under Ultraviolet-visible Spectrophotometry <2.24>: it exhibits maxima between 250 nm and 254 nm, between 255 nm and 259 nm, and between 261 nm and 265 nm.

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 capsule of Ubenimex Capsules add 30 mL of a mixture of water and acetonitrile (7:3), shake well for 30 minutes, and add a mixture of water and acetonitrile (7:3) to make exactly 50 mL. Centrifuge this solution and filter the supernatant liquid through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 5 mL of the filtrate, pipet V mL of the subsequent filtrate, equivalent to about 3 mg of Ubenimex (C16H23N2O4), add exactly 4 mL of the internal standard solution, add a mixture of water and acetonitrile (7:3) to make exactly 100 mL. Pipet 15 mL of this solution, add exactly 4 mL of the internal standard solution, add a mixture of water and acetonitrile (7:3) to make 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 20 mg of Ubenimex for assay, previously dried at 80°C for 4 hours under reduced pressure, and dissolve in a mixture of water and acetonitrile (7:3) to make exactly 100 mL. Pipet 15 mL of this solution, add exactly 4 mL of the internal standard solution, add a mixture of water and acetonitrile (7:3) to make 50 mL, and use this solution as the standard solution. Perform the test with 20 μL of each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions, and calculate the ratios, Qr and Qs, of the peak area of Ubenimex to that of the internal standard.

Amount (mg) of ubenimex (C16H23N2O4) = M5 × Qr/Qs × 1/V × 15/2

M5: Amount (mg) of Ubenimex for assay taken

Internal standard solution—A solution of ethyl parahydroxybenzoate in a mixture of water and acetonitrile (7:3) (1 in 2000).

Operating conditions—

Proceed as directed in the operating conditions in the Assay.

System suitability—

System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, ubenimex and the internal standard are eluted in this order with the resolution between these peaks being not less than 10.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of ubenimex to that of the internal standard is not more than 2.0%.

Dissolution <6.10> When the test is performed at 50 revolu-
tions per minute according to the Paddle method using the sinker, using 900 mL of water as the dissolution medium, the dissolution rate in 30 minutes of Ubenimex Capsules is not less than 70%.

Start the test with 1 capsule of Ubenimex Capsules, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add a mixture of water and acetonitrile (7:3) to make exactly V mL so that each mL contains about 11 μg of ubenimex (C_{16}H_{23}N_{2}O_{4}), and use this solution as the sample solution. Separately, weigh accurately about 22 mg of ubenimex for assay, previously dried at 80°C for 4 hours under reduced pressure, and dissolve in a mixture of water and acetonitrile (7:3) to make exactly 100 mL. Pipet 5 mL of this solution, add a mixture of water and acetonitrile (7:3) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 50 μL of each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions, and determine the peak areas, A_{1} and A_{5}, of ubenimex in each solution.

Dissolution rate (%) with respect to the labeled amount of ubenimex (C_{16}H_{23}N_{2}O_{4})

\[\text{Dissolution rate} = \frac{M_{5} \times A_{1} / A_{5} \times V / V \times 1 / C \times 45}{M_{5}} \]

\[M_{5}: \text{Amount (mg) of ubenimex for assay taken} \]
\[C: \text{Labeled amount (mg) of ubenimex (C_{16}H_{23}N_{2}O_{4}) in 1 capsule} \]

Operating conditions—

Proceed as directed in the operating conditions in the Assay.

System suitability—

System performance: When the procedure is run with 50 μL of the standard solution under the above operating conditions, the number of theoretical plates and symmetry factor of the peak of Ubenimex are not less than 3000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 50 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of ubenimex to that of the internal standard is not more than 1.0%.

Containers and storage—

Containers—Tight containers.

Ubidecarenone

ユビデカレノン

C_{35}H_{95}O_{4} · 863.34
(2E,6E,10E,14E,18E,22E,26E,30E,34E,38E)-2-(3,7,11,15,19,23,27,31,35,39-Decamethyldocosatetra-2,6,10,14,18,22,26,30,34,38-decaen-1-yl)-5,6-dimethoxy-3-methyl-1,4-benzoquinone

[303-98-0]

Ubidecarenone contains not less than 98.0% of ubidecarenone (C_{35}H_{95}O_{4}), calculated on the anhydrous basis.

Description—

Ubidecarenone occurs as a yellow to orange crystalline powder. It is odorless and has no taste. It is soluble in diethyl ether, very slightly soluble in ethanol (99.5), and practically insoluble in water. It is gradually decomposed and colored by light. Melting point: about 48°C.

Identification (1) Dissolve 0.05 g of Ubidecarenone in 1 mL of diethyl ether, and add 10 mL of ethanol (99.5). To 2 mL of this solution add 3 mL of ethanol (99.5) and 2 mL of dimethyl malonate, then add dropwise 1 mL of a solution of potassium hydroxide (1 in 5), and mix: a blue color appears.

(2) Determine the infrared absorption spectrum of Ubidecarenone as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the

\[M_{5}: \text{Amount (mg) of ubenimex for assay taken} \]

Internal standard solution—A solution of ethyl parahydroxybenzoate in mixture of water and acetonitrile (7:3) (1 in 2000).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 200 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 30°C.

Mobile phase: A mixture of diluted phosphoric acid (1 in 100) and acetonitrile for liquid chromatography (83:17).

Flow rate: Adjust so that the retention time of ubenimex is about 8 minutes.

System suitability—

System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, ubenimex and the internal standard are eluted in this order with the resolution between these peaks being not less than 10.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of ubenimex to that of the internal standard is not more than 1.0%.

Ubidecarenone contains not less than 98.0% of ubidecarenone (C_{35}H_{95}O_{4}), calculated on the anhydrous basis.

Description—

Ubidecarenone occurs as a yellow to orange crystalline powder. It is odorless and has no taste. It is soluble in diethyl ether, very slightly soluble in ethanol (99.5), and practically insoluble in water. It is gradually decomposed and colored by light. Melting point: about 48°C.

Identification (1) Dissolve 0.05 g of Ubidecarenone in 1 mL of diethyl ether, and add 10 mL of ethanol (99.5). To 2 mL of this solution add 3 mL of ethanol (99.5) and 2 mL of dimethyl malonate, then add dropwise 1 mL of a solution of potassium hydroxide (1 in 5), and mix: a blue color appears.
Ulinastatin

Ulinastatin is a solution of a glycoprotein having trypsin inhibiting activity, which is separated and purified from human urine.

It contains ulinastatin of not less than 45,000 Units per mL and not less than 2500 Units per mg protein.

Description

Ulinastatin occurs as a light brown to brown, clear liquid.

Identification

1. Dilute a suitable volume of Ulinastatin with water to make a solution containing 4000 Units of ulinastatin per mL. To 1 mL of this solution add 1 mL of a solution of phenol (1 in 20), then carefully add 5 mL of sulfuric acid, and mix: an orange to red-orange color develops.

2. Dilute a suitable volume of Ulinastatin with water to make a solution containing 2000 units per mL. Determine the absorption spectrum of the solution as directed under Ultraviolet-visible Spectrophotometry <2.24> and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

3. Dilute a suitable volume of Ulinastatin with 2,2’,2”-nitrolitriethanol buffer solution (pH 7.8) to make a solution containing 500 Units of ulinastatin per mL, and use this solution as the sample solution. Use the same buffer solution as the control solution. To 0.1 mL each of the sample solution and control solution add 1.6 mL of the same buffer solution and 0.2 mL of trypsin TS for test of ulinastatin, mix, and allow them to stand in a water bath at 25°C for 1 minute. Then add 1 mL of N-α-benzoyl-L-arginine-4-nitroanilide TS, mix, and allow them to stand at 25°C for 2 minutes: the solution obtained with the sample solution develops no color while that obtained with the control solution develops a yellow color.

4. To 1.5 g of Powdered Agar add 100 mL of boric acid-sodium hydroxide buffer solution (pH 8.4), dissolve by warming in a water bath, then pour immediately into a Petri dish placed horizontally so that the agar layer is about 2 mm in thickness. After the agar becomes hard, bore two wells about 2.5 mm in diameter with a separation of 6 mm from each other. In one of the wells place 10 μL of a solution of Ulinastatin containing 500 Units per mL in boric acid-sodium hydroxide buffer solution (pH 8.4), and in the other well place 10 μL of anti-ulinastatin rabbit serum, cover the dish with a cover slip. In the center of each well place 0.1 mL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area of both solutions by the automatic integration method: the total area of the peaks other than ubidecarenone obtained from the sample solution is not larger than the peak area of ubidecarenone from the standard solution.

Assay

Weigh accurately about 50 mg each of Ubidecarenone and Ubidecarenone RS (separately determined the amount of ubidecarenone obtained from 5 μL of the standard solution is between 20 mm and 40 mm.

Residue on ignition

Not more than 0.2% (1 g, volumetric titration, direct titration).

Purity

Heavy metals <1.07>—Proceed with 1.0 g of Ubidecarenone according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(2) Related substances—Dissolve 0.05 g of Ubidecarenone in 50 mL of ethanol (99.5) by warming at about 50°C for 2 minutes, and after cooling use this solution as the sample solution. To exactly 1 mL of the sample solution add ethanol (99.5) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 5 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area of both solutions by the automatic integration method: the total area of the peaks other than ubidecarenone obtained from the sample solution is not larger than the peak area of ubidecarenone from the standard solution.

Containers and storage

Containers—Tight containers.

Storage—Light-resistant.
(i) Sample solution—To an exactly measured volume of Ulinastatin, equivalent to about 10,000 Units, add water to make exactly 20 mL.

(ii) Standard solutions—Weigh accurately about 10 mg of bovine serum albumin for test of ualinastatin, and dissolve in water to make exactly 20 mL. To a suitable volume of this solution add water to make four solutions containing exactly 300, 200, 100 and 50 μg of the bovine serum albumin for test of ualinastatin per mL, respectively.

(iii) Procedure—Pipet 0.5 mL each of the sample solution and standard solutions, put them in glass test tubes about 18 mm in internal diameter and about 130 mm in length, add exactly 5 mL of alkaline copper TS, mix, and allow the tubes to stand in a water bath at 30°C for 10 minutes. Then add exactly 0.5 mL of diluted Folin’s TS (1 in 2), mix, and warm in the water bath for 20 minutes. Determine the absorbances of these solutions at 750 nm as directed under Ultraviolet-visible Spectrophotometry <2.24> using a solution obtained in the same manner with 0.5 mL of water as the blank.

Plot the absorbances of the standard solutions on the vertical axis and their protein concentrations on the horizontal axis to prepare a calibration curve, and calculate the protein content of the sample solution from its absorbance by using this curve. Then calculate the amount of protein per mL of Ulinastatin.

Purity (1) Heavy metals <1.07>—Proceed with 10 mL of Ulinastatin according to Method 2, and perform the test. Prepare the control solution with 1.0 mL of Standard Lead Solution (not more than 1 ppm).

(2) Related substances—To a suitable volume of Ulinastatin add water to make a solution containing exactly 12,500 Units per mL, and use this solution as the sample stock solution. To exactly 0.25 mL of the sample stock solution add exactly 0.2 mL of glycerin and exactly 0.05 mL of 0.05% bromophenol blue TS, mix, and use this solution as the sample solution. Separately, to exactly 1 mL of the sample stock solution add water to make exactly 100 mL. To exactly 0.25 mL of this solution add exactly 0.2 mL of glycerin and exactly 0.05 mL of 0.05% bromophenol blue TS, mix, and use this solution as the standard solution. Perform the following test with the sample solution and standard solution: the bands other than the principal band obtained from the sample solution are not more intense than the band obtained from the standard solution in the electrophoretogram.

(i) Tris buffer solution A for polyacrylamide gel electrophoresis—Dissolve 18.2 g of 2-amino-2-hydroxymethyl-1,3-propanediol in 80 mL of water, adjust to pH 8.8 with 6 mol/L hydrochloric acid TS, and add water to make 100 mL.

(ii) Tris buffer solution B for polyacrylamide gel electrophoresis—Dissolve 6.0 g of 2-amino-2-hydroxymethyl-1,3-propanediol in 80 mL of water, adjust to pH 8.8 with 6 mol/L hydrochloric acid TS, and add water to make 100 mL.

(iii) Tris buffer solution C for polyacrylamide gel electrophoresis—Dissolve 3.0 g of 2-amino-2-hydroxymethyl-1,3-propanediol and 14.4 g of glycerin in water to make 1000 mL.

(iv) Acrylamide solution for polyacrylamide gel electrophoresis—Dissolve 30 g of acrylamide and 0.8 g of N,N'-methylenebisacrylamide in water to make 100 mL.

(v) Gel for separation—Mix gently 15 mL of tris buffer solution A for polyacrylamide gel electrophoresis, 20 mL of acrylamide solution for polyacrylamide gel electrophoresis, 24.5 mL of water, 0.022 mL of N,N,N',N'-tetramethylethylenediamine, 0.32 mL of 10% ammonium peroxodisulfate TS and 0.3 mL of 1 mol/L sodium sulfite TS, pour into a plate for slab gel preparation, then cover the gel mixture with a layer of water, and allow to set for 1 hour.

(vi) Gel for concentration—Remove the water layer on the gel for separation, and pour a mixture of 2.5 mL of tris buffer solution B for polyacrylamide gel electrophoresis, 2.66 mL of acrylamide solution for polyacrylamide gel electrophoresis, 14.6 mL of water, 0.01 mL of N,N,N',N'-tetramethylethylenediamine, 0.2 mL of 10% ammonium peroxodisulfate TS and 0.04 mL of 1 mol/L sodium sulfite TS on the gel. Then position a plastic sample well former so that the height of the gel for concentration is about 15 mm, and allow to set for 2 hours.

(vii) Procedure

Electrophoresis—Set the gel in an apparatus for slab gel electrophoresis, and fill the upper and lower reservoirs with tris buffer solution C for polyacrylamide gel electrophoresis. Introduce carefully 10 μL each of the sample solution and standard solution into the wells using a different well for each solution, and allow electrophoresis to proceed using the electrode of the lower reservoir as the anode. Switch off the power supply when the bromophenol blue band has migrated to about 10 mm from the bottom of the gel.

Staining—Dissolve 2.0 g of Coomassie brilliant blue R-250 in a mixture of 400 mL of methanol and 100 mL of acetic acid (100), add water to make 1000 mL, and use this solution as the staining solution. Stain the gel for 2 hours in the staining solution warmed to 40°C.

Decolorization—To 100 mL of methanol and 75 mL of acetic acid (100) add water to make 1000 mL, and use this solution as the rinsing solution. Immerse the gel removed from the staining solution in the rinsing solution to decolourise.

(3) Kallidinogenase—Dilute a suitable volume of Ulinastatin with water so that each mL of the solution contains about 50,000 Units, and use this solution as the sample solution. Take exactly 0.4 mL of the sample solution into a test tube, add exactly 0.5 mL of tris buffer solution (pH 8.2), mix, and allow the tube to stand in a water bath at 37 ± 0.2°C for 5 minutes. Add exactly 0.1 mL of substrate TS for kallidinogenase assay (4), mix, allow the tube to stand in the water bath at 37 ± 0.2°C for exactly 30 minutes, then add exactly 0.1 mL of diluted acetic acid (100) (1 in 2), mix, and use this solution as the test solution. Separately, take exactly 0.4 mL of the sample solution in a test tube, add exactly 0.5 mL of tris buffer solution (pH 8.2), mix, and allow the tube to stand in the water bath of 37 ± 0.2°C for 35 minutes. Then add exactly 0.1 mL of diluted acetic acid (100) (1 in 2), mix, add exactly 0.1 mL of substrate TS for kallidinogenase assay (4), mix, and use this solution as the control solution. Determine the absorbances of the test solution and the control solution at 405 nm as directed under Ultraviolet-visible Spectrophotometry <2.24> using water as the blank, and calculate the difference between them: the difference is not more than 0.050.

Molecular mass—Dilute a suitable volume of Ulinastatin with the mobile phase so that each mL of the solution contains about 6500 Units, and use this solution as the sample solution. Separately, dissolve 1.0 mg each of γ-globulin (molecular mass: 160,000), bovine serum albumin for test of Ulinastatin (molecular mass: 67,000), and myoglobin (molecular mass: 17,000) in about 1 mL of the mobile phase, and use this solution as the molecular mass reference solution. Perform the test with 50 μL each of the sample solution and molecular mass reference solution as directed under Liquid Chromatography <2.07> according to the following con-
dions. Prepare a calibration curve by plotting the logarithm of molecular masses on the vertical axis and the retention times (minute) of the molecular mass reference substances on the horizontal axis, and determine the molecular mass of the sample using the calibration curve and the retention time obtained with the sample solution: the molecular mass is 67,000 ± 5000.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 280 nm).
Column: A stainless steel column about 7 mm in inside diameter and about 60 cm in length, packed with porous silica gel for liquid chromatography (10 – 12 μm in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase: Dissolve 16.33 g of potassium dihydrogen-phosphate and 124.15 g of ethylene glycol in water to make 1000 mL. If necessary, adjust to pH 4.0 with phosphoric acid.
Flow rate: Adjust so that the retention time of bovine serum albumin is about 36 minutes.
Selection of column: Proceed with 50 μL of the molecular mass reference solution according to the above operating conditions, and calculate the resolution. Use a column from which γ-globulin, bovine serum albumin and myoglobin are eluted in this order with the resolution between their peaks being not less than 1.5, respectively.

Antigenicity Dilute a suitable volume of Ulinastatin with isotonic sodium chloride solution so that each mL of the solution contains 15,000 Units, and use this solution as the sample solution. Inject 0.10 mL of the sample solution on 3 occasions at intervals of 2 days intraperitoneally to each of 4 well-nourished, healthy guinea pigs weighing 250 to 300 g. Inject 0.10 mL of horse serum intraperitoneally to each of 4 guinea pigs of another group as a control. Inject 0.20 mL of the sample solution intravenously into each of 2 guinea pigs of the first group 14 days after the first intraperitoneal injection and into each of the remaining 2 guinea pigs 21 days after the injection, and inject 0.20 mL of horse serum intravenously in the same manner into each guinea pig of the second group. Observe the signs of respiratory distress, collapse or death of the animals for 30 minutes after each intravenous injection and 24 hours later: the animals of the first group exhibit none of the signs mentioned above, and all the animals of the second group exhibit symptoms of respiratory distress or collapse and not less than 3 animals are killed.

Toxicity Inject intravenously 0.50 mL of Ulinastatin into each of five well-fed, healthy albino mice weighing 18 to 25 g: no mouse dies within 48 hours after injection. If any mouse dies within 48 hours, repeat the test using 5 albino mice weighing 19 to 21 g: all the animals survive for 48 hours.

Assay Measure exactly a suitable volume of Ulinastatin, dilute with 2,2',2'-nitrilotriethanol buffer solution (pH 7.8) so that each mL of the solution contains about 150 Units, and use this solution as the sample solution. Separately, dilute a suitable volume of Ulinastatin RS with 2,2',2'-nitrilotriethanol buffer solution (pH 7.8) so that each mL of the solution contains exactly 300, 200, 100, 50 or 0 Units, and use these solutions as the standard solutions. 2,2',2'-Nitrilotriethanol buffer solution (pH 7.8) and Nα-benzoyl-L-arginine-4-nitroanilide TS are warmed in a water bath of 25 ± 1°C for use as described below. Take exactly 0.1 mL each of the sample solution and the standard solutions in test tubes, add exactly 1.6 mL of 2,2',2'-nitrilotriethanol buffer solution (pH 7.8) mix, and put the tubes in the water bath of 25 ± 1°C. One minute after addition of the buffer solution add exactly 0.2 mL of ice-cooled trypsin TS for test of ulinastatin, mix, and put the tubes again in the water bath. One minute later add exactly 1 mL of Nα-benzoyl-L-arginine-4-nitroanilide TS, mix, and then put the tubes in the water bath. Exactly 2 minutes later add exactly 0.1 mL of diluted acetic acid (100) (1 in 2) to stop the enzyme reaction, and determine the absorbances of the solutions so obtained at 405 nm as directed under Ultraviolet-visible Spectrophotometry <2,24> using water as the blank. Prepare a calibration curve using the absorbances obtained with the standard solutions, and calculate ulinastatin Units in the sample solution from its absorbance by using this curve.

Containers and storage Containers—Tight containers.
Storage—Not exceeding at −20°C.

Urapidil

ウラピジル

C_{20}H_{35}N_{6}O_{7}: 387.48
6-[3-[4-(2-Methoxyphenyl)piperazin-1-yl]propylaminol]-1,3-dimethyluracil

[34661-75-1]

Urapidil, when dried, contains not less than 98.0% and not more than 101.0% of urapidil (C_{20}H_{35}N_{6}O_{7}).

Description Urapidil occurs as white to pale yellow-white, crystals or crystalline powder. It has a bitter taste.

It is freely soluble in acetic acid (100), sparingly soluble in ethanol (95) and in acetone, and very slightly soluble in water.

Identification (1) Determine the absorption spectrum of a solution of Urapidil in ethanol (95) (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2,24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Urapidil as directed in the potassium bromide disk method under Infrared Spectrophotometry <2,25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point <2,60> 156 – 161°C

Purity (1) Chloride <1,00>—Dissolve 3.0 g of Urapidil in 40 mL of acetone and 6 mL of dilute nitric acid, add water to make 50 mL, and perform the test using this solution as the test solution. Prepare the control solution as follows. To 0.25 mL of 0.01 mol/L hydrochloric acid VS add 40 mL of acetone, 6 mL of dilute nitric acid and water to make 50 mL (not more than 0.003%).

(2) Heavy metals <1,07>—Proceed with 1.0 g of Urapidil according to Method 4, and perform the test. Prepare the
control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(3) Related substances—Dissolve 40 mg of Urapidil in 5 mL of ethanol (95), and use this solution as the sample solution. Pipet 1 mL of the sample solution, add ethanol (95) to make exactly 200 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 5 μL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography, develop with a mixture of ethyl acetate, ethanol (95) and ammonia water (28) (22:13:1) to a distance of about 15 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spot other than the principal spot obtained from the sample solution appears not more than one and it is not more intense than the spot from the standard solution.

Loss on drying <2.41> Not more than 0.5% (1 g, 105°C, 3 hours).

Residue on ignition <2.44> Not more than 0.2% (1 g).

Assay Weigh accurately about 0.2 g of Urea, and dissolve in water to make exactly 200 mL. Measure exactly 5 mL of this solution into a Kjeldahl flask, and proceed as directed under Nitrogen Determination <1.08>.

Each mL of 0.005 mol/L sulfuric acid VS = 0.3003 mg of CH₂N₂O

Containers and storage Containers—Well-closed containers.

Urea

尿素

CH₂N₂O: 60.06

Urea [57-13-6]

Urea contains not less than 99.0% of urea (CH₂N₂O).

Description Urea occurs as colorless to white, crystals or crystalline powder. It is odorless, and has a cooling, saline taste.

It is very soluble in water, freely soluble in boiling ethanol (95), soluble in ethanol (95), and very slightly soluble in diethyl ether.

A solution of Urea (1 in 100) is neutral.

Identification (1) Heat 0.5 g of Urea: it liquefies and the odor of ammonia is perceptible. Continue heating until the liquid becomes turbid, then cool. Dissolve the resulting lump in a mixture of 10 mL of water and 2 mL of sodium hydroxide TS, and add 1 drop of copper (II) sulfate TS: a reddish purple color develops.

(2) Dissolve 0.1 g of Urea in 1 mL of water, and add 1 mL of nitric acid: a white, crystalline precipitate is formed.

Melting point <2.60> 132.5 – 134.5°C

Purity (1) Chloride <1.07>—Perform the test with 2.0 g of Urea. Prepare the control solution with 0.40 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.007%).

(2) Sulfate <1.14>—Perform the test with 2.0 g of Urea. Prepare the control solution with 0.40 mL of 0.005 mol/L sulfuric acid VS (not more than 0.010%).

(3) Heavy metals <1.07>—Proceed with 1.0 g of Urea according to Method 1, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

Ethanol-insoluble substances—Dissolve 5.0 g of Urea in 50 mL of warm ethanol (95), filter through a tared glass filter (G4), wash the residue with 20 mL of warm ethanol (95), and dry at 105°C for 1 hour: the mass of the residue is not more than 2.0 mg.

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.2 g of Urea, and dissolve in water to make exactly 200 mL. Measure exactly 5 mL of this solution into a Kjeldahl flask, and proceed as directed under Nitrogen Determination <1.08>.

Each mL of 0.005 mol/L sulfuric acid VS = 0.3003 mg of CH₂N₂O

Containers and storage Containers—Well-closed containers.

Urokinase

ウロキナーゼ

[Urokinase](9010-53-1)

Urokinase is an enzyme, obtained from human urine, that activates plasminogen, and has the molecular mass of about 54,000.

It is a solution using a suitable buffer solution as the solvent.

It contains not less than 60,000 Units per mL, and not less than 120,000 Units per mg of protein.

Description Urokinase is a clear and colorless liquid.

The pH is between 5.5 and 7.5.

Identification (1) Dissolve 0.07 g of fibrinogen in 10 mL of phosphate buffer solution (pH 7.4). To this solution add 1 mL of a solution of thrombin containing 10 Units per mL in isotonic sodium chloride solution, mix, place in a Petri dish about 90 mm in inside diameter, and keep horizontally until the solution is coagulated. On the surface drop 10 μL of a solution of Urokinase containing 100 Units per mL in gelatin-tris buffer solution, and stand for overnight: lysis circle appears.

(2) Dissolve 1.0 g of Powdered Agar in 100 mL of boric acid-sodium hydroxide buffer solution (pH 8.4) by warming, and pour the solution into a Petri dish until the height come to about 2 mm. After cooling, make two wells of 2.5 mm in diameter with the space of 6 mm. To each well place separately 10 μL of a solution of Urokinase containing 30,000 Units per mL in isotonic sodium chloride solution and 10 μL of anti-urokinase serum, and stand for overnight: a clear precipitin line appears.

Purity (1) Heavy metals <1.07>—Proceed with 2.0 mL of Urokinase according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Blood group substances—Dilute Urokinase with isotonic sodium chloride solution so that each mL of the solution contains 12,000 Units, and use this solution as the sam-
Ursodeoxycholic Acid occurs as a white, crys-

Containers—Tight containers.

Dilute Urokinase with isotonic sodium
and not more than 101.0

Ursodeoxycholic Acid

L of ursodeoxy-

Determine the infrared absorption spectrum
a solution as directed under Liquid Chromatography

100

the solution containing 20,000 Units per mL. Proceed with
24 hours, and add gelatin-phosphate buffer solution to make
10 mm in inside diameter, warm them in a water bath at 35 ± 0.2°C for 5 minutes, add separately 0.50 mL each of the sample solution and standard solution, warm in a water bath at 35 ± 0.2°C for exactly 30 minutes, then add 0.50 mL of diluted acetic acid (100) (2 in 5). Determine the absorbances, A₁ and A₉, of these solutions at 405 nm as directed under Ultraviolet-visible Spectropho-
tometry <2.24> using water as the blank. Separately place 1.0 mL of L-pyro-

Glutamylglycyl-L-arginine-p-nitroaniline hydrochloride TS in
two silicon-coated test tubes about 10 mm in inside diameter,

Amount (Units) of Urokinase

\[\frac{A_1 - A_{10}}{(A_2 - A_{50})} \times a \times b \]

a: Amount (Units) of urokinase in 1 mL of the standard
solution
b: Total volume (mL) of the sample solution

(2) Protein—Measure exactly a volume of Urokinase, equivalent to about 15 mg of protein, and perform the test as
directed under Nitrogen Determination <1.08>.

Each mL of 0.005 mol/L sulfuric acid VS

= 0.8754 mg of protein

Containers and storage—Containers—Tight containers.

Storage—Not exceeding –20°C.

Ursodeoxycholic Acid

ウルソデオキシコール酸

C_{38}H_{56}O_4: 392.57
3α,7β-Dihydroxy-5β-cholan-24-oic acid
[128-13-2]

Ursodeoxycholic Acid, when dried, contains not less
than 98.5% and not more than 101.0% of ursodeoxy-
cholic acid (C_{38}H_{56}O_4).

Description Ursodeoxycholic Acid occurs as a white, crystal-
tal or powder, with bitter taste.

It is freely soluble in methanol, in ethanol (99.5) and in
acetic acid (100), and practically insoluble in water.

Identification Determine the infrared absorption spectrum of
Ursodeoxycholic Acid as directed in the potassium bro-
Ursodeoxycholic Acid Granules

Ursodeoxycholic Acid Granules contain not less than 95.0% and not more than 105.0% of the labeled amount of ursodeoxycholic acid (C_{24}H_{37}O_{4}: 392.57).

Method of preparation Prepare as directed under Granules, with Ursodeoxycholic Acid.

Identification To a quantity of powdered Ursodeoxycholic Acid Granules, equivalent to 20 mg of Ursodeoxycholic Acid, add 10 mL of methanol, and shake for 20 minutes. Centrifuge this solution, pipet 4 mL of the supernatant liquid, and evaporate the methanol under reduced pressure. To the residue add 4 mL of acetic acid, disperse by sonication, centrifuge, and use the supernatant liquid as the sample solution. Separately, dissolve 10 mg of ursodeoxycholic acid in 5 mL of acetic acid, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.07>. Spot 10 µL of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of isooctane, ethanol (99.5), ethyl acetate and acetic acid (100) (10:6:3:1) to a distance of about 15 cm, and air-dry the plate. Dry the plate further at 120°C for 30 minutes, immediately spray evenly a solution of phosphomolybdic acid n-hydrate in ethanol (99.5) (1 in 5), and heat the plate at 120°C for 3 to 5 minutes: the principle spot obtained from the sample solution and the spot from the standard solution show a blue color and the same RI value.

Dissolution <6.10> When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of 2nd fluid for dissolution test as the dissolution medium, the dissolution rate in 15 minutes of Ursodeoxycholic Acid Granules is not less than 80%.

Start the test with an accurately weigh amount of Ursodeoxycholic Acid Granules, equivalent to about 50 mg of ursodeoxycholic acid (C_{24}H_{37}O_{4}), withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 µm. Discard not less than 10 mL of the first filtrate, use the subsequent filtrate as the sample solution. Separately, weigh accurately about 22 mg of ursodeoxycholic acid for assay, previously dried at 105°C for 2 hours, and dissolve in acetonitrile to make exactly 100 mL. Pipet 5
mL of this solution, add the dissolution medium to make exactly 20 mL, and use this solution as the standard solution. Perform the test with exactly 100 µL each of the sample solution and standard solution as directed under Liquid Chromatography 2.0.10 according to the following conditions, and determine the peak areas, A_T and A_S, of ursodeoxycholic acid in each solution.

Dissolution rate (%) with respect to the labeled amount of ursodeoxycholic acid ($C_{24}H_{40}O_4$)

$$M_3 = \frac{M_T}{M_S} \times \frac{A_T}{A_S} \times \frac{1}{C} \times 225$$

M_3: Amount (mg) of ursodeoxycholic acid for assay taken

M_2: Amount (g) of Ursodeoxycholic Acid Granules taken

C: Labeled amount (mg) of ursodeoxycholic acid ($C_{24}H_{40}O_4$) in 1 g

Operating conditions—

Proceed as directed in the operating conditions in the Assay.

System suitability—

System performance: When the procedure is run with 100 µL of the standard solution under the above operating conditions, the number of theoretical plates and symmetry factor of the peak of ursodeoxycholic acid are not less than 3000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 100 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of ursodeoxycholic acid is not more than 2.0%.

Assay

Weigh accurately an amount of powdered Ursodeoxycholic Acid Granules, equivalent to about 0.1 g of ursodeoxycholic acid ($C_{24}H_{40}O_4$), add exactly 20 mL of the internal standard solution, shake for 10 minutes, and centrifuge. Filter the supernatant liquid through a membrane filter with a pore size not exceeding 0.45 µm, and use the filtrate as the sample solution. Separately, weigh accurately about 0.1 g of ursodeoxycholic acid for assay, previously dried at 105°C for 2 hours, dissolve in exactly 20 mL of the internal standard solution, and use this solution as the standard solution. Perform the test with 10 µL each of the sample solution and standard solution as directed under Liquid Chromatography 2.0.10 according to the following conditions, and calculate the ratios, Q_T and Q_S, of the peak area of ursodeoxycholic acid to that of the internal standard.

Amount (mg) of ursodeoxycholic acid ($C_{24}H_{40}O_4$)

$$M_3 = M_T \times \frac{Q_T}{Q_S}$$

M_2: Amount (mg) of ursodeoxycholic acid for assay taken

Internal standard solution—A solution of ethyl benzoate in diluted methanol (4 in 5) (7 in 200,000).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 210 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecysilanized silica gel for liquid chromatography (5 µm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase: A mixture of diluted phosphoric acid (1 in 500) and acetonitrile for liquid chromatography (11:9).
Flow rate: Adjust so that the retention time of ursodeoxycholic acid is about 6 minutes.

System suitability—

System performance: When the procedure is run with 10 µL of the standard solution under the above operating conditions, ursodeoxycholic acid and the internal standard are eluted in this order with the resolution between these peaks being not less than 8.

System repeatability: When the test is repeated 6 times with 10 µL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of ursodeoxycholic acid to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Tight containers.

Ursodeoxycholic Acid Tablets

ウルソデオキシコール酸錠

Ursodeoxycholic Acid Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of Ursodeoxycholic Acid ($C_{24}H_{40}O_4$; 392.57).

Method of preparation Prepare as directed under Tablets, with Ursodeoxycholic Acid.

Identification To a quantity of powdered Ursodeoxycholic Acid Tablets, equivalent to 20 mg of Ursodeoxycholic Acid, add 10 mL of methanol, and shake for 20 minutes. Centrifuge this solution, pipet 4 mL of the supernatant liquid, and evaporate the methanol under reduced pressure. To the residue add 4 mL of acetone, disperse by sonication, centrifuge, and use the supernatant liquid as the sample solution. Separately, dissolve 10 mg of ursodeoxycholic acid in 5 mL of acetone, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography 2.0.10. Spot 10 µL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of isooctane, ethanol (99.5), ethyl acetate and acetic acid (100:63:1) to a distance of about 15 cm, and air-dry the plate. Dry the plate further at 120°C for 30 minutes, and immediately splay evenly a solution of phosphomolybdic acid n-hydrate in ethanol (95) (1 in 5) on the plate, and heat at 120°C for 3 to 5 minutes: the principal spot obtained from the sample solution and the spot obtained from the standard solution show a blue color and the same RF value.

Uniformity of dosage units 6.02 Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement.

Take 1 tablet of Ursodeoxycholic Acid Tablets and add exactly V mL of the internal standard solution so that each mL contains about 5 mg of ursodeoxycholic acid ($C_{24}H_{40}O_4$), disperse by sonication, then agitate to mix for 10 minutes and then centrifuge. Filter the supernatant liquid through a membrane filter with a pore size not exceeding 0.45 µm, and use the filtrate as the sample solution. Then, proceed as directed in the Assay.

Amount (mg) of ursodeoxycholic acid ($C_{24}H_{40}O_4$)

$$M_3 = M_T \times Q_T / Q_S \times V / 20$$

M_3: Amount (mg) of ursodeoxycholic acid for assay taken

Internal standard solution—A solution of ethyl benzoate in diluted methanol (4 in 5) (7 in 200,000).

Dissolution 6.10 When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of 2nd fluid for dissolution test as the dissolution medium, the dissolution rates in 30 minutes of a 50-mg tablet and in 45 minutes of a 100-mg tablet are not less than 80% and not less than 70%, respectively.
Start the test with 1 tablet of Ursodeoxycholic Acid Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate and pipet V mL of the subsequent filtrate. Add the dissolution medium to make exactly V′ mL so that each mL contains about 56 μg of ursodeoxycholic acid (C_{24}H_{30}O_{6}), and use the solution as the sample solution. Separately weigh accurately about 22 mg of ursodeoxycholic acid for assay, previously dried at 105°C for 2 hours, and dissolve in acetonitrile to make exactly 100 mL. Pipet 5 mL of this solution, add the dissolution medium to make exactly 20 mL, and use this solution as the standard solution. Perform the test with exactly 100 μL of each of sample solution and standard solution as directed under Liquid Chromatography \(<2.01\) according to the following conditions, and determine the peak areas, A_T and A_S, of ursodeoxycholic acid in each solution.

Dissolution rate (%) with respect to the labeled amount of ursodeoxycholic acid (C_{24}H_{30}O_{6})

\[M_C \times A_T / A_S \times V′ / V \times 1 / C \times 225 \]

M_C: Amount (mg) of ursodeoxycholic acid for assay taken

C: Labeled amount (mg) of ursodeoxycholic acid in 1 tablet (C_{24}H_{30}O_{6})

Operating conditions—
Proceed as directed in the operating conditions in the Assay.

System suitability—
System performance: When the procedure is run with 10 μL of the standard solution under the above operating condition, the number of theoretical plates and symmetry factor of the peak of ursodeoxycholic acid are not less than 3000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of ursodeoxycholic acid is not more than 2.0%.

Assay Weigh accurately the mass of not less than 20 Ursodeoxycholic Acid Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 0.1 g of ursodeoxycholic acid (C_{24}H_{30}O_{6}), add exactly 20 mL of the internal standard solution, shake for 10 minutes, and centrifuge. Filter the supernatant liquid through a membrane filter with a pore size not exceeding 0.45 μm, and use the filtrate as the sample solution. Separately, weigh accurately about 0.1 g of ursodeoxycholic acid for assay, previously dried at 105°C for 2 hours, dissolve in exactly 20 mL of the internal standard solution, and use this solution as the standard solution. Perform the test with 10 μL of each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and calculate the ratio, Q_T and Q_S, of the peak area of ursodeoxycholic acid to that of the internal standard.

Amount (mg) of ursodeoxycholic acid (C_{24}H_{30}O_{6})

\[M_C \times Q_T / Q_S \]

M_C: Amount (mg) of ursodeoxycholic acid for assay taken

Internal standard solution—A solution of ethyl benzoate in diluted methanol (4 in 5) (7 in 200,000).

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 210 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: A mixture of diluted phosphoric acid (1 in 500) and acetonitrile for liquid chromatography (11:9).

Flow rate: Adjust so that the retention time of ursodeoxycholic acid is about 6 minutes.

System suitability—
System performance: When the procedure is run with 10 μL of the standard solution according to the above operating conditions, ursodeoxycholic acid and the internal standard are eluted in this order with the resolution between these peaks being not less than 8.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of ursodeoxycholic acid to that of the internal standard is not more than 1.0%.

Containers and storage Containers—Tight containers.

Valaciclovir Hydrochloride

パラシクロビル塩酸塩

C_{13}H_{20}N_4O_4.HCl: 360.80

2-[(2-Amino-1,6-dihydro-6-oxo-9H-purin-9-yl)methoxy]ethyl L-valinate monohydrochloride

[2J4832-27-5]

Valaciclovir Hydrochloride contains not less than 95.0% and not more than 101.0% of valaciclovir hydrochloride (C_{13}H_{20}N_4O_4.HCl), calculated on the anhydrous basis.

Description Valaciclovir Hydrochloride occurs as a white to pale yellow-white crystalline powder.

It is freely soluble in water, and very slightly soluble in ethanol (99.5).

It dissolves in 0.05 mol/L hydrochloric acid TS.

Optical rotation \([\alpha]_D^20\) = 7.1° ± 11.1° (1 g, water, 20 mL, 100 mm).

It shows crystal polymorphism.

Identification (1) Determine the absorption spectrum of a solution of Valaciclovir Hydrochloride in 0.05 mol/L hydrochloric acid TS (3 in 200,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Valaciclovir Hydrochloride RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Valaciclovir Hydrochloride as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of Valaciclovir Hydrochloride RS: both spectra exhibit similar intensities of absorption at the same wave numbers. If any difference appears between the spectra, suspend Valaciclovir Hydrochloride in a mixture of ethanol (99.5) and water (45:2), and heat under reflux for 24 hours while stirring. After cooling to room temperature, col-
lect the obtained solid by filtration, dry at 60°C for 1 hour under reduced pressure, and perform the same test with the solid.

(3) A solution of Valaciclovir Hydrochloride (1 in 25) responds to Qualitative Tests <1.09> for chloride.

Purity (1) Heavy metals <1.07>—Proceed with 2.0 g of Valaciclovir Hydrochloride according to Method 4, and perform the test. Prepare the control solution with 4.0 mL of Standard Lead Solution (not more than 20 ppm).

(2) Palladium—Dissolve exactly 0.100 g of Valaciclovir Hydrochloride in a solution of hydrochloric acid in dimethylsulfoxide (1 in 50) to make exactly 100 mL, and use this solution as the sample solution. Separately, to exactly 6 mL of Standard Palladium Solution for ICP Analysis add a solution of hydrochloric acid in dimethylsulfoxide (1 in 50) to make exactly 100 mL. Pipet 5 mL of this solution, add a solution of hydrochloric acid in dimethylsulfoxide (1 in 50) to make exactly 50 mL. Pipet 5 mL of this solution, add a solution of hydrochloric acid in dimethylsulfoxide (1 in 50) to make exactly 50 mL. Pipet 5 mL of this solution, add a solution of hydrochloric acid in dimethylsulfoxide (1 in 50) to make exactly 50 mL, and use this solution as the standard solution. Perform the test with the sample solution and standard solution as directed under Inductively Coupled Plasma-Atomic Emission Spectrometry <2.65> according to the following conditions: the emission intensity obtained from the sample solution is not more than that from the standard solution (not more than 6 ppm).

Operating conditions—

(3) Related substances—(i) To 0.25 g of Valaciclovir Hydrochloride add 0.100 g of Valaciclovir and not more than 0.2 g of Related substances—(i) To 0.25 g of Valaciclovir Hydrochloride in dimethylsulfoxide (1 in 50) to make exactly 100 mL, and use this solution as the sample solution. Separately, to exactly 6 mL of Standard Palladium Solution for ICP Analysis add a solution of hydrochloric acid in dimethylsulfoxide (1 in 50) to make exactly 100 mL. Pipet 5 mL of this solution, add a solution of hydrochloric acid in dimethylsulfoxide (1 in 50) to make exactly 50 mL. Pipet 5 mL of this solution, add a solution of hydrochloric acid in dimethylsulfoxide (1 in 50) to make exactly 50 mL, and use this solution as the standard solution. Perform the test with the sample solution and standard solution as directed under Liquid Chromatography <2.65> according to the operating conditions. The obtained solid by filtration, dry at 60°C for 1 hour under reduced pressure, and perform the same test with the solid.

(ii) Perform the test with 10 mL of the sample solution as the sample solution. Perform the test with 10 mL of the sample solution as directed under Liquid Chromatography <2.65> according to the following conditions, determine each peak area by the automatic integration method, and calculate their amount by the area percentage method: the amount of the peaks, having a relative retention time of about 0.54, about 1.06, about 1.17, about 1.61, about 1.66 and about 1.98 to valaciclovir, is not more than 0.1%, 0.2%, 0.5%, 0.8%, 0.2% and 0.3%, respectively, and the amount of the peaks other than valaciclovir, the peaks mentioned above, guanine (relative retention time is about 0.31), aciclovir (relative retention time is about 0.42) and the peak (relative retention time is about 1.09) is not more than 0.05%, and their total amount is not more than 0.2%.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 254 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with phenylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 15°C.

Mobile phase A: Dissolve 3 g of trifluoroacetic acid in water to make 1000 mL.

Mobile phase B: Dissolve 3 g of trifluoroacetic acid in methanol to make 1000 mL.

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 5</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>5 - 35</td>
<td>90 → 60</td>
<td>10 → 40</td>
</tr>
</tbody>
</table>

Flow rate: 0.8 mL per minute.

Time span of measurement: 35 minutes, beginning after the solvent peak.

System suitability—
Test for required detectability: To 1 mL of the sample solution add a mixture of water and ethanol (95:4:1) to make 100 mL, and use this solution as the solution for system suitability test. Pipet 1 mL of the solution for system suitability test, add a mixture of water and ethanol (95:4:1) to make exactly 20 mL. Confirm that the peak area of valaciclovir obtained with 10 μL of this solution is equivalent to 3.5 to 6.5% of that with 10 μL of the solution for system suitability test.

System performance: When the procedure is run with 10 μL of the solution for system suitability test under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of valaciclovir are not less than 25,000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 10 μL of the solution for system suitability test under the above operating conditions, the relative standard deviation of the peak area of valaciclovir is not more than 2.0%.

(iii) Perform the test with 10 μL of the sample solution obtained in the Assay as directed under Liquid Chromatography <2.65> according to the following conditions. Determine each peak area by the automatic integration method, and calculate their amounts by the area percentage method: the amount of the peaks, having a relative retention time of about 0.14 and about 0.42 to valaciclovir, is not more than 2.0% and not more than 0.2%, respectively. For the amounts of the peaks, having a relative retention time of about 0.14 and about 0.42 to valaciclovir, multiply their correction factors, 0.66 and 0.89, respectively.

Operating conditions—
Proceed as directed in the operating conditions in the...
Assay.

System suitability—
Test for required detectability: Pipet 1 mL of the sample solution add 0.05 mol/L hydrochloric acid TS to make exactly 100 mL, and use this solution as the solution for system suitability test. To exactly 5 mL of the solution for system suitability test add 0.05 mol/L hydrochloric acid TS to make exactly 50 mL. Confirm that the peak area of valaciclovir obtained with 10 μL of this solution is equivalent to 0.07 to 0.13% of that with 10 μL of the sample solution.

System performance: When the procedure is run with 10 μL of the solution for system suitability test under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of valaciclovir are not less than 700 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 10 μL of the solution for system suitability test under the above operating conditions, the relative standard deviation of the peak area of valaciclovir is not more than 2.0%.

(iv) The total amount of the related substances obtained in (i), (ii) and (iii) is not more than 3.0%.

Water <2.48> Not more than 1.7% (0.2 g, coulometric titration).

Residue on ignition <2.44> Not more than 0.1% (2 g).

Assay Weigh accurately about 25 mg each of Valaciclovir Hydrochloride and Valaciclovir Hydrochloride RS (separately determine the water <2.45> and the residual solvent in the same manners as Valaciclovir Hydrochloride), dissolve them separately in 0.05 mol/L hydrochloric acid TS to make exactly 50 mL, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with exactly 10 mL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, \(A_T \) and \(A_S \), of valaciclovir in each solution.

\[
\text{Amount (mg) of valaciclovir hydrochloride} = M_s \times A_T/\sqrt{A_S}
\]

\(M_s \) : Amount (mg) of Valaciclovir Hydrochloride RS taken, calculated on the anhydrous and residual solvent-free basis

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 254 nm).

Column: A stainless steel column 4 mm in inside diameter and 15 cm in length, packed with 18-crown ether-immobilized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 10°C.

Mobile phase: To 950 mL of water add 5 mL of perchloric acid and 30 mL of methanol.

Flow rate: Adjust so that the retention time of valaciclovir is about 21 minutes.

System suitability—
System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of valaciclovir are not less than 700 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of valaciclovir is not more than 1.0%.

Containers and storage Containers—Well-closed containers.

Valaciclovir Hydrochloride Tablets

Valaciclovir Hydrochloride Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of valaciclovir (C13H20N4O4·HCl: 324.34).

Method of preparation Prepare as directed under Tablets, with Valaciclovir Hydrochloride.

Identification Powder Valaciclovir Hydrochloride Tablets. To a portion of the powder, equivalent to 50 mg of valaciclovir (C13H20N4O4·HCl), add 90 mL of 0.1 mol/L hydrochloric acid TS, shake, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 1 mL of the filtrate, and to 2 mL of the subsequent filtrate add diluted phosphoric acid (1 in 1000) to make 100 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.24>, it exhibits a maximum between 251 nm and 255 nm and a shoulder between 277 nm and 287 nm.

Uniformity of dosage units <6.02> It meets the requirement of the Mass variation test.

Dissolution <6.10> When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of 1st fluid for dissolution test as the dissolution medium, the dissolution rate in 30 minutes of Valaciclovir Hydrochloride Tablets is not less than 75%.

Start the test with 1 tablet of Valaciclovir Hydrochloride Tablets, withdraw not less than 10 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 1 mL of the first filtrate, pipet 5 mL of the subsequent filtrate, add diluted phosphoric acid (1 in 1000) to make exactly 5 mL so that each mL contains about 1 μg of valaciclovir (C13H20N4O4·HCl), and use this solution as the sample solution. Separately, weigh accurately about 30 mg of Valaciclovir Hydrochloride RS (separately determine the water <2.45> and the residual solvent in the same manners as Valaciclovir Hydrochloride), dissolve in diluted phosphoric acid (1 in 1000) to make exactly 250 mL. Pipet 5 mL of this solution, add diluted phosphoric acid (1 in 1000) to make exactly 50 mL, and use this solution as the standard solution. Determine the absorbances, \(A_T \) and \(A_S \), at 254 nm of the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry <2.24>, using diluted phosphoric acid (1 in 1000) as the blank.

Dissolution rate (%) with respect to the labeled amount

\[
\text{Dissolution rate} = \frac{M_s}{M_L} \times \frac{A_T}{A_S} \times \frac{V}{V_0} \times \frac{1}{C} \times 36 \times 0.899
\]

\(M_s \) : Amount (mg) of Valaciclovir Hydrochloride RS taken, calculated on the anhydrous and residual solvent-free basis

\(C \) : Labeled amount (mg) of valaciclovir (C13H20N4O4·HCl) in 1 tablet

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
Assay Weigh accurately the mass of not less than 20 Valaciclovir Hydrochloride Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 1 g of valaciclovir (C₁₃H₂₅N₅O₄), add 120 mL of 0.1 mol/L hydrochloric acid TS, and sonicate for 10 minutes. Add 0.1 mol/L hydrochloric acid TS to make exactly 200 mL. Filter this solution through a membrane filter with a pore size not exceeding 0.45 µm. Discard the first 1 mL of the filtrate, pipet 2 mL of the subsequent filtrate, add diluted phosphoric acid (1 in 1000) to make exactly 100 mL, and use this solution as the sample solution. Separately, weigh accurately about 30 mg of Valaciclovir Hydrochloride RS (separately determine the water \(<2.4\%\)) and the residual solvent in the same manners as Valaciclovir Hydrochloride, dissolve in diluted phosphoric acid (1 in 1000) to make exactly 250 mL, and use this solution as the standard solution. Perform the test with exactly 10 µL each of the sample solution and standard solution as directed under Liquid Chromatography \(<2.01\) according to the following conditions, and determine the peak areas, \(A_t\) and \(A_s\), of valaciclovir in each solution.

\[
M_s = \frac{M_s \times A_t \times 40 \times 0.899}{A_s}
\]

Amount (mg) of valaciclovir (C₁₃H₂₅N₅O₄)

\(M_s\); Amount (mg) of Valaciclovir Hydrochloride RS taken, calculated on the anhydrous and residual solvent-free basis

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 254 nm).

Column: A stainless steel column 4 mm in inside diameter and 15 cm in length, packed with 18-crown ether-immobilized silica gel for liquid chromatography (5 µm in particle diameter).

Column temperature: A constant temperature of about 10°C.

Mobile phase: A mixture of diluted phosphoric acid (1 in 1000) and methanol (19:1).

Flow rate: Adjust so that the retention time of valaciclovir is about 4.5 minutes.

System suitability—
System performance: When the procedure is run with 10 µL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of valaciclovir are not less than 600 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 10 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of valaciclovir is not more than 1.0%.

Containers and storage Containers—Well-closed containers.

L-Valine

L-バリン

C₇H₁₅NO₂: 117.15

(2S)-2-Amino-3-methylbutanoic acid [72-18-4]

L-Valine, when dried, contains not less than 98.5% of L-valine (C₇H₁₅NO₂).

Description L-Valine occurs as white, crystals or crystalline powder. It is odorless or has a faint characteristic odor, and has a slightly sweet taste, which becomes bitter.

It is freely soluble in formic acid, soluble in water, and practically insoluble in ethanol (95%).

It dissolves in dilute hydrochloric acid.

Identification Determine the infrared absorption spectrum of L-Valine, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry \(<2.25\) and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation \(<2.4\%\) \([\alpha]_D^{20}\) +26.5 – +29.0° (after drying, 2 g, 6 mol/L hydrochloric acid TS, 25 mL, 100 mm).

pH \(<2.5\%\) Dissolve 0.5 g of L-Valine in 20 mL of water: the pH of this solution is between 5.5 and 6.5.

Purity (1) Clarity and color of solution—Dissolve 0.5 g of L-Valine in 20 mL of water: the solution is clear and colorless.

(2) Chloride \(<1.0\%\)—Perform the test with 0.5 g of L-Valine. Prepare the control solution with 0.30 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.021%).

(3) Sulfate \(<1.4\%\)—Perform the test with 0.6 g of L-Valine. Prepare the control solution with 0.35 mL of 0.005 mol/L sulfuric acid VS (not more than 0.028%).

(4) Ammonium \(<1.0\%\)—Perform the test with 0.25 g of L-Valine. Prepare the control solution with 5.0 mL of Standard Ammonium Solution (not more than 0.02%).

(5) Heavy metals \(<1.0\%\)—Proceed with 1.0 g of L-Valine according to Method 1, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(6) Arsenic \(<1.1\%\)—Proceed with 1.0 g of L-Valine, prepare the test solution according to Method 2, and perform the test (not more than 2 ppm).

(7) Related substances—Dissolve 0.10 g of L-Valine in 25 mL of water, and use this solution as the sample solution. Pipet 1 mL of the sample solution, and add water to make exactly 50 mL. Pipet 5 mL of this solution, add water to make exactly 20 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography \(<2.03\). Spot 5 µL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of 1-butanol, water and acetic acid (100) (3:1:1) to a distance of about 10 cm, and dry the plate at 80°C for 30 minutes. Spray evenly a solution of ninhydrin in acetone (1 in 50) on the plate, and heat the plate at 80°C for 5 minutes: the spots other than the principal spot obtained from the
sample solution are not more intense than the spot from the standard solution.

Loss on drying \(<2.4\%\) Not more than 0.30% (1 g, 105°C, 3 hours).

Residue on ignition \(<2.4\%\) Not more than 0.1% (1 g).

Assay Weigh accurately about 0.12 g of **L-Valine**, previously dried, and dissolve in 3 mL of formic acid, add 50 mL of acetic acid (100), and titrate \(<2.5\%\) with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 11.72 mg of C₁₉H₁₅NO₂

Containers and storage Containers—Tight containers.

Valsartan

valsartan occurs as a white powder. 1898 Valsartan occurs as a white powder.

Description Valsartan occurs as a white powder. It is very soluble in methanol and in ethanol (99.5), and practically insoluble in water.

Identification (1) Determine the absorption spectrum of a solution of Valsartan in methanol (1 in 62,500) as directed under Ultraviolet-visible Spectrophotometry \(<2.2\%\), and compare with the spectrum with the Reference Spectrum or the spectrum of a solution of Valsartan RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Valsartan as directed in the potassium bromide disk method under Infrared Spectrophotometry \(<2.2\%)\), and compare with the spectrum with the Reference Spectrum or the spectrum of Valsartan RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation \(<2.4\%)\ \([\alpha]_D^{20}\ = -64 - -69^\circ (0.5 \text{ g calculated on the anhydrous and residual solvent-free basis, methanol, 50 mL, 100 mm}).

Purity (1) Heavy metals \(<1.0\%)—Proceed with 2.0 g of Valsartan according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 0 ppm).

(2) Related substances—Dissolve 50 mg of Valsartan in 100 mL of the mobile phase, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 µL each of the sample solution and standard solution as directed under Liquid Chromatography \(<2.0\%)\ according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak, having the relative retention time of about 0.8 to valsartan, obtained from the sample solution is not larger than 1/5 times the peak area of valsartan from the standard solution, the area of the peak other than valsartan and the peak mentioned above from the sample solution is not larger than 1/10 times the peak area of valsartan from the standard solution, and the total area of the peaks other than valsartan from the sample solution is not larger than 3/10 times the peak area of valsartan from the standard solution.

Operating conditions—

Detector, column, column temperature, mobile phase and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 6 times as long as the retention time of valsartan, beginning after the solvent peak.

System suitability—

Test for required detectability: To exactly 1 mL of the standard solution add the mobile phase to make exactly 20 mL. Confirm that the peak area of valsartan obtained with 10 µL of this solution is equivalent to 3.5 to 6.5% of that with 10 µL of the standard solution.

System performance: When the procedure is run with 10 µL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of valsartan are not less than 1500 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 10 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of valsartan is not more than 2.0%.

(3) Enantiomer—Dissolve 75 mg of Valsartan in 100 mL of the mobile phase. To 5 mL of this solution add the mobile phase to make 25 mL, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 µL each of the sample solution and standard solution as directed under Liquid Chromatography \(<2.0\%)\ according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak, having the relative retention time of about 0.6 to valsartan, obtained from the sample solution is not larger than the peak area of valsartan from the standard solution.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 227 nm).

Column: A stainless steel column 4 mm in inside diameter and 10 cm in length, packed with α₁-acid glycoprotein binding silica gel for liquid chromatography (5 µm in particle diameter).

Column temperature: A constant temperature of about 35°C.

Mobile phase: Dissolve 14.68 g of disodium hydrogen phosphate dodecahydrate and 3.81 g of potassium dihydrogen phosphate in 1000 mL of water. To 490 mL of this solution add 10 mL of 2-propanol.

Flow rate: Adjust so that the retention time of valsartan is about 10 minutes.
Valsartan Tablets

Valsartan Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of valsartan (C\textsubscript{24}H\textsubscript{29}N\textsubscript{3}O\textsubscript{5}: 435.52).

Method of preparation Prepare as directed under Tablets, with Valsartan.

Identification Determine the absorption spectra of the sample solution and the standard solution in the range 220 to 350 nm, which are obtained in the Uniformity of dosage units, as directed under Ultraviolet-visible Spectrophotometry (2.24), and compare the spectrums with each other: both spectra exhibit similar intensities of absorption at the same wavelengths.

Uniformity of dosage units (6.02) Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement.

To 1 tablet of Valsartan Tablets add V/10 mL of water, and shake until the tablet is disintegrated. Add V/2 mL of methanol, shake thoroughly, add methanol to make exactly V mL so that each mL contains about 0.4 mg of valsartan (C\textsubscript{24}H\textsubscript{29}N\textsubscript{3}O\textsubscript{5}) for 20-mg tablet and 40-mg tablet, or contains about 0.8 mg of valsartan (C\textsubscript{24}H\textsubscript{29}N\textsubscript{3}O\textsubscript{5}) for 80-mg tablet and 160-mg tablet, and centrifuge. Pipet V/3 mL of the supernatant liquid, equivalent to 0.8 mg of valsartan (C\textsubscript{24}H\textsubscript{29}N\textsubscript{3}O\textsubscript{5}), add methanol to make exactly 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 40 mg of Valsartan RS (separately determine the water and the residual solvent in the same manner as Valsartan), dissolve in 10 mL of water, and add methanol to make exactly 100 mL. Pipet 2 mL of this solution, add methanol to make exactly 50 mL, and use this solution as the standard solution. Determine the absorbances, A\textsubscript{T} and A\textsubscript{S}, at 250 nm of the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry (2.24).

\[
\text{Amount (mg) of valsartan (C}_{24}\text{H}_{29}\text{N}_3\text{O}_5) = M_5 \times A_1 / A_5 \times V/V' \times 1/50
\]

M\textsubscript{5}: Amount (mg) of Valsartan RS taken, calculated on the anhydrous and residual solvent-free basis

Dissolution (6.10) When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate of a 20-mg tablet, 40-mg tablet and 80-mg tablet in 30 minutes are not less than 75%, 75% and 80%, respectively, and of a 160-mg tablet in 45 minutes is not less than 75%.

Start the test with 1 tablet of Valsartan Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.5 \(\mu\)m. Discard not less than 10 mL of the first filtrate, pipet V/3 mL of the subsequent filtrate, add water to make exactly V mL so that each mL contains about 22 \(\mu\)g of valsartan (C\textsubscript{24}H\textsubscript{29}N\textsubscript{3}O\textsubscript{5}), and use this solution as the sample solution. Separately, weigh accurately about 22 mg of Valsartan RS (separately determine the water and the residual solvent in the same manners as Valsartan), and dissolve in methanol to make exactly 50 mL. Pipet 5 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution. Determine the absorbances, A\textsubscript{T} and A\textsubscript{S}, at 250 nm of the sample solution and standard solution as directed under Ultraviolet-
Valsartan and Hydrochlorothiazide Tablets

バルサルタン・ヒドロクロロチアジド錠

Valsartan and Hydrochlorothiazide Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of valsartan (C₂₉H₂₉N₂O₃: 435.52) and hydrochlorothiazide (C₇H₆ClIN₃O₂S₂: 297.74).

Method of preparation Prepare as directed under Tablets, with Valsartan and Hydrochlorothiazide.

Identification (1) To a quantity of powdered Valsartan and Hydrochlorothiazide Tablets, equivalent to 80 mg of Valsartan, add 5 mL of acetone, shake, centrifuge, and use the supernatant liquid as the sample solution. Separately, dissolve 16 mg of valsartan in 1 mL of acetone, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 5 µL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate, hexane and acetic acid (100) (15:5:2) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): one of the two spots obtained from the sample solution and the spot from the standard solution show the same Rf value.

(2) To a quantity of powdered Valsartan and Hydrochlorothiazide Tablets, equivalent to 6.25 mg of Hydrochlorothiazide, add 5 mL of acetone, shake, centrifuge, and use the supernatant liquid as the sample solution. Separately, dissolve 12.5 mg of hydrochlorothiazide in 10 mL of acetone, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 5 µL each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate, hexane and acetic acid (100) (15:5:2) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): one of the two spots obtained from the sample solution and the spot from the standard solution show the same Rf value.

Uniformity of dosage units <6.02> (1) Valsartan—Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement.

To 1 tablet of Valsartan and Hydrochlorothiazide Tablets add 10 mL of water, and shake until the tablet is disintegrat-
ed. Add 10 mL of acetonitrile, shake thoroughly, and add a mixture of water and acetonitrile (1:1) to make exactly 50 mL. Centrifuge this solution, pipet V mL of the supernatant liquid, add a mixture of water and acetonitrile (1:1) to make exactly V mL so that each mL contains about 31 μg of hydrochlorothiazide (C$_2$H$_8$ClN$_2$O$_3$S$_2$), and use this solution as the sample solution. Proceed as directed in the Assay (2).

Amount (mg) of hydrochlorothiazide (C$_2$H$_8$ClN$_2$O$_3$S$_2$)

\[M_S = M_A \times \frac{A_1}{A_3} \times \frac{V'V}{V'V + 1/8} \]

M$_5$: Amount (mg) of Hydrochlorothiazide RS taken

Dissolution (6.10) (1) Valsartan—When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 30 minutes of Valsartan and Hydrochlorothiazide Tablets is not less than 75%.

Start the test with 1 tablet of Valsartan and Hydrochlorothiazide Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 5 mL of the first filtrate, pipet V mL of the subsequent filtrate, add water to make exactly V mL so that each mL contains about 89 μg of valsartan (C$_9$H$_8$N$_2$O$_4$). Pipet 5 mL of this solution, add methanol to make exactly 10 mL, and use this solution as the sample solution. Separately, weigh accurately about 45 mg of Valsartan RS (separately determine the water and the residual solvent in the same manner as Valsartan), and dissolve in methanol to make exactly 50 mL. Pipet 10 mL of this solution, add exactly 100 mL of water, then add methanol to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography (2.48) according to the following conditions, and determine the peak areas, A$_1$ and A$_S$, of valsartan in each solution.

Dissolution rate (%) with respect to the labeled amount of valsartan (C$_9$H$_8$N$_2$O$_4$)

\[M_S = M_A \times \frac{A_1}{A_3} \times \frac{V'V}{V'V + 1/8} \]

M$_5$: Amount (mg) of Valsartan RS taken, calculated on the anhydrous and residual solvent-free basis

C: Labeled amount (mg) of valsartan (C$_9$H$_8$N$_2$O$_4$) in 1 tablet

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 225 nm).

Column: A stainless steel column 3.0 mm in inside diameter and 12.5 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 35°C.

Mobile phase: Dissolve 14.68 g of disodium hydrogen phosphate dodecahydrate and 3.81 g of potassium dihydrogen phosphate in about 600 mL of water. To 4 volumes of this solution add 1 volume of acetonitrile.

Flow rate: Adjust so that the retention time of valsartan is about 6 minutes.

System suitability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of hydrochlorothiazide are not less than 3000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of hydrochlorothiazide is not more than 1.0%.

Assay (1) Valsartan—Weigh accurately the mass of not less than 20 tablets of Valsartan and Hydrochlorothiazide Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 80 mg of valsartan (C$_9$H$_8$N$_2$O$_4$), add 10 mL of water, and shake. Add 10 mL of acetonitrile, shake thoroughly, and add a mixture of water and acetonitrile (1:1) to make exactly 50 mL, and centrifuge. Pipet 5 mL of the supernatant liquid, add a mixture of water and acetonitrile (1:1) to make exactly 25 mL, and use this solution as the valsartan standard stock solution. Pipet 5 mL of the valsartan standard stock solution, add a mixture of water and acetonitrile (1:1) to make exactly 20 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography (2.48) according to the following conditions, and determine the peak areas, A$_1$ and A$_S$, of valsartan and Hydrochlorothiazide Tablets, not less than 85%.

Start the test with 1 tablet of Valsartan and Hydrochlorothiazide Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 5 mL of the first filtrate, pipet V mL of the subsequent filtrate, add water to make exactly V mL so that each mL contains about 6.9 μg of hydrochlorothiazide (C$_2$H$_8$ClN$_2$O$_3$S$_2$), and use this solution as the sample solution. Separately, weigh accurately about 14 mg of Hydrochlorothiazide RS, previously dried at 105°C for 2 hours, and dissolve in methanol to make exactly 100 mL. Pipet 5 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography (2.48) according to the following conditions, and determine the peak areas, A$_1$ and A$_S$, of hydrochlorothiazide in each solution.

Dissolution rate (%) with respect to the labeled amount of hydrochlorothiazide (C$_2$H$_8$ClN$_2$O$_3$S$_2$)

\[M_S = M_A \times \frac{A_1}{A_3} \times \frac{V'V}{V'V + 1/C \times 180} \]

M$_5$: Amount (mg) of Hydrochlorothiazide RS taken

C: Labeled amount (mg) of hydrochlorothiazide (C$_2$H$_8$ClN$_2$O$_3$S$_2$) in 1 tablet

Operating conditions—

Proceed as directed in the operating conditions in (1).

System suitability—

System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of hydrochlorothiazide are not less than 3000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of hydrochlorothiazide is not more than 1.0%.
of valsartan in each solution.

\[
\text{Amount (mg) of valsartan (C}_{66}\text{H}_{39}\text{N}_{20}\text{O}_{39}) = M_s \times A_T/A_S \times 2
\]

\(M_s\): Amount (mg) of Valsartan RS taken, calculated on the anhydrous and residual solvent-free basis

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 271 nm).

Column: A stainless steel column 3.0 mm in inside diameter and 12.5 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 \(\mu\)m in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase A: A mixture of water, acetonitrile and trifluoroacetic acid (900:100:1).

Mobile phase B: A mixture of acetonitrile, water and trifluoroacetic acid (900:100:1).

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 25</td>
<td>90 → 10</td>
<td>10 → 90</td>
</tr>
</tbody>
</table>

Flow rate: Adjust so that the retention time of valsartan is about 16 minutes.

System suitability—

System performance: Dissolve 1 mg of 4-amino-6-chlorobenzene-1,3-disulfonamide in a mixture of water and acetonitrile (1:1) to make 200 mL. To 1 mL of this solution, 5 mL of the valsartan standard stock solution in (1) add a mixture of water and acetonitrile (1:1) to make 20 mL. When the procedure is run with 10 \(\mu\)L of this solution under the above operating conditions, 4-amino-6-chlorobenzene-1,3-disulfonamide, hydrochlorothiazide and valsartan are eluted in this order with the resolution between the peaks of 4-amino-6-chlorobenzene-1,3-disulfonamide, hydrochlorothiazide and valsartan being not less than 1.5.

System repeatability: When the test is repeated 6 times with 10 \(\mu\)L of the standard solution under the above operating conditions, the relative standard deviation of the peak area of hydrochlorothiazide is not more than 1.0%.

Vancomycin Hydrochloride

バンコマイシン塩酸塩

\[
\text{C}_{66}\text{H}_{52}\text{Cl}_{2}\text{N}_{20}\text{O}_{39}\text{HCl}: 1485.71
\]

\(1(1S,2R,18R,19R,22S,25R,28R,40S)-50-[3-Amino-2,3,6-trideoxy-3-C-methyl-\alpha-L-fuco-hexopyranosyl-(1→2)-\beta-D-glucopyranosyl]22-carbamoylmethyl-5,15-dichloro-2,18,32,35,37-pentahydroxy-19-(2R)-4-methyl-2-(methylamino)pentanoylamino]-20,23,26,42,44-pentaaoxy-7,13-dioxo-21,24,27,41,43-pentaaazaoctacyclo[26,14,2.0^{11,6}.2^{16,17}.1^{8,12}.1^{29,33}].0^{28,25}.0^{34,39}\]

pentaco\[-
3,5,8,10,12(50),14,16,29,31,33(49),34,36,38,45,47-pentadecaen-40-carboxylic acid monohydrochloride [1464-55-9]

Vancomycin Hydrochloride is the hydrochloride of a glycopeptide substance having antibacterial activity produced by the growth of \textit{Streptomyces orientalis}.
It contains not less than 1000 μg (potency) and not more than 1200 μg (potency) per mg, calculated on the anhydrous basis. The potency of Vancomycin Hydrochloride is expressed as mass (potency) of vancomycin (C₆₁H₇₂Cl₂N₁₅O₂₄: 1449.25).

Description Vancomycin Hydrochloride occurs as a white powder.

It is freely soluble in water, soluble in formamide, slightly soluble in methanol, very slightly soluble in ethanol (95), and practically insoluble in acetonitrile.

It is hygroscopic.

Identification (1) Determine the absorption spectrum of a solution of Vancomycin Hydrochloride (1 in 10,000) as directed under Ultraviolet-visible Spectrophotometry 2.25, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Vancomycin Hydrochloride RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Vancomycin Hydrochloride as directed in the potassium bromide disk method under Infrared Spectrophotometry 2.25, and compare the spectrum with the Reference Spectrum or the spectrum of Vancomycin Hydrochloride RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) Dissolve 20 mg of Vancomycin Hydrochloride in 10 mL of water, and add 1 drop of silver nitrate TS: a white turbidity is produced.

Optical rotation 2.49 [α]D 20 -30 to -40° (0.2 g calculated on the anhydrous basis, water, 20 mL, 100 mm).

pH 2.54 The pH of a solution obtained by dissolving 0.25 g of Vancomycin Hydrochloride in 5 mL of water is between 2.5 and 4.5.

Purity (1) Heavy metals 1.07—Proceed with 1.0 g of Vancomycin Hydrochloride according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(2) Related substances—Dissolve 0.10 g of Vancomycin Hydrochloride in 10 mL of the mobile phase A, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add the mobile phase A to make exactly 25 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL of each of the sample solution and standard solution as directed under the Liquid Chromatography 2.07 according to the following conditions. If necessary, proceed with 20 μL of the mobile phase A in the same manner to compensate for the baseline. Determine each peak area by the automatic integration method: the area of each peak other than vancomycin obtained from the sample solution is not larger than the peak area of vancomycin from the standard solution, and the total area of the peaks other than vancomycin from the sample solution is not larger than 3 times of the peak area of vancomycin from the standard solution.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 280 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase A: A mixture of triethylamine buffer solution (pH 3.2), acetonitrile and tetrahydrofuran (92:7:1). Adjust the amount of acetonitrile so that the retention time of vancomycin is 7.5 to 10.5 minutes.

Mobile phase B: A mixture of triethylamine buffer solution (pH 3.2), acetonitrile and tetrahydrofuran (70:29:1).

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–12</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>12–20</td>
<td>100–0</td>
<td>0→100</td>
</tr>
<tr>
<td>20–22</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Flow rate: 1.5 mL per minute.

Time span of measurement: As long as about 2.5 times of the retention time of vancomycin, beginning after the solvent peak.

System suitability—

Test for required detectability: Confirm that the peak area of vancomycin obtained with 20 μL of the standard solution is equivalent to 3 to 5% of that with 20 μL of the sample solution.

System performance: Dissolve 5 mg of Vancomycin Hydrochloride in 10 mL of water, heat at 65°C for 48 hours, and cool to the ordinal temperature. When the procedure is run with 20 μL of this solution under the above operating conditions, related substance 1, vancomycin and related substance 2 are eluted in this order, the resolution between the peaks of the related substance 1 and vancomycin is not less than 3, the number of theoretical plates of the peak of vancomycin is not less than 1500, and the related substance 2 is eluted between 15 minutes and 18 minutes.

System repeatability: When the test is repeated 5 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of vancomycin is not more than 2.0%.

Water 2.48 Not more than 5.0% (0.1 g, volumetric titration, direct titration. Use a mixture of formamide for water determination and methanol for water determination (3.1)).

Residue on ignition 2.44 Not more than 1.0% (1 g).

Assay Perform the test according to the Cylinder-plate method as directed under Microbial Assay for Antibiotics 4.02 according to the following conditions.

(i) Test organism—*Bacillus subtilis* ATCC 6633

(ii) Culture medium—Use the medium i in 1) under (1) Agar media for seed and base layer. Adjust the pH of the medium so that it will be 6.2 to 6.4 after sterilization.

(iii) Standard solutions—Weigh accurately an amount of Vancomycin Hydrochloride RS, equivalent to about 25 mg (potency), dissolve in water to make exactly 25 mL, and use this solution as the standard stock solution. Keep the standard stock solution at 5°C or below, and use within 7 days. Take exactly a suitable amount of the standard stock solution before use, add 0.1 mol/L phosphate buffer solution (pH 4.5) to make solutions so that each mL contains 100 μg (potency) and 25 μg (potency), and use these solutions as the high concentration standard solution and the low concentration standard solution, respectively.

(iv) Sample solutions—Weigh accurately an amount of Vancomycin Hydrochloride, equivalent to about 25 mg (potency), and dissolve in water to make exactly 25 mL. Take exactly a suitable amount of this solution, add 0.1 mol/L phosphate buffer solution (pH 4.5) to make solutions so that
each mL contains 100 μg (potency) and 25 μg (potency), and use these solutions as the high concentration sample solution and the low concentration sample solution, respectively.

Containers and storage Containers—Tight containers.

Vancomycin Hydrochloride for Injection

Description
Vancomycin Hydrochloride for Injection is a preparation for injection which is dissolved before use. It contains not less than 90.0% and not more than 115.0% of the labeled potency of vancomycin (C_{65}H_{72}Cl_{2}N_{22}O_{32}: 1449.25).

Method of preparation
Prepare as directed under Injections, with Vancomycin Hydrochloride.

Assay
Perform the test according to the Cylinder-plate method as directed under Microbial Assay for Antibiotics <4.02> according to the following conditions.

(i) Test organism, culture medium, and standard solutions—Produce as directed in the Assay under Vancomycin Hydrochloride.

(ii) Sample solutions—Weigh accurately the contents of not less than 10 Vancomycin Hydrochloride for Injection. Weigh accurately an amount of the content, equivalent to about 25 mg (potency) of Vancomycin Hydrochloride, and dissolve in water to make exactly 25 mL. Take exactly a suitable amount of this solution, add 0.1 mol/L phosphate buffer solution (pH 4.5) to make solutions so that each mL contains 100 μg (potency) and 25 μg (potency), and use these solutions as the high concentration sample solution and the low concentration sample solution, respectively.

Containers and storage
Containers—Hermetic containers.

Vasopressin Injection

Description
Vasopressin Injection is an aqueous injection. It is a synthetic vasopressin consisting of 9 amino acid residues.

It contains not less than 90.0% and not more than 120.0% of the labeled units of vasopressin (C_{65}H_{72}N_{22}O_{32}S_{2}).

Method of preparation
Prepare as directed under Injections, with vasopressin.

Assay
Vasopressin Injection is a clear and colorless liquid.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 220 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (3 μm in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase A: Dissolve 6.6 g of dianmonium hydrogen phosphate in 950 mL of water, adjust to pH 3.0 with phosphoric acid, and add water to make 1000 mL. To 950 mL of this solution add 50 mL of acetonitrile.

Mobile phase B: Dissolve 6.6 g of dianmonium hydrogen...
phosphate in 950 mL of water, adjust to pH 3.0 with phosphoric acid, and add water to make 1000 mL. To 450 mL of this solution add 550 mL of acetonitrile.

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 45</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>45 – 90</td>
<td>90 → 30</td>
<td>10 → 70</td>
</tr>
<tr>
<td>90 – 100</td>
<td>30</td>
<td>70</td>
</tr>
</tbody>
</table>

Flow rate: About 0.6 mL per minute.

Time span of measurement: About 3 times as long as the retention time of vasopressin.

System suitability—
Test for required detectability: To 1 mL of the sample solution add diluted acetic acid (100) (1 in 400) to make 100 mL, and use this solution as the solution for system suitability test. Pipet 1 mL of the solution for system suitability test, and add diluted acetic acid (100) (1 in 400) to make exactly 10 mL. Confirm that the peak area of vasopressin obtained with 20 μL of this solution is equivalent to 7 to 13% of that with 20 μL of the solution for system suitability test.

System performance: When the procedure is run with 20 μL of the solution for system suitability test under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of vasopressin are not less than 17,500 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 20 μL of the solution for system suitability test under the above operating conditions, the relative standard deviation of the peak area of vasopressin is not more than 2.0%.

Bacterial endotoxins Less than 15 EU/Unit.

Extractable volume It meets the requirement.

Foreign insoluble matter Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter It meets the requirement.

Sterility Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Pipet V mL of Vasopressin Injection, equivalent to about 40 units of vasopressin, add diluted acetic acid (100) (1 in 400) to make exactly 25 mL, and use this solution as the sample solution. Separately, dissolve Vasopressin RS in diluted acetic acid (100) (1 in 400) so that each mL contains about 100 units of vasopressin, then dilute exactly with diluted acetic acid (100) (1 in 400) so that each mL contains about 1.6 units of vasopressin, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography according to the following conditions, and determine the peak areas, A1 and A3, of vasopressin in each solution.

\[
M3 = Mb \times A1 / A3 \times 25/V
\]

Amount (Unit) of vasopressin in 1 mL of Vasopressin Injection

Operating conditions—

Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: Dissolve 6.6 g of diaminomethane hydrogen phosphate in 950 mL of water, adjust to pH 3.0 with phosphoric acid, and add water to make 1000 mL. To 870 mL of this solution add 130 mL of acetonitrile.

Flow rate: About 1 mL per minute.

System suitability—
System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of vasopressin are not less than 9500 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of vasopressin is not more than 2.0%.

Containers and storage Containers—Hermetic containers. Storage—In a cold place, and avoid freezing.

Verapamil Hydrochloride

Verapamil Hydrochloride, when dried, contains not less than 98.5% and not more than 101.0% of verapamil hydrochloride (C27H33N2O4.HCl).

Description Verapamil Hydrochloride occurs as a white crystalline powder.

It is freely soluble in methanol and in acetic acid (100), soluble in ethanol (95) and in acetic anhydride, and sparingly soluble in water.

Identification (1) To 2 mL of a solution of Verapamil Hydrochloride (1 in 50) add 5 drops of Reinecke salt TS: a light red precipitate is produced.

(2) Determine the absorption spectrum of a solution of Verapamil Hydrochloride in 0.01 mol/L hydrochloric acid TS (1 in 50,000) as directed under Ultraviolet-visible Spectrophotometry, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(3) Determine the infrared absorption spectrum of Verapamil Hydrochloride, previously dried, as directed in the potassium chloride disk method under Infrared Spectrophotometry, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(4) A solution of Verapamil Hydrochloride (1 in 50)
Resists to Qualitative Tests \textless 1.09\textgreater for chloride.

Melting point \textless 2.60\textgreater 141 - 145°C

pH \textless 2.54\textgreater Dissolve 1.0 g of Verapamil Hydrochloride in 20 mL of freshly boiled and cooled water by warming, and cool: the pH of this solution is between 4.5 and 6.5.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Verapamil Hydrochloride in 20 mL of water by warming: the solution is clear and colorless.

(2) Heavy metals \textless 1.07\textgreater—Proceed with 1.0 g of Verapamil Hydrochloride according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm).

(3) Arsenic \textless 1.11\textgreater—Prepare the test solution with 1.0 g of Verapamil Hydrochloride according to Method 3, and perform the test (not more than 2 ppm).

(4) Related substances—Dissolve 0.50 g of Verapamil Hydrochloride in 10 mL of methanol, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add methanol to make exactly 100 mL, and use this solution as the standard stock solution. Pipet 5 mL of the standard stock solution, add methanol to make exactly 100 mL, and use this solution as the standard solution (1). Separately, pipet 5 mL of the standard stock solution, add methanol to make exactly 50 mL, and use this solution as the standard solution (2). Perform the test with these solutions as directed under Thin-layer Chromatography \textless 2.05\textgreater. Spot 10 \textmu L each of the sample solution and standard solutions (1) and (2) on two plates of silica gel for thin-layer chromatography. With the one plate, develop the plate with a mixture of cyclohexane and diethylamine (17:3) to a distance of about 15 cm, air-dry the plate, heat at 110°C for 1 hour, and cool. Examine immediately after spraying evenly iron (III) chloride—iodine TS on the plate: the spots other than the principal spot and the spot on the original point obtained from the sample solution, are not more intense than the spot from the standard solution (2), and the number of them which are more intense than the spot from the standard solution (1) is not more than 3. With another plate, develop the plate with a mixture of toluene, methanol, acetone and acetic acid (100:49.11:49.11:1), and perform the test in the same manner.

Loss on drying \textless 2.4\textgreater Not more than 1.0% (1 g, 105°C, 2 hours).

Residue on ignition \textless 2.44\textgreater Not more than 0.1% (1 g).

Assay Weigh accurately about 0.7 g of Verapamil Hydrochloride, previously dried, dissolve in 50 mL of a mixture of acetic anhydride, and acetic acid (100:7:3), and titrate \textless 2.50\textgreater with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 49.11 mg of C\textsubscript{27}H\textsubscript{38}N\textsubscript{2}O\textsubscript{4}HCl

Containers and storage Containers—Well-closed containers.

Storage—Light-resistant.

Verapamil Hydrochloride Injection

ベラパミル塩酸塩注射液

Verapamil Hydrochloride Injection is an aqueous injection.

It contains not less than 93.0% and not more than 107.0% of the labeled amount of verapamil hydrochloride (C\textsubscript{27}H\textsubscript{38}N\textsubscript{2}O\textsubscript{4}HCl: 491.06).

Method of preparation Prepare as directed under Injections, with Verapamil Hydrochloride.

Description Verapamil Hydrochloride Injection is a clear, colorless liquid.

Identification To 1 mL of the sample solution obtained in the Assay, add 0.02 mol/L hydrochloric acid TS to make 50 mL, and determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry \textless 2.2\textgreater: it exhibits maxima between 227 nm and 231 nm, and between 276 nm and 280 nm.

pH Being specified separately when the drug is granted approval based on the Law.

Extractable volume \textless 6.05\textgreater It meets the requirement.

Foreign insoluble matter \textless 6.05\textgreater Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter \textless 6.07\textgreater It meets the requirement.

Sterility \textless 4.06\textgreater Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Pipet a volume of Verapamil Hydrochloride Injection, equivalent to about 10 mg of verapamil hydrochloride (C\textsubscript{27}H\textsubscript{38}N\textsubscript{2}O\textsubscript{4}HCl), add 0.02 mol/L hydrochloric acid TS to make exactly 10 mL, and use this solution as the sample solution. Separately, weigh accurately about 50 mg of verapamil hydrochloride for assay, previously dried at 105°C for 2 hours, dissolve in 0.02 mol/L hydrochloric acid TS to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly 10 \textmu L each of the sample solution and standard solution as directed under Liquid Chromatography \textless 2.01\textgreater according to the following conditions, and determine the peak areas, A\textsubscript{5} and A\textsubscript{8}, of verapamil in each solution.

\[
\frac{\text{Amount (mg) of verapamil hydrochloride}}{\text{C}_{27}\text{H}_{38}\text{N}_2\text{O}_4\text{HCl}}} = \frac{M_5 \times A_5}{A_8 \times 1/5}
\]

\(M_5\): Amount (mg) of verapamil hydrochloride for assay taken

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 279 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecysilanized silica gel for liquid chromatography (5 \mu m particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: A mixture of methanol, water and perchloric acid (550:450:1).

Flow rate: Adjust so that the retention time of verapamil is about 5 minutes.

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices S.)
System Suitability—
System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of verapamil are not less than 2000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of verapamil is not more than 1.0%.

Containers and storage
Containers—Hermetic containers, and colored containers may be used.

Storage—Light-resistant.

Verapamil Hydrochloride Tablets

ベラパミル塩酸塩錠

Verapamil Hydrochloride Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of verapamil hydrochloride (C_{27}H_{38}N_{2}O_{4}.HCl: 491.06).

Method of preparation
Prepare as directed under Tablets, with Verapamil Hydrochloride.

Identification
To 2.5 mL of the sample solution obtained in the Assay add the mixture of methanol and 0.1 mol/L hydrochloric acid TS (3:1) to make 100 mL, and determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry 224; it exhibits maxima between 228 nm and 232 nm, and between 277 nm and 281 nm.

Uniformity of dosage units
Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement.

To 1 tablet of Verapamil Hydrochloride Tablets add 7V/10 mL of a mixture of methanol and 0.1 mol/L hydrochloric acid TS (3:1), and sonicate until the tablet is disintegrated. After cooling, add a mixture of methanol and 0.1 mol/L hydrochloric acid TS (3:1) to make 50 mL so that each mL contains about 0.8 mg of verapamil hydrochloride (C_{27}H_{38}N_{2}O_{4}.HCl). Centrifuge this solution, and use this solution as the standard solution. Perform the Mass variation test with exactly 10 mL of the sample solution and standard solution as directed under Liquid Chromatography 2.01 according to the following conditions, and determine the peak areas, A_T and A_S, of verapamil in each solution.

Amount (mg) of verapamil hydrochloride (C_{27}H_{38}N_{2}O_{4}.HCl) in 1 tablet

\[M_5 = M_6 \times \frac{A_T}{A_S} \times \frac{V}{50} \]

M_5: Amount (mg) of verapamil hydrochloride for assay taken

Disintegration
It meets the requirement.

Assay
To 25 Verapamil Hydrochloride Tablets, add 7V/10 mL a mixture of methanol and 0.1 mol/L hydrochloric acid TS (3:1), and sonicate until the tablets are disintegrated. Further, sonicate for about 5 minutes. After cooling, add a mixture of methanol and 0.1 mol/L hydrochloric acid TS (3:1) to make exactly V mL so that each mL contains about 2 mg of verapamil hydrochloride (C_{27}H_{38}N_{2}O_{4}.HCl). Centrifuge this solution, pipet 10 mL of the supernatant liquid, add a mixture of methanol and 0.1 mol/L hydrochloric acid TS (3:1) to make exactly 25 mL, and use this solution as the sample solution. Separately, weigh accurately about 40 mg of verapamil hydrochloride for assay, previously dried at 105°C for 2 hours, dissolve in a mixture of methanol and 0.1 mol/L hydrochloric acid TS (3:1) to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography 2.01 according to the following conditions, and determine the peak areas, A_T and A_S, of verapamil in each solution.

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 280 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: A mixture of methanol, water and perchloric acid (550:450:1).

Flow rate: Adjust so that the retention time of verapamil is about 5 minutes.

System suitability—
System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of verapamil are not less than 2000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of verapamil is not more than 1.0%.

Containers and storage
Containers—Tight containers.

Vinblastine Sulfate

ビンブラスチン硫酸塩

Methyl (3aR,4R,5S,5aR,10bR,13aR)-4-acetoxy-3a-ethyl-9-[(5S,7R,9S)-5-ethyl-5-hydroxy-9-methoxy carbonyl-1,4,5,6,7,8,9,10-octahydro-3,7-methano-3-azacycloundecin-5,4-b]indol-9-yl-5-hydroxy-8-methoxy-6-methyl-3a,4,5,5a,6a,11,12,13a-octahydro-1H-indolizin-8[1,2-c]carbazole-5-carboxylate monosulfate [143-67-9]

Vinblastine Sulfate contains not less than 96.0% and not more than 102.0% of vinblastine sulfate (C_{26}H_{35}N_{2}O_{13}.H_2SO_4), calculated on the dried basis.

Description
Vinblastine Sulfate occurs as a white to pale yellow powder.

It is soluble in water, sparingly soluble in methanol, and...
practically insoluble in ethanol (99.5). It is hygroscopic.

Optical rotation \([\alpha]_D \) = \(-28 - 35^\circ \) (20 mg calculated on the dried basis, methanol, 10 mL, 100 mm).

Identification (1) Determine the absorption spectrum of a solution of Vinblastine Sulfate (1 in 100) as directed under Ultraviolet-visible Spectrophotometry \(<2.24\rangle\), and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Vinblastine Sulfate RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

**Determine the infrared absorption spectrum of Vinblastine Sulfate as directed in the potassium bromide disk method under Infrared Spectrophotometry \<2.25\rangle, and compare the spectrum with the Reference Spectrum or the spectrum of Vinblastine Sulfate RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) A solution of Vinblastine Sulfate (1 in 100) responds to Qualitative Tests \<1.099\rangle for sulfate.

pH \<2.54\rangle: Dissolve 15 mg of Vinblastine Sulfate in 10 mL of water: the pH of this solution is between 3.5 and 5.0.

Purity (1) Clarity and color of solution—Dissolve 50 mg of Vinblastine Sulfate in 10 mL of water: the solution is clear and colorless.

(2) Related substances—Dissolve about 4 mg of Vinblastine Sulfate in 10 mL of water, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add water to make exactly 25 mL, and use this solution as the standard solution. Perform the test with exactly 200 \(\mu \)L of each of the sample solution and standard solution as directed under Liquid Chromatography \<2.01\rangle according to the following conditions, and determine the peak areas, \(A_1 \) and \(A_s \), of vinblastine in each solution.

Amount (mg) of vinblastine sulfate \((C_{46}H_{58}N_{4}O_{9}H_{2}SO_{4}\) =

\[M_s \times A_1/A_s \]

\(M_s \): Amount (mg) of Vinblastine Sulfate RS taken, calculated on the dried basis

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 262 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 \(\mu \)m in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: To 7 mL of diethylamine add water to make 500 mL, and adjust the pH to 7.5 with phosphoric acid. To 380 mL of this solution add 620 mL of a mixture of methanol and acetonitrile (4:1).

Flow rate: Adjust so that the retention time of vinblastine is about 8 minutes.

System suitability—

System performance: Dissolve 10 mg each of Vinblastine Sulfate and vincristine sulfate in 25 mL of water. When the procedure is run with 20 \(\mu \)L of this solution under the above operating conditions, vincristine and vinblastine are eluted in this order with the resolution between these peaks being not less than 4.

System repeatability: When the test is repeated 6 times with 20 \(\mu \)L of the standard solution under the above operating conditions, the relative standard deviation of the peak area of vinblastine is not more than 1.0%.

Containers and storage Containers—Tight containers.

Storage—Light-resistant, at not exceeding \(-20^\circ\)C.

Vinblastine Sulfate for Injection

Vinblastine Sulfate for Injection is a preparation for injection, which is dissolved before use.

It contains not less than 90.0% and not more than 110.0% of the labeled amount of vinblastine sulfate \((C_{46}H_{58}N_{4}O_{9}H_{2}SO_{4}\): 909.05).

Method of preparation Prepare as directed under Injections, with Vinblastine Sulfate.

Description Vinblastine Sulfate for Injection occurs as white to pale yellow, light masses or powder.

It is freely soluble in water.

The pH of a solution (1 in 1000) is 3.5 – 5.0.

Identification Proceed as directed in the Identification (1) under Vinblastine Sulfate.
Purity Related substances—Dissolve 4 mg of Vinblastine Sulfate for Injection in 10 mL of water, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add water to make exactly 25 mL, and use this solution as the standard solution. Perform the test with exactly 200 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak other than vinblastine obtained from the sample solution is not larger than 1/2 times the peak area of vinblastine from the standard solution, and the total area of the peaks other than vinblastine from the sample solution is not larger than 2 times the peak area of vinblastine from the standard solution.

Operating conditions—Perform as directed in the operating conditions in Purity (2) under Vinblastine Sulfate.

Purity <4.00> Perform as directed in the system suitability in Purity (2) under Vinblastine Sulfate.

Bacterial endotoxins <4.01> Less than 10 EU/mg.

Uniformity of dosage units <6.02> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

Dissolve 1 Vinblastine Sulfate for Injection in water to make exactly V mL so that each mL contains about 0.4 mg of vinblastine sulfate (C_{46}H_{48}N_{14}O_{11}·H_2SO_4), and use this solution as the sample solution. Separately, weigh accurately about 10 mg of Vinblastine Sulfate RS (previously determine the loss on drying under the same conditions as Vinblastine Sulfate), dissolve in water to make exactly 25 mL, and use this solution as the standard solution. Proceed as directed in the Assay under Vinblastine Sulfate.

Amount (mg) of vinblastine sulfate (C_{46}H_{48}N_{14}O_{11}·H_2SO_4) = M_x \times A_1/A_3 \times 25/V

M_x: Amount (mg) of Vinblastine Sulfate RS taken, calculated on the dried basis

Foreign insoluble matter <6.06> Perform the test according to Method 2: it meets the requirement.

Insoluble particulate matter <6.07> It meets the requirement.

Sterility <4.06> Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Take an amount of Vinblastine Sulfate for Injection, equivalent to 0.10 g of vinblastine sulfate (C_{46}H_{48}N_{14}O_{11}·H_2SO_4), dissolve each content with a suitable amount of water, transfer into a 100-mL volumetric flask, wash each container with water, transfer the washings into the volumetric flask, and add water to make exactly 100 mL. Pipet 10 mL of this solution, add water to make exactly 25 mL, and use this solution as the sample solution. Separately, weigh accurately about 10 mg of Vinblastine Sulfate RS (previously determine the loss on drying under the same conditions as Vinblastine Sulfate), dissolve in water to make exactly 25 mL, and use this solution as the standard solution. Proceed as directed in the Assay under Vinblastine Sulfate.

Amount (mg) of vinblastine sulfate (C_{46}H_{48}N_{14}O_{11}·H_2SO_4) = M_x \times A_1/A_3 \times 10

M_x: Amount (mg) of Vinblastine Sulfate RS taken, calculated on the dried basis

Containers and storage Containers—Hermetic containers, and colored containers may be used.

Storage—Light-resistant, at 2 to 8°C.

Vincristine Sulfate

Methyl (3aR,4R,5S,5aR,10bR,13aR)-4-acetoxy-3a-ethyl-9-[(5S,7R,9S)-5-ethyl-5-hydroxy-9-methoxy-carbonyl-1,4,5,6,7,8,9,10-octahydro-3,7-methano-3-azacyclocdecine[5,4-b]indol-9-yl]-6-formyl-5-hydroxy-8-methoxy-3a,4,5,6,11,12,13a-octahydro-1H-indolizino[8,1-c]carbazole-5-carboxylate monosulfate [2008-78-2]

Vincristine Sulfate contains not less than 95.0% and not more than 105.0% of vincristine sulfate (C_{46}H_{48}N_{14}O_{11}·H_2SO_4), calculated on the dried basis.

Description Vincristine Sulfate occurs as a white to light yellow-white powder.

It is very soluble in water, and practically insoluble in ethanol (99.5).

It is hygroscopic.

Optical rotation [α]D^28: +28.5° to +35.5° (0.2 g calculated on the dried basis, water, 10 mL, 100 mm).

Identification (1) Determine the absorption spectrum of a solution of Vincristine Sulfate (1 in 50,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Vincristine Sulfate RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Vincristine Sulfate as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of Vincristine Sulfate RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) A solution of Vincristine Sulfate (1 in 100) responds to Qualitative Tests <1.09> for sulfate.

pH <2.54> Dissolve 10 mg of Vincristine Sulfate in 10 mL of water: the pH of this solution is between 3.5 and 4.5.

Purity (1) Clarity and color of solution—Dissolve 50 mg of Vincristine Sulfate in 10 mL of water: the solution is clear and colorless.

(2) Related substances—Dissolve 10 mg of Vincristine Sulfate in 10 mL of water, and use this solution as the sample solution. Pipet 2 mL of the sample solution, add water to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly 200 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions. Determine each peak area by the automatic integration method: the peak area of desacetyl vincristine and vinblastine, having the relative retention times of about 0.9
Perform the test with about 10 mg of 油 and not more than 92.38 mg according to the following conditions, and determine the peak areas, A_1 and A_3, of vincristine in each solution.

$$M_5 = A_1/A_3$$

M_3: Amount (mg) of Vincristine Sulfate RS taken, calculated on the dried basis.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 297 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octylsilanized silica gel for liquid chromatography (5 µm in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase A: methanol.

Mobile phase B: A mixture of water and diethylamine (197:3), adjusted the pH to 7.5 with phosphoric acid.

Flowing of mobile phase: Control the gradient by mixing the mobile phases A and B as directed in the following table.

<table>
<thead>
<tr>
<th>Time after injection of sample (min)</th>
<th>Mobile phase A (vol%)</th>
<th>Mobile phase B (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 12</td>
<td>62</td>
<td>38</td>
</tr>
<tr>
<td>12 – 27</td>
<td>62 → 92</td>
<td>38 → 8</td>
</tr>
</tbody>
</table>

Flow rate: Adjust so that the retention time of vincristine is about 15 minutes.

Time span of measurement: About 1.7 times as long as the retention time of vincristine, beginning after the solvent peak.

System suitability—

Test for required detectability: Pipet 5 mL of the standard solution, and add water to make exactly 200 mL. Confirm that the peak area of vincristine obtained with 200 µL of this solution is equivalent to 1.75 to 3.25 µg of that with 200 µL of the standard solution.

System performance: Dissolve 5 mg each of Vincristine Sulfate and vinblastine sulfate in 5 mL of water. When the procedure is run with 10 µL of this solution under the above operating conditions, vincristine and vinblastine are eluted in this order with the resolution between these peaks being not less than 4.

System repeatability: When the test is repeated 6 times with 10 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of vincristine is not more than 1.0%.

Containers and storage—Containers—Tight containers. Storage—Light-resistant, and at not exceeding 20°C.

Vitamin A Oil

ビタミンA油

Vitamin A Oil is synthetic vitamin A esters diluted with fixed oils. It contains not less than 30,000 vitamin A Units per g. It may contain suitable antioxidants. It contains not less than 90.0% and not more than 120.0% of the labeled units of vitamin A.

Description Vitamin A Oil is a yellow to yellow-brown, clear or slightly turbid oil. It is odorless or has a faint, characteristic odor.

It is decomposed upon exposure to air or light.

Identification Dissolve Vitamin A Oil, Retinol Acetate RS and Retinol Palmitate RS, equivalent to 15,000 Units, in 5 mL of petroleum ether, and use these solutions as the sample solution, the standard solution (1) and the standard solution (2), respectively. Perform the test with these solutions as directed under Thin-layer Chromatography <2.02>. Spot 5 µL each of the sample solution and standard solutions (1) and (2) on a plate of silica gel for thin-layer chromatography. Develop with a mixture of cyclohexane and diethyl ether (12:1) to a distance of about 10 cm, and air-dry the plate. Spray evenly antimony (III) chloride TS: the principal spot
obtained from the sample solution has the same color tone and the same Rf value with the blue spot from the standard solution (1) or the standard solution (2).

Purity (1) Acidity—Dissolve 1.2 g of Vitamin A Oil in 30 mL of a mixture of neutralized ethanol and diethyl ether (1:1), boil gently for 10 minutes under a reflux condenser, cool, and add 5 drops of phenolphthalein TS and 0.60 mL of 0.1 mol/L sodium hydroxide VS: a red color develops.

(2) Rancidity—No unpleasant odor of rancid oil is perceptible by warming Vitamin A Oil.

Assay Proceed as directed in Method 1-1 under Vitamin A Assay 2.53.

Containers and storage Containers—Tight containers.

Storage—Light-resistant, and almost well-filled, or under Nitrogen atmosphere.

Voglibose

ボグリボース

C₁₀H₂₃NO₆: 267.28
3,4-Dideoxy-4-[2-hydroxy-1-(hydroxymethyl)ethylamino]-2-C-(hydroxymethyl)-D-epi-inositol
[83480-29-9]

Voglibose contains not less than 99.5% and not more than 101.0% of voglibose (C₁₀H₂₃NO₆), calculated on the anhydrous basis.

Description Voglibose occurs as white, crystals or crystal-line powder.

It is very slightly soluble in water, freely soluble in acetic acid (100), slightly soluble in methanol, and very slightly soluble in ethanol (99.5).

It dissolves in 0.1 mol/L hydrochloric acid TS.

Identification (1) Determine the infrared absorption spectrum of Voglibose as directed in the potassium bromide disk method under Infrared Spectrophotometry 2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

(2) Determine the ¹H spectrum of a solution of Voglibose in heavy water for nuclear magnetic resonance spectroscopy (3 in 70) as directed under Nuclear Magnetic Resonance Spectroscopy 2.21>, using sodium 3-trimethylsilylpropionate-δ₄ for nuclear magnetic resonance spectroscopy as an internal reference compound: it exhibits 2 doublet signals A at about δ 1.5 ppm, 2 doublet signals B at about δ 2.1 ppm, a multiplet signal C at about δ 2.9 ppm, and a multiplet signal D between δ 3.4 ppm and δ 3.9 ppm. The area intensity ratio of each signal, A:B:C:D, is about 1:1:1:10.

Optical rotation 2.49> [α]D: + 45° to + 48° (0.2 g calculated on the anhydrous basis, 0.1 mol/L hydrochloric acid TS, 20 mL, 100 mm).

pH 2.54> Dissolve 1.0 g of Voglibose in 10 mL of water: the pH of the solution is between 9.8 and 10.4.

Melting point 2.60> 163 – 168°C

Purity (1) Heavy metals 1.07>—Proceed with 1.0 g of Voglibose according to Method 1, and perform the test. Adjust the pH of the test solution between 3.0 and 3.5 with dilute hydrochloric acid instead of dilute acetic acid. Prepare the control solution with 1.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Related substances—Dissolve 50 mg of Voglibose in 50 mL of the mobile phase, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 50 mL of each of the sample solution and standard solution as directed under Liquid Chromatography 2.01> according to the following conditions, and determine each peak area by the automatic integration method: the total area of the peaks other than voglibose obtained from sample solution is not larger than 1/5 times the peak area of voglibose from the standard solution. For the area of the peaks, having the relative retention time of about 1.7, about 2.0 and about 2.3 to voglibose, multiply their correction factors, 2, 2 and 2.5, respectively.

Operating conditions—

Apparatus: Use an apparatus consisting of 2 pumps for the mobile phase and reaction reagent transportation, sample injection port, column, reaction coil, cooling coil, detector and recording device, and the reaction coil and cooling coil maintained at a constant temperature.

Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with pentaethylenhexamine polymer vinyl alcohol polymer bead for liquid chromatography (5 µm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Reaction coil: A polytetrafluoroethylene tube 0.5 mm in inside diameter and 20 m in length.

Cooling coil: A polytetrafluoroethylene tube 0.3 mm in inside diameter and 2 m in length.

Mobile phase: To 1.56 g of sodium dihydrogen phosphate dihydrate add water to make 500 mL. To this solution add a solution, prepared by dissolving 3.58 g of disodium hydrogen phosphate dodecahydrate in water to make 500 mL, to adjust to pH 6.5. To 370 mL of this solution add 630 mL of acetonitrile.

Reaction reagent: Dissolve 6.25 g of taurine and 2.56 g of sodium periodate in water to make 1000 mL.

Reaction temperature: A constant temperature of about 100°C.

Cooling temperature: A constant temperature of about 15°C.

Flow rate of mobile phase: Adjust so that the retention time of voglibose is about 20 minutes.

Flow rate of reaction reagent: Same as the flow rate of the mobile phase.

Time span of measurement: About 2.5 times as long as the retention time of voglibose, beginning after the solvent peak.

System suitability—

Test for required detectability: Pipet 10 mL of the standard solution, and add the mobile phase to make exactly 100 mL. Confirm that the peak area of voglibose obtained with 50 µL of this solution is equivalent to 7 to 13% of that with 50 µL of the standard solution.

System performance: When the procedure is run with 50 µL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry...
factor of the peak of voglibose are not less than 7000 and between 0.8 and 1.2, respectively.

System repeatability: When the test is repeated 6 times with 50 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of voglibose is not more than 3.0%.

Water <2.48> Not more than 0.2% (0.5 g, coulometric titration).

Residue on ignition <2.44> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.4 g of Voglibose, dissolve in 80 mL of acetic acid (100), and titrate <2.59> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 26.73 mg of C₁₀H₁₂N₂O₇

Containers and storage Containers—Tight containers.

Voglibose Tablets ボグリボース錠

Voglibose Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of voglibose (C₁₀H₁₂N₂O₇: 267.28).

Method of preparation Prepare as directed under Tablets, with Voglibose.

Identification Shake vigorously an amount of powdered Voglibose Tablets, equivalent to 5 mg of Voglibose, with 40 mL of water, and centrifuge. Transfer the supernatant liquid to a chromatographic column [prepared by pouring 1.0 mL of strongly acidic ion-exchange resin (H type) for column chromatography (100 to 200 µm in particle diameter) into a chromatographic column 8 mm in inside diameter and 130 mm in height], and allow to flow at a rate of about 5 mL per minute. Then wash the column with 200 mL of water, and allow to flow with 10 mL of diluted ammonia TS (1 in 4) at a rate of about 5 mL per minute. Filter the effluent solution 2 times through a membrane filter with a pore size not exceeding 0.22 µm. Evaporate the filtrate to dryness at 50 °C under reduced pressure, dissolve the residue with 0.5 mL of a mixture of water and methanol (1:1), and use this solution as the sample solution. Separately, dissolve 20 mg of voglibose for assay in 2 mL of the mixture of water and methanol (1:1), and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.07>.

Operating conditions—

Apparatus, detector, column, column temperature, reaction coil, cooling coil, reaction reagent, reaction temperature, and flow rate of reaction reagent: Proceed as directed in the operating conditions in the Assay.

Mobile phase: Dissolve 1.56 g of sodium dihydrogen phosphate dihydrate in 500 mL of water. To this solution add a suitable amount of a solution, prepared by dissolving 3.58 g of disodium hydrogen phosphate decahydrate in 500 mL of water, to adjust to pH 6.5. To 500 mL of this solution add 500 mL of acetonitrile.

Cooling temperature: A constant temperature of about 25°C.

Flow rate of mobile phase: Adjust so that the retention time of voglibose is about 6 minutes.

System suitability—

System performance: When the procedure is run with 100 µL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of voglibose are not less than 2000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 100 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of voglibose is not more than 3.0%.
Assay To 20 tables of Voglibose Tablets add 80 mL of the mobile phase, and completely disintegrate by shaking. To an exact volume of the solution, equivalent to about 4 mg of voglibose (C_{16}H_{21}F_{2}N_{2}O_{5}), add the mobile phase to make exactly 100 mL, and centrifuge. Filter the supernatant liquid through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 1 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 20 mg of voglibose for assay (previously determine the water ≤2.48% in the same manner as Voglibose), and dissolve in the mobile phase to make exactly 25 mL. Pipet 5 mL of this solution, add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 50 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions, and determine the peak areas, A_T and A_S, of voglibose in each solution.

\[
M_S = \frac{\text{Amount of voglibose (C}_{16}\text{H}_{21}\text{F}_{2}\text{N}_{2}\text{O}_{5})}{M_S} = \frac{M_S}{M_S} = \frac{A_T}{A_S} × 1/500
\]

Operating conditions—
Apparatus: Use an apparatus consisting of 2 pumps for the mobile phase and reaction reagent transportation, sample injection port, column, reaction coil, cooling coil, detector and recording device, and the reaction coil and cooling coil maintained at a constant temperature.

Column: A stainless steel column 4 mm in inside diameter and 15 cm in length, packed with amino-propylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 25°C.

Reaction coil: A polytetrafluoroethylene tube 0.5 mm in inside diameter and 20 m in length.

Cooling coil: A polytetrafluoroethylene tube 0.3 mm in inside diameter and 2 m in length.

Mobile phase: To 1.56 g of sodium dihydrogen phosphate dihydrate add water to make 500 mL. To this solution add a solution, prepared by dissolving 3.58 g of disodium hydrogen phosphate dodecahydrate in water to make 500 mL, to adjust to pH 6.5. To 300 mL of this solution add 600 mL of acetonitrile.

Reaction reagent: Dissolve 6.25 g of taurine and 2.56 g of sodium periodate in water to make 1000 mL.

Reaction temperature: A constant temperature of about 100°C.

Flow rate of mobile phase: Adjust so that the retention time of voglibose is about 20 minutes.

Flow rate of reaction reagent: Same as the flow rate of the mobile phase.

System suitability—
System performance: Dissolve 2 mg of voglibose for assay and 0.2 g of lactose monohydrate in 5 mL of water, and add the mobile phase to make 50 mL. When the procedure is run with 50 μL of this solution under the above operating conditions, lactose and voglibose are eluted in this order with the resolution between these peaks being not less than 4.

System repeatability: When the test is repeated 6 times with 50 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of voglibose is not more than 2.0%.

Containers and storage Containers—Tight containers.

Voriconazole
ボリコンゾール

C_{16}H_{12}F_{3}N_{2}O_{5}: 349.31
(2R,35)-(2,4-Difluorophenyl)-3-(5-fluoropyrimidin-4-yl)-1-(1H-1,2,4-triazol-1-yl)butan-2-ol
[137234-62-9]

Voriconazole contains not less than 98.0% and not more than 102.0% of C_{16}H_{12}F_{3}N_{2}O_{5}, calculated on the anhydrous basis.

Description Voriconazole is a white crystalline powder. It is freely soluble in methanol and in acetone, soluble in ethanol (99.5), and very slightly soluble in water.

It dissolves in 1 mol/L hydrochloric acid TS.

Optical rotation [a]_{D}^{25}: −374 ± 404° (50 mg calculated on the anhydrous basis, methanol, 25 mL, 100 mm).

Identification (1) Determine the absorption spectrum of a solution of Voriconazole in methanol (1 in 40,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Voriconazole RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Voriconazole as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of Voriconazole RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Purity (1) Heavy metals—Take 2.0 g of Voriconazole in a porcelain crucible, moisten with an appropriate amount of sulfuric acid, cover the crucible loosely, and ignite at a low temperature until charred. After cooling, add 2 mL of nitric acid and 5 drops of sulfuric acid to the content of the crucible, heat gently the crucible until white fumes are no longer evolved, then ignite at 500 – 600°C. After cooling, add 4 mL of 6 mol/L hydrochloric acid TS, evaporate to dryness on a water bath, moisten the residue with 1 drop of hydrochloric acid, add 10 mL of boiling water, and heat for 2 minutes. After cooling, add appropriate drops of ammonium TS until litmus paper changes to blue, add water to make 15 mL, and adjust the pH between 3.0 and 4.0 with dilute acetic acid.

Filter if necessary, wash the crucible and the filter paper with 10 mL of water, put the filtrate and washings to a Nessler tube, add water to make 40 mL, and use this solution as the sample solution. Separately, put 2.0 mL of Standard Lead Solution in another Nessler tube, add water to make 25 mL, adjust the pH between 3.0 and 4.0 with dilute acetic acid or ammonium TS, then add water to make 40 mL, and use this solution as the control solution. To each of the sample solution and control solution add 2 mL of acetate buffer solution.
(pH 3.5), then add 1.2 mL of thiourea-acetone-alkaline glycerin TS, and add water to make 50 mL. After allowing to stand for 2 minutes, observe vertically both tubes against a white background: the color obtained with the test solution is not more intense than that with the control solution (not more than 10 ppm).

(2) Related substances—Dissolve 50 mg of Voriconazole in 100 mL of the mobile phase, and use this solution as the sample solution. Pipet 1 mL of the sample solution, and add the mobile phase to make exactly 100 mL. Pipet 1 mL of this solution, add the mobile phase to make exactly 10 mL, and use this solution as the standard solution. Perform the test with exactly 20 \(\mu \)L each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine each peak area by the automatic integration method: the area of the peaks other than voriconazole obtained from the sample solution is not larger than the peak area of voriconazole from the standard solution. The total area of the peaks other than voriconazole from the sample solution is not larger than 4 times the peak area of voriconazole from the standard solution. For the area of the peak, having a relative retention time of about 0.26, about 0.32, and about 0.61 to voriconazole, multiply the correction factor, 0.7, 0.7 and 2.1, respectively.

Operating conditions

Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 2.7 times as long as the retention time of voriconazole.

System suitability

System performance: Suspend 0.1 g of Voriconazole in 10 mL of sodium hydroxide solution (1 in 25), add the mobile phase to make 20 mL, and allow to stand for 30 minutes. To 1 mL of this solution add the mobile phase to make 100 mL. When the procedure is run with 20 \(\mu \)L of this solution under the above operating conditions, the resolution between the peaks, having the relative retention times of about 0.26 and about 0.32 to voriconazole, is not less than 1.7.

System repeatability: When the test is repeated 6 times with 20 \(\mu \)L each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, \(A_1 \) and \(A_5 \), of voriconazole in each solution.

\[
\text{Amount (mg) of voriconazole} = M_S \times \frac{A_1}{A_5}
\]

\(M_S \): Amount (mg) of Voriconazole RS taken, calculated on the anhydrous basis.

Operating conditions

Detector: An ultraviolet absorption photometer (wavelength: 256 nm).

Column: A stainless steel column 3.9 mm in inside diameter and 15 cm in length, packed with octadeclsilanized silica gel for liquid chromatography (4 \(\mu \)m in particle diameter).

Column temperature: A constant temperature of about 35°C.

Mobile phase: Dissolve 0.77 g of ammonium formate in 1000 mL of water, and adjust to pH 5.0 with acetic acid (100). To 820 mL of this solution add 180 mL of acetonitrile.

Flow rate: Adjust so that the retention time of voriconazole is about 6 minutes.

System suitability

System performance: When the procedure is run with 20 \(\mu \)L of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of voriconazole are not less than 2500 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 20 \(\mu \)L each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, \(A_1 \) and \(A_5 \), of voriconazole in each solution.

\[
\text{Amount (mg) of voriconazole} = M_S \times \frac{A_1}{A_5}
\]

\(M_S \): Amount (mg) of Voriconazole RS taken, calculated on the anhydrous basis.

Operating conditions

Detector: An ultraviolet absorption photometer (wavelength: 256 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with 2-hydroxypropyl-\(\beta \)-cyclodextrinized silica gel for liquid chromatography (5 \(\mu \)m in particle diameter).

Column temperature: A constant temperature of about 30°C.

Mobile phase: Dissolve 0.77 g of ammonium formate in 1000 mL of water, and adjust to pH 5.0 with acetic acid (100). To 820 mL of this solution add 180 mL of acetonitrile.

Flow rate: Adjust so that the retention time of voriconazole is about 6 minutes.

System suitability

System performance: When the procedure is run with 20 \(\mu \)L of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of voriconazole are not less than 3500 and not more than 1.7, respectively.

System repeatability: When the test is repeated 6 times with 20 \(\mu \)L each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, \(A_1 \) and \(A_5 \), of voriconazole in each solution.

\[
\text{Amount (mg) of voriconazole} = M_S \times \frac{A_1}{A_5}
\]

\(M_S \): Amount (mg) of Voriconazole RS taken, calculated on the anhydrous basis.

Operating conditions

Detector: An ultraviolet absorption photometer (wavelength: 256 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with 2-hydroxypropyl-\(\beta \)-cyclodextrinized silica gel for liquid chromatography (5 \(\mu \)m in particle diameter).

Column temperature: A constant temperature of about 30°C.

Mobile phase: Dissolve 0.77 g of ammonium formate in 1000 mL of water, and adjust to pH 5.0 with acetic acid (100). To 820 mL of this solution add 180 mL of acetonitrile.

Flow rate: Adjust so that the retention time of voriconazole is about 6 minutes.

System suitability

System performance: When the procedure is run with 20 \(\mu \)L of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of voriconazole are not less than 3500 and not more than 1.7, respectively.

System repeatability: When the test is repeated 6 times with 20 \(\mu \)L each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, \(A_1 \) and \(A_5 \), of voriconazole in each solution.

\[
\text{Amount (mg) of voriconazole} = M_S \times \frac{A_1}{A_5}
\]

\(M_S \): Amount (mg) of Voriconazole RS taken, calculated on the anhydrous basis.
Containers and storage Containers—Well-closed containers.

Voriconazole for Injection
注射用ボリコナゾール

Voriconazole for Injection is a preparation for injection which is dissolved before use.

It contains not less than 93.0% and not more than 105.0% of the labeled amount of voriconazole (C₆₁H₄₈F₃N₅O: 349.31). Correct the amount obtained in the Assay with T value.

Method of preparation Prepare as directed under Injections, with Voriconazole.

Description Voriconazole for Injection is white, masses or powder.

Identification To 5 mL of the sample solution obtained in the Assay add the mobile phase in the Assay to make 25 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.24> : it exhibits a maximum between 254 nm and 258 nm.

pH Being specified separately when the drug is granted approval based on the Law.

Purity (1) Related substances—Dissolve the content of 1 container of Voriconazole for Injection in water so that each mL contains about 10 mg of voriconazole (C₆₁H₄₈F₃N₅O). To 5 mL of this solution add the mobile phase to make 100 mL, and use this solution as the sample solution. Pipet 5 mL of the sample solution, and add the mobile phase to make exactly 50 mL. Pipet 2 mL of this solution, add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area by the automatic integration method: the area of the peak, having the relative retention time of about 0.26 to voriconazole, obtained from the sample solution is not larger than twice the area of the peak obtained from the sample solution, and the area of the peak other than voriconazole, the peak having the relative retention time of about 0.61 and the peaks mentioned above from the sample solution is not larger than the peak area of voriconazole from the standard solution. Furthermore, the total area of the peaks other than voriconazole and the peak having the relative retention time of about 0.61 from the sample solution is not larger than 7 times the peak area of voriconazole from the standard solution. For the areas of the peaks, having the relative retention times of about 0.26, about 0.32 and about 0.5, multiply their correction factors, 0.7, 0.7 and 1.2, respectively.

Operating conditions—
Detector, column, column temperature, mobile phase and flow rate: Proceed as directed in the operating conditions in the Assay.
Time span of measurement: About 1.3 times as long as the retention time of voriconazole.

System suitability—
System performance: Suspend 0.1 g of voriconazole in 10 mL of a solution of sodium hydroxide (1 in 25), add the mobile phase to make 20 mL, and allow to stand for 30 minutes. To 1 mL of this solution add the mobile phase to make 100 mL. When the procedure is run with 20 μL of this solution under the above operating conditions, the resolution between the peaks, having the relative retention times about 0.26 and about 0.32 to voriconazole, is not less than 1.5.

System repeatability: To 5 mL of the standard solution add the mobile phase to make 10 mL. When the test is repeated 6 times with 20 μL of this solution under the above operating conditions, the relative standard deviation of the peak area of voriconazole is not more than 5.0%.

(2) Enantiomer—Dissolve the content of 1 container of Voriconazole for Injection in the mobile phase so that each mL contains about 1 mg of voriconazole (C₆₁H₄₈F₃N₅O). To 5 mL of this solution add the mobile phase to make exactly 100 mL. Pipet 1 mL of the sample solution, and add the mobile phase to make exactly 10 mL, and use this solution as the sample solution. Pipet 1 mL of the sample solution, and add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area by the automatic integration method: the area of the peak of the enantiomer, having the relative retention time of about 1.3 to voriconazole, obtained from the sample solution is not larger than 4 times the peak area of voriconazole from the standard solution.

Operating conditions—
Proceed as directed in the operating conditions in the Purity (3) under Voriconazole.

System suitability—
Proceed as directed in the system suitability in the Purity (3) under Voriconazole.

Bacterial endotoxins <4.01> Less than 1.5 EU/mg.

Uniformity of dosage units <6.02> It meets the requirement of the Mass variation test (7: 106.0%).

Foreign insoluble matter <6.06> Perform the test according to Method 2: it meets the requirement.

Insoluble particulate matter <6.07> It meets the requirement.

Sterility <4.06> Perform the test according to the Membrane filtration method: it meets the requirement.

Assay Take 10 containers of Voriconazole for Injection, dissolve the contents of each in the mobile phase, combine the solutions, and add the mobile phase to make exactly 1000 mL. Pipet 5 mL of this solution, add the mobile phase to make exactly 100 mL, and use this solution as the sample solution. Separately, weigh accurately about 50 mg of Voriconazole RS (separately determine the water <2.4D> in the same manner as Voriconazole), and dissolve in the mobile phase to make exactly 50 mL. Pipet 5 mL of this solution, add the mobile phase to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A₁ and A₅, of voriconazole in each solution.
Amount (mg) of voriconazole (C₁₈H₁₄F₃N₅O) in 1 container of Voriconazole for Injection

\[M_5 = M_5 \times A_5/\bar{A}_5 \times 4 \]

\(M_5 \): Amount (mg) of Voriconazole RS taken, calculated on the anhydrous basis

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 256 nm).

Column: A stainless steel column 3.9 mm in inside diameter and 15 cm in length, packed with octadecysilanized silica gel for liquid chromatography (4 μm in particle diameter).

Column temperature: A constant temperature of about 35°C.

Mobile phase: Dissolve 1.9 g of ammonium formate in 1000 mL of water, and adjust to pH 4.0 with formic acid. To 550 mL of this solution add 300 mL of methanol and 150 mL of acetonitrile.

Flow rate: Adjust so that the retention time of voriconazole is about 9 minutes.

System suitability—

System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of voriconazole are not less than 5000 and not more than 1.7, respectively.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of voriconazole is not more than 1.0%.

Containers and storage Containers—Hermetic containers.

Voriconazole Tablets

ボリコナゾール錠

Voriconazole Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of voriconazole (C₁₈H₁₄F₃N₅O): 349.31.

Method of preparation Prepare as directed under Tablets, with Voriconazole.

Identification To 5 mL of the sample solution obtained in the Assay add the mobile phase in the Assay to make 25 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.24>; it exhibits a maximum between 254 nm and 258 nm.

Uniformity of dosage units <6.02> Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement.

To 1 tablet of Voriconazole Tablets add small amount of water to disintegrate the tablet, add V/2 mL of the mobile phase, stir for 20 minutes, and add the mobile phase to make exactly V mL so that each mL contains about 1 mg of voriconazole (C₁₈H₁₄F₃N₅O). Centrifuge, pipet 5 mL of the supernatant liquid, add the mobile phase to make exactly 50 mL, and use this solution as the sample solution. Then, proceed as directed in the Assay.

Amount (mg) of voriconazole (C₁₈H₁₄F₃N₅O)

\[M_5 = M_5 \times A_5/\bar{A}_5 \times V/20 \]

\(M_5 \): Amount (mg) of Voriconazole RS taken, calculated on the anhydrous basis

Dissolution <6.10> When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of 1st fluid for dissolution test as the dissolution medium, the value Q in 30 minutes of Voriconazole Tablets is 80%.

Start the test with 1 tablet of Voriconazole Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add the dissolution medium to make exactly V mL so that each mL contains about 22 μg of voriconazole (C₁₈H₁₄F₃N₅O), and use this solution as the sample solution. Separately, weigh accurately about 18 mg of Voriconazole RS (separately determine the water <2.48> in the same manner as Voriconazole), dissolve in 2 mL of methanol, and add the dissolution medium to make exactly 200 mL. Pipet 10 mL of this solution, add the dissolution medium to make exactly 50 mL, and use this solution as the standard solution. Determine the absorbances, A₁ and A₅, at 256 nm of the sample solution and standard solution as directed under Ultraviolet-visible Spectrophotometry <2.24>, using the dissolution medium as the blank.

Dissolution rate (%): with respect to the labeled amount of voriconazole (C₁₈H₁₄F₃N₅O)

\[M_5 = M_5 \times A_1/\bar{A}_5 \times V/\bar{V} \times 1/C \times 90 \]

\(M_5 \): Amount (mg) of Voriconazole RS taken, calculated on the anhydrous basis

C: Labeled amount (mg) of voriconazole (C₁₈H₁₄F₃N₅O) in 1 tablet

Assay Weigh accurately the mass of not less than 20 Voriconazole Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 50 mg of voriconazole (C₁₈H₁₄F₃N₅O), add the mobile phase, stir, and add the mobile phase to make exactly 50 mL. Centrifuge, pipet 5 mL of the supernatant liquid, add the mobile phase to make exactly 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 20 mg of Voriconazole RS (separately determine the water <2.48> in the same manner as Voriconazole), and dissolve in the mobile phase to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.07> according to the following conditions, and determine the peak areas, A₁ and A₅, of voriconazole in each solution.

Amount (mg) of voriconazole (C₁₈H₁₄F₃N₅O)

\[M_5 = M_5 \times A_1/\bar{A}_5 \times 5/2 \]

\(M_5 \): Amount (mg) of Voriconazole RS taken, calculated on the anhydrous basis

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 256 nm).

Column: A stainless steel column 3.9 mm in inside diameter and 15 cm in length, packed with octadecysilanized silica gel for liquid chromatography (4 μm in particle diameter).

Column temperature: A constant temperature of about 35°C.

Mobile phase: Dissolve 1.9 g of ammonium formate in 1000 mL of water, and adjust to pH 4.0 with formic acid. To 550 mL of this solution add 300 mL of methanol and 150 mL of acetonitrile.

Flow rate: Adjust so that the retention time of voriconazole is about 9 minutes.
System suitability—
System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of voriconazole are not less than 5000 and not more than 1.7, respectively.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of voriconazole is not more than 1.0%.

Containers and storage Containers—Tight containers.

Warfarin Potassium

Warfarin Potassium, when dried, contains not less than 98.0% and not more than 102.0% of warfarin potassium ($C_{19}H_{16}KO_4$).

Description Warfarin Potassium occurs as a white crystalline powder. It is very soluble in water, and freely soluble in ethanol (95). It dissolves in sodium hydroxide TS.

The pH of a solution prepared by dissolving 1.0 g of Warfarin Potassium in 100 mL of water is between 7.2 and 8.3.

It is colored to light yellow by light.

A solution of Warfarin Potassium (1 in 10) shows no optical rotation.

Identification (1) Determine the absorption spectrum of a solution of Warfarin Potassium in 0.02 mol/L potassium hydroxide TS (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Warfarin Potassium RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Warfarin Potassium, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of Warfarin Potassium RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

(3) A solution of Warfarin Potassium (1 in 250) responds to Qualitative Tests <1.09> (1) for potassium salt.

Purity (1) Alkaline colored substances—Dissolve 1.0 g of Warfarin Potassium in a solution of sodium hydroxide (1 in 20) to make exactly 10 mL, and determine the absorbance at 385 nm within 15 minutes as directed under Ultraviolet-visible Spectrophotometry <2.24>, using a solution of sodium hydroxide (1 in 20) as a blank: it does not exceed 0.20.

(2) Heavy metals <1.07>—Dissolve 2.0 g of Warfarin Potassium in 30 mL of ethanol (95), add 2 mL of dilute acetic acid and ethanol (95) to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution with 2.0 mL of Standard Lead Solution, 2 mL of dilute acetic acid and ethanol (95) to make 50 mL (not more than 10 ppm).

(3) Related substances—Dissolve 0.10 g of Warfarin Potassium in 100 mL of a mixture of water and methanol (3:1), and use this solution as the sample solution. Pipet 1 mL of the sample solution, add the mixture of water and methanol (3:1) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 μL of each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine each peak area by the automatic integration method: each peak area other than warfarin obtained from the sample solution is not larger than 1/10 times the peak area of warfarin from the standard solution, and the total area of the peaks other than warfarin from the sample solution is not larger than 1/2 times the peak area of warfarin from the standard solution.

Operating conditions—
Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 2 times as long as the retention time of warfarin, beginning after the solvent peak.

System suitability—
Test for required detectability: To exactly 1 mL of the standard solution add the mixture of water and methanol (3:1) to make exactly 20 mL. Confirm that the peak area of warfarin obtained with 20 μL of this solution is equivalent to 3.5 to 6.5% of that with 20 μL of the standard solution.

System performance: Dissolve 20 mg of propyl parahydroxybenzoate in 50 mL of methanol, and add water to make 200 mL. To 5 mL of this solution add 4 mL of a solution of Warfarin Potassium in the mixture of water and methanol (3:1) (1 in 2000), and add the mixture of water and methanol (3:1) to make 100 mL. When the procedure is run with 20 μL of this solution under the above operating conditions, propyl parahydroxybenzoate and warfarin are eluted in this order with the resolution between these peaks being not less than 7 and the symmetry factor is not more than 1.5.

System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of warfarin is not more than 2.0%.

Loss on drying <2.41> Not more than 4.5% (1 g, 105°C, 3 hours).

Assay Weigh accurately about 25 mg each of Warfarin Potassium and Warfarin Potassium RS, previously dried, and separately dissolve in the mixture of water and methanol (3:1) to make exactly 50 mL. Pipet 10 mL each of these solutions, add the mixture of water and methanol (3:1) to make exactly 50 mL, and use these solutions as the sample solution and standard solution. Perform the test with exactly 20 μL of each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A S and A T, of warfarin in each solution.

Amount (mg) of warfarin potassium ($C_{19}H_{16}KO_4$) = $M_S \times A_T / A_S$

M_S: Amount (mg) of Warfarin Potassium RS taken
Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 260 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with cyanopropylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 40°C.
Mobile phase: A mixture of water, acetonitrile and acetic acid (100) (68:32:1).
Flow rate: Adjust so that the retention time of warfarin is about 10 minutes.

System suitability—
System performance: When the procedure is run with 20 μL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of warfarin are not less than 8000 and not more than 1.5, respectively.
System repeatability: When the test is repeated 6 times with 20 μL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of warfarin is not more than 1.0%.

Containers and storage—Containers—Tight containers.
Storage—Light-resistant.

Warfarin Potassium Tablets

Warfarin Potassium Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of warfarin potassium (C$_{19}$H$_{14}$KO$_4$: 346.42).

Method of preparation—Prepare as directed under Tablets, with Warfarin Potassium.

Identification (1) Determine the absorption spectrum of the solution T$_2$ obtained in the Assay, using 0.02 mol/L potassium hydroxide TS as the blank, as directed under Ultraviolet-visible Spectrophotometry <2.24>.
(2) Weigh a quantity of Warfarin Potassium Tablets, equivalent to 0.01 g of Warfarin Potassium, add 10 mL of acetone, shake, and filter. Heat the filtrate on a water bath to evaporate the acetone. To the residue add 10 mL of diethyl ether and 2 mL of dilute hydrochloric acid, and shake: the aqueous layer responds to Qualitative Tests <1.09> (1) for potassium salt.

Uniformity of dosage units <6.02>—Perform the test according to the following method: it meets the requirement of the Content uniformity test.

Powder 1 tablet of Warfarin Potassium Tablets, add 40 mL of water, and shake vigorously for 30 minutes. Add water to make exactly V mL of this solution containing about 20 μg of warfarin potassium (C$_{19}$H$_{14}$KO$_4$) per mL. Filter this solution, discard the first 5 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 40 mg of Warfarin Potassium RS, previously dried at 105°C for 3 hours, and dissolve in water to make exactly 100 mL. Pipet 5 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution. Pipet 20 mL each of the sample solution and standard solution, add 0.05 mol/L hydrochloric acid TS to make exactly 25 mL, and use these solutions as the solution T$_1$ and the solution S$_1$, respectively. Separately, pipet 20 mL each of the sample solution and standard solution, add 0.05 mol/L potassium hydroxide TS to make exactly 25 mL, and use these solutions as the solution T$_2$ and the solution S$_2$, respectively. Determine the absorbances, A$_T$ and A$_S$, of the solution T$_1$ and the solution S$_1$ at 272 nm as directed under Ultraviolet-visible Spectrophotometry <2.24>, using the solution T$_2$ and the solution S$_2$ as the blank, respectively.

Amount (mg) of warfarin potassium (C$_{19}$H$_{14}$KO$_4$)
\[M_5 = \frac{M_5}{A_T/A_S} \times \frac{V}{V/2000} \]

M$_5$: Amount (mg) of Warfarin Potassium RS taken

Dissolution <6.10>—When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rates in 15 minutes of 0.5-mg, 1-mg and 2-mg tablet and in 30 minutes of 5-mg tablet of Warfarin Potassium Tablets are not less than 80%.

Start the test with 1 tablet of Warfarin Potassium Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add water to make exactly V’ mL so that each mL contains about 0.56 μg of warfarin potassium (C$_{19}$H$_{14}$KO$_4$), and use this solution as the sample solution. Separately, weigh accurately about 22 mg of Warfarin Potassium RS, previously dried at 105°C for 3 hours, and dissolve in water to make exactly 100 mL. Pipet 5 mL of this solution, and add water to make exactly 100 mL. Pipet 5 mL of this solution, and use this solution as the standard solution. Perform the test with exactly 100 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A$_T$ and A$_S$, of warfarin in each solution.

Dissolution rate (%) with respect to the labeled amount of warfarin potassium (C$_{19}$H$_{14}$KO$_4$)
\[M_5 = \frac{M_5}{A_T/A_S} \times \frac{V}{V/2000} \times 1/C \times 9/4 \]

M$_5$: Amount (mg) of Warfarin Potassium RS taken

C: Labeled amount (mg) of warfarin potassium (C$_{19}$H$_{14}$KO$_4$) in 1 tablet

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 283 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 35°C.
Mobile phase: A mixture of methanol, water and phosphoric acid (700:300:1).
Flow rate: Adjust so that the retention time of warfarin is about 6 minutes.

System suitability—
System performance: When the procedure is run with 100 μL of the standard solution under the above conditions, the number of theoretical plates and the symmetry factor of the
Peak of warfarin are not less than 2000 and not more than 2.0, respectively.

System repeatability: When the test is repeated 6 times with 100 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of warfarin is not more than 2.0%.

Assay Weigh accurately and powder not less than 20 Warfarin Potassium Tablets. Weigh accurately a portion of the powder, equivalent to about 4 mg of warfarin potassium (C₂₉H₃₃KO₄O₄), add 80 mL of water, shake vigorously for 15 minutes, and add water to make exactly 100 mL. Filter this solution, discard the first 10 mL of the filtrate, and use the subsequent filtrate as the sample solution. Separately, weigh accurately about 80 mg of Warfarin Potassium RS, previously dried at 105°C for 3 hours, and dissolve in water to make exactly 100 mL. Pipet 5 mL of this solution, add water to make exactly 100 mL, and use this solution as the standard solution. Pipet 10 mL each of the sample solution and standard solution, add 0.02 mol/L hydrochloric acid TS to make exactly 20 mL, and use these solutions as the solution T₁ and the solution S₁, respectively. Separately, pipet 10 mL each of the sample solution and standard solution, add 0.02 mol/L potassium hydroxide TS to make exactly 20 mL, and use these solutions as the solution T₂ and the solution S₂, respectively. Determine the absorbances, A₁ and A₃, of the solution T₁ and the solution S₁; at 272 nm as directed under Ultraviolet-visible Spectrophotometry <2.24>, using the solution T₂ and the solution S₂ as the blank, respectively.

\[
\text{Amount (mg) of warfarin potassium (C₂₉H₃₃KO₄O₄)} = M_5 \times A_1 / A_3 \times 1/20
\]

M₅: Amount (mg) of Warfarin Potassium RS taken

Containers and storage Containers—Tight containers.

Water

H₂O: 18.02

Water must meet the Quality Standards of Drinking water provided under the Article 4 of the Water Supply Law (the Ministry of Health, Labour and Welfare Ministerial Ordinance No.101, 2003). In the case that Water is prepared at individual facilities using well water or industrial water as source water, it must meet the following additional requirement as well as the Quality Standards of Drinking water.

Purity Ammonium <1.02>—Perform the test with 30 mL of Water as directed under Ammonium Limit Test. Prepare the control solution as follows: to 0.15 mL of Standard Ammonium Solution add water for ammonium limit test to make 30 mL (not more than 0.05 mg/L).

Purified Water

精製水

Purified Water is prepared from Water by ion-exchange, distillation, reverse osmosis or ultrafiltration, or by a combination of these processes.

It must be used immediately after preparation. However, it may be stored temporarily, if adequate countermeasures for preventing microbial proliferation are taken.

Description Purified Water is a clear and colorless liquid, having no odor.

Purity Total organic carbon <2.59>—Not more than 0.50 mg/L.

Conductivity <2.51> When the test is performed according to the following method, the conductivity (25°C) is not more than 2.1 µS·cm⁻¹.

Transfer a suitable amount of Purified Water to a beaker, and stir the water specimen. Adjust the temperature to 25 ± 1°C, and begin agitating the water specimen vigorously, while observing its conductivity periodically. When the change in conductivity becomes not greater than 0.1 µS·cm⁻¹ per 5 minutes, adopt the observed value as the conductivity of the water specimen.

Purified Water in Containers

精製水(容器入り)

Purified Water in Containers is prepared from Purified Water by introducing it in a tight container.

It is allowable to describe it as “Purified Water” on the label.

Description Purified Water in Containers is a clear and colorless liquid, having no odor.

Purity Potassium permanganate-reducing substances—To 100 mL of Purified Water in Containers add 10 mL of dilute sulfuric acid, boil, then add 0.10 mL of 0.02 mol/L potassium permanganate VS, and boil again for 10 minutes: the red color of the solution does not disappear.

Conductivity <2.51> When the test is performed according to the following method, the conductivity (25°C) is not more than 25.0 µS·cm⁻¹ for containers with a nominal volume of 10 mL or less, and not more than 5.0 µS·cm⁻¹ for containers with a nominal volume greater than 10 mL.

Transfer a suitable amount of Purified Water in Containers to a beaker, and stir the water specimen. Adjust the temperature to 25 ± 1°C, and begin agitating the water specimen vigorously, while observing its conductivity periodically. When the change in conductivity becomes not greater than 0.1 µS·cm⁻¹ per 5 minutes, adopt the observed value as the conductivity of the water specimen.

Microbial limit <4.05> The acceptance criteria of TAMC is 10⁶ CFU/mL. Perform the test using soybean-casein digest agar medium.

Containers and storage Containers—Tight containers.
Sterile Purified Water in Containers

Sterile Purified Water in Containers is prepared from Purified Water by introducing it into a hermetic container, sealing up the container, then sterilizing the product, or by making it sterile using a suitable method, introducing the sterilized water into a sterile hermetic container by applying aseptic manipulation, then sealing up the container.

Description Sterile Purified Water in Containers is a clear and colorless liquid, having no odor.

Purity Potassium permanganate-reducing substances—To 100 mL of Sterile Purified Water in Containers add 10 mL of dilute sulfuric acid, boil, then add 0.10 mL of 0.02 mol/L potassium permanganate VS, and boil again for 10 minutes: the red color of the solution does not disappear.

Conductivity The test is performed according to the following method, the conductivity (25°C) is not more than 25 μS·cm⁻¹ for containers with a nominal volume of 10 mL or less, and not more than 5 μS·cm⁻¹ for containers with a nominal volume greater than 10 mL.

Transfer a suitable amount of Sterile Purified Water in Containers to a beaker, and stir the water specimen. Adjust the temperature to 25 ± 1°C, and begin agitating the water specimen vigorously, while observing its conductivity periodically. When the change in conductivity becomes not greater than 0.1 μS·cm⁻¹ per 5 minutes, adopt the observed value as the conductivity of the water specimen.

Sterility It meets the requirements.

Containers and storage Containers—Hermetic containers.

Plastic containers for aqueous injections can be used in place of hermetic containers.

Water for Injection

Water for Injection is prepared by distillation or by reverse osmosis and/or ultrafiltration, either: from the water which is obtained by appropriate pretreatments such as ion-exchange or reverse osmosis on Water: or from Purified Water.

When Water for Injection is prepared by the reverse osmosis and/or ultrafiltration (methods for refining water by using a reverse osmosis membrane module, an ultrafiltration membrane module capable of removing substances having molecular masses of 6,000 and above, or a module using both types of membranes), care must be taken to avoid microbial contamination of the water processing system, and to provide water with equivalent quality to that prepared by distillation consistently.

Water for Injection must be used immediately after preparation. However, it may be stored temporarily, if adequate countermeasures able to prevent microbial proliferation stringently, such as circulating it in a loop at a high temperature, are established.

Description Water for Injection is a clear and colorless liquid, having no odor.

Purity Total organic carbon <2.59g—Not more than 0.50 mg/L.

Conductivity When the test is performed according to the following method, the conductivity (25°C) is not more than 2.1 μS·cm⁻¹.

Transfer a suitable amount of Water for Injection to a beaker, and stir the water specimen. Adjust the temperature to 25 ± 1°C, and begin agitating the water specimen vigorously, while observing its conductivity periodically. When the change in conductivity becomes not greater than 0.1 μS·cm⁻¹ per 5 minutes, adopt the observed value as the conductivity of the water specimen.

Bacterial endotoxins Less than 0.25 EU/mL.

Sterile Water for Injection in Containers

Sterile Water for Injection in Containers is prepared from Water for Injection by introducing it into a hermetic container, sealing up the container, then sterilizing the product, or by making it sterile using a suitable method, introducing the sterilized water into a sterile hermetic container by applying aseptic manipulation, then sealing up the container.

It is allowable to describe it as “Water for Injection” on the label.

For Sterile Water for Injection in Containers prepared from Water for Injection obtained by distillation, an alternative name of “Distilled Water for Injection” may be used.

Description Sterile Water for Injection in Containers is a clear and colorless liquid, having no odor.

Purity Potassium permanganate-reducing substances—To 100 mL of Sterile Water for Injection in Containers add 10 mL of dilute sulfuric acid, boil, then add 0.10 mL of 0.02 mol/L potassium permanganate VS, and boil again for 10 minutes: the red color of the solution does not disappear.

Conductivity The test is performed according to the following method, the conductivity (25°C) is not more than 25 μS·cm⁻¹ for containers with a nominal volume of 10 mL or less, and not more than 5 μS·cm⁻¹ for containers with a nominal volume greater than 10 mL.

Transfer a suitable amount of Sterile Water for Injection in Containers to a beaker, and stir the water specimen. Adjust the temperature to 25 ± 1°C, and begin agitating the water specimen vigorously, while observing its conductivity periodically. When the change in conductivity becomes not greater than 0.1 μS·cm⁻¹ per 5 minutes, adopt the observed value as the conductivity of the water specimen.

Bacterial endotoxins Less than 0.25 EU/mL.

Foreign insoluble matter Perform the test according to Method 1: it meets the requirement.

Insoluble particulate matter It meets the requirement.

Sterility It meets the requirement.

Containers and storage Containers—Hermetic containers.

Plastic containers for aqueous injections can be used in place of hermetic containers.
White Ointment

Method of preparation

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>White Beeswax</td>
<td>50 g</td>
</tr>
<tr>
<td>Sorbitan Sesquioleate</td>
<td>20 g</td>
</tr>
<tr>
<td>White Petrolatum</td>
<td>a sufficient quantity</td>
</tr>
</tbody>
</table>

To make 1000 g

Prepare as directed under Ointments, with the above materials.

Description White Ointment is white in color. It has a slight, characteristic odor.

Containers and storage Containers—Tight containers.

Whole Human Blood

人全血液

Whole Human Blood is a liquid for injection which is prepared by mixing human blood cells and an anticoagulant solution for storage.

It conforms to the requirements of Whole Human Blood in the Minimum Requirements for Biological Products.

Description Whole Human Blood is a deep red liquid from which the erythrocytes settle upon standing, leaving a yellow supernatant layer. A gray layer which mainly consists of leukocytes may appear on the surface of the settled erythrocyte layer. The supernatant layer may become turbid in the presence of fat, or may show the faint color of hemoglobin.

Wine

ブドウ酒

Wine is an alcoholic liquid obtained by fermenting the juice of the fruits of Vitis vinifera Linné (Vitaceae) or allied plants.

It contains not less than 11.0 vol% and not more than 14.0 vol% of ethanol (C₂H₅O: 46.07) (by specific gravity), and not less than 0.10 w/v% and not more than 0.40 w/v% of l-tartaric acid (C₄H₄O₆: 150.09).

It contains no artificial sweetener and no artificial coloring agent.

Description Wine is a light yellow or reddish purple to red-purple liquid. It has a characteristic and aromatic odor. It has a slightly astringent and faintly irritating taste.

Optical rotation \(\angle 2.49 \) Boil 160 mL of Wine, neutralize with potassium hydroxide TS, and concentrate to 80 mL on a water bath. Cool, dilute with water to 160 mL, add 16 mL of lead subacetate TS, shake well, and filter. To 100 mL of the filtrate add 10 mL of a saturated solution of sodium sulfate decahydrate, shake well, filter, and use the filtrate as the sample solution. Allow 20 mL of the sample solution to stand for 24 hours, add 0.5 g of activated charcoal, shake, stopper, and allow to stand for 10 minutes. Filter, and observe the optical rotation of the filtrate in a 200-mm cell.

Multiply the optical rotation observed by 1.21, and designate as the optical rotation of Wine: it is between \(-0.3^\circ\) and \(+0.3^\circ\).

Specific gravity \(\angle 2.50 \ q^\circ \ 0.990 \text{ to } 1.010 \)

Purity (1) Total acid [as l-tartaric acid (C₄H₄O₆)]—To exactly 10 mL of Wine add 250 mL of freshly boiled and cooled water, and titrate \(\angle 2.50 \) with 0.1 mol/L sodium hydroxide VS (indicator: 1 mL of phenolphthalein TS).

Each mL of 0.1 mol/L sodium hydroxide VS = 7.504 mg of C₄H₄O₆

Total acid is not less than 0.40 w/v% and not more than 0.80 w/v%.

(2) Volatile acid [as acetic acid (C₂H₅O₂: 60.05)]—Transfer 100 mL of Wine to a beaker, add 1 mL of 1 mol/L sodium hydroxide VS and the same volume of 1 mol/L sodium hydroxide VS as that of 0.1 mol/L sodium hydroxide VS titrated in (1) to make the solution alkaline, and concentrate to 50 mL on a water bath. Cool, add water to make 100 mL, transfer to a 1000-mL distillation flask, containing previously added 100 g of sodium chloride. Wash the beaker with 100 mL of water, and combine the washings in the distillation flask. Add 5 mL of a solution of l-tartaric acid (3 in 20), and distil with steam cautiously to maintain the volume of the solution in the flask until 450 mL of the distillate is obtained for 45 minutes. Dilute the distillate to exactly 500 mL with water, and use this solution as the sample solution. Titrate \(\angle 2.50 \) a 250 mL portion of the sample solution with 0.1 mol/L sodium hydroxide VS (indicator: 5 drops of phenolphthalein TS). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L sodium hydroxide VS = 6.005 mg of C₂H₅O₂

The volatile acid is not more than 0.15 w/v%.

(3) Sulfur dioxide—Stopper a 750-mL round-bottomed flask with a stopper having two holes. Through one hole, insert a glass tube A extending nearly to the bottom of the flask. Through the other hole, insert a glass tube B ending to the neck of the flask. Connect the tube B to a Liebig’s condenser, and the end of the condenser to a joint of which inner diameter is 5 mm at the lower end. Connect the other end of the joint with a bored rubber stopper to a U tube having three bulbs as shown in the Figure. Pass carbon dioxide washed with a solution of potassium permanganate (3 in 100) through the tube A. Displace the air in the apparatus by carbon dioxide, and place 50 mL of a freshly prepared and diluted starch TS (1 in 5) and 1 g of potassium iodide in the U tube. From the other end of the U tube, add 1 to 2 drops of 0.01 mol/L iodine VS from a burette. While passing carbon dioxide, remove the stopper of the flask a little, add exactly 25 mL of Wine, 180 mL of freshly boiled and cooled water, 0.2 g of tannic acid, and 30 mL of phosphoric acid, and stopper again. Pass carbon dioxide for further 15 minutes, heat the distillation flask with caution so that 40 to 50 drops of the distillate may be obtained in 1 minute. When the color of starch TS in the U tube is discharged, add 0.01 mol/L iodine VS dropwise from a burette so that the color of the starch TS remains light blue to blue during the distillation. Read the volume of 0.01 mol/L iodine VS consumed when exactly 60 minutes have passed after the beginning of distillation. In this case, however, the coloration of starch TS produced by 1 drop of 0.01 mol/L iodine VS should persist at least for 1 minute.

Each mL of 0.01 mol/L iodine VS = 0.6406 mg of SO₂
The amount of sulfur dioxide (SO₂: 64.06) does not exceed 7.5 mg.

(4) Total sulfuric acid—Transfer 10 mL of Wine to a beaker, boil, and add 50 mL of a solution prepared by dissolving 5.608 g of barium chloride dihydrate in 50 mL of hydrochloric acid and water to make 1000 mL. Cover the beaker, and heat on a water bath for 2 hours, supplying the water lost by distillation. Cool, centrifuge, and decant the supernatant liquid in another beaker. To this solution add 1 to 2 drops of dilute sulfuric acid, and allow to stand for 1 hour: a white precipitate is formed.

(5) Glycerin—Pipet 100 mL of Wine into a 150-mL porcelain dish, and concentrate on a water bath to 10 mL. Add 1 g of sea sand (No. 1), and make the solution strongly alkaline by adding a solution prepared by dissolving 4 g of calcium hydroxide in 6 mL of water. Heat on a water bath with constant stirring and pushing down any material adhering to the wall of the dish until the contents of the dish become soft masses. Cool, add 5 mL of ethanol (99.5), and grind to a gruel-like substance. Heat on a water bath, add 10 to 20 mL of ethanol (99.5) while agitating, boil, and transfer to a 100-mL volumetric flask. Wash the dish with seven 10-mL portions of hot ethanol (99.5), combine the washings with the contents of the flask, cool, and add ethanol (99.5) to make exactly 100 mL. Filter through a dry filter paper, evaporate 90 mL of the filtrate on a water bath, taking care not to boil the solution during the evaporation. Dissolve the residue in a small amount of ethanol (99.5), transfer to a 50-mL glass-stoppered volumetric cylinder, wash with several portions of ethanol (99.5), and add the washings to the solution in the cylinder to make 15 mL. Add three 7.5-mL portions of dehydrated diethyl ether, shake vigorously each time, and allow to stand. When the solution becomes quite clear, transfer to a tared, flat weighing bottle. Wash the volumetric cylinder with 5 mL of a mixture of dehydrated diethyl ether and ethanol (99.5) (3:2). Transfer the washings to the weighing bottle, and evaporate carefully on a water bath. When the liquid becomes sticky, dry at 105°C for 1 hour, and cool in a desiccator (silica gel), and weigh: the mass of the residue is not less than 0.45 g and not more than 0.90 g.

(7) Reducing sugars—To a 25-mL portion of the sample solution obtained in the Optical rotation add 50 mL of boiling Fehling’s TS, and heat for exactly 2 minutes. Filter the separated precipitates by a tared glass filter by suction, wash successively with hot water, with ethanol (95) and with diethyl ether, and continue to dry the precipitates by suction. Heat the filter gently at first, and then strongly until the precipitates become completely black. Cool the precipitates in a desiccator (silica gel), and weigh as copper (II) oxide: the mass of cupric oxide does not exceed 0.325 g.

(8) Sucrose—Transfer a 50-mL portion of the sample solution obtained in the Optical rotation to a 100-mL flask, neutralize with diluted hydrochloric acid (1 in 30), followed by further addition of 5 mL of diluted hydrochloric acid (1 in 30). Heat in a water bath for 30 minutes, cool, neutralize with a solution of potassium hydroxide (1 in 100), add 4 drops of sodium carbonate TS, filter into a 100-mL volumetric flask, wash with water, combine the washings with the filtrate, and add water to make 100 mL. To 25 mL of this solution add 50 mL of boiling Fehling’s TS, and proceed as directed in (7), and weigh as copper (II) oxide. From the number obtained by multiplying the mass (g) of copper (II) oxide by 2, deduct the amount (g) of copper (II) oxide determined in (7), and multiply again the number so obtained by 1:2: the number obtained does not exceed 0.104 g.

(9) Benzoic acid, cinnamic acid and salicylic acid—Transfer exactly 50 mL of the sample solution obtained in (2) to a separator, add 10 g of sodium chloride and 2 mL of dilute hydrochloric acid, and extract with three 10-mL portions of diethyl ether. Combine the diethyl ether extracts, wash with two 5-mL portions of water, and extract with three 10-mL portions of 0.1 mol/L sodium hydroxide VS. Combine the alkaline extracts, evaporate the diethyl ether by warming on a water bath, cool, neutralize with 1 mol/L hydrochloric acid VS, and add 5 mL of potassium chloride-hydrochloric acid buffer solution and water to make exactly 50 mL. Perform the test as directed under Ultraviolet-visible Spectrophotometry <2.24> with this solution, using a solution prepared in the same manner instead of the sample solution as the blank: the absorbance does not exceed 0.15 at a wavelength between 220 nm and 340 nm.

(10) Boric acid—Transfer 50 mL of Wine to a porcelain dish, add 5 mL of sodium carbonate TS, evaporate on a water bath to dryness, and ignite: a half portion of the residue does not respond to Qualitative Tests <1.09> (1) for borate. Dissolve another half portion of the residue in 5 mL of hydrochloric acid: it does not respond to Qualitative Tests <1.09> (2) for borate.

(11) Methanol—Wine meets the requirements of Methanol Test <1.12>, when proceeding with exactly 1 mL of ethanol layer obtained by Method 1 of Alcohol Number Determination <1.07> and distilling without adding water after shaking with 0.5 g of calcium carbonate.

(12) Formaldehyde—To 25 mL of Wine add 5 g of sodium chloride and 0.2 g of l-tartaric acid, distil, and obtain 15 mL of the distillate. To 5 mL of the distillate add 5 mL of acetyl acetone TS, mix, and heat on a water bath for 10 minutes: the solution has no more color than that of the following control solution.

Control solution: Using 5 mL of water instead of the distillate, perform the test in the same manner.

Extract content 1.9 – 3.5 w/v% Pipet 25 mL of Wine to a 200-mL tared beaker containing 10 g of sea sand (No. 1), previously dried at 105°C for 2.5 hours, and evaporate to dryness on a water bath. Dry the residue at 105°C for 2 hours, cool in a desiccator (silica gel), and weigh.

Total ash 0.13 – 0.40 w/v% Pipet 50 mL of Wine to a tared porcelain dish, and evaporate to dryness on a water bath. Ignite the residue to the constant mass, cool, and weigh.

Assay (1) Ethanol—Pipet Wine into a 100-mL volumetric flask at 15°C, transfer to a 300- to 500-mL flask, and wash this volumetric flask with two 15-mL portions of water. Add the washings to the sample in the flask, connect the flask to a
distillation tube having a trap, and distil using the volumetric flask as a receiver. When about 80 mL of the distillate is obtained (it takes about 20 minutes), stop the distillation, allow to stand in water at 15°C for 30 minutes, and add water to make exactly 100 mL. Shake well, and determine the specific gravity at 15°C under Specific Gravity (2.56) (Method 3 may be used): the specific gravity d_2^0 is between 0.98217 and 0.98547.

2. L-Tartaric acid—Pipet 100 mL of Wine, add 2 mL of acetic acid (100), 0.5 mL of a solution of potassium acetate (1 in 5) and 15 g of powdered potassium chloride, and shake vigorously to dissolve as much as possible. Add 10 mL of ethanol (95), rub the inner wall of the beaker strongly for 1 minute to induce the crystallization, and allow to stand between 0°C and 5°C for more than 15 hours. Filter the crystals by suction, wash successively the beaker and the crystals with 3-mL portions of a solution prepared by dissolving 15 g of powdered potassium chloride in 120 mL of diluted ethanol (1 in 6), and repeat the washings five times. Transfer the crystals together with the filter paper to a beaker, wash the filter with 50 mL of hot water, combine the washings in the beaker, and dissolve the crystals by heating. Titrate $<2.50>$ the solution with 0.2 mol/L sodium hydroxide VS immediately (indicator: 1 mL of phenolphthalein TS). The number obtained by adding 0.75 to the amount (mL) of 0.2 mol/L sodium hydroxide VS consumed represents the amount (mL) of 0.2 mol/L sodium hydroxide VS consumed.

Each mL of 0.2 mol/L sodium hydroxide VS $= 30.02$ mg of $C_6H_{12}O_6$

Containers and storage Containers—Tight containers.

Xylitol

キシリトール

C$_6$H$_{12}$O$_6$: 152.15

meso-Xylitol [87-99-0]

Xylitol, when dried, contains not less than 98.0% of xylitol (C$_6$H$_{12}$O$_6$).

Description Xylitol occurs as white, crystals or powder. It is odorless and has a sweet taste.

It is very soluble in water, slightly soluble in ethanol (95).

It is hygroscopic.

Identification (1) To 1 mL of a solution of Xylitol (1 in 2) add 2 mL of iron (II) sulfate TS and 1 mL of a solution of sodium hydroxide (1 in 5): blue-green color is produced without turbidity.

2. Determine the infrared absorption spectrum of Xylitol, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry $<2.25>$, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

pH $<2.54>$ Dissolve 5.0 g of Xylitol in 10 mL of freshly boiled and cooled water: the pH of this solution is between 5.0 and 7.0.

Melting point $<2.60>$ 93.0 – 95.0°C

Purity (1) Clarity and color of solution—Dissolve 5 g of Xylitol in 10 mL of water: the solution is clear and colorless.

2. Chloride $<1.03>$—Perform the test with 2.0 g of Xylitol. Prepare the control solution with 0.30 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.005%).

3. Sulfate $<1.14>$—Perform the test with 4.0 g of Xylitol. Prepare the control solution with 0.50 mL of 0.005 mol/L sulfuric acid VS (not more than 0.006%).

4. Heavy metals $<1.07>$—Proceed with 4.0 g of Xylitol according to Method 1, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 5 ppm).

5. Nickel—Dissolve 0.5 g of Xylitol in 5 mL of water, add 3 drops of dimethylglyoxime TS and 3 drops of ammonia TS, and allow to stand for 5 minutes: no red color is produced.

6. Arsenic $<1.17>$—Prepare the test solution with 1.5 g of Xylitol according to Method 1, and perform the test (not more than 1.3 ppm).

7. Sugars—Dissolve 5.0 g of Xylitol in 15 mL of water, add 4.0 mL of dilute hydrochloric acid, and heat in a water bath for 3 hours under a reflux condenser. After cooling, neutralize with sodium hydroxide TS (indicator: 2 drops of methyl orange TS). Then add water to make 50 mL, transfer 10 mL of this solution to a flask, add 10 mL of water and 40 mL of Fehling’s TS, boil gently for 3 minutes, and allow to stand to precipitate copper (I) oxide. Remove the supernatant liquid through a glass filter (G4), and wash the precipitate with warm water until the last washing does not show alkalinity. Filter these washings through the glass filter mentioned above. Dissolve the precipitate in the flask in 20 mL of iron (III) sulfate TS, filter the solution through the glass filter mentioned above, wash with water, combine the washings with the filtrate, heat at 80°C, and titrate $<2.50>$ with 0.02 mol/L potassium permanganate VS: not more than 1.0 mL of 0.02 mol/L potassium permanganate VS is consumed.

Loss on drying $<2.41>$ Not more than 1.0% (1 g, in vacuum, phosphorus (V) oxide, 24 hours).

Residue on ignition $<2.44>$ Not more than 0.1% (1 g).

Assay Weigh accurately about 0.2 g of Xylitol, previously dried, dissolve in water to make exactly 100 mL. Pipet 10 mL of this solution into an iodine flask, add 50 mL of potassium periodate TS exactly, and heat in a water bath for 15 minutes. After cooling, add 2.5 g of potassium iodide, stopper, shake well, allow to stand for 5 minutes in a dark place, and titrate $<2.50>$ with 0.1 mol/L sodium thiosulfate VS (indicator: 3 mL of starch TS). Perform a blank determination in the same manner.

Each mL of 0.1 mol/L sodium thiosulfate VS $= 1.902$ mg of C$_6$H$_{12}$O$_6$
Xylitol Injection

キシリトール注射液

Xylitol Injection is an aqueous injection. It contains not less than 95.0% and not more than 105.0% of the labeled amount of xylitol (C₆H₁₂O₅: 152.15).

Method of preparation Prepare as directed under Injections, with Xylitol.

No preservative may be added.

Description Xylitol Injection is a clear, colorless liquid. It has a sweet taste.

Identification Measure a volume of Xylitol Injection, equivalent to 0.1 g of Xylitol, add water to make 10 mL, and use this solution as the sample solution. Separately, dissolve 0.1 g of xylitol in 10 mL of water, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 2 µL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ethanol (95), ammonia solution (28) and water (25:4:3) to a distance of about 10 cm, and air-dry the plate. Spray evenly silver nitrate-ammonia TS, and dry the plate at 105°C for 15 minutes: the spots from the sample solution and standard solution show a black-brown color and the same Rf value.

pH <2.54> 4.5 – 7.5

Extractable volume <4.01> Less than 0.50 EU/mL.

Bacterial endotoxins <4.01> It meets the requirement.

Foreign insoluble matter <6.05> It meets the requirement.

Insoluble particulate matter <6.07> It meets the requirement.

Sterility <4.06> Perform the test according to Method 1: it meets the requirement.

Assay Measure exactly a volume of Xylitol Injection, equivalent to about 5 g of xylitol (C₆H₁₂O₅), and add water to make exactly 250 mL. Measure exactly 10 mL of this solution, and add water to make exactly 100 mL. Then, pipet 10 mL of this solution into an iodine flask, and proceed as directed in the Assay under Xylitol.

Each mL of 0.1 mol/L sodium thiosulfate VS = 1.902 mg of C₆H₁₂O₅

Containers and storage Containers—Hermetic containers. Plastic containers for aqueous injections may be used.

Dried Yeast

乾燥酵母

Dried Yeast is dried and powdered cells of yeast belonging to Saccharomyces.

It contains not less than 400 mg of protein and not less than 100 µg of thiamine compounds [as thiamine chloride hydrochloride (C₁₂H₁₇ClN₂O₅S.HCl: 337.27)] in each 1 g.

Description Dried Yeast occurs as a light yellow-white to brown powder. It has a characteristic odor and taste.

Identification Dried Yeast, when examined under a microscope <5.01>, shows isolated cells, spheroidal or oval in shape, and 6 to 12 µm in length.

Purity (1) Rancidity—Dried Yeast is free from any unpleasant or rancid odor or taste.

(2) Starch—Add iodine TS to Dried Yeast, and examine microscopically <5.01>: no or only a few granules are tinted black-purple.

Loss on drying <2.41> Not more than 8.0% (1 g, 100°C, 8 hours).

Total ash <5.01> Not more than 9.0% (1 g).

Assay (1) Protein—Weigh accurately about 50 mg of Dried Yeast and perform the test as directed under Nitrogen Determination <1.08>.

Amount (mg) of protein in 1 g of Dried Yeast

= \frac{N \times 6.25 \times 1}{M}

N: Amount (mg) of protein in 1 g of Dried Yeast
M: Amount (g) of Dried Yeast taken

(2) Thiamine—Weigh accurately about 1 g of Dried Yeast, add 1 mL of dilute hydrochloric acid and 80 mL of water, and heat in a water bath at 80 to 85°C for 30 minutes with occasional shaking. After cooling, add water to make exactly 100 mL, and centrifuge for 10 minutes. Pipet 4 mL of the supernatant liquid, add exactly 5 mL of acetic acid-sodium acetate TS and exactly 1 mL of enzyme TS, and allow to stand at 45 to 50°C for 3 hours. Place exactly 2 mL of this solution onto a chromatographic column prepared by pouring 2.5 mL of a weakly acidic CM-bridged cellulose cation exchanger (H type) (40 to 110 µm in particle diameter) into a chromatographic tube about 1 cm in inside diameter and about 17 cm in length, and elute at the flow rate of about 0.5 mL per minute. Wash the upper part of the column with a small amount of water, and wash the column with two 10-mL portions of water at the flow rate of about 1 mL per minute. Elute the column with two 2.5-mL portions of dilute phosphoric acid (1 in 50) at the flow rate of about 0.5 mL per minute, and combine the eluate. To the eluate add exactly 1 mL of the internal standard solution and 0.01 g of sodium 1-octanesulfonate, and after dissolving, use this solution as the sample solution. Separately, weigh accurately about 15 mg of Thiamine Chloride Hydrochloride RS (previously determine the water <2.49> in the same manner as Thiamine Chloride Hydrochloride), dissolve in 0.001 mol/L hydrochloric acid TS to make exactly 100 mL. Pipet 1 mL of this solution, and add the mobile phase to make exactly 100 mL. Pipet 1 mL of this solution, add exactly 1 mL of the internal standard solution and 3 mL of the mobile phase, and use this solution as the standard solution. Perform the test with 200 µL each of the sample solution and standard solu-
tion as directed under Liquid Chromatography \(<2.01\) according to the following conditions, and calculate the ratios, \(Q_2\) and \(Q_3\), of the peak area of thiamine to that of the internal standard.

\[
\text{Amount (\(\mu g\)) of thiamine in 1 g of Dried Yeast} = \frac{M_2}{M_1} \times \frac{Q_2}{Q_3} \times 12.5
\]

\(M_2\): Amount (mg) of Thiamine Chloride Hydrochloride RS taken, calculated on the anhydrous basis

\(M_1\): Amount (g) of the Dried Yeast taken

Internal standard solution—Dissolve 0.01 g of phenacetin in acetonitrile to make 100 mL, and to 1 mL of this solution add diluted acetonitrile (1 in 5) to make 100 mL.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 254 nm).

Column: A stainless steel column about 4 mm in inside diameter and 15 to 30 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 to 10 \(\mu m\) in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: Dissolve 2.7 g of potassium dihydrogen phosphate in 1000 mL of water, and adjust the pH to 3.5 with diluted phosphoric acid (1 in 10). Dissolve 1.6 g of sodium 1-octanesulfonate in 800 mL of this solution, and add 200 mL of acetonitrile.

Flow rate: Adjust so that the retention time of thiamine is about 8 minutes.

Selection of column: Proceed with 200 \(\mu L\) of the standard solution under the above operating conditions, and calculate the resolution. Use a column giving elution of thiamine and the internal standard in this order with the resolution between these peaks being not less than 8.

Containers and storage Containers—Tight containers.

Zaltoprofen

Zaltoprofen

\[
\text{C}_{17}\text{H}_{14}\text{O}_2\text{S}: 298.36
\]

(2RS)-2-(10-Oxo-10,11-dihydrodibenzo\([b,f]\)thiepin-2-yl)propanoic acid

[74711-43-6]

Zaltoprofen, when dried, contains not less than 99.0% and not more than 101.0% of zaltoprofen (\(C_{17}H_{14}O_2S\)).

Description Zaltoprofen occurs as white to light yellow, crystals or crystalline powder.

It is freely soluble in acetone, soluble in methanol and in ethanol (99.5), and practically insoluble in water.

It is gradually decomposed by light.

A solution of Zaltoprofen in acetone (1 in 10) shows no optical rotation.

Identification (1) To 0.2 g of Zaltoprofen add 0.5 g of sodium hydroxide, heat gradually to melt, and then carbonize. After cooling, add 5 mL of diluted hydrochloric acid (1 in 2); the gas evolved darkens moisten lead (II) acetate paper.

(2) Determine the absorption spectrum of a solution of Zaltoprofen in ethanol (99.5) (1 in 100,000) as directed under Ultraviolet-visible Spectrophotometry \(<2.24\), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(3) Determine the infrared absorption spectrum of Zaltoprofen as directed in the potassium bromide disk method under Infrared Spectrophotometry \(<2.25\), and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point \(<2.60\) 135 – 139°C

Purity (1) Heavy metals \(<1.07\)—Proceed with 2.0 g of Zaltoprofen according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Arsenic \(<1.17\)—Prepare the test solution with 1.0 g of Zaltoprofen according to Method 3, using 10 mL of a solution of magnesium nitrate hexahydrate in ethanol (95) (2 in 25), and perform the test (not more than 2 ppm).

(3) Related substances—Dissolve 50 mg of Zaltoprofen in 50 mL of the mobile phase, and use this solution as the sample solution. Pipet 1 mL of the sample solution, and add the mobile phase to make exactly 50 mL. Pipet 1 mL of this solution, add the mobile phase to make exactly 20 mL, and use this solution as the standard solution. Perform the test with exactly 20 \(\mu L\) each of the sample solution and standard solution as directed under Liquid Chromatography \(<2.01\) according to the following conditions, and determine each peak area by the automatic integration method: the area of the peak other than zaltoprofen and the peak having the relative retention time of about 0.7 to zaltoprofen obtained from the sample solution is not larger than the peak area of zaltoprofen from the standard solution.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 240 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 \(\mu m\) in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: A mixture of acetonitrile, water and acetic acid (100) (300:200:1).

Flow rate: Adjust so that the retention time of zaltoprofen is about 4 minutes.

Time span of measurement: About 15 times as long as the retention time of zaltoprofen, beginning after the solvent peak.

System suitability—

Test for required detectability: To exactly 2 mL of the standard solution add the mobile phase to make exactly 20 mL. Confirm that the peak area of zaltoprofen obtained with 20 \(\mu L\) of this solution is equivalent to 8 to 12% of that with 20 \(\mu L\) of the standard solution.

System performance: Dissolve 25 mg of zaltoprofen and 50 mg of isopropyl benzoate in 100 mL of ethanol (99.5). Pipet 1 mL of this solution, and add the mobile phase to make exactly 50 mL. When the procedure is run with 20 \(\mu L\) of this solution under the above operating conditions, zaltoprofen and isopropyl benzoate are eluted in this order with the resolution between these peaks being not less than 6.

System repeatability: When the test is repeated 6 times with 20 \(\mu L\) of the standard solution under the above operating conditions, the relative standard deviation of the peak
area of zaltoprofen is not more than 2.0%.

Loss on drying \(<2.4\%\)** Not more than 0.5% (1 g, 105°C, 4 hours).

Residue on ignition \(<2.4\%\)** Not more than 0.1% (1 g).

Assay Weigh accurately about 0.5 g of Zaltoprofen, previously dried, dissolve in 50 mL of methanol, and titrate \(<2.3\%\) with 0.1 mol/L sodium hydroxide VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L sodium hydroxide VS = 29.84 mg of \(\text{C}_7\text{H}_6\text{O}_3\text{S}\)

Containers and storage Containers—Tight containers. Storage—Light-resistant.

Zaltoprofen Tablets

ザルトプロフェン錠

Zaltoprofen Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of zaltoprofen (\(\text{C}_7\text{H}_6\text{O}_3\text{S}\); 298.36).

Method of preparation
Prepare as directed under Tablets, with Zaltoprofen.

Identification
Powder a suitable amount of Zaltoprofen Tablets. To a portion of the powder, equivalent to 80 mg of Zaltoprofen, add 30 mL of ethanol (99.5), shake well, and centrifuge. To 1 mL of the supernatant liquid add ethanol (99.5) to make 20 mL. To 2 mL of this solution add ethanol (99.5) to make 25 mL, and determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry \(<2.2\%\>; it exhibits maxima between 227 nm and 231 nm and between 329 nm and 333 nm, and a shoulder between 238 nm and 248 nm.

Uniformity of dosage units \(<6.02\%\)
Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement.

To 1 tablet of Zaltoprofen Tablets add 4 mL of water, and shake to disintegrate. Add a suitable amount of ethanol (95), shake, then add ethanol (95) to make exactly \(V\) mL so that each mL contains about 4 mg of zaltoprofen (\(\text{C}_7\text{H}_6\text{O}_3\text{S}\)), and centrifuge. Pipet 2 mL of the supernatant liquid, add exactly 10 mL of the internal standard solution and ethanol (95) to make 50 mL, and use this solution as the sample solution. Proceed as directed in the Assay.

Amount (mg) of zaltoprofen (\(\text{C}_7\text{H}_6\text{O}_3\text{S}\))

\[M_S = \frac{Q_T/Q_S \times V}{20} \]

Internal standard solution—A solution of benzyl benzoate in acetonitrile (1 in 1000).

Dissolution \(<6.10\%\>

When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of 2nd fluid for dissolution test as the dissolution medium, the dissolution rate in 30 minutes of Zaltoprofen Tablets is not less than 75%.

Start the test with 1 tablet of Zaltoprofen Tablets. Withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 \(\mu\)m. Discard not less than 10 mL of the first filtrate, pipet \(V\) mL of the subsequent filtrate, add the dissolution medium to make exactly \(V'\) mL so that each mL contains about 44 \(\mu\)g of zaltoprofen (\(\text{C}_7\text{H}_6\text{O}_3\text{S}\)), and use this solution as the sample solution. Separately, weigh accurately about 22 mg of zaltoprofen for assay, previously dried at 105°C for 4 hours, dissolve in 20 mL of ethanol (99.5), and add the dissolution medium to make exactly 100 mL. Pipet 4 mL of this solution, add the dissolution medium to make exactly 20 mL, and use this solution as the standard solution. Determine the absorbances, \(A_T\) and \(A_S\), of the sample solution and standard solution at 340 nm as directed under Ultraviolet-visible Spectrophotometry \(<2.2\%\>; using the dissolution medium as the control.

Dissolution rate (% with respect to the labeled amount of zaltoprofen (\(\text{C}_7\text{H}_6\text{O}_3\text{S}\))

\[M_S = \frac{M_T \times A_T/A_S \times V'/V \times 1/C \times 180}{\text{for tablets}} \]

Internal standard solution—A solution of benzyl benzoate in acetonitrile (1 in 1000).

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 240 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 \(\mu\)m in particle diameter).

Column temperature: A constant temperature of about 25°C.

Mobile phase: A mixture of acetonitrile, water and acetic acid (100:300:200:1).

Flow rate: Adjust so that the retention time of zaltoprofen is about 4 minutes.

System suitability—

System performance: When the procedure is run with 5 \(\mu\)L of the standard solution under the above operating conditions, zaltoprofen and the internal standard are eluted in this order with the resolution between these peaks being not less than 10.

System repeatability: When the test is repeated 6 times with 5 \(\mu\)L of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of zaltoprofen to that of the internal standard is not more than 1.0%.
Zidovudine

ジドブジン

\[
C_{10}H_{13}N_{2}O_{2}: 267.24
\]

3'-Azido-3'-deoxythymidine [30516-87-1]

Zidovudine contains not less than 97.0% and not more than 102.0% of zidovudine (C_{10}H_{13}N_{2}O_{2}), calculated on the anhydrous basis.

Description
Zidovudine occurs as a white to pale yellow-white powder. It is freely soluble in methanol, soluble in ethanol (99.5), and sparingly soluble in water. It gradually turns yellow-brown on exposure to light. Melting point: about 124°C. It shows crystal polymorphism.

Identification
Determine the infrared absorption spectrum of Zidovudine as directed in the potassium bromide disc method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of Zidovudine RS: both spectra exhibit similar intensities of absorption at the same wave numbers. If any difference appears between the spectra, dissolve Zidovudine and Zidovudine RS separately in a small amount of water and dry them in a desiccator (in vacuum, phosphorus (V) oxide), and perform the test with the residues.

Optical rotation <2.49> \([\alpha]_{D}^{20}: +60.5 \rightarrow +63.0^\circ\) (0.5 g calculated on the anhydrous basis, ethanol (99.5), 50 mL, 100 mm).

Purity
(1) Heavy metals <1.07>— Proceed with 1.0 g of Zidovudine according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 20 ppm). The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.)

(2) 1-[2(R,5S)-2,5-Dihydro-5-(hydroxymethyl)-2-furyl]thymine, triphenylmethanol, and other related substances—Dissolve 0.20 g of Zidovudine in methanol to make exactly 10 mL, and use this solution as the sample solution. Separately, add 1 mL of the sample solution to 20 mg each of thymine for liquid chromatography, 1-[2(R,5S)-2,5-dihydro-5-(hydroxymethyl)-2-furyl]thymine for thin-layer chromatography, and triphenylmethanol for thin-layer chromatography, and add methanol to dissolve to make exactly 100 mL. Pipet 5 mL of this solution, add methanol to make exactly 10 mL, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 10 \(\mu L\) each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of chloroform and methanol (9:1) to a distance of about 12 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): the spot obtained from the sample solution that corresponds to the position of the 1-[2(R,5S)-2,5-dihydro-5-(hydroxymethyl)-2-furyl]thymine from the standard solution is not more intense than the spot from the standard solution, and the spot other than the principal spot and spots other than thymine and 1-[2(R,5S)-2,5-dihydro-5-(hydroxymethyl)-2-furyl]thymine from the sample solution is not more intense than zidovudine spot from the standard solution. However, the 3 spots from the standard solution appear in ascending order of RF value thymine, 1-[2(R,5S)-2,5-dihydro-5-(hydroxymethyl)-2-furyl]thymine, and zidovudine. Furthermore, spray evenly on the plate a solution of vanillin in sulfuric acid (1 in 100): the spot from the sample solution corresponding to the spot of triphenylmethanol from the standard solution is not more intense than the spot from the standard solution.

(3) Thymine, 3'-chloro-3'-deoxythymidine, and other related substances—Use the sample solution obtained in the Assay as the sample solution. Separately, weigh accurately about 20 mg of thymine for liquid chromatography, dissolve in 100 mL of methanol, and add the mobile phase to make exactly 250 mL. Pipet 5 mL of this solution, add the mobile phase to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly 10 \(\mu L\) each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine the peak areas, \(A_1\) and \(A_2\), of thymine in each solution, and calculate the amount of thymine using the following formula: the amount is not more than 2.0%. Also, determine the peak area of each peak obtained from the sample solution by the automatic integration method, and calculate the amounts of related substances other than thymine by the area percentage method: the amount of 3'-chboro-3'-deoxythymidine, whose relative retention time to zidovudine is 1.2, is not more than 1.0%, and is not more than 0.5% for all other related substances. Finally, the total amount of thymine, 3'-chloro-3'-deoxythymidine, and all related substances obtained above is not more than 3.0%.

\[
\text{Amount (mg) of thymine} = \frac{M_5}{M_7} \times \frac{A_1}{A_2} \times 10
\]

\(M_5\): Amount (mg) of thymine for liquid chromatography taken
\(M_7\): Amount (mg) of Zidovudine taken

Operating conditions—
Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 2 times as long as the retention time of zidovudine, beginning after the solvent peak.

System suitability—
System performance and system repeatability: Proceed as directed in the system suitability in the Assay.

Test for required detectability: Pipet 2 mL of the sample solution, add the mobile phase to make exactly 100 mL, and use this solution as the solution for system suitability test. Pipet 1 mL of the solution for system suitability test, and add the mobile phase to make exactly 20 mL. Confirm that the peak area of zidovudine obtained with 10 \(\mu L\) of this solution is equivalent to 3.5 to 6.5% of that with 10 \(\mu L\) of the solution for system suitability test.

Water <2.49> Not more than 1.0% (0.25 g, coulometric titration).

Residue on ignition <2.49> Not more than 0.2% (0.5 g).

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.)
Assay Weigh accurately about 50 mg of Zidovudine and Zidovudine RS (separately determine the water \(<2.4\%\) in the same manner as Zidovudine), and dissolve in the mobile phase to make exactly 50 mL. Pipet 10 mL of each solution, add the mobile phase to make them exactly 50 mL, and use these solutions as the sample solution and the standard solution, respectively. Perform the test with exactly 10 \(\mu L\) each of the sample solution and standard solution as directed under Liquid Chromatography \(<2.01\) according to the following conditions. Determine the peak areas, \(A_1\) and \(A_S\), of zidovudine in each solution.

Amount (mg) of zidovudine \((C_{10}H_{12}N_2O_4) = M_S \times A_1/A_S\)

\(M_S\): Amount (mg) of Zidovudine RS taken, calculated on the anhydrous basis

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 265 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadeccysilanized silica gel for liquid chromatography (particle diameter: 5 \(\mu m\)).
Column temperature: A constant temperature of about 25°C.
Mobile phase: A mixture of water and methanol (4:1).
Flow rate: Adjust so that the retention time of zidovudine is about 15 minutes.

System suitability—
System performance: Dissolve 50 mg of Zidovudine in 50 mL of the mobile phase. Separately, dissolve 5 mg of 3'-chloro-3'-deoxythymidine for liquid chromatography in 50 mL of the mobile phase. Mix 10 mL and 1 mL of these solutions, respectively, and add the mobile phase to make 50 mL. When the procedure is run with 10 \(\mu L\) of this solution under the above conditions, zidovudine and 3'-chloro-3'-deoxythymidine are eluted in this order with the resolution between these peaks being not less than 1.4, and the symmetry factor of the peak of zidovudine is not more than 1.5.
System repeatability: When the test is repeated 6 times with 10 \(\mu L\) of the standard solution under the above conditions, the relative standard deviation of the peak area of zidovudine is not more than 2.0%.

Containers and storage Containers—Tight containers.
Storage—Light-resistant.

Zinc Chloride
ZnCl:\ 136.29

Zinc Chloride contains not less than 97.0\% of zinc chloride (ZnCl$_2$).

Description Zinc Chloride occurs as white, crystalline powder, rods, or masses. It is odorless. It is very soluble in water, and freely soluble in ethanol (95), and its solution may sometimes be slightly turbid. The solution becomes clear on addition of a small amount of hydrochloric acid. The pH of a solution of 1.0 g of Zinc Chloride in 2 mL of water is between 3.3 and 5.3.

Identification A solution of Zinc Chloride (1 in 30) responds to Qualitative Tests \(<1.09\) for zinc salt and chloride.

Purity (1) Clarity and color of solution—Dissolve 1.0 g of Zinc Chloride in 10 mL of water and 2 drops of hydrochloric acid: the solution has no color, and is clear.
(2) Sulfate \(<1.14\)—Perform the test with 2.0 g of Zinc Chloride. Prepare the control solution with 0.40 mL of 0.005 mol/L sulfuric acid VS (not more than 0.010%).
(3) Ammonium—Dissolve 0.5 g of Zinc Chloride in 5 mL of water, and warm with 10 mL of a solution of sodium hydroxide (1 in 6): the evolving gas does not change moistened red litmus paper to blue.
(4) Heavy metals—Dissolve 0.5 g of Zinc Chloride in 5 mL of water in a Nessler tube, shake thoroughly with 15 mL of potassium cyanide TS, add 1 drop of sodium sulfide TS, allow to stand for 5 minutes, and immediately observe from the top downward against a white background: the solution has no more color than the following control solution.

Control solution: To 2.5 mL of Standard Lead Solution add 3 mL of water and 15 mL of potassium cyanide TS, shake thoroughly, and add 1 drop of sodium sulfide TS (not more than 50 ppm).
(5) Alkali earth metals and alkali metals—Dissolve 2.0 g of Zinc Chloride in 120 mL of water, add ammonium sulfide TS to complete precipitation, add water to make 200 mL, shake thoroughly, and filter through dry filter paper. Discard the first 20 mL of the filtrate, take the following 100 mL of the filtrate, evaporate with 3 drops of sulfuric acid to dryness, and heat the residue strongly at 60°C to constant mass: the mass is not more than 10.0 mg.
(6) Arsenic \(<1.15\)—Prepare the test solution with 0.40 g of Zinc Chloride according to Method 1, and perform the test (not more than 5 ppm).
(7) Oxychloride—Shake gently 0.25 g of Zinc Chloride with 5 mL of water and 5 mL of ethanol (95), and add 0.3 mL of 1 mol/L hydrochloric acid VS: the solution is clear.

Assay Weigh accurately about 0.3 g of Zinc Chloride, add 0.4 mL of dilute hydrochloric acid and water to make exactly 200 mL. Measure exactly 20 mL of the solution, add 80 mL of water, 2 mL of ammonia-ammonium chloride buffer solution (pH 10.7) and triurate \(<2.50\) with 0.01 mol/L disodium dihydrogen ethylenediamine tetraacetate VS (indicator: 0.04 g of eriochrome black T-sodium chloride indicator).

Each mL of 0.01 mol/L disodium dihydrogen ethylenediamine tetraacetate VS = 1.363 mg of ZnCl$_2$

Containers and storage Containers—Tight containers.

Zinc Oxide
ZnO: 81.38

Zinc Oxide, when ignited, contains not less than 99.0\% of zinc oxide (ZnO).

Description Zinc Oxide occurs as a white, amorphous powder. It is odorless and tasteless. It is practically insoluble in water, in ethanol (95), in acetic acid (100) and in diethyl ether. It dissolves in dilute hydrochloric acid and in sodium hydroxide TS. It gradually absorbs carbon dioxide from air.

Identification (1) Heat Zinc Oxide strongly: a yellow color develops on strong heating, and disappears on cooling.
Zinc Oxide Oil

The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.)

Zinc Oxide Oil contains not less than 45.0% and not more than 55.0% of zinc oxide (ZnO: 81.38).

Method of preparation

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinc Oxide</td>
<td>500 g</td>
</tr>
<tr>
<td>Fixed Oil</td>
<td>1000 g</td>
</tr>
</tbody>
</table>

To make

Mix the above ingredients. An appropriate quantity of Castor Oil or polysorbate 20 may be used partially in place of fixed oil.

Description

Zinc Oxide Oil is a white to whitish, slimy substance, separating a part of its ingredients when stored for a prolonged period.

Identification

Mix thoroughly, and place 0.5 g of Zinc Oxide Oil in a crucible, heat gradually raising the temperature until the mass is thoroughly charred, and then ignite it strongly: a yellow color is produced, and disappears on cooling. To the residue add 10 mL of water and 5 mL of dilute hydrochloric acid, shake well, and filter. To the filtrate add 2 to 3 drops of potassium hexacyanoferrate (II) TS: a white precipitate is formed (zinc oxide).

Assay

Weigh accurately about 0.8 g of Zinc Oxide Oil, mixed well, place in a crucible, heat gradually raising the temperature until the mass is thoroughly charred, and then ignite until the residue becomes yellow, and cool. Dissolve the residue in 1 mL of water and 1.5 mL of hydrochloric acid, and add water to make exactly 100 mL. Pipet 20 mL of this solution, add 80 mL of water, and add a solution of sodium hydroxide (1 in 50) until a small amount of precipitates begins to form in the solution. Add 5 mL of ammonium-ammonium chloride buffer solution (pH 10.7), and titrate with 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS (indicator: 0.04 g of eriochrome black T-sodium chloride indicator).

Each mL of 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS

= 4.069 mg of ZnO

Containers and storage

Containers—Tight containers.

Zinc Oxide Ointment

Zinc Oxide Ointment contains not less than 18.5% and not more than 21.5% of zinc oxide (ZnO: 81.38).

Method of preparation

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinc Oxide</td>
<td>200 g</td>
</tr>
<tr>
<td>Liquid Paraffin</td>
<td>30 g</td>
</tr>
<tr>
<td>White Ointment</td>
<td>a sufficient quantity</td>
</tr>
</tbody>
</table>

To make

Prepare as directed under Ointments, with the above ingredients. White Beeswax, Sorbitan Sesquioplate or White Petrolatum may be used instead of White Ointment.

Description

Zinc Oxide Ointment is white in color.
Identification Place 1 g of Zinc Oxide Ointment in a crucible, melt by warming, heat gradually raising the temperature until the mass is thoroughly charred, and then ignite it strongly: a yellow color is produced, and disappears on cooling. To the residue add 10 mL of water and 5 mL of dilute hydrochloric acid, shake well, and filter. To the filtrate add 2 to 3 drops of potassium hexacyanoferrate (II) TS: a white precipitate is formed (zinc oxide).

Purity Calcium, magnesium and other foreign inorganic matters—Place 2.0 g of Zinc Oxide Ointment in a crucible, melt by warming, and heat gradually raising the temperature, until the mass is thoroughly charred. Ignite the mass strongly until the residue becomes uniformly yellow, and cool. Add 6 mL of dilute hydrochloric acid, and heat on a water bath for 5 to 10 minutes: the solution is colorless and clear. Filter the solution, add 10 mL of water to the filtrate, and add ammonia TS until the precipitate first formed redissolves. Add 2 mL each of ammonium oxalate TS and disodium hydrogenphosphate TS to this solution: the solution remains unchanged or becomes very slightly turbid within 5 minutes.

Assay Weigh accurately about 2 g of Zinc Oxide Ointment, place in a crucible, melt by warming, heat gradually raising the temperature until the mass is thoroughly charred, and then ignite until the residue becomes uniformly yellow, and cool. Dissolve the residue in 1 mL of water and 1.5 mL of hydrochloric acid, and add water to make exactly 100 mL. Add 80 mL of water to exactly 20 mL of this solution, and add a solution of sodium hydroxide (1 in 50) until a small amount of precipitates begins to form in the solution. Add 5 mL of ammonia-ammonium chloride buffer solution (pH 10.7), and titrate <2.50 with 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS (indicator: 0.04 g of eriochrome black T-sodium chloride indicator).

Each mL of 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS = 4.069 mg of ZnO

Containers and storage Containers—Tight containers.

Zinc Oxide Starch Powder
亜鉛華デンプン

Method of preparation

<table>
<thead>
<tr>
<th>Zinc Oxide</th>
<th>500 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starch</td>
<td>a sufficient quantity</td>
</tr>
</tbody>
</table>

To make 1000 g

Prepare as directed under Powders, with the above ingredients.

Description Zinc Oxide Starch Powder occurs as a white powder.

Identification (1) Place 1 g of Zinc Oxide Starch Powder in a crucible, heat gradually, raising the temperature until it is charred, and then ignite strongly: a yellow color develops, and disappears on cooling. To the residue add 10 mL of water and 5 mL of dilute hydrochloric acid, shake well, and filter. To the filtrate add 2 to 3 drops of potassium hexacyanoferrate (II) TS: a white precipitate is formed (zinc oxide).

(2) Shake thoroughly 1 g of Oxide Starch Powder with 10 mL of water and 5 mL of dilute hydrochloric acid, and filter. Boil the residue on a filter paper with 10 mL of water, cool, and add 1 drop of iodine TS: a dark blue-purple color is produced (starch).

Containers and storage Containers—Tight containers.

Zinc Sulfate Hydrate
硫酸亜鉛水和物

| Zinc Sulfate Hydrate | ZnSO$_4$.7H$_2$O | 287.55 |

Zinc Sulfate Hydrate contains not less than 99.0% and not more than 102.0% of zinc sulfate hydrate (ZnSO$_4$.7H$_2$O).

Description Zinc Sulfate Hydrate occurs as colorless crystals or white crystalline powder.

It is very soluble in water, and very slightly soluble in ethanol (99.5).

It effloresces in dry air.

Identification (1) A solution of Zinc Sulfate Hydrate (1 in 20) responds to Qualitative Tests $<1.09>$ for zinc salt.

(2) A solution of Zinc Sulfate Hydrate (1 in 20) responds to Qualitative Tests $<1.09>$ for sulfate.

pH <2.54 Dissolve 1.0 g of Zinc Sulfate Hydrate in 20 mL of water: the pH of the solution is between 4.4 and 6.0.

Purity (1) Clarity and color of solution—Dissolve 0.25 g of Zinc Sulfate Hydrate in 5 mL of water: the solution is clear and colorless.

(2) Heavy metals <1.07—Dissolve 1.0 g of Zinc Sulfate Hydrate in 10 mL of water contained in a Nessler tube. Add 20 mL of potassium cyanide TS, and mix well. Add 2 drops of sodium sulfide TS, and allow the mixture to stand for 5 minutes. Observe vertically against a white background, the color of the solution is not more intense than the following control solution.

Control solution: To 1.0 mL of Standard Lead Solution add 10 mL of water and 20 mL of potassium cyanide TS, and mix well. Add 2 drops of sodium sulfide TS (not more than 10 ppm).

(3) Alkali earth metals and alkali metals—Dissolve 2.0 g of Zinc Sulfate Hydrate in 150 mL of water, add a suitable amount of ammonium sulfide TS to complete the precipitation, and add water to make exactly 200 mL. Shake well, and filter through a dry filter paper. Discard the first 20 mL of the filtrate, take exactly 100 mL of the subsequent filtrate, evaporate to dryness, and ignite as directed under Residue on Ignition $<2.44>$. the mass of the residue is not more than 5.0 mg.

(4) Arsenic $<1.12>$—Prepare the test solution with 1.0 g of Zinc Sulfate Hydrate according to Method 1, and perform the test (not more than 2 ppm).

Loss on drying $<2.41>$ Not less than 35.5% and not more than 38.5% (1 g, 105°C, 3 hours).

Assay Weigh accurately about 0.3 g of Zinc Sulfate Hydrate, and dissolve in water to make exactly 100 mL. Measure exactly 25 mL of this solution, add 100 mL of water and 2 mL of ammonium-ammonium chloride buffer solution (pH 10.7), and titrate <2.50 with 0.01 mol/L disodium dihydrogen ethylenediamine tetraacetate VS (indicator: 0.04 g of eriochrome black T-sodium chloride indicator).
Zinc Sulfate Ophthalmic Solution

硫酸亜鉛点眼液

Zinc Sulfate Ophthalmic Solution contains not less than 0.27 w/v% and not more than 0.33 w/v% of zinc sulfate hydrate (ZnSO₄·7H₂O: 287.55).

Method of preparation

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinc Sulfate Hydrate</td>
<td>3 g</td>
</tr>
<tr>
<td>Boric Acid</td>
<td>20 g</td>
</tr>
<tr>
<td>Sodium Chloride</td>
<td>5 g</td>
</tr>
<tr>
<td>Fennel Oil</td>
<td>2 mL</td>
</tr>
<tr>
<td>Purified Water or Purified Water</td>
<td>a sufficient quantity</td>
</tr>
</tbody>
</table>

To make 1000 mL

Prepare as directed under Ophthalmic Liquids and Solutions, with the above ingredients.

Description Zinc Sulfate Ophthalmic Solution is a clear, colorless liquid.

Identification (1) Zinc Sulfate Ophthalmic Solution responds to Qualitative Tests <1.09> for zinc salt.
(2) Zinc Sulfate Ophthalmic Solution responds to Qualitative Tests <1.09> for borate.
(3) Zinc Sulfate Ophthalmic Solution responds to Qualitative Tests <1.09> for chloride.

Assay Pipet 25 mL of Zinc Sulfate Ophthalmic Solution, add 100 mL of water and 2 mL of ammonia-ammonium chloride buffer solution (pH 10.7), and titrate <2.50> with 0.01 mol/L disodium dihydrogen ethylenediamine tetraacetate VS (indicator: 0.04 g of eriochrome black T-sodium chloride indicator).

Each mL of 0.01 mol/L disodium dihydrogen ethylenediamine tetraacetate VS = 2.876 mg of ZnSO₄·7H₂O

Containers and storage Containers—Tight containers.
the peak other than zolpidem obtained from the sample solution is not larger than the peak area of zolpidem from the standard solution.

Operating conditions—
Detector: A ultraviolet absorption photometer (wavelength: 254 nm).
Column: A stainless steel tube 4.6 mm in inside diameter and 7.5 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase: To 4.9 g of phosphoric acid add 1000 mL of water, and adjust the pH to 5.5 with triethylamine. To 11 volumes of this solution add 5 volumes of methanol and 4 volumes of acetonitrile.
Flow rate: Adjust so that the retention time of zolpidem is about 5 minutes.
Time span of measurement: About 5 times as long as the retention time of zolpidem.
System suitability—
System performance: Dissolve 10 mg each of Zolpidem Tartrate and benzyl parahydroxybenzoate in 100 mL of methanol. When the procedure is run with 5 μL of this supernatant liquid as the sample solution. Separately, weigh accurately about 0.1 mg of zolpidem tartrate [(C15H25N2O2)2·C6H5O2], and dissolve in 25 mL of 0.1 mol/L hydrochloric acid TS, and in 25 mL of 0.1 mol/L hydrochloric acid TS, and add methanol to make V mL so that each mL contains about 0.1 mg of zolpidem tartrate [(C15H25N2O2)2·C6H5O2]. Centrifuge this solution, and use the supernatant liquid as the sample solution. Separately, weigh accurately about 25 mg of zolpidem tartrate for assay (separately determine the water <2.49> in the same manner as Zolpidem Tartrate), and dissolve in 25 mL of 0.1 mol/L hydrochloric acid TS, add exactly 25 mL of the internal standard solution, then add methanol to make 250 mL, and use this solution as the standard solution. Then, proceed as directed in the Assay.

Amount (mg) of zolpidem tartrate [(C15H25N2O2)2·C6H5O2] = M5 × Q1/Q3 × V/250
M5: Amount (mg) of zolpidem tartrate for assay taken, calculated on the anhydrous basis
Internal standard solution—A solution of benzyl parahydroxybenzoate in methanol (1:1000).

Dissolution <6.10>—When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 15 minutes of Zolpidem Tartrate Tablets is not less than 80%.

Start the test with 1 tablet of Zolpidem Tartrate Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add 2nd fluid for dissolution test to make exactly V mL so that each mL contains about 2.8 μg of zolpidem tartrate [(C15H25N2O2)2·C6H5O2], and use this solution as the sample solution. Separately, weigh accurately about 22 mg of zolpidem tartrate for assay (separately determine the water <2.49> in the same manner as Zolpidem Tartrate), and dissolve in water to make exactly 100 mL. Pipet 5 mL of this solution, and add water to make exactly 200 mL. Pipet 25 mL of this solution, add 2nd fluid for dissolution test to make exactly 50 mL, and use this solution as the standard solution. Determine the absorbances, A41 and A36, of the sample solution and standard solution at 242 nm as directed under Ultraviolet-visible Spectrophotometry <2.24> using diluted 2nd fluid for dissolution test (1 in 2) as the blank.

Dissolution rate (%) with respect to the labeled amount of zolpidem tartrate [(C15H25N2O2)2·C6H5O2] = M5 × A41/A36 × V'/V × 1/C × 45/4
M5: Amount (mg) of zolpidem tartrate for assay taken, calculated on the anhydrous basis
C: Labeled amount (mg) of zolpidem tartrate [(C15H25N2O2)2·C6H5O2] in 1 tablet

Zolpidem Tartrate Tablets
ゾルピデム酒石酸塩錠

Zolpidem Tartrate Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of zolpidem tartrate [(C15H25N2O2)2·C6H5O2: 764.87].

Method of preparation—Prepare as directed under Tablets, with Zolpidem Tartrate.

Identification—To 1 tablet of Zolpidem Tartrate Tablets add 100 mL of 0.1 mol/L hydrochloric acid TS, shake for 30 minutes, and filter. Discard the first 20 mL of the filtrate, to a volume of the subsequent filtrate, equivalent to 1 mg of Zolpidem Tartrate, add 0.1 mol/L hydrochloric acid TS to make 100 mL, and determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.24>: it exhibits maxima between 235 nm and 239 nm and between 292 nm and 296 nm.

Uniformity of dosage units <6.02>—Perform the test according to the following method: it meets the requirements of the Content uniformity test.

To 1 tablet of Zolpidem Tartrate Tablets add V/10 mL of 0.1 mol/L hydrochloric acid TS, and disintegrate the tablet by shaking for 15 minutes. Add 2V/5 mL of methanol, then add exactly V/10 mL of the internal standard solution, shake for 15 minutes, and add methanol to make V mL so that each mL contains about 0.1 mg of zolpidem tartrate [(C15H25N2O2)2·C6H5O2]. Centrifuge this solution, and use the supernatant liquid as the sample solution. Separately, weigh accurately about 25 mg of zolpidem tartrate for assay (separately determine the water <2.49> in the same manner as Zolpidem Tartrate), and dissolve in 25 mL of 0.1 mol/L hydrochloric acid TS, add exactly 25 mL of the internal standard solution, then add methanol to make 250 mL, and use this solution as the standard solution. Then, proceed as directed in the Assay.

Amount (mg) of zolpidem tartrate [(C15H25N2O2)2·C6H5O2] = M5 × Q1/Q3 × V/250
M5: Amount (mg) of zolpidem tartrate for assay taken, calculated on the anhydrous basis
Internal standard solution—A solution of benzyl parahydroxybenzoate in methanol (1:1000).

Dissolution <6.10>—When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 15 minutes of Zolpidem Tartrate Tablets is not less than 80%.

Start the test with 1 tablet of Zolpidem Tartrate Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add 2nd fluid for dissolution test to make exactly V mL so that each mL contains about 2.8 μg of zolpidem tartrate [(C15H25N2O2)2·C6H5O2], and use this solution as the sample solution. Separately, weigh accurately about 22 mg of zolpidem tartrate for assay (separately determine the water <2.49> in the same manner as Zolpidem Tartrate), and dissolve in water to make exactly 100 mL. Pipet 5 mL of this solution, and add water to make exactly 200 mL. Pipet 25 mL of this solution, add 2nd fluid for dissolution test to make exactly 50 mL, and use this solution as the standard solution. Determine the absorbances, A41 and A36, of the sample solution and standard solution at 242 nm as directed under Ultraviolet-visible Spectrophotometry <2.24> using diluted 2nd fluid for dissolution test (1 in 2) as the blank.

Dissolution rate (%) with respect to the labeled amount of zolpidem tartrate [(C15H25N2O2)2·C6H5O2] = M5 × A41/A36 × V'/V × 1/C × 45/4
M5: Amount (mg) of zolpidem tartrate for assay taken, calculated on the anhydrous basis
C: Labeled amount (mg) of zolpidem tartrate [(C15H25N2O2)2·C6H5O2] in 1 tablet

Assay—To 20 Zolpidem Tartrate Tablets add V/10 mL of 0.1 mol/L hydrochloric acid TS, and disintegrate the tablet by shaking for 15 minutes. Add 2V/5 mL of methanol, then add exactly V/10 mL of the internal standard solution, shake for 15 minutes, and add methanol to make V mL so that each mL contains about 1 mg of zolpidem tartrate [(C15H25N2O2)2·C6H5O2]. Centrifuge this solution, add to 1
mL of the supernatant liquid add a mixture of methanol and 0.1 mol/L hydrochloric acid TS (9:1) to make 10 mL, and use this solution as the sample solution. Separately, weigh accurately about 25 mg of zolpidem tartrate for assay (separately determine the water <2.4%) in the same manner as Zolpidem Tartrate), and dissolve in 25 mL of 0.1 mol/L hydrochloric acid TS, add exactly 2.5 mL of the internal standard solution, then add methanol to make 250 mL, and use this solution as the standard solution. Perform the test with 5 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01>, and calculate the ratios, Q₁ and Q₂, of the peak area of zolpidem to that of the internal standard.

Amount (mg) of zolpidem tartrate [IC₁₀H₂₁N₂O₂·C₈H₆O₄] in 1 tablet of Zolpidem Tartrate Tablets

\[M_S = \frac{Q_2}{Q_1} \times \frac{V}{500} \]

\(M_S \): Amount (mg) of zolpidem tartrate for assay taken, calculated on the anhydrous basis

Internal standard solution—A solution of benzyl parhydroxybenzoate in methanol (1 in 100).

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 254 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 75 mm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).
Column temperature: A constant temperature of about 25°C.
Mobile phase: To 4.9 g of phosphoric acid add 1000 mL of water, and adjust to pH 5.5 with triethylamine. To 550 mL of this solution add 250 mL of methanol and 200 mL of acetonitrile.
Flow rate: Adjust so that the retention time of zolpidem is about 5 minutes.

System suitability—
System performance: When the procedure is run with 5 μL of the standard solution under the above operating conditions, zolpidem and the internal standard are eluted in this order with the resolution between these peaks being not less than 9.
System repeatability: When the test is repeated 6 times with 5 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of zolpidem to that of the internal standard is not more than 1.0%.

Containers and storage—Containers—Well-closed containers.

Zonisamide

ゾニサミド

\[
\text{C}_6\text{H}_9\text{N}_2\text{O}_5\text{S}: \text{212.23}
\]

1,2-Benzisoxazol-3-ylmethanesulfonamide

[68291-97-4]

Zonisamide, when dried, contains not less than 98.0% and not more than 101.0% of zonisamide (C₆H₉N₂O₅S).

Description—Zonisamide occurs as white to pale yellow, crystals or crystalline powder.

It is freely soluble in acetone and in tetrahydrofuran, sparingly soluble in methanol, slightly soluble in ethanol (99.5), and very slightly soluble in water.

Identification—
(1) Determine the absorption spectrum of a solution of Zonisamide in methanol (3 in 200,000) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum or the spectrum of a solution of Zonisamide RS prepared in the same manner as the sample solution: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Zonisamide, previously dried, as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum or the spectrum of dried Zonisamide RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Melting point<2.60> 164 – 168°C

Purity—
(1) Chloride <1.05>—Dissolve 1.0 g of Zonisamide in 30 mL of acetone, and add 6 mL of dilute nitric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution as follows: to 1.0 mL of 0.01 mol/L hydrochloric acid VS add 30 mL of acetone, 6 mL of dilute nitric acid and water to make 50 mL (not more than 0.036%).

(2) Sulfate <1.14>—Dissolve 1.0 g of Zonisamide in 30 mL of acetone, and add 1 mL of dilute hydrochloric acid and water to make 50 mL. Perform the test using this solution as the test solution. Prepare the control solution as follows: to 1.0 mL of 0.005 mol/L sulfuric acid VS add 30 mL of acetone, 1 mL of dilute hydrochloric acid and water to make 50 mL (not more than 0.048%).

(3) Heavy metals <1.07>—Proceed with 2.0 g of Zonisamide according to Method 4, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(4) Related substances—Dissolve 25 mg of Zonisamide in 8 mL of tetrahydrofuran, add water to make 50 mL, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add the mobile phase to make exactly 200 mL, and use this solution as the standard solution. Perform the test with exactly 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions. Determine each peak area by the automatic integration method: the area of the peak other than zonisamide obtained from the sample...
solution is not larger than 1/5 times the peak area of zonisamide from the standard solution.

Operating conditions—
Detector, column, column temperature, mobile phase, and flow rate: Proceed as directed in the operating conditions in the Assay.

Time span of measurement: About 2 times as long as the retention time of zonisamide, beginning after the solvent peak.

System suitability—
Test for required detectability: Pipet 3 mL of the standard solution, add the mobile phase to make exactly 50 mL. Confirm that the peak area of zonisamide obtained with 10 µL of this solution is equivalent to 4.2 to 7.8% of that with 10 µL of the standard solution.

System performance: When the procedure is run with 10 µL of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of zonisamide are not less than 8000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with 10 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of zonisamide is not more than 2.0%.

Loss on drying <2.41> Not more than 0.5% (1 g, 105°C, 3 hours).

Residue on ignition <2.42> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.1 g of Zonisamide, previously dried, and dissolve in methanol to make exactly 100 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution, add the mobile phase to make 100 mL, and use this solution as the sample solution. Separately, weigh accurately about 50 mg of Zonisamide RS, previously dried, and dissolve in methanol to make exactly 50 mL. Pipet 5 mL of this solution, add exactly 5 mL of the internal standard solution, add the mobile phase to make 100 mL, and use this solution as the standard solution. Perform the test with 10 µL of each of the sample solution and standard solution as directed under Liquid Chromatography <2.01D> according to the following conditions, and calculate the ratios, Qf and Qo, of the peak area of zonisamide to that of the internal standard.

\[
\text{Amount (mg) of zonisamide (C}_{21}\text{H}_{26}\text{N}_{2}\text{O}_{5}\text{S}) = \frac{M_S \times \text{C}_f \times Q_f}{75} \\
M_S: \text{Amount (mg) of Zonisamide RS taken}
\]

Internal standard solution—A solution of 4-aminoacetophenone in methanol (1 in 1000).

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 239 nm).

Column: A stainless steel column 5 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 µm in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: A mixture of water and tetrahydrofuran (5:1).

Flow rate: Adjust so that the retention time of zonisamide is about 11 minutes.

System suitability—
System performance: When the procedure is run with 10 µL of the standard solution under the above operating conditions, the internal standard and zonisamide are eluted in this order with the resolution between these peaks being not less than 5.

System repeatability: When the test is repeated 6 times with 10 µL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of zonisamide to that of the internal standard is not more than 5.0%.

Containers and storage Containers—Tight containers.

Zonisamide Tablets

ゾニサミド錠

Zonisamide Tablets contain not less than 95.0% and not more than 105.0% of the labeled amount of zonisamide (C21H26N2O5S; 212.23).

Method of preparation Prepare as directed under Tablets, with Zonisamide.

Identification To 5 mL of the sample solution obtained in the Assay add 5 mL of methanol. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry <2.24>: it exhibits maxima between 237 nm and 241 nm, between 243 nm and 247 nm, and between 282 nm and 286 nm.

Uniformity of dosage unit <6.02> Perform the Mass variation test, or the Content uniformity test according to the following method: it meets the requirement.

To 1 tablet of Zonisamide Tablets add V/25 mL of water, disintegrate completely by sonicating, add 7V/10 mL of methanol, and shake for 15 minutes. Add methanol to make exactly V mL so that each mL contains about 0.5 mg of zonisamide (C21H26N2O5S). Centrifuge this solution, pipet 3 mL of the supernatant liquid, add methanol to make exactly 50 mL, and use this solution as the sample solution. Then, proceed as directed in the Assay.

\[
\text{Amount (mg) of zonisamide (C}_{21}\text{H}_{26}\text{N}_{2}\text{O}_{5}\text{S}) = \frac{M_S \times \text{A}_f \times \text{A}_o \times V}{75} \\
M_S: \text{Amount (mg) of Zonisamide RS taken}
\]

Dissolution <6.10> When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of water as the dissolution medium, the dissolution rate in 45 minutes of 25-mg tablet is not less than 75%, and those in 10 minutes and 45 minutes of 100-mg tablet are not more than 65% and not less than 70%, respectively.

Start the test with 1 tablet of Zonisamide Tablets. In the case of 25-mg tablets, withdraw not less than 20 mL of the medium at the specified minutes after starting the test. In the case of 100-mg tablets, withdraw exactly 20 mL of the medium at the specified minutes after starting the test, and supply exactly 20 mL of water warmed to 37 ± 0.5°C immediately after withdrawing of the medium every time. Filter these media through a membrane filter with a pore size not exceeding 0.45 µm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add water to make exactly V mL so that each mL contains about 22 µg of zonisamide (C21H26N2O5S), and use this solution as the sample solution. Separately, weigh accurately about 22 mg of Zonisamide RS, previously dried at 105°C for 3 hours, and dissolve in water to make exactly 100 mL. Pipet 5 mL of this solution, add water to make exactly 50 mL, and use this solution as the standard solution. Determine the absorbances, A10, A15, and A30, of the sample solution and standard solution at 285 nm as directed under Ultraviolet-visible Spectrophotometry.
tomometry <2.24>.

Dissolution rate (%) with respect to the labeled amount of zonisamide \((\text{C}_17\text{H}_{17}\text{N}_2\text{O}_3\text{S})\) on the \(n\)th medium withdrawing \((n = 1, 2)\)

\[\text{M}_3 = M_5 \times \left(\frac{A_{100}}{A_S} + \sum_{i=1}^{n} \left(\frac{A_{100}}{A_3} \times 45 \right) \right) \times \frac{1}{V} \times \frac{1}{C} \times 90 \]

\(\text{M}_5\): Amount (mg) of Zonisamide RS taken

\(\text{C}_5\): Labeled amount (mg) of zonisamide \((\text{C}_17\text{H}_{17}\text{N}_2\text{O}_3\text{S})\) in 1 tablet

Assay Weigh accurately the mass of not less than 20 Zonisamide Tablets, and powder. Weigh accurately a portion of the powder, equivalent to about 75 mg of zonisamide \((\text{C}_17\text{H}_{17}\text{N}_2\text{O}_3\text{S})\), and moisten with 2 mL of water. Add 70 mL of methanol, shake for 15 minutes, and add methanol to make exactly 100 mL. Centrifuge this solution, pipet 2 mL of the supernatant liquid, add methanol to make exactly 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 38 mg of Zonisamide RS, previously dried at 105°C for 3 hours, dissolve in 1 mL of water and methanol to make exactly 50 mL. Pipet 2 mL of this solution, add methanol to make exactly 50 mL, and use this solution as the standard solution. Determine the absorbances, \(A_T\) and \(A_S\), of the sample solution and standard solution at 284 nm as directed under Ultraviolet-visible Spectrophotometry <2.24>.

\[\text{Amount (mg) of zonisamide} \ (\text{C}_17\text{H}_{17}\text{N}_2\text{O}_3\text{S}) = \text{M}_5 \times \frac{A_T}{A_S} \times 2 \]

\(\text{M}_5\): Amount (mg) of Zonisamide RS taken

Containers and storage Containers—Tight containers.

Zopiclone

ゾピクロン

\[\text{C}_17\text{H}_1\text{ClN}_6\text{O}_5: \ 388.81\]

\((5R)\)-6-(5-Chloropyridin-2-yl)-7-oxo-6,7-dihydro-5H-pyrrolo[3,4-d]pyrazin-5-yl 4-methylpiperazine-1-carboxylate [43200-80-2]

Zopiclone contains not less than 99.0% and not more than 101.0% of zopiclone \((\text{C}_17\text{H}_{17}\text{ClN}_6\text{O}_3)\), calculated on the dried basis.

Description Zopiclone occurs as a white to pale yellow crystalline powder.

It is slightly soluble in ethanol (99.5), and practically insoluble in water.

It dissolves in 0.1 mol/L hydrochloric acid TS.

It is gradually colored to pale brown by light.

A solution of Zopiclone in 0.1 mol/L hydrochloric acid TS (1 in 40) shows no optical rotation.

Melting point: 175 - 178°C

Zopiclone shows crystal polymorphism.

Identification (1) Determine the absorption spectrum of a solution of Zopiclone in 0.1 mol/L hydrochloric acid TS (1 in 100,000) as directed under Ultraviolet-visible Spectropho-

tometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.

(2) Determine the infrared absorption spectrum of Zopiclone as directed in the potassium bromide disk method under Infrared Spectrophotometry <2.25>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wave numbers. If any difference appears between the spectra, dissolve Zopiclone in 21 times its mass of 2-propanol, heat under a reflux condenser for 15 minutes, and gradually cool to 5°C or below. Maintain the temperature for more than 2 hours, filter this solution, wash the residue with 2-propanol, dry, and perform the test using the residue.

Purity (1) Heavy metals <1.07>—Proceed with 2.0 g of Zopiclone according to Method 2, and perform the test. Prepare the control solution with 4.0 mL of Standard Lead Solution (not more than 20 ppm).

(2) Related substances—Conduct this procedure using light-resistant vessels. Dissolve 40 mg of Zopiclone in 100 mL of the mobile phase, and use this solution as the sample solution. Pipet 1 mL of the sample solution, add the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 20 \(\mu\)L each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine each peak area by the automatic integration method: the peak areas of related substance A, having the relative retention time of about 0.1 to zopiclone, related substance B, having the relative retention time of about 0.2, related substance C, having the relative retention time of about 0.5, related substance D, having the relative retention time of about 0.9 and the peaks other than mentioned above, obtained from the sample solution, are not larger than 1/10 times the peak area of zopiclone from the standard solution. For the peak areas of related substances A and B, multiply their correction factors, 0.7, and 0.6, respectively.

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 303 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 \(\mu\)m in particle diameter).

Column temperature: A constant temperature of about 30°C.

Mobile phase: Dissolve 1.20 g of sodium dihydrogen phosphate and 8.2 g of sodium lauryl sulfate in 1000 mL of water, and adjust to pH 3.5 with diluted phosphoric acid (1 in 10). To 620 mL of this solution add 380 mL of acetonitrile, and adjust to pH 4.0 with 8 mol/L sodium hydroxide TS or diluted phosphoric acid (1 in 10).

Flow rate: 1.5 mL per minute.

Time span of measurement: About 1.5 times as long as the retention time of zopiclone, beginning after the solvent peak.

System suitability—

Test for required detectability: Pipet 1 mL of the standard solution, and add the mobile phase to make exactly 20 mL. Confirm that the peak area of zopiclone obtained with 20 \(\mu\)L of this solution is equivalent to 3.5 to 6.5% of that with 20 \(\mu\)L of the standard solution.

System performance: When the procedure is run with 20 \(\mu\)L of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of zopiclone are not less than 7500 and not more than 1.5, respectively.
System repeatability: When the test is repeated 6 times with 20 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of zopiclone is not more than 3.0%.

Loss on drying<ref>2.4f</ref> Not more than 0.5% (2 g, in vacuum, 100°C, 24 hours).

Residue on ignition<ref>2.4r</ref> Not more than 0.1% (1 g).

Assay Weigh accurately about 0.3 g of Zopiclone, dissolve in 50 mL of a mixture of acetic anhydride and acetic acid (100) (4:1), and titrate<ref>2.5o</ref> with 0.1 mol/L perchloric acid VS (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 mol/L perchloric acid VS = 38.88 mg of C₁₇H₁₇ClN₄O₃

Containers and storage Containers—Well-closed containers with 0.1 mol/L perchloric acid <ref>1/10 mL</ref>. Not more than 0.1 mL of the subsequent filtrate, add the dissolution medium to make exactly 100 mL, and filter. To 2 mL of the filtrate add 0.1 mol/L hydrochloric acid TS to make 50 mL. Determine the absorption spectrum of this solution as directed under Ultraviolet-visible Spectrophotometry<ref>2.24s</ref>; it exhibits maxima between 214 nm and 218 nm, and between 302 nm and 306 nm.

Uniformity of dosage units<ref>6.02</ref> Perform the test according to the following method: it meets the requirement of the Content uniformity test.

To 1 tablet of Zopiclone Tablets add the mobile phase, sonicate while occasional shaking to disintegrate the tablet, add the mobile phase to make exactly 50 mL, and filter through a membrane filter<ref>0.45 µm</ref> with a pore size not exceeding 0.45 µm. Discard the first 10 mL of the filtrate, pipet V mL of the subsequent filtrate, add exactly V/10 mL of the internal standard solution, add the mobile phase to make V mL so that each mL contains about 0.1 mg of zopiclone (C₁₇H₁₇ClN₄O₃), and use this solution as the sample solution. Then, proceed as directed in the Assay.

Amount (mg) of zopiclone (C₁₇H₁₇ClN₄O₃) = \(M_S \times \frac{Q_1}{Q_3} \times \frac{V'V}{V} \times \frac{1}{10} \)

\(M_S \): Amount (mg) of zopiclone for assay taken

Internal standard solution—A solution of salicylic acid in the mobile phase (1 in 800).

Dissolution<ref>6.10s</ref> When the test is performed at 50 revolutions per minute according to the Paddle method, using 900 mL of 0.05 mol/L acetic acid-sodium acetate buffer solution (pH 4.0) as the dissolution medium, the dissolution rate in 30 minutes of Zopiclone Tablets is not less than 80%.

Start the test with 1 tablet of Zopiclone Tablets, withdraw not less than 20 mL of the medium at the specified minute after starting the test, and filter through a membrane filter with a pore size not exceeding 0.45 µm. Discard not less than 10 mL of the first filtrate, pipet V mL of the subsequent filtrate, add the dissolution medium to make exactly V mL so that each mL contains about 8.3 µg of zopiclone (C₁₇H₁₇ClN₄O₃), and use this solution as the sample solution. Separately, weigh accurately about 21 mg of zopiclone for assay (separately determine the loss on drying<ref>2.4i</ref> in the same conditions as Zopiclone), and dissolve in the dissolution medium to make exactly 100 mL. Pipet 4 mL of this solution, add the dissolution medium to make exactly 100 mL, and use this solution as the standard solution. Determine the absorbances, \(A_T \) and \(A_S \), of the sample solution and standard solution at 304 nm as directed under Ultraviolet-visible Spectrophotometry<ref>2.24s</ref>.

Dissolution rate (%) with respect to the labeled amount of zopiclone (C₁₇H₁₇ClN₄O₃) = \(M_S \times \frac{A_T}{A_S} \times \frac{V'V}{V} \times \frac{1}{1/C} \times 36 \)
M₅: Amount (mg) of zopiclone for assay taken, calculated on the dried basis

C: Labeled amount (mg) of zopiclone (C₁₇H₁₇ClN₆O₃) in 1 tablet

Assay To 20 tablets of Zopiclone Tablets add the mobile phase, sonicate while occasional shaking to disintegrate the tablets, add the mobile phase to make exactly 500 mL, and filter through a membrane filter with a pore size not exceeding 0.45 μm. Discard the first 10 mL of the filtrate, pipet V mL of the subsequent filtrate, add exactly V'/10 mL of the internal standard solution, add the mobile phase to make V' mL so that each mL contains about 0.1 mg of zopiclone (C₁₇H₁₇ClN₆O₃), and use this solution as the sample solution. Separately, weigh accurately about 50 mg of zopiclone for assay (separately determine the loss on drying <2.41% in the same conditions as Zopiclone), and dissolve in the mobile phase to make exactly 20 mL. Pipet 4 mL of this solution, add exactly 10 mL of the internal standard solution, add the mobile phase to make 100 mL, and use this solution as the standard solution. Perform the test with 10 μL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and calculate the ratios, Qₜ and Qₛ, of the peak area of zopiclone to that of the internal standard.

\[
\text{Amount (mg) of zopiclone (C₁₇H₁₇ClN₆O₃) in 1 tablet of Zopiclone Tablet} = M₅ \times Qₜ/Qₛ \times V'/V \times 1/20
\]

M₅: Amount (mg) of zopiclone for assay taken, calculated on the dried basis

Internal standard solution—A solution of salicylic acid in the mobile phase (1 in 800).

Operating conditions—
Detector: An ultraviolet absorption photometer (wavelength: 304 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μm in particle diameter).

Column temperature: A constant temperature of about 30°C.

Mobile phase: To 378 mL of diluted acetic acid (100) (57 in 5000), add 222 mL of a solution of sodium acetate trihydrate (17 in 625), and add 400 mL of acetonitrile.

Flow rate: Adjust so that the retention time of zopiclone is about 9.5 minutes.

System suitability—
System performance: When the procedure is run with 10 μL of the standard solution under the above operating conditions, the internal standard and zopiclone are eluted in this order with the resolution between these peaks being not less than 5.

System repeatability: When the test is repeated 6 times with 10 μL of the standard solution under the above operating conditions, the relative standard deviation of the ratio of the peak area of zopiclone to that of the internal standard is not more than 1.0%.

Containers and storage—Containers—Tight containers.
Storage—Light-resistant.