

# 感染症危機対応医薬品(MCM)の 利用可能性確保に関する検討

### 田辺 正樹

三重大学医学部附属病院 感染制御部 三重大学大学院医学系研究科 感染制御·感染症危機管理学



### 重点感染症リスト(暫定版)2022年3月

| 分類      | 感染症/病原体名                                                                                                                                                                                                                       |                                                                                                                              |             |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| Group X | -                                                                                                                                                                                                                              |                                                                                                                              |             |  |
| Group A | 以下の感染症が該当する: 【社会的インパクトが甚大だが予見困難な感染症】  ○以下の病原体による新たな感染症  ・インフルエンザウイルス(未知)  ・コロナウイルス(未知)  ・エンテロウイルス(未知)  ○新たな重症呼吸器症候群をきたす感染症  ○新たなウイルス性出血熱をきたす感染症(フィロウイルスなど)  ○新たな重症脳炎をきたす感染症(パラミクソウイルスなど)                                       | 【根絶された感染症】 ・天然痘 【人為的な改変や使用が疑われる感染症】 ○遺伝子操作等を加えた新たな病原体による感染症 等                                                                | 7.0 常 予見可能性 |  |
| Group B | <ul> <li>例えば、以下のような感染症が該当する(例):</li> <li>【呼吸器感染症】</li> <li>・新型コロナウイルス感染症(COVID-19)、SARS、MERS</li> <li>・季節性および動物由来インフルエンザ</li> <li>・RSウイルス感染症</li> <li>【蚊媒介感染症】</li> <li>・デング熱</li> <li>・ジカウイルス感染症</li> <li>・チクングニア熱</li> </ul> | 【出血傾向をきたす感染症】 ・重症熱性血小板減少症候群(SFTS) ・既知のウイルス性出血熱(エボラ出血熱、ラッサ熱等) 【エンテロウイルス感染症】 ・エンテロウイルスA71/D68感染症 【その他の人獣共通感染症】 ・サル痘 ・コパウイルス感染症 | 能性可能        |  |
| Group C | 薬剤耐性(AMR)微生物のうち、研究開発上の優先順位が高いもの(別添 5 参照)                                                                                                                                                                                       |                                                                                                                              |             |  |
| Group D | 例えば、以下のような希少疾患が該当する(例):<br>【輸入感染症】<br>・マラリア<br>・狂犬病<br>【生物毒】<br>・生物毒(ヘビ毒、クモ毒 等)                                                                                                                                                | 【その他希少感染症(自然発生する、生物兵器・テロ関連病原体・毒素によるものを含む)】<br>・炭疽<br>・ボツリヌス症<br>・ペスト                                                         |             |  |





## MCM利用可能性確保の検討ステップ(案)

#### Step1 発生シナリオ・ リスク評価

#### Step2 対応シナリオに基づく MCMの必要性・必要量

#### Step3 現実的なMCM 必要量

Step4 MCM 確保量

- 国内の発生状況
- 致死率
- 感染経路、感染性期、潜伏期間 基本再生産数
- 国内のベクターの存在・分布 など

#### 公衆衛生対応

- 水際対策(検疫強化、隔 離・停留)
- 患者の措置入院、濃厚接 触者の外出自粛、ベク ターコントロール など

#### 医療(MCM)対応

- 治療薬
- 予防薬(ワクチン)

MCMが存

在する場

**MCMが** 

存在しな

い場合

• 対処療法

### 発生後の調達可能量・ 時間(製造·市場要因)

■感染拡大スピード、適 切なタイミングでの供給

量(国内流通量·既存備蓄 量、調達スピードなど)

#### 優先順位、予算

■備蓄医薬品の種類 (どの医薬品をどの程 度購入するか)



#### 感染拡大経路・スピード等、感染 拡大シナリオ

- 患者数(重症度、致死率)
- リスク集団、濃厚接触者数

#### |理想的な対応シナリオ(MCMの必要量)

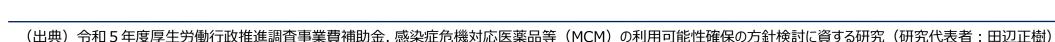
#### ■MCMの量

■MCMの使用方法 (誰にどのように、どのようなタイミングで使 用するか)



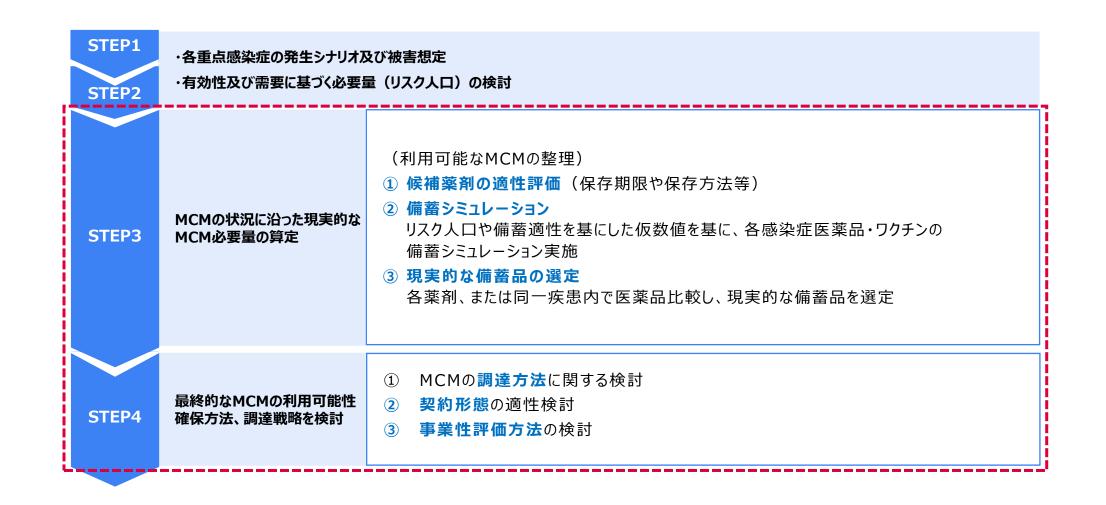
#### 備蓄必要量

#### ■備蓄目標


■MCMの製品特性・特 徴(保存期間・剤形など)

#### 調達目標

■調達戦略、計画(調 達時期·契約形態·保 管方法など)


(23HA2012)

#### 研究開発





### STEP 3 MCMの状況に沿った現実的なMCM量の算定





## 備蓄候補薬剤の適性評価

### 備蓄候補薬剤の"備蓄適性"を評価する

- 複数項目により複合的に"備蓄適性評価"を行う
- 薬理的側面ではなく、"剤形・用法的側面"から備蓄適性を評価

| 薬剤剤形性能項目 |      | 評価内容                                                                                      | 備蓄適性が"ある"と判断する際の基準                                                   |
|----------|------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 1        | 保存期間 | ● 添付文章等で推奨されている保存期間を参照                                                                    | ● 保存期間は長いことが望ましい                                                     |
| 2        | 薬剤性状 | <ul><li>投与時の性状(生理食塩水に溶解後、等)よりもShipping時の薬剤性状</li><li>箱保存、バイアル保存など、パッケージングの形状も考慮</li></ul> | ● Powderなど、液体ではない方が望ましい(破損などの管理リスクを避ける)                              |
|          |      |                                                                                           | ● 箱の方が貯蔵庫内での整理整頓の手間が軽減されるが、場所を取る等のリスクもあり、貯蔵施設ごとで検討が必要(保存温度にも依存する)    |
| 3        | 保存温度 | ● Shipping時、備蓄時の保管温度                                                                      | <ul><li>室温に近い方が望ましい(ディープフリーザーの保安・障害リスクを避ける)</li></ul>                |
| 4        | 投与回数 | ● 1クールの治療に要する投与回数と使用量                                                                     | ● 少ない方が望ましい                                                          |
| <b>5</b> | 投与方法 | ● 注射、経口等                                                                                  | <ul><li>● 経口&gt;注射、あるいは筋注&gt;静注</li><li>● なるべく簡易な投与方法が望ましい</li></ul> |



## STEP 4 MCMの調達方法に関する検討

### 治療薬・ワクチン購入の契約形態の事例整理

| 契約形態                                  | 対象             | 契約の目的                                 | 契約の概要                                                                 |
|---------------------------------------|----------------|---------------------------------------|-----------------------------------------------------------------------|
| <b>A</b> (一般的な) <b>購入契約</b>           | 薬・ワクチン         | 国が備蓄用に購入するための契約                       | 備蓄用として大量に購入し、一括あるいは複数年に<br>分けて納品を受ける                                  |
| B サブスクリプションモデル<br>(イギリスモデル/スウェーデンモデル) | (基本的には)<br>抗菌薬 | 薬の流通量を減らしながらも、製薬企業に<br>開発費用を保証するための契約 | 国が製薬会社に <mark>固定報酬を毎年支払い、必要時に<br/>必要量の納品</mark> を受ける<br>※主に抗菌薬への対応で活用 |
| C 供給予約契約                              | ワクチン           | 国がパンデミック時に自国分のワクチンを確<br>保するための契約      | 治療薬/ワクチンの開発拠点の整備、サプライチェーン<br>の確保、人材の教育も含めて <mark>将来の供給量を予約</mark>     |
| D 買取保証                                | 薬・ワクチン         | 国が製薬企業に増産要請するための契約                    | 国の責任で <mark>一定量を買い取る契約</mark> を結び、増産を<br>要請する                         |