

「令和4年度原子爆弾の投下に伴う気象及び 土壌に関する調査研究一式」 (令和3年度強化策込み)〜 報告

京都大学·複合原子力科学研究所·放射線管理学研究分野 五十嵐 康人

2023年12月

本資料は,検討会のみなさまへ「黒い雨」調査研究の現状をご報告する目的 で作成したものです.

©気象・土壌WG ※目的外での複製・配布は遠慮をお願いします。

<u>調査研究の背景</u>

<u>証言や体験に基づく「黒い雨」領域の推定</u>

証言や体験に基づく推定以外に領域を明確に示す物質的なデータはありません

3

過去の(I)気象モデルに関する調査研究+ (2)土壌調査によるモデル結果の検証

<u>R4年度の調査体制</u>

気象・土壌WG	<u>年度後半から体制をさらに強化</u>				
八小小山、衣・・・・・ 代表:五十嵐康人 京都大学複合原子力科学研究所・教	 <u> </u>				
工張ナーム 〇五十嵐康人 京都大学複合原子力科学研究所・教授 〇福谷 哲 同上・准教授	 〇向井中京都大学複合原子力科学研究所・研究員 〇栗原雄一長岡技術科学大学・特任助教 				
〇周宮辛一 向上·准教授 〇八島 浩 同上·准教授 〇池上麻衣子 同上·助教	気象チーム ← 夕 提				
 ○芝原雄司 同上・助教 ○遠藤 暁 広島大学大学院 先進理工系科学研究科・教授 ○吉永信治 広島大学 原爆放射線医科学研究所・教授 ○久保田明子 同上・助教 ○松田尚樹 長崎大学 原爆後障害医療研究所・特命教授 	 ○五十風康人 京都大学複合原子力科学研究所・教授 ○石川裕彦 京都大学防災研究所・名誉教授 ○大原利眞 埼玉県環境科学国際センター・研究所長 ○滝川雅之 海洋研究開発機構 北極環境変動総合研究 センター・グループリーダー 				
 ○福田直子 同上・技術職員 ○横田賢一 同上・助教 ○井上 淳 大阪公立大学大学院 理学研究科・准教授 ○高橋嘉夫 東京大学大学院 理学系研究科・教授 ○向井広樹 同上・特任研究員 	 ○遠藤 暁 広島大学大学院先進理工系科学研究科・教授 ○今中哲二 京都大学複合原子力科学研究所・研究員 ○谷田貝亜紀代 弘前大学大学院 理工学研究科・教授 				
実施・協力機関 ☑ 土壌採取・・民間会社(3社)	実施・協力機関 図シミュレーション開発・解析 ・民間合社(1社)				
 ☑ 試料分析・大学・研究機関 及び解析・民間会社(4社) 	 □ ○ ○ □ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○				

<u>気象・土壌WGの全体結論</u>

- 第一種健康診断特例区域の設定について,再検討を行うため,これまで蓄積されたデータを最大限活用し,最新の科学技術を用いて可能な限りの検証を行い,(1)気象モデルの構築に向けた研究,(2)放射 性降下物の拡散状況に係る調査に関する研究,(3)文献調査及び体験記調査を含めた関連研究の整理に取り組んだ。
- その結果,(1)では,原爆と街区火災により積乱雲が発達し降水が生じること,この降水により核分裂生成物の湿性沈着が生じることが最新の数値モデルで示され,一定程度,広島における「黒い雨」の輸送・沈着状況について再現を実現できた.
 しかしながら,計算結果の不確実性の評価を慎重に実施したところ不確実性は相当程度大きく,領域判定を気象モデル計算によって行うことは,2020年代にあっても依然困難性を伴うことが明らかとなった.
- (2)では土壌の層序が改変されていない地点では,土壌層中に大気圏内核実験由来の¹³⁷Csだけではなく,¹³⁷Csの濃度極大が微粒炭粒子個数濃度極大と相関することから原爆由来の¹³⁷Csが含まれると推定され,かつ過剰²¹⁰Pbによる時間指標評価でも整合性がある事例が見つかった(長崎の事例を含む).これは<u>従来の土壌調査に比べて大きな進展</u>と言うことが出来る.つまり,その地点が戦後未改変であってかつ「黒い雨」が実際に降ったのであれば,領域判別の指標は存在し得ることが示されたからである.また,「黒い雨」の実態に迫る新規発見もあった.しかしながら,未改変地点を探索してその地点での土壌試料を採取すること自体が本質的に極めて挑戦的な作業であることから,「黒い雨」領域の精度良い推定を本事業期間内で達成するのは困難と結論された.
- なお,(3)については,精査の結果が(1)において実施された作業の基礎提供につながり,有用であったことを付記する.

【気象モデルにおける不確実性の原因】

・米国海洋気象庁(NOAA)が作成した20世紀歴史的再解析気象データ(20CRv3)は,ラジオゾンデによる高層気象観測が実用化する以前に遡り,気候学的大気状態を基本に,地上観測データのみを同化して大気全層の気象状態を推定したデータセットである.海面温度など外部条件のばらつきを反映するため,80個の異なる初期値境界値のもとで解析を進め,これら80例のアンサンブル平均と分散をプロダクツとして公開されている.分散の情報を見ると,高層観測データが無いため,大気中上層で信頼性が低下している.

- I) 風向風速のばらつきが上層に発達した 積乱雲の移動方向に直接影響し,降水 域の地域分布に反映される,
- 2) 気温や湿度の僅かなばらつきが大気 安定度に大きく影響し,積乱雲の発達 程度や降水量に反映される等で,黒い 雨評価の不確実性に波及する.

・上層風の鉛直シアにより、エアロゾルおよび雲凝結核、氷晶核は降水域よりも広い範囲に輸送され、エアロゾルー雲相互作用が降水分布推定における不確定性の要因の ーつとなりうることが示唆された. 20CRv3 アンサンブル平均と分散(原爆投下時の広島上空)

<u>O 爆発計算の成果(核実験との比較)</u>

・シミュレーションと核実験との比較

- ▶ 渦粘性型乱流モデル(k-ω SST モデル)を適用することで火球 高度の時間変化を再現(左図).
- ▶衝撃波が地表面を通過する際の最大圧力(大気圧との差圧)が核 実験から得られる理論値と一致(右図).

<u>O 爆発計算の成果と利用(温度分布と物質拡散)</u>

> 固気混相流の二流体モデルを簡易化したモデルを新たに導入することで、原爆 由来物質と衝撃塵の物質拡散を扱えるようにモデルを改良し、原爆雲の温度分 布に加えて、原爆由来物質や衝撃塵の空間分布が得られた。

>気象モデル,拡散モデルへの導入

爆発の影響範囲が気象モデル(WRF)の計算格子スケールまで拡がった**爆発80秒後の温度分布を温 位偏差として気象モデルに与える.**爆発で発生する物質分布を,移流拡散モデル(FLEXPART)の初 期分布として与える.

〇 気象庁観測原簿との比較による気象再現性の確認

8

10

2

18時

6

観測原簿記載例

原簿をデジタル化 した観測所

<u>〇 街区火災デジタルデータと利用</u>

▶ 街区火災デジタルデータ

Estimation of heat, water, and black carbon fluxes during the fire induced by the Hiroshima A-bomb (Aoyama et al., HiSOF)に掲載されている, 熱源および水蒸気源分布図の元となるデジタル・データを著者に要求して いたが, 著者ご逝去の為, 入手の可能性が消えた. そこで, 論文に掲載された図を直接読み取り, 手入力で数値データを 作成した. 熱源は, 爆心を中心とする 8 km 四方の領域を50 m四方の格子に分割し, 格子の発熱量が5段階の濃淡 (グレートーン) で塗り分けられている. 誤読を避けるため, これを画像ソフトで着色し, 各格子の階級 (1~5)を読み取った (右

図).読み取りデータから全体の発熱量を再度計算したところ **論文に記載されている値, |4.4 [kJ s⁻¹m⁻²], よりもおよそ|0% 大きい|5.9 [kJ s⁻¹m⁻²]となった.水蒸気源(潜熱)も同様**に算出 した.

▶ <u>気象モデル(WRF)への街区火災の取り込み</u>

街区火災で発生する顕熱(発熱量)と潜熱(水蒸気発生量)は,WRF モデル内の都市キャノピーサブモデルを介して気象場に反映させる.サブ モデルに街区火災の強度に対応する土地利用区分を追加し,区分ごとに 上記で読み取った発熱量(顕熱,潜熱)を都市の人工排熱に付加する ことで,街区火災の影響を気象モデル(WRF)に反映させた.

このとき, Aoyama論文に記載されている**発熱量の時間変化**も同時に 考慮した.

○ モデル構築の達成状況(爆発・街区火災の取り込み)

核爆発で生じる温度偏差・街区火災による潜熱・顕熱を気象モデルに組み込み,気象計算 モデル内で爆発により発生した積乱雲内で降水が発生する様子が計算できるようになった.

▶ <u>気象データ:</u>

米国海洋気象庁 (NOAA)が作成した20世紀再解析 データ (20CRv3)のアンサンブル平均データ.

▶ <u>地形データ:</u>

国土地理院IOm格子データ及び経産省とNASAで共同作成した ASTER-GDEM データ.

▶ <u>土地利用データ:</u>

環境省 J-STREAM プロジェクトで作成されたWRF 用土地利用データを基本に,戦後埋め立てが進んだ地 域を海面に戻したデータ.

▶ <u>計算格子:</u> 3600 m > 1200 m > 400 m

➤ <u>モデル計算の実行方法:</u>

- ① 前日を初期値として爆発時刻までの気象場を計算.
- 爆発時刻の気象場に爆発モデルで計算された爆発 80秒後の温位差(最大48K,中心高度5000m) を埋め込む.
- ③ 上記②を初期場とし,火災モデルの熱源を地面境 界で与えて,爆発時刻以降の気象場の時間発展と これに伴う降水を計算する.

- □ 原爆投下9時間後までの積算雨量は多いところで 100mm 以上となる
- □ 降雨時間は多いところで4~5時間程度

○ 粒子型モデルによる移流拡散沈着計算の結果

- ▶ 対象核種:原爆により生成された¹³⁷Cs
- ▶ 発生量: |×10¹⁴ Bq, 初期分布は爆発モデル結果(爆発80秒後)
- ▶ 乾性沈着:地表の空力摩擦、重力沈降、粒径分布仮定
- ▶ 湿性沈着:降雨洗浄のみ,洗浄率, A=10⁻⁴×I^{0.8}(I:降雨強度[mmh⁻¹])
- ▶ 粒子発生数:1,000,000 個

※ 上記の結果は、原爆投下から9時間後までに沈着した湿性降下物又は乾性降下物の有する放射能の積算値の推計の一例。 なお、当該推計から健康への影響等を推定することは不確実性が大きく困難である。

○ 気象モデル計算の到達点

<u>達成状況:</u>

- ▶ 広島周辺の夏季局地循環を気象モデル(WRF)で再現で きることを,近年の類似事例で確認した.
- ▶「爆発モデル」で計算された核爆発の熱源と市街火災の 熱源を気象モデルに取り込むことが可能になった.
- 米国海洋大気庁が作製した20CRv3(20世紀再解析デー タv.3)を入力とする計算により,積乱雲が発生し降水が生 じる様子が表現され,これによる放射性物質の移流拡散及び湿性沈着と乾性沈着を計算できた。
- う気象データの不確実性に起因し、降水状況や物質の移流、 拡散、沈着に大きな不確実性がともなうことが示唆された、 不確実性の要因:
- 気象データに起因する不確実性: 20CRv3再解析データは、80の再現計算(メンバー)のアンサンブル平均で与えられている。80メンバー間には、風向や大気安定度にばらつきが有り、これが降水量や物質の拡散方向の不確実性の要因になり、決定論的な結果を確定できない。
- **降水物理へのRainout 考慮:** 大気中微粒子が雲核となり雲降水生成を促進する効果の考慮が計算結果に影響する.爆発や街区火災で生じる微粒子の発生量推定が計算結果に影響を与える可能性がある。

※ 上記の結果は、原爆投下から9時間後までに沈着した湿性降下物又は乾性降下物の有する放射能の積算値の推計の一例。 なお、当該推計から健康への影響等を推定することは不確実性が大きく困難である。

参考:原爆投下時の気圧配置と類似事例

表1 類似事例と利用可能データ あんしょう しょうしょう							
ID	期間	NCEP25	NCEP_I	ERA-20C	20CRv3	アメダス	Wind Profiler
1	Aug. 11, 2000		0	0	0	時間値	
2	Aug. 1, 2002		0	0	0	時間値	
3	Aug. 3, 2002		0	0	0	時間値	
4a	Aug. 3, 2006		0	0	0	時間値	O_KU-RISH
4b	Aug. 4, 2006		0	0	0	時間値	O_KU-RISH
5a	Aug. 11, 2006		0	0	0	時間値	O_KU-RISH
5b	Aug. 12, 2006		0	0	0	時間値	O_KU-RISH
6a	Aug. 5, 2007		0	0	0	時間値	O_KU-RISH
6b	Aug. 6, 2007		0	0	0	時間値	O_KU-RISH
7	Aug. 6, 2015	0	0		0	10分值	O_KU-RISH
8	Aug. 12, 2016	0	0			10分值	O_KU-RISH
9	Aug. 4, 2018	0	0			10分值	O_KU-RISH
10 a	Aug. 1, 2019	0	0			10分值	O_KU-RISH
10b	Aug. 2, 2019	0	0			10分值	O_KU-RISH

<u>参考:当時の天気図と20CRv3再解析との比較</u>

20CRv3 データをプロット した図

等值線:海面更正気圧 hPa を旧単位のmmHgに 変換して表示.

90

85

80

75

65

60

ベクトル:地上IOm風 煩雑を割けるため、3つとば しで間引いて表示.

塗潰し:地上2m相対湿度 水蒸気情報は相対湿度で 55 与えられている.気象モデル 50 WRFの前処理プログラム 45 で比湿に変換されてモデル 40 に入力される.

<u>参考:20CRv3広島上空の(U,V)ばらつきの様子</u> 1945年8月6日09 日本時間 <u>青はメンバー,赤は平均</u>

参考:火災由来微粒子が降水形成などに与える効果

- 爆発や火災で発生した微粒子が雲凝結核として作用し、雲形成や降水を変調させる効果を見積もる目 的で,気象モデル(WRF)と領域化学モデルを結合したWRF-chemを用いた試計算を行った.
- 街区火災により発生する黒色炭素粒子および土壌粒子エアロゾルを考慮できるよう,領域化学モデルを 改変し,火災熱源を考慮した計算を行った.火災由来の黒色炭素粒子エアロゾルが,熱対流により高度 12 km以上にまで輸送されていること、およびその一部が雲凝結核として作用している可能性があること などが確認され,雲ーエアロゾル相互作用の重要性が示唆された.

9

火災由来微粒子による光学的厚さ (8月6日 12時)

<u>気象・土壌WGの結論その2</u>

- 【土壌調査における困難性の原因】
- (1) 戦後77年経過し未改変の地点が少ない.(神社仏閣,史跡等を検討)
- (2) 地権者を探し,その了解が必要.事務手続きを含め作業にぼう大な手間と時間を要した.
- (3) 未改変の根拠を地権者の証言に求めたが,証言を元に採取を進めても,ほとんどの例で,土地 は覆土・客土されていた.
- (4) 史跡(古城跡など)は戦後手つかずの状態と推測されたが,土壌採取の許認可を得ることは 原則困難で,かつ地権者の同定も非常に困難であった.
- (5) 戦後77年経過して原爆由来¹³⁷Csの放射能が17%に減衰し,福島第一原発事故の汚染マップ 作成時に比べて,各試料の測定に~100倍の測定時間を要した.このため,限られた時間で精度 良く合計 3000試料以上の測定を実施して,データセットを作成するだけでも大事業となった.
 (6) 土壌試料が改変地点由来と判断した場合,再度の採取を可能な限り実施したが,再採取実施
- の時間にも,人的資源にも限界があった.
- (7) 広島平和記念資料館より「黒い雨」資料を入手・分析し,熔融した微粒子等の「黒い雨」領域判別の新指標確立を目指したが,指標確立は困難であった.
- (8) 揮発性の高い水銀や重金属,爆弾材料の影響が期待される同位体(²³⁵U/²³⁸U) などにも着目 し,最先端の手法を用いて,鋭意,分析・測定を実施したが,微粒炭粒子を除き,指標物質となる新 証拠はこれまでには得られなかった.

<u>O モデル検証データ取得ー土壌調査の目指したこと</u>

Fukuyama et al., 2010の図を改編

【<u>改変されていない土壌層に証拠が残っていないか!?</u>】 ・広島市内,または長崎市内,および近傍の黒い雨地域において,年代順に成層して当時の地層が 残っていそうな地点を選定する.候補地点は,社寺の境内,旧城跡(古城跡),旧学校など. ・覆土・客土の可能性を現地踏査で確認.さらに層序があるかどうかをトレンチ試掘で確認する. 【<u>地層を薄く剥いで測定することで時間方向にデータを分解する</u>】 ⇒年代指標推定も実施. ・スクレーパープレートを用いて約1 cmの分解能で層序を崩さずに試料採取を行う. → 時間方向に分解されたデータにより,モデル検証データセットを作成を目指す. 21

<u>O モデル検証データ取得-土壌調査での分析項目</u>

調査研究項目	発生源	検出妨害の有無	性状・性質	調査目的
放射性物質				
^{I 37} Cs	原爆本体	あり (Global Fallout)	核分裂生成物、原爆由来の放射 性物質	放射性降下物の検出
²³⁵ U/ ²³⁸ U同位 体比	原爆本体	なし	原爆の材料物質由来	放射性降下物の検出
²³⁵ U微粒子	原爆本体	なし	原爆の材料物質由来	放射性降下物の検出
過剰 ²¹⁰ Pb	一般大気	なし	地面から発生するラドンの子孫 核種、大気由来の自然の放射性 物質	土壌調査地点の堆積状況、 かく乱・未かく乱の判断、 堆積年代の指標
非放射性物質				
微粒炭素粒子	火災(街区、 森林)	あり (森林火災)	建築物等の燃焼由来、20 µm程 度でグラファイトが主成分	街区火災由来物質の検出
水銀	火災(街区)	あり(農薬、工場、 ゴミ燃焼等)	温度計はじめ水銀利用製品が 火災にあえば比較的低温でも揮 発する	街区火災由来物質の検出
銅などの重金属	火災(街区) 熱線照射	あり (工場等)	銅瓦や電線、そのほかの日常金 属・青銅製品などに使用	街区火災由来物質の検出
熔融微粒子 (球状)	原爆本体 +衝撃塵	あり (鉄道、花火、 工場等)	衝撃塵由来、火球やその近傍で 高温により熔融して液滴となり、 その後急冷されたと考えられる	衝撃塵由来物質の検出 22

〇土壌調査マップ作成一領域の確定と寺社など の適地探索ならびに採取実施

<u>長崎県での調査実施状況</u>

○ 土壌調査マップ作成-土壌サンプリング

地点名: AA寺, BB神社, CC神社 航空写真を実地踏査の前に調査

- <u>戦災後に土地改変が</u> なく、当時の状況が残 留している地点で採 取する。
- そのため,地点を Google Map, 航空 写真を活用して選定 し,実地踏査を行う地 点を選定した. 前年度と同一箇所で あっても実地踏査を 前提にして実施した. 当初は,候補地点とし て,古城跡,寺社の境 内や旧学校跡,公共 施設周辺を検討した.

○ 土壌調査マップ作成-土壌サンプリング

地点名: CC神社 ロケーションハンティング(実地踏査)を実施

多数… →改変地点での採取!!

今年度は社叢等の中で大樹の近傍で 戦後未かく乱と推測される地点で採取

- <u>戦災後に土地改変が</u> <u>なく,当時の状況が残</u> <u>留している地点</u>で採 取する.
- 選定地点を実地踏査 して現状把握を行い, 現地での判断を優先 して再度採取すべき 地点・箇所を選定した. 前年度と同一場所で は,実地踏査で別な 地点・箇所を選択し実 施した.総計で221箇 所を実地踏査した. 神社の社叢,寺林を 中心として採取を実 施した.

<u>○ 土壌調査マップ作成−土壌サンプリング</u>

地点名: CC神社 地権者から同意書を取得後に採取を実施 ※採取地点は開示しないことが採取同意条件になっています。

- 神社の社叢,寺林を中 心として90地点超にて 再採取を実施した。
 スクレーパープレート 法で30層にわたり表 層土壌を採取した。採 取作業には3~5時間 を要した。
 試料は減菌・乾燥・篩
- 試料は,滅菌・乾燥・篩 分け処理をほどこし, プラ容器に封入して測 定機関へ送付.

○ 土壌調査マップ作成一試料の測定前処理一送付まで

採取業者さん等から「試料受け取り」(京都大学複合原子力科学研究所)

- →「¹³⁷Csスクリーニング測定」(複数の層について¹³⁷Csの検出有無を簡易に確認)
- →「<u>ガンマ線滅菌(</u>外注;線量として20 Gy以上照射)」→業者さんより返送 or 「<u>オートクレーブ滅菌</u>」
- →「乾燥機を用いて45 ℃で恒量まで乾燥」→「2 mm孔径でふるい」*
- →「ふるい通過画分をU8容器等に充填」→試料を測定機関に送付

No. 410: ²¹⁰Pb 211±10 Bq/kg

各機関にて試料をGe半導体検出器で測定 →CsとPb IAEA標準にて校正を確認 (ものさしの統一)

<u>Cs, Pb測定協力大学·研究機関·民間</u>

R4年度末までに約100区画分-3,000試料以上の測定を進めました。

大 学

研究機関

(京大複合研含め

25

者

		分析委託機関名		測定者(担当者)		年度末までの測定予定試料数	
		広島大学 大学院先進理工系科学研究科	遠藤暁		270	試料程度	
	2	長崎大学 原爆後障害医療研究所	松田尚樹	福田直子	120	試料程度	
	3	東京都立大学	大浦泰嗣	末木啓介	130	試料	
	4	鹿児島大学 先端科学研究推進センター	尾上昌平		210	試料	
	5	弘前大学被ばく医療総合研究所	赤田尚史		90	試料	
	6	大阪大学放射線科学基盤機構	吉村 崇	大江一弘	117	試料	
	7	核融合科学研究所	田中将裕		150	試料	
	8	九州大学アイソトープ統合安全管理センター放射線監視情報部	杉原真司		120	試料	
	9	近畿大学 原子力研究所	山田崇裕		120 🗄	程度	
	10	公益財団法人 環境科学技術研究所 環境影響研究部	大塚良仁		90	試料	
大	- 1 1	東京大学 大学院理学系研究科 地球惑星科学専攻	高橋嘉夫	向井広樹	150	試料	
字	12	長岡技術科学大学	太田朋子	栗原雄一	60	試料	
研	13	明治大学	小池裕也		60	試料	
究	14	尚絅学院大学	齊藤敬		90	試料	
機	15	愛知医科大学	小島 貞男	緒方良至	60	試料	
渕	16	大阪産業大学	硲隆太		30	試料	
	17	福島大学環境放射能研究所	平尾茂一		60	試料	
	18	東京海洋大学	伊藤友加里	神田穣太	120	試料	
	19	広島大学 自然科学研究支援開発センター	中島覚		60	試料	
	20	岡山大学 自然生命科学研究支援センター	寺東宏明		60	試料	
	21	熊本大学 生命資源研究・支援センター	島崎達也		120	試料	
	22	徳島大学 放射線総合センター	三好弘一		30	試料	
	23	高知大学 海洋コア総合研究センター	新井和乃	松崎琢也	30	試料	
	24	大阪公立大 放射線研究センター	秋吉優史		30	試料	
	25	大阪公立大学	井上淳			炭素測定	
法	26	いであ株式会社	長坂洋光	渡邊恵史	270	試料	
ㅅ	27	公益財団法人 日本分析センター	平出 功		60	試料	
*	28	一般財団法人 九州環境管理協会	山中潤二		30	試料	
者	29	日本空調サービス株式会社	伊藤憲司		270	試料	
京都大学複合原子力科学研究所測定分 90							
	測定合計 3097 試料						

機器のメーカーや 性能はばらばらで す.

- そのため, IAEA標 準試料で共通に 校正を図りました.
 - 機器性能に依存 するが通常, |試 料あたり|日以上 の測定時間が必 要です.
- 我が国の²¹⁰Pb測 • 定が可能な装置 財 のほとんどを利用 団 したと思います. 民間業者4

٠

者

日本全国の研究者がセシウムと鉛の測定に協力してくれました.

<u>O γ線スペクトルの解析—137Csや210Pbの測定</u>

- 土壌試料はわずかだが、137Csや210Pbなどの人工と天然の放射性物質(放射性核種)を含んでいます.
- ¹³⁷Csは主として,大気圏内核実験(グローバル・フォールアウト)由来です.
- 放射性核種はそれぞれに固有なエネルギーの放射線を放出します.⇒γ線スペクトルから核種分析が可能となります.

γ線スペクトルデータの点検作業

(1)エネルギー校正ファイルの作成

エネルギー校正ファイルは,個々の測定器に対して一つ,合計23ファイル作成した.エネルギー校正を行う際に 用いるスペクトル生データは,IAEA標準試料(IAEA-385)とした.

(2) バックグラウンドの解析

作成したエネルギー校正ファイルを用いて,バックグラウンドの解析を行い対象核種のピークのネット面積 (N_{cnt})を取得した(対象核種:¹³⁷Cs,²¹⁰Pb,²¹⁴Pb).

(3)標準試料の解析

作成したエネルギー校正ファイルを用いて,標準試料データ(IAEA-385, IAEA-410)の解析を行い対象核 種のピークのN_{cnt}を取得した(対象核種: ¹³⁷Cs, ²¹⁰Pb, ²¹⁴Pb).また,上記と異なる標準試料の場合は,主要 な核種のピークのN_{cnt}を取得した.

(4) 土壌試料分析データの解析

作成したエネルギー校正ファイルを用いて,土壌試料データの解析を行い対象核種のピークのN_{cnt}を取得した.

- ・ 土壌試料を採取した地点数: 50地点
- ・ 土壌試料の深度方向への分割数: 30層
- 対象核種:¹³⁷Cs,²¹⁰Pb,²¹⁴Pb
- 各解析ソフトウェアの出力として,ROIデータおよびスペクトルデータを保存した.スペクトルナビゲータおよび
 スペクトルエクスプローラーが対応するファイル形式でそれぞれ保存した.

(5)解析結果の整理

各ソフトウェアから出力される解析結果(ネット面積,エラー等のデータ)をクリップボードにコピーし,エクセルファイルに貼り付けて解析結果を整理した.エクセルファイルは測定地点毎に作成した.また,以下の情報をあわせて整理した.

- 土壤試料ID,深度
 - 測定日時

測定時間(Live time)

ソフト (SEIKO) によるエネルギー校正例

ソフト(SEIKO)による¹³⁷Csのピーク 解析例

2022.10.19会議 R4 測定途中経過発表順 1試料1-2分程度で報告をお願い致します。

<u>〇 Cs, Pb測定に関する技術会議</u>

與喪者名 魚 貞 土壤改変につい 宣都大学 受知度起大 <u>ک</u> 10,08 03.10P いであ 推議 4 間山大学 寺東 唐児島大学 尾上 0.07 6 041 理境科学研究所 大塚 03 06 鳥崎・白石 熊本大学 | 他翻学院/ H-02.08 0.04 東京海洋大 H-04_09E 07 03B 10 東京都立 大捕 H-04.02 A H-06 02A 11 東京大学 I- 01,10 P1# 03 03A 03 09 05-03-12 長間技料大 2.0 09.02/ 13 長崎大寺 福田 中島 15 日本容量サ· 伊藤 16 日本分析センター H- 01 03/ 金野 17 大坂大学 大江 18 株島大学 19 株島大学 三杆 平尾 小推 20 明治大学 21 核動合研 田中 06 03A H-0507A 05 09/ 22 近畿大学 山田 H-07.09 H-07,05A 23 九州大学 H- 04,10/ 09.07 H-04.08 24 大坂公立大 #1 智慧広告 報告書提出 H- 07.07 H- 08.08A H- 08.05 生動大学 H-03 07A H-0710A H-08.02B 机前大学 (*) H-10,09 H-10,03

顯不同·教術院

- 測定技術会議を延べ12回開催して、Ge半導体検出器を用いた測定を効率的に実施した。
 100区画分以上の過剰²¹⁰Pb、¹³⁷Csデータが得られたが、改変地点については再採取
 試料の測定に努めた。
- ²¹⁰Pbと¹³⁷Csの精密測定結果による土壌中での分布状態の精査から「黒い雨」領域の 推定に使用可能な未改変地点を推定. ⇒WGを組織して条件を決定した.
- ¹³⁷Cs のインベントリ(土壌柱での存在量)を確認し, ¹³⁷Csと²¹⁰Pbの鉛直分布から, WG でかく乱・未かく乱を判断した.→約30地点が未かく乱. 32

35

スケールは20μm

<u>O 改変無し(未撹乱)サンプリング地点での「黒い雨」痕跡の推定</u>

<u>参考: Cs鉛直プロファイルの鉛直拡散・輸送の検討</u>

H-05-02およびH-05-03の土壌について,¹³⁷Csトレーサーを用いて室内で吸着実験を行った.そして各深度の土壌試料について吸着実験から決定された分配係数(Ka)を基にソフトウェア(GET FLOWS)を利用 しReactive transport model によって¹³⁷Cs鉛直方向移行についてのシミュレーションを行った.

実環境下では土壌の堆 積に加えて,鉛直の拡 散・輸送も生じているは ずであり,それらの複合 した結果として,現実の 鉛直プロファイルが生じ ている.すなわち,鉛直 の拡散・輸送があっても, H-05-02やH-05-03 と同様なKa条件を有す る土壌層であれば,表 層より100 mm以深に ¹³⁷Csの大きな濃度 ピークは形作られない.

〇「黒い雨」指標物質の探索—広島湾で採取した熔融微粒子の 分析測定—ウラン同位体

・ 熔融微粒子を色によって分類し、その起原をウラン同位体比から推定した

- BlackとRedは自然存在比と誤差の範囲で矛盾なし
- SilverとYellowは²³⁵U/²³⁸U ratioが高い
- SilverとYellowは原爆由来の可能性がある

⇒飛跡のかたまり(クラスター)が観察され,クラスター数の深度分布が得られた.

観察された飛跡のクラスターの例

黒い雨の降雨エリアであるH-05-02の試料には,約200 ~600個のクラスターが見つかったが,降雨のなかったとさ れるH-10-03の試料では,数十個しかみつからなかった.

クラスターを形成する粒子をSEM/EDXによって観察することで,ウラン含有粒子の形状,サイズ, 組成等に関する詳細な性状分析が課題. 他の地点でも深度分布を得て,ウラン粒子の乾性・湿性沈着に関する知見を得たい. 39 <u>参考:「黒い雨」指標物質の探索―水銀濃度とCs濃度</u>

●なぜ水銀に着目したのか?

- これまでの電子顕微鏡観察によって、水銀を含む微粒子が見つかっている
- 火災などによって大気中への 放出が容易な重金属であり, 大気中に放出された水銀は, 降雨などによって地表に沈着 する
- •Csや炭素微粒子との相関が あれば,より簡易に領域判定 に使用できる可能性がある

●分析方法

 測定装置:加熱気化水銀測定
 装置 MA-3000(日本1ンスツル メンツ)

● 水銀を「黒い雨」の判別材料や指標として使用することは難しいことがわかった

参考: 「黒い雨」指標物質の探索―微粒炭素と全炭素分析

- ・ 微粒炭素粒子分析の簡略化・迅速化の検討
- ➤ TOC計(multi N/C 3100+HT1300, アナリティクイエナ 社製)を用いて, 土壌中の全炭素重量濃度を測定した.
- ▶ H-05-02地点での全炭素重量濃度と微粒炭量の深さ方 向分布を右図に示す.
- ▶ 5cmより深くでは両者は同様に減少している様子が見える. 前処理によって土壌中から微粒炭以外の有機物を除去する と,より相関が高くなることが期待される.

TOC計; multi N/C 3100+HT1300 (アナリティクイエナ社製)

参考:「黒い雨」指標物質の探索―「黒い雨」資料

資料採取日:2022年5月25日、6月1日、7月7日、8月23日、11月24日 「黒い雨」の正体にせまるため、広島平和記念資料館の資料を採取

4 黒筋 (0.5×0.7cm) 光学顕微鏡像 (4) 黒色付着物光学顕微鏡像

○「黒い雨」指標物質の探索—金屏風

- 金屏風の雨痕跡部分は、丹銅(銅と亜鉛の合金,銅が主)箔が溶解し、下から光が透けている(図1,2).
 - この部分に、炭・樹脂状物・硫酸銅の化合物(推定)を認める.
- 黒い雨は、硫酸等を含む強い酸性雨と推定される(硝酸も含まれていた可能性あり).
 (供給源は、海由来のDMSやアスファルト・電線被覆ゴム類に含まれた硫黄と予想)
- CsやUを含む放射性微粒子は未発見.これらは酸性雨に溶解した可能性もあるのでは?

<u>参考:「黒い雨」指標物質の探索</u> <u>―「黒い雨」 資料のウラン同位体分析</u>

核兵器レベルのUの混入によるU同位体比の変化(土壁の場合)

- ・土壁試料・金屏風試料からUを化学分離し、表面電離型質量分析装置でUの同位体比分析を実施.
- ・土壁試料と同様に金屏風試料もともにIUPAC2013記載の天然Uと誤差範囲内で一致した。

0.00000(2)

0.00001(3)

0.00730(14)

0.00730(06)

0.00726(08)

0.00729(10)

0.00007(3)

0.00007(3)

IUPAC2013

黒色痕無し (n=4)

(n=4)

黒色痕無し (n=5)

(n=6)

金屏風

金屛風3

十壁

十壁3

・土壁・金屏風ともに天然Uに1~2×10⁻²%程度の濃縮U(核兵器レベル)が混入した場合, U同位体比は天然組成より外れるが,その様子は認められなかった.

福島第一原子力発電所事故後に開発された,環境試料中の放射性物質の分析結果を位置情報とともにデータベース化し,その空間分布を地図上への描画が可能な DBMapperR をもとに,広島・長崎において採取された土壌試料等の採取位置,分析結果のデータベース構築に特化したシステム (DABS: Database of Atomic Bomb Samples) として開発・運用を開始した.

地図上に試料の採取位置マークを重ねて表示 マークをクリックすることで,試料の詳細情報を表示

採取位置が同一で採取深度の異なる試料 については,分析値の深度分布を表示

45

ースの桶 (2) データベース機能の向上

大量データを地図上に迅速に 表示する機能の強化,オンライン マニュアル閲覧機能の追加,採 取地点に関する画像ファイル等 の登録機能の追加を行うことで, 情報入力・閲覧時の作業効率 向上,分析結果の信頼性評価 に必要な採取時の周辺環境の 確認等が可能となった.

析結果の総合的な評価に必要な情報もデータベース化した. 46

測定結果の総合的な分析に向けて,分析結果の視覚的なデータ比較機能の追加, 地図上での分析結果の分布表示機能の追加,データのフィルタリングとダウンロー ド機能を可能とするオフラインアプリケーションを開発した.

メッシュごとの測定値をもとにした分析結果 を地図上にカラーマップとして表示

附属被ば<資料調査解析部 吉永信治 久保田 明子

1.土壤試料(日本公衆衛生協会調査試料)整備

▶日本公衆衛生協会調査試料…1971年と1973年の日本公衆衛生協会による調査で 採取した土壌試料(広島分)に関しての整備を完了(およそ150件)

(1)環境改善(倉庫からの移動)

(2)環境改善(試料ボトル詰め,メタデータ作成等)

(3)「日本公衆衛生協会土壌調査」に 関する研究

2.体験談のデータ化

▶『原子爆弾災害調査報告』(日本学術振興会,1953年刊行)記載の,最初期(1945~1950年代前半,原爆医療法成立以前)に収集された体験談116件についてのテキスト化および「黒い雨」記述地点の緯度経度確認

48

令和4年度報告 長崎大学

放射線総合センター 原爆後障害医療研究所 松田尚樹,玉熊佑紀,阿部香織 横田賢一,福田直子

◆広島土壌試料の測定(Pb-210,Cs-137)
 ✓長崎大学の担当試料(今年度計4地点,120試料)
 ① KG-H-09-11-A(測定終了,土地改変あり)
 ② KG-H-05-07-B(測定終了,土地改変判定保留)
 ③ KG-H-04-10-B(測定終了,京大にて土地改変なしと判定)
 ④ KG-H-06-08-B(測定終了,土地改変判定保留)
 ①と②:本学既設Ge半導体検出器にて測定

③と④:新規導入Ge半導体検出器にて測定

◆新規Ge半導体検出器一式導入

ミリオンテクノロジーズ・キャンベラ社製 ブロードエネルギーGe半導体検出器(BE2825)

2022 12/19 納品完了 12/19~校正実施 12/23 取扱い説明会 12/26 使用開始,BG60万秒測定

2023 1/4~ IAEA標準試料にて精度確認
1/30 H-04-10-B試料測定開始

◆広島市内土壌サンプリングキャンペーン参加(福田)

2022/7/16,1地点(採取方法確認) 7/17,1地点(九大・杉原先生グループと合同) 7/24,1地点(九大・杉原先生グループと合同)

◆長崎原爆土壌アーカイブ化の継続
 ✓ 試料保管数,計1,283試料(2023/2現在)
 ✓ 長崎データベースのDABS収録(2022/12)

まとめ

- 第一種健康診断特例区域の設定について,再検討を行うため,これまで蓄積された データを最大限活用し,最新の科学技術を用いて可能な限りの検証を行うため,(1)気
 象モデルの構築に向けた研究,(2) 放射性降下物の拡散状況に係る調査に関する研究,ほかに全力で取り組んだ.
- •(1)では、原爆と街区火災により積乱雲が発達し降水が生じること、この降水により核分裂生成物の湿性沈着が生じることが最新の数値モデルで示され、一定程度、広島における「黒い雨」の輸送・沈着状況について再現を実現できた、しかし、計算結果の不確実性の評価を慎重に実施したところ不確実性は相当程度大きく、不確実性低減の達成なしては、精度良い評価が望めないことが明らかになった。
- ・(2)では、¹³⁷Csの濃度極大が微粒炭粒子個数濃度極大と相関するため、原爆由来の ¹³⁷Csが含まれると推定出来、かつ過剰²¹⁰Pbによる時間指標評価でも整合性がある 事例が見つかった(長崎の事例を含む).しかし、未改変の地点を見つけて土壌試料採 取を行うことは非常に困難かつぼう大な手間と時間を要する大事業で、統計的に充分 な数の未改変地点のデータ取得が達成できなかった。
- (2)では、「黒い雨」領域判別の新指標が見つかれば極めて有用と考えられることからその確立も目指したが、指標確立は困難であった。