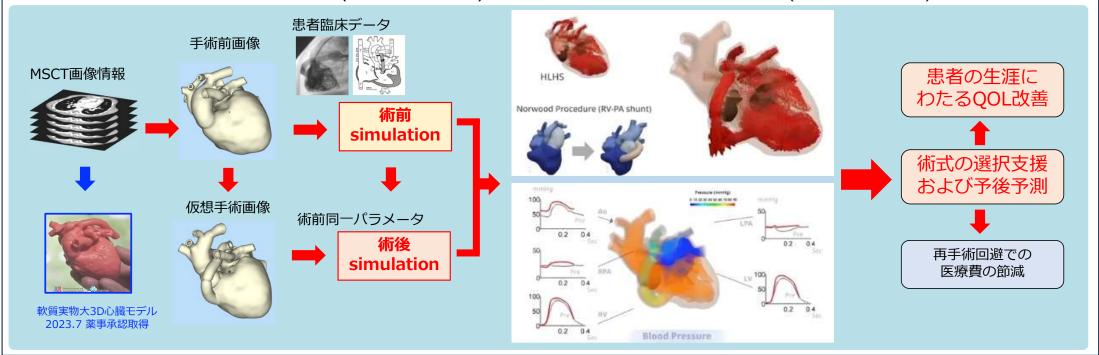


イノベーションの推進に向けた 今後の方策について

国 立 循 環 器 病 研 究 センター 理事長 大津 欣 也

革新的医薬品・医療機器・再生医療等製品創出のため の官民対話 令和5年11月13日



先天性心疾患の子どもを助けたい:心臓シミュレータ"ped UT-Heart"の開発

- 先天性心疾患小児では心臓が極めて小さく、立体構造が複雑で、疾患の種類と個人差が大きい。

- 外科手術の成功には、①心臓の立体構造の把握と、②術後の血行動態の予測が不可欠。
 - 東京大学が開発した、患者心臓をin silicoで忠実に再現できる世界最高峰のマルチスケール・マルチフィジックス心臓シミュレータ "UT-Heart"を基盤に、小児先天性心疾患に特化した"ped UT-Heart"を開発。
 - コンピュータ上に再現された患者の心臓モデルを用い、様々な治療オプションをin silicoで試した上で、外科医に最適な治療方針(術式) を提案することが可能に(Digital Twin技術)。
 - 2022年に前向き特定臨床試験を終え(AMED R2~4年度)、有用性を確認。2024年に治験を実施し(AMED R5~7年度)、薬事承認を目指す。

メディカルゲノムセンター:ゲノム医療を強力に推進する臨床-研究エコシステム

病院臨床・試料・情報

臨床検査 で開意 希少難病 多因子疾患

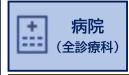
社会実装 患者環元

データシェアリング

バイオバンク情報利活用

ゲノム情報・病態分子探索

メディカルゲノムセンター


人材育成

新規技術開発

機能評価・診断・治療開発

分子機能·病態機序解析

国循3施設 支援の高 高度専門技術

再生・細胞・遺伝子治療

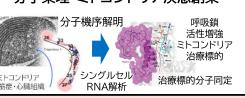
創薬開発・分子スクリーニング

機序解明・分子機能解析・診断

新規原因分子·分子標的·同定

ゲノム医療部門・遺伝子治療開発

創薬High Throughput Screening


MGCで探索した分子標的 に対してハイスループット・ ハイコンテンツイメージン グシステムを導入し独自の 創薬開発システムを構築

脳神経内科・ゲノム創薬

日本人で最も多い遺伝性循環 器疾患RNF213関連血管症 (もやもや病,脳梗塞,冠攣縮性 狭心症,末梢動脈疾患)に対する 臓器横断的な核酸医薬の開発

分子薬理・ミトコンドリア疾患創薬

国立循環器病研究センターにおいて独自に開発した技術、データ、同定分子、同定機序、最新機器等を利活用しながら、産官学連携の創薬・治療開発を目指す