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Perspective

Nalan Karunanayake

Next-generation agentic Al for transforming healthcare

Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
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Table 2

Categorization of Al agent types in healthcare with key applications, users, and technologies.

Al agents

Key applications

Healthcare categories

Main users

Key Al technologies

Image base agents

predictive analytics
agents

Conversational
agents
NLP agents

Rule base agents

Hybrid agents

ML agents

Expert system
agents

Recommender
agents

Disease diagnosis, early detection,
report generation

Risk prediction, disease progression
forecasting, patient outcomes

Symptom checking, patient triage,
virtual consultations

Processing clinical notes,
summarizing EHRs, extracting
insights

Following clinical guidelines,
alerting for drug interactions
Combining imaging, text, video,
and predictive analytics for
decisions

Disease classification, anomaly
detection, treatment planning
Emulating clinical expertise for
diagnosis and planning

Suggesting diagnostic tests,
personalized treatments

Diagnosis, Clinical decision support

Clinical Decision Support, Treatment and
Patient Care, Drug Discovery & Research

Patient Engagement and Monitoring

Operations and Administration, Clinical
Decision Support

Clinical Decision Support

Clinical Decision Support, Diagnosis,
Robot-Assisted Surgery

Diagnosis, Treatment and Patient Care,
Drug Discovery & Research

Treatment and Patient Care, Clinical
Decision Support, Robot-Assisted Surgery

Treatment and Patient Care, Clinical
Decision Support

Radiologists, Doctors

Doctors, Care Teams

Patients, General
Practitioners
Medical Coders,
Analysts

Doctors, Pharmacists

Doctors,
Radiologists,
Surgeons

Data Scientists,
Doctors

Specialists,
Researchers,
Surgeons

Doctors, Care Teams

Computer vision (CNNs, ViTs), MLLMs for
image-text integration

Predictive Modeling, including supervised
ML, ensemble methods, and time-series
analysis

NLP, Dialogue Systems, Pretrained LLMs

NLP, Pretrained LLMs

Rule-Based Reasoning, leveraging logic
programming, expert rules, knowledge graphs
Multimodal Learning

ML/DL algorithms, RL

Knowledge-based systems, rule-based systems

Collaborative filtering, recommendation
systems, RL

Large Language Models

—l | Research

s,
Medical Databases
@ |
I
. I l
Electronic Health | ! "
Records |1
I '
i I

— — —
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Healthcare
Al Agent
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Neural Networks

Medical Scans
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Fig. 1. Healthcare AI agent: Integrating multimodal data for collaborative clinical decision making.

Nalan Karunanayake, Next-generation agentic Al for transforming healthcare, Informatics and Health, 2 (2), 2025,73-83, ISSN
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