労災疾病臨床研究事業費補助金

芳香族アミン代謝に着目した膀胱発がん評価法の開発

令和4年度 総括·分担研究報告書

研究代表者 鈴木 周五

令和5(2023)年 3月

目 次	
 総括研究報告 芳香族アミン代謝に着目した膀胱発がん評価法の開発 鈴木周五 	1
 II. 分担研究報告 1. ヒト化肝臓マウスを用いた芳香族アミン代謝の役割 尿中芳香族アミン代謝物と膀胱発がんおよび機序の解明 鈴木周五 	10
2. ヒト化肝臓マウスを用いた芳香族アミン代謝の役割 尿中芳香族アミン代謝物と膀胱発がんおよび機序の解明 鰐渕英機	16
3. ヒト化肝臓マウスを用いた芳香族アミン代謝の役割 末水洋志	20
4. 尿中芳香族アミン代謝物と膀胱発がんおよび機序の解明 戸塚ゆ加里	22
III. 研究成果の刊行に関する一覧表	25

労災疾病臨床研究事業費補助金 令和4年度総合研究報告書

芳香族アミン代謝に着目した膀胱発がん評価法の開発(200601-01)

研究代表者 鈴木 周五 大阪公立大学 分子病理学 准教授

研究要旨

本研究は、芳香族アミンの代謝経路および代謝物を検討するとともに、膀胱への発がん性の有無およびそ の発がん機序を検討する事で、芳香族アミンの膀胱発がん性を包括的に評価することを目標として、ヒト化 肝臓マウスを用いた芳香族アミン代謝の役割を検討し、ラットに種々の芳香族アミンを投与し尿中代謝物と その膀胱発がん性の関係および機序の解明を試みる。本年度は、ヒト化肝臓マウスを用いた芳香族アミン代 謝の役割を検証する実験として、acetoaceto-*o*-toluidine (AAOT)を4週間投与した。その結果、肝臓の代謝 酵素 P450 は野生型マウスで Cyp2c29 の、ヒト化肝臓マウスで CYP3A4 および CYP1A2 の高発現を認め AAOT は 尿路上皮に対する細胞増殖活性の上昇傾向と DNA 傷害を確認した。4,4'-Methylenebis(2-chloroaniline) (MOCA) 投与による肝組織の代謝酵素 P450 は、野生型マウスで Cyp2c29 の発現上昇を、ヒト化肝臓マウスでは CYP2B6 および CYP2C8 の発現上昇を認めた。また、MOCA を投与したマウスにおいて、尿中に MOCA およびその 代謝物が検出された。さらに、ヒト化肝臓マウスと野生型マウスにおいて出現している MOCA 代謝物が異なる ことが確認出来た。尿中芳香族アミン代謝物と膀胱発がん性の関係および機序の解明を検証する実験とし て、0TDの尿中代謝物を主体とする芳香族アミンをラットに4週間投与する実験を行い、それぞれの尿中芳香 族アミンを測定した。その結果、単純過形成病変を認めた aceto-o-toluidide (AOTD)において、最も多い尿 中芳香族アミンは OTD であることが確認された。また、ラット膀胱上皮より DNA を抽出し、アダクトームに よる解析を行ったところ、昨年度に OTD や AAOT で見出された酸化ストレスに由来すると考えられるアダクト が AOTD においても検出された。そこで、OTD とともに内因性活性酸素誘導阻害剤 apocynin を 4 週間投与する 実験を行った結果、OTD 投与群において見られた尿路上皮の過形成病変や細胞増殖活性、DNA 傷害、酸化スト レスが、apocyninにより抑制された。また、IPAパスウェイ解析により、尿路上皮に過形成病変を認めた OTD 群、AAOT 群および AOTD 群において、共通して異常発現を示すがんや細胞増殖に関わる遺伝子群を同定した。 以上より、AAOT や MOCA の肝代謝についてヒトとマウスでの相違を確認し、MOCA においては尿中にヒト肝臓 による特異的な代謝物を確認し、ヒト膀胱発がんへの関与を示唆するとともに、ヒト化肝臓マウスがヒトへ の外挿を検討するのに非常に有用であることを示した。また、OTD 関連芳香族アミンにおける尿中代謝物と膀 胱発がんの関係性や、その発がん機序が明らかになった。さらに、OTD による膀胱発がんには酸化ストレスが 関与することが示された。これらの成果は OTD 関連膀胱発がん機序解明に繋がるものと考えられた。

研究分担者

鰐渕 英機 大阪公立大学 分子病理学 教授 末水 洋志 実験動物中央研究所 研究部門 部門長 戸塚ゆ加里 日本大学 薬学部 教授

A. 研究目的

芳香族アミンによる職業性膀胱癌の発生は社会的な 問題の一つであり、最近でも福井県の化学工場において、 *o*-toluidine(OTD)等の芳香族アミンを取り扱う従事者 から膀胱癌が発生しており、今後も類似の芳香族アミン 類による職業膀胱癌発生の危険性が存在する可能性は 高い。

我々は福井県の化学工場において、取り扱いのあった acetoaceto-*o*-toluidine(AAOT)に着目して、その毒性 や発がん性を検討した結果、動物実験により膀胱発がん 促進作用を確認するとともに、尿中にOTDおよびOTD代謝 物を検出した。これらの結果は、AAOTが既知の膀胱発が ん物質OTDに代謝され尿中に排泄されることが、膀胱発 がん促進作用に関与している可能性を示した。この成果 は、化学物質の有害性評価において、異なる物質でも類 似の代謝経路を通る化学物質が共通の有害性を持ち、包 括的な評価手法を確立出来る可能性を示した。

そこで、芳香族アミンの代謝経路および代謝物を検討 するとともに、膀胱への発がん性の有無およびその発が ん機序を検討する事で、芳香族アミンの膀胱発がん性を 包括的に評価できるかを検証した。方法として、「ヒト 化肝臓マウス」を用いて、ヒトでの芳香族アミン代謝を 実現し、芳香族アミンの代謝および膀胱発がん性につい て検討を行った。また、ラットに種々の芳香族アミンを 投与し、尿中代謝物とその膀胱発がん性を種々の方法で 検討し、膀胱に対する発がん原因となる芳香族アミン代 謝物の同定とともにその発がん機序の解明を試みた。

令和4年度は、ヒト化肝臓マウスに動物実験モデルで 膀胱発がん性を示したAAOTを投与し、ヒト肝臓での代謝 酵素発現変化や膀胱への影響について検討した。また、 ヒト化肝臓マウスに対して、ヒト膀胱に発がん性を疑わ れているものの、マウスでは膀胱発がん性を示さない 4,4'-Methylenebis(2-chloroaniline)(MOCA)を投与し たマウスの尿を用いて、尿中のMOCAおよびその代謝物に ついて検討した。さらにMOCA投与マウスの肝臓における 代謝酵素発現変化を検討した。

ラットに対しては、OTDの尿中代謝物である4-amino *m*-cresol (4AMC)、2-amino-*m*-cresol (2AMC)および aceto-*o*-toluidide (AOTD)や、福井県の化学工場におい て取り扱いのあった芳香族アミン2,4-dimethylaniline hydrochloride (2,4-DMA)を投与し、OTD関連の尿中代謝 物について検討した。また、膀胱におけるDNA損傷を HRAM-アダクトームにより検討し、DNA付加体の生成を指 標とした有害性評価の検証を行った。さらに、これまで 膀胱に過形成病変を促したOTD関連芳香族アミンにおけ る共通した遺伝子発現変化を解析し、膀胱発がん機序を 検証した。OTDの膀胱発がん機序として酸化ストレスの 関与を検証するため、内因性の活性酸素誘導酵素である NADPH oxidaseに着目し、その阻害剤apocyninを用いて、 OTDによる膀胱上皮への影響に対するapocyninの抑制効 果を検証した。

B. 研究方法

課題 1. ヒト化肝臓マウスを用いた芳香族アミン代謝 の役割

HSV thymidine kinase 変異型遺伝子を肝細胞特異的 に発現する超免疫不全 NOD/scid-IL-2rgc (NOG-TKm30 F1)マウスを交配により作出した。ガンシクロビル投 与によりマウス肝細胞を選択的に破壊した後、脾臓門 脈経由でヒト肝細胞を移植した。血中コリンエステラ ーゼ活性の上昇によりヒト肝細胞の生着を確認し、移 植に適した肝細胞ロットの選抜を行った(ロット①: 12歳女性、ロット②:31歳男性)。実験に安定供給 できる体制づくりと移植したヒト肝細胞に増殖性の良 い肝傷害条件を検討した。

上記の方法で作製したヒト化肝臓マウスおよび非移 植群のF1-TKm30 雌マウス(野生型マウス; NOG)に、 0.05% MOCA もしくは 0.3% AAOT を混餌投与した。投与 第4週目に新鮮尿を採取し、凍結保存を行った。4週 間後に麻酔下採血により屠殺・剖検し、種々の臓器を 採取した。血液は血漿を分離し凍結保存した。肝臓は 主な葉を切り出し、標本を作製するとともに、一部を 凍結保存した。凍結肝組織から RNA を抽出し、 DNBSEQ-G400RS FAST を用いた RNA-seq により肝臓での 網羅的遺伝子発現解析を行った。一部の遺伝子発現に ついて、Super Script VI VILO Maste Mix(Thermo Fisher Scientific)で cDNA を作成し、リアルタイム PCR (qPCR) にて検討した。

AAOTを投与した実験の膀胱は、膀胱腔内にホルマリンを注入固定し、標本を作製した。膀胱組織については、病理組織学的検討とともに、Ki67およびγ-H2AXの免疫組織染色を行い、それぞれの標識率を検討した。

高性能液体クロマトグラフィー四重極飛行時間型質 量分析(UPLC-Q-TOF-MS)を用いて、対照群4匹ずつ、 野生型 MOCA 投与群4匹、ヒト化肝臓マウス MOCA 投与 群5匹から採取した尿中における MOCA およびその代 謝物を検討した。

課題 2. 尿中芳香族アミン代謝物と膀胱発がんおよび 機序の解明

6週齢F344雄ラットに、0.6% 2,4-DMA、0.6% 4AMC、 0.6% 2AMCもしくは0.6% AOTDを混餌投与した。投与第4 週目に新鮮尿を採取し、凍結保存を行った。Liquid Chromatography with tandem mass spectrometry (LC-MS/MS)を用いて、各群5匹ずつ採取した尿中における芳 香族アミンおよび代謝物を測定した。測定した物質およ びその測定限界値は、それぞれ、AAOT (0.047 nmol/mL)、 OTD (0.051 nmol/mL)、AOTD (0.023 nmol/mL)、4AMC (0.127 nmol/mL)、2AMC (0.046 nmol/mL)である。

4週間後に麻酔下採血により屠殺・剖検し、膀胱を採 取した。全てのサンプルについて、Tissue Lysis Buffer を入れたすり面付き1.5mLチューブ(バイオマッシャー II)内で膀胱粘膜上皮を剥離し、Proteinase KおよびSDS を加えて反応させ、フェノール・クロロホルム法により DNA抽出を行なった。

DNA を抽出後、DNaseI、ヌクレアーゼ P1、アルカリ ホスファターゼ、ホスホジエステラーゼによりモノデ オキシリボヌクレオシドに消化した後、LC-TOF MS に 供し DNA 付加体の網羅解析を行なった。得られたデー タは SCIEX 社が提供するバイオインフォマティクス解 析ソフトウェアを用い、デオキシリボヌクレオチドに 特徴的なニュートラルロス (-116.04736)及び各種 核酸に特異的なニュートラルロス (-152.0572; dG, -136.0623; dA, -112.0511; dC, -127.0508; dT)を生 じたピークを選択的に抽出することで、ノイズなどを 抽出しないように系をデザインした。得られたデータ を主成分判別分析 (PDA-DA) により解析した。

6週齢 F344 雄ラットに対して、0 もしくは 0.6%の σ -toluidine hydrochloride を混餌投与および、0、 250、500 mg/L の apocynin を飲水投与した。4 週間後 に麻酔下採血により屠殺・剖検し、種々の臓器を採取 した。血液は血漿を分離し凍結保存した。肝臓は主な 葉を切り出し、標本を作製するとともに、一部を凍結 保存した。膀胱は、膀胱腔内にホルマリンを注入固定 し、標本を作製した。膀胱組織は、Ki67、 γ -H2AX お よび 8-OHdG の免疫組織染色および ApopTag® Peroxidase In Situ Apoptosis Detection Kit で TUNEL 染色を行い、それぞれの標識率を検討した。

また、4週間投与実験で単純過形成を惹起した OTD、AAOT および AOTD について、マイクロアレイ解析 を行い、その共通する遺伝子発現変動を同定し、 Ingenuity Pathways Analysis (IPA)を用いて膀胱発 がん機序について検討した。

(倫理面への配慮)

本研究で行う動物実験にあたっては、大阪公立大学 を含む各施設における動物実験委員会から動物実験の 許可を得、動物実験指針を遵守して行い、動物愛護に 十分に配慮した。

C. 研究結果

課題1. ヒト化肝臓マウスを用いた芳香族アミン代謝 の役割

昨年度に続き、肝傷害誘導法の最適化を行った。ガン

シクロビルとして点滴静注用製剤デノシンとバルガン シクロビルとして経口投与用製剤バリキサ(ドライシロ ップ)、研究用試薬 ValGCVを検討した。その結果、経 ロ投与用製剤バリキサ(ドライシロップ)投与による肝 傷害誘導法が比較的安定していることがわかった。本年 度は、メスNOG-TKm30 F1マウスに0.175, 0.2 mg/mL の バリキサ含有飲用水を72時間投与するプロトコールを 施行した。0.175 mg/mLバリキサ投与群の血中ALTレベル は平均406 U/L (45匹)、0.2 mg/mL投与群では平均505 U/L(46匹)であり容量依存性が確認できた。ヒト肝細 胞移植に適した血中ALTレベル(600-1,500 U/L)を呈し たマウスにロット①および②のヒト肝細胞を移植し、高 キメラマウスを作製した。その結果、①細胞移植による ヒト化肝臓マウス6匹の平均血中コリンエステラーゼ活 性は408U/L、②細胞移植によるヒト化肝臓マウス6匹の 平均血中コリンエステラーゼ活性は482U/Lといずれの 細胞でも高値を示した。これらのマウスを芳香族アミン 類の実験に使用した(表1)。

表1. ヒト化肝臓マウスにおけるコリンエステラーゼ(ChE)に よる推定置換率

ロット	動物番号	ChE (U/L)	推定置換率
1	1-1	370	76%
1	1 -2	425	87%
1	①-3	425	87%
1	1)-4	480	>90%
1	1)-5	405	83%
1	1 -6	340	70%
2	②-1	440	>90%
2	②-2	455	>90%
2	②-3	440	>90%
2	②-4	475	>90%
2	②-5	580	>90%
2	2-6	500	>90%

<MOCA 投与実験>

肝臓における代謝酵素P450の発現についてRNA-seqを 用いて検討した結果、野生型マウスにおいてMOCA投与に よりヒトCYP2C9/19グループに属するCyp2c29を主体に 発現の上昇を認めた。一方、ヒト化肝臓マウスにおいて は、MOCA投与によりCYP2B6および2C8の発現上昇を認め た(表2)。

肝臓における遺伝子発現について、qPCRにより検証 した結果、MOCA 投与により野生型マウスで Cyp2c29 の、ヒト化肝臓マウスでの CYP2B6 および CYP2C8 の有 意な発現上昇を認めた。一方、野生型マウスの Cyp2a4 は上昇傾向を認めるものの有意差は見られなかった。 また、もう一つの代謝酵素 *N*-acetyltransferase (NAT)は一部で上昇傾向を示すものの、野生型マウス およびヒト化肝臓マウスいずれにおいても有意な差は 見られなかった(図1)。

MOCAを投与したマウスの尿中代謝物に対する解析結 果を図2に示す。尿中には多数の物質が検出され、MOCA を投与したヒト化肝臓マウスおよび野生型マウスいず れにおいてもMOCAの存在が確認出来た。また、対照群に 存在しないMOCA代謝物を考えるピークも確認した。ま た、MOCA投与群に着目してピークを検討した結果、ヒト 化肝臓マウスと野生型マウスで異なるピークが存在し、 異なるMOCA代謝物と推察された(図3)。

表2. MOCA投与による肝臓の主なP450発現変動

Cono	Mausa gana	N	OG	Human	Human		
groups	name	Control (CPM)	MOCA (CPM)	gene name	Control (CPM)	MOCA (CPM)	
CYP1A2	Cyp1a2	418 ± 50	406 ± 45	CYP1A2	1395 ± 249	1277 ± 104	
CYP2A6	<mark>Cyp2a4</mark> Cyp2a5	<mark>300 ± 116</mark> 340 ± 127	<mark>619 ± 289</mark> 396 ± 97	CYP2A6	642 ± 167	803 ± 38	
CYP2B6	Cyp2b9 Cyp2b13	603 ± 44 308 ± 41	586 ± 115 292 ± 44	CYP2B6	222 ± 23	608 ± 119	
CYP2C8	Cyp2c37 Cyp2c50	676 ± 90 857 ± 92	774 ± 101 1082 ± 68	CYP2C8	925 ± 150	1487 ± 168	
CYP2C9	Cyp2c29 Cyp2c38	1321 ± 307 462 ± 72	3190 ± 154 427 ± 50	CYP2C9	1220 ± 188	1429 ± 145	
CYP2C19	Cyp2c29 Cyp2c38 Cyp2c39	1321 ± 307 462 ± 72 1051 ± 81	3190 ± 154 427 ± 50 1024 ± 103	CYP2C19	136 ± 31	201 ± 17	
CYP2D6	Cyp2d22 Cyp2d26	389 ± 48 837 ± 117	359 ± 16 793 ± 61	CYP2D6	1059 ± 152	1107 ± 77	
CYP2E1	Cyp2e1	5988 ± 301	5055 ± 518	CYP2E1	8475 ± 1853	8651 ± 752	
CYP2F1	Cyp2f2	1414 ± 204	1400 ± 137	CYP2F1	-	-	
CYP3A4	Cyp3a11	4548 ± 818	4595 ± 1050	CYP3A4	2287 ± 1030	2409 ± 802	
CYP3A43	Cyp3a41a	331 ± 287	1251 ± 1215	CYP3A43	3 ± 2	5 ± 3	
CYP4A11	Cyp4a10	1647 ± 134	1464 ± 396	CYP4A11	600 ± 137	594 ± 159	

Log Humanized NOG Humanized NOG Humanized Work Rev 1. MOCAによる野生型マウスおよびヒト化肝臓マウスの肝 遺伝子発現変動

MOCA Co

rol MOCA

<AAOT 投与実験>

実験期間中にいずれの群においても、体重減少など毒性を示す所見は見られなかった。また、ヒト化肝臓マウスでは、野生型マウスに比べ肝の絶対および相対重量が高かった。野生型マウスのAAOT投与群では、相対肝重量が、ヒト化肝臓マウスのAAOT投与群では、絶対および相対肝重量の有意な増加を認めた(表3)。

表3. 実験開始および屠殺時体重および肝重量

	Tractmont	No. of	Body we	eight (g)	Liv	er
	rreatment	mice	Start	End	Absolute (g)	Relative (%)
NOG	Control	3	28.7 ± 2.0	30.0 ± 1.0	1.15 ± 0.12	3.8 ± 0.3
NOG	AAOT	3	28.4 ± 0.9	29.5 ± 0.6	1.35 ± 0.11	$4.6 \pm 0.3^*$
Humanized	Control	3	23.3 ± 1.4	26.9 ± 0.4	2.59 ± 0.07	9.6 ± 0.3
Humanized	AAOT	3	23.2 ± 0.5	26.1 ± 1.3	2.90 ± 0.17*	11.1 ± 0.2**

* P < 0.05 compared to each Control

肝臓における代謝酵素P450の発現についてRNA-seqを 用いて検討した結果、野生型マウスにおいてAAOT投与に よりヒトCYP2C9/19グループに属するCyp2c29を主体に 発現の上昇を認めた。一方、ヒト化肝臓マウスにおいて は、AAOT投与によりCYP1A2および2C8の発現上昇を認め、 OTDで発現上昇したCYP3A4は上昇傾向を示すものの発現 差は大きくなかった(表4)。

肝臓における遺伝子発現について、qPCRにより検証した結果、AAOT投与により野生型マウスでCyp2c29および Cyp3a11の有意な発現上昇を認めた。一方、ヒト化肝臓 マウスにおいてはCYP1A2の有意な発現上昇を認めた一 方で、CYP3A4は上昇傾向を認めるものの有意差は見られ なかった。また、もう一つの代謝酵素であるNATは一部 で上昇傾向を示すものの、野生型マウスおよびヒト化肝 臓マウスいずれにおいても有意な差は見られなかった (図4)。

表4. AAOT投与による肝臓の主なP450発現変動

le oform	Mouro	NC	DG	Human	Humanized		
aroups	gene name	Control	AAOT	dene name	Control	AAOT	
3	3	(TPM)	(TPM)	3	(TPM)	(TPM)	
CYP1A2	Cyp1a2	407	772	CYP1A2	952	2862	
CYP2A6	Cyp2a5	298	1375	CYP2A6	718	894	
CYP2C8	Cyp2c29	1324	10859	CYP2C8	1055	1443	
	Cyp2c38	305	370				
	Cyp2c39	777	930				
CYP2C9/19	Cyp2c29	1324	10859	CYP2C9	1457	1847	
	Cyp2c37	658	1364	CYP2C19	62	105	
	Cyp2c39	777	930				
	Cyp2c50	915	1701				
CYP2E1	Cyp2e1	7633	5603	CYP2E1	8660	10945	
CYP2F1	Cyp2f2	1183	1271	CYP2F1	0	0	
CYP3A4	Cyp3a11	4785	7253	CYP3A4	2537	3043	
	Cyp3a13	26	38				
	Cyp3a25	675	654				
	Cyp3a41a	212	399				

NOG: NOG-TKm30 mice; Humanized: humanized-liver mice; TPM: transcripts per million

図4. AAOTによる野生型マウスおよびヒト化肝臓マウスの肝 遺伝子発現変動

膀胱組織を検討した結果、いずれのマウス群において もAAOT投与による単純過形成病変など、病変として診断 しえる組織学的な変化は見られなかった(図5)。また、 細胞増殖活性の指標であるKi67の陽性率を検討した結 果、野生型マウスおよびヒト化肝臓マウスいずれもOTD 投与により陽性率の上昇傾向を認めたものの有意差は 見られなかった(図6)。一方、DNA傷害の指標である γ-H2AXの陽性率は野生型マウスおよびヒト化肝臓マウ スいずれもOTD投与により有意な上昇を認めた(図6)。

図5. 野生型マウスおよびヒト化肝臓マウスの膀胱組織像

図6. 膀胱尿路上皮におけるKi67およびγ-H2AXの陽性率

課題 2. 尿中芳香族アミン代謝物と膀胱発がんおよび 機序の解明

ラットに2,4-DMAもしくは、OTD尿中代謝物を投与した 実験において、尿中の芳香族アミンおよび代謝物につ いて解析した結果を、表5に示す。単純過形成病変を認 めたAOTD投与群において、尿中にOTDが高い濃度割合で 検出された。一方、2AMCでは尿中に多量の2AMCが存在し た。また、4AMCでは他のOTD関連芳香族アミンに比べ、 検出できた芳香族アミンは少なかった。2,4-DMA投与群 では、OTD関連芳香族アミンの尿中排泄は見られなかっ た。

表5. 尿中の芳香族アミンおよび代謝物の量

-							
Treatment	No. of rat	AAOT	OTD	NAOTD	4AMC	2AMC	Total AAs
Control	5	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
2,4-DMA	5	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
2AMC	5	N.D.	N.D.	0.2 ± 0.0	1.0 ± 0.8	11812.1 ± 2730.2	11813.9 ± 2730.4
4AMC	5	N.D.	N.D.	0.2 ± 0.1	356.2 ± 160.3	12.2 ± 2.1	369.3 ± 161.7
AOTD	5	N.D.	7757.3 ± 1648.7	215.9 ± 37.6	120.3 ± 115.5	35.5 ± 9.3	8129.0 ± 1761.9

膀胱上皮におけるDNA付加体の結果を基にPCA解析を 行ったところ、各群にクラスタリングされたが、中でも ラット膀胱粘膜に高頻度で単純過形成病変が観察され たAOTDが、コントロールと大きく離れてクラスタリング された(図7)。クラスタリングに寄与するアダクトの 探索を行ったところ、前年度の研究で見出された酸化ス トレスに由来するアダクト(8-0H-dA)の寄与が大きいこ とがわかった(図8、9)。

図9. AOTD群に特徴的なアダクトの同定

OTDとapocyninを投与した実験において、試験期間中、 OTDを投与した群いずれも対照群に比べ、体重増加抑制 傾向を認めた。屠殺・剖検時の体重はいずれも有意に抑 制された。また、OTDを投与した群はいずれも相対肝重 量の増加を認めた。一方、apocynin投与による体重や肝 重量に対する影響は見られなかった。摂餌量や飲水量に 群間で大きな差は見られなかった(表6)。

表6. 体重、肝重量および摂餌・飲水量

	-							
Treatment	No. of rot	Body weig	Body weight		Liver (No. = 6)		Consumption	
	NO. OFTAL	(g)		Absolute (g)	Relative (%)	Food (g/day)	Water (g/day)	
OTD	12	215.1 ±	5.9 **	8.9 ± 0.5	4.1 ± 0.2***	11.5 ± 2.0	20.1 ± 2.0	
OTD+APOL	12	214.1 ±	8.9 ***	9.0 ± 0.7	4.1 ± 0.1***	11.8 ± 1.7	20.5 ± 1.8	
OTD+APOH	12	213.1 ±	6.7 ***	9.0 ± 0.2	4.2 ± 0.1***	11.7 ± 1.9	19.1 ± 2.0	
Control	6	232.0 ± 1	11.3	8.5 ± 0.5	3.7 ± 0.1	12.9 ± 1.4	20.1 ± 1.0	
APOH	6	237.2 ±	8.5	8.8 ± 0.3	3.7 ± 0.0	13.3 ± 1.3	20.1 ± 0.6	
* *** P< 0.05 an	d 0 001 vs Contro	l respectively						

OTD: o-toluidide; APO: apocynin; L: low dose (250 mg/L); H: high dose (500 mg/L)

膀胱を組織学的に検討した結果、OTD投与群において 単純過形成病変(simple hyperplasia)が対照群に比べ 有意に増加していた。特にOTD単独投与群では、異型の 強い中等度以上の過形成病変を認めるラットが多く存 在した。一方、OTD投与とともにapocyninを投与した群 では、濃度依存性に軽度過形成病変までに留まるラット が増えた。また、OTD投与で細胞増殖活性の指標である Ki67、DNA傷害の指標であるγ-H2AXおよび酸化ストレス の指標である8-OHdGの陽性率が、いずれも対照群に比べ 有意に増加していた。その増加に対して、apocyninの投 与で、Ki67は500 mg/L投与群で、γ-H2AXおよび8-OHdG は250、500 mg/L投与群いずれも有意な抑制を認めた。 アポトーシスについて検証するため、TUNEL陽性率を検 討したが、いずれの群間でも有意な差が見られなかった (表7)。

表7. 膀胱尿路上皮病変、Ki67、TUNEL、γ-H2AXおよび8-OHdG 陽性率

Troatmont	No. of rat	Simple hyperplasia ^{a,#}		Ki67 (%)	TUNEL (%)	11 HOAX (%)	
rreatment	NO. OF IAL	Mild	Moderate	NO7 (78)	TONLE (76)	γ-112AX (70)	0-0110G (78)
OTD	12	2	10	2.1 ± 0.7^{a}	0.7 ± 0.3	1.7 ± 0.7 ^a	1.7 ± 0.3 ^a
OTD+APOL	12	3	9	1.5 ± 0.9	0.6 ± 0.3	1.0 ± 0.4**	1.2 ± 0.2***
OTD+APOH	12	6	5	0.9 ± 0.4***	0.5 ± 0.2	0.7 ± 0.3***	0.9 ± 0.2***
Control	6	0	0	0.7 ± 0.4	0.7 ± 0.6	0.2 ± 0.1	0.3 ± 0.1
APOH	6	0	0	0.6 ± 0.4	0.6 ± 0.6	0.3 ± 0.1	0.3 ± 0.1
*:P<0.001 vs Contro	l; [#] : Rho = -0.37,	P< 0.05; **, **	*: P< 0.01 and 0.00	1 vs OTD, respectively	/		

これまでに芳香族アミンを4週間投与した実験の膀胱 上皮について、網羅的遺伝子発現解析を行った結果、ラ ット膀胱に単純過形成病変を認めたOTD、AAOTおよび AOTD投与群において共通して発現変動を認めた遺伝子 として、上昇遺伝子47、低下遺伝子33の合計80遺伝子が 同定された(表8)。

表8. 芳香族アミン投与により発現変動を認めた遺伝子数

Treatment	Up-regulated genes	Down-regulated genes	Total genes
AAOT	309	239	548
OTD	413	428	841
AAOT	723	458	1181
All aromatic amines	47	33	80

IPAを用いて機能について解析を行った結果、 「Cancer」や「Cellular Growth and Proliferation」 など、膀胱発がんに関連する可能性がある遺伝子群が 同定されていた(表9)。

そのうち、「Cancer」や「Organismal Injury and Abnormalities」 に属する腫瘍関連因子として 「Invasive tumor」や「Advanced malignant tumor」、

「Metastasis」が選出された。それらの因子に共通する 12遺伝子が確認され、膀胱発がんに関与する可能性を 示した(表10)。

表9. OTD、AAOTおよびAOTD投与群で共通して変動する遺伝子の機能に基づいた分類

Diseases and Disorders	p-value range	# Molecules
Organismal Injury and Abnormalities	3.93E-03 - 1.73E-07	43
Cancer	3.93E-03 - 1.18E-06	43
Skeletal and Muscular Disorders	3.93E-03 - 1.18E-06	18
Molecular and Cellular Functions	p-value range	# Molecules
Drug Metabolism	3.96E-03 - 6.41E-08	11
Cellular Growth and Proliferation	3.60E-03 - 2.46E-06	24
Cellular Development	3.60E-03 - 3.52E-06	22
Physiological System Development and Function	p-value range	# Molecules
Connective Tissue Development and Function	3.96E-03 - 2.46E-06	13
Tissue Development	3.96E-03 - 2.46E-06	18
Skeletal and Muscular System Development and Function	1.98E-03 - 2.69E-06	9

表10. 膀胱発がんに関与する因子

Categories	Diseases or Functions Annotation	p-value	Predicted Activation State	Activation	Molecules
	Invasive tumor	2.82E-05	Increased	2.765	AQP1, Elf5, FHIT, FN1, FSCN1, HPSE KRT20, MMP13, NQ01, PDGFRA, POSTN, RGS4, RRM2, VCAN
Cancer Organismal Injury	Advanced malignant tumor	5.17E-05	Increased	2.586	AQP1, Elf5, FN1, FSCN1, HPSE, IGFBP4, KRT20, NQO1, PDGFRA, POSTN, RGS4, RRM2, VCAN
and Abnormanites	Metastasis	0.0001	Increased	2.586	AQP1, Elf5, FN1, FSCN1, HPSE, KRT20, NQO1, PDGFRA, POSTN, RCS4, PDM2, VCAN

D. 考察

課題 1. ヒト化肝臓マウスを用いた芳香族アミン代謝 の役割

令和3年度の実験において、ヒト化肝臓マウスのみ MOCA投与による膀胱粘膜上皮の単純過形成病変形成と、 細胞増殖活性やアポトーシスの誘導を認めた。この結 果は、MOCAのヒト肝臓における代謝がマウスとは異な り、膀胱発がん要因となる代謝物を尿中に排泄してい る可能性を示した。

今回、その発がん性に関わると考えられる肝臓の代 謝酵素について検討した結果、野生型マウスにおいて はOTDと同様にMOCA投与によりヒトCYP2C9/19グループ に属するCyp2c29を主体に発現の上昇を認めた。一方で ヒト化肝臓マウスにおいては、MOCA投与によりCYP2B6お よび2C8の発現上昇を認め、OTDで見られたCYP3A4の発現 上昇は見られず、MOCA特異的な酵素発現変動を認めた。

また、MOCAを投与したヒト化肝臓マウスおよび野生 型マウスの尿中MOCAおよび代謝物について検討したが、 MOCAおよび代謝物のピークが存在するとともに、ヒト 化肝臓マウスと野生型マウスで異なる代謝物のピーク を確認出来たことは、MOCA投与による膀胱への影響が 異なった結果を反映する有益なデータである。ヒト化 肝臓マウスで検出できたMOCA代謝物に着目し、膀胱発 がん物質の同定および機序の解明していきたい。

AAOT投与による肝臓の代謝酵素について検討した結 果、野生型マウスにおいてはOTDと同様にMOCA投与によ りヒトCYP2C9/19グループに属するCyp2c29を主体に発 現の上昇を認めた。一方でヒト化肝臓マウスにおいては、 OTDで見られたCYP3A4の発現上昇は見られたものの有意 差は見られなかった。NATについてはOTDと同様に有意な 発現上昇は見られなかった。

また、膀胱への影響を検証した結果、野生型マウスお よびヒト化肝臓マウスいずれにおいても組織学的な変 化は見られないものの、細胞増殖活性の上昇傾向ととも に、DNA傷害の指標であるγ-H2AXの有意な増加を認めた。 ラット膀胱よりも感受性は低いものの、AAOT投与による 膀胱への発がん影響が推察される結果で、DNA傷害が細 胞増殖活性よりも感受性が高い可能性を示した。今後、 尿中代謝物も含め、ヒト肝臓による代謝の特異性や影響 をまとめ、ヒトへの外挿に取り組みたい。

課題 2. 尿中芳香族アミン代謝物と膀胱発がんおよび 機序の解明

ラットに2,4-DMAもしくは、OTD尿中代謝物を投与した 実験において、膀胱への影響を認めたAOTDのみ尿中に OTDが存在したことは、AOTDが肝臓で代謝され、OTDが発 生したと推察する。前回のAAOTおよびOTD投与群の尿中 芳香族アミン代謝物の結果と合わせて検討するに、膀 胱に過形成病変を認めた群ではいずれも尿中に高濃度 のOTDが確認され、尿中OTDが膀胱発がんに重要な物質 である可能性が示された。一方、2AMCでは尿中に多くの 2AMCが存在し、代謝されずに尿中排泄されていると考 えられた。また、4AMCでは他のOTD関連芳香族アミンに 比べ、検出できた芳香族アミンは少なく、抱合体を形成 し尿中排泄されている可能性を示した。

また、膀胱粘膜より抽出したDNAを用いアダクトーム 解析を行ったところ、昨年度の解析で抽出された酸化 ストレス由来のアダクトの生成がAOTD群においても確 認された。このことから、OTD、AAOTおよびAOTDのラッ ト膀胱粘膜毒性は酸化ストレスによるものである可能 性が明らかになった。

そのOTDによる膀胱発がんに対する酸化ストレスの 関与について検証した結果、ラットにOTDを投与した際 の膀胱上皮に発生する単純過形成病変や、細胞増殖活 性、DNA傷害、酸化ストレスに対して、apocyninが濃度 依存性に抑制したことは、OTDによる膀胱発がん機序に は酸化ストレスの関与が存在することが示された。

また、OTD、AAOTおよびAOTD群に共通した遺伝子発現 変化を検討した結果、Cancerや細胞増殖に関わる遺伝子 を同定し、腫瘍関連因子として「Invasive tumor」や 「Advanced malignant tumor」、「Metastasis」が選出 された。その共通する12遺伝子に着目し、OTD関連膀胱 発がん機序解明を行っていく予定である。

E. 結論

AAOTやMOCAの肝代謝についてヒトとマウスでの相違 を確認し、MOCAにおいては尿中にヒト肝臓による特異的 な代謝物を確認し、ヒト膀胱発がんへの関与を示唆する とともに、ヒト化肝臓マウスがヒトへの外挿を検討する には非常に有用であることを示した。また、OTD関連芳 香族アミンにおける尿中代謝物と膀胱発がんの関係性 や、その発がん機序が明らかになった。さらに、OTDに よる膀胱発がんには酸化ストレスが関与することが示 された。これらの成果はOTD関連膀胱発がん機序解明に 繋がるものと考えられた。

F. 健康危険情報

今回の研究において得られた成果の中で、健康危険 情報に該当する情報は得られなかった。

G. 研究発表

1. 論文発表

1) Yokota Y, <u>Suzuki S</u>, Gi M, Yanagiba Y, Yoneda

N, Fujioka M, Kakehashi A, Koda S, <u>Suemizu H</u>, <u>Wanibuchi H</u>. o-Toluidine metabolism and effects in the urinary bladder of humanizedliver mice. Toxicology. 2023; 488: 153483.

- 2) Uehara S, Higuchi Y, Yoneda N, Kato H, Yamazaki H, <u>Suemizu H</u>. The Unique Human N10-Glucuronidated Metabolite Formation from Olanzapine in Chimeric NOG-TKm30 Mice with Humanized Livers. Drug Metab Dispos. 2023; 51: 480-91.
- 3) Shiode Y, Kodama T, Shigeno S, Murai K, Tanaka S, Newberg JY, Kondo J, Kobayashi S, Yamada R, Hikita H, Sakamori R, <u>Suemizu H</u>, Tatsumi T, Eguchi H, Jenkins NA, Copeland NG, Takehara T. TNF receptor-related factor 3 inactivation promotes the development of intrahepatic cholangiocarcinoma through NF-kappaB-inducing kinase-mediated hepatocyte transdifferentiation. Hepatology. 2023; 77: 395-410.
- 4) Uehara S, Murayama N, Higuchi Y, Yoneda N, Yamazaki H, <u>Suemizu H</u>. Comparison of mouse and human cytochrome P450 mediated-drug metabolising activities in hepatic and extrahepatic microsomes. Xenobiotica. 2022; 52: 229-39.
- 5) Uehara S, Iida Y, Ida-Tanaka M, Goto M, Kawai K, Yamamoto M, Higuchi Y, Ito S, Takahashi R, Kamimura H, Ito M, Yamazaki H, Oshimura M, Kazuki Y, <u>Suemizu H</u>. Humanized liver TK-NOG mice with functional deletion of hepatic murine cytochrome P450s as a model for studying human drug metabolism. Sci Rep. 2022; 12: 14907.
- 6) Tamaki Y, Shibata Y, Hayakawa M, Kato N, Machii A, Ikeda Y, Nanizawa E, Hayashi Y, <u>Suemizu H</u>, Ito H, Ishikawa T. Treatment with hepatocyte transplantation in a novel mouse model of persistent liver failure. Biochem Biophys Rep. 2022; 32: 101382.
- 7) Tagami M, Kakehashi A, Katsuyama-Yoshikawa A, Misawa N, Sakai A, <u>Wanibuchi H</u>, Azumi A, Honda S. FOXP3 and CXCR4-positive regulatory T cells in the tumor stroma as indicators of tumor immunity in the conjunctival squamous cell carcinoma microenvironment. PLoS One. 2022; 17: e0263895.
- 8) <u>Suzuki S</u>, Asai K, Gi M, Kojima K, Kakehashi A, Oishi Y, Matsue T, Yukimatsu N, Hirata K, Kawaguchi T, <u>Wanibuchi H</u>. Response biomarkers of inhalation exposure to cigarette smoke in the mouse lung. J Toxicol Pathol. 2022; 35: 247-54.
- 9) Saleh DM, Luo S, Ahmed OHM, Alexander DB, Alexander WT, Gunasekaran S, El-Gazzar AM, Abdelgied M, Numano T, Takase H, Ohnishi M,

Tomono S, Hady R, Fukamachi K, Kanno J, Hirose A, Xu J, <u>Suzuki S</u>, Naiki-Ito A, Takahashi S, Tsuda H. Assessment of the toxicity and carcinogenicity of double-walled carbon nanotubes in the rat lung after intratracheal instillation: a two-year study. Part Fibre Toxicol. 2022; 19: 30.

- 10) Oikawa D, Gi M, Kosako H, Shimizu K, Takahashi H, Shiota M, Hosomi S, Komakura K, <u>Wanibuchi H</u>, Tsuruta D, Sawasaki T, Tokunaga F. OTUD1 deubiquitinase regulates NF-kappaB- and KEAP1-mediated inflammatory responses and reactive oxygen species-associated cell death pathways. Cell Death Dis. 2022; 13: 694.
- 11) Narita T, Tsunematsu Y, Miyoshi N, Komiya M, Hamoya T, Fujii G, Yoshikawa Y, Sato M, Kawanishi M, Sugimura H, Iwashita Y, <u>Totsuka</u> <u>Y</u>, Terasaki M, Watanabe K, Wakabayashi K, Mutoh M. Induction of DNA damage in mouse colorectum by administration of colibactinproducing escherichia coli, isolated from a patient with colorectal cancer. In Vivo. 2022; 36: 628-34.
- 12) Nagai M, Iemura K, Kikkawa T, Naher S, Hattori S, Hagihara H, Nagata KI, Anzawa H, Kugisaki R, <u>Wanibuchi H</u>, Abe T, Inoue K, Kinoshita K, Miyakawa T, Osumi N, Tanaka K. Deficiency of CHAMP1, a gene related to intellectual disability, causes impaired neuronal development and a mild behavioural phenotype. Brain Commun. 2022; 4: fcac220.
- 13) Murai K, Kodama T, Hikita H, Shimoda A, Fukuoka M, Fukutomi K, Shigeno S, Shiode Y, Motooka D, Higuchi Y, Miyakawa K, <u>Suemizu H</u>, Ryo A, Tahata Y, Makino Y, Yamada R, Sakamori R, Tatsumi T, Takehara T. Inhibition of nonhomologous end joining-mediated DNA repair enhances anti-HBV CRISPR therapy. Hepatol Commun. 2022; 6: 2474-87.
- 14) Miura T, Uehara S, Shimizu M, <u>Suemizu H</u>, Yamazaki H. Forward and reverse dosimetry for aniline and 2,6-dimethylaniline in humans extrapolated from humanized-liver mouse data using simplified physiologically based pharmacokinetic models. J Toxicol Sci. 2022; 47: 531-8.
- 15) Matsue T, Gi M, Shiota M, Tachibana H, <u>Suzuki</u> <u>S</u>, Fujioka M, Kakehashi A, Yamamoto T, Kato M, Uchida J, <u>Wanibuchi H</u>. The carbonic anhydrase inhibitor acetazolamide inhibits urinary bladder cancers via suppression of beta-catenin signaling. Cancer Sci. 2022; 113: 2642-53.
- 16) Kondo N, Sakurai Y, Takata T, Kano K, Kume K, Maeda M, Takai N, <u>Suzuki S</u>, Eto F, Kikushima K, <u>Wanibuchi H</u>, Miyatake SI, Kajihara T, Oda

S, Setou M, Aoki J, Suzuki M. Persistent elevation of lysophosphatidylcholine promotes radiation brain necrosis with microglial recruitment by P2RX4 activation. Sci Rep. 2022; 12: 8718.

- 17) Kobayashi T, Kishimoto S, Watanabe S, Yoshioka Y, Toyoda T, Ogawa K, Watanabe K, <u>Totsuka Y</u>, Wakabayashi K, Miyoshi N. Cytotoxic homo- and hetero-dimers of otoluidine, o-anisidine, and aniline formed by in vitro metabolism. Chem Res Toxicol. 2022; 35: 1625-30.
- 18) Kabbani M, Michailidis E, Steensels S, Fulmer CG, Luna JM, Le Pen J, Tardelli M, Razooky B, Ricardo-Lax I, Zou C, Zeck B, Stenzel AF, Quirk C, Foquet L, Ashbrook AW, Schneider WM, Belkaya S, Lalazar G, Liang Y, Pittman M, Devisscher L, <u>Suemizu H</u>, Theise ND, Chiriboga L, Cohen DE, Copenhaver R, Grompe M, Meuleman P, Ersoy BA, Rice CM, de Jong YP. Human hepatocyte PNPLA3-148M exacerbates rapid nonalcoholic fatty liver disease development in chimeric mice. Cell Rep. 2022; 40: 111321.
- 19) Deguchi S, Tanaka H, <u>Suzuki S</u>, Natsuki S, Mori T, Miki Y, Yoshii M, Tamura T, Toyokawa T, Lee S, Muguruma K, <u>Wanibuchi H</u>, Ohira M. Clinical relevance of tertiary lymphoid structures in esophageal squamous cell carcinoma. BMC Cancer. 2022; 22: 699.
- 2. 学会発表
- <u>鈴木周五</u>、魏民、藤岡正喜、梯アンナ、<u>鰐渕英機</u>.
 職業性膀胱がん関連芳香族アミン類の尿中代謝物 と膀胱尿路上皮への影響.第111回日本病理学会総 会、神戸(2022年4月)
- 梯アンナ、<u>鈴木周五</u>、魏民、<u>鰐渕英機</u>. 肝発がんに おける新規標的分子ターゲットとしてのCanopy homolog 2の役割. 第111回日本病理学会総会、神戸 (2022年4月)
- <u>戸塚ゆ加里</u>.集学的アプローチによる化学物質の 遺伝毒性評価の現状と将来展望.第49回日本毒性 学会学術年会、札幌(2022年6月)
- <u>鰐渕英機</u>. ヒ素による発がん機序の解明. 第49回日本毒性学会学術年会、札幌(2022年6月)
- 5) <u>鰐渕英機</u>. 有機ヒ素化合物の長期毒性・発がん性 機序の研究. 第49回日本毒性学会学術年会、札幌 (2022年7月)
- 6) 鈴木周五、魏民、藤岡正喜、梯アンナ、<u>鰐渕英機</u>. 職業性ばく露を認めた*o*-toluidineの尿中代謝物 と膀胱尿路上皮への影響.第49回日本毒性学会学 術年会、札幌(2022年7月)
- 7) 魏民、<u>鈴木周五</u>、藤岡正喜、梯アンナ、<u>鰐渕英機</u>. 1,4-ジオキサンの肝発がん機序の解明と定量的発 がんリスク評価.第49回日本毒性学会学術年会、札 幌(2022年7月)
- 8) 小宮雅美、<u>鈴木周五</u>、魏民、<u>鰐渕英機、戸塚ゆ加里</u>.

芳香族アミンの膀胱がんメカニズムの解析.第 29 回日本がん予防学術大会、京都(2022年7月)

- 9) 小林琢磨、豊田武士、吉岡泰淳、岸本真治、松下幸 平、赤根弘敏、小川久美子、渡辺賢二、高村岳樹、 <u>戸塚ゆ加里</u>、若林敬二、三好規之. 細胞毒性を有 する o-Toluidine と o-Anisidine の尿中代謝物は ラット膀胱上皮で ALDH1A1 を誘導する. 第 29 回 日本がん予防学術大会、京都(2022 年 7 月)
- Yukari Totsuka. New horizons of DNA adductome for exploring environmental causes of cancer. 13th ICEM, Ottawa, Canada (2022年8月)
- 11) Kobayashi T, Yoshioka Y, Kishimoto S, Watanabe K, <u>Totsuka Y</u>, Wakabayashi K, Miyoshi N. In vitro metabolic dynamics for psemidine-type homo- and hetero-dimerization of monocyclic aromatic amines. 13th ICEM, Ottawa, Canada (2022 年 8 月)
- 12) <u>鈴木周五</u>、魏民、藤岡正喜、梯アンナ、<u>鰐渕英機</u>. 芳香族アミンによる職業性膀胱がん. 第81回日本 癌学会学術総会、横浜(2022年9月)
- 13) <u>戸塚ゆ加里</u>、小宮雅美、松田知成、加藤護. Next generation sequencing technology elucidates the association between environmental factors and human cancer development. 第81回日本癌学 会学術総会、横浜(2022年9月)
- 14) 小宮雅美, 落合雅子, 今井俊夫, <u>戸塚ゆ加里</u>.
 Establishment of novel genotoxicity assay system using organoids derived from murine normal epithelial tissues. 第81回日本癌学会学 術総会、横浜 (2022年9月、横浜)
- 15) 帶金明日香、小宮雅美、<u>鈴木周五</u>、魏民、<u>鰐渕英機</u>、 <u>戸塚ゆ加里</u>. 職業性膀胱がん候補化学物質による DNA付加体の網羅的解析. 第81回日本癌学会学術 総会、横浜(2022年9月)
- 16) 魏民、<u>鈴木周五</u>、山下聡、藤岡正喜、梯アンナ、山本与毅、邱桂ユウ、<u>鰐渕英機</u>.遺伝子セットを用いた遺伝毒性肝発がん物質超短期検出法.第81回日本癌学会学術総会、横浜(2022年9月)
- 17)藤岡正喜、魏民、<u>鈴木周五</u>、大石裕司、邱桂ユウ、 梯アンナ、<u>鰐渕英機</u>.マウス経胎盤曝露モデルに おけるジフェニルアルシン酸(DPAA)のエピジェネ ティック修飾異常を介した肝発がんの亢進.第81 回日本癌学会学術総会、横浜(2022年9月)
- 18)藤岡正喜、魏民、<u>鈴木周五</u>、大石裕司、梯アンナ、 邱桂鈺、芝野佳奈、<u>鰐渕英機</u>.マウス経胎盤ばく 露による有機と素化合物の発がん性およびその機 序.第 35 回発癌病理研究会、湯沢(2022年11月)
- 19) <u>戸塚ゆ加里、小宮雅美、永井桃子、加藤護、松田</u> 知成.集学的アプローチによるがんの要因解明と 予防研究への展望.第35回発癌病理研究会、新潟 (2022年11月)
- 20) 帯金明日香、小宮雅美、<u>鈴木周五、魏民、鰐渕英機、</u> <u>戸塚ゆ加里</u>. 職業性膀胱がん候補化学物質による DNA 付加体の網羅的解析. 第51 回環境変異原学会、 広島(2022 年 11 月)
- 21) 坪井理、植嶋亜衣、久富優太、小田美光、恒松雄太、

佐藤道大、平山裕一郎、三好規之、岩下雄二、吉川 悠子、椙村春彦、<u>戸塚ゆ加里</u>、若林敬二、渡辺賢二、 川西優喜. DNA鎖間架橋修復欠損細胞を用いたコリ バクチン産生大腸菌の細胞毒性と遺伝毒性の評価. 第51回環境変異原学会、広島(2022年11月)

- 22) <u>戸塚ゆ加里</u>. 集学的アプローチによるがんの要因 解明と予防研究への展望. 第1回包括的がん緩和 病態生理医療薬学研究会、東京(2022年11月)
- 23) <u>Yukari Totsuka</u>. Comprehensive analyses of genome and DNA adducts elucidate association between environmental factors and human cancer development. 12th AACR-JCA Joint Conference, Maui, HI, USA (2022年12月)
- 24) 藤岡正喜、魏民、Vachiraarunwon Arpamas、<u>鈴木周五、鰐渕英機</u>. 無機ヒ素曝露ヒト肝マウスにおける尿中及び糞中ヒ素の化学形態別性状の解析. 第27 回ヒ素シンポジウム、今治(2022年12月)
- 25) <u>鈴木周五</u>、魏民、藤岡正喜、梯アンナ、<u>鰐渕英機</u>. ジメチルアルシン酸による膀胱発がん機序の解明. 第27回ヒ素シンポジウム、今治(2022年12月)
- 26) 魏民、藤岡正喜、<u>鈴木周五</u>、山本与毅、 Vachiraarunwong Arpamas、梯アンナ、<u>鰐渕英機</u>. ヒ 素誘発膀胱発がん過程におけるDNAメチル化異常 の関与. 第27回ヒ素シンポジウム、今治(2022年12 月)
- 27) 道場彩乃、魏民、櫻井映子、寺本 篤司、桐山諭和、 山田 勢至、<u>鰐渕英機</u>、塚本徹哉. γH2AXとKi-67 を用いた遺伝毒性肝発がん物質の早期検出:機械 学習による自動判定の試み.第39回日本毒性病理 学会総会、東京(2023年1月)
- 28) 山本与毅、魏民、<u>鈴木周五</u>、藤岡正喜、Arpamas Vachiraarunwong、Guiyu Qiu、芝野佳奈、清水一希、 梯アンナ、<u>鰐渕英機</u>.ジメチルアルシン酸誘発ラ ット膀胱がんにおけるDNAメチル化異常.第39回日 本毒性病理学会総会、東京(2023年1月)
- 29) Arpamas Vachiraarunwong, Min Gi, Tohru Kiyono,

<u>Shugo Suzuki</u>, Kana Shibano, Guiyu Qiu, Pharapirom Aroonrat, Anna Kakehashi, Masaki Fujioka, Hideki Wanibuchi. Toxicities of various arsenicals on immortalized normal human bladder epithelial cells.第39回日本毒性 病理学会総会、東京 (2023年1月)

- 30) 梯アンナ、西土井悠作、Guiyu Qiu、<u>鈴木周五</u>、藤 岡正喜、魏民、<u>鰐渕英機</u>. ヒト浸潤性膵管癌の新規 バイオマーカー候補の解析. 第39回日本毒性病理 学会総会、東京(2023年1月)
- Guiyu Qiu、梯アンナ、<u>鈴木周五</u>、藤岡正喜、<u>鰐渕</u> <u>英機</u>. ヒト浸潤性膵管癌におけるPRDX3 の機能解 明.第39回日本毒性病理学会総会、東京(2023年1月)
- 32) 藤岡正喜、魏民、<u>鈴木周五</u>、芝野佳奈、Guiyu Qiu、 Arpamas Vachiraarunwong、Pharapirom Aroonrat、 大石裕司、梯アンナ、<u>鰐渕英機</u>. マウス経胎盤曝露 モデルにおけるジフェニルアルシン酸(DPAA)のエ ピジェネティック修飾異常を介した肝発がんの亢 進.第39回日本毒性病理学会総会、東京(2023年1月)
- 33) 芝野佳奈、藤岡正喜、魏民、Arpamas Vachiraarunwong、Pharapirom Aroonrat、Guiyu Qiu、 <u>鈴木周五、鰐渕英機</u>. ヒト化肝臓マウスにおける 無機ヒ素の体内動態及び毒性.第39回日本毒性病 理学会総会、東京(2023年1月)
- 34) <u>鈴木周五</u>、魏民、藤岡正喜、梯アンナ、<u>鰐渕英機</u>. 職業性ばく露を認めた*o*-toluidineの尿中代謝物 による膀胱尿路上皮への影響.第39回日本毒性病 理学会総会、東京(2023年1月)

H. 知的財産権の出願・登録状況

- 1. 特許取得 該当なし
- 2. 実用新案登録
- 該当なし **3.その他** 該当なし

労災疾病臨床研究事業費補助金 令和4年度分担研究報告書

芳香族アミン代謝に着目した膀胱発がん評価法の開発(200601-01) 分担研究項目:ヒト化肝臓マウスを用いた芳香族アミン代謝の役割 尿中芳香族アミン代謝物と膀胱発がんおよび機序の解明

研究分担者 鈴木 周五 大阪公立大学大学院医学研究科 分子病理学 准教授

研究要旨

本研究は、芳香族アミンの代謝経路および代謝物を検討するとともに、膀胱への発がん性の有無およびそ の発がん機序を検討する事で、芳香族アミンの膀胱発がん性を包括的に評価することを目標として、ヒト化 肝臓マウスを用いた芳香族アミン代謝の役割を検討し、ラットに種々の芳香族アミンを投与し尿中代謝物と その膀胱発がん性の関係および機序の解明を試みる。本年度は、ヒト化肝臓マウスを用いた芳香族アミン代 謝の役割を検証する実験として、acetoaceto-o-toluidine (AAOT)を4週間投与した。その結果、肝組織の代 謝酵素 P450 は野生型マウスで Cvp2c29 の、ヒト化肝臓マウスで CYP3A4 および CYP1A2 の高発現を認め AAOT 投与により ~toluidine (OTD) 投与時と類似した発現変化を示した。また、いずれのマウス群においても AAOT 投与によるマウス尿路上皮に対する細胞増殖活性の上昇傾向とDNA 傷害を確認した。4,4'-Methylenebis(2chloroaniline) (MOCA) 投与による肝組織の代謝酵素 P450 は、野生型マウスで Cyp2c29 高発現を、ヒト化肝 臓マウスで CYP2B6 および 2C8 の発現上昇を認めた。尿中芳香族アミン代謝物と膀胱発がん性の関係および機 序の解明を検証する実験として、OTD とともに内因性活性酸素誘導阻害剤 apocynin を 4 週間投与する実験を 行った結果、OTD 投与群において見られた尿路上皮の過形成病変や細胞増殖活性、DNA 傷害、酸化ストレス が、apocyninにより抑制され、OTDによる膀胱発がん機序に酸化ストレスが関与する事が示唆された。ま た、IPA パスウェイ解析により、尿路上皮に過形成病変を認めた OTD 群、AAOT 群および AOTD 群において、共 通して異常発現を示すがんや細胞増殖に関わる遺伝子群を同定した。以上より、MOCA による膀胱発がん性に はヒト肝臓による特異的な代謝が重要である可能性を示し、ヒト化肝臓マウスがヒトへの外挿を検討するに は非常に有用であることを示した。また、AAOTの肝代謝についてヒトとマウスでの相違を確認し、マウス尿 路上皮への影響を検証した。加えて、OTD 関連芳香族アミンにおける尿中代謝物と膀胱発がんの関係性やその 発がん機序が明らかになり、その一つとして、OTD による膀胱への発がんには酸化ストレスが関与することが 示された。

A. 研究目的

芳香族アミンによる職業性膀胱癌の発生は社会的な 問題の一つであり、最近でも福井県の化学工場において、 *o*-toluidine(OTD)等の芳香族アミンを取り扱う従事者 から膀胱癌が発生しており、今後も類似の芳香族アミン 類による職業膀胱癌発生の危険性が存在する可能性は 高い。

我々は福井県の化学工場において、取り扱いのあった acetoaceto-*o*-toluidine(AAOT)に着目して、その毒性 や発がん性を検討した結果、動物実験により膀胱発がん 促進作用を確認するとともに、尿中にOTDおよびOTD代謝 物を検出した。これらの結果は、AAOTが既知の膀胱発が ん物質OTDに代謝され尿中に排泄されることが、膀胱発 がん促進作用に関与している可能性を示した。この成果 は、化学物質の有害性評価において、異なる物質でも類 似の代謝経路を通る化学物質が共通の有害性を持ち、包 括的な評価手法を確立出来る可能性を示した。

そこで、芳香族アミンの代謝経路および代謝物を検討 するとともに、膀胱への発がん性の有無およびその発が ん機序を検討する事で、芳香族アミンの膀胱発がん性を 包括的に評価できるかを検証した。方法として、「ヒト 化肝臓マウス」を用いて、ヒトでの芳香族アミン代謝を 実現し、芳香族アミンの代謝および膀胱発がん性につい て検討を行った。また、ラットに種々の芳香族アミンを 投与し、尿中代謝物とその膀胱発がん性を種々の方法で 検討し、膀胱に対する発がん原因となる芳香族アミン代 謝物の同定とともにその発がん機序の解明を試みた。

令和4年度は、ヒト化肝臓マウスに動物実験モデルで 膀胱発がん性を示したAAOTを投与し、ヒト肝臓での代謝 酵素発現変化や膀胱への影響について検討した。また、 去年度行ったMOCA投与における肝臓での代謝酵素発が ん変化を検討した。

ラットに対しては、OTDの膀胱への発がん機序として 酸化ストレスの関与を検証するため、内因性の活性酸素 誘導酵素であるNADPH oxidaseに着目し、その阻害剤 apocyninを用いて、OTDによる膀胱上皮への影響に対す るapocyninの抑制効果を検証した。

B. 研究方法

課題1. ヒト化肝臓マウスを用いた芳香族アミン代謝 の役割

F1-TKm30 雌マウスに、ヒト肝細胞移植後のヒト化肝 臓マウスを用いた。ヒト化肝臓マウスおよび非移植群 のF1-TKm30 雌マウス(野生型マウス; NOG) に、 0.05% MOCA もしくは 0.3% AAOT を混餌投与した。投与 第4週目に新鮮尿を採取し、凍結保存を行った。4週 間後に麻酔下採血により屠殺・剖検し、種々の臓器を 採取した。血液は血漿を分離し凍結保存した。肝臓は 主な葉を切り出し、標本を作製するとともに、一部を 凍結保存した。凍結肝組織から RNA を抽出し、 DNBSEQ-G400RS FAST を用いた RNA-seq により肝臓での 網羅的遺伝子発現解析を行った。一部の遺伝子発現に ついて、Super Script VI VILO Maste Mix(Thermo Fisher Scientific) で cDNA を作成し、リアルタイム PCR (qPCR) にて検討した。

AAOT を投与した実験の膀胱は、膀胱腔内にホルマリンを注入固定し、標本を作製した。膀胱組織については、病理組織学的検討とともに、Ki67 および y-H2AX の免疫組織染色を行い、それぞれの標識率を検討した。

課題 2. 尿中芳香族アミン代謝物と膀胱発がんおよび 機序の解明

6 週齢 F344 雄ラットに対して、0 もしくは 0.6%の σtoluidine hydrochloride を混餌投与および、0、 250、500 mg/L の apocynin を飲水投与した。4 週間後 に麻酔下採血により屠殺・剖検し、種々の臓器を採取 した。血液は血漿を分離し凍結保存した。肝臓は主な 葉を切り出し、標本を作製するとともに、一部を凍結 保存した。膀胱は、膀胱腔内にホルマリンを注入固定 し、標本を作製した。膀胱組織は、Ki67、γ-H2AX お よび 8-0HdG の免疫組織染色および ApopTag® Peroxidase In Situ Apoptosis Detection Kit で TUNEL 染色を行い、それぞれの標識率を検討した。

また、4週間投与実験で単純過形成を惹起した OTD、AAOT および aceto-*o*-toluidide (AOTD) につい て、マイクロアレイ解析を行い、その共通する遺伝子 発現変動を同定し、Ingenuity Pathways Analysis (IPA)を用いて膀胱発がん機序について検討した。

(倫理面への配慮)

大阪公立大学動物実験委員会から動物実験の許可を 得、動物実験指針を遵守して行い、動物愛護に十分に 配慮した。

C. 研究結果

課題 1. ヒト化肝臓マウスを用いた芳香族アミン代謝 の役割

<MOCA 投与実験>

肝臓における代謝酵素P450の発現についてRNA-seqを 用いて検討した結果、野生型マウスにおいてMOCA投与に よりヒトCYP2C9/19グループに属するCyp2c29を主体に 発現の上昇を認めた。一方、ヒト化肝臓マウスにおいて は、MOCA投与によりCYP2B6および2C8の発現上昇を認め た(表1)。

肝臓における遺伝子発現について、qPCR により検証 した結果、MOCA 投与により野生型マウスで Cyp2c29 の、ヒト化肝臓マウスでの CYP2B6 および CYP2C8 の有 意な発現上昇を認めた。一方、野生型マウスの Cyp2a4 は上昇傾向を認めるものの有意差は見られなかった。 また、もう一つの代謝酵素 *N*-acetyltransferase (NAT) は一部で上昇傾向を示すものの、野生型マウス およびヒト化肝臓マウスいずれにおいても有意な差は 見られなかった(図1)。

表1. MOCA投与による肝臓の主なP450発現変動

Cono	Maura gana	N	OG	Human	Human		
groups	name	Control (CPM)	MOCA (CPM)	gene name	Control (CPM)	MOCA (CPM)	
CYP1A2	Cyp1a2	418 ± 50	406 ± 45	CYP1A2	1395 ± 249	1277 ± 104	
CYP2A6	<mark>Cyp2a4</mark> Cyp2a5	<mark>300 ± 116</mark> 340 ± 127	<mark>619 ± 289</mark> 396 ± 97	CYP2A6	642 ± 167	803 ± 38	
CYP2B6	Cyp2b9 Cyp2b13	603 ± 44 308 ± 41	586 ± 115 292 ± 44	CYP2B6	222 ± 23	608 ± 119	
CYP2C8	Cyp2c37 Cyp2c50	676 ± 90 857 ± 92	774 ± 101 1082 ± 68	CYP2C8	925 ± 150	1487 ± 168	
CYP2C9	Cyp2c29 Cyp2c38	1321 ± 307 462 ± 72	3190 ± 154 427 ± 50	CYP2C9	1220 ± 188	1429 ± 145	
CYP2C19	Cyp2c29 Cyp2c38 Cyp2c39	1321 ± 307 462 ± 72 1051 ± 81	3190 ± 154 427 ± 50 1024 ± 103	CYP2C19	136 ± 31	201 ± 17	
CYP2D6	Cyp2d22 Cyp2d26	389 ± 48 837 ± 117	359 ± 16 793 ± 61	CYP2D6	1059 ± 152	1107 ± 77	
CYP2E1	Cyp2e1	5988 ± 301	5055 ± 518	CYP2E1	8475 ± 1853	8651 ± 752	
CYP2F1	Cyp2f2	1414 ± 204	1400 ± 137	CYP2F1	-	-	
CYP3A4	Cyp3a11	4548 ± 818	4595 ± 1050	CYP3A4	2287 ± 1030	2409 ± 802	
CYP3A43	Cyp3a41a	331 ± 287	1251 ± 1215	CYP3A43	3 ± 2	5 ± 3	
CYP4A11	Cyp4a10	1647 ± 134	1464 ± 396	CYP4A11	600 ± 137	594 ± 159	

図1. MOCAによる野生型マウスおよびヒト化肝臓マウスの肝 遺伝子発現変動

<AAOT 投与実験>

実験期間中にいずれの群においても、体重減少など毒 性を示す所見は見られなかった。また、ヒト化肝臓マウ スでは、野生型マウスに比べ肝の絶対および相対重量が 高かった。野生型マウスのAAOT投与群では、相対肝重量 が、ヒト化肝臓マウスのAAOT投与群では、絶対および相 対肝重量の有意な増加を認めた(表2)。

表2.	実験開始お	よび屠殺時体重および肝重量	

	Troatmont	No. of	Body we	eight (g)	Liv	er
	meaunem	mice	Start	End	Absolute (g)	Relative (%)
NOG	Control	3	28.7 ± 2.0	30.0 ± 1.0	1.15 ± 0.12	3.8 ± 0.3
NOG	AAOT	3	28.4 ± 0.9	29.5 ± 0.6	1.35 ± 0.11	$4.6 \pm 0.3^*$
Humanized	Control	3	23.3 ± 1.4	26.9 ± 0.4	2.59 ± 0.07	9.6 ± 0.3
Humanized	AAOT	3	23.2 ± 0.5	26.1 ± 1.3	2.90 ± 0.17*	11.1 ± 0.2**
* P < 0.05 comp	ared to each Co	ontrol				

* P < 0.05 compared to each C

肝臓における代謝酵素P450の発現についてRNA-seqを

用いて検討した結果、野生型マウスにおいてAAOT投与に よりヒトCYP2C9/19グループに属するCyp2c29を主体に 発現の上昇を認めた。一方、ヒト化肝臓マウスにおいて は、AAOT投与によりCYP1A2および2C8の発現上昇を認め、 OTDで発現上昇したCYP3A4は上昇傾向を示すものの発現 差は大きくなかった(表2)。

肝臓における遺伝子発現について、qPCRにより検証し た結果、AAOT投与により野生型マウスでCyp2c29および Cyp3a11の有意な発現上昇を認めた。一方、ヒト化肝臓 マウスにおいてはCYP1A2の有意な発現上昇を認めた一 方で、CYP3A4は上昇傾向を認めるものの有意差は見られ なかった。また、もう一つの代謝酵素であるNATは一部 で上昇傾向を示すものの、野生型マウスおよびヒト化肝 臓マウスいずれにおいても有意な差は見られなかった (図2)。

表2. AA0T投与による肝臓の主なP450発現変動

leoform	Mouro	NC	DG	Human	Humanized		
groups	gene name	Control (TPM)	AAOT (TPM)	gene name	Control (TPM)	AAOT (TPM)	
CYP1A2	Cyp1a2	407	772	CYP1A2	952	2862	
CYP2A6	Cyp2a5	298	1375	CYP2A6	718	894	
CYP2C8	Cyp2c29 Cyp2c38 Cyp2c39	<mark>1324</mark> 305 777	<mark>10859</mark> 370 930	CYP2C8	1055	1443	
CYP2C9/19	Cyp2c29 Cyp2c37 Cyp2c39 Cyp2c50	<mark>1324</mark> 658 777 915	<mark>10859</mark> 1364 930 1701	CYP2C9 CYP2C19	1457 62	1847 105	
CYP2E1	Cyp2e1	7633	5603	CYP2E1	8660	10945	
CYP2F1	Cyp2f2	1183	1271	CYP2F1	0	0	
СҮРЗА4	Cyp3a11 Cyp3a13 Cyp3a25 Cyp3a41a	4785 26 675 212	7253 38 654 399	CYP3A4	2537	3043	

NOG: NOG-TKm30 mice; Humanized: humanized-liver mice; TPM: transcripts per million

図2. AAOTによる野生型マウスおよびヒト化肝臓マウスの肝 遺伝子発現変動

膀胱組織を検討した結果、いずれのマウス群において もAAOT投与による単純過形成病変など、病変として診断 しえる組織学的な変化は見られなかった(図3)。また、 細胞増殖活性の指標であるKi67の陽性率を検討した結 果、野生型マウスおよびヒト化肝臓マウスいずれも0TD 投与により陽性率の上昇傾向を認めたものの有意差は 見られなかった(図4)。一方、DNA傷害の指標である γ-H2AXの陽性率は野生型マウスおよびヒト化肝臓マウ スいずれもOTD投与により有意な上昇を認めた(図4)。

図3. 野生型マウスおよびヒト化肝臓マウスの膀胱組織像

図4. 膀胱尿路上皮におけるKi67および y-H2AXの陽性率

課題 2. 尿中芳香族アミン代謝物と膀胱発がんおよび 機序の解明

試験期間中、OTDを投与した群いずれも対照群に比べ、 体重増加抑制傾向を認めた。屠殺・剖検時の体重はいず れも有意に抑制された。また、OTDを投与した群いずれ も相対肝重量の増加を認めた。一方、apocynin投与によ る体重や肝重量に対する影響は見られなかった。摂餌量 や飲水量に群間で大きな差は見られなかった(表3)。

表3. 体重、肝重量および摂餌・飲水量

-	· -					
Treatment	No. of rot	Body weight	Liver (N	lo. = 6)	Consumption	
meaunem	NO. OF TAL	(g)	Absolute (g)	Relative (%)	Food (g/day)	Water (g/day)
OTD	12	215.1 ± 5.9 **	8.9 ± 0.5	4.1 ± 0.2***	11.5 ± 2.0	20.1 ± 2.0
OTD+APOL	12	214.1 ± 8.9 ***	9.0 ± 0.7	4.1 ± 0.1***	11.8 ± 1.7	20.5 ± 1.8
OTD+APOH	12	213.1 ± 6.7 ***	9.0 ± 0.2	4.2 ± 0.1***	11.7 ± 1.9	19.1 ± 2.0
Control	6	232.0 ± 11.3	8.5 ± 0.5	3.7 ± 0.1	12.9 ± 1.4	20.1 ± 1.0
APOH	6	237.2 ± 8.5	8.8 ± 0.3	3.7 ± 0.0	13.3 ± 1.3	20.1 ± 0.6
1 111 D < 0.05 cm	d 0 001 un Conte	al mana ativatu				

OTD: o-toluidide; APO: apocynin; L: low dose (250 mg/L); H: high dose (500 mg/L)

膀胱を組織学的に検討した結果、OTD投与群において 単純過形成病変(simple hyperplasia)が対照群に比べ 有意に増加していた。特にOTD単独投与群では、異型の 強い中等度以上の過形成病変を認めるラットが多く存 在した。一方、OTD投与とともにapocyninを投与した群 では、濃度依存性に軽度過形成病変までに留まるラット が増えた。また、OTD投与で細胞増殖活性の指標である Ki67、DNA傷害の指標である γ -H2AXおよび酸化ストレス の指標である8-OHdGの陽性率が、いずれも対照群に比べ 有意に増加していた。その増加に対して、apocyninの投 与で、Ki67は500 mg/L投与群で、 γ -H2AXおよび8-OHdG は250、500 mg/L投与群いずれにおいても有意な抑制を 認めた。アポトーシスについて検証するため、TUNEL陽 性率を検討したが、いずれの群間でも有意な差が見られ なかった(表4)。

これまでに芳香族アミンを4週間投与した実験の膀胱 上皮について、網羅的遺伝子発現解析を行った結果、ラ ット膀胱に増殖性病変を認めたOTD、AAOTおよびAOTD投 与群において共通して発現変動を認めた遺伝子として、 上昇遺伝子47、低下遺伝子33の合計80遺伝子が同定さ れた(表5)。

IPAを用いて機能について解析を行った結果、

「Cancer」や「Cellular Growth and Proliferation」 など、膀胱発がんに関連する可能性がある遺伝子群が 同定されていた(表6)。

そのうち、「Cancer」や「Organismal Injury and Abnormalities」 に属する腫瘍関連因子として

「Invasive tumor」や「Advanced malignant tumor」、「Metastasis」が選出された。それらの因子に共通する 12遺伝子が確認され、膀胱発がんに関与する可能性を 示した(表7)。

表4. 膀胱尿路上皮病変、Ki67、TUNEL、γ-H2AXおよび8-OHdG 陽性率

Trootmont	No. of rat	Simple h	yperplasia"."	Ki67 (%)	TUNEL (%)	V HOAY (%)	
rreautient	NO. OF TAL	Mild	Moderate	NO7 (76)	TONLE (70)	¥=11274X (70)	0-01100 (76)
OTD	12	2	10	2.1 ± 0.7^{a}	0.7 ± 0.3	1.7 ± 0.7 ^a	1.7 ± 0.3 ^a
OTD+APOL	12	3	9	1.5 ± 0.9	0.6 ± 0.3	1.0 ± 0.4**	1.2 ± 0.2***
OTD+APOH	12	6	5	0.9 ± 0.4***	0.5 ± 0.2	0.7 ± 0.3***	0.9 ± 0.2***
Control	6	0	0	0.7 ± 0.4	0.7 ± 0.6	0.2 ± 0.1	0.3 ± 0.1
APOH	6	0	0	0.6 ± 0.4	0.6 ± 0.6	0.3 ± 0.1	0.3 ± 0.1
	1.1.00						

^a:P<0.001 vs Control; [#]: Rho = -0.37, P< 0.05; **, ***: P< 0.01 and 0.001 vs OTD, respective

表5. 芳香族アミン投与により発現変動を認めた遺伝子数

Treatment	Up-regulated genes	Down-regulated genes	Total genes
AAOT	309	239	548
OTD	413	428	841
AAOT	723	458	1181
All aromatic amines	47	33	80

表6. OTD、AAOTおよびAOTD投与群で共通して変動する遺伝子の機能に基づいた分類

Diseases and Disorders	p-value range	# Molecules
Organismal Injury and Abnormalities	3.93E-03 - 1.73E-07	43
Cancer	3.93E-03 - 1.18E-06	43
Skeletal and Muscular Disorders	3.93E-03 - 1.18E-06	18
Molecular and Cellular Functions	p-value range	# Molecules
Drug Metabolism	3.96E-03 - 6.41E-08	11
Cellular Growth and Proliferation	3.60E-03 - 2.46E-06	24
Cellular Development	3.60E-03 - 3.52E-06	22
Physiological System Development and Function	p-value range	# Molecules
	2065 02 2465 06	12
Connective Tissue Development and Function	3.90E-U3 - 2.40E-U0	15
Tissue Development	3.96E-03 - 2.46E-06	18
Skeletal and Muscular System Development and Function	1.98E-03 - 2.69E-06	9

表7. 0TD関連芳香族アミンによる膀胱発がんに関与する因子

Categories	Diseases or Functions Annotation	p-value	Predicted Activation State	Activation z-score	Molecules
0	Invasive tumor	2.82E-05	Increased	2.765	AQP1, Elf5, FHIT, FN1, FSCN1, HPSE, KRT20, MMP13, NQO1, PDGFRA, POSTN, RGS4, RRM2, VCAN
Cancer Organismal Injury and Abnormalities	Advanced malignant tumor	5.17E-05	Increased	2.586	AQP1, Elf5, FN1, FSCN1, HPSE, IGFBP4, KRT20, NQO1, PDGFRA, POSTN, RGS4, RRM2, VCAN
	Metastasis	0.0001	Increased	2.586	AQP1, Elf5, FN1, FSCN1, HPSE, KRT20, NQO1, PDGFRA, POSTN, RGS4, RRM2, VCAN

D. 考察

課題1. ヒト化肝臓マウスを用いた芳香族アミン代謝 の役割

去年度は、ヒト化肝臓マウスにおいてのみ、MOCA投与 による膀胱粘膜上皮の単純過形成病変形成と、細胞増 殖活性やアポトーシスの誘導を認めた。この結果は、 MOCAのヒト肝臓における代謝がマウスとは異なり、膀 胱発がん要因となる代謝物を尿中に排泄している可能 性を示した。また、MOCAがラットおよびマウスにおいて は膀胱への発がん性影響が見られず、ヒトにおいて発 がん性が疑われている状況に合致した成果であり、ヒ ト化肝臓マウスモデルがヒトのMOCAの膀胱発がん性を 検討する良いモデルであることが示された。

今回、その発がん性に関わると考えられる肝臓の代 謝酵素について検討した結果、野生型マウスにおいて はOTDと同様にMOCA投与によりヒトCYP2C9/19グループ に属するCyp2c29を主体に発現の上昇を認めた。一方で ヒト化肝臓マウスにおいては、MOCA投与によりCYP2B6お よび2C8の発現上昇を認め、OTDで見られたCYP3A4の発現 上昇は見られず、MOCA特異的な酵素発現変動を認めた。 今後、CYP2B6および2C8により代謝されたと推察する尿 中代謝物に着目して、ヒトで危惧されているMOCAの膀胱 発がん性を検証していきたい。

AAOT投与による肝臓の代謝酵素について検討した結 果、野生型マウスにおいてはOTDと同様にMOCA投与によ りヒトCYP2C9/19グループに属するCyp2c29を主体に発 現の上昇を認めた。一方でヒト化肝臓マウスにおいては、 OTDで見られたCYP3A4の発現上昇は見られたものの有意 差は見られなかった。NATについてはOTDと同様に有意な 発現上昇は見られなかった。

また、膀胱への影響を検証した結果、野生型マウスお よびヒト化肝臓マウスいずれにおいても組織学的な変 化は見られないものの、細胞増殖活性の上昇傾向ととも に、DNA傷害の指標であるγ-H2AXの有意な増加を認めた。 ラット膀胱よりも感受性は低いものの、AAOT投与による 膀胱への発がん影響が推察される結果で、DNA傷害が細 胞増殖活性よりも感受性が高い可能性を示した。今後、 尿中代謝物も含め、ヒト肝臓による代謝の特異性や影響 をまとめ、ヒトへの外挿に取り組みたい。

課題 2. 尿中芳香族アミン代謝物と膀胱発がんおよび 機序の解明

ラットにOTDを投与した際の膀胱上皮に発生する単 純過形成病変や、細胞増殖活性、DNA傷害、酸化ストレ スに対して、apocyninが濃度依存性に抑制したことか ら、OTDによる膀胱発がん機序には酸化ストレスが関与 することが明らかになった。

また、OTD、AAOTおよびAOTD群に共通した遺伝子発現 変化を検討した結果、Cancerや細胞増殖に関わる遺伝子 を同定し、腫瘍関連因子として「Invasive tumor」や 「Advanced malignant tumor」、「Metastasis」が選出 された。その共通する12遺伝子に着目し、OTD関連膀胱 発がん機序解明を行っていく予定である。

E. 結論

MOCAの肝代謝酵素の発現について、ヒトとマウスでの 相違を確認した。MOCAによる膀胱発がん性にはヒト肝臓 による特異的な代謝が重要である可能性を示し、ヒト化 肝臓マウスがヒトへの外挿を検討するのに非常に有用 であることを示した。また、OTD関連芳香族アミンにお ける膀胱発がんに関わる遺伝子群および機序が明らか になった。その発がん機序の一部に酸化ストレスが関与 することがapocyninを用いることで証明された。これら の成果は、OTD関連膀胱発がん機序解明に繋がるものと 考えられた。

G. 研究発表

- 1. 論文発表
- Yokota Y, <u>Suzuki S</u>, Gi M, Yanagiba Y, Yoneda N, Fujioka M, Kakehashi A, Koda S, Suemizu H, Wanibuchi H. o-Toluidine metabolism and effects in the urinary bladder of humanizedliver mice. Toxicology. 2023; 488: 153483.
- Deguchi S, Tanaka H, <u>Suzuki S</u>, Natsuki S, Mori T, Miki Y, Yoshii M, Tamura T, Toyokawa T, Lee S, Muguruma K, Wanibuchi H, Ohira M. Clinical relevance of tertiary lymphoid structures in esophageal squamous cell carcinoma. BMC Cancer. 2022; 22: 699.
- 3) Kondo N, Sakurai Y, Takata T, Kano K, Kume K, Maeda M, Takai N, <u>Suzuki S</u>, Eto F, Kikushima K, Wanibuchi H, Miyatake SI, Kajihara T, Oda S, Setou M, Aoki J, Suzuki M. Persistent elevation of lysophosphatidylcholine promotes radiation brain necrosis with microglial recruitment by P2RX4 activation. Sci Rep. 2022; 12: 8718.
- Matsue T, Gi M, Shiota M, Tachibana H, <u>Suzuki</u> <u>S</u>, Fujioka M, Kakehashi A, Yamamoto T, Kato M, Uchida J, Wanibuchi H. The carbonic anhydrase inhibitor acetazolamide inhibits urinary bladder cancers via suppression of beta-catenin signaling. Cancer Sci. 2022; 113: 2642-53.
- 5) Saleh DM, Luo S, Ahmed OHM, Alexander DB, Alexander WT, Gunasekaran S, El-Gazzar AM, Abdelgied M, Numano T, Takase H, Ohnishi M, Tomono S, Hady R, Fukamachi K, Kanno J, Hirose A, Xu J, <u>Suzuki S</u>, Naiki-Ito A, Takahashi S, Tsuda H. Assessment of the toxicity and carcinogenicity of double-walled carbon nanotubes in the rat lung after intratracheal instillation: a two-year study. Part Fibre Toxicol. 2022; 19: 30.
- <u>Suzuki S</u>, Asai K, Gi M, Kojima K, Kakehashi A, Oishi Y, Matsue T, Yukimatsu N, Hirata K, Kawaguchi T, Wanibuchi H. Response biomarkers of inhalation exposure to cigarette smoke in the mouse lung. J Toxicol Pathol. 2022; 35: 247-54.
- 2. 学会発表
- <u>鈴木周五</u>、魏民、藤岡正喜、梯アンナ、鰐渕英機.
 職業性膀胱がん関連芳香族アミン類の尿中代謝物 と膀胱尿路上皮への影響.第111回日本病理学会総 会、神戸(2022年4月)
- 梯アンナ、<u>鈴木周五</u>、魏民、鰐渕英機. 肝発がんに おける新規標的分子ターゲットとしてのCanopy homolog 2の役割. 第111回日本病理学会総会、神戸 (2022年4月)

- 3) <u>鈴木周五</u>、魏民、藤岡正喜、梯アンナ、鰐渕英機. 職業性ばく露を認めた*o*-toluidineの尿中代謝物 と膀胱尿路上皮への影響.第49回日本毒性学会学 術年会、札幌(2022年7月)
- 4) 魏民、<u>鈴木周五</u>、藤岡正喜、梯アンナ、鰐渕英機. 1,4-ジオキサンの肝発がん機序の解明と定量的発 がんリスク評価.第49回日本毒性学会学術年会、札 幌(2022年7月)
- 小宮雅美、<u>鈴木周五</u>、魏民、鰐渕英機、戸塚ゆ加里. 芳香族アミンの膀胱がんメカニズムの解析.第29 回日本がん予防学術大会、京都(2022年7月)
- 6) <u>鈴木周五</u>、魏民、藤岡正喜、梯アンナ、鰐渕英機. 芳香族アミンによる職業性膀胱がん. 第81回日本 癌学会学術総会、横浜(2022年9月)
- 7) 帶金明日香、小宮雅美、<u>鈴木周五</u>、魏民、鰐渕英機、 戸塚ゆ加里. 職業性膀胱がん候補化学物質による DNA付加体の網羅的解析. 第81回日本癌学会学術 総会、横浜(2022年9月)
- 8) 魏民、<u>鈴木周五</u>、山下聡、藤岡正喜、梯アンナ、山本与毅、邱桂ユウ、鰐渕英機. 遺伝子セットを用いた遺伝毒性肝発がん物質超短期検出法. 第81回日本癌学会学術総会、横浜(2022年9月)
- 9) 藤岡正喜、魏民、<u>鈴木周五</u>、大石裕司、邱桂ユウ、 梯アンナ、鰐渕英機. マウス経胎盤曝露モデルに おけるジフェニルアルシン酸(DPAA)のエピジェネ ティック修飾異常を介した肝発がんの亢進. 第81 回日本癌学会学術総会、横浜(2022年9月)
- 10)藤岡正喜、魏民、<u>鈴木周五</u>、大石裕司、梯アンナ、 邱桂鈺、芝野佳奈、鰐渕英機.マウス経胎盤ばく露 による有機と素化合物の発がん性およびその機序. 第 35 回発癌病理研究会、湯沢(2022年11月)
- 11) 帯金明日香、小宮雅美、<u>鈴木周五</u>、魏民、鰐渕英機、 戸塚ゆ加里. 職業性膀胱がん候補化学物質による DNA 付加体の網羅的解析. 第51 回環境変異原学会、 広島(2022 年 11 月)
- 12) 藤岡正喜、魏民、Vachiraarunwon Arpamas、<u>鈴木周五</u>、鰐渕英機. 無機ヒ素曝露ヒト肝マウスにおける尿中及び糞中ヒ素の化学形態別性状の解析. 第27 回ヒ素シンポジウム、今治(2022年12月)
- 13) <u>鈴木周五</u>、魏民、藤岡正喜、梯アンナ、鰐渕英機. ジメチルアルシン酸による膀胱発がん機序の解明. 第27回ヒ素シンポジウム、今治(2022年12月)
- 14) 魏 民、藤岡正喜、<u>鈴木周五</u>、山本与毅、 Vachiraarunwong Arpamas、梯アンナ、鰐渕英機. ヒ 素誘発膀胱発がん過程におけるDNAメチル化異常 の関与.第27回ヒ素シンポジウム、今治(2022年12 月)
- 15) 山本与毅、魏民、<u>鈴木周五</u>、藤岡正喜、Arpamas Vachiraarunwong、Guiyu Qiu、芝野佳奈、清水一希、 梯アンナ、鰐渕英機. ジメチルアルシン酸誘発ラ ット膀胱がんにおけるDNAメチル化異常.第39回日 本毒性病理学会総会、東京(2023年1月)
- 16) Arpamas Vachiraarunwong, Min Gi, Tohru Kiyono, <u>Shugo Suzuki</u>, Kana Shibano, Guiyu Qiu, Pharapirom Aroonrat, Anna Kakehashi, Masaki Fujioka, Hideki Wanibuchi. Toxicities of

various arsenicals on immortalized normal human bladder epithelial cells.第39回日本毒性 病理学会総会、東京(2023年1月)

- 17) 梯アンナ、西土井悠作、Guiyu Qiu、<u>鈴木周五</u>、藤 岡正喜、魏民、鰐渕英機. ヒト浸潤性膵管癌の新規 バイオマーカー候補の解析. 第39回日本毒性病理 学会総会、東京(2023年1月)
- Guiyu Qiu、梯アンナ、<u>鈴木周五</u>、藤岡正喜、鰐渕 英機. ヒト浸潤性膵管癌におけるPRDX3 の機能解 明.第39回日本毒性病理学会総会、東京(2023年1月)
- 藤岡正喜、魏民、<u>鈴木周五</u>、芝野佳奈、Guiyu Qiu、 Arpamas Vachiraarunwong、Pharapirom Aroonrat、 大石裕司、梯アンナ、鰐渕英機.マウス経胎盤曝露 モデルにおけるジフェニルアルシン酸(DPAA)のエ ピジェネティック修飾異常を介した肝発がんの亢 進.第39回日本毒性病理学会総会、東京(2023年1月)
- 20) 芝野佳奈、藤岡正喜、魏民、 Arpamas

Vachiraarunwong、Pharapirom Aroonrat、Guiyu Qiu、 <u>鈴木周五</u>、鰐渕英機. ヒト化肝臓マウスにおける 無機ヒ素の体内動態及び毒性. 第39回日本毒性病 理学会総会、東京(2023年1月)

21) <u>鈴木周五</u>、魏民、藤岡正喜、梯アンナ、鰐渕英機. 職業性ばく露を認めたのtoluidineの尿中代謝物による膀胱尿路上皮への影響.第39回日本毒性病 理学会総会、東京(2023年1月)

H. 知的財産権の出願・登録状況

- 1. 特許取得 該当なし
- 2. 実用新案登録 該当なし
- **3.その他** 該当なし

労災疾病臨床研究事業費補助金 令和4年度分担研究報告書

芳香族アミン代謝に着目した膀胱発がん評価法の開発(200601-01) 分担研究項目:ヒト化肝臓マウスを用いた芳香族アミン代謝の役割 尿中芳香族アミン代謝物と膀胱発がんおよび機序の解明

研究分担者 鰐渕 英機 大阪公立大学大学院医学研究科 分子病理学 教授

研究要旨

本研究は、芳香族アミンの代謝経路および代謝物を検討するとともに、膀胱への発がん性の有無およびその 発がん機序を検討する事で、芳香族アミンの膀胱発がん性を包括的に評価することを目標として、尿中芳香族 アミン代謝物と膀胱発がんおよび機序の解明を行った。本年度は、ヒト化肝臓マウスを用いた芳香族アミン代 謝の役割を検証する実験として、4,4'-Methylenebis(2-chloroaniline)(MOCA)を投与し4週間目の尿について、 UPLC-Q-TOF-MSで解析した。その結果、MOCAを投与したマウスにおいて尿中にMOCAおよびその代謝物が存在する ことが確認出来た。さらに、ヒト化肝臓マウスと野生型マウスにおいて出現しているMOCA代謝物が異なること を確認した。尿中芳香族アミン代謝物と膀胱発がんおよび機序の解明を検証する実験として、*o*-toluidide (OTD)の尿中代謝物を主体とする芳香族アミンをラットに投与し4週間目に尿を採取、尿中芳香族アミンをLC-MS/MSで測定した。その結果、単純過形成病変を認めたaceto-*o*-toluidide (AOTD)において、最も多い尿中芳香 族アミンはOTDであることが確認された。これらの結果から、MOCAはヒトとマウスで尿中の代謝物が異なること が、膀胱発がんに重要であることを示し、ヒト化肝臓マウスがヒトへの外挿に重要な役割を示すことが確認出 来た。また、OTD関連の膀胱発がんにおいて、尿中のOTDが膀胱発がん性に寄与する重要な因子であることが示 された。

A. 研究目的

芳香族アミンによる職業性膀胱癌の発生は社会的な 問題の一つであり、最近でも福井県の化学工場において、 *o*-toluidine (0TD)等の芳香族アミンを取り扱う従事者 から膀胱癌が発生しており、今後も類似の芳香族アミン 類による職業膀胱癌発生の危険性が存在する可能性は 高い。

我々は福井県の化学工場において取り扱いのあった acetoaceto-*o*-toluidide(AAOT)に着目して、その毒性 や発がん性を検討した結果、動物実験により膀胱発がん 促進作用を確認するとともに、尿中にOTDおよびOTD代謝 物を検出した。これらの結果は、AAOTが既知の膀胱発が ん物質OTDに代謝され尿中に排泄されることが、膀胱発 がん促進作用に関与している可能性を示した。この成果 は、化学物質の有害性評価において、異なる物質でも類 似の代謝経路を通る化学物質が共通の有害性を持ち、包 括的な評価手法を確立出来る可能性を示した。

そこで、芳香族アミンの代謝経路および代謝物を検討 するとともに、膀胱への発がん性の有無およびその発が ん機序を検討する事で、芳香族アミンの膀胱発がん性を 包括的に評価できるかを検証した。方法として、ラット に種々の芳香族アミンを投与し、尿中代謝物とその膀胱 発がん性を種々の方法で検討し、膀胱に対する発がん原 因となる芳香族アミン代謝物の同定とともにその発が ん機序の解明を試みた。

令和4年度は、ヒト化肝臓マウスに対して、ヒト膀胱 に発がん性を疑われているものの、マウスでは膀胱発が ん性を示さない4,4'-Methylenebis(2-chloroaniline) (MOCA)を投与した尿を用いて、尿中のMOCAおよびその代 謝物について検討した。 また、ラットに対しては、OTDの尿中代謝物である4amino-*m*-cresol (4AMC)、2-amino-*m*-cresol (2AMC)およ びaceto- σ -toluidide (AOTD)や、福井県の化学工場にお いて取り扱いのあった芳香族アミン2,4dimethylaniline hydrochloride (2,4-DMA)について OTD関連の尿中代謝物について検討した。

B. 研究方法

課題1. ヒト化肝臓マウスを用いた芳香族アミン代謝 の役割

F1-TKm30 雌マウスに、ヒト肝細胞移植 9~10 週後の ヒト化肝臓マウスを用いた。ヒト化肝臓マウスおよび 非移植群の F1-TKm30 雌マウス(野生型マウス; NOG) に、0.05% MOCA を混餌投与した。投与第4週目に新鮮 尿を採取し、凍結保存を行った。

高性能液体クロマトグラフィー四重極飛行時間型質 量分析(UPLC-Q-TOF-MS)を用いて、対照群4匹ずつ、 野生型 MOCA 投与群4匹、ヒト化肝臓マウス MOCA 投与 群5匹から採取した尿中における MOCA およびその代 謝物を検討した。

課題 2. 尿中芳香族アミン代謝物と膀胱発がんおよび 機序の解明

6週齢F344 雄ラットに、0.6%2,4-DMA、0.6% 4AMC、0.6%2AMCもしくは0.6%AOTDを混餌投与した。投与第4週目に新鮮尿を採取し、凍結保存を行った。

Liquid Chromatography with tandem mass spectrometry (LC-MS/MS)を用いて、各群5匹ずつ採

取した尿中における芳香族アミンおよび代謝物を測定 した。測定した物質およびその測定限界値は、それぞ れ、AAOT (0.047 nmol/mL)、OTD (0.051 nmol/mL)、 AOTD (0.023 nmol/mL)、4AMC (0.127 nmol/mL)、2AMC (0.046 nmol/mL)である。

(倫理面への配慮)

大阪公立大学動物実験委員会から動物実験の許可を 得、動物実験指針を遵守して行い、動物愛護に十分に 配慮した。

C. 研究結果

課題1. ヒト化肝臓マウスを用いた芳香族アミン代謝 の役割

MOCAを投与したマウスの尿中代謝物に対する解析結 果を図1に示す。尿中には多数の物質が検出され、MOCA を投与したヒト化肝臓マウスおよび野生型マウスいず れにおいてもMOCAの存在が確認出来た。また、対照群に 存在しないMOCA代謝物を考えるピークも確認した。ま た、MOCA投与群に着目してピークを検討した結果、ヒト 化肝臓マウスと野生型マウスで異なるピークが存在し、 異なるMOCA代謝物と推察された(図2)。

図1. 尿中のMOCAおよび代謝物解析

課題 2. 尿中芳香族アミン代謝物と膀胱発がんおよび 機序の解明

尿中の芳香族アミンおよび代謝物について解析した 結果を、表1に示す。単純過形成病変を認めたAOTD投与 群において、尿中にOTDが高い濃度割合で検出された。 一方、2AMCでは尿中に多量の2AMCが存在した。また、 4AMCでは他のOTD関連芳香族アミンに比べ、検出できた 芳香族アミンは少なかった。2,4-DMA投与群では、OTD関 連芳香族アミンの尿中排泄は見られなかった。

衣1, 水中ワ万省族ノミノねよい11-副物の	表1.	尿中の芳香族ア	Ξ	ンおよび代謝物の	畕
------------------------	-----	---------	---	----------	---

Treatment	No. of rat	AAOT	OTD	NAOTD	4AMC	2AMC	Total AAs
Control	5	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
2,4-DMA	5	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
2AMC	5	N.D.	N.D.	0.2 ± 0.0	1.0 ± 0.8	11812.1 ± 2730.2	11813.9 ± 2730.4
4AMC	5	N.D.	N.D.	0.2 ± 0.1	356.2 ± 160.3	12.2 ± 2.1	369.3 ± 161.7
AOTD	5	N.D.	7757.3 ± 1648.7	215.9 ± 37.6	120.3 ± 115.5	35.5 ± 9.3	8129.0 ± 1761.9

D. 考察

今回、MOCAを投与したヒト化肝臓マウスおよび野生 型マウスの尿中MOCAおよび代謝物について検討したが、 MOCAおよび代謝物のピークが存在するとともに、ヒト 化肝臓マウスと野生型マウスで異なるMOCA代謝物のピ ークを確認出来たことは、MOCA投与による膀胱への影 響が異なった結果を反映する有益なデータである。ヒ ト化肝臓マウスで検出できた尿中MOCA代謝物に着目し、 膀胱発がん物質の同定および機序の解明を明らかにし ていきたい。

また、OTD尿中代謝物のうち、膀胱への影響を認めた AOTDのみ尿中にOTDが存在したことは、AOTDが肝臓で代 謝され、OTDが発生したと推察する。前回のAAOTおよび OTD投与群の尿中芳香族アミン代謝物の結果と合わせ て検討するに、膀胱に過形成病変を認めた群ではいず れも尿中に高濃度のOTDが確認され、尿中OTDが膀胱発 がんに重要な物質である可能性が示された。一方、2AMC では尿中に多くの2AMCが存在し、代謝されずに尿中排 泄されていると考えられた。また、4AMCでは他のOTD関 連芳香族アミンに比べ、検出できた芳香族アミンは少 なく、抱合体を形成し尿中排泄されている可能性を示 した。

E. 結論

マウスおよびヒト肝臓によるMOCAの尿中代謝物が異 なることが確認され、膀胱発がんに寄与する可能性が示 された。ラットにおいて尿中OTDが膀胱発がんの重要な 物質であることを示した。これらの成果は、げっ歯類で の成果をヒトに反映するための重要な結果と考えられ た。

G. 研究発表

- 1. 論文発表
- Yokota Y, Suzuki S, Gi M, Yanagiba Y, Yoneda N, Fujioka M, Kakehashi A, Koda S, Suemizu H, <u>Wanibuchi H</u>. *o*-Toluidine metabolism and effects in the urinary bladder of humanizedliver mice. Toxicology. in press.
- 2) Oikawa D, Gi M, Kosako H, Shimizu K, Takahashi H, Shiota M, Hosomi S, Komakura K, <u>Wanibuchi H</u>, Tsuruta D, Sawasaki T, Tokunaga F. OTUD1 deubiquitinase regulates NF-kappaB- and KEAP1-mediated inflammatory responses and reactive oxygen species-associated cell death pathways. Cell Death Dis. 2022; 13: 694.
- 3) Nagai M, Iemura K, Kikkawa T, Naher S, Hattori S, Hagihara H, Nagata KI, Anzawa H, Kugisaki R, <u>Wanibuchi H</u>, Abe T, Inoue K, Kinoshita K, Miyakawa T, Osumi N, Tanaka K. Deficiency of CHAMP1, a gene related to intellectual disability, causes impaired neuronal development and a mild behavioural phenotype. Brain Commun. 2022; 4: fcac220.
- Tagami M, Kakehashi A, Katsuyama-Yoshikawa A, Misawa N, Sakai A, <u>Wanibuchi H</u>, Azumi A, Honda S. FOXP3 and CXCR4-positive regulatory T

cells in the tumor stroma as indicators of tumor immunity in the conjunctival squamous cell carcinoma microenvironment. PLoS One. 2022; 17: e0263895.

- 5) Deguchi S, Tanaka H, Suzuki S, Natsuki S, Mori T, Miki Y, Yoshii M, Tamura T, Toyokawa T, Lee S, Muguruma K, <u>Wanibuchi H</u>, Ohira M. Clinical relevance of tertiary lymphoid structures in esophageal squamous cell carcinoma. BMC Cancer. 2022; 22: 699.
- 6) Kondo N, Sakurai Y, Takata T, Kano K, Kume K, Maeda M, Takai N, Suzuki S, Eto F, Kikushima K, <u>Wanibuchi H</u>, Miyatake SI, Kajihara T, Oda S, Setou M, Aoki J, Suzuki M. Persistent elevation of lysophosphatidylcholine promotes radiation brain necrosis with microglial recruitment by P2RX4 activation. Sci Rep. 2022; 12: 8718.
- 7) Matsue T, Gi M, Shiota M, Tachibana H, Suzuki S, Fujioka M, Kakehashi A, Yamamoto T, Kato M, Uchida J, <u>Wanibuchi H</u>. The carbonic anhydrase inhibitor acetazolamide inhibits urinary bladder cancers via suppression of beta-catenin signaling. Cancer Sci. 2022; 113: 2642-53.
- Suzuki S, Asai K, Gi M, Kojima K, Kakehashi A, Oishi Y, Matsue T, Yukimatsu N, Hirata K, Kawaguchi T, <u>Wanibuchi H</u>. Response biomarkers of inhalation exposure to cigarette smoke in the mouse lung. J Toxicol Pathol. 2022; 35: 247-54.
- 2. 学会発表
- 鈴木周五、魏民、藤岡正喜、梯アンナ、<u>鰐渕英機</u>.
 職業性膀胱がん関連芳香族アミン類の尿中代謝物 と膀胱尿路上皮への影響.第111回日本病理学会総 会、神戸(2022年4月)
- Aアンナ、鈴木周五、魏民、<u>鰐渕英機</u>. 肝発がんに おける新規標的分子ターゲットとしてのCanopy h omolog 2の役割. 第111回日本病理学会総会、神戸 (2022年4月)
- <u>鰐渕英機</u>. 有機ヒ素化合物の長期毒性・発がん性 機序の研究.第49回日本毒性学会学術年会、札幌(2 022年7月)
- 5) 鈴木周五、魏民、藤岡正喜、梯アンナ、<u>鰐渕英機</u>. 職業性ばく露を認めた*o*-toluidineの尿中代謝物 と膀胱尿路上皮への影響.第49回日本毒性学会学 術年会、札幌(2022年7月)
- 6) 魏民、鈴木周五、藤岡正喜、梯アンナ、<u>鰐渕英機</u>. 1,4-ジオキサンの肝発がん機序の解明と定量的 発がんリスク評価.第49回日本毒性学会学術年会、 札幌(2022年7月)
- 7) 小宮雅美、鈴木周五、魏民、<u>鰐渕英機</u>、戸塚ゆ加里. 芳香族アミンの膀胱がんメカニズムの解析.第29 回日本がん予防学術大会、京都(2022年7月)
- 8) 鈴木周五、魏民、藤岡正喜、梯アンナ、<u>鰐渕英機</u>.

芳香族アミンによる職業性膀胱がん. 第81回日 本癌学会学術総会、横浜(2022年9月)

- 帶金明日香、小宮雅美、鈴木周五、魏民、<u>鰐渕英機</u>、 戸塚ゆ加里. 職業性膀胱がん候補化学物質による DNA付加体の網羅的解析. 第81回日本癌学会学術 総会、横浜(2022年9月)
- 10) 魏民、鈴木周五、山下聡、藤岡正喜、梯アンナ、山本与毅、邱桂ユウ、<u>鰐渕英</u>機. 遺伝子セットを用いた遺伝毒性肝発がん物質超短期検出法. 第81回日本癌学会学術総会、横浜(2022年9月)
- 11)藤岡正喜、魏民、鈴木周五、大石裕司、邱桂ユウ、 梯アンナ、<u>鰐渕英機</u>.マウス経胎盤曝露モデルに おけるジフェニルアルシン酸(DPAA)のエピジェネ ティック修飾異常を介した肝発がんの亢進.第81 回日本癌学会学術総会、横浜(2022年9月)
- 12) 藤岡正喜、魏民、鈴木周五、大石裕司、梯アンナ、 邱桂鈺、芝野佳奈、<u>鰐渕英機</u>. マウス経胎盤ばく 露による有機ヒ素化合物の発がん性およびその機 序.第 35 回発癌病理研究会、湯沢(2022年11月)
- 13) 帯金明日香、小宮雅美、鈴木周五、魏民、<u>鰐渕英機</u>、 戸塚ゆ加里. 職業性膀胱がん候補化学物質による DNA 付加体の網羅的解析. 第51 回環境変異原学会、 広島(2022 年 11 月)
- 14) 藤岡正喜、魏民、Vachiraarunwon Arpamas、鈴木 周五、<u>鰐渕英</u>機. 無機ヒ素曝露ヒト肝マウスにお ける尿中及び糞中ヒ素の化学形態別性状の解析.
 第 27 回ヒ素シンポジウム、今治(2022年12月)
- 15) 鈴木周五、魏民、藤岡正喜、梯アンナ、<u>鰐渕英機</u>. ジメチルアルシン酸による膀胱発がん機序の解明. 第27回ヒ素シンポジウム、今治(2022年12月)
- 16) 道場彩乃、魏民、櫻井映子、寺本 篤司、桐山諭和、 山田 勢至、<u>鰐渕英機</u>、塚本徹哉. yH2AXとKi-67 を用いた遺伝毒性肝発がん物質の早期検出:機械 学習による自動判定の試み.第39回日本毒性病理 学会総会、東京(2023年1月)
- 17) 山本与毅、魏民、鈴木周五、藤岡正喜、Arpamas Vachiraarunwong、Guiyu Qiu、芝野佳奈、清水一 希、梯アンナ、<u>鰐渕英機</u>. ジメチルアルシン酸誘 発ラット膀胱がんにおけるDNAメチル化異常.第39 回日本毒性病理学会総会、東京(2023年1月)
- 18) Arpamas Vachiraarunwong, Min Gi, Tohru Kiyono, Shugo Suzuki, Kana Shibano, Guiyu Qiu, Pharapirom Aroonrat, Anna Kakehashi, Masaki Fujioka, <u>Hideki Wanibuchi</u>. Toxicities of various arsenicals on immortalized normal human bladder epithelial cells. 第39回日本毒性 病理学会総会、東京 (2023年1月)
- 19) 梯アンナ、西土井悠作、Guiyu Qiu、鈴木周五、藤 岡正喜、魏民、<u>鰐渕英機</u>. ヒト浸潤性膵管癌の新 規バイオマーカー候補の解析. 第39回日本毒性病 理学会総会、東京(2023年1月)
- Guiyu Qiu、梯アンナ、鈴木周五、藤岡正喜、<u>鰐渕</u> <u>英機</u>. ヒト浸潤性膵管癌におけるPRDX3 の機能解 明.第39回日本毒性病理学会総会、東京(2023年1 月)
- 藤岡正喜、魏民、鈴木周五、芝野佳奈、Guiyu Qiu、 Arpamas Vachiraarunwong、Pharapirom Aroonrat、 大石裕司、梯アンナ、<u>鰐渕英機</u>. マウス経胎盤曝 露モデルにおけるジフェニルアルシン酸(DPAA)の

エピジェネティック修飾異常を介した肝発がんの 亢進.第39回日本毒性病理学会総会、東京(2023年 1月)

- 22) 芝野佳奈、藤岡正喜、魏民、Arpamas Vachiraarunwong、Pharapirom Aroonrat、Guiyu Qiu、鈴木周五、<u>鰐渕英機</u>. ヒト化肝臓マウスにお ける無機ヒ素の体内動態及び毒性. 第39回日本毒 性病理学会総会、東京(2023年1月)
- 23) 鈴木周五、魏民、藤岡正喜、梯アンナ、<u>鰐渕英機</u>. 職業性ばく露を認めた*o*-toluidineの尿中代謝物

による膀胱尿路上皮への影響.第39回日本毒性病 理学会総会、東京(2023年1月)

H. 知的財産権の出願・登録状況

- **1.特許取得** 該当なし
- 2. 実用新案登録 該当なし
- **3.その他** 該当なし

労災疾病臨床研究事業費補助金 令和4年度分担研究報告書

芳香族アミン代謝に着目した膀胱発がん評価法の開発(200601-01) 分担研究項目:ヒト化肝臓マウスを用いた芳香族アミン代謝の役割

研究分担者 末水洋志 公益財団法人実験動物中央研究所 研究部門 部門長

研究要旨

本研究では、発がん性に影響を与える肝薬物代謝酵素の種差を考慮し、よりヒトへの外挿性を高めた発が ん実験系の確立をめざす。雄性不妊を回避した HSV thymidine kinase 変異型遺伝子を肝細胞特異的に発現す る免疫不全 NOG (NOG-TKm30 F1)マウスを用いて効率よく「ヒト化肝臓マウス」を作製する方法を検討した。 新たに2ロット(ロット①:12歳女性、ロット②:31歳男性)について生着性評価を実施した。ヒト肝細胞 移植 10 週後の血中コリンエステラーゼ活性を比較したところ、ロット①細胞移植群では 480 U/L、②細胞移 植群では 580 U/L と高値を示し、ヒト化肝臓マウス作製に適することが確認できた。本年度、芳香族アミン 類の実験に使用したロット①及び②細胞移植によるヒト化肝臓マウス各6匹の平均血中コリンエステラーゼ 活性は 408 U/L と 482 U/L といずれも高値であった。これらのマウスを研究代表者に提供し芳香族アミン類 の発がん性試験を実施した。

A. 研究目的

芳香族アミンによる職業性膀胱がんは社会的な問題 の一つである。芳香族アミン類の発がん性に関わるN-水 酸化を触媒する薬物代謝酵素CYP1A2のげっ歯類とヒト との動物種差を勘案し、ヒト肝細胞により再構成された 「ヒト化肝臓」を保有するヒト化肝臓マウスを作製する。

B. 研究方法

HSV thymidine kinase 変異型遺伝子を肝細胞特異的 に発現する超免疫不全 NOD/scid-IL-2rgc (NOG-TKm30 F1)マウスを交配により作出した。ガンシクロビル投 与によりマウス肝細胞を選択的に破壊した後、脾臓門 脈経由でヒト肝細胞を移植した。血中コリンエステラ ーゼ活性の上昇によりヒト肝細胞の生着を確認し、移 植に適した肝細胞ロットの選抜を行った(ロット①: 12歳女性、ロット②:31歳男性)。実験に安定供給 できる体制づくりと移植したヒト肝細胞に増殖性の良 い肝傷害条件を検討した。

(倫理面への配慮)

本研究で使用したヒト肝細胞は全て一般市場から購入した細胞で患者個人情報に結びつくものは無く、個人の人権、利益に支障を及ぼさない手続きがなされている。動物実験については当研究所の「動物実験委員会」に本研究内容を申請し、承認を得たうえで3Rに十分配慮して実施した。

C. 研究結果

昨年度に続き、肝傷害誘導法の最適化を行った。ガン シクロビルとして点滴静注用製剤デノシンとバルガン シクロビルとして経口投与用製剤バリキサ(ドライシロ ップ)、研究用試薬 ValGCVを検討した。その結果、経 口投与用製剤バリキサ(ドライシロップ)投与による肝 傷害誘導法が比較的安定していることがわかった。本年 度は、メスNOG-TKm30 F1マウスに0.175,0.2 mg/mLの バリキサ含有飲用水を72時間投与するプロトコールを 施行した。0.175 mg/mLバリキサ投与群の血中ALTレベル は平均406 U/L(45匹)、0.2 mg/mL投与群では平均505 U/L(46匹)であり容量依存性が確認できた。ヒト肝細 胞移植に適した血中ALTレベル(600-1,500 U/L)を呈し たマウスにロット①および②のヒト肝細胞を移植し、高 キメラマウスを作製した。その結果、①細胞移植による ヒト化肝臓マウス6匹の平均血中コリンエステラーゼ活 性は408U/L、②細胞移植によるヒト化肝臓マウス6匹の 平均血中コリンエステラーゼ活性は482U/Lといずれの 細胞でも高値を示した(表1)。これらのマウスを芳香 族アミン類の実験に使用した。

表1. ヒト化肝臓マウスにおけるコリンエステラーゼ(ChE)に よる推定置換率

ロット	動物番号	ChE (U/L)	推定置換率
1	1-1	370	76%
1	①-2	425	87%
1	①-3	425	87%
1	<u></u> -4	480	>90%
1	1)-5	405	83%
1	1)-6	340	70%
2	2-1	440	>90%
2	②-2	455	>90%
2	②-3	440	>90%
2	②-4	475	>90%
2	②-5	580	>90%
2	②-6	500	>90%

D. 考察

NOG-TKm30 F1マウスにおけるヒト肝細胞生着性はロット①細胞(12歳由来)、ロット②細胞(31歳由来)と も良好であり、高キメラマウスが作製できた。類似の実 験モデルでは若齢のみが使われるのに対し、本モデルは 広範なヒト肝細胞が利用可能である。より在庫数の大き なヒト肝細胞を選択することにより同一条件で規模を 拡大した、あるいは継続的な実験が可能となる。

E. 結論

NOG-TKm30 F1マウスを用いることにより、従来モデル(TK-NOG)よりもヒト肝細胞の受容性が高く、ヒト化率が高く、維持期間が長いヒト化肝臓マウスの作製が可能となり、ヒト外挿性を高めた発がん実験系の確立に近づいた。

G. 研究発表

1. 論文発表

- Yokota Y, Suzuki S, Gi M, Yanagiba Y, Yoneda N, Fujioka M, Kakehashi A, Koda S, <u>Suemizu</u> <u>H</u>, Wanibuchi H. o-Toluidine metabolism and e ffects in the urinary bladder of humanized-1 iver mice. Toxicology. 2023; 488: 153483.
- Uehara S, Higuchi Y, Yoneda N, Kato H, Yamaz aki H, <u>Suemizu H</u>. The Unique Human N10-Glucu ronidated Metabolite Formation from Olanzapi ne in Chimeric NOG-TKm30 Mice with Humanized Livers. Drug Metab Dispos. 2023; 51: 480-91.
- 3) Shiode Y, Kodama T, Shigeno S, Murai K, Tana ka S, Newberg JY, Kondo J, Kobayashi S, Yama da R, Hikita H, Sakamori R, <u>Suemizu H</u>, Tatsu mi T, Eguchi H, Jenkins NA, Copeland NG, Tak ehara T. TNF receptor-related factor 3 inact ivation promotes the development of intrahep atic cholangiocarcinoma through NF-kappaB-in ducing kinase-mediated hepatocyte transdiffe rentiation. Hepatology. 2023; 77: 395-410.
- 4) Uehara S, Murayama N, Higuchi Y, Yoneda N, Y amazaki H, <u>Suemizu H</u>. Comparison of mouse an d human cytochrome P450 mediated-drug metabo lising activities in hepatic and extrahepati c microsomes. Xenobiotica. 2022; 52: 229-39.
- 5) Uehara S, Iida Y, Ida-Tanaka M, Goto M, Kawa i K, Yamamoto M, Higuchi Y, Ito S, Takahashi R, Kamimura H, Ito M, Yamazaki H, Oshimura M, Kazuki Y, <u>Suemizu H</u>. Humanized liver TK-N OG mice with functional deletion of hepatic murine cytochrome P450s as a model for study ing human drug metabolism. Sci Rep. 2022; 1 2: 14907.
- 6) Tamaki Y, Shibata Y, Hayakawa M, Kato N, Mac

hii A, Ikeda Y, Nanizawa E, Hayashi Y, <u>Suemi</u> <u>zu H</u>, Ito H, Ishikawa T. Treatment with hepa tocyte transplantation in a novel mouse mode l of persistent liver failure. Biochem Bioph ys Rep. 2022; 32: 101382.

- 7) Murai K, Kodama T, Hikita H, Shimoda A, Fuku oka M, Fukutomi K, Shigeno S, Shiode Y, Moto oka D, Higuchi Y, Miyakawa K, <u>Suemizu H</u>, Ryo A, Tahata Y, Makino Y, Yamada R, Sakamori R, Tatsumi T, Takehara T. Inhibition of nonhom ologous end joining-mediated DNA repair enha nces anti-HBV CRISPR therapy. Hepatol Commun. 2022; 6: 2474-87.
- 8) Miura T, Uehara S, Shimizu M, <u>Suemizu H</u>, Yam azaki H. Forward and reverse dosimetry for a niline and 2, 6-dimethylaniline in humans ext rapolated from humanized-liver mouse data us ing simplified physiologically based pharmac okinetic models. J Toxicol Sci. 2022; 47: 53 1-8.
- 9) Kabbani M, Michailidis E, Steensels S, Fulme r CG, Luna JM, Le Pen J, Tardelli M, Razooky B, Ricardo-Lax I, Zou C, Zeck B, Stenzel AF, Quirk C, Foquet L, Ashbrook AW, Schneider W M, Belkaya S, Lalazar G, Liang Y, Pittman M, Devisscher L, <u>Suemizu H</u>, Theise ND, Chiribo ga L, Cohen DE, Copenhaver R, Grompe M, Meul eman P, Ersoy BA, Rice CM, de Jong YP. Human hepatocyte PNPLA3-148M exacerbates rapid no n-alcoholic fatty liver disease development in chimeric mice. Cell Rep. 2022; 40: 111321.
- 2. 学会発表 該当なし
- H. 知的財産権の出願・登録状況
- 特許取得 該当なし
 実用新案登録 該当なし
 その他 該当なし

労災疾病臨床研究事業費補助金 令和4年度分担研究報告書

芳香族アミン代謝に着目した膀胱発がん評価法の開発(200601-01) 分担研究項目:尿中芳香族アミン代謝物と膀胱発がんおよび機序の解明

研究分担者 戸塚ゆ加里 日本大学 薬学部 教授

研究要旨

芳香族アミンによる職業性膀胱がんは社会的な問題の一つであり、最近でも福井県の化学工場において っtoluidine (OTD)等の芳香族アミンを取り扱う従事者から膀胱がんが発生している。芳香族アミン類の膀 脱発がんメカニズムの解明及び毒性の予測が喫緊の課題となっている。本研究では、高分解能精密質量分析 装置(HRAM)を用いた DNA 付加体の網羅的解析手法(HRAM アダクトーム)を用い、DNA 損傷のより詳細な評 価を行うことで、芳香族アミン類の有害性の評価と膀胱発がんメカニズムを解析することを目的とした。昨 年度までの研究において、Aniline (ANL)、p-Toluidine (PT)、Acetoaceto-σ-toluidine (AAOT)、OTD を 4 週間、混餌投与を行なったラット膀胱上皮より DNA を抽出し、アダクトームによる解析を行ったところ、主 成分解析から AAOT 投与群、OTD 投与群がクラスタリングされ、クラスタリングに寄与するアダクトとし て、酸化ストレスに由来するアダクトが検出された。今年度は、2,4-Dimethylaniline (2,4-DMA)と OTD の 尿中代謝物である 2-Amino-*m*-cresol (2-AMC)、4-Amino-*m*-cresol (4-AMC)、AAOT と OTD の中間体である *σ*-Acetotoluidine (AOTD)を用いて同様の実験を行い、DNA アダクトーム解析を行なった。その結果、各群 それぞれがクラスタリングされた。クラスタリングに寄与するアダクトを検索したところ、前年度の研究で 見出された酸化ストレスに由来すると考えられるアダクトと同じアダクトが検出された。先行実験で OTD、 AAOT、AOTD 投与により、ラット膀胱粘膜に高頻度で simple hyperplasia が観察されているが、OTD、AAOT 曝露群と同様、AOTD 曝露によるラット膀胱粘膜毒性にも酸化ストレスが関係していることが示唆された。

A. 研究目的

芳香族アミンによる職業性膀胱がんは社会的な問題 の一つであり、最近でも福井県の化学工場において、 *o*-toluidine (OTD)等の芳香族アミンを取り扱う従事者 から膀胱癌が発生している。日本で発がん性物質として 規制されている芳香族アミン類は、benzidineや 2-naphthylamineなど7種類と少ないが、今後も類似の芳 香族アミンによる職業膀胱癌発生の危険性が存在する 可能性は高い。

発がん予測試験として、遺伝毒性試験が挙げられるが、 既存の遺伝毒性試験としては、Ames試験(変異原性試験)、 コメットアッセイ(DNA損傷試験)、小核試験(染色体 異常試験)などが簡便な試験法として汎用されている。 しかしながら、これら試験のみでは化学物質の発がん性 の予測や有害性発現経路(Adverse Outcome Pathway, AOP)の解析は難しく、別の視点から遺伝毒性を評価する 試験法を開発することが必要であると考える。

我々は、高分解能精密質量分析装置(HRAM)を用いた DNA付加体の網羅的解析手法(HRAM-アダクトーム)を用 い、DNA損傷のより詳細な評価を行ない、化学物質の*in vitro*安全性評価法として妥当かどうかについて検討し てきた。最近、アダクトーム法を用いたラット肝臓をタ ーゲットとした化学物質の安全性評価法の開発を目的 とし、DNA付加体の生成を指標とした有害性評価の検証 を行なったところ、高い正答率が得られることがわかっ た。

本研究では、この手法を膀胱発がん予測へと応用する

ことを目的に、既存の膀胱発がん物質を含む複数の化学 物質を投与したラットの膀胱におけるDNA損傷をHRAM-アダクトームにより検討し、DNA付加体の生成を指標と した有害性評価の検証を行なう。

B. 研究方法

F344 ラットに芳香族アミン2,4-Dimethylaniline (2,4-DMA)、OTDの尿中代謝物2-Amino-m-cresol(2-AMC)、 4-Amino-m-cresol(4-AMC)、AAOTとOTDの中間体である *o*-Acetotoluidine (AOTD)を4週間混餌投与し、屠殺・ 剖検を行い、膀胱を回収した。全てのサンプルについて、 Tissue Lysis Bufferを入れたすり面付き1.5mLチュー ブ (バイオマッシャーII)内で膀胱粘膜上皮を剥離し、 Proteinase KおよびSDSを加えて反応させ、フェノール・ クロロホルム法によりDNA抽出を行なった。

DNAを抽出後、DNaseI、ヌクレアーゼP1、アルカリホ スファターゼ、ホスホジエステラーゼによりモノデオキ シリボヌクレオシドに消化した後、LC-TOF MSに供しDNA 付加体の網羅解析を行なった。得られたデータはSCIEX 社が提供するバイオインフォマティクス解析ソフトウ ェアを用い、デオキシリボヌクレオチドに特徴的なニュ ートラルロス (-116.04736)及び各種核酸に特異的な ニュートラルロス (-152.0572; dG, -136.0623; dA, -112.0511; dC, -127.0508; dT)を生じたピークを選択 的に抽出することで、ノイズなどを抽出しないように系 をデザインした。得られたデータを主成分判別分析 (PDA-DA)により解析した。 (倫理面への配慮)

本研究で行う動物実験にあたっては、日本大学、国立 がん研究センターを含む各施設における動物実験に関 する指針に則って実施し、可能な限り実験動物の苦痛軽 減処置を行う。

C. 研究結果

膀胱上皮粘膜より抽出したDNAを酵素消化後にLC-HRAM-MSにて付加体の網羅的解析を実施した。

PCA解析を行ったところ、各群にクラスタリングされ たが、中でもラット膀胱粘膜に高頻度でHyperplasiaが 観察されたAOTDが、コントロールと大きく離れてクラス タリングされた(図1)。クラスタリングに寄与するア ダクトの探索を行ったところ、前年度の研究で見出され た酸化ストレスに由来するアダクト(8-OH-dA)の寄与が 大きいことがわかった(図2,3)。

図3. AOTD群に特徴的なアダクトの同定

D. 考察

先行して行ったラット膀胱粘膜上皮の病理学的解析 により、AOTD曝露群のみsimple hyperplasia病変が観 察された。また、昨年度行った研究においても、OTD、 AAOT曝露群のラット膀胱粘膜にsimple hyperplasiaが 観察され、さらにアダクトーム解析により酸化ストレ スに由来する複数のアダクト生成が確認された。 今回、4種類の芳香族アミン類を曝露したラットの膀胱粘膜より抽出したDNAを用い、アダクトーム解析を行ったところ、昨年度の解析で抽出された酸化ストレス由来のアダクトの生成がAOTD曝露群においても確認された。このことから、OTD、AAOT、さらにOTD-AAOTの中間体であるAOTDのラット膀胱粘膜毒性は酸化ストレスによるものである可能性が明らかになった。

E. 結論

膀胱上皮粘膜より抽出したDNAを酵素消化後にLC-HRAM-MSにて付加体の網羅的解析を実施した。

PCA解析を行ったところ、各群にクラスタリングされた。クラスタリングに寄与するアダクトの検索を行ったところ、酸化ストレスに由来する8-OH-dAの生成が確認され、AOTD曝露群のラット膀胱に多く存在することが明らかとなった。このことより、AOTD曝露によるラット膀胱粘膜毒性は、OTD、AAOTと同様に酸化ストレスによるものである可能性が示唆された。

今後さらに、AOTD特有のアダクトの検索を行うと同時 に、次世代シーケンサーによる解析を行い、変異シグネ チャーを同定することにより、芳香族アミン類による毒 性の評価と予測、及び発がんの機序の解明を目指す。

G. 研究発表

- 1. 論文発表
- Kobayashi T, Kishimoto S, Watanabe S, Yoshioka Y, Toyoda T, Ogawa K, Watanabe K, <u>Totsuka Y</u>, Wakabayashi K, Miyoshi N. Cytotoxic homo- and hetero-dimers of otoluidine, o-anisidine, and aniline formed by in vitro metabolism. Chem Res Toxicol. 2022; 35: 1625-30.
- 2) Narita T, Tsunematsu Y, Miyoshi N, Komiya M, Hamoya T, Fujii G, Yoshikawa Y, Sato M, Kawanishi M, Sugimura H, Iwashita Y, <u>Totsuka</u> <u>Y</u>, Terasaki M, Watanabe K, Wakabayashi K, Mutoh M. Induction of DNA damage in mouse colorectum by administration of colibactinproducing escherichia coli, isolated from a patient with colorectal cancer. In Vivo. 2022; 36: 628-34.
- 2. 学会発表
- 戸塚ゆ加里.集学的アプローチによる化学物質の 遺伝毒性評価の現状と将来展望.第49回日本毒性 学会学術年会、札幌(2022年6月)
- 2) 小宮雅美、鈴木周五、魏民、鰐渕英機、<u>戸塚ゆ加里</u>. 芳香族アミンの膀胱がんメカニズムの解析. 第29 回日本がん予防学術大会、京都(2022年7月)
- 小林琢磨、豊田武士、吉岡泰淳、岸本真治、松下幸 平、赤根弘敏、小川久美子、渡辺賢二、高村岳樹、 <u>戸塚ゆ加里</u>、若林敬二、三好規之. 細胞毒性を有 するo-Toluidineとo-Anisidineの尿中代謝物はラ ット膀胱上皮でALDH1A1を誘導する. 第29回日本 がん予防学術大会、京都(2022年7月)
- 4) Yukari Totsuka. New horizons of DNA adductome

for exploring environmental causes of cancer. 13th ICEM, Ottawa, Canada (2022年8月)

- 5) Kobayashi T, Yoshioka Y, Kishimoto S, Watanabe K, <u>Totsuka Y</u>, Wakabayashi K, Miyoshi N. In vitro metabolic dynamics for p-semidine-type homo- and hetero-dimerization of monocyclic aromatic amines. 13th ICEM, Ottawa, Canada (2022年8月)
- <u>戸塚ゆ加里</u>、小宮雅美、松田知成、加藤護. Next generation sequencing technology elucidates the association between environmental factors and human cancer development. 第81回日本癌学 会学術総会、横浜(2022年9月)
- 小宮雅美, 落合雅子, 今井俊夫, <u>戸塚ゆ加里</u>. Establishment of novel genotoxicity assay system using organoids derived from murine normal epithelial tissues. 第81回日本癌学会 学術総会、横浜(2022年9月、横浜)
- 8) 帶金明日香、小宮雅美、鈴木周五、魏民、鰐渕英機、 <u>戸塚ゆ加里</u>. 職業性膀胱がん候補化学物質による DNA付加体の網羅的解析. 第81回日本癌学会学術 総会、横浜(2022年9月)
- 9) <u>戸塚ゆ加里、小宮雅美、永井桃子、加藤護、松田知成.集学的アプローチによるがんの要因解明と予防研究への展望.第35回発癌病理研究会、新潟(2022年11月)</u>

- 10) 帯金明日香、小宮雅美、鈴木 周五、魏民、鰐渕 英 機、<u>戸塚 ゆ加里</u>. 職業性膀胱がん候補化学物質に よるDNA付加体の網羅的解析. 第51回環境変異原 学会、広島(2022年11月)
- 11) 坪井理、植嶋亜衣、久富優太、小田美光、恒松雄太、 佐藤道大、平山裕一郎、三好規之、岩下雄二、吉川 悠子、椙村春彦、<u>戸塚ゆ加里</u>、若林敬二、渡辺賢二、 川西優喜. DNA鎖間架橋修復欠損細胞を用いたコ リバクチン産生大腸菌の細胞毒性と遺伝毒性の評 価. 第51回環境変異原学会、広島(2022年11月)
- 12) <u>戸塚ゆ加里</u>. 集学的アプローチによるがんの要因 解明と予防研究への展望. 第1回包括的がん緩和 病態生理医療薬学研究会、東京(2022年11月)
- 13) Yukari Totsuka. Comprehensive analyses of genome and DNA adducts elucidate association between environmental factors and human cancer development. 12th AACR-JCA Joint Conference, Maui, HI, USA (2022年12月)

H. 知的財産権の出願・登録状況

- 1. 特許取得
- 該当なし
- 2. 実用新案登録
- 該当なし **3.その他** 該当なし

研究成果の刊行に関する一覧表

書籍

著者氏名	論文タイトル名	書籍全体の 編集者名	書	籍	名	出版社名	出版地	出版年	ページ
該当なし									

雑誌

発表者氏名	論文タイトル名	発表誌名	卷号	ページ	出版年
Yokota Y, <u>Suzuki S</u> , Gi M, Yanagiba Y, Yoneda N, Fujioka M, Kakehashi A, Koda S, <u>Suemizu H</u> , <u>Wanibuchi H</u>	o-Toluidine metabolism and effects in the urinary bladder of humanized-liver mice	Toxicology	488	153483	2023
Uehara S, Higuchi Y, Yoneda N, Kato H, Yamazaki H, <u>Suemizu H</u>	The Unique Human N10- Glucuronidated Metabolite Formation from Olanzapine in Chimeric NOG-TKm30 Mice with Humanized Livers	Drug Metab Dispos	51	480-91	2023
Shiode Y, Kodama T, Shigeno S, Murai K, Tanaka S, Newberg JY, Kondo J, Kobayashi S, Yamada R, Hikita H, Sakamori R, <u>Suemizu</u> <u>H</u> , Tatsumi T, Eguchi H, Jenkins NA, Copeland NG, Takehara T	NF receptor-related factor 3 inactivation promotes the development of intrahepatic cholangiocarcinoma through NF-kappaB- inducing kinase-mediated hepatocyte transdifferentiation	Hepatology	77	395-410	2023
Uehara S, Murayama N, Higuchi Y, Yoneda N, Yamazaki H, <u>Suemizu H</u>	Comparison of mouse and human cytochrome P450 mediated-drug metabolising activities in hepatic and extrahepatic microsomes	Xenobiotica	52	229-39	2022

Uehara S, Iida Y, Ida-Tanaka M, Goto M, Kawai K, Yamamoto M, Higuchi Y, Ito S, Takahashi R, Kamimura H, Ito M, Yamazaki H, Oshimura M, Kazuki Y, <u>Suemizu H</u>	Humanized liver TK-NOG mice with functional deletion of hepatic murine cytochrome P450s as a model for studying human drug metabolism	Sci Rep	12	14907	2022
Tamaki Y, Shibata Y, Hayakawa M, Kato N, Machii A, Ikeda Y, Nanizawa E, Hayashi Y, <u>Suemizu</u> H, Ito H, Ishikawa T	Treatment with hepatocyte transplantation in a novel mouse model of persistent liver failure	Biochem Biophys Rep	32	101382	2022
Tagami M, Kakehashi A, Katsuyama- Yoshikawa A, Misawa N, Sakai A, <u>Wanibuchi H</u> , Azumi A, Honda S	FOXP3 and CXCR4- positive regulatory T cells in the tumor stroma as indicators of tumor immunity in the conjunctival squamous cell carcinoma microenvironment	PLoS One	17	e0263895	2022
<u>Suzuki S</u> , Asai K, Gi M, Kojima K, Kakehashi A, Oishi Y, Matsue T, Yukimatsu N, Hirata K, Kawaguchi T, <u>Wanibuchi H</u>	Response biomarkers of inhalation exposure to cigarette smoke in the mouse lung	J Toxicol Pathol	35	247-54	2022
Saleh DM, Luo S, Ahmed OHM, Alexander DB, Alexander WT, Gunasekaran S, El- Gazzar AM, Abdelgied M, Numano T, Takase H, Ohnishi M, Tomono S, Hady R, Fukamachi K, Kanno J, Hirose A, Xu J, <u>Suzuki S</u> , Naiki-Ito A, Takahashi S, Tsuda H	Assessment of the toxicity and carcinogenicity of double-walled carbon nanotubes in the rat lung after intratracheal instillation: a two- year study	Part Fibre Toxicol	19	30	2022

Oikawa D, Gi M, Kosako H, Shimizu K, Takahashi H, Shiota M, Hosomi S, Komakura K, <u>Wanibuchi H</u> , Tsuruta D, Sawasaki T, Tokunaga F	OTUD1 deubiquitinase regulates NF-kappaB- and KEAP1-mediated inflammatory responses and reactive oxygen species-associated cell death pathways	Cell Death Dis	13	694	2022
Narita T, Tsunematsu Y, Miyoshi N, Komiya M, Hamoya T, Fujii G, Yoshikawa Y, Sato M, Kawanishi M, Sugimura H, Iwashita Y, <u>Totsuka</u> Y, Terasaki M, Watanabe K, Wakabayashi K, Mutoh M	Induction of DNA damage in mouse colorectum by administration of colibactin-producing escherichia coli, isolated from a patient with colorectal cancer	In Vivo	36	628-34	2022
Nagai M, Iemura K, Kikkawa T, Naher S, Hattori S, Hagihara H, Nagata KI, Anzawa H, Kugisaki R, <u>Wanibuchi H</u> , Abe T, Inoue K, Kinoshita K, Miyakawa T, Osumi N, Tanaka K	Deficiency of CHAMP1, a gene related to intellectual disability, causes impaired neuronal development and a mild behavioural phenotype	Brain Commun	4	fcac220	2022
Murai K, Kodama T, Hikita H, Shimoda A, Fukuoka M, Fukutomi K, Shigeno S, Shiode Y, Motooka D, Higuchi Y, Miyakawa K, <u>Suemizu H</u> , Ryo A, Tahata Y, Makino Y, Yamada R, Sakamori R, Tatsumi T, Takehara T	Inhibition of nonhomologous end joining-mediated DNA repair enhances anti- HBV CRISPR therapy	Hepatol Commun	6	2474-87	2022

Miura T, Uehara S, Shimizu M, <u>Suemizu</u> <u>H</u> , Yamazaki H	Forward and reverse dosimetry for aniline and 2,6- dimethylaniline in humans extrapolated from humanized-liver mouse data using simplified physiologically based pharmacokinetic models	J Toxicol Sci	47	531-8	2022
Matsue T, Gi M, Shiota M, Tachibana H, <u>Suzuki S</u> , Fujioka M, Kakehashi A, Yamamoto T, Kato M, Uchida J, <u>Wanibuchi</u> <u>H</u>	The carbonic anhydrase inhibitor acetazolamide inhibits urinary bladder cancers via suppression of beta- catenin signaling	Cancer Sci	113	2642–53	2022
Kondo N, Sakurai Y, Takata T, Kano K, Kume K, Maeda M, Takai N, <u>Suzuki S</u> , Eto F, Kikushima K, <u>Wanibuchi H</u> , Miyatake SI, Kajihara T, Oda S, Setou M, Aoki J, Suzuki M	Persistent elevation of lysophosphatidylcholin e promotes radiation brain necrosis with microglial recruitment by P2RX4 activation	Sci Rep	12	8718	2022
Kobayashi T, Kishimoto S, Watanabe S, Yoshioka Y, Toyoda T, Ogawa K, Watanabe K, <u>Totsuka</u> <u>Y</u> , Wakabayashi K, Miyoshi N	Cytotoxic homo- and hetero-dimers of o- toluidine, o- anisidine, and aniline formed by in vitro metabolism	Chem Res Toxicol	35	1625-30	2022

Kabbani M, Michailidis E, Steensels S, Fulmer CG, Luna JM, Le Pen J, Tardelli M, Razooky B, Ricardo- Lax I, Zou C, Zeck B, Stenzel AF, Quirk C, Foquet L, Ashbrook AW, Schneider WM, Belkaya S, Lalazar G, Liang Y, Pittman M, Devisscher L, <u>Suemizu H</u> , Theise ND, Chiriboga L, Cohen DE, Copenhaver R, Grompe M, Meuleman P, Ersoy BA, Rice CM, de Jong YP	Human hepatocyte PNPLA3-148M exacerbates rapid non- alcoholic fatty liver disease development in chimeric mice	Cell Rep	40	111321	2022
Deguchi S, Tanaka H, <u>Suzuki S</u> , Natsuki S, Mori T, Miki Y, Yoshii M, Tamura T, Toyokawa T, Lee S, Muguruma K, <u>Wanibuchi H</u> , Ohira M	Clinical relevance of tertiary lymphoid structures in esophageal squamous cell carcinoma	BMC Cancer	22	699	2022