

Analytical Method for Enrofloxacin, Oxolinic Acid, Ofloxacin, Orbifloxacin, Sarafloxacin, Difloxacin, Danofloxacin, Nalidixic Acid, Norfloxacin and Flumequine (Animal and Fishery Products)

1. Analytes	
Compositional substances of	Analytes
agricultural chemicals	
Enrofloxacin	Enrofloxacin, Ciprofloxacin
Oxolinic Acid	Oxolinic Acid
Ofloxacin	Ofloxacin
Orbifloxacin	Orbifloxacin
Sarafloxacin	Sarafloxacin
Difloxacin	Difloxacin
Danofloxacin	Danofloxacin
Nalidixic Acid	Nalidixic Acid
Norfloxacin	Norfloxacin
Flumequine	Flumequine

2. Instruments

High performance liquid chromatograph-fluorometric detector (HPLC-FL) Liquid chromatograph-mass spectrometer (LC-MS)

3. Reagents

Use the reagents listed in Section 3 of the General Rules, except the following.

Acetonitrile: Prepared for liquid chromatography.

Water: Prepared for liquid chromatography.

Methanol: Prepared for liquid chromatography.

Divinylbenzene-*N*-vinylpyrrolidone copolymer cartridge (60 mg): Polyethylene tube of 12-13 mm in inside diameter packed with 60 mg of divinylbenzene-*N*-vinylpyrrolidone copolymer, or other cartridge with equal separation characteristics.

Reference standard of enrofloxacin: Contains not less than 98% of enrofloxacin. Melting point of the standard is 219-225°C.

Reference standard of ciprofloxacin: Contains not less than 98% of ciprofloxacin. Melting point of the standard is 255-257°C.

Reference standard of oxolinic acid: Contains not less than 99% of oxolinic acid. Melting point of the standard is 314-316°C.

Reference standard of ofloxacin: Contains not less than 98% of ofloxacin. Melting point of the standard is 250-257°C.

Reference standard of orbifloxacin: Contains not less than 95% of orbifloxacin. Decomposition point of the standard is 263°C.

Reference standard of sarafloxacin hydrochloride: Contains not less than 95% of sarafloxacin hydrochloride. Melting point of the standard is 200°C.

Reference standard of difloxacin hydrochloride: Contains not less than 95% of difloxacin hydrochloride. Melting point of the standard is not less than 275°C.

Reference standard of danofloxacin mesilate: Contains not less than 95% of danofloxacin mesilate. Melting point of the standard is 328°C.

Reference standard of nalidixic acid: Contains not less than 99% of nalidixic acid. Melting point of the standard is 225-230°C.

Reference standard of norfloxacin: Contains not less than 98% of norfloxacin. Melting point of the standard is 220-221°C.

Reference standard of flumequine: Contains not less than 99% of flumequine. Melting point of the standard is 253-255°C.

4. Procedure

1) Extraction

Weigh 5.00 g of sample, add 100 mL of acetonitrile/0.2% metaphosphoric acid (2:3, v/v), homogenize, and filter with suction. Add 20 mL of acetonitrile/0.2% metaphosphoric acid (2:3, v/v) to the residue on the filter paper, mix, treat as described above, combine the resulting filtrates, and concentrate to about 30 mL at below 40° C.

2) Clean-up

Add 5 mL each of methanol and water to a divinylbenzene-*N*-vinylpyrrolidone copolymer cartridge (60 mg) sequentially, and discard the effluents. Transfer the solution obtained in 1) to the cartridge, add 5 mL of water, and discard the effluent. Elute with 5 mL of methanol to the cartridge, transfer the eluate to a vacuum rotary evaporator flask, and remove methanol at below 40°C. Dissolve the residue in 1.0 mL of water/methanol (7:3, v/v), and use this solution as the test solution.

5. Calibration curve

Prepare 10 mg/100 mL solutions (methanol) of each reference standard. Dilute with water/methanol (7:3, v/v), and prepare 0.05-5 mg/L standard solutions of several concentrations. Inject each standard solution to HPLC, and make calibration curves by peak-height or peak-area method.

6. Quantification

Inject the test solution to HPLC, and calculate the concentrations of each analyte from the calibration curves made in **5**.

Quantify enrofloxacin and its metabolite, ciprofloxacin, individually, and regard the sum of the

results as the analytical result of enrofloxacin.

7. Confirmation

Confirm using LC-MS.

8. Measurement conditions

HPLC

Detector: FL

Enrofloxacin, ciprofloxacin, ofloxacin, orbifloxacin, sarafloxacin, difloxacin, danofloxacin and norfloxacin: Excitation wavelength 290 nm, emission wavelength 450 nm

Oxolinic acid, nalidixic acid and flumequine: Excitation wavelength 325 nm, emission wavelength 365 nm

Column: Octadecylsilanized silica gel, 2.0-6.0 mm in inside diameter, 100-250 mm in length and 2-5 μ m in particle diameter

Column temperature: 40°C

Mobile phase: Linear gradient from acetonitrile/0.1% formic acid (1:99, v/v) to (1:0, v/v) in 35 min and hold for 5 min.

Expected retention time: 20 min (enrofloxacin)

9. Limits of quantification

0.01 mg/kg for each analyte

10. Explanatory notes

1) Outline of analytical method

The method consists of extraction of enrofloxacin, ciprofloxacin, oxolinic acid, ofloxacin, orbifloxacin, sarafloxacin, difloxacin, danofloxacin nalidixic acid, norfloxacin and flumequine from sample with acetonitrile/0.2% metaphosphoric acid, clean-up with a divinylbenzene-*N*-vinylpyrrolidone copolymer cartridge, quantification using HPLC-FL, and confirmation using LC-MS.

2) Notes

- i) Typical injection volume of the standard solutions and the test solutions in HPLC-FL and LC-MS for a column with 3.0 mm in inside diameter is 10 μ L. The optimum injection volume may vary with the column and instrument used. Consider the optimum injection volume for each column/instrument.
- ii) The optimum ionization method and monitoring ions in LC-MS may vary with the instrument used. Consider optimum conditions for each instrument.

11. References

Horie, et al., Shokuhin Eiseigaku Zasshi, 36, 62 (1995)

12. Type

С