# 有害性評価書

物質名:1,2-ジブロモエタン

1. 化学物質の同定情報 1)

名 称: 1,2-ジブロモエタン

別 名:二臭化エチレン、エチレンジブロミド、EDB

化 学 式:  $C_2H_4Br_2$ 分 子 量: 187.9 CAS番号: 106-93-4

労働安全衛生法施行令別表 9 (名称を通知すべき有害物)第279号

2. 物理化学情報

(1) 物理的化学的性状 1)

外観:特徴的な臭気のある、無色の液体 溶解性(水):0.34 g/100 ml (20℃)

沸 点:131℃ 換算係数:

蒸気密度 (空気=1):6.5 融 点:融 点:10℃

(2) 物理的化学的危険性 1)

ア 火災危険性 : 不燃性。火災時に刺激性あるいは有毒なフュームやガスを放出する。 イ 爆発危険性 : 金属粉末と接触すると火災と爆発の危険性(「化学的危険性」参照)。

ウ 物理的危険性:情報なし

エ 化学的危険性:高温面や炎に触れると分解し、有毒で腐食性のフューム(臭化水素、

臭素)を生成する。光、水分の影響下で徐々に分解して、腐食性の臭化水素を生じる。粉末状のアルミニウムやマグネシウム、金属類(ナトリウム、カリウム、カルシウムなど)、強塩基、強力な酸化剤と激しく反応して、火災と爆発の危険をもたらす。脂肪、ゴム、ある種の

プラスチック、被膜剤を侵す。

3. 生産·輸入量/使用量/用途

「平成20年化学物質別製造(出荷)及び輸入量」には記載されていない。3)

輸入量:情報なし

用 途:試験分析用、製品原料用 20)

製造業者:情報なし

### 4. 健康影響

(1) 実験動物に対する毒性

#### ア 急性毒性

## 致死性

1.2-ジブロモエタンの急性毒性試験結果

|                     | マウス                          | ラット                          | ウサギ                          |
|---------------------|------------------------------|------------------------------|------------------------------|
| 吸入、LC <sub>50</sub> | データなし                        | $2304$ mg/ m³/4h $^{25)}$    | データなし                        |
| 経口、LD <sub>50</sub> | $420~\mathrm{mg/kg^{26)}}$   | $117~\mathrm{mg/kg}$ $^{4)}$ | $55$ mg/kg $^{4)}$           |
| 経皮、LD <sub>50</sub> | データなし                        | $300~\mathrm{mg/kg}$ $^{4)}$ | $300~\mathrm{mg/kg}$ $^{4)}$ |
| 腹腔内、LD50            | $220~\mathrm{mg/kg}$ $^{4)}$ | データなし                        | データなし                        |

### 健康影響

・調査した範囲では情報は見つからなかった。

### イ 刺激性及び腐食性

・1%の1,2-ジブロモエタンの酢酸ジエチレングリコールモノブチルエーテル溶液を14日間に10回ウサギの耳と剃毛した腹部(包帯で保護)に塗布した。耳では紅斑、皮膚剥脱など軽度の刺激が見られ、腹部では紅斑、浮腫を伴い、壊死と表皮の離脱を伴う強い刺激性を示した。投与終了後7日目には瘢痕を残さず回復した。1,2-ジブロモエタンの原液、1%および10%プロピレングリコール溶液をウサギの両眼に点眼し片方は30秒後に水で洗眼した。結膜刺激が両眼とも見られ、軽度の角膜表面の壊死もみられた。投与12日後には完全に回復し虹彩、レンズにも傷はみられなかった。原液と1%溶液に反応差はみられなかった。25)

### ウ 感作性

- ・調査した範囲では情報は見つからなかった。
- エ 反復投与毒性(生殖・発生毒性、遺伝毒性/変異原性、発がん性は除く)

# 吸入ばく露

- ・ F344 ラットおよびB6C3F1 マウス各群雌雄 10 匹に、3, 15, 75 ppm (23.1、115.5、 577.5 mg/m³) の 1,2-ジブロモエタンを 1 日 6 時間、週 5 日、13 週間吸入ばく露した。ラット、マウスとも高濃度群は鼻腔の嗅上皮に重度の壊死と萎縮がみられた。鼻腔の扁平上皮化生、巣状過形成、呼吸上皮の巨大細胞、睫毛の脱落が高濃度群ではラット及びマウスに、中濃度群ではラットにのみみられた。なお、低濃度群の雄マウス 4 匹が投与期間終了前に死亡した。 EHC<sup>25</sup>ではNOELを鼻腔の変化に基づき 23.1 mg/m³ (3 ppm)としている 32)。
- ・ 雌ラット(系統不明)10 匹に  $768 \text{ mg/m}^3$  (100 ppm) の 1,2-ジブロモエタンを  $1 \text{ 日 7 時間 9 日 間に 7 回ばく露した。実験では、体重減少及びばく露 1、5、7 回後にそれぞれ死亡がみられた。生存動物も痩削し、汚染状態がみられた。解剖の結果胃は血液に染った餌で満たされ$

ていた。肺、肝臓、腎臓重量は有意な増加を示した。組織学検査の結果、肺胞壁は軽度の白血球浸潤を伴う肥厚、肝臓の広範な混濁腫脹(脂肪変性はみられない)、脾臓の軽度な鬱血とヘモジデリン沈着がみられた<sup>25</sup>。

・ 雌雄の F344 ラットに 0, 23, 77, 307 mg/m³ (0, 3, 10, 40 ppm) の 1,2-ジブロモエタンを 1 日 6 時間、週 6 日、13 週間吸入ばく露した。307 mg/m³ 群では体重増加の抑制、肝臓、腎臓重量の高値、鼻甲介呼吸上皮の過形成と化生がみられた。77mg/m³ 群では鼻甲介呼吸上皮の軽度の過形成がみられた。88 日間の回復期間では 1 匹を除き病変は退縮した 25)。

# 経口投与

・ 雄の F344 ラット各群 8 匹に 40、80 mg/kg の 1,2-ジブロモエタンを週 5 日 2 週間コーン油 に溶解して経口投与した。実験では、高用量群の 50%は前胃の細胞増殖がみられたが、低 用量群ではみられず、対照群でも 2 匹にみられただけであった。角化亢進も高用量群で有意 な増加を示した 50。

#### 才 生殖・発生毒性

### 吸入ばく露

- ・ 雄のSDラット各群3~4匹に1,2-ジブロモエタンを146,300 及び684 mg/m³(19,39,89 ppm)1日7時間週5日10週間吸入ばく露した。300 及び 684 mg/m³群では体重増加の抑制がみられ、684 mg/m³群では死亡がみられた。これらの群では、精巣重量減少、テストステロンの低下、精巣、精嚢、前立腺、精巣上体の萎縮が見られた。146及び 300 mg/m³群の雄と無処置雌の交配では90%で妊娠が認められ、着床率、胚生存率、吸収率は正常であったが、684 mg/m³群との交配では妊娠が認められなかった。雌のSDラットに1,2-ジブロモエタンを154,300 及び614 mg/m³(20,39,80 ppm)1日7時間週7日3週間吸入ばく露した。614 mg/m³群では体重増加の抑制、死亡がみられた。3週間のばく露後、雌ラットを無処置雄と交配した。614 mg/m³群の雌はばく露後、4日後まで発情が認められず、正常な性周期もみられず、10日間の交配期間で他の群と比較して低交配率を示した。154及び300 mg/m³群の膣スメアは正常であった。これら3群とも1腹あたりの着床率、胚生存率、吸収率に差は認められなかった。病理組織学的検査でも卵巣、子宮に異常所見は認められなかった。生殖能力のNOELは300 mg/m³と結論づけられた250。
- ・ 妊娠した SD ラットと CD-1 マウスに 146, 292 および 614 mg/m³ (20, 38, 80 ppm)の 1,2-ジブロモエタンを妊娠 6 日から 15 日まで 1 日 23 時間吸入ばく露した。母動物への影響はラット、マウスとも体重増加、摂餌量の抑制が全投与群でみられた。死亡率の顕著な増加がラットの 614 mg/m³ 群とマウスの 292 及び 614 mg/m³ 群に認められた。血腫、外脳症、骨格変異がラット、マウスとも母体毒性が認められた高用量群の胎児にのみ認められた 25)。
- ・ 妊娠したLong-Evansラット各群 16 匹に 3.3, 51.2 及び 512 mg/m³の 1,2-ジブロモエタンを 妊娠 3 日から 20 日まで 1 日 4 時間、週 3 日吸入ばく露した。512 mg/m³の児は回転棒試験 とT迷路による弁別学習で対照群と比較して好成績を示した。同様の変化は 51.2 mg/m³ 群 にも軽度にみられたが、3.3 mg/m³ 群では影響は認められなかった。 DRL-20(低頻度差別強化 20 秒)、直線走路の走行速度、受動回避試験はいずれも影響は受けなかった 8。

### 経口投与/経皮投与/その他の経路等

- ・ 離乳直後の雄アルビノラット各群 10 匹に 100 または 500 mg/kg (10 または 50 mg/kg/日相当)の 1,2-ジブロモエタンを 90 日間混餌投与した。毒性兆候は見られず、血清中酵素活性にも変化はみられなかった。各群 5 匹は無処置の雌と交配した。生殖能に変化は見られなかった。2 週間の交配期間後、雄を解剖したが、精巣は組織学的に正常であった。妊娠雌を出産させたが、平均胎児数、出生時体重、児の性比に無処置雄による対照群との差は見られなかった。雄ラットの生殖能力に対する NOEL は 50 mg/kg/日であった 250。
- 精子に問題のない成熟した 12 ヶ月令の雄ニュージーランド白色種ウサギ、各群 8 から 10 匹にコーン油に溶解した 15,30 および 45 mg/kg/体重の 1,2-ジブロモエタンを 5 日間皮下 投与し、溶媒対照群も設けた実験では、雄の授精能力は投与前と投与後4、12週に各動物3 匹の雌に人工授精し、妊娠率、胎児数、胎児の体重、胎児の形態学的発育を検査した。45 mg/kg 群では親動物の 30%が死亡し、生存した 43%に、血清酵素活性の上昇から重篤な肝 臓障害が認められた。雌妊娠率、胎児数は溶媒対照群の雄の精子による群と差はなく、授精 能力、妊娠成績に影響は認められなかった。またこの試験において、投与前6週間、投与中、 投与後 12 週に精子検査を行い精子の濃度、数、形態異常、生存性、運動能力(速度、直線性、 鞭毛の運動周期、ALH (精子頭部の振幅)、精液の pH、浸透圧、量、および果糖、クエン 酸、クレアチニン蛋白質、酸性ホスファターゼ量を測定した。45 mg/kg 群では 1,2-ジブロモ エタンにより精子の量、運動、生存率、ALH の有意な低下がみられた。精液の pH、総射 出精液量 (15、30 mg/kg 群のみ) が用量に相関して減少し、酸性ホスファターゼも 45 mg/kg 群で投与2週間後に116%上昇した。その他の精液パラメータは影響を受けなかった。ウサ ギの精液への1,2-ジブロモエタンの影響はLD50値近辺の高濃度でのみみられ、精子の数、 生存率、形態への影響はみられないことから、ウサギの生殖能力への感受性はヒトより低く、 この研究から NOEL は求められなかったとしている 25)。
- ・ 雄 F344 ラットに、0、1.25、2.5、及び 10mg/kg の 1,2-ジブロモエタンを 5 日間腹腔内に投与した雄の投与後は無処置雌と投与後 4、9 週後に交配し、合計 19 腹から雄 84 匹、雌 88 匹が生まれた。F1 の行動検査を出生後 21 日までに実施した。離乳前の検査では反射機能(正向反射、断崖回避、背置走性)、運動の協調性(遊泳、オープンフィールド)自発運動量測定を行った。すべての投与群の F1 雄で運動機能発達と運動量の有意な差が認められた。この研究から NOEL は求められなかった  $^{25}$ 。

#### カ 遺伝毒性(変異原性)

| 試験方法     |          | 使用細胞種・動物種                                     | 結果   |
|----------|----------|-----------------------------------------------|------|
| In vitro | 復帰突然変異試験 | ネズミチフス菌                                       | +    |
|          |          | TA100, TA1535 (S9+, -) <sup>23, 25, 26)</sup> |      |
|          |          | ネズミチフス菌TA98(S9+, -) <sup>23, 25, 26)</sup>    | +, - |

|         |                | ネズミチフス菌                                        | _ |
|---------|----------------|------------------------------------------------|---|
|         |                | TA1537, TA1538 (S9+, -) <sup>23, 25, 26)</sup> |   |
|         |                | 大腸菌(S9+, -) <sup>23, 25, 26)</sup>             | + |
|         | DNA修復試験        | 大腸菌(S9-) <sup>26)</sup>                        | + |
|         |                | ラット肝細胞 <sup>26)</sup>                          | + |
|         |                | CHO細胞(S9+, -) <sup>23, 26)</sup>               | + |
|         |                | CHL細胞(S9+) <sup>23, 24, 26)</sup>              | + |
|         | 姉妹染色分体交換試験     | ヒトリンパ球(S9-) <sup>23, 25, 26)</sup>             | + |
|         |                | CHO細胞(S9+, -) <sup>23, 25, 26)</sup>           | + |
|         |                | CHL細胞(S9+) <sup>23, 25, 26)</sup>              | + |
|         | 小核試験(in vitro) | ヒトリンパ球(S9-) <sup>23)</sup>                     | + |
| In vivo | 小核試験           | マウス <sup>23, 26)</sup>                         | _ |
|         | DNA鎖切断試験       | ラット肝細胞・精巣生殖細胞23, 25, 26)                       | + |
|         | DNA鎖切断試験       | マウス肝細胞 <sup>23, 26)</sup>                      | + |
|         | 不定期DNA合成試験     | ラット精母細胞23)                                     | - |
|         |                | ラット肝細胞 <sup>23, 25)</sup>                      | + |
|         | 体細胞突然変異試験      | ショウジョウバエ <sup>23, 25, 26)</sup>                | + |
|         | 伴性劣性致死試験       | ショウジョウバエ <sup>23, 25, 26)</sup>                | + |

一:陰性 +:陽性

## キ 発がん性

#### 吸入ばく露

- ・ F344ラット各群雌雄50匹を5週齢より0(対照群)、10、40 ppmの1,2-ジブロモエタン(純度99.3-99.4%)に1日6時間週5日103週間全身ばく露した。雄の40 ppm群は88週、雌の40 ppm群は92週でばく露を中止し解剖した。鼻腔の癌(雄:対照群0/50,10 ppm群0/50,40 ppm群21/50、雌:対照群0/50,10 ppm群0/50,40 ppm群25/50(以下発生数記載順同様))、腺癌(雄:0/50,20/50,28/50、雌:0/50,20/50,29/50)、腺腫(雄:0/50,11/50,0/50、雌:0/50,11/50,3/50)、循環器の血管肉腫(雄:0/50,1/50,15/50、雌:0/50,0/50,5/50)が雌雄の投与群で有意に増加した。雄で、鞘膜の中皮腫(0/50,7/50,25/50)、鼻腔の腺ポリプ(0/50,18/50,5/50)、雌で乳腺の線維腺腫(4/50,29/50,24/50)、細気管支ー肺胞上皮の腺腫と癌(0/50,0/50,5/50)も投与群で有意に増加した22。
- ・ SDラット各群雌雄48匹を0(対照群)、20 ppmの1,2-ジブロモエタン(純度99%)に1日7時間週 5日18ヶ月間全身ばく露した。20 ppm群の死亡率は雌雄とも有意に高値を示した。雌雄で脾 臓の血管肉腫(雄:対照群0/48, 投与群10/48、雌:対照群0/48、投与群6/48)及び副腎腫瘍(雄: 対照群2/48, 投与群11/48、雌:対照群1/48、投与群6/48)、雌で良性、悪性を合わせた乳腺 腫瘍(対照群2/48、投与群25/48)、雄で皮下の間葉性腫瘍(対照群3/48、投与群11/48)が有意 に増加した<sup>27)</sup>。
- ・ B6C3 $F_1$ マウス各群雌雄50匹を5週齢より0(対照群)、10、40 ppmの1,2-ジブロモエタン(純度

99.3-99.4%)に1日6時間週5日103週間全身ばく露した。雄は尿路の感染症により生存率が低下し78週でばく露を中止し解剖した。雌の40 ppm群は90週でばく露を中止し解剖した。細気管支ー肺胞上皮腺腫と癌(雄:対照群 0/50, 10 ppm群 3/50, 40 ppm群 23/50 (以下発生数記載順同様)、雌:4/50, 11/50, 41/50) が雌雄の投与群で有意に増加した。雌で循環器系(主に脾臓)の血管肉腫(0/50, 11/50, 23/50)、皮下の繊維肉腫(0/50, 5/50, 11/50)、鼻腔の癌(0/50, 0/50, 6/50)、乳腺の腺癌(2/50, 14/50, 8/50) が投与群で有意に増加した<sup>22)</sup>。

## 経口投与/経皮投与・その他の経路等

- ・ Osborne-Mendel ラット各群雌雄 50 匹に 8 週齢よりテクニカルグレードの 1,2-ジブロモエタン(純度 99.1%)を高用量群は 80 mg/kg で 16 週、休薬期間を 13 週、その後 40 mg/kg で雄 20 週、雌 30 週(うち休薬期間を雄 2 週、雌 4 週含む)、(期間加重平均用量は雄 41 mg/kg、雌 39 mg/kg)で、低用量群は 40 mg/kg で 41 週、雄はその後 40 mg/kg で 8 週(うち 2 週の休薬期間を含む)、雌はその後 40 mg/kg で 20 週(うち 4 週の休薬期間を含む)、(期間加重平均用量は雄 38 mg/kg、雌 37 mg/kg)で、コーン油に混ぜ週 5 日強制経口投与した。対照群は雌雄各 20 匹コーン油のみを雄 49 週間、雌 61 週間投与した。前胃の扁平上皮癌(雄:対照群 0/20、低用量群 45/50、高用量群 33/50(以下発生数記載順同様)、雌: 0/20,40/50、29/50)が雌雄の各投与群で有意に増加し、雌で肝細胞癌(0/20、1/49、5/48)が、雄で脾臓の血管肉腫(0/20、10/50、3/49)が低用量群で有意に増加し、高用量群でも発生した 21)。
- ・ B6C3F1マウス各群雌雄50匹を5~8週齢より、テクニカルグレードの1,2-ジブロモエタン(純度99.1%)を高用量群は120 mg/kgで10週、200 mg/kgで2週、120 mg/kgで27週、60 mg/kgで14週、その後観察期間を雄24週、雌25週、(期間加重平均用量は雌雄107 mg/kg)、低用量群は60 mg/kgで10週、100 mg/kgで2週、60 mg/kgで41週、(期間加重平均用量は雌雄62 mg/kg)で、コーン油に混ぜ週5日強制経口投与した。対照群は雌雄各20匹コーン油のみを雄59週間、雌60週間投与した。前胃の扁平上皮癌(雄:対照群 0/20,低用量群 45/50,高用量群 33/50 (以下発生数記載順同様)、雌:0/20,40/50,29/50) が雌雄の各投与群で有意に増加し、細気管支ー肺胞上皮腺腫も増加した210。
- ・ B6C3F1マウス各群雌雄30匹に、4 mmol/Lの1,2-ジブロモエタン(純度99%以上)を蒸留水 に混合し450日間投与した。摂取量は雄が116 mg/kg 体重、雌が103 mg/kg体重に相当 した。雌雄の前胃に扁平上皮癌が有意に増加(雄 20/28, 雌 27/29)し、雌の食道に扁平 上皮乳頭腫が発生(3/30)した。対照群の雄45匹、雌50匹にこれらの腫瘍は発生はみられ なかった<sup>23)</sup>。
- ・ 6~8週齢のHa:ICR Swissマウス各群雌30匹に、1,2-ジブロモエタン(純度99%以上)を25 または50 mg、0.2 mlのアセトンに溶解し、週2回剃毛した背部皮膚に塗布した(投与期間は440~594日の間で詳細は不明)。皮膚の乳頭腫が50 mg群では有意に増加し、その初発は25 mg群が434日、50 mg群が395日であった。肺の腫瘍が有意に増加(25 mg群24/30,50 mg群26/30)し、胃にも腫瘍が発生した28。

#### (2) ヒトへの影響(疫学調査及び事例)

ア 急性毒性

- ・ 職業ばく露による影響は頭痛、重篤な嘔吐、下痢、気道刺激、そして致死が報告されている。 1,2-ジブロモエタン  $384 \text{ mg/m}^3$  (50 ppm)以上の気中濃度で鼻と咽頭刺激を起こす。1,2-ジブロモエタンの残った貯蔵タンク清掃において平均気中濃度  $215 \text{ mg/m}^3$  (28 ppm)の吸入で  $30 \text{ 分及び }45 \text{ 分後の死亡が報告されている。}^{25)}$
- ・ 1,2-ジブロモエタンを故意に服用した6例では、吐き気、悪心、のど焼けを起こし、2例が 死亡した。特徴的病理学変化は肝臓、肺、腎臓にみられた。広範な肝臓壊死による強度の黄 疸がみられた。<sup>25)</sup>
- ・ ヒトの致死量は体重約 60 kg の女性が 12 g の 1,2-ジブロモエタンで死亡したことから、200 mg/kg bw と推測される。25)
- ・ 1~0.3 %の 1,2-ジブロモエタン溶液タンク内残渣清掃作業での経皮吸収の報告がある。1 人目の作業者はタンク内で倒れ、12 時間後に代謝性アシドーシス、中枢神経系機能低下、肝機能障害で死亡した。監督者が救出を試みたが、タンク内で同様に倒れ、64 時間後に難治性の代謝性アシドーシス、肝臓と腎臓の障害、骨格筋等の壊死で死亡した。咳、嘔吐、下痢、目、皮膚、呼吸器への刺激、昏睡、代謝性アシドーシス、幻覚、意識混濁、悪心、尿の減少、腎障害、頻脈、収縮不全が記録されている。検視の結果、肺水腫、肝障害、強度の腎臓自己融解が明らかになった <sup>25, 26)</sup>。

### イ 刺激性及び腐食性

• 0.5~1 ml の 1,2-ジブロモエタンを 9 人に塗布し皮膚に熱傷、紅斑、浮腫、壊死を生じた <sup>26)</sup>。 この他にヒトの報告は無い。

#### ウ 感作性

- ・ <u>自</u>己実験の例として 1,2-ジブロモエタンを数回の投与の後、感作を起こした <sup>26)</sup>。この他に ヒトの報告は無い。
- エ 反復ばく露毒性(生殖・発生毒性、遺伝毒性、発がん性は除く)
  - ・ 1,2-ジブロモエタンの反復ばく露による障害の報告は生殖・発生毒性、発がん性に集約される。

#### オ 生殖・発生毒性.

- 1.2-ジブロモエタンばく露による不妊、精子濃度、児への影響はみられないとしている 25)。
- ・ ハワイのパパイヤ消毒工場における 46 人の作業者の精液について横断的研究が行なわれている。平均ばく露期間は 5 年、呼吸位置での気中 1,2-ジブロモエタンの幾何平均濃度は 0.68 mg/m³ (88 ppb) (8 時間、時間加重平均)であった。対照群は近隣の砂糖精製工場の 43 人の非ばく露者とした。対象者の喫煙率、カフェイン、アルコール摂取率、年齢、泌尿器病歴、他検査に影響を与える項目についてばく露群、対象群を考慮し解析した。1 回あたりの精子数、精子生存率及び運動率の減少と形態異常率の有意な増加がみられた。この結果 1,2-ジブロモエタンはこの濃度にばく露された男性への生殖影響を起こすことが示された 25。
- ・ 1,2-ジブロモエタンの男性への生殖能影響についてコロラドの 10 人の森林作業者と 6 人の

非ばく露者について 6 週間のばく露期間前後の調査が行なわれている。気中 1,2-ジブロモエタンの 6 週間の時間加重平均濃度は 0.46 mg/m³ (最高濃度 16 mg/m³)であり、経皮ばく露が顕著であった。ばく露群では精子運動率、精液量が有意に減少した 25 。

・ 英国の4つの工場での1,2-ジブロモエタンにばく露された男性作業者の後向き調査から、統計的にかろうじて有意な受胎率(妻の出産数)の減少が示された。平均ばく露濃度は38.5 mg/m³(5 ppm)以下であるが正確な濃度は測定されていない25。

### カ遺伝毒性

- ・ ヒトリンパ球 in vitro 姉妹染色分体交換試験、小核試験では陽性の報告がある 23,25,26)。
- ・ 松倒木消毒作業者 14 人の数ヶ月にわたる作業の前後の血液による報告がある。同時に採取された非ばく露者 6 人を対象としている。ばく露濃度は 8 時間時間加重平均濃度 60 ppb(5-281 ppb の範囲)、4 から 15 分間の呼吸位置におけるピーク値平均が 463 ppb(8-2165 ppb の範囲)であった。6 工場、60 人のパパイヤ包装労働者では、呼吸位置での幾何平均が 16 から 165 ppb で、同じ地域の 42 人の製糖労働者を対照としている。この調査では性、年齢、喫煙、飲酒、薬剤の使用、調査時の疾病の有無の調整がされている。いずれの研究でも姉妹染色分体交換、染色体異常とも増加は見られなかった。

#### キ 発がん性

- ・ 1,2-ジブロモエタンのヒトへの発がん性に関する報告はいくつかあるがその統計学的検出 力の低さや、ばく露情報が不十分であることから、IARC(1999)はヒトに関する不確実な証 拠としている <sup>23)</sup>。
- ・2つの1,2-ジブロモエタン製造工場(ユニット1, ユニット2)での161人の労働者についての 疫学調査がある。ユニット1は1942年から1969まで、有機臭素化合物では1,2-ジブロモエタンを主に取り扱っていたが、定量的なばく露濃度など環境調査は行われていない。ユニット2は1920年代半ばから1976年まで1,2-ジブロモエタン及び各種臭素化合物を取り扱っていた。ユニット2における1949年の呼吸位置での濃度は1から10.6 ppm の範囲、1952年にはエリアサンプルで19 ppm から気温の高い目で31 ppm、ドラム缶充填で13.4 ppm であった。1971から1972年には時間加重平均で2.9から4 ppm であった。ユニット1では悪性腫瘍発生の期待値が3.6であるのに対し2例しか報告されなかった。ユニット2では悪性腫瘍発生の期待値が2.2であるのに対し5例報告されたが、1,2-ジブロモエタン以外による腫瘍発生と区別できないため、1,2-ジブロモエタンがヒトへの発がん物質であるかは結論できないとしている290。
- ・ 22,938人の白人男性の穀物製粉労働者について 1955年から 1985年までのコホート調査が報告せれている。この集団の死亡率は、同年齢の米国白人男性より有意に低値であった。非ホジキンリンパ腫(NHL)、白血病及びすい臓がん発生の過剰リスクは、より多く農薬を使用する小麦製粉労働者に限られていた。またコホート内症例対照研究でもこれらの労働者に過剰リスクがみられたが、その相対リスクは NHL(オッズ比 4.2)ですい臓がん(オッズ比 2.2)、白血病(オッズ比 1.8)の 2 倍程度であった。しかし、小麦製粉 57 工場では 1,2-ジブロモエタン以外にすべての工場で四塩化炭素、マラチオン、臭化メチル、ホスフィン、ピレスラムも

使用されており、1,2-ジブロモエタンばく露によるものか不明である300。

・ 化学工場における 2510 人の男性労働者について 1952 年から 1977 年までの多発性骨髄腫 と脳腫瘍による死亡についての研究を報告している。ばく露された可能性のある物質は燃料 添加物の四エチル鉛、1,2-ジブロモエタン、二塩化エチレン、無機鉛、塩化ビニルモノマーであった。総死亡発生の期待値が 211.14 であるのに対し 156 例の報告であったが、総死亡数の少なさ、腫瘍発生検出力の低さ、労働環境ばく露データの不足が指摘されている 230。

## 発がんの定量的リスク評価

・EPA IRIS  $^{5)}$  では、当該物質による吸入ばく露による過剰発がんのユニットリスクを UR= $6\times10^{-4}$  ( $\mu$ g/m $^{3}$ ) $^{-1}$  としている。 ( $\underline{\text{http://cfpub.epa.gov/ncea/iris}}$  5/10/'10 確認)

(データの算出根拠: US-NTP の吸入試験、ラット雌の鼻腔の腺腫、腺癌、乳頭腫、扁平 上皮癌、及び血管肉腫と中皮腫の発生増加による)

また過剰発生リスク $(10^{-4})$ に相当するばく露濃度は $2 \times 10^{-1} (\mu g/m^3)$ としている。

また、CA-EPA はユニットリスクを UR=7.1×10<sup>-5</sup>(μg/m³)-1 としている。8,10)

# 発がん性分類

IARC: 2A (ヒトに対しておそらく発がん性がある) 11)

産衛学会:第2A群(ヒトに対しておそらく発がん性がある)12)

EU Annex VI: Carc. Cat. 2; R45 (ヒトに対しておそらく発がん性がある) 13)

NTP 11th: R(ヒトに対しておそらく発がん性がある) 14)

ACGIH: A3(ヒトに対して発がん性が疑われる) <sup>15)</sup>

DFG MAK : Carc. Cat. 2 (ヒトに対しておそらく発がん性がある) 16)

## (3) 許容濃度の設定

ACGIH TLV-TWA: 数値は割り当てない (1996: 設定年) 20)

<u>勧告根拠</u>:強度の粘膜、眼、皮膚の刺激性があり、生殖毒性も報告されている。複数の投与経路による動物実験で発がん性が報告されており発がん性記号 A3 を付した数値なしの TLV を勧告する。皮膚からの吸収により全身毒性を起こすことがあるため、経皮吸収注意記号を勧告する。

日本産業衛生学会:許容濃度:未設定12)

DFG MAK: 未設定 "H"経皮吸収に注意 16)

NIOSH: TWA 0.045 ppm、 ST 0.13 ppm (15 分間)、Ca: 発がん性物質 (1992: 設定年)<sup>17)</sup> 設定根拠:発がん性、変異原性があり、皮膚、眼、心臓、肝臓、脾臓、中枢神経系、生殖器系及び呼吸器系に障害を与える。<sup>31)</sup>

OSHA: TWA 20 ppm, C 30 ppm, 50 ppm (15 分間) 17)

UK WEL: TWA 0.5 ppm (3.9 mg/m³)、Carc:発がん性物質、Sk: 経皮吸収 18)

### 5 その他 (参考事項)

昭和 56 年 11 月 7 日付基発第 710 号「二臭化エチレン (EDB) による健康障害予防のため の緊急措置について」により、1977 年に NIOSH が勧告した 0.13 ppm を当面の暫定基準としている。

(EDB でくん蒸された柑橘類を輸入するに際しての健康障害予防のため、関係業者等(港運業者等)に対し、当該基準以下となっていることを把握した上で作業することを指導。)

## 引用文献

- 1) IPCS: 国際化学物質安全性カード(ICSC)日本語版 No.45 (1993)
- 2) 化学工業日報社:17510の化学商品(2010)
- 3) 経済産業省:化学物質の製造・輸入に関する実態調査(平成16年度実績)の確報値、化学物質の製造・輸入量に関する実態調査(平成20年実績)結果報告
- 4) NIOSH: Registry of Toxic Effects of Chemical Substances (RTECS) (CD 版(2010))
- 5) US EPA: IRIS Cancer Unit Risk Values, No. 361
  (http://cfpub.epa.gov/ncea/iris/index.cfm?fuseaction=iris.showSubstanceList)
- 6) WHO: "Air Quality Guidelines for Europe: Second Edition",(2000) (http://www.euro.who.int/document/e71922.pdf)
- 7) WHO: Air Quality Guidelines global update 2005
  (http://whqlibdoc.who.int/hq/2006/WHO\_SDE\_PHE\_OEH\_06.02\_eng.pdf)
- 8) California EPA (OEHHA): Hot Spots Unit Risk and Cancer Potency Values (2009) (<a href="http://www.oehha.ca.gov/air/hot\_spots/2009/AppendixA.pdf">http://www.oehha.ca.gov/air/hot\_spots/2009/AppendixA.pdf</a>)
- 9) "First Priority Substances List Assessment Report" Health Canada (<a href="http://www.hc-sc.gc.ca/ewh-semt/pubs/contaminants/psl1-lsp1/index\_e.html">http://www.hc-sc.gc.ca/ewh-semt/pubs/contaminants/psl1-lsp1/index\_e.html</a>)
- 10) California EPA (OEHHA): Air Toxics Hot Spots Program Risk Assessment Guidelines Part II "Technical Support Document for Cancer Potency Factors: Methodologies for derivation, listing of available values, and adjustments to allow for early life stage exposures.May 2009"(2009)

(http://www.oehha.ca.gov/air/hot\_spots/2009/TSDCancerPotency.pdf)

- 11) IARC: Monographs on the Evaluation of Carcinogenic Risks to Humans (http://monographs.iarc.fr/ENG/Classification/index.php)
- 12) (社)日本産業衛生学会:許容濃度の勧告、産業衛生学雑誌 51 巻 5 号 (2009)
- 13) European Commission Joint research Centre : Details on Substances Classified in Annex VI to Regulation (EC) No 1272/2008

(http://tcsweb3.jrc.it/classification-labelling/clp/)

14) National Institute of Health: Carcinogens Listed in NTP Eleventh Report

### (http://ntp.niehs.nih.gov/index.cfm?objectid=32BA9724-F1F6-975E-7FCE50709CB4C932)

- 15) ACGIH: TLVs and BELs (Booklet 2010)
- 16) Deutsche Forschungsgemeinschaft: List of MAK and BAT values. (2009)
- 17) NIOSH: NIOSH Pocket Guide to Chemical Hazards
  (http://www.cdc.gov/niosh/npg/default.html)
- 18) UK: EH40/2005 Table-1:List of WEL (as consolidated with amendments Oct. '07) (http://www.hse.gov.uk/coshh/table1.pdf)
- 19) AIHA: Current AIHA WEEL Guides (2007)
  (http://www.aiha.org/1documents/Committees/WEEL-WEELsLevels2007.pdf)
- 20) ACGIH: ACGIH: Documentation of the Threshold Limit Values and Biological Exposure Indices for ethylene dibromide. (2001)
- 21) National Cancer Institute: Bioassay of 1,2-Dibromoethane for Possible Carcinogenicity NCI Technical Report Series No.86 (1978)
- 22) Natinal Toxicology Program: Carcinogenesis Bioassay of 1,2-Dibromoethane in F344 Rats and B6C3F<sub>1</sub> Mice (Inhalation Study) NTP TR-210. (1982)
- 23) IARC: Monographs on the Evaluation of Carcinogenic Risks of Chemicals to Humans Vol. 71, p641-669. (1999)
- 24) (社) 日本化学物質安全・情報センター: 労働安全衛生法 有害性調査制度に基づく既存化 学物質 変異原性試験データ集 p59,478-479. (1996)
- 25) IPCS:環境保健クライテリア (EHC: Environmental Health Criteria) 177. (1996)
- 26) European Commission, ECB: IUCLID Database (2000) (<a href="http://ecb.jrc.it/esis/index.php?PGM=dat">http://ecb.jrc.it/esis/index.php?PGM=dat</a>)
- 27) Wong, L.C.K., Winston, J.M., Hong, C.B., Plotnick, H. Carcinogenicity and toxicity of 1,2-dibromoethatne in the rat. Toxicol Appl Pharmacol 63:155–165. (1982)
- 28) Van Duuren, B.L., Goldschmidt, B.M., Loewengart, G., Smith, A.C., Melchionne, S., Seidman, I.& Rock, D. Carcinogenicity of halogenated olefinic and aliphatic hydrocarbons in mice. J. Natl Cancer Inst., 63: 1433–1439. (1979)
- 29) Ott, M.G., Scharnweber, H.C., Langner, R.R. Mortality Experience of 161 Employees Exposed to Ethylene Dibromide in Two Production Units. Br. J. Ind. Med. 37:163–168. (1980)
- 30) Alavanja, M.C., Blair, A. & Masters, M.N. Cancer mortality in the US flour industry. J.Natl Cancer Inst., 82: 840–848. (1990)
- 31) NIOSH: Recommendations for occupational safety and health, Compendium of policy documents.; DHHS publication No. (NIOSH) 92-100. (1992)
- 32) Reznik, G., Stinson, S.F., Ward, J.M. Respiratory pathology in rats and mice after inhakation of 1,2-dibromo-3-chloropropane or 1,2- dibromoethane for 13 weeks. Arch. Toxicol., 46: 233–240. (1980)