Current FDA Considerations on Pathogen Reduction

Jaro Vostal, MD, PhD
Jay Epstein, MD
Center for Biologics Evaluation and Research
U.S. Food and Drug Administration (FDA)

September 2010
Merits of the Current Approach of Donor Screening and Testing

Advantages
• No toxicity issues for recipients of products
• Detection is specific for particular agents
• New methods can be developed for novel and emerging pathogens

Disadvantages
• For certain pathogens detection is not 100% successful
 – Bacteria
 – Protozoa
 – Viral (window period)
• Development of detection methods for novel and emerging pathogens would be delayed due to lack of knowledge about the pathogen
• Additional tests for emerging pathogens increase cost
Merits of Pathogen Reduction Technology as an Alternative to Donor Screening and Testing

Advantages
- Shown effective against many organisms including some emerging pathogens
- May prevent GVHD and other wbc related adverse events

Disadvantages
- May not be effective against all organisms
- May not be 100% effective even against sensitive pathogens
- Current technologies are not applicable to all types of transfusion products
- May have toxicity due to residual compounds
- May damage the transfusion product
- May lead to alloimmunization by neoantigens
- May cause unexpected adverse events
Recommendation of the HHS Advisory Committee on Blood Safety and Availability (ACBSA) Regarding Pathogen Reduction

• At a meeting in January 2008 the ACBSA recommended that the Department should:
 “Adopt as a high priority the urgent development of safe and effective pathogen reduction technologies for all blood transfusion products and implementation as they become available”
• FDA fully supports the ACBSA recommendation through its evaluation of Pathogen Reduction Technologies
Benefits of Pathogen Reduced Products Should Outweigh the Risks

Benefit =

Reduction of Current risks:

- HTLV 1/2,993,000
- HIV 1/2,135,000
- HCV 1/1,930,000
- WNV 1/350,000
- HBV 1/277,000
- Sepsis 1/86,000

Reduction of future risks:

- Emerging pathogens 1/????

Tolerable Risk
Toxicity, adverse events should be much less than the expected benefits << 1/86,000

Determination of the Risks Associated with Pathogen Reduced Components

- Pre-clinical evaluation
- Clinical trials in healthy volunteers
- Pivotal evaluation of efficacy and safety through clinical trials in transfused patients
 - Prospective, randomized, blinded clinical trials of PR treated vs. conventional transfusion products
 - Platelets
 - Red cells
 - Plasma
Phase III Clinical Trials of Pathogen Reduced Red Cell Products

Cerus S303 and Vitex pen 110

- Patients developed antibodies to treated red cells
- Both sponsors voluntarily halted their trials

Benjamin, R.J., ISBT Science Series (2006) 1, 222-226
Clinical Endpoints that Reflect Efficacy and Safety of a Platelet Transfusion Product

• Efficacy
 – Transfusion response (corrected count increment, (CCI)
 – Transfusion frequency
 – Bleeding Frequency (Grades 2-4)

• Safety
 – Adverse events
 – Alloimmunization
Clinical Trials of PR Platelets in Thrombocytopenic Patients

• Prospective studies
 – Sprint and Eurosprite trials (Cerus)
 – Hovon 86 (Dutch Blood Service)
 – Mirasol trial (Caridian)

• Surveillance studies on routine use of PR platelets
 – France and Belgium
Pathogen Reduced Platelets Have Lower Corrected Count Increments (CCI)

<table>
<thead>
<tr>
<th>Clinical Trial</th>
<th>Patients in study</th>
<th>% of plasma stored platelets CCI at 1 hr</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPRINT</td>
<td>645</td>
<td>-31%</td>
<td>< 0.001</td>
</tr>
<tr>
<td>HOVON</td>
<td>184</td>
<td>-31%</td>
<td><0.0001</td>
</tr>
<tr>
<td>MIRASOL</td>
<td>118</td>
<td>-31%</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

1 = UVA/psoralen 2 = UVB/riboflavin

c = Goodrich et al. Transfusion, May 2010
Hemostatic Efficacy for UV A/psoralen (Intercept) Treated Platelets

<table>
<thead>
<tr>
<th>SPRINT study</th>
<th>Control platelets</th>
<th>Pathogen reduced platelets</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion of pts with Grade 2 bleeding</td>
<td>58.5%</td>
<td>57.5%</td>
<td>NS for inferiority</td>
</tr>
<tr>
<td>Days of Grade 2 bleeding</td>
<td>2.5</td>
<td>3.2</td>
<td>0.023</td>
</tr>
<tr>
<td>% patients with Grade 2-4 bleeding</td>
<td>34</td>
<td>43</td>
<td>0.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HOVON study</th>
<th>Control platelets</th>
<th>Pathogen reduced platelets</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of patients with Grade 1-3 bleeding</td>
<td>19</td>
<td>32</td>
<td>0.034</td>
</tr>
</tbody>
</table>
Hemostatic Efficacy for UVB/riboflavin (Mirasol) Treated Platelets

<table>
<thead>
<tr>
<th>MIRASOL study</th>
<th>Control platelets</th>
<th>Pathogen reduced platelets</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of patients with Grade 2-4 bleeding</td>
<td>15</td>
<td>30</td>
<td>NS</td>
</tr>
</tbody>
</table>
Adverse Events Reported in the SPRINT Study

- 898 adverse event types were reported by blinded observers
- 11 adverse event types were different with statistical significance….all went against the treatment arm
- 4 of the 11 were clinically significant Grade 3 and 4 events:
 - Hypocalcemia, Syncope, Pneumonitis, Acute Respiratory Distress Syndrome (ARDS)

Snyder E et al. Transfusion. 2005 Dec;45(12):1864-75
ARDS Rates in the Treatment vs. Control Arms of the SPRINT Study

Snyder E et al. Transfusion. 2005 Dec;45(12):1864-75

Prospective and blinded evaluations during the clinical trial

<table>
<thead>
<tr>
<th></th>
<th>Intersol (PR) platelets</th>
<th>Control platelets</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients (N)</td>
<td>318</td>
<td>327</td>
<td></td>
</tr>
<tr>
<td>ARDS</td>
<td>5</td>
<td>0</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Retrospective review of medical charts by a blinded expert panel

<table>
<thead>
<tr>
<th></th>
<th>Intersol (PR) platelets</th>
<th>Control Platelets</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients (N)</td>
<td>78</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Total Acute Lung Injury (ALI)</td>
<td>19 (6.0%)</td>
<td>16 (4.9 %)</td>
<td>0.60</td>
</tr>
<tr>
<td>ARDS</td>
<td>12 (3.8%)</td>
<td>5 (1.5%)</td>
<td>0.09</td>
</tr>
<tr>
<td>ALI, non-ARDS</td>
<td>7 (2.2%)</td>
<td>11 (3.4%)</td>
<td>0.48</td>
</tr>
</tbody>
</table>
Can adverse event signals captured in a prospective, randomized, controlled and blinded study be evaluated through a passive adverse reporting study?

• France and Belgium have been using pathogen reduced platelets for several years
• Adverse events on transfused patients are reported through a passive hemovigilance reporting system
• Frequency of reporting of adverse events is much lower than what was reported in SPRINT trial
• There is no active control group to identify events specifically related to PR platelets
Comparison of Adverse Event Reporting in the SPRINT Trial vs. European Hemovigilance Studies

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Per transfusion</td>
<td>Per patient</td>
<td>Per transfusion</td>
</tr>
<tr>
<td>N</td>
<td>2678</td>
<td>318</td>
<td>5106</td>
</tr>
<tr>
<td>% stem cell transplant patients</td>
<td>78</td>
<td></td>
<td>7.2</td>
</tr>
<tr>
<td>% of pts with any reaction</td>
<td>99.7</td>
<td>1.1</td>
<td>6.4</td>
</tr>
<tr>
<td>% of plt related reactions</td>
<td>3.0</td>
<td>26.0</td>
<td>0.8</td>
</tr>
<tr>
<td>% of plt with serious reactions</td>
<td>27.0</td>
<td>0.1</td>
<td>0.15</td>
</tr>
</tbody>
</table>
Summary and Conclusion

• Pathogen Reduction of labile blood products could improve blood product safety, especially for platelets, but should not add greater risks
 – Clinical trials with Pathogen Reduced red cells have demonstrated antibody generation
 – Clinical trials with Pathogen Reduced platelets have demonstrated decreased efficacy and associated adverse events including acute lung injury in the SPRINT trial.
 – These reports raise concern that the benefits of current pathogen reduction technologies may not outweigh the risks

• Further clinical trials of current technologies are needed to resolve FDA’s concerns over decreased efficacy and increased adverse events seen with Pathogen Reduced platelets