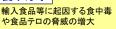
食品の安全に資する研究の推進

科学的問題

BT応用食品等

栄養改変·高機能性食品、高抽出 濃縮サプリメント等の次世代食品の

新たな安全性に関する知見へ


BSE

世界で約19万頭、国内でも35頭の 牛が感染 vCJDが、世界で204名、 国内で1名発症

* H20.春時点

食中毒等

ノロウィルス 動物由来感染症 等による食中毒の増加

社会的問題

リスクコミュニケーション の不足

食品中に含まれるダイオ キシン類による健康被害

食品の安全に対する不安の増大

主な研究課題

遺伝子改変による新規タンパク質等 の安全性研究

信頼性の高い検知法・分析法の開発 新たな危害要因や添加物等に関する 科学的知見の整備

乳幼児、妊婦等リスクへの感受性が 高い者への対応の検討

と畜場における高感度・迅速検査法 の開発

感染・発症機構の解明

部位別リスクの定量的評価手法の開

輸入食品における食中毒菌等の 効率的なサーベイランス体制や迅 速一斉検査法等の開発

ノロウィルス、動物由来感染症等 によるリスク研究や対応方法の 開発

効果的なリスクコミュニ ーション方法の確立

食品中に含まれるダイ オキシン類による健康 被害に対する効果的な 治療法の開発

食品の安全確保の推進と国民向けの説明

健康安全・安心の実現(2015年頃までに食品による健康被害事例を低減させる。)

果

目

標

2010年までに、次世代の食品の安全性を確保するため、意図せざる新規代謝物質の発現等の影響を検証する手法を開発

2010年までに、輸入食品における食中毒菌等の体系的サーベイランス体制を構築

2010年までに、と畜場におけるBSE検査用高感度・迅速検査法、食品中に存在する食中毒菌等の迅速一斉検査法を実用化

2010年までに、添加物450品目について安全性に関する科学的知見を整備

2010年までに、食品の安全に関するリスクコミュニケーション手法を体系化

牛海綿状脳症(BSE)対策

BSE発生 **国内29頭** 世界約19万頭

変異型CJD発生 国内1名 世界195名

BSEに対する国民の不安は、BSEのヒトへの感染・発症機構が解明されていないことが最大の要因

⇒食品を介するBSEリスクを解明することは、安全・安心で質の高い食生活が可能な国への発展に貢献

<課 題>

1)プリオンの高感度・迅速 検査法の開発

2) 牛海綿状脳症の感染・発 症機構の解明

■ 国内BSE例のマウス馴化株の作出とバイ

3)食肉汚染防止のための と畜解体処理方法の開発

<研究成果> -

病理·免疫組織化学検査

迅速包埋法の開発(7時間)と確認 新規検出法の開発

● 新規抗プリオン抗体の開発と応用

● 蛍光相関測定法のシステム化完了

アッセイによる種間バリアーの解析 ■ 羊、山羊、牛さらにシカのプリオン遺伝子 解析(国内ではCWDはみ 疑似患畜の観察とウシ脳内接種

■ BSE接種カニクイサルの病態解析

◆牛枝肉とブロック肉の脳·脊髄 組織(GFAPを指標)残留調査

◆脳·脊髄組織の**添加回収実験**

【今後の課題】

と畜場におけるBSE検査用 高感度・迅速検査法の開発

最小発症プリオン量及びフ リオンの体内分布データな どを活用した**部位別リスク** の定量的評価手法の開発

中枢神経組織による食肉汚 染の評価手法の実用化

CWD: Chronic Wasting Disease 慢性消耗病

GFAP: Glial Fibrillary Acidic Protein グリア細胞繊維性酸性タンパク