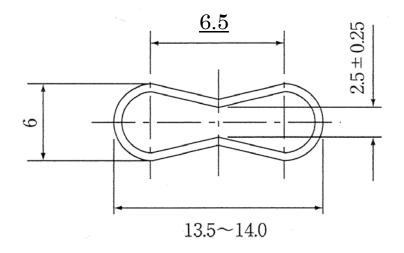

page	line	correction	error
76 right	↓ 29	Methods using mechanical agitation or electromagnetic agitation, and that can <u>induce</u> either a vertical oscillation or a horizontal circular motion, or tapping or a combination of both tapping and horizontal circular motion are available.	Methods using mechanical agitation or electromagnetic agitation, and that can <u>include</u> either a vertical oscillation or a horizontal circular motion, or tapping or a combination of both tapping and horizontal circular motion are available.
107 left	↑ 14	Liquid dosage forms – <u>Assay 10 units</u> <u>individually using an appropriate analytical</u> <u>method.</u> Carry out the assay on the amount of well-mixed material that is removed from an individual container in conditions of normal use and express the results as delivered dose.	Liquid dosage forms —Carry out the assay on the amount of well-mixed material that is removed from an individual container in conditions of normal use and express the results as delivered dose.
111 left	↓ 14	However, it may be necessary to test some preparations by Method <u>1</u> followed by Method <u>2</u> to reach a conclusion on conformance to the requirements.	However, it may be necessary to test some preparations by Method <u>2</u> followed by Method <u>1</u> to reach a conclusion on conformance to the requirements.
118 left	Fig6.10-4	attachment	attachment
502 left	↓ 13	Mobile phase: Dissolve 8.57g of ammonium dihydrogen phosphate and 1 ml of phosphoric acid in water to make 1000ml. To 800ml of this solution add 200ml of acetonitrile.	Mobile phase: Dissolve 8.57g of ammonium dihydrogen phosphate and 1 ml of phosphoric acid in water to make 1000ml. To 800ml of this solution add 200ml of <u>acetic acid</u> .
639 left	↑ 14	Separately, to 100 µL of anhydrous <u>methanol</u> add Anhydrous Ethanol to make exactly 50 mL.	Separately, to 100 µL of anhydrous <u>ethanol</u> add Anhydrous Ethanol to make exactly 50 mL.
738 left	↑ 4	Prepare the control solution with 0.25 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.355%).	Prepare the control solution with 0.25 mL of 0.01 mol/L hydrochloric acid VS (not more than 0.335%).
1370 left	↓ 26	Uncaria Hook contains not less than 0.03% of total alkaloids (rhynchophylline and <u>hirsutine</u>), calculated on the dried basis.	Uncaria Hook contains not less than 0.03% of total alkaloids (rhynchophylline and <u>hirstine</u>), calculated on the dried basis.
1370 right	\downarrow 28	Amount (mg) of total alkaloids (rhynchophylline and hirsutine)	Amount (mg) of total alkaloids (rhynchophylline and <u>hirstine)</u>
1675 right	↑ 23	$N = \frac{(\mu e p + \mu e o) \times V \times \underline{l}}{2 \times D \times L}$	$N = \frac{(\mu e p + \mu e o) \times V \times \underline{L}}{2 \times D \times L}$
1739 right	↓ 5	3.5.1 Monitoring <u>of Electrical Conductivity as</u> <u>the Indicator for inorganic impurities</u>	3.5.1 Monitoring with an Indicator of Electrical Conductivity
1740 right	↑ 32	3.5.2 Monitoring <u>of Total Organic Carbon</u> (TOC) as the Indicator for organic impurities The limit of total organic carbon (TOC) for <i>Water for Injection</i> produced by ultrafiltration and/or reverse osmosis has been specified as "not greater than 500ppb"; however it is strongly desirable for each facility producing pharmaceutical water to conduct operation control of pharmaceutical water systems through TOC monitoring on produced water based on its own alert and action levels for TOC determined individually. The followings are the recommended action levels for TOC.	3.5.2 Monitoring with an Indicator of Total Organic Carbon (TOC) Drinking Water Standards (Prescribed under the Article 4 of the Japanese Water Supply Law) require that TOC should be "not greater than 5 ppm". However, it is preferable for individual facilities to conduct TOC monitoring on <i>Water</i> with alter and action levels separately determined for water-quality control by TOC monitoring.


		Drinking Water Standards (Prescribed under the Article 4 of the Japanese Water Supply Law) require that TOC should be "not greater than 5 ppm." However <u>taking the</u> <u>recommended action levels described above</u> <u>into consideration, it is also desirable for each</u> <u>facility to conduct water-quality control</u> <u>through TOC monitoring on source water</u>	
		based on its own alert and action levels for TOC determined individually.	
1751 right	↑ 28	Use a drum, with an internal diameter between 283 and 291 mm and a depth between 36 and 40 mm, of transparent synthetic polymer with polished internal surface, and subject to minimum static build-up (see figure for a typical apparatus).	Use a drum, with an internal diameter between 283 and 291 mm and a depth between 36 and 40 mm, of transparent synthetic polymer with polished internal surface, and <u>not</u> subject to minimum static build-up (see figure for a typical apparatus).
1751 right	↑ 4	A maximum mean weight loss from the three samples of not more than 1.0% is considered acceptable for most products.	A maximum mean weight loss from the three samples of not more than $\underline{1}\%$ is considered acceptable for most products.

attachment

correction:

error :

page	line	correction	error
1014 right	↑ 20	a thick, opalescent mucilage is formed.	a subtle white-turbid, pasty liquid is formed.
1237 right	↓ 19	a thin, cloudy mucilage is formed.	a subtle white-turbid, pasty liquid is formed.
1675 right	↑ 6	$\bar{\mu}_{ep} = \frac{1}{2} (\mu_{epb} + \underline{\mu_{epa}}).$	$\bar{\mu}_{ep} = \frac{1}{2} (\mu_{epb} + \underline{\mu}_{epa}).$
1678 left	↓ 5	$\Delta pI = 3 \sqrt{\frac{D(dpH/dx)}{E(-d\mu/dpH)}}$	$\Delta PI = 3 \sqrt{\frac{D(dpH/dx)}{E(-d\mu/dpH)}}$

July 20, 2010

page	line	correction	error
50 left 59 right	↑ 17 ↓ 7	Catholyte for water determination — Dissolve 25 g of lithium chloride in 1000 mL of a mixture of methanol for water determination and nitro <u>ethane</u> (4 : 1). <u>Pulverize potassium dihydrogen phosphate</u> for pH determination and dry at 110°C to constant mass. Pulverize disodium hydrogen phosphate for pH determination and dry at 110°C to constant mass. Weigh 3.40 g (0.025 mole) of the pulverized and dried potassium dihydrogen phosphate and 3.55 g (0.025 mole) of the pulverized and dried disodium	Catholyte for water determination — Dissolve 25 g of lithium chloride in 1000 mL of a mixture of methanol for water determination and nitro <u>methane</u> (4 : 1). <u>Pulverize potassium dihydrogen phosphate for</u> <u>pH determination and disodium hydrogen</u> <u>phosphate for pH determination, and dry at</u> <u>110°C to constant mass. Weigh 3.40 g (0.025</u> <u>mole) of potassium dihydrogen phosphate and</u> <u>3.55 g (0.025 mole) of disodium hydrogen</u> <u>phosphate dodecahydrate accurately, and</u> <u>dissolve in water to make exactly 1000 mL.</u>
61 right	↑ 17	hydrogen phosphate accurately, and dissolve in water to make exactly 1000 mL. $\rho_{\rm T}^{t'} = \rho_{\rm S1}^{t'} \underline{d_{t}^{t'}}$	$\rho_{\rm T}^{t'} = \rho_{\rm S1}^{t'} d_{\underline{t'}}^{t'}$
99 right	Fig. 5.01-1	15.5 iii) Jup the second seco	The figures are in mm.
123 left	↓ 22	(iii) Potassium permanganate-reducing substances: Place <u>20.0</u> mL of the test solution in a glass-stoppered, conical flask,	 (iii) Potassium permanganate-reducing substances: Place <u>20</u> mL of the test solution in a glass-stoppered, conical flask,
135 right	↓ 23	Each mL of 1 mol/L hydrochloric acid VS = 53.00 mg of Na ₂ CO ₃	Each mL of 1 mol/L hydrochloric acid VS = 52.99 mg of Na ₂ CO ₃
135 right	↑ 5	Preparation — Before use, dilute 0.2 mol/L hydrochloric acid VS with water to make exactly twice the initial volume. Each mL of 0.1 mol/L hydrochloric acid VS = 5.300 mg of Na ₂ CO ₃	<i>Preparation</i> — Before use, dilute 0.2 mol/L hydrochloric acid VS with water to make exactly twice the initial volume.

141 left	↑ 17	Each mL of 0.02 mol/L sodium tetraphenylborate VS = 7.166 mg of KP (C H)	Each mL of 0.02 mol/L sodium tetraphenylborate VS = 7.167 mg of KB (C ₆ H ₅) ₄
142 left	↓ 6	$= \underline{7.166} \text{ mg of KB} (C_6H_5)_4$ Each mL of 0.5 mol/L sulfuric acid VS $= \underline{53.00} \text{ mg of Na}_2CO_3$	Each mL of 0.5 mol/L sulfuric acid VS = 52.99 mg of Na ₂ CO ₃
142 left	↑ 14	Each mL of 0.05 mol/L sulfuric acid VS = 5.300 mg of Na ₂ CO ₃	Each mL of 0.05 mol/L sulfuric acid VS = 5.299 mg of Na ₂ CO ₃
158 right	↑ 8	as directed in the Identification (4) under Hochuekkito Extract: no spot appears other than the principal spot of around Rf 0.4 .	as directed in the Identification (4) under Hochuekkito Extract: no spot appears other than the principal spot of around Rf <u>0.5</u> .
164 right	↑ 28	Dissolve 50 mg of bromocresol green in 0.72 mL of 0.1 mol/L sodium hydroxide VS and 20 mL of ethanol (95),	Dissolve 50 mg of bromocresol green in 0.72 mL of 0.1 mol/L sodium hydroxide VS and ethanol (95),
180 left	↓ 22	Each mL of 0.1 mol/L silver nitrate VS = 9.853 mg of C ₆ H ₈ N ₂ O.2HCl	Each mL of 0.1 mol/L silver nitrate VS = 9.854 mg of C ₆ H ₈ N ₂ O.2HCl
187 right	↑ 3	Each mL of 0.05 mol/L perchloric acid VS = $\underline{16.39}$ mg of C ₂₁ H ₂₅ N.HCl	Each mL of 0.05 mol/L perchloric acid VS = $\underline{16.40}$ mg of C ₂₁ H ₂₅ N.HCl
193 left	↑ 9	Clarity and color of solution: Dissolve $\underline{71}$ nkat _{s-2222} of it in 10 mL water;	Clarity and color of solution: Dissolve $\underline{7}$ <u>1</u> nkat _{s-2222} of it in 10 mL water;
193 left	↑ 4	Factor Xa TS Dissolve $\underline{71}$ nkat _{s-2222} of factor Xa in 10 mL of water.	Factor Xa TSDissolve $\underline{7 \ 1}$ nkat_s-2222 of factorXa in 10 mL of water.
197 left	↑ 17	7-(Glutarylglycyl-L-arginylamino)-4-meth ylcouma- rin TS Dissolve 5 mg of 7-(glutarylglycyl-L-arginyl- amino)-4-methylcoumarin in 0.5 to 1 mL of acetic acid (100), lyophilize, dissolve this in 1 mL of dimethyl- sulfoxide, and use this solution as solution A. Dissolve 30.0 g of 2-amino-2-hydroxymethyl-1,3-propanediol and 14.6 g of sodium chloride in 400 mL of water, adjust the pH to 8.5 with dilute hydrochloric acid, add	7-(Glutarylglycyl-L-arginylamino)-4-methyl couma- rin TS Dissolve 5 mg of 7-(glutarylglycyl-L-arginyl- amino)-4-methylcoumarin in 0.5 to 1 mL of acetic acid (100), lyophilize, dissolve this in 1 mL of dimethyl- sulfoxide, and use this solution as solution A. Dissolve 30.0 g of 2-amino-2-hydroxymethyl-1,3-propanediol and 14.6 g of sodium chloride in 400 mL of water, adjust the pH to 8.5 with dilute hydrochloric acid, add
		water to make 500 mL, and use this solution as solution B. Mix 1 mL of the solution A and 500 mL of the solution B before use. <u>Glutathion $C_{10}H_{17}N_3O_6S$ [Same as the</u> namesake monograph]	water to make 500 mL, and use this solution as solution B. Mix 1 mL of the solution A and 500 mL of the solution B before use.
203 left	↓ 5	as solution B. Mix 1 mL of the solution A and 500 mL of the solution B before use. <u>Glutathion $C_{10}H_{17}N_3O_6S$ [Same as the</u>	solution B. Mix 1 mL of the solution A and 500
203 left 212 left	↓ 5 ↑ 4	as solution B. Mix 1 mL of the solution A and 500 mL of the solution B before use. $\frac{Glutathion C_{10}H_{17}N_3O_6S [Same \ as \ the namesake \ monograph]}$	solution B. Mix 1 mL of the solution A and 500 mL of the solution B before use.
	•	as solution B. Mix 1 mL of the solution A and 500 mL of the solution B before use. Glutathion $C_{10}H_{17}N_3O_6S$ [Same as the namesake monograph] N-(3-Hydroxyphenyl)acetamide $C_8H_2NO_2$	solution B. Mix 1 mL of the solution A and 500 mL of the solution B before use. N-(3-Hydroxyphenyl)acetamide C ₈ H ₆ NO ₂

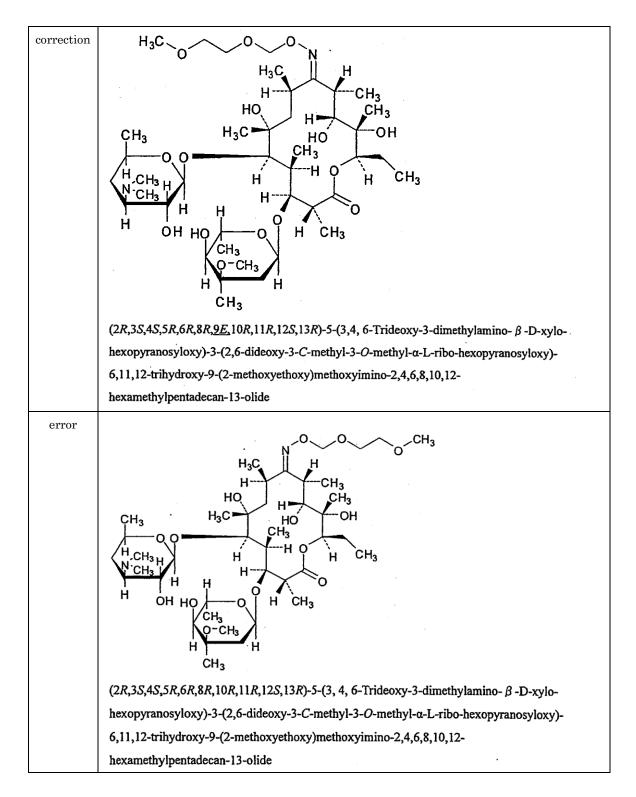
221 right	↓ 14	Nitrogen monoxideNOA colorless gas.Prepare byadding sodium nitrite TS to a solution of iron(II) sulfate heptahydrate in dilute sulfuricacid.Nitrogen monoxide from a metalcylinder may be used.Nitroethane $C_2H_5NO_2$ Density <2.56>: 1.048 - 1.053 g/cm³ at $20^{\circ}C$ Water <2.48>: less than 0.1%.	Nitrogen monoxide NO A colorless gas. Prepare by adding sodium nitrite TS to a solution of iron (II) sulfate heptahydrate in dilute sulfuric acid. Nitrogen monoxide from a metal cylinder may be used.
252 left	↑ 23	Thioacetamide-alkaline glycerin TS To 0.2 mL of thioacetamide TS add 1 mL of alkaline glycerin TS, and heat for 20 <u>seconds</u> in a water bath. Prepare before use.	Thioacetamide-alkaline glycerin TS To 0.2 mL of thioacetamide TS add 1 mL of alkaline glycerin TS, and heat for 20 <u>minutes</u> in a water bath. Prepare before use.
263 left	↑ 14	(2) Semimicrobalances — Use balances readable to the extent of $10 \ \mu g$.	(2) Semimicrobalances — Use balances readable to the extent of 0.01 mg .
263 left	↑ 12	(3) Microbalances—Use balances readable to the extent of $1 \mu g$.	(3) Microbalances—Use balances readable to the extent of <u>0.001 mg</u> .
264	Table 9.63 No. 6 Maxi-mum scale error at any point	0.4°C (<u>0.3°C, at 245°C of test temperature;</u> 0.5°C, at 315°C of test temperature)	0.4°C (0.5°C, at 315°C of test temperature)
272 left	↓ 10	[75443-99- <u>1]</u>	[75443-99- <u>0]</u>
281 right	↑ 27	<i>Internal standard solution</i> — A solution of propyl parahydroxybenzoate in methanol (<u>1</u> in 2,000).	<i>Internal standard solution</i> — A solution of propyl parahydroxybenzoate in methanol (3 in 20,000).
303 right	↓ 5	(1R,3S,5R,6R,9R, 11R, 15S, 16R, 17R, 18S,	(1R,3S,5R,6R,9R, 11R, 15S, 16R, 17R, 18S,
		19E, 21E, 23E,25E,27E,29E,31E,33R,35S, <u>36R</u> ,37S)-33 -(3- Amino-3,6-dideoxy-&D-mannopyranosyloxy)- 1,3,5,6,9,11,17,37-octahydroxy-15,16,18-trim ethyl-13-oxo-14,39-dioxabicyclo[33.3.1] nonatriaconta- 19,21,23,25,27,29,31-heptaene-36-carboxylic acid	19E, 21E, 23E,25E,27E,29E,31E,33R,35S, <u>36S</u> ,37S)-33-(3 - Amino-3,6-dideoxy-&D-mannopyranosyloxy)- 1,3,5,6,9,11,17,37-octahydroxy-15,16,18-trimet hyl-13-oxo-14,39-dioxabicyclo[33.3.1] nonatriaconta- 19,21,23,25,27,29,31-heptaene-36-carboxylic acid
305 left	↓ 9	23E,25E,27E,29E,31E,33R,35S, <u>36R</u> ,37S)-33 -(3- Amino-3,6-dideoxy-&D-mannopyranosyloxy)- 1,3,5,6,9,11,17,37-octahydroxy-15,16,18-trim ethyl-13-oxo-14,39-dioxabicyclo[33.3.1] nonatriaconta- 19,21,23,25,27,29,31-heptaene-36-carboxylic	23E,25E,27E,29E,31E,33R,35S, <u>36S</u> ,37S)-33-(3 - Amino-3,6-dideoxy-B-D-mannopyranosyloxy)- 1,3,5,6,9,11,17,37-octahydroxy-15,16,18-trimet hyl-13-oxo-14,39-dioxabicyclo[33.3.1] nonatriaconta- 19,21,23,25,27,29,31-heptaene-36-carboxylic
305 left 310 left	↓ 9 ↓ 10	23E,25E,27E,29E,31E,33R,35S, <u>36R</u> ,37S)-33 -(3- Amino-3,6-dideoxy-&D-mannopyranosyloxy)- 1,3,5,6,9,11,17,37-octahydroxy-15,16,18-trim ethyl-13-oxo-14,39-dioxabicyclo[33.3.1] nonatriaconta- 19,21,23,25,27,29,31-heptaene-36-carboxylic acid Storage — Light resistant, and in a cold	23E,25E,27E,29E,31E,33R,35S, <u>36S</u> ,37S)-33-(3 - Amino-3,6-dideoxy-&D-mannopyranosyloxy)- 1,3,5,6,9,11,17,37-octahydroxy-15,16,18-trimet hyl-13-oxo-14,39-dioxabicyclo[33.3.1] nonatriaconta- 19,21,23,25,27,29,31-heptaene-36-carboxylic acid

than 55.0 (C ₂₂ F 354.0		It contains more than 50.0 <u>w/v%</u> and not more than 55.0 <u>w/v%</u> of benzalkonium chloride ($C_{22}H_{40}ClN$: 354.01).
inject so the	n 0.1 μ L of the standard solution (1) is ted, adjust the sensitivity of the detector at the peak height of ethylbenzene is <u>not</u> <u>han 30%</u> of the full scale of the recorder.	When 0.1 μ L of the standard solution (1) is injected, adjust the sensitivity of the detector so that the peak height of ethylbenzene is <u>not more</u> <u>than 30%</u> of the full scale of the recorder.
inject so th	n 0.1 μ L of the standard solution (2) is ted, adjust the sensitivity of the detector at the peak height of ethylbenzene is <u>not</u> <u>han 30%</u> of the full scale of the recorder.	When 0.1 μ L of the standard solution (2) is injected, adjust the sensitivity of the detector so that the peak height of ethylbenzene is <u>not more</u> <u>than 30%</u> of the full scale of the recorder.
mLo	5 mL of this solution, add exactly 20 f the internal standard solution and 5 mL ater, and use this solution as the standard ion.	Pipet 5 mL of this solution, add exactly 20 mL of the internal standard solution, and use this solution as the standard solution.
ethyl	mL of 0.05 mol/L disodium dihydrogen enediamine tetraacetate VS = <u>5.005 mg</u> of CaCO ₃	Each mL of 0.05 mol/L disodium dihydrogen ethylenediamine tetraacetate VS = 5.004 mg of CaCO ₃
U	1-[(2S)-2-Methyl-3-sulfanyl <u>propanoyl]</u> lidine-2-carboxylic acid	(2S)-1-[(2S)-2-Methyl-3-sulfanyl <u>propanonyl]</u> pyrrolidine-2-carboxylic acid
405 left \downarrow 16 [5146	60-26-5, anhydride]	[<u>52422</u> -26-5, anhydride]
is ru under numb symm not l respe Sy repea soluti condi the p 2.0%		System performance, and system repeatability: Proceed as directed in the system suitability in the Purity (3) under Cefaclor.
(C ₁₅ H	unt [mg (potency)] of cefaclor $H_{14}ClN_3O_4S$) = $W_S \times (Q_T/Q_S) \times \underline{1/5}$	Amount [mg (potency)] of cefaclor $(C_{15}H_{14}ClN_3O_4S)$ = $W_S \times (Q_T/Q_S) \times \underline{2}$
(C ₁₅ H	unt [mg (potency)] of cefaclor $H_{14}ClN_3O_4S$) = $W_S \times (Q_T/Q_S) \times \underline{1/5}$	Amount [mg (potency)] of cefaclor $(C_{15}H_{14}ClN_3O_4S)$ $= W_S \times (Q_T/Q_S) \times \underline{2}$
2	luct this procedure without exposure to ght, using light-resistant vessels. To 1	To 1 tablet of Cefditoren Pivoxil Tablets
	t of Cefditoren Pivoxil Tablets	
table 445 left ↑ 25 and v	t of Cefditoren Pivoxil Tablets very slightly soluble in tetrahydrofuran. hygroscopic.	and very slightly soluble in tetrahydrofuran.

458 right	↑ 23	Plastic containers for aqueous injections may be used.	Polyethylene or polypropylene containers for aqueous injections may be used.
533 left	↑ 14	Dissolve 1.0 g of Cloxacillin Sodium Hydrate in 10 mL of water: the pH of the solution is between <u>5.0</u> and 7.5.	Dissolve 1.0 g of Cloxacillin Sodium Hydrate in 10 mL of water: the pH of the solution is between <u>5.5</u> and 7.5.
547 left	↓ 9	The total amount of sodium chloride and sodium glycolate is not more than 0.5%, calculated on the dried basis.	The total amount of sodium chloride and sodium glycolate is not more than 0.5%.
547 right	\downarrow 1	W: Amount (g) of sample calculated on the dried basis	W: Amount (g) of sample
547 right	↓ 15	W ₁ : Amount (g) of sample <u>calculated on the</u> <u>dried basis</u>	W ₁ : Amount (g) of sample
564 right	↑ 12	Each mL of 0.02 mol/L barium chloride VS = 0.6414 mg of S	Each mL of 0.02 mol/L barium chloride VS = 0.6413 mg of S
565 right	↓ 13	Each mL of 0.02 mol/L barium chloride VS = 0.6414 mg of S	Each mL of 0.02 mol/L barium chloride VS = 0.6413 mg of S
590 right	↓ 4	Each mL of 0.05 mol/L iodine VS = $\underline{6.212}$ mg of C ₃ H ₈ OS ₂	Each mL of 0.05 mol/L iodine VS = $\underline{6.211}$ mg of C ₃ H ₈ OS ₂
590 right	↑ 4	Each mL of 0.05 mol/L iodine VS = $\underline{6.212}$ mg of C ₃ H ₈ OS ₂	Each mL of 0.05 mol/L iodine VS = $\underline{6.211}$ mg of C ₃ H ₈ OS ₂
604 left	↑ 11	$[\alpha]_{365}^{20}$ + 160 - + 174°	$[\alpha]_{\underline{D}}^{20}$: +160 - +174°
605 left	↑ 15	Dissolution rate (%) with respect to the labeled amount of doxifluridine $(C_9H_{11}FN_2O_5)$ = $W_S \times (A_T/A_S) \times (\underline{V'/V}) \times (1/C) \times 45$	Dissolution rate (%) with respect to the labeled amount of doxifluridine $(C_9H_{11}FN_2O_5)$ = $W_S \times (A_T/A_S) \times (V/V') \times (1/C) \times 9$
618 right	↑ 4	Each mL of 0.1 mol/L perchloric acid VS = $\underline{29.59}$ mg of C ₁₇ H ₂₅ NO.HCl	Each mL of 0.1 mol/L perchloric acid VS = $\underline{29.58}$ mg of C ₁₇ H ₂₅ NO.HCl
649 left	↑ 20	H_3C PO_3HNa HO PO_3HNa	H ₃ C HO ^{PO₃HNa HO^{PO₃HNa}}
649 left	↑ 18	Disodium dihydrogen <u>1-hydroxyethane-1,1-diyl</u> diphosphonate	Disodium dihydrogen (<u>1-hydroxyethylidene)</u> diphosphonate
660 left	↓ 24	To 1 tablet of Faropenem Sodium Tablets add <u>130 mL</u> of water, shake vigorously until the tablets are disintegrated,	To 1 tablet of Faropenem Sodium Tablets add <u>180 mL</u> of water, shake vigorously until the tablets are disintegrated,
666 right	↑ 2	Plastic containers for aqueous injections may be used.	Polyethylene or polypropylene containers for aqueous injection may be used.
671 left	↑ 28	A stainless steel column 4.6 mm in inside diameter and <u>15 cm</u> in length, packed with silica gel (5 mm in particle diameter).	A stainless steel column 4.6 mm in inside diameter and <u>25 cm</u> in length, packed with silica gel (5 mm in particle diameter).
688 left	↓ 2	Plastic containers for aqueous injections may be used.	Polyethylene or polypropylene containers for aqueous injections may be used.
706 left	↑ 13	Dissolve 50 mg of Gonadorelin Acetate in <u>100mL of the mobile phase</u> , and use this solution as the sample solution.	Dissolve 50 mg of Gonadorelin Acetate in <u>100mL of the mobile phase A</u> , and use this solution as the sample solution.
710 left	↓ 18	$F' = (Y_1 - Y_2 - Y_3 + Y_4)^2 / (4fs^2)$	$F' = (Y_1 - Y_2 - Y_3 - Y_4)^2 / (4fs^2)$

717 right	27	Time span of measurement: About <u>3 times</u> as	Time span of measurement: About <u>2 times</u> as
, i , i i gitt	↓ 27	long as the retention time of haloperidol beginning after the solvent peak.	long as the retention time of haloperidol beginning after the solvent peak.
731 right	↑ 5	Content (%) of free phosphoric acid (H_3PO_4)	Content (%) of free phosphoric acid (H ₃ PO ₄)
		$= (A_T/A_S) \times (1/W) \times \underline{258.0}$	= $(A_T/A_S) \times (1/W) \times 257.8$
749 left	↓ 8	Determine the absorption spectrum of a solution of Ifenprodil Tartrate in methanol (1 in <u>10,000</u>) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.	Determine the absorption spectrum of a solution of Ifenprodil Tartrate in methanol (1 in $100,000$) as directed under Ultraviolet-visible Spectrophotometry <2.24>, and compare the spectrum with the Reference Spectrum: both spectra exhibit similar intensities of absorption at the same wavelengths.
751 right	↑ 6	Containers— <u>Hermetic containers.</u> <u>Plastic</u> <u>containers for aqueous injections</u> may be used.	Containers— <u>Hermetic containers</u> .
789 right	↓ 18	4) Ammonium <u><1.02></u> —Take 0.25 g of Kainic Acid Hydrate,	4) Ammonium—Take 0.25 g of Kainic Acid Hydrate,
791 left	↑ 28	$R = (A/0.0383) \times \{1/(a \times b)\}$	$R = (A/0.0383) \times \{1/(a-b)\}$
798 right	↑ 19	Mobile phase: To a volume of a solution of ammonium acetate (77 in <u>5,000</u>) add diluted phosphoric acid (1 in 150)	Mobile phase: To a volume of a solution of ammonium acetate (77 in <u>500</u>) add diluted phosphoric acid (1 in 150)
801 left	↑ 11	Mobile phase: To a suitable amount of a solution of ammonium acetate (77 in <u>5,000</u>) add diluted phosphoric acid (1 in 150)	Mobile phase: To a suitable amount of a solution of ammonium acetate (77 in <u>500</u>) add diluted phosphoric acid (1 in 150)
882 left	↑ 17	Each mL of 0.5 mol/L potassium hydroxide-ethanol VS = 76.08 mg of C ₈ H ₈ O ₃	Each mL of 0.5 mol/L potassium hydroxide-ethanol VS = 76.07 mg of C ₈ H ₈ O ₃
884 left	↑ 17	Dissolve <u>50 mg</u> of Meticrane in 50 mL of acetonitrile.	Dissolve <u>0.05 g</u> of Meticrane in 50 mL of acetonitrile.
890 left	↓ 5	To a quantity of powdered Metronidazole <u>Tablets, equivalent to 0.1 g of Metronidazole</u> <u>according to the labeled amount, add 100 mL</u> <u>of 0.1 mol/L hydrochloric acid TS, stand for</u> <u>30 minute while occasional shaking. After</u> <u>shaking vigorously, centrifuge, and to 1 mL</u> <u>of the supernatant liquid add 0.1 mol/L</u> <u>hydrochloric acid TS to make exactly 100</u> <u>mL.</u> Determine the absorption spectrum of <u>this solution</u>	Determine the absorption spectrum of <u>the</u> <u>sample solution obtained in the Assay</u>
895 right	↓ 5	(3R,4S,5S,6R,8R,9R,10E,12E,15R)-9-Acetox y-5- [3-O-acetyl-2,6-dideoxy-3-C-methyl-4-O-pro panoyl- α -L- <i>ribo</i> -hexopyranosyl-(1 \rightarrow 4)-3,6-dideoxy- 3- dimethylamino- β -D-glucopyranosyloxy]-6- formylmethyl-4-methoxy-8-methyl-3-	(3R,4S,5S,6R,8R,9R,10E,12E,15R)-9-Acetoxy- 5- [3-O-acetyl-2,6-dideoxy-3- <i>C</i> -methyl-4- <i>O</i> -propa noyl- α -L- <i>ribo</i> -hexopyranosyl- $(1\rightarrow 4)$ -3,6-dideoxy-3- dimethylamino- β -D-glucopyranosyloxy]-6- formylmethyl-4-methoxy-8-methyl-3- prop <u>anoyloxy</u> hexadeca-10,12-dien-15-olide

		prop <u>ioyloxy</u> hexadeca-10,12-dien-15-olide	
900 right	↑ 17	It is <u>gradually colored to yellow-brown</u> by light.	It is <u>colored</u> by light.
901 left	↓ 9	Dissolve <u>0.40 g</u> of Morphine Hydrochloride Hydrate in 10 mL of water: the solution is <u>clear</u> , <u>and its absorbance at 420 nm</u> <u>determined as directed under</u> <u>Ultraviolet-visible Spectrophotometry <2.24></u> <u>is not more than 0.12</u> .	Dissolve <u>0.10 g</u> of Morphine Hydrochloride Hydrate in 10 mL of water: the solution is <u>clear</u> and colorless.
901 right	↓ 2	Morphine Hydrochloride Injection is a <u>colorless or pale yellow-brown, clear liquid</u> . It is <u>gradually colored to yellow-brown</u> by light.	Morphine Hydrochloride Injection is a clear, <u>colorless</u> liquid. It is <u>affected</u> by light.
920 left	↑ 8	Internal standard solution—A solution of nicotinic acid (1 in <u>25,000</u>).	Internal standard solution—A solution of nicotinic acid (1 in <u>1250</u>).
920 right	↓ 12	the internal standard and nicotinamide are eluted in this order	<u>nicotinic acid</u> and nicotinamide are eluted in this order
942 left	↑ 3	Separately, weigh accurately about 25 mg of morphine hydrochloride for assay, dissolve in 10 mL of the internal standard solution and add water to make exactly 50 mL, and use this solution as the standard solution. Perform the test with 20 μ L each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and calculate the ratios, $Q_{\rm T}$ and $Q_{\rm S}$, of the peak area of morphine to that of the internal standard.	<u>Proceed as directed in the Assay (1) under</u> <u>Opium Alkaloids Hydrochlorides.</u>


942 right	\downarrow 4	<i>Internal standard solution</i> — A solution of etilefrine hydrochloride (1 in 500).	<i>Internal standard solution</i> — A solution of etilefrine hydrochloride (1 in 500).
		Operating conditions —	-
		Detector: An ultraviolet absorption	
		photometer (wavelength: 285 nm).	
		Column: A stainless steel column 4.6 mm	
		in inside diameter and 15 cm in length,	
		packed with octadecyl- silanized silica gel for	
		liquid chromatography (5 µm in particle	
		diameter).	
		Column temperature: A constant	
		temperature of about 40°C.	
		Mobile phase: Dissolve 1.0 g of sodium	
		lauryl sulfate in 500 mL of diluted phosphoric	
		acid (1 in 1000), and adjust the pH to 3.0 with	
		sodium hydroxide TS. To 240 mL of this	
		solution add 70 mL of tetrahydrofuran, and	
		mix.	
		Flow rate: Adjust the flow rate so that the	
		retention time of morphine is about 10	
		minutes.	
		<u>System suitability —</u>	
		System performance: When the procedure	
		is run with 20 µL of the standard solution	
		under the above operating conditions,	
		morphine and the internal standard are eluted	
		in this order with the resolution between these	
		peaks being not less than 3.	
		System repeatability: When the test is	
		<u>repeated 6 times with 20 μL of the standard</u> solution under the above operating	
		conditions, the relative standard deviation of	
		the ratios of the peak area of morphine to that	
		of the internal standard is not more than	
		1.0%.	
969 right	9	The mass-average molecular mass ranges	The mass-average molecular mass ranges
-8	↓ <i>)</i>	between 4500 and <u>6500.</u>	between 4500 and $\underline{6400}$.
969 right	↑ 5	The mass-average molecular mass ranges	The mass-average molecular mass ranges
	ر	between 4500 and <u>6500.</u>	between 4500 and <u>6400</u> .
970 right	↓ 1		
	↓ I	$=\Sigma(n_i\cdot M_i)/\Sigma n_i$	$=\Sigma(n_i\cdot M_i)/\Sigma n_j$
970 right	↓ 4	M_i : Molecular mass of fraction i in main peak	M_i : Molecular mass of fraction i in main peak Σn : Sum of differential refractometer strength in the each
	Ť		$\sum n_i$: Sum of differential refractometer strength in the each fraction between 1500 and 10,000 molecular mass in the main peak
994 left	1 20	Light-resistant, at a cold place, or replacing	
77 4 ICII	↓ 20	the air with Nitrogen.	Light-resistant, at a cold place.
996 right	↓ 14	It is freely soluble in acetic acid (100),	It is freely soluble in acetic acid (100), very
	↓ 1 4	practically insoluble in ethanol (99.5), and	slightly soluble in water and in ethanol (99.5).
		very slightly soluble in water.	
999 left	1 22	Plastic containers for aqueous injections may	Polyethylene or polypropylene containers for
	↓ 22	be used.	<u>aqueous injections</u> may be used.
		00 ubcu.	aqueous injections muy be used.

1009 right	↓ 28	Each mL of 0.5 mol/L sulfuric acid VS = $\underline{69.11 \text{ mg}}$ of K ₂ CO ₃	Each mL of 0.5 mol/L sulfuric acid VS = $\underline{69.10 \text{ mg}}$ of K ₂ CO ₃
1029 left	↑ 19	to 50 mL, <u>and add 10 mL of a solution of</u> <u>potassium bromide (3 in 10),</u> cool to 15°C,	to 50 mL, cool to 15°C,
1062 left	↑ 13	Content (%) of free phosphoric acid (H ₃ PO ₄) = (A _T /A _S) × (1/W) × 258.0	Content (%) of free phosphoric acid (H ₃ PO ₄) =(A _T /A _S) × (1/W) × 257.8
1070 left	<u>↑</u> 8	Test for required detectability: To exactly 1 mL of the <u>standard</u> solution add acetonitrile to make exactly 10 mL.	Test for required detectability: To exactly 1 mL of the <u>sample</u> solution add acetonitrile to make exactly 10 mL.
1072 left	↑ 1	Column: A stainless steel column <u>4.0 mm</u> in inside diameter	Column: A stainless steel column <u>4.6 mm</u> in inside diameter
1073 left	↓ 13	attachment	attachment
1084 right	↑ 19	One serrapeptase Unit corresponds to the amount of serrapeptase which produces $1 \mu g$ of tyrosine per minute from 5 mL of the substrate solution under the above conditions.	One serrapeptase Unit corresponds to the amount of serrapeptase which produces $5 \mu g$ of tyrosine per minute from 5 mL of the substrate solution under the above conditions.
1097 left	↓ 11	Each mL of 0.5 mol/L sulfuric acid VS = 53.00 mg of Na ₂ CO ₃	Each mL of 0.5 mol/L sulfuric acid VS = 52.99 mg of Na ₂ CO ₃
1114 right	↑ 17	Spiramycin II Acetate : R = -C (Spiramycin T Acetate) : R = -C CH ₃	SPiramycin II Acetate (Spiramycin I Acetate): R = -C CH ₃
1120 left	↓ 11		
1120 left	↑ 24	Separately, to 10 mg each of glucose, <u>lactose</u> <u>monohydrate</u> , fructose and white soft sugar	Separately, to 10 mg each of glucose, <u>lactose hydrate</u> , fructose and white soft sugar

1121 right	↓ 20		
1140 right	↓ 28	to make exactly 50 mL , and use this solution as the standard solution.	to make exactly <u>100 mL</u> , and use this solution as the standard solution.
1140 right	↑ 29	is not larger than <u>a half of the peak area</u> of tamsulosin from the standard solution.	is not larger than t <u>he peak area</u> of tamsulosin from the standard solution.
1141 left	↓ 15	is not larger than <u>a half of the peak area</u> of tamsulosin from the standard solution.	is not larger than t <u>he peak area</u> of tamsulosin from the standard solution.
1142 left	↑ 27	Each mL of 1 mol/L sodium hydroxide VS = $\underline{75.05 \text{ mg}}$ of C ₄ H ₆ O ₆	Each mL of 1 mol/L sodium hydroxide VS = $\underline{75.04 \text{ mg}}$ of C ₄ H ₆ O ₆
1146 left	↓ 10	Measure the absorbances A_{T2} and A_{S2} at 450 nm	$\frac{\text{Perform the test with these solutions as directed}}{\text{under Ultraviolet-visible spectrophotometry}} \\ \leq 2.24 >, \text{ and measure the absorbances } A_{T2} \text{ and} \\ A_{S2} \text{ at } 450 \text{ nm} \\ \end{array}$
1159 right	↓ 26	then <u>add 5 mL of a solution prepared by</u> <u>dissolving 0.1 g of 2,3-diaminonaphthalene</u> <u>and 0.5 g of hydroxyammonium chloride in</u> <u>100 mL of 0.1 mol/L hydrochloric acid TS</u> , shake, and allow to stand for 100 minutes.	then <u>add 5 mL of 2,3-diaminonaphthalene TS</u> , shake, and allow to stand for 100 minutes.
1171 left	↓ 17	Each mL of 0.05 mol/L bromine VS = $\underline{3.756 \text{ mg}}$ of C ₁₀ H ₁₄ O	Each mL of 0.05 mol/L bromine VS = $\underline{3.755 \text{ mg}}$ of C ₁₀ H ₁₄ O
1203 left	↑ 6	Content (%) of the free phosphoric acid	Content (%) of the free phosphoric acid
		(H ₃ PO ₄)	(H ₃ PO ₄)
		= $(A_T/A_S) \times (1/W) \times 258.0$	= $(A_T/A_S) \times (1/W) \times 287.8$
1207 right	↑ 24	To 1 tablet of Trimetazidine Hydrochloride Tablets add 15 mL of a mixture of 0.1 mol/L hydrochloric acid TS and ethanol (99.5) (1:1) to disintegrate the tablet, and treat with ultrasonic waves for 10 minutes.	To 1 tablet of Trimetazidine Hydrochloride Tablets add 15 mL of a mixture of 0.1 mol/L hydrochloric acid TS and ethanol (99.5) (1:1) <u>.</u> and treat with ultrasonic waves for 10 minutes.
1226 right	↓ 2	so that each mL contains about $40 \ \mu g$ of verapamil hydrochloride (C ₂₇ H ₃₈ N ₂ O ₄ .HCl),	so that each mL contains about 40 mg of verapamil hydrochloride (C ₂₇ H ₃₈ N ₂ O ₄ .HCl),

1236 left	↓ 22	Apply the test to Water for Injection preserved in containers as sterilized products: it meets the requirement.	It meets the requirement.
1259 left	↓ 18	the root with rhizome	the rhizome and root
1272 left	↑ 12	Cimicifuga Rhizome is the rhizome of Cimicifuga simplex Wormskjord, Cimicifuga dahurica (Turcz.) <u>Maximowicz</u> , Cimicifuga foetida Linné or Cimicifuga heracleifolia Komarov (Ranunculaceae).	Cimicifuga Rhizome is the rhizome of <i>Cimicifuga simplex</i> Wormskjord, <i>Cimicifuga</i> <i>dahurica (Turcz.)</i> <u>Maximmowicz</u> , <i>Cimicifuga</i> <i>foetida</i> Linné or <i>Cimicifuga heracleifolia</i> Komarov (<i>Ranunculaceae</i>).
1274 left	↓ 10	Clematis Root is the root and rhizome of Clematis chinensis Osbeck, Clematis <u>mandshurica</u> Ruprecht, or Clematis hexapetala Pallas (Ranunculaceae).	Clematis Root is the root and rhizome of <i>Clematis chinensis Osbeck, Clematis</i> <u>manshurica</u> Ruprecht, or Clematis hexapetala Pallas (Ranunculaceae).
1367 right	↑ 21	T <u>u</u> rmeric	T <u>e</u> rmeric
1466	bottom		
1679 left	↓ 5	capillary zone electrophoresis	free solution capillary electrophoresis
1700	\downarrow 1	<u>Nov. 2005 (Rev. 1)</u>	July, 2000
1700	↓ 5	(delete)	Identification Identification
1700	↓ 15	<u>Nov. 2005 (Rev. 1)</u>	<u>Nov. 2003</u>

attachment

