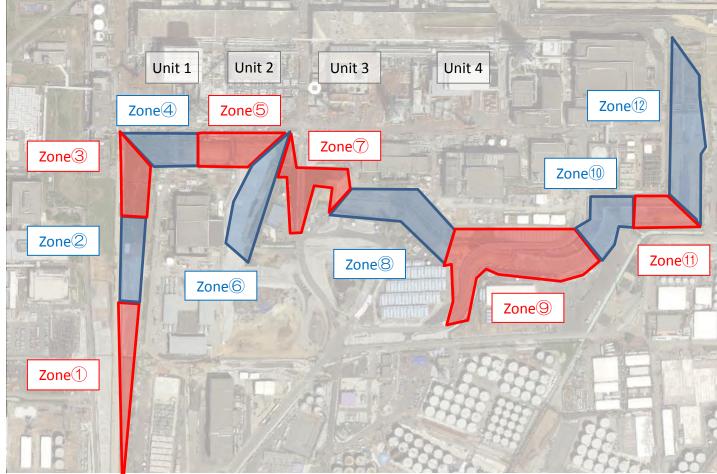
Workshop on Radiation Exposure Control at TEPCO's Fukushima Daiichi Nuclear Power Plant, etc.

Efforts for Reducing Radiation Exposure during Facing Construction of Slope Areas (Unit 1 to Unit 4)


10 November 2015

Shimizu Corporation

子どもたちに誇れるしごとを。

1. Outline of the work

- Name: Fukushima Daiichi NPP Facing Construction
 (slope areas from the buildings at Units 1–4)
- Period: April 2014 to December 2015 (21 months)
- Area covered in the work: 45,550 m²

Zone Number	Area (m²)
1	4,695
2	3,367
3	3,215
4	1,573
5	1,303
6	2,799
$\overline{\mathcal{O}}$	1,057
8	5,664
9	5,497
(10)	4,181
(11)	3,213
(12)	8,985
Total	45,549

* From Google map

Efforts for Reducing Radiation Exposure during the Facing Construction of Slope Areas

1. Outline of the work

Work flow diagram

Investigation/design

吹付け前			吹付け 低湯	厚(cm) g率		
線量(mSv/h)	5	10	15	20	25	30
	57%	79%	89%	92.35	95.7%	99%
0.3	129	63	33	23	13	3
0.2	86	42	22	15.3	8.7	2
0.1	43	21	11	7.7	4.3	1
0.05	21.5	10.5	5.5	3.8	2.2	0.5
0.03	12.9	6.3	3.3	2.3	1.3	0.3
0.02	8.6	4.2	2.2	1.5	0.9	0.2
0.015	6.45	3.15	1.65	1.2	0.7	0.15
0.01	4.3	2.1	1.1	0.8	0.4	0.1
※20cmと30cmは安全	側に内挿し	、て算出				
吹付け重量(kg/m ²)	105	210	315	420	525	630
※吹付モルタルの単位	2体積重量	=2,100kg	f/m ³			

Removal of debris

Weeding/felling trees

Removal of top soil /leveling

Construction of a drainage system

Shotcrete

子どもたちに誇れるしごとを。清水建設

2

1. Outline of the work

Schedule

	項目				F١	<mark>/ 2014</mark>										FY 20)15					
	リート 現日		5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
	nvestigation/ esign																					
	Removal of debris										ininininin	nininini			uinininini							
rk	Weeding							e nisininini	ikiniainiai	u ir ainti ainti a	uisinisini	sininginingin	induninduning									
Details of work	Removal of top soil									sinisinisi	nisinisinis	inite inite ini	i dia indra indri	nieiniisiniis	uinininini	eininininin		dana kaina jari	siniisiiniisi			
Detai	Drain system										ajini saji	istrikiris		aininaininais	indialiadiadia	nin ininini	dia india india	u fincia di scia di s	ninininin			
	Shotcrete										-ņn	ndundunod	ibuoduuuduu	ainundurudu	lodoooduood	paodeopologe	kinundunudu	aviunduno.	Puoduuoduu	olivooduuodu	anini G	
	Clearance																				ainiainiai	atiociacio de la constante de l

[Issue 1] High radiation dose at work areas

- There is an area where the radiation dose on the ground surface (1 cm from the ground surface) is 3 mSv/h or higher (part of Zone④, as of April 2014).
- A large quantity of debris with high radiation, distributed after the earthquake, still remain. (Zone \Im to Zone $egin{array}{c} 0 \\ 0 \end{array}$,
- Work hours are restricted due to the works conducted in the high radiation areas.

[Issue 2] Handling of interfering materials in, top and bottom of the slope, as well as the coordination with other construction works

- There are many transport pipes, piping, and lines in use installed after the earthquake on the slope, which require switching, relocation, and/or protection when implementing the construction
- Detailed coordination is necessary with other works.

Goal 1 Surface radiation $\leq 5 \mu Sv/h$ after the construction

 Setting the amount of the topsoil stripping and shotcrete thickness in accordance with the target surface radiation of 5 μSv/h or lower after shotcrete.

[Goal 2] Reduction of radiation exposure of workers

• Select and take measures to reduce radiation exposure of workers during the construction work.

Engineering measures

- Decontamination
- Improving efficiency
- Improving efficiency
- Automation
- Improving efficiency

Shotcrete using a spray robot

Removal of debris using a lifting magnet

Automation

Reduction of surface radiation dose by removing debris and topsoil

Shielding and reduction of surface radiation dose by shotcrete

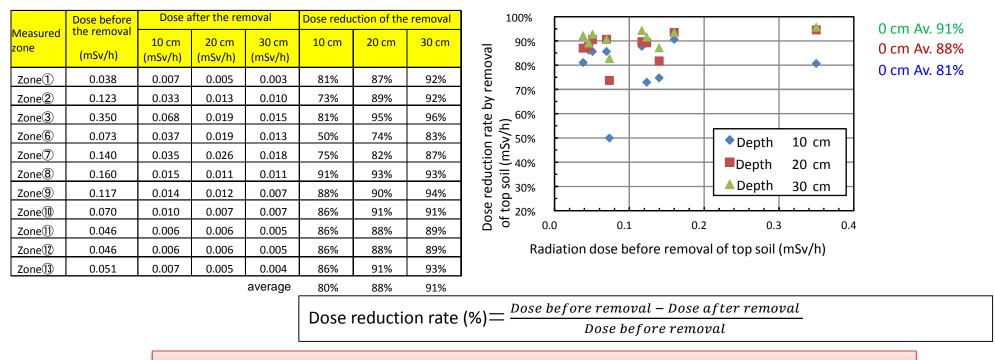
Removal of top soil by remote operation of the RCM (Rock Climbing Machine)

Improving efficiency

Administrative measures

Shielding Wear a shielding vest

Shielding


Efforts for Reducing Radiation Exposure during the Facing Construction of Slope Areas

Engineering measures 1 Decontamination

Dose reduction effects of the removal of the top soil

Results of radiation dose measured before and after the removal of the top soil at each zone

Significant reduction of radiation dose by removal of the top soil

3.1 Outline of exposure reduction measures - engineering measures

Engineering measures **2**Shielding

Shielding by shotcrete

Shotcrete thickness : 10 cm (thickness found in general)

Relationship between thickness of the shielding material and the shielding effects

Thickness of soil	Shielding effect Thickness	of concrete	Shielding effect	
5 cm	51% Reduction	5 cm	57% Reduction	Reduction of radiation dose by 79%
10 cm	74% Reduction	10cm	79% Reduction	with shotcrete thickness of 10 cm.
15 cm	86% Reduction	15cm	89% Reduction	(considering mortar ≒ concrete)
30 cm	98% Reduction	30cm	99% Reduction	
	e of contamination conduc rgency Response Headquar			

Before shotcrete	Shotcrete thickness(cm) Reduction rate									
(mSv/h)	5	10	15	20	25	30				
	57%	79%	89%	92.3%	95.7%	99%				
0.3	129	63	33	23	13	3				
0.2	86	42	22	15.3	8.7	2				
0.1	43	21	11	7.7	4.3	1				
0.05	21.5	10.5	5.5	3.8	2.2	0.5				
0.03	12.9	6.3	3.3	2.3	1.3	0.3				
0.02	8.6	4.2	2.2	1.5	0.9	0.2				
0.015	6.45	3.15	1.65	1.2	0.7	0.15				
0.01	4.3	2.1	1.1	0.8	0.4	0.1				
* The values in the table fo	r 20 cm and	30 cm are th	ose calculate	ed by conserv	vative interp	olation.				
Weight of shotcrete (kg/m ²)	105	210	315	420	525	630				

Calculate the values of radiation dose (after topsoil stripping) which would realize the target surface radiation dose of 5 μ Sv/h or lower after shotcrete.

Then,

Decided to check if the surface radiation dose after topsoil stripping (before shotcrete) is 0.02 mSv/h or lower.

Efforts for Reducing Radiation Exposure during the Facing Construction of Slope Areas

3.1 Outline of exposure reduction measures - engineering measures

Engineering measures ③Improving efficiency

Removal of debris using lifting magnets

Efficient removal of high radiation debris left on the slope using lifting magnets

<u>Debris</u>

- Consist of many steel outer walls of buildings including those highly contaminated
- Distributed widely on the slope near the buildings of Unit 1 to Unit 2 (Zone③–⑤)

Attempted to increase efficiency in the collection of the widely distributed debris using a magnet lifted by a crane. Moreover, remote recovery contributed to radiation exposure reduction.

* The lifting magnets are used in general for transporting iron scrap at iron-making factories, etc.

Removal of debris

Exporting debris

Engineering measures **4**Automation

Topsoil stripping by remotely operated RCM (<u>Rock Climbing Machine</u>)

Topsoil stripping was conducted by remotely operated RCM in the high radiation areas. (west side from the buildings Unit 1 to Unit 2).

Radiation exposure dose of the RCM operator is high in the high radiation areas.

Remote operation of the RCM. The operator handles the RCM remotely from a low radiation area with the assistance of a screen view from a camera installed at the driving seat of the RCM, which contributes to radiation exposure reduction.

RCM operating unattended

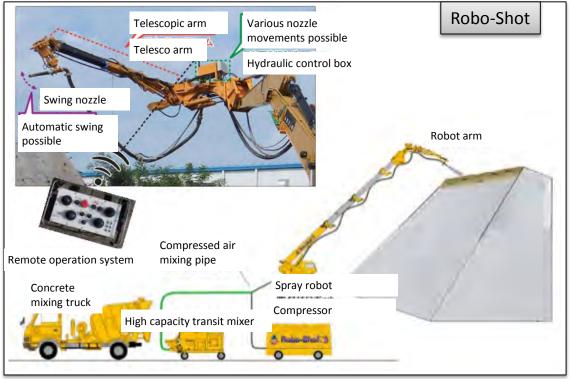
Operation of RCM from a remote room

Appearance of the operation room

3.1 Outline of exposure reduction measures - engineering measures

Engineering measures **5**Improving efficiency

Improvement of efficiency of shotcrete with a spray robot


Improvement of efficiency of shotcrete with a spray robot (Robo-Shot)

Mechanization of shotcrete for areas where a spray robot can be placed on the slope (3–5 times as efficient as work conducted by humans).

Significant improvement in efficiency. Contribution to radiation exposure reduction of workers by the adoption of remote operation.

Efforts for Reducing Radiation Exposure during the Facing Construction of Slope Areas

子どもたちに誇れるしごとを。清水建設

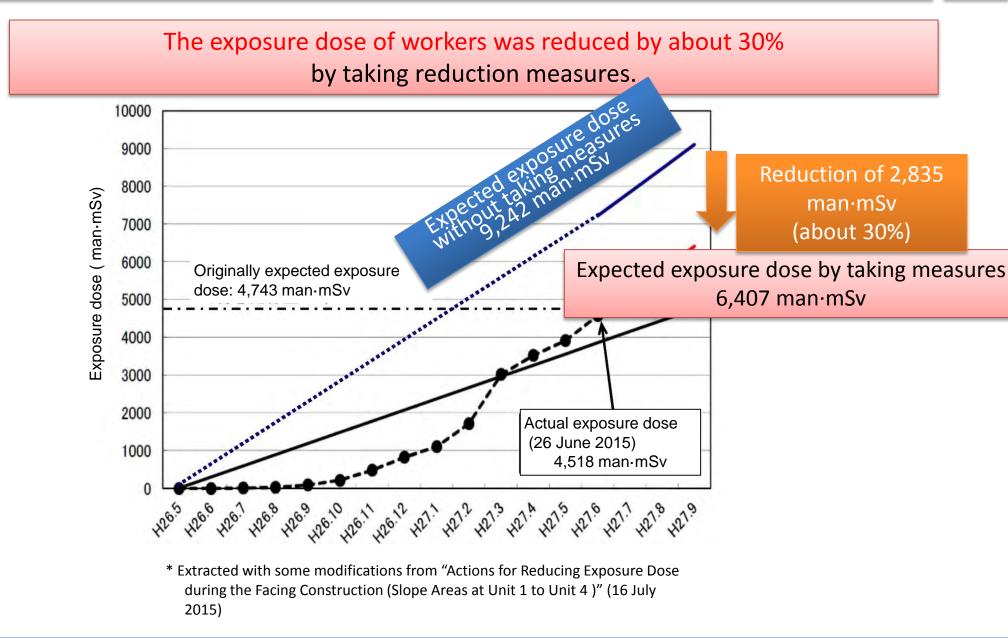
3.2 Outline of exposure reduction measures - administrative measures

Administrative measures ①Shielding

Wearing a shielding vest

Workers wear a shielding vest in the high radiation areas.

Workers wear a shielding vest in the high radiation areas.


Contributed to radiation exposure reduction of workers by shielding from gamma rays.

Shielding vest worn by a worker (biorubber RSM)

The END Thank you for your attention

子どもたちに誇れるしごとを。