障害者自立支援機器等研究開発プロジェクト

# BMI 型生活環境制御装置の小型化と 実証評価に関する研究開発

# 平成21年度 総括·分担研究報告書

研究代表者 中島 八十一

平成22(2010)年4月

| ブレ    | イン-マシン・インターフェイス(BMI)による障害者自立支援機器の開発 |    |
|-------|-------------------------------------|----|
| 中島    | 八十一                                 | 1  |
|       |                                     |    |
| II. 5 | 分担研究報告                              |    |
| 1. 3  | 分野間連携に基づいた BMI による障害者自立支援機器の開発<br>  | q  |
| 卞     | 申作 憲司                               | J  |
| III.  | 研究成果の刊行に関する一覧表                      | 27 |
| IV.   | 研究成果の刊行物・別刷                         | 29 |

# 目 次

I. 総括研究報告

# I. 総括研究報告

# 障害者保健福祉推進事業(障害者自立支援機器等研究開発プロジェクト) 総括研究報告書

BMI 型生活環境制御装置の小型化と実証評価に関する研究開発(5) 研究代表者 中島 八十一 国立障害者リハビリテーションセンター研究所 感覚機能系障害研究部長

#### 研究要旨

本研究課題では、外傷または神経難病などにより発話不能や四肢の運動麻痺を伴いコ ミュニケーションや日常動作に困難をきたしている障害者の活動領域を拡張させること を目指し、脳波を用いて制御する、実用的なブレイン-マシン・インターフェイス(BMI) 型生活環境制御装置を研究開発した。システムは、PCを含めてドック化し、取り回しの 良いものとした。脳波計は連結による拡張を可能とし、4ch、8ch、12chの3種類で構成 できるように設計し、筋電スイッチ信号等他の生体信号入力端子を確保した。制御用の ソフトウェアの開発を行い、さらに、着脱容易な脳波電極の開発も行った。これらの研 究開発は、筋萎縮性側索硬化症(ALS)、頚髄損傷による四肢麻痺者、脳性麻痺等不随意 運動を伴う者を中心とする障害者からの実用データのフィードバックのもと行った。

# 研究分担者

神作憲司

国立障害者リハビリテーションセンター 感覚機能系障害研究部感覚認知障害研究 室長

A. 研究開発目的

「ブレイン-マシン・インターフェイス (Brain-Machine Interface: BMI)」もしくは 「ブレイン-コンピュータ・インターフェイ ス (Brain-Computer Interface: BCI)」とは、脳 からの信号を計測し、それを利用して機器操 作やコンピュータ操作を行うための技術で ある。近年、この BMI 技術を利用して、運 動やコミュニケーションの補助、生活環境の 制御などへの応用を図る動きが注目されて いる。

本研究課題では、外傷または神経難病など により発話不能や四肢の運動麻痺を伴いコ ミュニケーションや日常動作に困難をきた している障害者の活動領域を拡張させるこ とを目指し、脳波を用いて制御する、実用的 なブレイン-マシン・インターフェイス

(BMI)型生活環境制御装置を研究開発す る。またその開発は、障害の現場での早期実 用化を目指し、筋萎縮性側索硬化症(ALS)、 頚髄損傷による四肢麻痺者、脳性麻痺等不随 意運動を伴う者を中心とする障害者からの 実用データのフィードバックのもと行う。

#### B. 研究開発方法

BMI 型生活環境制御装置の開発を進める とともに、障害者に実験へと参加いただくこ とで実用データを収集しフィードバックを かけ、BMI 技術の実用化に向けた研究開発 を行った。

開発にあたり、これまでに蓄積した BMI 研究開発経験やシステム脳神経科学研究の 経験等を活かし、実用的な BMI 型生活環境 制御装置の仕様策定を進めた。システムは、 介助者等からの意見を踏まえ、PC を含めて ドック化し、取り回しの良いものを目指した。 さらに障害者の方に参加いただいた実用デ ータも活かして、機器の性能を含めた仕様の 妥当性の検証を行った。また、企業等の技術 力調査を並行して行い、委託開発先を選定し ていった。そして、開発期間の後半には、策 定した仕様に基づいてシステム設計を行い、 委託開発先と共に機器開発を行った。

実用データ収集に関しては、国立障害者リ ハビリテーションセンター病院との連携を 深めつつ行うとともに、筋萎縮性側索硬化症

(ALS)に関してあきらめない医療を実践し 成功を収めている公立八鹿病院の近藤清彦 神経内科部長と連携し行った。

対象は、筋萎縮性側索硬化症(ALS)、頚 髄損傷による四肢麻痺者、脳性麻痺等不随意 運動を伴う者を中心とする障害者とした。さ らに様々な障害をお持ちの方のニーズを探 るため、脳卒中後失語症、低酸素脳症の方か らも実用データを収集した。 BMI 型生活環境制御装置の小型化・ドッ ク化に向けた機器開発として、脳波計、制御 のための専用小型 PC を完成させ、さらに制 御用ソフトウェアの開発を行った。

脳波計の開発にあたって、これまでに蓄積 した BMI 研究開発経験やシステム脳神経科 学研究の経験等を活かし、BMI に特化した 設計を行うことで、既存の試作1号機に比べ て、容積比 25%、重量で 240g の軽量化に成 功した。

これまでの研究の結果、多くの被験者では、 後頭部より4chの脳波が得られれば、実用的 なBMIの精度が得られていたため、本機で は1台あたりの入力端子を4chに絞った。た だし、A/D変換に関しては24bitの分解能を 確保した。また、複数の脳波計を連結する機 能も盛り込んだため、多くのチャンネルが必 要な場合にも対応可能であり、4ch、8ch、 12chの3種類で構成できる。

システム全体の最適化を進めるため、専用 の小型 PC の開発も行った。脳波計と合わせ たサイズとしたため、システム全体でドック 化が可能である。

さらに BMI の制御用ソフトウェアの開発 を行った。操作パネルの階層化や家電制御設 定の簡略化、メールソフト・インターネット 巡回ソフトなどの機能を盛り込み、より実生 活での使用を意識したシステムを実装した。

BMI 型生活環境制御装置の実用化に向け た実用データ収集としては、筋萎縮性側索硬 化症(ALS)2名、頚髄損傷6名、脳性麻痺 3名に参加いただいた。さらに様々な障害を お持ちの方のニーズを探るため、脳卒中後失 語症、低酸素脳症の方にも参加いただいた。 このうち、頚髄損傷、ALS、脳性麻痺の方

C. 研究開発結果

では、近年 Kubler らや Nijboer らが唱えてい る実用可能な水準とされる操作精度(70%以 上)をクリアしていることが確かめられた。

脳卒中後失語症、低酸素脳症の方について は、原疾患による脳機能の障害が問題となり、 さらなる研究開発が必要であることがわか った。

実用データ収集の過程では、随時、ニーズ の調査も行った。電極の装着、装置の配置、 訓練方法などについて改善を要する点も見 つかり、実用化に向けた様々な課題、ノウハ ウを得ることができた。

D. 今後の課題について

本研究の研究開発は、BMI 機器の実用 化に向けて、システムの小型化・ドック化、 小型軽量のコンピュータ上での動作、拡張も 容易なソフトウェアの開発、そして障害を持 つ方々からの実用データ収集も合わせて行 なわれた。以下、今後の課題や考慮すべきこ と等を記載する。

本研究では頸髄損傷6名、筋萎縮性側索 硬化症(ALS)2名、脳性麻痺3名、脳卒中後 失語症2名、低酸素脳症2名の方に実験に協 力していただいた。これらの実験を行なうに あたり、被験者からの同意書取得が困難なケ ースもあったが、その場合は家族等より同意 書を取得した。低酸素脳症以外の方々では chance rate より高い正答率を得ることが出 来たことから、基本的な脳波の取得から解析、 判別までの機能的な部分は実用十分なレベ ルに達しつつあると言える。しかしながら、 例えば BMI 機器に関しての説明が難しかっ た例もあり、これについては、積極的なアウ トリーチ活動等により BMI 機器の一般への 知識を普及することも有用だろう。他にも刺 激の提示手法、電極の設置や除去、長時間連 続使用による影響や、長期間使用による影響 など、日常的な機器の使用に関しては今後さ らなる配慮が必要となると考えられた。また、 外出時等にて使用する際には、脳波キャップ のデザインも重要となるだろう。デザインと 機能を両立させたい。

また、今回の BMI 機器に使用している ソフトウェアは、小型 PC でも十分に駆動で きるような動作の軽量化と、使用機器の追加 が容易に行なえるような拡張性の確保を重 点において行なった。前者については、従来 実験用に主として用いてきた MATLAB 系か らの脱却、および機能の異なる複数のスレッ ドを作成し、必要なものは常時動作させるが、 連携が必要なものについては同時ではなく 雪崩式に動作させることによる CPU 負荷の 軽減、脳波計へのアクセス回数低減によるデ ータ流量と占有率の軽減等がある。これらは 近年、安価な CPU までマルチコア化されて きたことにより有用になった手法である。後 者については、対象となる機器を増やす場合 や、使用者の環境に合わせた調整が容易にな るように xml 形式での記述を行なった。しか しながら、実際の使用者、もしくは介助者が 容易に操作対象を追加、変更することを考慮 した場合、将来的にはより簡易な GUI での 拡張が可能になるようなソフトウェアの開 発も必要となる。これに限らず使用者を想定 しより簡易に使用、拡張を可能にする仕組み を作成していくことが望まれる。

今回の開発は、目標を実生活環境での使 用に設定し行なわれた。しかしながら、実際 に開発を行なって始めて見えてくるものも 多かった。これまで研究室で行なわれてきた 研究を、障害の現場へと展開させるための重 要な礎と位置付けたい。

# E. 考察

BMI 型生活環境制御装置の小型化と実証 評価をすすめていくためには、基礎医学・臨 床医学と工学などの、分野間の連携を推進し ていく必要がある。本研究では、分担研究者 の神作が、システム脳神経科学を背景としつ つ理工学者・医師・さらには企業研究者とと もに研究開発に取り組んだ。この際、実証評 価の知見を活かしながら、より実用的な機器 となるべく開発した。そして主任研究者の中 島が、それらすべてを統括するとともに、臨 床神経生理学の視点からの助言を与えた。

こうした取り組みをさらにすすめ、BMI 型生活環境制御装置の実用化を図っていき たい。

F. 結論

BMI を用いた生活環境制御装置の実用化 に向けて、小型化・ドック化された試作機の 開発に成功した。障害者の方に参加いただき ながら、実証評価を進めていくことで、BMI 型生活環境制御装置の実用化に向けた道筋 をつけることができた。

G. 健康危険情報

なし

# H. 研究発表(参考資料)

1. 論文発表

## 論文:原著

Kansaku, K., Hata, N., Takano, K. My thoughts through a robot's eyes: an augmented reality-brain-machine interface. *Neuroscience Research*, 66(2): 219-222, 2010.

Takano, K., Komatsu, T., Hata, N., Nakajima, Y., Kansaku, K. Visual stimuli for the P300 brain-computer interface: a comparison of white/gray and green/blue flicker matrices. *Clinical Neurophysiology*, 120(8): 1562-1566, 2009.

#### 論文:総説

中島八十一. オーバービュー: 社会的行動障害と高次脳機能障害支援, *Clinical Rehabilitation*, 18 (12): 1066-1071, 2009.

中島八十一.入門 リハビリテーショ ン科学研究② 《実践的リハ科学研究の展開 の仕方-1》高次脳機能障害における各種リハ 研究の場合. リハビリテーション研究, 140: 38-42, 2009.

中島八十一. 高次脳機能障害の現状と 課題. *日本リハビリテーション病院・施設* 協会誌, 121:10-15, 2009.

神作憲司. ブレイン・リーディング. Clinical Neuroscience, 2010. (招待)(印刷中)

池上史郎、神作憲司. ブレイン-マシン・ インターフェイス(BMI)の今後の展開. *作 業療法ジャーナル*, 2010. (招待)(印刷中) 論文: 抄録・プロシーディング

外山滋、高野弘二、池上史郎、神作憲 司. Brain Machine Interface のための脳波測定 用 ゲル 電 極 の 開 発 . 信 学 技 報 (IEICE Technical Repor, 109(359): 23-26, 2010.

Iwaki, S., Takano, K., Kansaku, K. Parieto-temporal activity is correlated with the sense of agency during visual target tracking. *NeuroImage*, 2010.

Kansaku, K., Takano, K., Takahashi, T., Kitazawa, S. Reciprocal roles for the right and left hemispheres in reversal of subjective temporal order due to arm crossing. Program No. 94.3. 2009 Abstract Viewer/Itinerary Planner. Chicago: Society for Neuroscience, 2009. Online.

Takano, K., Kansaku, K. Neuromagnetic activities during the P300-BCI: a comparison of white/gray and green/blue flicker matrices. Program No. 664.21. 2009 Abstract Viewer/Itinerary Planner. Chicago: Society for Neuroscience, 2009. Online.

Ikegami, S., Takano, K., Komatsu, T., Saeki, N., Kansaku, K. Operation of a BMI based environmental control system by patients with cervical spinal cord injury. Program No. 664.16. 2009 Abstract Viewer/Itinerary Planner. Chicago: Society for Neuroscience, 2009. Online.

Komatsu, T., Takano, K., Nakajima, Y., Kansaku, K. A BMI based environmental control system: a combination of sensorimotor rhythm, P300, and virtual reality. Program No. 360.14. 2009 Abstract Viewer/Itinerary Planner. Chicago: Society for Neuroscience, 2009. Online.

Iwaki, S., Takano, K., Kansaku, K. Neural activity in the parieto-temporal area is correlated with the subjective sense of agency during hand movements of visual target tracking Program No. 379.9. 2009 Abstract Viewer/Itinerary Planner. Chicago: Society for Neuroscience, 2009. Online.

Takano, K., Ikegami, S., Komatsu, T., Kansaku, K. Green/blue flicker matrices for the P300 BCI improve the subjective feeling of comfort. *Neuroscience* Research, 2009. (P2-k16)

Iwaki, S., Takano, K., Kansaku, K. Neural correlates of the sense of agency during hand movements of visual-target tracking. *Neuroscience Research*, 2009. (P2-h16)

## 書籍

Kansaku, K. The Intelligent Environment: Brain-Machine Interfaces for Environmental Control. *Smart Houses: Advanced Technology for Living Independently.* (Eds) Ferguson-Pell, M., Stefanov, D., Berlin, Springer Verlag, 2009. (in press)

# その他

神作憲司. 脳波信号で操作する環境制御 装置. *日本ALS 協会会報*. 2010. (印刷中)

# 2. 学会発表

一般口演・ポスター

外山滋、高野弘二、池上史郎、神作憲司. BMIに用いる脳波測定用電極の開発.*第49回 化学センサ研究発表会(電気化学会第77回 大会)*.2010年3月;富山.

Kansaku, K. System-neuroscience may contribute to expand the range of activities in persons with disabilities. *JSPS-DFG 第2 回日独* ラウンドテーブル. –*Cooperative Technology in Future: Cognitive Technical Systems*–. Feb 2010; Tokyo, Japan.

外山滋、高野弘二、池上史郎、神作憲司. Brain-Machine Interface のための脳波測定用 ゲル電極の開発. *有機エレクトロニクス研 究会(電子情報通信学会)*.2010年1月; 東 京.

池上史郎、高野弘二、小松知章、中島八 十一、神作憲司. 脊髄損傷者による BMI 生 活環境制御システムの使用. *第26回 国立障* 害者リハビリテーションセンター業績発表 会. 2009 年 12 月; 所沢.

Kansaku, K., Takano, K., Takahashi, T., Kitazawa, S. Reciprocal roles for the right and left hemispheres in reversal of subjective temporal order due to arm crossing. *The 39th Annual Meeting of the Society for Neuroscience*. Oct 2009; Chicago, USA.

Takano, K., Kansaku, K. Neuromagnetic

activities during the P300-BCI: a comparison of white/gray and green/blue flicker matrices. *The 39th Annual Meeting of the Society for Neuroscience.* Oct 2009; Chicago, USA.

Ikegami, S., Takano, K., Komatsu, T., Saeki, N., Kansaku, K. Operation of a BMI based environmental control system by patients with cervical spinal cord injury. *The 39th Annual Meeting of the Society for Neuroscience*. Oct 2009; Chicago, USA.

Komatsu, T., Takano, K., Nakajima, Y., Kansaku, K. A BMI based environmental control system: a combination of sensorimotor rhythm, P300, and virtual reality. *The 39th Annual Meeting of the Society for Neuroscience*. Oct 2009; Chicago, USA.

Iwaki, S., Takano, K., Kansaku, K. Neural activity in the parieto-temporal area is correlated with the subjective sense of agency during hand movements of visual target tracking. *The 39th Annual Meeting of the Society for Neuroscience*. Oct 2009; Chicago, USA.

Takano, K., Ikegami, S., Komatsu, T., Kansaku, K. Green/blue flicker matrices for the P300 BCI improve the subjective feeling of comfort. *The 32nd Annual Meeting of Japan Neuroscience Society.* September 2009; Nagoya, Japan.

Iwaki, S., Takano, K., Kansaku, K. Neural correlates of the sense of agency during hand movements of visual-target tracking. *The 32nd* 

Annual Meeting of Japan Neuroscience Society. September 2009; Nagoya, Japan.

講演等

中島八十一. 高次脳機能障害者の地域 支援. *第57回日本職業・災害医学会学術大 会*. 2009年11月;高槻.

竹内成生、中島八十一、門田宏、望月芳 子、関口浩文.空間認知記憶課題における 予測と遂行評価. 日本臨床神経生理学会 第39回学術大会. 2009年11月;於北九州 国際会議場.

関ロ浩文、竹内成生、門田宏、河野豊、 中島八十一. 脳波電極リード線の再配置に よる TMS-EEG の効果的なアーチファクト 減弱法. 日本臨床神経生理学会 第39 回学 術大会. 2009 年 11 月;於北九州国際会議 場.

河野豊、関口浩文、門田宏、竹内成生、 上野友之、永田博司、中島八十一.経頭蓋 磁気刺激を用いた Mirror therapy における 皮質脊髄路の興奮性に関する研究.日本臨 床神経生理学会 第 39 回学術大会.2009 年 11月;於北九州国際会議場.

中島八十一. 高次脳機能障害者の地域 生活支援推進に係わる今後の展開について. *徳島県高次脳機能障害講演会*. 2009 年 11 月; 徳島.

中島八十一. 高次脳機能障害者の支援. リハビリテーション看護研修. 2009 年 10 月;所沢. 中島八十一. 高次脳機能障害者の地域 生活支援推進に係わる今後の展開について. 高次脳機能障害支援普及事業関東甲信越ブ ロック・東京ブロック合同会議. 2009 年 10 月;東京.

河野 豊、中島八十一. 経頭蓋磁気刺 激による短潜時誘発脳波と高次脳機能障害. 日本高次脳機能障害学会. 2009 年 10 月;札幌.

中島八十一.高次脳機能障害支援普及 事業. *全国都道府県・政令市・中核市担当 職員会議*.2009年9月;厚生労働省 東京

中島八十一.高次脳機能障害の支援. 2009 年 9 月;別府重度障害者支援センター 別府.

神作憲司. BMI/BCI 技術による障害者自 立支援. *平成 22 年電気学会全国大会・シン* ポジウム. 2010 年 3 月;東京.

Kansaku, K. BMI/BCI technologies for persons with disabilities. *Conference on Systems-Neuroscience and Rehabilitation*. March 2010; Tokorozawa, Japan. (conference organizer)

神作憲司. 障害者のための実用的な Brain-Machine Interface. 統計数理研究所・共 同研究集会「医学・工学における逆問題とそ の周辺」. 2009 年 11 月; 東京.(特別講演)

神作憲司. ヒト概念操作の脳内機構. 第 2回発達の臨床と理論研究懇話会. 2009 年 11 月; 東京.

B. 知的財産権の出願・登録状況

1. 特許取得

外山滋、神作憲司、高野弘二. 脳波測定 用電極、脳波測定用電極付きキャップ及び脳 波測定装置. (特願 2009-257366).

2. 実用新案登録

なし

3. その他

なし

・研究発表欄、研究成果欄には、本研究内容 をご理解いただくための資料を掲載した。

# II. 分担研究報告

# 障害者保健福祉推進事業(障害者自立支援機器等研究開発プロジェクト) 分担研究報告書

# BMI 型生活環境制御装置の小型化と実証評価に関する研究開発(5) 分担研究課題:分野間連携に基づいた BMI 型生活環境制御装置の開発

| 研究分担者 | 神作 | 憲司 | 国立障害者リハビリテーションセンター研究所 |
|-------|----|----|-----------------------|
|       |    |    | 感覚機能系障害研究部感覚認知障害研究室長  |
| 研究協力者 | 和田 | 真  | 国立障害者リハビリテーションセンター研究所 |
|       |    |    | 感覚機能系障害研究部研究員         |
| 研究協力者 | 髙野 | 弘二 | 国立障害者リハビリテーションセンター研究所 |
|       |    |    | 感覚機能系障害研究部流動研究員       |
| 研究協力者 | 池上 | 史郎 | 国立障害者リハビリテーションセンター研究所 |
|       |    |    | 感覚機能系障害研究部流動研究員       |
| 研究協力者 | 小松 | 知章 | 国立障害者リハビリテーションセンター研究所 |
|       |    |    | 感覚機能系障害研究部客員研究員       |
| 研究協力者 | 外山 | 滋  | 国立障害者リハビリテーションセンター研究所 |
|       |    |    | 障害工学部主任研究官            |

#### 研究要旨

障害者の活動領域を拡張させるため、脳波を用いて制御する、実用的なブレイン・マシ ン・インターフェイス(BMI)型生活環境制御装置(BMI-ECS)を研究開発した。開 発は特に、脳波を用いた BMI により障害者の生活環境制御を行うために、特定の視覚 刺激を注視した際に生じる P300 様脳波信号を利用してきたこれまでの経験を活かし、 これを発展させた。システムは、PCを含めてドック化し、介助者等が取り回しの良い ものとした。脳波計は連結による拡張を可能とし、4ch、8ch、12chの3種類で構成で きるように設計し、筋電スイッチ信号等他の生体信号入力端子を確保した。制御用のソ フトウェアの開発を行い、さらに、着脱容易な脳波電極の開発も行った。これらの研究 開発は、システム脳神経科学者、理工学者、医師等とが連携しつつ、筋萎縮性側索硬化 症(ALS)、頚髄損傷による四肢麻痺者、脳性麻痺等不随意運動を伴う者を中心とする 障害者からの実用データのフィードバックのもと行った。

## A. 研究開発目的

「ブレイン-マシン・インターフェイス (Brain-Machine Interface: BMI)」もしくは 「ブレイン-コンピュータ・インターフェイ ス(Brain-Computer Interface: BCI)」とは、 脳からの信号を計測し、それを利用して機 器操作やコンピュータ操作を行うための技 術である。脳からの信号を利用することで、 手足を使うことなく、義肢、電動車いす、 コンピュータ、ロボットなどを操作できれ ば、障害者の活動領域の拡張に貢献できる 可能性がある。

近年、計測技術やシステム脳神経科学研 究等の進展が著しい。Nicolelis や Chapin ら が動物実験としての BMI 技術の確立に成功 し、また人工内耳や脳深部刺激といった人 間に対する BMI のバックグラウンドとなる 技術も成熟してきた。脳へ電極を刺入する 等手術が必要なものは、技術的にも倫理的 にもハードルが高く、実用化へは時間がか かると考えられている。一方、脳波等を利 用すれば、非侵襲的に BMI が実現できる可 能性がある。

本研究では脳波を用いた BMI 技術を障害 者が実際に使うべく開発し、障害者が失っ た機能を取り戻し、活動領域を拡張するこ とを目的として研究を行う。

我々の先行研究では、非侵襲的な脳機能 計測手法である脳波を用い、視覚刺激にて 誘発される脳由来信号に着目したBMI型生 活環境制御システム(BMI-ECS)を開発し た。健常者での試験に引き続き、C3/4 レベ ルの頚髄損傷の方で、近年 Kubler らや Nijboer らが唱えている実用的な水準(70% 以上の精度)での操作が可能であることを 示した(Komatsu, et al., 2007, Neurosci Res Suppl)。

次に、従来の白と灰の輝度変化(白/灰) による視覚刺激に変えて、緑と青の色変化 (緑/青)の視覚刺激を採用することで、健 常者において、視覚アナログスケール (VAS)にて評価した使用感およびオンラ インでの操作精度(正答率)が有意に向上 することを報告した(Takano, et al., 2008, Soci Neurosci Abstr; Takano et al, 2009, Clin Neurophysiol; Takano, et al., 2009, Neurosci Res Suppl)。

さらに、頚髄損傷者(9名)において、 開発してきた実験用システムを用いて実用 データを計測し、実用的な水準での操作が 可能であることも示した(Ikegami, et al., 2009, Soci Neurosci Abstr)。

本研究では、これらの研究開発経験を生かし、より実用性の高い BMI 型生活環境制 御に向けて、BMI に最適化された脳波計お よび計測システムを開発する。

● 小型デジタル脳波計について

BMI に使用可能な脳波計として、既にい くつかの市販品が知られているが、臨床の 現場で用いるシステムとしては、さらなる 小型化や操作の簡便化が必要である。

たとえば、既存の市販品としては、Neuro scan 社 (米国)、Brain Product 社 (ドイツ)、 g.tec 社 (オーストリア)の製品が知られて おり、我々の研究グループでも、g.tec 社の 脳波計を購入し、BMI 研究と実用性の検討 のために使用している。しかし、これらの 機器はいずれも研究用機器として販売され ており、操作が煩雑であるうえ、BMI 機器 としては不要な機能を含む。価格等も考慮 し、医療・福祉の現場で日常的に使用する には、実用的とはいえない。

そこで、本研究では、システムの最適化 を含めて、BMI機器として必要十分な機能 を持つ小型デジタル脳波計の開発を行うこ とにした。

● 小型 PC について

これまでは市販品の PC をシステムに利 用することで研究開発を進めてきたが、要 求される機能から大型の機器を使用するこ ととなり、据え付けや操作が難しくなると いう問題があった。そこで、本研究では、 日常使用で取り回しが容易な BMI システム を構築するために、小型 PC の開発にも取り 組んだ。

● システムとソフトウェアについて

現時点でBMIのシステムとして代表的な ものは、ニューヨーク州立大学で開発され た"BCI2000"とオーストリアのg.tec 社のシ ステムである。前者は、オープンソースで はあり、広く利用されているが、現時点で は研究開発が目的であり、すぐに日常生活 での使用が可能な仕様ではない。また、商 用利用に制限があるため、このシステムを ベースに開発を進め、将来的に事業化を行 う場合、知的財産の権利関係で問題が生じ る可能性がある。一方、後者は市販品であ るため、これをベースとした開発は難しい。 我々の研究開発も、当初はg.tecのシステ ムを使用して開始したが、実用性の高い BMI型生活環境制御装置の開発を行うに当 たって、既に述べたような問題も含あるた め、自由度の高いシステムの自主開発に取 り組むことにした。

## ● 脳波電極について

BMI に用いる電極は、従来の脳波測定に 比べてより日常的に、かつ長時間にわたっ て連続的に使用されることが予想される。 そのため、装着や取り外しが容易であるこ と、電極交換の手間がかからないように数 日乃至数週間の長期にわたって連続的に装 着可能であること、頭皮への負担が少ない ことなどの諸条件を満たすものでなくては ならない。

しかし、これまでに用いられている脳波 測定用電極は、頭皮と電極との間のインピ ーダンスを下げるために、使用前に電極の 上に導電性ペーストを充填するものが多く 使われている。ペーストを使用する場合、 頭髪が電極と頭皮との間に挟まっても、ペ ーストが頭髪の裏に回り込むため電極と頭 皮との間の導通が確保される。しかし、ペ ースト式電極の場合、装着の度に電極にペ ーストを充填するので手間がかかる他、電 極を取り外した後に頭髪や頭皮に残るペー ストを除去しなければならない。このため、 ペーストを使用しないペーストレス型電極 が求められている。

そこで、本研究では、BMI に使用可能な 電極として、導電性ゲルを使用毎に充填し て用いる方式の電極の開発に取り組んだ。

以上の背景から、本研究では、BMI 型生

活環境制御装置の小型化・ドック化に向け た機器開発として、小型デジタル脳波計、 制御のための専用小型 PC を作成、制御用ソ フトウェア、電極の開発を行った。

#### B. 研究開発方法

これまでの研究(Komatsu, et al., 2007, Neurosci Res Suppl; Komatsu, et al., 2009, Soci Neurosci Abstr)で、脳波計それ自身、 さらに脳波計からの必要な脳波データの取 得、そして符号化された信号を外部の機器 に伝達する方法については開発を進めてき た。本研究では、BMI型生活環境制御装置 のシステム全体について最適化を行い、小 型軽量化に取り組むと共に、実用に向けた 機能の拡充を行った。

### 小型デジタル脳波計

脳波計については、我々のグループが検 討を進めてきたシステムの更なる小型化を 進めた。

Krusienski らの先行研究によれば、視覚誘 発電位を利用する BMI では、後頭部の3ch の脳波信号があれば、精度は落ちるものの 推定が可能である。

試作の脳波計を用いた我々の予備実験で も、4 ch の入力があれば、"まばたき"、" 閉眼時のα波"を検出および確認することが でき、視覚誘発による BMI も利用できるこ とも確認できた。このため、開発した脳波 計では、最小構成として1台あたり4チャ ンネルの入力とした。デジタル信号として データを取り込む際に必要な A/D 変換の精 度は 24bit とした。これによって、微細な脳 活動の変化を捉えることが可能となり、解 析手法の改良により、より精度を高めるこ とが期待できる。

使用者の特性や用途によっては4 チャン ネル以上の入力が必要な場合も考えられる ため、多くのチャンネルが必要な場合にも 複数脳波計の連結によるチャンネル数の増 加に対応可能な仕様とした。

### ● 小型 PC

研究用に開発した BMI システムでは、こ れまで大型のデスクトップ PC を使用して きた。処理能力という点では申し分ないも のの、図1に示す通り、全体でラック1台 が必要なシステムであり、取り回しは容易 ではなかった。一方、近年、様々なノート PC が市販され、中には、デスクトップ PC に近い能力を持つ機種も出回っている。今 回開発する BMI システムでも、安価な市販 ノートPCの利用が考えられた。しかし、モ ニタやキーボードの位置を自由に動かすこ とができないため、BMI システムのパッケ ージ化にはなじまない。したがって、今回 の開発では、システム全体の最適化を進め るため、専用の小型 PC の開発も行った。ハ ードウェア操作系などはBMIの実行に必要 な機能に最適化した。

基本ソフトウェア等は、既存の Windows システムを用いたが、小型の PC では、処理 能力の制限もあるため、合わせて BMI シス テムのソフトウェアの高速化も行った。外 寸についても脳波計と合わせたサイズとし、 システム全体でドック化できるようにした。

● システムとソフトウェア

BMI を制御するためのソフトウェアも実 用化に向けた開発を行った。 開発した脳波計からの信号取得とそこか ら必要な長さのデータを切り出す機能、さ らにそのデータを元に行なった解析結果を 受けて機器の操作を行なう機能(家電操作 のための赤外線出力、ネットワーク越しの 機器制御のための TCP/IP 通信機能)に関し ては、我々がこれまでに自主開発した経験 を活かして、システムに組み込んだ。

さらに、実用化に向けた機能として、操 作手順の簡略化に取り組んだ。

これまでの BMI システムは、研究目的か つ開発途上にあったため、操作にコマンド 入力が必要(コマンドユーザーインターフ ェイス; CUI)であったり、状況に応じたプ ログラムの書き換えが必要であったりした ため、日常的な使用には適当なものではな かった。今回の開発では、介助者がプログ ラムを容易に立ち上げ、操作できるように グラフィカルユーザーインターフェイスを 全面的に採用した。

具体的な操作手順は以下の通りである。 介助者が、利用者に事前の頭皮電極を付け、 コンピュータの電源を入れ、BMIのための プログラムを起動、システム開始のボタン を押す。このようにシステムを立ち上げた 後は、利用者が BMI システムを用いて操作 ができるようにした。操作パネルは階層化 されており、行いたい動作を順々に選択す ることで、家電制御など様々な操作を BMI で行うことを実現した。

家庭内あるいは病院内での利用を考える にあたって、必要であると考えられる機能 をリストアップし、実装を行ってきたが、 何よりも実際のニーズが重要である。これ まで研究グループは、福祉機器展 (HCR2008)において動作デモを行うと共 に来場者へのアンケート調査を行い、現場 にて必要な機能について検討を行なったり しており、本研究でもそれらのニーズ調査 により得た情報を利用した。



図 1 従来機との比較 従来機(左)と今回の開発機(右)



図 2 今回開発した脳波計(左)と従来の脳波計(右)の比較

● 脳波電極

ゲル充填型電極、および電極に充填しや すい形にゲルを成形するための電極充填用 ゲル成型器について開発を行った。

導電性ゲルとしては、食品添加物として も使用可能なカルボキシメチルセルロー ス・ナトリウム塩 (CMC・Na)、グリセロー ル、塩化カルシウム、純水を用いてゲル化 したものを使用した。

ゲル充填型電極は、三次元立体成型機 (ZPrinter 310、Z Corp.製)を用いて母体を 作製した後、ゲル接触面に Au/Ag 層を真空 蒸着にて形成し、さらに導線を接続するこ とで試作した。

電極充填用ゲル成型器は、三次元立体成 型機を用いて試作した。

#### C. 研究開発結果

今回開発した小型脳波計の機能について は表1に示す。システム全体の最適化を通 じて、従来は、カートによる持ち運びが必 要であったが、今回のシステムでは、手持 ちでの移動にも対応できるほど小型化を行 なうことができた(図1)。システム全体で 必要な電力量もモニタを含めて定格 40W/h 程度に収めることが出来た。常時電力消費 量はより小さいため、電動車椅子での使用 も検討しうる。

脳波計の小型軽量化について、今回の開 発により従来品と比較して容量で約25%の 小型化、重量で 240g の軽量化を達成した (図 2)。脳波計1台の重量は1kg以下であ る(960g)。これは本研究グループが昨年度 に開発したものと比較して約25%小型であ る。寸法としては H×W×D(mm)=30×200 ×180となっており、本研究グループでBMI の実証試験用として使用してきた Guger technologies 社の gUSBAmp( $40 \times 197 \times 155$ ) と容積を比較すると今回の開発品は 20%程 度小型である。計測可能なチャネル数が異 なるため一概に比較は出来ないが、512Hz での脳波の取得が可能でありかつ各種解析 手法の適用が可能である BMI 用脳波計とし ては、より小型のものとなる。

また、小型化を行なうにあたって、内部 回路の見直しを行い、計測時のノイズも従 来機と比較して大幅に低減させることに成 功した。

BMI 機器制御用に、専用の小型 PC を開 発した。従来の大型デスクトップ PC では、 バーチャルリアリティ (VR) 環境を用意し ていた。VR の中の機器を「操作」すること で、機器操作の練習・デモを行っていたが、 VR のためのソフトウェアは多大な処理能 力を要求するため、小型 PC への実装は断念 した。代わりに、ネットワーク上に接続さ れている他の PC 上で VR 環境を再生し、小 型 PC から操作できるようにした。これによ り従来機同様に VR による練習およびデモ が可能である。さらに動作の軽量化を達成 するため、機器間の通信とデータの保持の 方式に変更を加えることにより PC から脳 波計へのデータの問合せ回数を低減させた。 その結果として底面積が脳波計と同じ寸法 の小型コンピュータ (図 3,図 4) であって も、BMI システムを動作させることが可能 となり、脳波計とコンピュータの、ドック 化が可能になった。

BMI 制御のソフトウェアについて、研究 グループが前年度、福祉機器展 (HCR2008) にて行なったニーズ調査では、メール機能 や WEB 巡回機能などコミュニケーション 機能への要望が多かった。この結果を受け て本年度のシステム開発では主としてコミ ュニケーション機能の拡張に重点を置いて 行なっていた (詳細は他稿参照)。

具体的には日本語の文字入力画面で、携 帯電話で用いられるような予測変換機能を 搭載した。さらに、入力した文字も、ファ イルに保存できるようにしただけでなく、 E-mail の発信や、音声合成、および合成さ れた音声を skype を用いて遠隔地に伝える 機能も盛り込んだ。

さらに情報の発信以外にも、情報の"取 得"も重要であると考え、インターネットか ら情報を得るためにブラウザの操作にも対 応する機能を暫定的にではあるが盛り込ん だ。これによって自分自身による情報の取 得と発信というコミュニケーションの循環 が生じ、より広い範囲、より具体的な形で の社会への参加を可能にすることが期待で きる。

脳波電極の試作も行った。試作に用いた ゲル成型器およびそれを用いて成形された ゲルチップを図に示す(図5)。導電性ゲル は粘弾性があるものであるが、これを適量 成型器に入れ、上から成型器の蓋を押し付 けることにより成形できる。成形の際に余 分なゲルは成型器に設けられた孔を通して 除去する仕組みである。これにより、再現 性良く、均一なサイズのゲルチップを作製 することができるため、障害者の周辺に居 る人が現場で容易に加工することが可能に なるものと思われる。

今回のゲル充填式電極の試作では、脳波 キャップ上に設けられた孔にゲルチップを 入れ、上から電極本体を押し込むことで容 易に装着することが可能な電極を開発する ことができた。頭部に対してゲルを押し込 むため、ゲルが髪の毛の間を通して変形し、 頭皮に達することができたものと考えられ、 脳波測定にも支障が無かった。

### D. 考察

実用性の高い BMI 型生活環境制御装置を 開発するため、本研究では、脳波計のさら なる小型軽量化と BMI システムを使用する コンピュータの小型化、制御ソフトウェア の最適化やコミュニケーション機能の拡充 を行った。

新たに開発した小型脳波計と専用の小型 PCを1つのシステムとして、ドック化する ことで、これまでは、遠隔地での実験のた びに、複数の研究員、技術補助員が装置の 移動とセッティングを行う必要があったの に対して、新しい装置を用いれば、介助者 1人の手で移動が可能となる。消費電力を 40W/hに抑えたこともあって、将来的には、 電動車椅子への搭載も不可能ではないと考 えられる。



図 3 小型 PC(下)と脳波計(上)



図4 使用時の写真



図 5 試作した電極充填用ゲル成型器(複数の部品からなる)および成形加工された ゲルチップ(最前列)

脳波計1つの重量が1kg以下と、従来品 に比べると大幅な軽量化を果たしてはいる が、実用化を考えると、システム全体での さらなる小型化が望まれる。外部ノイズを 防ぐための金属ケースが、重量の多くを占 めており、将来的な回路の改善やノイズ除 去法の発展などによって軽量化の余地が残 されている。

また、実証評価を念頭に、複数台のシス テムの製作を行った。今後はこれを用いて、 障害者の方による実証評価をさらに進め、 システムの最適化と必要とされる機能の実 装を行っていく。

## E. 結論

今回の機器は現在のところ、どれも家庭 用電源により動作しており、ベッドサイド に取り付けるなど、家庭内あるいは病院内 での使用には対応できる。車椅子への搭載 は今後の課題である。電源の問題に加え、 屋外での使用は、外部光への対策が必要で ある。実証評価を通じて、より実用的なシ ステムに向けて開発を進めていくことが必要であろう。

# 表1. 脳波計の仕様詳細

| 入力        | 信号:4 端子 (3 台の連結により 12 端子まで拡張可能) |  |  |  |
|-----------|---------------------------------|--|--|--|
|           | GND: 2 端子(電極、および拡張用)            |  |  |  |
|           | REF: 2 端子(電極、および拡張用)            |  |  |  |
| サンプリング周波数 | 512Hz(±0.5Hz 以下)                |  |  |  |
| 分解能       | 24bit                           |  |  |  |
| データインデックス | 0-65535(cyclic)                 |  |  |  |
| 出力        | 脳波測定データ                         |  |  |  |
| 通信        | USB2.0 $\times$ 1               |  |  |  |
| データ転送周期   | 250ms                           |  |  |  |
| 電源        | DC5V 入力                         |  |  |  |
| インターフェイス  | 外部パルス入力端子                       |  |  |  |
| 重量        | 960(g)                          |  |  |  |
| 寸法        | 30×200×180(mm)                  |  |  |  |

A. 研究目的

「ブレイン-マシン・インターフェイス (Brain-Machine Interface: BMI) / ブレイン-コンピュータ・インターフェイス

(Brain-Computer Interface: BCI)」とは、脳か らの信号を計測し、それを利用して機器操作 を行う技術である。BMIを用いて、運動や コミュニケーションの補助、生活環境の制御 等を可能とすることが期待されている。

本研究の目標は、意思決定が可能でもそれ を表出することが出来ない患者や障害者が BMI を利用することで、疾病により失われ た機能を補填し、より自立した生活を可能と することである。本分担研究では、頚髄損傷 や筋萎縮性側索硬化症(ALS)、脳性麻痺な ど様々な障害をお持ちの方に、実際に参加し、 フィードバックをいただくことで、BMI 技 術の実証評価を行った。

BMI のコミュニケーションへの応用を視 野に置いたこれまでの研究では、認知機能を 反映した脳波の成分に着目した報告が多い。 Donchin らは、操作パネル上に文字などの視 覚刺激を配置して、注意を向けていた視覚刺 激の輝度変化に応じて生じる P300 様の脳波 を検出するシステムを構築した(P300 スペ ラー)。このシステムでは頭皮上に装着した 脳波電極から非侵襲的に信号を抽出する。こ の抽出された脳波信号を解析することで、提 示した文字のうちどれを注視しているのか を判別し、体を動かすことなく、文字入力を 行うことを可能とする。

これまでの我々の研究では、Donchin らが 報告した P300 スペラーを拡張することで、 視覚刺激にて誘発された脳波信号をもとに、 ライトの点灯やテレビのチャンネル切り替 えといった家電操作等が可能な環境制御シ ステム (BMI-ECS)を開発した (Komatsu, et al., 2007, Neurosci Res Suppl; Komatsu, et al., 2009, Soci Neurosci Abstr)。このシステムでは、 脳波変化から特定されたコマンドを赤外線 や LAN 回線を通じて家電などの外部機器に 送ることで、手足を動かさずに脳からの信号 だけで機器を操作することを可能とする。

当初は Donchin らと同様に、脳波変化を検 出するための視覚刺激として輝度変化を用 いていたが、これに色変化(緑/青)を加え ることで、健常被験者にて視覚アナログスケ ール(VAS)を用いて評価した使用感、およ びオンラインでの操作精度(正答率)が有意 に向上することを見出し報告した(Takano, et al., 2009, Clin Neurophysiol; Takano, et al., 2009, Neurosci Res Suppl)。

さらに、この BMI-ECS を用いて C3/4 レベ ルの頚髄損傷の方 1 名の実験に成功し

(Komatsu, et al., 2007, Neurosci Res Suppl)、 その後9名の頚髄損傷者による BMI-ECS の 実証評価でも実用に耐えうる操作精度を達 成できることを明らかとした(Ikegami, et al., 2009, Soci Neurosci Abstr)。この研究では、受 傷後の時期や視覚刺激の条件(慢性期脊髄損 傷者、色変化)によってはトレーニング無し でも平均正答率 80%以上に達していた。し かし、国立障害者リハビリテーションセンタ 一病院にて行った亜急性期頚髄損傷者4名 に対する実用データ収集の結果、その操作精 度が十分でないことも明らかとなっている。 BMI-ECS の実用を目指すにあたり、多様な 疾患・障害による BMI-ECS 操作精度などの 特性を評価する必要が生じた。

本分担研究では、頚髄損傷や筋萎縮性側索 硬化症(ALS)、脳性麻痺といった、より幅 広い疾患・障害群を対象として、日常生活で のBMI-ECSの実用を目指した基礎的な実証 評価を行うと共に、被験者からの聞き取りを 通じてニーズ調査を行った。

#### B. 研究方法

本研究で用いる BMI-ECS では、操作パネ ルに提示される視覚刺激に対して誘発され る脳波信号を頭皮上の脳波電極から抽出、解 析する。P300 様の脳波変化を検出すること で、注目している記号や文字を判別し、特定 されたコマンドを外部機器に送信する。

操作パネルとして、3x3 マス、4x4 マス、 8x10 マスのマトリクスに記号や平仮名を配 置したパネルを用意した。それぞれのアイコ ンに、動作や文字入力を割り当てることで、 デスクライトおよびバーチャルリアリティ 空間(VR空間)の電化製品の操作、ひらが なワープロの入力を行えるようにした。先行 研究により、白と灰の輝度変化と比較して緑 と青の色変化により、操作精度が向上するこ とが示されており(Takano, et al., 2009, Clin Neurophysiol)、視覚刺激提示には、主に緑と 青の色変化を用いた(図1)。

全てのアイコンがランダムに 1 回ずつ強 調されるのを 1 周として、10 周するとコマ ンドが入力されるよう設定した。8 か所の脳 波電極から記録された脳波をオンラインで 解析することで(線形判別分析)、操作精度

(正答率)を評価した。得られた平均正答率 Pから機器の処理速度の指標として bit rate = log2N + P log2P + (1 - P) log2 [(1 - P)/(N - 1)]× 60/(0.175×RC×S)を算出した(N はマトリッ クスのマス数、RC はマトリックスの行と列 の合計数、S はアイコンの強調回数)。また、 輝度変化と色変化の条件で実験を行った方 からは輝度変化と色変化による使用感の差 を視覚アナログスケール (VAS、図 2) によ り評価した。

| う | < | す | 0 | 82 | 5        | ť | Þ | 3 | を |
|---|---|---|---|----|----------|---|---|---|---|
|   |   |   |   |    |          |   |   |   |   |
|   |   |   |   |    |          |   |   |   |   |
|   |   |   |   |    |          |   |   |   |   |
|   |   |   |   |    |          |   |   |   |   |
| 滅 | 劃 |   |   |    | $\nabla$ |   | Ø |   | Ċ |



図1:(上)平仮名入力用パネル(下)デスクライト操作用パネル



図2:視覚的アナログスケール (VAS)

これまでに BMI の実験を経験したことが 無い方(計15名)に本システムを用いた実 験を行い、実用データを収集した。被験者は、 意思疎通に問題の無い頚髄損傷6名、筋萎縮 性側索硬化症(ALS)2名、脳性麻痺3名で ある。さらに、発語や書字に障害のある脳卒 中後失語症2名、意思表示が困難な低酸素脳 症2名の方にも参加頂いた。

ALS の 2 名は、厚生労働省筋萎縮性側索 硬化症の重症度分類 5 度に相当し、気管切開 および人工呼吸器、経管栄養を要する状態で あったため、公立八鹿病院入院中の病室にて 実験を行った。それ以外の方は、国立障害者 リハビリテーションセンター研究所内にて 実験を行った(図 3)。



図3 平仮名入力の実験風景

(倫理面への配慮)

ヒトを対象とする本研究は、全てヘルシン キ宣言に基づき、また、申請者の所属研究機 関の倫理委員会の承認のもと行った。さらに、 本研究の非侵襲脳機能計測法を用いた実験 は、日本神経科学学会研究倫理委員会「ヒト 脳機能の非侵襲的研究」に関する倫理小委員 会による「ヒト脳機能の非侵襲的研究」の倫 理問題などに関する指針に基づき実施した。

被験者及び保護者・関係者から、ロ頭なら びに文書にてのインフォームドコンセント を徹底し、自発的な同意を得た上で実験を行 った。実験中は無用な苦痛を与えないように 配慮した。

本研究で実施したすべての実験について、 被験者の個人情報などに係るプライバシー の保護に配慮し、被験者が如何なる不利益を 受けないように配慮した。結果の公表に関し ては検査・実験の受諾と同様に被験者及び保 護者・関係者から、口頭ならびに文書にての インフォームドコンセントを徹底し、承諾を 得た。また、個人が特定されないように格別 の注意を払った。

C. 研究結果

頚髄損傷6名、筋萎縮性側索硬化症(ALS) 2名、脳性麻痺3名、脳卒中後失語症2名、 低酸素脳症2名の方に本システムを用いた 実験を行った。頚髄髄損傷6名と脳性麻痺3 名は輝度変化と色変化の両方の条件で、他の 6名は色変化条件で実験を行った。

頚髄損傷、筋萎縮性側索硬化症(ALS)に よる四肢麻痺者による結果を記す。頚髄損傷 6名では、デスクライトの点灯・明るさ調 整・消灯、ワープロによる平仮名入力のオン ライン操作を行っていただき、輝度変化と色変化の両方の条件で実験を行った。それぞれ 15回のコマンド(文字)入力を行い、平均 86%の精度でコマンド(文字)を入力が可能 であった。bit rate はデスクライトの操作で平 均10.7 bit/min、文字入力で平均10.1 bit/min あった。デスクライトの制御では、輝度変化 条件で平均 83%の精度、色変化条件で平均 82%の精度であった。一方、ひらがなの入力 では、輝度変化、色変化ともに平均 90%の 精度であった。VAS を用いた輝度変化と色 変化による使用感は、それぞれ平均 62%、 61%で明らかな有意差は認めなかった。

筋萎縮性側索硬化症(ALS)2名では、オ ンラインでのデスクライトの操作、ワープロ による平仮名の入力を行っていただいた。気 管切開および人工呼吸器の使用があったた め、発語は不能であったが口の動きや表情で 簡単な応答は可能で、担当医師や理学療法士 と共に反応を確認しながら実験を行った。デ スクライトの操作で15回のコマンド入力を していただき、平均で57%の精度であった。 その後、ワープロによる平仮名の入力を行っ たが、2名とも実験中に疲労の訴えがあり、 15回の入力の途中で中止した。人工呼吸器 などの医療機器からのノイズの混入などが 懸念されたが、測定時のモニター上では明ら かなノイズは認めなかった。

次に、脳性麻痺等不随意運動を伴う者を中 心とする障害者による結果を記す。脳性麻痺 3名では、デスクライトの操作、平仮名入力 のオンライン操作を行っていただいた。それ ぞれ 15回のコマンド(文字)入力を行い、 平均 71%の精度でコマンド(文字)を入力 が可能であった。bit rate はデスクライトの操 作で平均 9.4 bit/min、文字入力で平均 7.4 bit/min あった。輝度変化と色変化の両方の 条件で実験を行い、成績の比較を行った。デ スクライトの制御では、輝度変化条件で平均 69%の精度であったのに対し、色変化条件で 平均 76%の精度であった。一方、ひらがな の入力では、輝度変化で平均 62%の精度で あったのに対し、色変化で平均 78%の精度 であった。健常者と同様に視覚刺激に色変化 を使用した場合に精度が向上する傾向が認 められた。輝度変化と色変化による使用感は、 それぞれ平均 60%、66%で色変化条件にて高 い傾向がみられたが、明らかな有意差は認め なかった。

さらに様々な障害をお持ちの方のニーズ を探るため、脳卒中後失語症、低酸素脳症の 方に依頼しデータ収集した結果を記す。脳卒 中後失語症2名では、デスクライト操作およ びワープロによる平仮名入力を行っていた だいた。平均71%の精度で入力が可能であ った。指示するコマンドや文字入力に対して は、上記の通り実用レベルの正答率であった が、本人の意思で自由に入力を行うことは困 難であった。

低酸素脳症の 2 名にはオンラインでのデ スクライトの操作や VR 空間の電化製品の 操作をお願いした。これらの方々は発語も困 難で意思疎通は家族を介して行う必要があ った。操作パネルに関しては、「アイコンが 小さい」、「配置を変えたらよいかもしれな い」といった指摘もあり、画面の大きさを変 えるなど工夫を行ったが、有意な正答を得る ことができなかった。

#### D.考察

視覚誘発BMIに関する先行研究(Takano et

al, 2009, Clin Neurophysiol) により、健常者 での実用的な精度が実証されており、本研究 では、意思決定が出来てもそれを表示するこ とが困難な患者や障害者の方を対象に BMI の操作精度を検証した。対象障害は、脊髄損 傷、筋萎縮性側索硬化症 (ALS)、脳性麻痺、 脳卒中後失語症、低酸素脳症とした。これら の障害種別に対する操作精度等の関係につ いて以下に論ずる。

四肢麻痺者の内、頚髄損傷6名の方では、 先行研究による健常被験者の結果と同レベ ルの精度、bit rate が実現できた。筋萎縮性側 索硬化症(ALS)の2名の方は、平均57% の精度で、先行研究と比較して低い水準にと どまった。事前に心配された医療機器由来の ノイズは見られなかったものの、気管切開や 人工呼吸器などによる体位の制限により視 覚入力が不安定になったのが一因と考えら れ、モニターの配置や頭部の固定に工夫を要 することが判明した。また、体位の制限によ りセットアップに時間を要したことが疲労 感を招いた原因とも考えられた。

不随意運動を伴う脳性麻痺の3名では平 均70%以上であった。近年 Kubler らや Nijboer らは実用可能の目安として70%以上 の操作精度を提唱しており、おおむね実用的 な水準の精度が確認された。しかし、他2 名より不随意運動や筋緊張が強かった1名 では平均70%以下の精度であった。不随意 運動や過度の筋緊張が多く、筋電の混入が操 作精度の上がらない原因と考えられ、入力時 の姿勢保持に工夫が必要であることが判明 した。

脳卒中後失語症の2名の被験者は、指示に 対して平均70%の正答率が達成され、ほぼ 実用レベルでBMIを操作することは可能と 考えられたが、本人の自由な意思による円滑 な入力は困難であった。原疾患による失語・ 失書障害が原因であると考えられ、さらなる 検討が必要であることが示唆された。

低酸素脳症の2名では、今回開発した BMI-ECS を駆動することは困難であった。 被験者本人の応答を直接確認することが困 難で、1名の方では不随意運動も認めたこと も影響していると考えられる。また、視野に 部分欠損があるとの情報もあり、原疾患によ り視覚や注意に関わる領域が障害されてい た可能性も考えられる。聴覚や触覚など視覚 以外の感覚入力を用いる方法の開発など、別 の手法を検討する必要がある。

このように様々な障害の方に使用いただ くことで、頚髄損傷や脳性麻痺などでは本 BMI-ECS が有効であることが示された。不 随意運動や筋緊張の強い脳性麻痺患者や進 行期 ALS 患者では、モニターの配置や頭部 の固定といった工夫により、十分な精度での 操作が可能となることも示唆された。使用者 本人や家族からの訴えやニーズを確認する ことで更なる機器開発につなげることが可 能となると考えられ、また機器のセットアッ プの簡易化や使用者の体位固定等も考慮し ていく必要が明らかになった。

本研究で用いた視覚誘発型の BMI-ECS で は、実用可能の目安での操作を可能としてお り、今回の対象者でも同等の正答率が確認さ れた。ただし、疾患・病態により正答率のば らつきも認めたため、その適応の時期の検討 や個々のニーズに即した操作パネルの導入 も検討する必要がある。

今後、こうした装置がより汎用の福祉機器 となっていく場合には、QUEST 等による評 価も追加していく必要があるだろう。また、 長期の使用が可能となった場合には、SEIQoL-DW 等を用いて、生活の質の変化も評価したい。

今後とも、システムをより発展させていき、なるだろう。 より実用性の高い機器を開発していきたい。 個々のニー

## E. 結論

BMI 技術を福祉機器として実用化するに 当たっては、個々の患者・障害者のニーズに 対応できる柔軟なシステムの開発が求めら

れる。また、こうした実用・応用への取り組 みを進めていくためには、倫理的な問題を十 分に配慮しながら進めていくことが前提と なるだろう。

個々のニーズを活かして研究開発してい くことで、外傷や神経難病などにより四肢の 運動麻痺や発話の困難を伴い、日常動作やコ ミュニケーションに支障をきたしている患 者・障害者の自立支援へとつなげたい。

### A. 研究発表(参考資料)

1. 論文発表

# 論文:原著

Kansaku, K., Hata, N., Takano, K. My thoughts through a robot's eyes: an augmented reality-brain-machine interface. *Neuroscience Research*, 66(2): 219-222, 2010.

Takano, K., Komatsu, T., Hata, N., Nakajima, Y., Kansaku, K. Visual stimuli for the P300 brain-computer interface: a comparison of white/gray and green/blue flicker matrices. *Clinical Neurophysiology*, 120(8): 1562-1566, 2009.

## 論文:総説

神作憲司. ブレイン・リーディング. Clinical Neuroscience, 2010. (招待)(印刷中)

池上史郎、神作憲司. ブレイン-マシン・ インターフェイス(BMI)の今後の展開. *作 業療法ジャーナル*, 2010. (招待)(印刷中)

論文: 抄録・プロシーディング

外山滋、高野弘二、池上史郎、神作憲 司. Brain Machine Interface のための脳波測定 用 ゲル 電 極 の 開 発 . 信 学 技 報 (IEICE Technical Repor, 109(359): 23-26, 2010.

Iwaki, S., Takano, K., Kansaku, K. Parieto-temporal activity is correlated with the sense of agency during visual target tracking. *NeuroImage*, 2010.

Kansaku, K., Takano, K., Takahashi, T.,

Kitazawa, S. Reciprocal roles for the right and left hemispheres in reversal of subjective temporal order due to arm crossing. Program No. 94.3. 2009 Abstract Viewer/Itinerary Planner. Chicago: Society for Neuroscience, 2009. Online.

Takano, K., Kansaku, K. Neuromagnetic activities during the P300-BCI: a comparison of white/gray and green/blue flicker matrices. Program No. 664.21. 2009 Abstract Viewer/Itinerary Planner. Chicago: Society for Neuroscience, 2009. Online.

Ikegami, S., Takano, K., Komatsu, T., Saeki, N., Kansaku, K. Operation of a BMI based environmental control system by patients with cervical spinal cord injury. Program No. 664.16. 2009 Abstract Viewer/Itinerary Planner. Chicago: Society for Neuroscience, 2009. Online.

Komatsu, T., Takano, K., Nakajima, Y., Kansaku, K. A BMI based environmental control system: a combination of sensorimotor rhythm, P300, and virtual reality. Program No. 360.14. 2009 Abstract Viewer/Itinerary Planner. Chicago: Society for Neuroscience, 2009. Online.

Iwaki, S., Takano, K., Kansaku, K. Neural activity in the parieto-temporal area is correlated with the subjective sense of agency during hand movements of visual target tracking Program No. 379.9. 2009 Abstract Viewer/Itinerary Planner. Chicago: Society for Neuroscience, 2009. Online.

Takano, K., Ikegami, S., Komatsu, T., Kansaku, K. Green/blue flicker matrices for the P300 BCI improve the subjective feeling of comfort. *Neuroscience* Research, 2009. (P2-k16)

Iwaki, S., Takano, K., Kansaku, K. Neural correlates of the sense of agency during hand movements of visual-target tracking. *Neuroscience Research*, 2009. (P2-h16)

## 書籍

Kansaku, K. The Intelligent Environment: Brain-Machine Interfaces for Environmental Control. *Smart Houses: Advanced Technology for Living Independently.* (Eds) Ferguson-Pell, M., Stefanov, D., Berlin, Springer Verlag, 2009. (in press)

# その他

神作憲司. 脳波信号で操作する環境制御 装置. *日本ALS 協会会報*. 2010. (印刷中)

#### 2. 学会発表

一般口演・ポスター

外山滋、高野弘二、池上史郎、神作憲司. BMIに用いる脳波測定用電極の開発.*第49回 化学センサ研究発表会(電気化学会第77回 大会).* 2010年3月;富山.

Kansaku, K. System-neuroscience may contribute to expand the range of activities in persons with disabilities. *JSPS-DFG 第2 回日独*  ラウンドテーブル. -Cooperative Technology in Future: Cognitive Technical Systems-. Feb 2010; Tokyo, Japan.

外山滋、高野弘二、池上史郎、神作憲司. Brain-Machine Interface のための脳波測定用 ゲル電極の開発. *有機エレクトロニクス研 究会(電子情報通信学会)*.2010年1月; 東 京.

池上史郎、高野弘二、小松知章、中島八 十一、神作憲司. 脊髄損傷者による BMI 生 活環境制御システムの使用. 第26回 国立障 害者リハビリテーションセンター業績発表 会. 2009 年 12 月; 所沢.

Kansaku, K., Takano, K., Takahashi, T., Kitazawa, S. Reciprocal roles for the right and left hemispheres in reversal of subjective temporal order due to arm crossing. *The 39th Annual Meeting of the Society for Neuroscience*. Oct 2009; Chicago, USA.

Takano, K., Kansaku, K. Neuromagnetic activities during the P300-BCI: a comparison of white/gray and green/blue flicker matrices. *The 39th Annual Meeting of the Society for Neuroscience*. Oct 2009; Chicago, USA.

Ikegami, S., Takano, K., Komatsu, T., Saeki, N., Kansaku, K. Operation of a BMI based environmental control system by patients with cervical spinal cord injury. *The 39th Annual Meeting of the Society for Neuroscience*. Oct 2009; Chicago, USA.

Komatsu, T., Takano, K., Nakajima, Y., Kansaku, K. A BMI based environmental control system: a combination of sensorimotor rhythm, P300, and virtual reality. The 39th Annual Meeting of the Society for Neuroscience. Oct 2009; Chicago, USA.

Iwaki, S., Takano, K., Kansaku, K. Neural activity in the parieto-temporal area is correlated with the subjective sense of agency during hand movements of visual target tracking. The 39th Annual Meeting of the Society for Neuroscience. Oct 2009; Chicago, USA.

Takano, K., Ikegami, S., Komatsu, T., Kansaku, K. Green/blue flicker matrices for the P300 BCI improve the subjective feeling of comfort. The 32nd Annual Meeting of Japan Neuroscience Society. September 2009; Nagoya, Japan.

Iwaki, S., Takano, K., Kansaku, K. Neural correlates of the sense of agency during hand movements of visual-target tracking. The 32nd Annual Meeting of Japan Neuroscience Society. September 2009; Nagoya, Japan.

Systems-Neuroscience and Rehabilitation. March 2010; Tokorozawa, Japan. (conference organizer)

神作憲司.障害者のための実用的な Brain-Machine Interface. 統計数理研究所・共 同研究集会「医学・工学における逆問題とそ の周辺」. 2009年11月;東京.(特別講演)

神作憲司. ヒト概念操作の脳内機構. 第 2回発達の臨床と理論研究懇話会. 2009年11 月; 東京.

知的財産権の出願・登録状況 B. 1. 特許取得

外山滋、神作憲司、高野弘二. 脳波測定 用電極、脳波測定用電極付きキャップ及び脳 波測定装置. (特願 2009-257366).

- 2. 実用新案登録 なし
- 3. その他 なし

#### 講演等

神作憲司. BMI/BCI 技術による障害者自 立支援. 平成 22 年電気学会全国大会・シン だくための資料を掲載した。 ポジウム.2010年3月;東京.

研究発表欄には、本研究内容をご理解いた

Kansaku, K. BMI/BCI technologies for persons with disabilities. Conference on

# III. 研究成果の刊行に関する一覧表

# 研究成果の刊行に関する一覧表

| 書籍         |                                                                                                |                                       |                                            |                                   |                         |                 |         |         |          |
|------------|------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------|-----------------------------------|-------------------------|-----------------|---------|---------|----------|
| 著者氏名       | 論文タイトル名                                                                                        | 書籍全体の<br>編集者名                         | 書                                          | 籍                                 | 名                       | 出版社名            | 出版<br>地 | 出版<br>年 | ページ      |
| Kansaku, K | The Intelligent<br>Environment:<br>Brain-Machine<br>Interfaces for<br>Environmental<br>Control | Ferguson-Pell<br>, M.,<br>Stefanov, D | Smart<br>Advaı<br>Techn<br>Living<br>Indep | Hou<br>nced<br>nolog<br>g<br>ende | ises:<br>sy for<br>ntly | Springer Verlag | Berlin  |         | in press |

# 雑誌

| 発表者氏名                                                                | 論文タイトル名                                                                                                                   | 発表誌名                        | 巻号     | ページ       | 出版年  |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------|-----------|------|
| Kansaku, K., Hata, N.,<br>Takano, K                                  | My thoughts through a<br>robot's eyes: an augmented<br>reality-brain-machine<br>interface                                 | Neuroscience Research       | 66(2)  | 219-222   | 2010 |
| Takano, K., Komatsu,<br>T., Hata, N.,<br>Nakajima, Y.,<br>Kansaku, K | Visual stimuli for the P300<br>brain-computer interface: a<br>comparison of white/gray and<br>green/blue flicker matrices | Clinical<br>Neurophysiology | 120(8) | 1562-1566 | 2009 |
| 神作憲司                                                                 | ブレイン・リーディング                                                                                                               | Clinical Neuroscience       |        |           | 印刷中  |
| 池上史郎、神作憲司                                                            | ブレイン-マシン・インター<br>フェイス (BMI) の今後の展<br>開                                                                                    | 作業療法ジャーナル                   |        |           | 印刷中  |

# IV. 研究成果の刊行物・別刷

Clinical Neurophysiology 120 (2009) 1562-1566

Contents lists available at ScienceDirect







journal homepage: www.elsevier.com/locate/clinph

# Visual stimuli for the P300 brain–computer interface: A comparison of white/gray and green/blue flicker matrices

Kouji Takano<sup>a</sup>, Tomoaki Komatsu<sup>a,b</sup>, Naoki Hata<sup>c</sup>, Yasoichi Nakajima<sup>b</sup>, Kenji Kansaku<sup>a,\*</sup>

<sup>a</sup> Cognitive Functions Section, DRSF, Research Institute of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama 359-8555, Japan <sup>b</sup> Department of Rehabilitation for Sensory Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama 359-8555, Japan <sup>c</sup> Department of Rehabilitation Engineering, Research Institute of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama 359-8555, Japan

#### ARTICLE INFO

Article history: Accepted 3 June 2009 Available online 27 June 2009

Keywords: BCI BMI EEG P300 Chromatic change

#### ABSTRACT

*Objective:* The white/gray flicker matrix has been used as a visual stimulus for the so-called P300 braincomputer interface (BCI), but the white/gray flash stimuli might induce discomfort. In this study, we investigated the effectiveness of green/blue flicker matrices as visual stimuli. *Methods:* Ten able-bodied, non-trained subjects performed Alphabet Spelling (Japanese Alphabet: Hiragana) using an  $8 \times 10$  matrix with three types of intensification/rest flicker combinations (L, luminance; C, chromatic; LC, luminance and chromatic); both online and offline performances were evaluated. *Results:* The accuracy rate under the online LC condition was 80.6%. Offline analysis showed that the LC condition was associated with significantly higher accuracy than was the L or C condition (Tukey–Kramer, p < 0.05). No significant difference was observed between L and C conditions. *Conclusions:* The LC condition, which used the green/blue flicker matrix was associated with better per-

formances in the P300 BCI.

Significance: The green/blue chromatic flicker matrix can be an efficient tool for practical BCI application. © 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

#### 1. Introduction

Brain-computer interface (BCI) or brain-machine interface (BMI) is a new interface technology that utilizes neurophysiological signals from the brain to control external computers or machines (Birbaumer, 2006; Birbaumer and Cohen, 2007). One research approach to BCI utilizes neurophysiological signals such as the neuronal firing that is emitted directly from a single cell; this approach can be categorized as invasive BCI. The other approach utilizes neurophysiological signals from the brain accessed in the absence of surgery; this is called non-invasive BCI. Electroencephalography (EEG), a technique for recording neurophysiological signals using electrodes placed on the scalp, represents the primary non-invasive methodology for studying BCI.

EEG-based non-invasive BCI can be easily used but has been regarded as providing only limited information. However, Wolpaw and McFarland recently succeeded in achieving two-dimensional cursor control (Wolpaw and McFarland, 2004) using EEG signals. These researchers applied the EEG power spectrum, using the beta-band power for vertical and the mu-band power for horizontal cursor control. Motor imagery tasks have been used in BCI research; for example, Pfurtscheller et al. used a motor imagery task and reported event-related beta-band synchronization and mu-waves de-synchronization (Bai et al., 2005; Guger et al., 2003; Pfurtscheller et al., 2006). Our research group has reported that a wrist motor imagery task elicited desynchronization in the alpha-band deriving from the sensorimotor area and synchronization in the alpha-band deriving from the occipital area in both able-bodied participants and those with spinal cord injuries (Komatsu et al., 2007).

Sensory evoked signals have also been utilized in EEG-based non-invasive BCI. One popular system, the P300 speller, uses elicited P300 responses to target stimuli placed among row and column flashes (Farwell and Donchin, 1988). Recent studies have evaluated the use of systems relying on sensory evoked signals among patients with amyotrophic lateral sclerosis and other diseases (Piccione et al., 2006; Sellers and Donchin, 2006). Our research group recently modified the Donchin P300 speller and applied it through an Environmental Control System (ECS) (Takano et al., 2008); we found that a C3/C4-level quadriplegic patient was able to use the system successfully (28 correct signals/28 trials) without significant training (Komatsu et al., 2008).

Practical use of EEG-based non-invasive BCI requires a stable system characterized by high levels of accuracy. In order to increase accuracy rates, feature extraction or classification procedures have been investigated, including step-wise discriminant analysis (Donchin et al., 2000; Sellers et al., 2006), wavelets

<sup>\*</sup> Corresponding author. Tel.: +81 4 2995 3100x2573; fax: +81 4 2995 3132. E-mail address: kansaku-kenji@rehab.go.jp (K. Kansaku).

<sup>1388-2457/\$36.00 © 2009</sup> International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved. doi:10.1016/j.clinph.2009.06.002

(Bostanov, 2004), and support vector machines (Kaper et al., 2004). Moreover, it is important that sensory stimulation involved in using the BCI system based on the P300 speller not induce discomfort. In this study, we attempted to identify better sensory stimuli than those in the P300 speller.

The P300 speller has mainly used white/gray flicker matrices as visual stimuli (Kaper et al., 2004; Krusienski et al., 2008; Sellers et al., 2006). It is possible that such flickering visual stimuli could induce discomfort. Parra and colleagues evaluated the safety of chromatic combinations for those with photosensitive epilepsy (Parra et al., 2007). In their study, five single-color stimuli (white, blue, red, yellow, and green) and four alternating-color stimuli (blue/red, red/green, green/blue, and blue/yellow with equal luminance) of four frequencies (10, 15, 20, and 30 Hz) were used as the visual stimuli. Under the white stimulation condition, flickering stimuli with higher frequencies, especially those greater than 20 Hz, have been found to be potentially provocative. Under the alternating-color stimulation condition, as suggested by the Pokemon incidence, the 15-Hz blue/red flicker was most provocative. It is noteworthy that the green/blue chromatic flicker emerged as the safest and evoked the lowest rates of EEG spikes. In the current study, we used a green/blue chromatic combination for the visual stimuli used to elicit visually evoked responses. We showed that green/blue flicker matrices, representing milder visual stimuli, were also able to facilitate adequate performances in the P300 BCI.

#### 2. Materials and methods

#### 2.1. Subjects

Ten healthy, non-trained naive subjects (aged 25–47 years; nine females and one male) who had never participated in this study were recruited as participants. All subjects were neurologically normal and strongly right-handed (min/mean/max = 0.7/0.91/1), according to the Edinburgh Inventory. The studies received approval from the Institutional Review Board. All subjects provided written informed consent according to institutional guidelines.

#### 2.2. Experimental design

We modified the so-called P300 speller (Farwell and Donchin, 1988). The P300 speller uses the P300 paradigm and involves the presentation of a selection of icons arranged in a matrix. According to this protocol, the participant focuses on one icon in the matrix as the target, and each row/column or single icon of the matrix is then intensified in a random sequence. The target stimuli are presented as rare stimuli (i.e., the Oddball Paradigm). We elicited P300 responses to the target stimuli and then extracted and classified these responses with regard to the target.

In this study, we prepared an  $8 \times 10$  hiragana matrix for the P300 speller (Fig. 1), modified from a  $6 \times 6$  matrix using the English alphabet, for this experiment. Three types of intensification/ rest flicker combinations were prepared. We prepared a white (20 cd/cm)/gray (6.5 cd/cm) flicker (L condition) matrix for the luminance flicker, a green (9.5 cd/cm)/blue (9.5 cd/cm) isoluminance flicker (C condition) matrix for the chromatic flicker, and a green (20 cd/cm)/blue (6.5 cd/cm) luminance flicker (LC condition) for the luminance and chromatic flicker. Luminance was measured using a chromatic meter (CS-200, Konica Minolta Sensing Inc., Osaka, Japan). The order of the experimental conditions (the type of flicker matrix) was randomized among subjects.

The subjects entered hiragana characters from the Japanese alphabet using a row and column flicker panel with an  $8 \times 10$  matrix. Fifteen letters were required for the spelling task involved in each experimental condition: L, C, and LC. The duration of the intensification/rest flicker involved 100 ms of intensification and 75 ms of rest. This intensification/rest timing was derived from the BCI competition III (Blankertz et al., 2006). One complete cycle of eight row and ten column intensifications constituted a sequence. Online performance was evaluated, and each letter was selected in a series of 10 sequences (180 intensifications for hiragana characters). The differences in the accuracy rates among the matrices were evaluated by two-way repeated ANOVAs and the Tukey–Kramer test as a post hoc test. Additionally, the difference in the accuracy rate for each sequence between each matrix was evaluated by a paired *t*-test.



Fig 1. Hiragana matrix and experimental procedure. The row or column intensifications were presented, and ERP data were recorded. The red solid line of the EEG data indicates the segmented portion used for the classification. The target was predicted by Fisher's linear discriminant analysis after 10 sequences (180 intensifications).

The subject sat in an unshielded room 90 cm from a LCD display and was required to pay attention to a target, which was displayed in the  $8 \times 10$  (hiragana spelling) matrix. The  $8 \times 10$  matrix subtended  $12.7^{\circ}H \times 15.8^{\circ}W$  ( $20 \times 25$  cm). The distance between characters was  $0.95^{\circ}$  (1.5 cm) and the size of each character was  $0.63^{\circ}$ (1.0 cm) square.

#### 2.3. EEG recording and analysis

Eight-channel (Fz, Cz, Pz, P3, P4, Oz, PO7, PO8, see Fig. 2) EEG data were recorded using a cap (Guger Technologies OEG, Graz, Austria) (Krusienski et al., 2007; Lu et al., 2008). All channels were referenced to the Fpz, and grounded to the AFz. The EEG was bandpass filtered at 0.1–50 Hz, amplified with a g.Usbamp (Guger Technologies OEG, Graz, Austria), digitized at a rate of 256 Hz, and stored.

In the analyses, recorded EEG data were down-sampled to 21 Hz. Data from 800 ms of the EEG were segmented according to the timing of the intensification. Data from the initial 100 ms were used for baseline correction. Data from the final 700 ms were used for classification purposes, using Fisher's linear discriminant analysis. First, we asked subjects to input six letters for training and for gathering data to derive the feature vectors for the subsequent test session. The EEG data were sorted using the information about flash timing, and Fisher's linear discriminant analysis was then performed to generate the feature vector to discriminate between target and nontarget. The 700 ms of baseline-corrected EEG using a sampling rate of 21 Hz correspond to 15 data points, and data were collected by 8 EEG channels. Thus, the feature vector had 120 dimensions. The feature vectors were derived for each condition. In the test session, visual evoked responses from EEG features were evaluated by the feature vectors. The result of classification was construed as the maximum of the summed scores for the respective rows and columns, and the target was located in the matrix at the intersection of the predicted row and column.

#### 3. Results

#### 3.1. Offline evaluation

We asked the subjects to focus on one of the characters displayed on an  $8 \times 10$  matrix panel, and 15 letters were required for the spelling task involved in each experimental condition: L,







**Fig. 3.** Mean performance curves at each condition for all 10 sequences. Mean performances in L, C, and LC conditions are plotted by the broken line with gray circles, the dotted line with white triangles, and the solid line with black squares, respectively. Error bars indicate SE.

C, and LC. Fig. 3 shows the results of the offline analysis for each condition. It is noteworthy that accuracy was higher in the LC condition than in the two other conditions; a significant difference emerged between the LC and the two other conditions (F(2, 270) = 12.9, p < 0.01), and no significant interaction was observed (F(18, 270) = 0.25, p = 0.99). Post hoc testing revealed significant differences between the LC and the other conditions (Tukey–Kramer test, p < 0.05). A paired *t*-test was also applied for each sequence (Table 1). The LC and L conditions showed significant differences in regard to the sequences: [7, 9, 10]; the LC and C conditions showed significant differences on the sequences: [5, 6, 7, 8] (Paired t-test, p < 0.05, uncorrected). In contrast, there was no significant difference between the L and C conditions. These results indicate that a combination of luminance and chromatic characteristics of the visual stimuli proved most effective for increasing accuracy rates, and that chromatic and luminance flickers can be associated with similar levels of accuracy.

#### 3.2. Online performance

Online performance was evaluated and each letter was selected in a series of 10 sequences. The accuracy rates were as follows: LC:  $80.6\% > C: 73.3\% \ge L: 71.3\%$ , and transfer bit rates (bit/min) (Wolpaw et al., 2002) were: LC:  $8.14 > C: 7.03 \ge L: 6.75$ . A significant difference in the accuracy rate was observed between the LC and L conditions (t(9) = 2.41, p < 0.05, uncorrected).

Fig. 4 shows the online performance for each subject. One of 10 subjects performed most accurately in the L condition, four of 10 subjects did so in the C condition, and five of 10 subjects did so

 Table 1

 Significant differences between all sequences and conditions.

| Sequences | L vs. C | L vs. LC | C vs. LC    |
|-----------|---------|----------|-------------|
| 1         | 0.070   | 0.487    | 0.058       |
| 2         | 0.726   | 0.065    | 0.835       |
| 3         | 0.329   | 0.068    | 0.175       |
| 4         | 0.928   | 0.130    | 0.208       |
| 5         | 0.165   | 0.130    | 0.018*      |
| 6         | 0.181   | 0.052    | $0.024^{*}$ |
| 7         | 0.705   | 0.021*   | 0.033*      |
| 8         | 0.288   | 0.074    | 0.036*      |
| 9         | 1.000   | 0.039*   | 0.258       |
| 10        | 0.758   | 0.020*   | 0.253       |
|           |         |          |             |

\* P < 0.05.

K. Takano et al./Clinical Neurophysiology 120 (2009) 1562-1566



**Fig. 4.** Accuracy rates for each subject. The accuracy rates in L, C, and LC conditions for each subject (A–J) are indicated by gray bars, white bars, and black bars, respectively.

in the LC condition. Please note that the participants were not trained and had not previously participated in this experiment.

#### 4. Discussion

In this study, we used a green/blue chromatic combination as visual stimuli to elicit visual evoked responses because it is possible that flickering visual stimuli induce discomfort. Following a previous study on photosensitivity in epilepsy (Parra et al., 2007), we used a green/blue chromatic combination.

We prepared a white/gray flicker (L condition) matrix for the luminance flicker, a green/blue isoluminance flicker (C condition) matrix for the chromatic flicker, and a green/blue luminance flicker (LC condition) for the luminance and chromatic flicker. We showed that accuracy rates were significantly higher in response to the luminance chromatic flicker condition (LC) than in response to the luminance (L) or chromatic (C) flicker condition.

In pursuit of increasing accuracy in operating the BCI system, as well as of developing better classification methods (Bostanov, 2004; Donchin et al., 2000; Kaper et al., 2004; Sellers and Donchin, 2006), some studies have attempted to identify better and more efficient experimental settings by manipulating such factors as the matrix size and the duration of intensification (Sellers et al., 2006), the channel set of the EEG (Krusienski et al., 2008), and random flashes (Sellers et al., 2008). This study proposed a method for combining luminance and chromatic information to increase the accuracy rate of performances in the P300 BCI, and this method can be applied with the proposed methods listed above.

Elucidation of the neuronal processes underlying the perception/cognition/attention with regard to visual stimuli might be helpful in clarifying why accuracy rates increased under the LC condition compared to the L or C condition. Unit recording studies exploring chromatic change among macaque monkeys found specialized color modules that showed specific color sensitivities in the parietal, occipital, and temporal areas (Conway et al., 2007); such studies also found color-selective neurons in the inferior temporal cortex (Koida and Komatsu, 2007). Previous unit recording studies of luminance change have reported activation at V1, V2 (Peng and Van Essen, 2005), and the pretectal olivary nucleus (Gamlin et al., 1995) in monkeys; and in the occipital and parietal areas in humans using MEG (Portin et al., 1998) and ERP (Johannes et al., 1995). It is conceivable that a wide range of neurons in the parietal, occipital, and temporal areas specialized for processing color information, and in the occipital and parietal areas specialized for processing luminance information may be activated under the LC condition, thereby contributing information that enriches the recorded EEG signals. However, additional investigations are necessary to enhance understanding of the neuronal processing underpinning the perception/cognition/attention with regard to visual stimuli.

Our results indicate that chromatic and luminance flickers are associated with similar levels of accuracy. Each condition (L or C) was correlated with mean accuracy rates of over 70%. This online performance and the results of offline analysis suggest that the chromatic flicker can be of similar usefulness as the luminance flicker. The choice of luminance and chromatic values was arbitrary in this experiment; therefore, future research might identify the optimal combination of luminance values. Furthermore, identification of the optimal visual stimuli for each individual subject might be beneficial.

We conducted the experiments in an unshielded room in order to present better visual stimuli in a situation closely resembling the actual environments in which the BCI system will be used daily by potential users such as quadriplegic patients. The LC condition was associated with better performance. In addition, even by applying the isoluminance C condition, it provided similar results to the L condition. The relatively better performance under conditions including chromatic changes might derive from the greater constancy in the chromatic condition (Barbur and Spang, 2008), which may enable greater stability vis-a-vis environmental changes. Further investigation is necessary to evaluate how environmental light affects performances, and studies in this regard might contribute to determining the best visual stimuli for the situations in which the BCI system is actually used.

In this study, we investigated the effect of chromatic change in visual stimuli in a modified P300 BCI, which had primarily used luminance change in visual stimuli in previous research. We applied a green/blue chromatic flicker and showed that the green/blue flicker matrices, which might represent milder visual stimuli, were useful in improving performances in the operation of the P300 BCI. Additional studies applying interdisciplinary approaches from engineering and neuroscience might provide better and more practical ways to enhance the ability of the P300 BCI to help individuals with disabilities.

#### Acknowledgments

This study was partially supported by a Grant-in-Aid from the Ministry of Health, Labour and Welfare (Japan). We would like to thank Drs. G. Edlinger, H. Komatsu and T. Shimotomai for their help, and Dr. M. Suwa for his encouragement.

#### References

- Bai O, Mari Z, Vorbach S, Hallett M. Asymmetric spatiotemporal patterns of eventrelated desynchronization preceding voluntary sequential finger movements: a high-resolution EEG study. Clin Neurophysiol 2005;116(5):1213–21.
- Barbur JL, Spang K. Colour constancy and conscious perception of changes of illuminant. Neuropsychologia 2008;46(3):853–63.
- Birbaumer N. Brain-computer-interface research: coming of age. Clin Neurophysiol 2006;117(3):479–83.
- Birbaumer N, Cohen LG. Brain-computer interfaces: communication and restoration of movement in paralysis. J Physiol 2007;579(Pt 3):621–36.
- Blankertz B, Muller KR, Krusienski DJ, Schalk G, Wolpaw JR, Schlogl A, et al. The BCI competition. III: Validating alternative approaches to actual BCI problems. IEEE Trans Neural Syst Rehabil Eng 2006;14(2):153–9.
- Bostanov V. BCI competition 2003 data sets lb and Ilb: feature extraction from event-related brain potentials with the continuous wavelet transform and the *t*-value scalogram. IEEE Trans Biomed Eng 2004;51(6):1057–61.
- Conway BR, Moeller S, Tsao DY. Specialized color modules in macaque extrastriate cortex. Neuron 2007;56(3):560–73.
- Donchin E, Spencer KM, Wijesinghe R. The mental prosthesis: assessing the speed of a P300-based brain-computer interface. IEEE Trans Rehabil Eng 2000;8(2): 174–9.

# Author's personal copy

1566

#### K. Takano et al. / Clinical Neurophysiology 120 (2009) 1562-1566

- Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 1988;70(6):510–23.
- Gamlin PD, Zhang H, Clarke RJ. Luminance neurons in the pretectal olivary nucleus mediate the pupillary light reflex in the rhesus monkey. Exp Brain Res Experimentelle Hirnforschung 1995;106(1):169–76.
- Guger C, Edlinger G, Harkam W, Niedermayer I, Pfurtscheller G. How many people are able to operate an EEG-based brain-computer interface (BCI)? IEEE Trans Neural Syst Rehabil Eng 2003;11(2):145–7.
- Johannes S, Munte TF, Heinze HJ, Mangun GR. Luminance and spatial attention effects on early visual processing. Brain Res Cogn Brain Res 1995;2(3):189-205.
- Kaper M, Meinicke P, Grossekathoefer U, Lingner T, Ritter H. BCI competition 2003 data set IIb: support vector machines for the P300 speller paradigm. IEEE Trans Biomed Eng 2004;51(6):1073–6.
- Koida K, Komatsu H. Effects of task demands on the responses of color-selective neurons in the inferior temporal cortex. Nat Neurosci 2007;10(1):108–16.
- Komatsu T, Nakajima Y, Takeuchi S, Sakihara K, Mori K, Kansaku K. Decoding of EEG signals for noninvasive BMI in an individual with cervical spinal cord injury (JPN). Proc Ann Conf IEE Jpn Ind Appl Soc (JIASCO7) 2007;II:99–102.
- Komatsu T, Hata N, Nakajima Y, Kansaku K. A non-training EEG-based BMI system for environmental control. Neurosci Res 2008;61(Suppl 1):S251. Krusienski DJ, Sellers EW, Vaughan TM. Common spatio-temporal patterns for the
- Krusienski DJ, Sellers EW, Vaughan TM. Common spatio-temporal patterns for the P300 speller. In: 3rd International IEEE EMBS conference on neural engineering, Kohala Coast, Hawaii, USA. 2007; p. 421–24.
- Krusienski DJ, Sellers EW, McFarland DJ, Vaughan TM, Wolpaw JR. Toward enhanced P300 speller performance. J Neurosci Methods 2008;167(1):15–21.
- Lu S, Guan C, Zhang H. Unsupervised brain-computer interface based on intersubject information. In: 30th Annual international IEEE EMBS conference, Vancouver, British Columbia, Canada; 2008. p. 638-41.
- Parra J, Lopes da Silva FH, Stroink H, Kalitzin S. Is colour modulation an independent factor in human visual photosensitivity? Brain 2007;130(Pt 6):1679–89.

- Peng X, Van Essen DC. Peaked encoding of relative luminance in macaque areas V1 and V2. J Neurophys 2005;93(3):1620–32.
  Pfurtscheller G, Brunner C, Schlogl A, Lopes da Silva FH. Mu rhythm
- Pfurtscheller G, Brunner C, Schlogl A, Lopes da Silva FH. Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage 2006;31(1):153–9.
- Piccione F, Giorgi F, Tonin P, Priftis K, Giove S, Silvoni S, et al. P300-based brain computer interface: reliability and performance in healthy and paralysed participants. Clin Neurophysiol 2006;117(3):531–7.
- Portin K, Salenius S, Salmelin R, Hari R. Activation of the human occipital and parietal cortex by pattern and luminance stimuli: neuromagnetic measurements. Cereb Cortex 1998;8(3):253–60.
- Sellers E, Townsend G, Boulay C, Lapallo K, Vaughan TM, Wolpaw JR. The P300 brain-computer interface: a new stimulus presentation paradigm. Society for Neuroscience 2008; Washington, DC, Program no.778.21.
   Sellers EW, Donchin E. A P300-based brain-computer interface: initial tests by ALS
- Sellers EW, Donchin E. A P300-based brain-computer interface: initial tests by ALS patients. Clin Neurophysiol 2006;117(3):538–48.
- Sellers EW, Krusienski DJ, McFarland DJ, Vaughan TM, Wolpaw JR. A P300 event-related potential brain-computer interface (BCI): the effects of matrix size and inter stimulus interval on performance. Biol Psychol 2006;73(3): 242–52.
- Takano K, Komatsu T, Hata N, Nakajima Y, Kansaku K. A non-training BMI system for environmental control: a comparison between white/gray and green/blue flicker matrices. Society for Neuroscience 2008; Washington, DC, Program no. 863.9.
- Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM. Braincomputer interfaces for communication and control. Clin Neurophysiol 2002;113(6):767–91.
- Wolpaw JR, McFarland DJ. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc Nat Acad Sci USA 2004;101(51):17849–54.

Neuroscience Research 66 (2010) 219-222

Contents lists available at ScienceDirect



Neuroscience Research



journal homepage: www.elsevier.com/locate/neures

### Rapid communication

# My thoughts through a robot's eyes: An augmented reality-brain-machine interface

# Kenji Kansaku<sup>a,\*</sup>, Naoki Hata<sup>a,b</sup>, Kouji Takano<sup>a</sup>

<sup>a</sup> Cognitive Functions Section, Department of Rehabilitation for Sensory Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities,

4-1 Namiki, Tokorozawa, Saitama 359-8555, Japan

<sup>b</sup> Mechatronics Section, Department of Rehabilitation Engineering, Research Institute of National Rehabilitation Center for Persons with Disabilities, Tokorozawa 359-8555, Japan

#### ARTICLE INFO

Article history: Received 18 August 2009 Received in revised form 8 October 2009 Accepted 10 October 2009 Available online 22 October 2009

*Keywords:* BMI BCI Augmented reality Human body

#### ABSTRACT

A brain-machine interface (BMI) uses neurophysiological signals from the brain to control external devices, such as robot arms or computer cursors. Combining augmented reality with a BMI, we show that the user's brain signals successfully controlled an agent robot and operated devices in the robot's environment. The user's thoughts became reality through the robot's eyes, enabling the augmentation of real environments outside the anatomy of the human body.

© 2009 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

Technologies for direct functional interfaces between brains and artificial devices, the so-called brain–machine (BMI) or brain– computer (BCI) interfaces, have grown impressively in the last decade (Lebedev and Nicolelis, 2006; Birbaumer and Cohen, 2007). One research approach to BMI utilises neurophysiological signals, such as neuronal firing by a single cell. Electrophysiology studies using monkeys or rats have succeeded in multidimensional control of robot arms (Chapin et al., 1999; Moritz et al., 2008), aiming to control revolutionary prostheses that feel and act like the extremities. Another approach utilises neurophysiological signals from the brain, accessed non-invasively, primarily using electroencephalography (EEG), a technique for recording neurophysiological signals using electrodes placed on the scalp. An EEG-based BMI succeeded in achieving two-dimensional cursor control (Wolpaw and McFarland, 2004).

Extensive BMI research has enabled users to control external devices within their own environment; however, the use of brain signals to control devices outside the user's environment remains a new concept for BMI. In situations where humans acquire new visual perspectives, recent neuroscience studies have reported that our body scheme may change (Botvinick and Cohen, 1998; Ehrsson et al., 2004; Lenggenhager et al., 2007), *e.g.*, manipulation of the visual perspective can affect the usual ongoing experience of being located inside our body, and the perceptual illusion of swapping

bodies with another person or an artificial body can occur (Petkova and Ehrsson, 2008). Therefore, one challenge for developing a new BMI is to place the user's visual perspective in another environment directly. This may also raise various points that have to be evaluated further. Another possible direction for new BMI is that of preparing a controllable agent robot that has a visual perspective, and then letting the user see what the robot "sees". Here, we describe a new BMI system that permits the control of devices outside the user's own body environment; we combined augmented reality (AR) with BMI techniques, and showed that brain signals not only controlled movements of an agent robot but also operated a light in the robot's environment, acting through its eyes. The user's thoughts became reality through the robot's eyes, enabling the augmentation of real environments outside the anatomy of the human body.

Ten healthy, non-trained naive subjects (aged 19–39 years; two females and eight males) who had not previously participated in this study were recruited as participants. All of the subjects were neurologically normal and strongly right-handed according to the Edinburgh Inventory. The study was approved by the Institutional Review Board. All subjects provided written informed consent according to institutional guidelines.

The AR-BMI system consists of a personal computer (PC), monitor, lab-made agent robot, USB camera (QCAM-200V, Logicool, Tokyo, Japan), EEG amplifier (gUSBamp, Guger Technologies OEG, Graz, Austria), and EEG cap (g.EEGcap, Guger Technologies OEG, Graz, Austria) (Fig. 1). When the robot's eyes detect an AR marker (*e.g.*, Fig. 2a), the pre-assigned infrared appliance becomes

<sup>\*</sup> Corresponding author. Tel.: +81 4 2995 3100x2573; fax: +81 4 2995 3132. *E-mail address:* kansaku-kenji@rehab.go.jp (K. Kansaku).

<sup>0168-0102/\$ -</sup> see front matter © 2009 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved. doi:10.1016/j.neures.2009.10.006

K. Kansaku et al./Neuroscience Research 66 (2010) 219–222



**Fig. 1.** The augmented reality-brain-machine interface. Subjects were required to watch a computer monitor that displays the scene detected by the USB camera on the agent robot. Four icons to control the robot's movements (forward, backward, right, and left) are shown in the corners of the monitor. When the robot's eyes detect an AR marker, the pre-assigned infrared appliance becomes controllable. A panel with four icons to control the light (turn on, turn off, make brighter, and make dimmer) is also shown on the monitor. Consequently, the subjects can operate the light in the agent robot's environment.

controllable. The position and orientation of the AR marker were calculated from the images detected by the camera, and a control panel for the appliance was created by the AR system and superimposed on the scene detected by the robot's eyes. In order to control our system by using brain signals, we modified a Donchin P300 speller. This uses the P300 paradigm, which presents a selection of icons arranged in a matrix. The subject focuses attention on one of the icons in the matrix as a target, and each row/column or single icon in the matrix is intensified in a random sequence. The target stimuli are presented as rare stimuli (Oddball Paradigm). A P300-related response to the target stimuli is elicited, and then this response can be extracted and classified to determine the target (Farwell and Donchin, 1988). Note that the direction of attention is needed to elicit the P300-related response, and not necessarily the direction of eye-gaze. Recently, our research group modified the Donchin P300 speller (Takano et al., 2009), and applied it through an environmental control system (ECS), enabling a C3/C4-level quadriplegic patient to use the system successfully (28 correct signals/28 trials) without significant training (Komatsu et al., 2008).

The AR-BMI system uses ARToolKit (Kato and Billinghurst, 1999) and OpenGL. The ARToolKit C-language library was used to detect and determine the location of the AR markers, and the OpenGL C-language library was used to draw the 3D control panels. Fig. 2b shows a 3D model of the control panel used to





Fig. 2. An AR marker and panels for the AR-BMI. (a) An AR marker for the desk-light control. When the robot's eyes detect the AR marker, it becomes controllable. (b) A 3D model of the control panel used to control the desk light. (c) A drawing of the scene displayed on the PC monitor.

#### K. Kansaku et al. / Neuroscience Research 66 (2010) 219-222



Fig. 3. Experimental scenes. Examples of scenes that the subjects saw during the experiments. (a) The robot approaching the light. (b) The AR marker is detected by the robot's eyes, and the light control panel is displayed. (c) The light control panel flickered. (d) A command to turn on the light was successfully sent.

control the desk light. Fig. 2c shows a drawing of the scene displayed on the PC monitor. Note that the AR-BMI system can control both the agent robot and the desk light. The robot control panel has four icons (forward, backward, right, and left), as does the light control panel (turn on, turn off, make brighter, and make dimmer). We prepared green/blue flicker icons (Takano et al., 2009), and the duration of the intensification/rest of the flicker was 100/50 ms. All of the icons flickered in random order, which formed a sequence (600 ms). One classification was carried out every 15 sequences. Subjects were required to send 15 command infrared signals to control both the robot and light. Before the trials, we checked the commands that the subjects were going to send, and then the information was used to evaluate the subjects' online performance. We also performed an offline evaluation using the recorded data.

Eight-channel (Fz, Cz, Pz, P3, P4, Oz, PO7, and PO8 of the extended International 10-20 System) EEG data (Krusienski et al., 2007; Lu et al., 2008) were recorded using the EEG cap. All channels were referenced to Fpz and grounded to AFz. The stored EEG data were passed through an eighth-order high-pass filter at 0.1 Hz and a fourth-order 48-52-Hz notch filter, and amplified/digitised at a rate of 128 Hz. A first-order band-pass filter (8.0-18.0 rad/s) was applied to the recorded EEG data. Then, 120 samples of eventrelated potential (ERP) data were recorded according to the timing of the intensification. Data from the first 20 samples (before intensification) were used for baseline correction. The last 100 samples (after intensification) were down-sampled to 25.6 Hz, and Fisher's linear discriminant analysis was used for classification. In the Fisher's linear discriminant analysis, we first collected data to derive the feature vectors for the subsequent test session. Four targets were assigned to make the feature vectors. The EEG data were sorted using the flash-timing information, and then Fisher's linear discriminant analysis was used to generate the feature vector (160 dimensions, 20 dimensions per EEG channel), to discriminate between target and non-target. Feature vectors were derived for each condition. In the test session, visual evoked responses from EEG features were evaluated using the feature vectors. The result of the classification was construed as the maximum of the summed scores.

Using the EEG-based BMI system, the participants were first required to make the robot move to a desk light in the robot's environment (Fig. 3a and b). To control the robot, each command was selected in a series of 15 sequences, and the participants were required to send 15 commands. Online performance was evaluated, and the mean accuracy for controlling the robot was 90.0%.

When the robot' eyes detected the AR marker of the desk light, a flicker panel for controlling the appliance was displayed on the screen (Fig. 3c and d). Then, the participants had to use their brain signals to operate the light in the robot's environment through the robot's eyes. To operate the light, each command was selected in a series of 15 sequences, and the participants were required to send 15 commands. Online performance was evaluated, and the mean accuracy for light control was 80.7%.

Fig. 4 shows the offline evaluation of the performance of the participants under the robot-control (a) and light-control (b) conditions. The performance for controlling the robot and desk light differed significantly, and an interaction effect was observed by two-way repeated ANOVA ( $F_{(1,280)} = 6.53$ , p < 0.05). Post hoc testing revealed significant differences between the robot-control condition and the light-control condition (Tukey–Kramer test, p < 0.05). The difference might be related to the differences in the relative locations of the flicker icons on the screen (Cheng et al., 2002) (see also Fig. 2c).

By applying the AR technique with the BMI, we successfully showed that brain signals not only controlled an agent robot but also operated home electronics in the robot's environment. BMI research has developed revolutionary prostheses that feel and act like the user's extremities (Chapin et al., 1999; Moritz et al., 2008) or computer devices (Wolpaw and McFarland, 2004), but these have not yet controlled devices outside the user's environment. In this study, we applied the AR technique and succeeded in augmenting a real environment. We also applied the P300 speller algorithms, and succeeded in translating the subjects' thoughts as a command pre-assigned to each icon; the subjects' thoughts

#### K. Kansaku et al. / Neuroscience Research 66 (2010) 219-222



Fig. 4. Subjects' control accuracy. The accuracy for controlling the: (a) robot and (b) light are shown. The horizontal axes indicate the number of sequences, and the vertical axes indicate the accuracy. The red solid lines show the mean accuracy with the standard error (SE). The blue squares behind the red solid lines are two-dimensional histograms, and each blue square indicates the frequency of the subjects in each sequence and their accuracy.

successfully operated both the robot and the desk-light in the robot's environment.

In this study, humans succeeded in using an agent that has another perspective, external to the human body. Other possible approaches could include providing a new visual perspective to the user directly; careful application is needed in this respect, because this may easily alter the user's body scheme (Botvinick and Cohen, 1998; Ehrsson et al., 2004; Lenggenhager et al., 2007; Petkova and Ehrsson, 2008). The extension of the environment for human activities along these lines, using either non-invasive neurophysiological signals or neuronal firing data in the future could enable new daily activities for persons with physical disabilities and ablebodied persons.

#### Acknowledgements

This study was partly supported by a grant from the Ministry of Health, Labour and Welfare to K.K (H20-Kakucho-001). N.H. and K.T. are supported by NRCD fellowships. We thank Drs. T. Komatsu and G. Edlinger for their help and Drs. Y. Nakajima and M. Suwa for their continuous encouragement.

#### References

- Birbaumer, N., Cohen, L.G., 2007. Brain-computer interfaces: communication and restoration of movement in paralysis. J. Physiol. 579, 621-636.
- Botvinick, M., Cohen, J., 1998. Rubber hands 'feel' touch that eyes see. Nature 391, 756.

- Chapin, J.K., Moxon, K.A., Markowitz, R.S., Nicolelis, M.A., 1999. Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat. Neurosci. 2, 664-670.
- Cheng, M., Gao, X., Gao, S., Xu, D., 2002. Design and implementation of a braincomputer interface with high transfer rates. IEEE Trans. Biomed. Eng. 49, 1181-1186.
- Ehrsson, H.H., Spence, C., Passingham, R.E., 2004. That's my hand! Activity in premotor cortex reflects feeling of ownership of a limb Science 305, 875-877.
- Farwell, L.A., Donchin, E., 1988. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70, 510–523.
- Kato, H., Billinghurst, M., 1999. Marker tracking and HMD calibration for a videobased augmented reality conferencing system. In: Proceedings of the International Workshop on Augmented Reality, San Francisco, CA, USA.
- Komatsu, T., Hata, N., Nakajima, Y., Kansaku, K., 2008. A non-training EEG-based
- BMI system for environmental control. Neurosci. Res. Suppl. 61, S251. Krusienski, D.J., Sellers, E.W., Vaughan, T.M., 2007. Common spatio-temporal pat-terns for the P300 speller. In: Proceedings of the 3rd International IEEE EMBS Conference on Neural Engineering. Kohala Coast, HI, USA pp. 421-424.
- Lebedev, M.A., Nicolelis, M.A., 2006. Brain-machine interfaces: past, present and future. Trends Neurosci. 29, 536-546.
- Lenggenhager, B., Tadi, T., Metzinger, T., Blanke, O., 2007. Video ergo sum: manip-ulating bodily self-consciousness. Science 317, 1096–1099.
- Lu, S., Guan, C., Zhang, H., 2008. Unsupervised brain computer interface based on inter-subject information. In: Proceedings of the 30th Annual International IEEE EMBS Conference. Vancouver, BC, Canada, pp. 638-641.
- Moritz, C.T., Perlmutter, S.I., Fetz, E.E., 2008. Direct control of paralysed muscles by cortical neurons. Nature 456, 639-642.
- Petkova, V.I., Ehrsson, H.H., 2008. If I were you: perceptual illusion of body swapping. PLoS ONE 3, e3832.
- Takano, K., Komatsu, T., Hata, N., Nakajima, Y., Kansaku, K., 2009. Visual stimuli for the P300 brain-computer interface: a comparison of white/gray and green/blue flicker matrices. Clin. Neurophysiol. 120, 1562-1566.
- Wolpaw, J.R., McFarland, D.J., 2004. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc. Natl. Acad. Sci. U.S.A. 101, 17849-17854.

平成 21 年度 障害者自立支援機器等研究開発プロジェクト 「BMI 型生活環境制御装置の小型化と実証評価に関する研究開発」

総括·分担研究報告書

発行者 中島 八十一(研究代表者:国立障害者リハビリテーションセンター) 〒359-8555 埼玉県所沢市並木 4-1